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ABSTRACT:

A comFutational algorithm is presented for the extraction of an
optimal sinF e linear feature from several Gaussian pattern classes,

e algorithm minimizes the increase in the probability of misclassi-
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LANDSAT data are presented, It was found that classification using
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feature gave performance results comparable to those obtained by
using the two features which maximized the average divergence.
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Introduction :

Let there be given M pattern classes, where M = 2,
distrihuted normally in a real n-dimensional Euclidean space EM |
Specifically, let the probability density function in E" conditioned

on pattern class HJ , j=4,... , M, be:
fx(x/Hj) = (211)'“/2 ’(ﬁJ)‘ - %

ewpl-x(x - xHT(RH Tx- xhH1, ()

where x=col (Xy,...,% ), the nxl vector x) and the nxn
j

)
symmetric positive definite matrix R° are the mean and covariance

of HJ in E", the superscript T denotes the transpose operation,

~ ~]
and ’(Rj) denotes the determinant of R , Furthermore, assume

that the a priori probabilities P i for HI are given for j=1,...,
M. Endowed with these density functions and a priori probabilities,
the space EM will be called the measurement or data space.

In the linear feature extraction problem as formulated in [1],
given an integer m such that 1 . m ¢ n, a linear transformation
A of rank m from E" to an m-dimensional feature space
Em(A) is sought so that the Bayes risk (and in particular, the
probability of misclassification) in Em(A) is minimized over a
class x of all such transformations A : En.*Em(A) , satisfying a
suitable constraint,

Let
Ax, (2)

(=
1}



7l = A%l (3)

Rl = A RIAT, (4)
With these formulas, the probability density functions in EM(A)
conditioned on pattern class HJ , j=1,...,M, may be written as:

ty(y /i, ) = (2m /2 @) B

exp [-3(y - §HT ®RH Ty 51 (5)
Thus the Bayes risk in E™(A) can be expressed as:

M .
BR(A) = z ‘{ Pj Cij I fY(Y/HJ:A)GYv(ﬁ)
i=1 j=1 ay(A)

s

#1

where Qi(A) is the Bayesian decision region in E™M(A) for !
and the non-negative numbers Cij are the elements of the Bayes
cost matrix. If Cij=1- 5” , where 51j is the Kronecker delta,
the expression for BR(A) becomes that of the probability of error
in EM(A),

The constraint that we impose on A is of the form
g(A) = &trace (A AT) = o, (7)

where o« is a positive constant., Incorporating this constraint in
the expression for the probability of error, and using Lagrange

multiplier theory, one obtains the criterion functional



M f
z P, J £ (y/H3, Ay dy +

A = :
QA1) 5 opy(A) Y
1 j=1
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s

1

n o1

+ x(étrace(A ATy - o-), (8)

where 3 is the Lagrange multiplier associated with the constraint
on A,

We use an iterative method in determining the extremum of (8),
For this purpose, an expression for the gradient of Qm(A, A)  with

respect to the elements of A is required, This expression is:

M M . . ..
'h Quian = LY By ([T 0 - st ],

=1 j=1
i
. Fij(;:j)T} + 1A, (9)
where, )
Dl = | (v - iy - $HTe (y/ul, Aydy, (10)
0, (4) ¥
gil - | t (y/HI, A) dy (11)
n (A) Y
Fi - [ -5yt ysml, Ay ay, (12)
Qi(A) Y

and I is the m x m identity matrix.



In the present paper, the case in which the dimensionality of
the feature space is unity, i.e, m=1, is considered, As a result,
RJ and yj ,j=1,...,M, are scalars and Qi(A), i=1,...,M,

consist of one or more intervals of the real line defined by

75(4) = {y e E'(A): P, 1 g /HYLA)

Py f,(y/ HJ,A) Vi£i }, (13)

The boundaries of @ ;(A) are chosen from among the roots
of (13) where the inequality sign is replaced by an equality sign,
In the one-dimensional case, formulas (10), (11), and (12) have

closed form solutions thus yielding the following expression for the

gradient

M L 1 o~
VA Q]_(A,K) Z kz_ P. ( (R ) R] AT

1

ﬂ\‘llMg

oh

(B - 5 - X ) e @ s ml ) 4

+ P, ((R -1 R AT (o - §j)+:‘<j).
f(wk/II Ay + v A, (14)

where Li = the number of distinct intervals which compose ni(A),
¢ik and @, are respectively the upper and lower endpoints of
the k™ intervals of 0, (A).

We have used the above expression for the gradient of
Ql(A, %) in an appropriate iterative algorithm to be described

in the following section. This algorithm is implemented in the form



of a FORTRAN computer program which generates the optimal linear
A
transformation A .

Basic Algorithm

The algorithm that we have just mentioned for computing a
1 x n linear transformation ﬁ and its corresponding Lagrange
multiplier 9\, which minimize the criterion functional QI(A' 2)
with o=% is presented in Fig, | . One of the features of this
algorithm is that, at each iterative step, the value of the Lagrange
multiplier is updated by a procedure proposed by Tapia in [2],

It should be noted that in block (d) of Fig. 1, a single iteration
of the Davidon-Fletcher-Powell unconstrained minimization procedure
is performed by leaving the n components of the transformation A

free to vary and helding » fixed, More precisely,

Brgr = Ak 7 Ky va QulAgs 2y, (15)

where Kk denotes the stepsize at the kth

step of the algorithm.
In the block (f) of Fig, 1, the Lagrange multiplier is updated by the

formula [2] :

— -1
b1 T O < B Ak§1> )
(5 (A1 - 1 -
< Ak—i—l’ VA f(Ak+1) > ), (16)
where < - , - denotes the inner product in En, e

represents the Froboenius norm in ET, and



3.

£(A) = Qu(A,2) - F(1ALZ-1). (17)

Optimal Single Linear Gaussian Featur¢ Program

The above algorithm was implemented in a double precision
FORTRAN procedure consisting of a main program and several
subroutines, All software with the exception of the IBM FORTRAN
SSP double precision version of the Davidon-rletcher-Powell algorithm
[3] was derived by the authors, The only inputs necessary for the
operation of the program are the number of pattern classes, the
dimension of the measurement space, initial values for A and
(if desired), and various control parameters (such as the maximum
number of iterations of the basic algorithm to be performed, an

estimate on the value of the criterion function at the minimum, etc.)

Numerical Results

A procedure was developed for testing the validity of the optimal
single linear Gaussian feature algorithm cn remotely sensed data.
This procedure utilizes the program LARSYS (developed at the
Laboratory for Applications of Remote Sensing, Purdue University).
The test procedure is outlined in Fig, 2, It should be noted from
this figure that the data set is divided into two murually exclusive
subsets; the training subset A , and the classification subset B,
These two subsets consist of data from alternate columns of the same
data fields, As is reflected in the figure, the subset A is used to
generate the statistics used in finding the optimal single linear
Gaussian feature, Once the optimal single linear Gaussian feature is

found, the subset A is transformed accordingly and statistics for



classification in the reduced space are generated, The subset B s
used solely for classification purposes. Thus in no case are the same
data points used for both the training and classification procedures,
Generation of sratistics and clessification were performed using the
STAT and CILASS options of LARSYS. The terms "performance’ and

"average performance" alluded to in Fig. 2 are defined as follows:

# of correct classifications |

Performance = ;
total # of classifications (18)
1 M
Average performance by class Y z performance for
i=1
class 1. (19)

The test procedure has been applied to seven test cases, Five
cases employed twelve channel data pertaining to eight pattern classes
from the C1 flight line, and the remaining two employed twelve
channel data belonging to four pattern classes from the LLANDSAT.

A typical Cl flight line data set is given in Table I, The twelve
dimensional statistics computed by LLARSYS for this data set is given

A
in Table II. The resulting optimal single linear transformation A

is also listed in Table IL

For comparison purposes, in addition to determining the perfor-
mance of the optimal single linear Gaussian feature, the performances
of the best (as computed by utilizing the average interclass
Bhattacharyya distance criterion) single feature, the best (as computed
utilizing the average divergence criterion) two untransformed features,
and all twelve untransformed features were computed, The corres-

ponding results are listed in Table III. It is readily noted that the



optimal single linear Gaussian feature gave performance results
markedly superior to those obtained by using the best single untrans-
formed feature, Turthermore, the optimal single linear Gaussian
feature gave werformance results comparable to those obtained by
using the best two untransformed features, Thus one could cobtain a
reduction in storage as well as a reduction in computation effort by
using the optinal single linear Gaussian feature instead of the best
two untransformed channels.

All calculations were performed using an IBM 370/155 general
purpose computer at Rice University's Institute for Computer Services
and Applications. The optimal single linear Gaussian feature program
operates in 72 K bytes of memory.

In all test cases, the initial guess for the transformation A
was made in the following manner. The singie feature yielding the
highest value for the average inter-class Bhattacharyya distance was
found. The component of A corresponding to this feature was then
set to a value of one and the remaining components of A were set
to zero, Typically for a twelve channel eight class problem, the
optimal single linear Gaussian feature program converged within forty
itqrations and required approximately five minutes of CPU time, The
Ct flight line and LLANDSAT data as well as the LARSYS program
were provided by NASA-]JSC. Numerous hypothetical cases were

tested and yielded similar results, but these findings are not listed here,

5. Conclusions
The algorithm presented yields encouraging results, A method

for finding an optimal n to m transformation, where l<m<n,

T



requires a different algorithmic procedure and the results from this

effort will be available in the near future,
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Classification Set (B) :

Flight Line I

CLASS

Soybeans
Soybeans
Soybeans
Soybeans
Bare Soil
Corn 1

Corn 1

Corn 1

Corn 1
Wheat 1
Wheat I
Wheat 1
Wheat I

Qats

Qats

QOats

Red Clover I
Red Clover I
Red Clover I
Rye

Alfalfa
Alfalfa
Alfalfa

Flight Line

FIELD DESIGNATION CLASS
25~ 6-2 Soybeans
31-13-2 Soybeans
36- 7-2 Soybeans

7-23-2 Soybeans
36~ 1-2 Bare Soil

36- 4~2 Corn 1
36- 9-2 Corn 1

36- 8-2 Corn 1

12- 9-2 Corn 1
31-12-2 Wheat I
6-14-2 Wheat I

7~ 2-2 Wheat 1
12-10-2 Wheat I

6- 2-2 Qats

1-11-2 Qats

7- 1-2 Qats

6-10-2 Red Clover 1
I- 2-2 Red Clover I
1- 3-2 Red Clover I
6- 8-2 Rye

7-24-2 Alfalfa
7-24-4 Alfalfa
7-22-2 Alfalfa

Table I :

Run o, 6600060

LINES (BY 1)

65- 81
237-253
307-327
773-777

97-115
167-177
267-283
319-341
603-625
295-303
471-495
607-665
656-695
365-375
421-455
591-599
439-447
539-565
599-619
527-569
731-737
749-755
809-817

Cl Run No. 6600660

LINES (BY 1)

65- 81
237-253
307-327
773777

97-115
167-177
267-283
319-341
603-623
295-303
471-495
607-665
656-695
365-375
421-455
591-599
439-447
539-565
599-619
527-569
731-737
749-755
809-817

Typical Data Subsets

13

COL.UMNS (BY 2)

69~ 89
141-167
59- 81
135-179
49- 85
33- 77
45- 61
21- 31
13- 33
135-175
177-201
203-211
17- 41
145-185
63- 83
135-181
139-183
175-195
69- 95
127-155
129-177
131-171
155-183

COLUMNS (BY 2)

70~ 88
142-166
60- 80
136-178
50- 84
24~ 76
46~ 60
22- 30
14- 32
136-174
178-200
204-210
18- 40
146-184
64- 82
136~180
140-182
176-194
70- 94
128~154
130-176
132-170
156-182
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- . . T, PATTERN-CLASS 8 . . e e e oo e e -
MEAN VECTOR
7716 71.58 5574 5%5.82 75,69 B5.19 60 76 70 25 5b 04 78 5?151 bolll 78
T T T CEVARTANCE MATRILX 07 e e ’ . ) -
3.51 2+63 2.19 2.03 3.53 1.82 1-79 450 3.97 2.08=]13.45 =8.45
24€3  5.C7 2452 2,79 _ 4.62 __2.65 2.48  65.35_ 5.95  3.12=18.62=11.52
2419 2.52 3.G2 2.00 3 57 1JBe 2010 4 3Y A CT Z2.37-127d5 = .55
203 2.79 .00 3.04 3.65 2.14 2.10 Ba05 4.683 2.47=15.78 =9,15
3433 4.6 J.57--3.65  B.08 3.99 3.56 G.[02 Te74 4,70=-25.46-15488B - -
leB82 2.65 1.88 2.14 399 4.29 2.79 547 4.55 2.50=13.33 =7.b48
1479 2.4b Z.10 2410 356 279 3.34 4.84 4447 3.05«13.26 ~d.19
4 .50 6‘.'38“"’4-39 TEL00T .02 D87 G.U4 13.32 '11.30 6-25‘30-(’&'"21 «31 T
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~l 34145 1B.C2=12.85=15¢ 7GmED wdbm13s30m) 3.26m30 6b~3:.¢7—14 70IH7750 BY.J62
=8, 45=11 .82 »d.55 =G .15=15.88 =7.8b =3.19=21 +31~20.27 =~&.74 bl 9Z H9.72
A = (~.44040 ~. 38796 . 04587 -. 23900 -. 08005 -, 23782
. 12532 . 43812 . 51823 -.03791 -.07618 -, 21596)
{1
..J u-d-h\-l._l W

il E&)R QUALITY]

0 461 44094101 «59150.9013d.

PATTERN CLASS-
96.71 T2.57, 02.91 8B6.13 95.84

2-02 3'91 2-08 {l 0(3 14 gl 3'25
z.as Lhall 3,12 _4:22 a,od ge23
2.0 2.83 2.(.' 2.80 2.47 0-99
2e 05 3418 2,48 2.83 =0.27 0.21
he13 G664 .63 0.80 0220 4 6
b.s19 6.53 4.LQ 9.11 20.%1 12.306
4.16 G.21 2.499 S.20 Be13 4.45
T fa21 o] S‘i 5.77 G.13 =L .24 =1,838
2.4% 5.77 5. 80 .92 =9Q,14 ~4.b5
520 _6. 13 3-92 _11..65 ‘253*3!:5?_1;‘5,_44* N
Be13 S4.E4 29013 26, 58213,05112.4 7
HGo4D =] B8 =4, UJ 16.44112.47 77.52

6d.§ﬂ101-93 $0.37103.9% BH.BY 72.29

34430 BB.8Y 43,02 54.03 46.H1 2%.44
41007 72416 53,43 €662 56436 51249
30,7263, 12 759017 49 BT Al 1T Be e
35423 €1.1b 45.B0 57,17 47.62 25,93
B52.06163.26104.91131.46111.47 61 .55
J1452157.72115044164.94125.61 67 .77
0422710910 80.49101.5% bB.00 4b.bb

3.28157.72109.10193.74142.44180,90151 .66 83.63 — -

w0491 42, 44111.10158 Y5113.43 63.5¢4
$61b2.260149.19 85.01
ba.60151 bb11¢.qsra9 1S 4608778740
46.85 B3463 63.54 ES5.01 78B.40 52.20

K e e e
96.05 75.86

Table II (contd.)
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Test Case
I -C1
I -c1
11 ~C1
IV -C1
v -al
VI -LLANDSAT
VII-LANDSAT

I -C1
II -Ci
III -C1
IV -C1
vV -C1
VI -LANDSAT
VII-LANDSAT

Total # of
Points in
Data Set

10,944
9,941
9,941

14,997

14,997
1,051
1,051

10,994
9,941
9,941

14,997

14,997
1,051
1,051

Performance Results

Optimal Single Linear | Best Single | Best Two | All Twelve
Gaussian Feature Feature Features Features

. 740 . 553 . 797 .990

. 759 . 648 . 892 ., 992

. 667 . 620 . 886 . 986

. 803 . 683 , 857 . 993

. 799 . 664 . 849 . 993

. 850 . 834 . 864 .918

. 847 . 831 . 875 . 933

Average Performance by Class Resuits

Optimal Single Linear | Best Single| Best Two | All Twelve
Gaussian Feature Feature Features | I“eatures
. 739 NEYE . 813 . 990
. 739 . 610 . 860 . 593
. 706 . 615 . 871 . 975
. 782 . 631 . 854 ., 993
. 784 . 653 . 848 . 993
. 860 . 827 . 868 . 923
. 856 . 803 . 869 . 935

-

Table III: Test Case Results
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