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ABSTRACT:
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1. Introduction:

Let there be given M pattern classes, where M a 2,

distributed normally in a real n-dimensional Euclidean space En

Specifically, let the probability density function in En conditioned

on pattern class H ] , j =1 , ... , M, be:

fX ( x / Hj ) = (21r) -n / 2 I (R1) I '

exp[-J(x - x j ) T ( Rj ) - 1 (x - xl )l	 (1)

where x = col (x 1 .... , x n ) , the n x 1 vector x 1 and the n x n

symmetric positive definite matrix R 1 are the mean and covariance

of H 1 in En , the superscript T denotes the transpose operation,

and I (R j ) I denotes the determinant of R 1	Furthermore, assume

that the a priori probabilities P j for H J are given for j =1 , ...

M. Endowed with these density functions and a priori probabilities,

the space E n will be called the measurement or data space.

In the linear feature extraction problem as formulated in [11,

given an integer m such that 1 s m s n, a linear transformation

A of rank m from En to an m-dimensional feature space

E m (A)  is sought so that the Bayes risk (and in particular, the

probability of misclassification) in E M (A)  is minimized over a

class x of all such transformations A : E n E m (A)  , satisfying a

suitable constraint.

Let

y = Ax ,	 (2)
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y j = Ax j	(3)

R j = A R j A T ,	 (4)

With these formulas, the probability density functions in Em(A)

conditioned on pattern class I-I j , j =1 , ... , M , may be written as:

fY (Y/ I-11 0 A ) _ (2n)-m/2 I(Rj)! -

exp [- j (Y - 
Y1)T (Rj)-1 

(Y -Y 1 )) (5)

Thus the Bayes risk in E m (A)  can be expressed as:

BR(A) - L
	

Pi C ij J	 fY(Y/Hi, A ) dy , (6)
i=1 j=1	 nj(A)

;1i

where Oi (A) is the Bayesian decision region in E M (A)  for Hi

and the non-negative numbers C i j are the elements of the Bayes

cost matrix. If C i j =1 - h i j , where g ij is the Kronecker delta,

the expression for B R (A) becomes that of the probability of error

in Em(A).

The constraint that we impose on A is of the form

g(A)	 2 trace. (A A T = a,	 (7)

where a is a positive constant. Incorporating this constraint in

the expression for the probability of error, and using Lagrange

multiplier theory, one obtains the criterion functional
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M M

Q m ( A , x) _	 I Pj
^1(A) 

fy( y / H1 , A ) dy +

i=1 j=1
4i

+ %(z trace (A A T ) 	 (8)

where	 is the Lagrange multiplier associated with the constraint

.	 on A

We use an iterative method in determining the extremum of (8).

For this purpose, an expression for the gradient of Q m (A , %) with

respect to the elements of A is required. This expression is:

M M

v A Q m ( A , a) _	 I Pj l C(R i )- 1 D 11 - E ij I J .

i=1 j=1
^i

(R J ) -] A R j + (Rj)-1

F ij ( x i ) T } + a A ,	 (9)

where,

D ^ 1 = J	 (y - yl ) ( y ' yj ) TfY ( y / H1 , A ) dy ,	 (10)
ni(A)

E 11 = J	 f (y/H 1 , A) dy	 (11)0'i (A) Y

Fij = J	 (y - Y- j ) f ( y / H1 , A ) dy ,	 (12)
O i ( A )	 Y

and I is the m x m identity matrix,



4

In the present paper, the case in which the dimensionality of

the feature space is unity, Le, m=l , is considered. As a result,

R 1 and y j , j = l , ... , M, are scalars and fl, (A) , i = l , ... , M ,

consist of one or more intervals of the real line defined by

A i ( A ) _ {Y e E I(A) : P i f y (Y/ Hi , A)

P  f y (y/ H 1 , A)	 VJ'!i } ,	 (13)

The boundaries of fI i (A) are chosen from among the roots

of (13) where the inequality sign is replaced by an equality sign.

In the one -dimensional case, formulas (10), (11), and (12) have

closed form solutions thus yielding the following expression for the

gradient:

L.
r	 N

v A Q 1 ( A ,^) _	 I	 Ll Pj^-(R1)-1
	 R j AT

i=1 j=1 k=1
4i

(Oik - Y
j ) _ xj) fY(Oik / Hi A) +

+ P j ((R 1 ) 	 R  AT (w ik - y 1 ) + xi)

	

fy (,D ik / I-1 1 ) A) + % A	 (14)

where L i = the number of distinct intervals which compose n i (A) ,

O i k and m i k are respectively the upper and lower endpoints of

the kth intervals of n i (A) .

We have used the above expression for the gradient of

Q I (A, 7,) in an appropriate iterative algorithm to be described

in the following section. This algorithm is implemented in the form
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of a FORTRAN computer program which generates the optimal linear
A

transformation A .

2. Basic Algorithmrithm

The algorithm that we have just mentioned for computing a
A

1 x n linear transformation A and its corresponding Lagrange

multiplier X , which minimize the criterion functional Q I (A, 7 )

with a= 1, is presented in Fig. 1 	 One of the features of this

algorithm is that, at each iterative step, the value of the Lagrange

multiplier is updated by a procedure proposed by Tapia in [2].

It should be noted that in block (d) of Fig. I, a single iteration

of the Davidon- Fletcher- Powell unconstrained minimization procedure

is performed by leaving the n components of the transformation A

free to vary and holding -x fixed. More precisely,

A k+1 - A 	 - Kk V A QI(Ak' X k ),	 (15)

where K k denotes the stepsize at the kth step of the algorithm.

In the block (f) of Fig. 1, the Lagrange multiplier is updated by the

formula [2] :

_	 1
^k+1 - ( < A k+1' A k+l > )

^a(IIAk+1^^2 - 1)	
}

< A k+l' °A f(Ak+1) > /	 (16)

where	 < • ,	 • >	 denotes the inner product in	 En' 	 II	 II

represents the Froboenius norm in E n , 	 and
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f(A) = Q l (A,?) - j (ii Ai! 2 -1)a.	 (17)

3. Optimal Single [Linear Gaussian Feature Program

The above algorithm was implemented in a double precision

FORTRAN procedure consisting of a main program and several

subroutines. All software with the exception of the IBM FORTRAN

SSP double precision version of the Davi don -i'letcher-Powell algorithm

[3] was derived by the authors. The only inputs necessary for the

operation of the program are the number of pattern classes, the

dimension of the measurement space, initial values for A and

(if desired), and various control parameters (such as the maximum

number of iterations of the basic algorithm to be performed, an

estimate on the value of the criterion function at the minimum, etc.)

4. Numerical Results

A procedure was developed for testing the validity of the optimal

single linear Gaussian, feature algorithm en remotely sensed data.

This procedure utilizes the program LARSYS (developed at the

Laboratory for Applications of Remote Sensing, Purdue University).

The test procedure is outlined in Fig. 2. It should be noted from

this figure that the data set is divided into two mutually exclusive

subsets; the training subset A , and the classification subset B .

These two subsets consist of data from alternate columns of the same

data fields. As is reflected in the figure, the subset A is used to

generate the statistics used in finding the optimal single linear

Gaussian feature. Once the optimal single linear Gaussian feature is

found, the subset A is transformed accordingly and statistics for



# of correct classifications

total # of classifications
Performance =

(18)

classification in the reduced space are generated. The subset B Is

used solely for classification purposes. Thus in no case are the same

data points used for both the training and classification procedures.

Generation of s tatistics and classification were performed using the

STAT and CLASS options of LARSYS. The terms "performance" and

"average performance" alluded to in Fig. 2 are defined as follows:

M
Average performance by class = M C performance for

i=1
class i .
	

(19)

The test procedure has been applied to seven test cases, five

cases employed twelve channel data pertaining to eight pattern classes

from the Cl flight line, and the remaining two employed twelve

channel data belonging to four pattern classes from the LANDSAT.

A typical Cl flight line data set is given in Table I. The twelve

dimensional statistics computed by LARSYS for this data set is given
n

in Table II. The resulting optimal single linear transformation A

is also listed in Table II.

For comparison purposes, in addition to determining the perfor-

mance of the optimal single linear Gaussian feature, the performances

of the best (as computed by utilizing the average interclass

Bhattacharyya distance criterion) single feature, the best (as computed

utilizing the average divergence criterion) two untransformed features,

and all twelve untransformed features were computed. The corres-

ponding results are listed in Table III. It is readily noted that the
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optimal single linear Gaussian feature gave performance results

markedly superior to those obtained by using the best single untrans-

formed feature. Furthermore, the optimal single linear Gaussian

feature gave serformance results comparable to those obtained by

using the best two untransformed features. 'Thus one could obtain a

reduction in storage as well as a reduction in computation effort by

using the opt' nal single linear Gaussian feature instead of the best

two untransformed channels.

All calculations were performed using an IBM 370/1.55 general

purpose computer at Rice University's Institute for Computer Services

and Applications. The optimal single linear Gaussian feature program

operates in 72 K bytes of memory.

In all test cases, the initial guess for the transformation A

was made in the following manner. The single feature yielding the

highest value for the average inter-class Bhattacharyya distance was

found. The component of A corresponding to this feature was then

set to a value of one and the remaining components of A were set

to zero. Typically for a twelve channel eight class problem, the

optimal single linear Gaussian feature program converged within forty

iterations and required approximately five minutes of CPU time. The

Cl flight line and LANDSAT data as well as the LARSYS program

were provided by NASA-JSC. Numerous hypothetical cases were

tested and yielded similar results, but these findings are not listed here.

5. Conclusions

The algorithm presented yields encouraging results. A method

for finding an optimal n to m transformation, where 1 < m < n ,
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requires a different algorith€-nic procedure and the results from this

effort will be available in the near future.
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Training Set (A)	 Flight Line C:1 Run No. 6600060

FIELD DESIGNATION	 CLASS	 LINES (BY 1)	 COLUMNS (BY 2)

25- 6-1 Soybeans 65- 81 69- 89
3t-13-1 Soybeans 237-253 141-1.67
3b- 7-1 Soybeans 307-327 59- 81
7-23-1 Soybeans 773-777 135-179

36- 1-1 Bare Soil 97-115 49- 85
36- 4-1 Corn I 167-177 33- 77
36- 9-1 Corn I 267-283 45- 61
36- 8-1 Corn I 319-341 21-	 31
12- 9-1 Corn 1 603-625 13- 33
31-12-1 Wheat I 295-303 135-175
6-14-1 Wheat I 471.-495 177-201
7- 2-1 Wheat I 607-665 203-211

12-10-1 Wheat I 656-695 17- 41
6- 2-1 Oats 365-375 145-185
1-11-1 Oats 421-455 63- 83
7- 1-1 Oats 591-599 135-181
6-10-1 Red Clover I 439-447 139-183
1- 2-1 Red Clover I 539-565 175-195
1-	 3 -1 Red Clover I 599-619 69- 95
6- 8-1 Rye 527-569 127-155
7-24-1 Alfalfa 731-737 129-177
7-24-3 Alfalfa 749-755 131-171
7-22-1 Alfalfa 809-817 155-183

Classification Set (B)	 Flight Line C1 Run No. 6600060

FIELD DESIGNATION	 CLASS	 LINES (BY 1)	 COLUMNS (BY 2)
25- 6-2 Soybeans 65- 81 70- 88
31-13-2 Soybeans 237-253 142-166
36- 7-2 Soybeans 307-327 60- 80
7-23-2 Soybeans 773-777 136-178

36- 1-2 Bare Soil 97-115 50- 84
36- 4-2 Corn I 167-177 34- 76
36- 9-2 Corn I 267-283 46- 60
36- 8-2 Corn I 319-341 22- 30
12- 9-2 Corn I 603-625 14- 32
31-12-2 Wheat I 295-303 136-174
6-14-2 Wheat I 471-495 178-200
7- 2-2 Wheat I 607-665 204-210

12-10-2 Wheat I 656-695 18- 40
6- 2-2 Oats 365-375 146-184
1-11-2 Oats 421-455 64- 82
7- 1-2 Oats 591-599 136-180
6-10-2 Red Clover I 439-447 140-182
1- 2-2 Red Clover 1 539-565 176-194
1- 3-2 Red Clover I 599-619 70- 94
6- 8-2 Rye 527-569 128-154
7-24-2 Alfalfa 731-737 130-176
7-24-4 Alfalfa 749-"55 132-170
7-22-2 Alfalfa 809-817 156-182

Table I : Typical Data Subsets
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2.u2 2.56 2.02 2:.05 4.18 5.19 4.16 4.21 	 2.99 5.20 8.13 4.45
3.91	 4.14	 2.b3 --3.18 -- 6 -. C4" -6.53 "4.21	 •b•54	 5.77	 6.13 -4.24 -1.83	 -
2.68 3.12 e.03 2.48 4.63 4.09 2.99 5.77 5.80 3.92 -9.13 -4.b5

_---,!+-.=? --4,.2Gb0_2..b3-- 6.60 _9..11_._ 5..2 0 __.6. •_1 " 3_3 . 52 11.65 28.38 16,44
0.91 2.62 2.47 -v.27 6.26 20.91 8.13 -4.24 -9.13 28.68113.05112.47 ^
3.28 2.23 0.99 C.21	 3.46 12.3b 4.45 -1.88 -4.65 16.44112.47 77.52

-	 PATTERN CLASS 6 -	 _-
MEAN VECTOR

75.69 75.02 60.bG 62.67 b7.12 8.+.23 68.84101.93 90.37103.95 bb.b9 72.29
CCVAkIANCE MATRIX	 -

23.b6 25.03 lb.30 19.66 47.06 50.09 34.30 58.84 43.02 54.03 4b.bl 25.44
__....FS.03,_32^OO.,L].46_c4.3S_56__-4 61_..10 _ 1i1.S7 72...16. 53.43 _F6.42 56.36 61.49

18.36 21 .46 1 7.Ob 17. 6b 41 . bS^44.46 30. %2 - 53.!'2'39.1"7 49.21f41^. I1^ 22 .'7b^
• 19,86 24.35 17.6d 21.02 4b .68 X1.11 35.23 61.1b 45.bO 57.17 47.62 25.93
47.06 56.54 41.55 46.68112.64119.83 b2.04143.2b104.91131.4bIII.47 61.55 .--
50.09 61.10 44. 4 6 51.11119.83134.00 d1.52157.7LI15.44144.94125.61 67.77
34.30 41.57 10.72 35.23 82.04 91.52 64.27109.10 80.49101.59 bb.00 4b. bb
,58:84 72.16 b3.12 61.181 4 3. 28 157 . 72109.10193.74142.44180.90151.68-b3.bJ---
4.3.C2 °_3.43 X9.17 45.80104.91115.44 00. 4 9142.44111.10138. cid113.43 63.54
54.C3 66.42 4 .9.21 57. 1 7 1.31 .4 61. 4 4 . 9 4 1.01 . 5 1)180.9013d.S• 6lb2.2bl49.19 85.01
46.51 56.36 41.7147.6'2111.47125.61' bd.-00151.bbl'1'.i.43L49'•1•^1^4b.Otf^^/b.40
25.44 31.49 22.76 25.93 bl.55 67.77 46.86 83.63 63. 4 b5.01 78.40 52.20

PATTFRN CLASS- -7
MEAN VECTOR

50.12 79.79 63.68 65.3o 93.92 96.71 72.57,02.91 86.13
---" --	 CCVARIANC£ MATRIX--	 _.	 __._.._.._.. _
4.79 3.53 2.bO 2.46 4.26 2.98 2.46 5.04 4.84
3.53 6.57L.04 3.30 5.34 4.36 2.98 6.6b 6.74._-___ __ 	 ._
2.80 2.64 6.34 2.17 3.77 2.49 2.35 4.62-4.:i4
2.46 3.30 2.17 3.17 3.92 3.17 2.50 5.24 5.41
4.!_8 E.34 3.77 3.92 -b.71- 5.07- 3.79 8.73 8.b6
2.9B 4 .3b 2.46 3.17 5.07 5.61 	 3.34 7.35 7.54
2.46 2.9b 2.35 2.50 3.79 3.34 3.74 5.51 5.75
S.C4	 6.66 -- 4.62- 5.24" 6.76_"-7.36	 5-.b1--14.4b-13.27
4.b4	 6.74 4.:34	 5.41	 8.56 7.54	 5.75 13.27 15.21
4.9.0 G 4̂d 4.ky

T	
5.15 8_.48 7.16 5.66 12.80 13_36

^1.C1	 -0.b0 =1.05 =1.tl5 =57 0.17 -x.69 ^6.19
-0.46 -0.75 -0.68 -C.84 -1.30 -0.43 --0.79 -2.27 -2.56

PATTERN-CLASS .8
MEAN VICTOR

77.1b 71.96 55.74 55.8'2 75.69 65.19 60.70 70.25 55.04
-	 _... .CCVARIANCE IiATRIX - - __-.._.-_.__.-_.._..___._ _--.....- 	 _.... __.
3.51	 2.63 4.19 2.C3 3.53 1.82 1.79 4.50 3.97
2.C3 S. C7 2 .52 2.79 4.62 2.65 _2.48 6.36 5.95
2.19 2.52 2.02 2.00 3.57

_ -1. -bb2.30 4.3y'4.C7
2.03 2.79 2.00 3.04 3.65 2.14 2.10 5.05 4.63
3.53- 4.62 -3.57--3.b5 8.08 3.99 3.56 9.C2 7.74
1.82 2.65 1.68 2.14 3.99 4.29 2.79 5.47 4.65
1.79 2.4b 22.10 2.10 3.5b 2.79 3.34 4.84 4.47
4.50 "" •6 38 -`"4.3 9 --_ .05 -- 9.02""3.47" 4.54 13.32 -11.30
3.97	 5.95 4.07 4.83 7.74 4.85 4.47 11.30 11.91
2_08 3. 12 2_;7 2.47 4__70 3.50 . 3.05 6..25 5.6b

	

3	
_,

-13.45-18.22-12.b5-15.76-25.46-13.3-13.26-36.643-35:47
--8.45-11.52 - d . 5 5 -9.15-15.88 - 7 . 8 b -6.19-21.31-20.27

99.84 96.05 75.66

4.90 -1.01 -0.46
_ _6 •- 4 a_.-^ 1_ ..2 5,._-0.75

4.49 --0. 00
5.15 -1.05 -O.b4
6.4b -1.435 -1.30	 -- -
7.ib -0.57 -0.43
5.66 0.17 -0.79

1 -2.80 -2.69 -2.27
13.18 -3.19 -2.50
14.92 -1.45 -1.44
^1.45 17.b1^^'3 .79^ -'
-1.44 3.79 6.1c

78-57151 .63111 .78

__ . 2.08-13.45 -8.45....-Y
3.12-1_8.12-11.b2

2.37-12.d5 -6.55'
2.47-15.78 -9.15
4.70-25.46-15.b8---
3.50-13.33 -7-bb
3.05-13.26 -6.19
6.25-36.66-21.31
5.6b-35.37-20.27

--S.-&6-14.70 -8.74
-14.70167.50 81.(,2
-6.74 61.92 59.72

	

(-.44040
	 -.38796	 .04587	 -.23900	 -.08005	 -. 23782

	. 12532	 .43812	 .51823	 -.03791
	 -.07618	 -. 21596)

Nyi i?WR QUALITY	 Table II (contd. )



,	 1	 ^	 ^	 I1
	

1

16

Total # of
Points in

Performance Results
Optimal Single Linear Best Single Best Two All Twelve

Test Case Data Set Gaussian Feature Feature Features Features

.740 .553 .797 .990I	 -CL 10,944

II	 -Cl 90941 .759 .648 892 .992

III -Cl 9..941. .667 .620 .886 .986

IV -Cl 14,997 .803 683 857 .993

V -Cl 14o997 .799 664 .849 .993

VI -LANDSAT 10051 .850 .834 .864 .918

VII-LANDSAT 1,051 .847 .831 .875 .933

Average Performance by Class Results

Optimal Single Linear Best Single Best Two All Twelve
Gaussian Feature Feature Features Features

739 .575 .813 .990I	 -C1 10,994

II	 -Cl 9,941 .739 610 .860 .993

III -Cl 9,941 .706 .615 .871 .975

IV -Cl 14,997 .782 .651 854 993

V -Cl 14,997 .784 .653 .848 .993

UI -LANDSAT 1,051 .860 .827 .868 .923

VII-LANDSAT 1,051 .856 .803 869 .935

Table III: Test Case Results
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