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SUMMARY

A fluid mechanical model of the acoustic behavior of small
orifices is presented which predicts orifice resistance and
reactance as a function of incident sound pressure level, frequency,
and orifice geometry. Agreement between predicted and measured values
(in both water and air) of orifice impedance is excellent. The
model shows that

(1) The acoustic flow in the immediate neighborhood of the orifice
(i.e., the near field) can be modeled as a locally spherical flow.
Within this near field, the flow is, to a first approximation,
unsteady and incompressible.

(2) At very low sound pressure levels, the orifice viscous resistance
is directly related to the effect of boundary-layer displacement
along the walls containing the orifice and the orifice reactance is
directly related to the inertia of the oscillating flow in the ori-
fice neighborhood. Previously, orifice resistance and reactance
were modeled by empirical end correction expressions. The model
also shows that at low to moderate sound pressure levels, the resis-
tance can be dominated by weak nonlinear jet-like losses but that
the overall impedance can still be constant (i.e., independent of
incident sound pressure level) providing the orifice resistance 1is
very small relative to the reactance. This is shown to occur when
the amplitude of the incident acoustic pressure P is less than
p[w(D+L)]? where w is the sound radian frequency, (D+L) is the ori-
fice diameter and thickness respectively and p is the fluid mean
density.

(3) When P/p[w(D+L)]2%>>1, the orifice impedance is dominated by
nonlinear jet-like effects. This corresponds to very high sound
pressure levels at which the orifice behaves in a predominately
quasi-steady manner. Thus the model establishes explicitly the
quasi-steady nature of the flow in orifices exposed to intense sound.

(4) When P/p[w(D+L)]2=0(1), orifice resistance and reactance are
roughly equal.
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DEFINITION OF SYMBOLS

Definition

constant defined by Eqn. (36)

airy function

speed of sound

time-averaged discharge coefficient
orifice diameter

special functions defined in text
special function defined in text
orifice thickness

radial distance of truncated hemispherical
surface corresponding to orifice outlet

acoustic pressure

amplitude of incident acoustic pressure
radial distance

acoustic resistance

orifice Reynolds number (w*(D*+[*)2/v#)
time

radial velocity

maximum velocity at orifice vena contracta
orifice inlet velocity

orifice reactance

orifice impedance

parameter defined as w* (D*+L*)/V*
parameter defined as V*/w*(D*+L%*)
parameter defined as v28
boundary-layer displacement thickness
ratio of specific heats

fluid kinematic viscosity

fluid coefficient of viscosity

fluid density

sound wavelength

sound radian frequency

spherical polar angle (See Fig. 4a)
angle defined as w/2-6

transformed time coordinated (Eqn. 99)



Symbol
T

AnL

Superscripts

()*
(M*

Subscripts

o
1

Definition
transformed boundary layer coordinate (Eqn. 54)
nonlinear orifice end correction (Egn. 2)

denotes dimensional quantities
denotes mean quantities

denotes lowest-order term

denotes first-order term; also harmonic term
where obvious
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1. INTRODUCTION

Cavity backed orifices are extensively used in the aircraft
industry as acoustic devices to reduce or absorb internally generated
jet engine machinery noise. The efficient application of these de-
vices depends intimately upon the selection of the "optimum'" impe-
dance to maximize the sound absorption. The sound absorption theories
of Morse! and Cremer? for rectangular ducts without flow show that
the sound absorption decreases rapidly from its maximum value for
off-optimum wall impedance. This sensitivity has also been shown by
Rice® to exist for ducts containing flow. These studies demonstrate
clearly the importance of accurately specifying the wall impedance
in acoustically treated ducts.

Despite the extensive use of cavity-backed orifices in industry
as devices to absorb undesired sound, their detailed acoustic behavior
is not well understood. It has been shown by Ingard* and others that
the absorption characteristics of these devices are directly related
to their impedance. Thus, most acoustic studies of the behavior of
cavity-backed orifices consist of the measurement and prediction of
their impedance. The purpose of this report is to present a fluid
mechanical model of the behavior of isolated small orifices as a
function of incident sound pressure level, frequency, and orifice
geometry. It is believed that this model will provide the necessary
first step in understanding the behavior of cavity-backed orifices.

Rayleigh® was the first to predict the impedance of orifices
by using the concept of lumped elements in a simple mechanical os-
cillator analogy (i.e., the slug-mass model). His model is essentially
non-fluid mechanical but gives the actual acoustical impedance char-
acteristics for low sound pressure levels when an empirical end cor-
rection is added to the slug mass. Rayleigh's model was modified
first by Sirignano® and later by Zinn’ by introducing fluid mechanical
concepts. To simplify their models, they assumed that the character-
istic dimensionsof both the orifice or cavity are very much smaller
than the incident acoustic wavelength and, further, that the acoustic
flow through the orifice is one-dimensional, incompressible, quasi-
steady, and calorically perfect.

Both authors base their models on an integral formulation of
the conservation of mass and momentum applied to two control volumes,
one being the volume bounded by the orifice inlet and outlet surfaces
and the other the cavity. To solve these integrals, they used the
method of successive approximations with the first order solution
corresponding to the linear case of very small sound pressures inci-
dent to an orifice. The orifice nonlinear behavior is introduced
through the higher order terms and represent only a second order
approximation to the (linear) first order solution. Thus their
conclusions apply only to weakly nonlinear acoustic pressures and not
to the intense sound pressures existing within rocket chambers or
jet engines, the intended application of their models.

There is a serious deficiency common to both of their models.
Sirignano assumes the loss in acoustic energy at the orifice outlet
is equal to the jet outlet kinetic energy. Zinn assumes that, at



the orifice inlet, the axial inlet flow is zero but allows a radial
inflow to preserve continuity. Both of these assumptions are
difficult to understand because they violate their original assump-
tions. For example, Zinn's assumption that the flow in the orifice
is one-dimensional (i.e., du/3x = 0) clearly contradicts his zero
inflow and jet-like outflow assumption. Sirignano violates the
conservation of momentum by arbitrarily including a momentum term
equal to ypu?/2 (see the third term on the RHS of Eqns. 10(a) and
10(b) of his paper). It is interesting to note that these two assump-
tions lead directly to a one-half difference in their estimate of the
orifice nonlinear resistance. Another major deficiency of their
models is that to first order (i.e., the so-called linear orifice
impedance regime), both models predict the cavity resistance but not
the orifice reactance.

Despite these criticisms, Sirignano and Zinn were the first to
assume that the behavior of the nonlinear acoustic flow in the
neighborhood of the orifice is quasi-steady and that the concept
of a discharge coefficient properly connects the orifice inflow to
the outflow.

Measurements of the behavior of small isolated orifices by
Ingard and Ising® and by Thurston® et. al have provided valuable data
and much needed physical insight. These studies are reviewed below
because of their importance in the development of the fluid mechani-
cal model described in Section 2.

Ingard and Ising used the arrangement shown in Figure 1 to
study experimentally the acoustic nonlinearity of an isolated orifice.
Figure 1 shows an orifice plate mounted at one end of a circular
cylinder. The experimental program consisted of taking simultaneous
measurements of the acoustic pressure within the cavity and the
acoustic velocity in the orifice. The sound pressure level within
the cavity was measured with a small condenser microphone. The
acoustic velocity in the orifice was measured with a hot-wire probe
placed at the center of the orifice. The air within the cavity was
excited at a frequency of 150 Hz by means of an electromagnetically
driven piston located at the bottom of the cavity.

The acoustic nonlinearity is described in terms of the behavior
of the orifice impedance. Ingard and Ising defined the orifice
impedance as the ratio of pressure within the cavity to the funda-
mental harmonic component of the orifice inlet velocity. The funda-
mental harmonic component of the orifice velocity was calculated by
performing a Fourier decomposition of the measured orifice velocity
time-history. The magnitude of the impedance is given by

* * T
Z=P'/u' (D
where pf and u{ represent the amplitudes of the harmonic cavity

pressure and orifice velocity respectlvely The phase angle ¢,
between the acoustic pressure pj and velocity u] was determined



graphically by comparison of the pressure and velocity traces dis-
played simultaneously on an oscilloscope.

The results of their study are summarized in Figure 2 in terms
of R* the orifice resistance, and X* the or1f1ce reactance. The data
plotted against orifice inlet ve10c1ty, be divided into two
regions, one where R<<X"and the other . In the region where
R<<X, the orifice impedance Z%X"is, to flrst order, constant indepen-
dent of incident sound pressure level (and hence independent of
orifice inlet velocity). 1In the region where K>>X, ZPﬁfand the data
shows that, to first order, R.duj.

Ingard and Ising offer the following 1nterpretat10n of their
data. At low sound pressures (corresponding to R<<X), the orifice
resistance and reactance are given by the following empirical expres-
sions

m

Veupes (|+L7WAN%*)5X§f*w*(L*+ 0.85 If) (2a,b)

where I¥ is the orifice plate thickness, Df the diameter, A¥_  the
nonlinear resistive end correction, and 0.85D*is the reacgkve mass
end correction. These equations predict quite well the orifice
impedance at these low sound pressure levels. The orifice inflow
and outflow is essentially irrotational; the acoustic driving pres-
sure is balanced primarily by the instantaneous (i.e., local) accel-
eration of the acoustic velocity in the vicinity of the orifice.

At high sound pressures (where R5>Xj, the measurements show
{see Fig. 2) that the orifice resistance is proportional to the ori-
fice velocity. The measurements also showed that the orifice reac-
tance is very insensitive to orifice velocity, decreasing at the
very highest sound pressure levels measured, to a value roughly one-
half the linear value. Ingard and Ising interpreted the orifice
resistance data in terms of Bernouilli's Law suggesting that the flow
behavior through the orifice is quasi-steady. The hot-wire measure-
ments indicated that at these high sound pressure levels, the flow
separates at the orifice forming a high velocity jet. Thus during
one-half cycle, the flow incident to the jet is irrotational; it is
highly rotational (in the form of jetting) after exiting from the
orifice. During the other half of the cycle, the flow pattern is
reversed. The loss of one-half of the reactance at these high pres-
sure levels was accounted for by assuming that one-half of the end
correction is "blown" away by the exiting jet (1n their experiments
L¥D2<1 hence from Eqn. 2 most of the reactance is due to the end
correction). Ingard and Ising also measured the orifice velocity
as a function of axial distance from the orifice (and away from the
cavity - see Fig. 1). They found that the inflow velocity rapidly
decayed to very small values at distances of about two to three dia-
meters indicating that an acoustic near field existed.




In an earlier study, Thurston et. al measured the impedance
of an isolated square-edged orifice of diameter 0.305 cm and,
thickness 0.0126 cm immersed in water at temperature 26°C. The
experimental set-up is quite similar to that used by Ingard and
Ising consisting of a slender cylinder with a piston driver located
at one end and the orifice at the opposite end. The acoustic
pressure in the cavity was monitored with a capacitive type pressure
detector and the acoustic velocity, generated by a piston-driver,
was measured by means of a calibrated velocity pick-up attached to
the drive shaft. The sinusoidal velocity at the orifice was calcu-
lated rather than measured by assuming that the sinusoidal volume
velocity generated by the piston was equal to the sinusoidal volume
velocity through the orifice. This relationship was assumed to be
justified because of the stiffness of the cylinder walls and the
relatively high incompressibility of water. Most of the measurements
were conducted at a frequency of 22 Hz. In addition to the sinusoidal
velocity source, a steady-state velocity was introduced by means of
a needle valve connected to a high pressure source.

The results of Thurston's et. al orifice impedance measurements
are shown in Figure 3. The shapes of both the orifice resistance
and reactance curves are very similar to that of the Ingard and Ising's
data (see Fig. 2) with the exception of the slight increase of reac-
tance with orifice velocity at the higher orifice values. The agree-
ment between the shapes of the resistance and reactance curves shown
in Figures 2 and 3 is very impressive and lends added plausibility
to Thurston's et. al assumption that for water the orifice velocity
may be deduced by using the law of conservation of the sinusoidal
volume velocity rather than by direct measurement.

2. MODEL OF THE ACOUSTICAL BEHAVIOR OF SMALL ORIFICES

A new fluid mechanical model of the acoustic behavior of
small orifices is described below. The model is new because it differs
in three fundamental ways from the earlier models of Sirignano and
Zinn. The new assumptions are:

(1) The sound field incident to the orifice is assumed to be
spherical rather than one dimensional as assumed by Sirignano and
Zinn. This assumption provides the mechanism to connect unambiguously
the relationship between the driving pressure incident to the orifice
and the magnitude and relative phase of the orifice velocity. The
models of Sirignano and Zinn proved deficient in this respect. For
this assumption to be valid the orifice diameter must be very small
relative to the incident sound wave length.

(2) Large changes in the magnitude and phase of the acoustic
quantities are assumed to occur in the immediate neighborhood of
the orifice. The hot-wire measurements conducted by Ingard and
Ising of the acoustic velocity in the immediate neighborhood of the
orifice show that it decreased significantly from its value at the
orifice inlet within a distance of about two to three orifice
diameters. This suggests immediately from the theory of ideal point



acoustic sources that the flow near the orifice should behave as an
unsteady incompressible flow field (providing of course, that the
velocity at the orifice outlet is small relative to the local speed
of sound)

(3) The relationship between the sound pressure incident to
the orifice and the resulting orifice outlet velocity is scaled
according to whether the orifice impedance js constant (R<<X) or
varies linearly with orifice velocity (R>>X). The orifice impedance
measurements conducted by Ingard and Ising and Thurston, et. al
provide this relationship directly.

2.1 Approach

The analysis starts with the equations describing the conserva-
tion of mass and momentum written in spherical coordinates where
only a radial <mward flow u is assumed. For orifices small compared
to the incident sound wavelength it is logical to assume that the
flow approaches the orifice primarily in a spherical manner. The
origin of the coordinate system is assumed to be located somewhere
in the orifice interior as sketched in Figure 4. Assuming spherical
symmetry, the flow field incident to the orifice will be assumed to
be independent of the azimuthal angle ¢ (defined in Figure 4a). The
flow field contains a uniform steady-state part and an oscillating
acoustic part. A key element of the proposed model is the use of
the experimental data of Thurston et. al and Ingard and Ising to
normalize the equations describing the conservation of mass and radial
momentum of the oscillating flow field. The experimental data shows
that two distinct regimes exist; the regimes are defined by the
relationships that exist between the amplitudes of the incident driving
acoustic pressure P*and the resulting amplitude of the acoustic
velocity V#in the orifice. For sufficiently low values of P, the
data showed that

P~V (3)
and for sufficiently high values of P#
2
P*~(V*) (4)

where ( )* denotes that the term within the brackets is dimensional.
The regime whose P*,V* relationship is characterized by Eqn. (3) is
often called the linear regime while the regime characterized by
Eqn. (4) is called the nonlinear regime.




It is clear from dimensional analysis that the proportionality
term in Eqn. (3) must have dimensions of density times velocity
while that of Eqn. (4) must be density. The only density term
suggested by the physics of the flow is p*, the mean fluid density.
Thus, for orifices exposed to intense sound levels, the nonlinear
case described above, the relationship characterizing P* and V* is

P (V) (42)

At low sound pressure levels both Ingard and Ising's and
Thurston's et. al. measurements show that the orifice impedance is
dominated by the reactance X (see Figures 2 and 3), where X may be
written (see Eqn. 2b)

x*____ P*w* (L"+O.85D*)

Since|X*| >>|R*| (and thus P*/V* = Z*~X* for most practical appli-
cations), where R* is the orifice acoustical resistance, P* is
related to V* as follows

P¥= 0¥ W (DM L) V™ (32)

where D* and L* represent the orifice diameter and thickness
respectively. Equation (3a) can also be deduced from a dimensional
argument. If viscosity plays a negligible role in affecting
orifice reactance (suggested by the success of Rayleigh's slug mass
model in predicting orifice reactance) then the only other availa-
ble combination is w*(D*+L*).

Equation (3a) suggests that at low sound pressure levels
where P* = Z*V*=X*V* that

X*: P* w*(Dﬁ_‘_L*) (5)

Figure 5 shows that orifice reactance does indeed behave according

to Eqn. (5); the experimental data of Ingard and Ising and Thurston
et. al. collapses into a single correlation curve. This agreement

is remarkable when one considers the vast differences between

these experiments. Ingard and Ising's measurements were conducted
with an orifice diameter of 0.7 cm. in aZr exposed to sound fre-
quency of 150 Hz while Thurston's et. al. measurements were conducted



with an orifice diameter of 0.3 cm. in water exposed to sound
frequency of 22 Hz. Figure 5 shows that when V* = @*(D*+L%*),
orifice reactance and resistance are (roughly) equal. Further,
when V#*<gw* (D*+L*), then R*<<X*, the so-called linear regime,

and when V*>>w*(D*+L*) then R*>>X*, the nonlinear regime. We
will show below that the ratio V*/w* (D*+L*) is an important para-
meter in the development of the amalytical model, and provides a
means of separating the two regimes.

The successful correlation shown in Figure 5 of otherwise
very dissimilar data suggest that P*, V* D#*+L* (0w*)?! are the
appropriate quantities that characterize "the changes to the flow
field near the orifice due to the sound. Recalling that the sound
field incident to the orifice is assumed to be spherical, the
solution to the (spherical) equations of motion governing the
conservation of mass and radial momentum can be vastly simplified
by proper scaling of the various terms and retaining only those
of importance. The idea here is to try to anticipate the order
of magnitude of the changes of the various terms in order to
properly normalize them. If done correctly (and here the above
correlation serves as a guide), then all of the dimensionless
terms are of order unity and therefore may be rank-ordered in
terms of their relative importance by the relative magnitude of
their coefficients.

To start with, we will assume that changes in acoustic den-
sity are adabatically related to changes in acoustic pressure.

Thus we write BF* * = *2 The other quantities will be non-
dimensionalized ' letting
P* characterize the acoustlc pressure change near the orifice
p* 1] 121 denSIty " " 1" 13
V’* " " 1t VelOClt}’ 1" 11" 1" 1"
(D*+L*) " 1 " 1ength scale " " " 1]
(m*)-l " " r time scale " " " "

By defining the characteristic length as (D*+L*) rather than D%,
the effects of finite orifice thickness will be included in the
model. In the derivation that follows, we assume that L*<<D¥,

Now introduce the nondimensional variables r, t, u, p, p.

¥ (TYE L) * _ %\ —! H_\ /% *_ " P _ p*
r*=(D"+L)r,t (w) t, u*=V u, p P?(’ (c,*)’- 9'97%53.? (6)

The last inequality on the R.H.S. of Eqn. (6) follows from the
adiabatic relationship p* = (c*)?p*., Substituting Eqn. (6) into
the conservation equations yields the following, the details of
which are in the Appendix,



P" 0 )| 22, D (r2u EEE
fac C*Z v-x- at a ( >+ '

w*(D*+ I_*) ou L u du . P* l_( P* P ?E
Vv ot or p* V¥ o <=
-— ____L ' r“u 2U ] a . —a_u- _ .
v*(D*+L*> r‘2 ar< ) r2 +\"2'5.lh@ a@ (Sln@ a@) =0 (8)
2v*e*V* | | du
I—<e*°*z>P o6 F’—‘(_Dgﬂ?j T Je =0 (9)

The importance of the various terms in Eqns. (7), (8),
and (9) are determined solely by the magnitude of their coeffi-
cients (recall that the non-dimensional terms have been normalized
to be of order unity). To rank order these terms, the model is
divided into the linear regime corresponding to low values of
sound amplitude where P¥* = p*p*D*+L*)V* and the nonlinear regime cor-
responding to high amplitudes where P* = p#*V#*? From Figure 5,
we see that at low values of P*, R#*<<X* and V*<<w*(D*+L*). Con-
versely, at high values of P*, R*>>X* and V#>>u®* (D*+1%), It
follows from our initial assumption that the orifice diameter is
very much less than the incident acoustic wavelength (D*+L*<<p¥),
that therefore w*(D*+L*)<<c*. Further, since the amplitude of
the acoustic pressure will always be very much less than the
ambient static pressure, it also follows that V#<<c¥,

Based on the above information, we can now rank order the
relative importance of the various terms in Eqns. (7), (8), and
(9) for the two regimes.

To simplify the equations, the nondimensional parameters
€, M, and B are introduced where

Y L VE X (DR
= s <l M el pe T«



Note that M<<e or B. The simplified equations corresponding to
the linear regime are

2
Ml éa+ 0 (Y‘ u)+ M a (Pur.z) =0 (10)
3 2 V¥ ous
Se+ e %ﬁ +(1- 42 P)?F— D+ TP a3 2O (1)

M2 2% )
BPSSES A S o

An examination of the various terms in the continuity
equation (Egn. 10) shows that (1) the second term, which repre-
sents the divergence of the volume velocity, is of order unity
and is by far the largest term, (2) the first term, which is a
measure of the compressibility of the fluid, is very much smaller
than the second term (recall that M<<e) and (3) the third term
which represents nonlinear effects is the smallest. What is of
interest here is that even for the (linear) case of small ampli-
tude sound approaching an orifice, the flow behaves predominately
as if it were incompressible.

It may be of value to offer the following more physical
interpretation of the incompressible behavior of the sound field
in the orifice neighborhood. 1Ingard and Ising's hot-wire mea-
surements have shown that the amplitude of the acoustic velocity
incident to the orifice increases dramatically from a very small
value at a distance of about three orifice diameters to a relative-
ly high value at the orifice outlet. Since this increase occurs
over a distance very much smaller than the sound wavelength, it
must be a hydrodynamic change rather than an acoustic change.

To support this, assume that the length scale (D*+L*) characterizing
the distance over which the incident (acoustic) velocity change
occurs is equal to the sound wavelength (A*) divided by 27 (recall
that time was scaled with (w*) "! rather than the orifice diameter)
Setting (D*+L*) = A*/2m , then M = € and from Eqn. (10)

the first term is equal to unity. The third term which represents
nonlinear propagation effects is of order . Thus, the resulting
lowest order equations reduce to the classical spherical wave
equations as one would expect. We have shown that compressibi-
lity became important only when w*(D*+L*) = c* This means that
for practical (wall treatment) sized orifices (e.g. 0.15 cm.
diameter), frequencies of the order of 30,000 Hz or higher are
required before compressibility effects must be included.

For the nonlinear regime, the simplified equations are



MZF ?—E— +§BF (r2u) + M"a_br_ (()ur"')= o (13)
* ViSCOU.
p + b:{ (‘—Mz?) _g}ri - [V*(§*+L*)] [TERMSS:I =0 (14)

2 3 2.1’* l du
(1-M*e) B—E - V*(D*+L*)} r be:| © (15)

Comparing Eqn. (13) with Eqn. (10), we note that they are
quite similar. For both regimes the flow incident to the orifice
is essentially incompressible. Yet, in contrast to the low pres-
sure case, the compressibility term of Eqn. (13) is smaller (by
the fraction B) than the nonlinear term. Thus, the normalization
for the two regimes reveals an ordering among the various terms
that is consistent and, therefore, lends credence to the validity
of the model.

2.1.1 Limitations of Approach

There are several restrictions to the proposed model which
impose some limitations on its application. First, it is obvious
that the flow does not approach the orifice perfectly spherically,
but instead probably has a streaklike pattern (i.e., an instan-
taneous flow pattern) somewhat like the dashed curve shown in
Figure 4(b). We recognize that the instantaneous flow incident
to the orifice is only approximately spherical--deviations from
a truly spherical flow are required in order to permit the flow
to enter the orifice in an axial manner. The spherical flow
field is singular at the virtual origin r = o. To avoid this sin-
gularity, the spherical flow field is truncated at a hemis-
pherical surface of radius r* = L% defined such that at this sur-
face the radial acoustic veloc1ty is equal to the maximum value
of the actual acoustic velocity through the orifice.

Second, for all but the lowest sound pressure levels, the
solution to the equations of motion are valid only when the sound
is approaching the orifice--it is not valid during the other
half of the cycle when the sound is moving away from the orifice.
This limitation is imposed because it has been observed by Labate
and Ingard, and Ingard and Ising and others that even for moder-
ately intense sound fields, the acoustic near field velocity
separates at the orifice forming a jet-like outflow. Thus the
flow is spherical only when it approaches the orifices except for
the case of vanishingly small sound fields where separation does
not occur. This case, however, has no practical interest because
of the extremely low sound pressures involved and will not be
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pursued. The third and final limitation is that the orifice
characteristic acoustic velocity w*(D*+L*)<<c*to maintain the
incompressibility of the near field sound.

2.1.2 Boundary Conditions

There are three boundary conditions that must be satis-
fied. One is that the (radial) velocity {i* must vanish along
the walls 8 = w/2 (see Figure 4a) due to the viscous no-slip
condition. The second is that the acoustic pressure p* must
merge smoothly (asymptotically) into the harmonically oscillating
driving pressure incident to the orifice. The third and final
boundary condition is that at the hemispherical surface r* = Lg,
where the spherical inflow is truncated, the acoustic pressure
p* must be equal to the orifice back pressure. The orifice back
pressure is always constant and equal to its ambient value (this
is strictly true only when the orifice exit velocity is subsonic).
The acoustic pressure vanishes at r* =L* ,the equivalent orifice
exit. To be precise, p* = o at r* = L* only when the flow Rey-
nolds number w*(D*+1*)*/v*is sufficiently high that the flow
separates at the orifice forming a jet. For extremely low Rey-
nolds numbers, the whole flow field is controlled by viscous forces.
In this case it is reasonable to assume that the flow field is
spherical and not separated on both sides of the orifice.

Expressed mathematically, the boundary conditions are
written

u(r,@=%,t)=0 (16)
LIMIT 1>(r,@,t>: cos(t) (17)
 —> oo
L')(-
Pl:r:'m)@)'t}——-o (18)

The model further assumes that 10 (D*+L*)<<)* so that changes
of sound amplitudes and phase are negligible over this distance.

2.2 Linear Regime

The solution to Eqns. (10), (11), and (12) subject to the
boundary conditions defined by Eqgqns. (16), (17), and (18) describe
the behavior of orifices exposed to weak to moderate sound fields.
Retaining terms to order ¢ (since M << e, the effects of compres-
sibility would only weakly affect orifice impedance and are thus
ignored) yields
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% (r’“u) =0 (19)

du , 9 | sc
3t T or (pregu®) - Re (e )=o (20)
% _ 2 Laou_, (21)

6 Re r 06

where Re = w*(D*+L*Y/v* is the orifice characteristic Reynolds
number. Equation (19), representing the conservation of mass,
shows clearly that the flow oscillates through the orifice in an
imcompressible (@and unsteady} manner.

Much can be learned about the behavior of orifices by
carefully examining Egn. (20). To begin with, assume both
e = 0 and v = 0 and furtherthat both u and p are harmonically
driven so that u(r,t) = e® J(r) and p(rt)= e® p(r) .
Under these circumstances it is clear that u is ninety degrees
out of phase with p and that the orifice impedance is reactive
only (which it should be if the fluid is frictionless). Now
allow the fluid to be real (i.e., viscous). For most practical
applications, the orifice characteristic Reynolds number is such
that a laminar boundary layer forms along the walls containing
the orifice as sketched in Figure 4(b) (assuming typical values of
f=1000Hz, (D*+L*)=0.15cm, then Re~10° which is assumed to be in the
laminar Reynolds number range). Thus the resistive losses due
to viscosity should be small and hence orifice resistance should
be very much less than reactance. Now consider finite values of
e. From Eqn. (20), it is clear that the loss of the fluid kinetic
energy € pu®/2 is in phase with the pressure (i.e., resistive)
and increases with increasing u. In summary, at very low values
of sound pressure, orifice reactance is very much larger than
resistance; with increasing sound levels, the resistance should
increase because of jet kinetic energy-type resistive losses.
This is in complete agreement with the measurements of Ingard
and Ising and Thurston et. al. (see Figure 5).

The formal solution to Egns. (10), (11), and (12) consist
of expanding u and p in powers of €

u<r)6)-t> = uo(r:@nt) + & ul(r)@)t) + o (22)
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?(r,e,'t)r-’P.(r,e-,-t) + € P, (r,@,-t‘).,. (23)

Substituting Eqns. (Zla) and (21b) into Egns. (10}, (11) and
(12) yields to order €° and ¢

P
37 (r* Uo) =0 (24)
Ju, N P* ( u.,)_Zu°
a ar. *(D* *) r
|
e ae (smo ] (25)
éﬂ. 2v* | Ous _
J6 cu*(D* )2 T de (26)
and
)
5o (rfu)=o (27)
du gﬂ' u, ou P¥
oy, . 0 OUs _ - (28)
ST + - + ™ (D Viscous TERMS] ®)
9?\ 2.1’* 1 éﬂL -0 (29)
do w*D*+1H2 r QJde

The solution to the above equations must satisfy the bound-
ary conditions specified by Eqmns. (16), (17), and (18). The usual
procedure in seeking perturbation solutions is to force the lowest-
ordered terms to satisfy the boundary conditions with the higher-
ordered terms set equal to zero. Thus the appropriate non-dimen-
sionalized boundary conditions are
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and

=TT =
u.(r,e =T, t)=o (30)
LMt R(ret) = cos(®) (31)
L.*
?o [Y‘=m ,@,t}=0 (32)

and

u, (re="%,%) =0 (33)

L.ll\cl\l:l;m’{.)l (Y‘, @,'t) =0 (34)
L.*
i ['% (D*+L_*)’@’Jc}° (35)

2.2.1 Lowest Order Solution

The solution to Eqns. (24), (25), and (26) subject to the
boundary conditions given by Eqns. (16) and (17) represent a first
approximation to the behavior of the acoustic flow near the orifice.
For convenience, the solution will be divided into two parts. In
part 1, the effects of viscosity will be ignored. This means that
the no-slip boundary condition given by Egqn. (16) will be ignored.
The solution to part 2 will include the effects of viscosity.

The solution to Eqn. (24) applies equally to both the inviscid

(part 1) and viscous (part 2) solutions and may be immediately
integrated to yield

us(r,e,t) = =& F(o,t;Re) (36)

where A is an arbitrary constant and F 1is an unspecified function.
The negative sign is included to denote that the velocity is
directed radially inwards.
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Part I - Inviscid Solution

The equations describing the inviscid behavior of the fluid
near the orifice follow from Eqns. (25) and (26) by setting v¥*=0
to yield

du, P _
3 T oo = O 7
aPo =0 — /P"__:R(r).t) (38)

o6

Equation (38) shows that p, is independent of the azimuthal angle
8. Since p, is independent of 8, it also follows from Eqn. (37)

that uy, is independent of © and hence from equation (36) that Fq4

is also independent of 8. Thus, equation (36) becomes

u(rt)= 4 E@) (39)

Substituting Eqn. (39) into Eqn. (37) yields

0 A dR | _
St

which integrates to

P, (nt) + -Ar- %% = £,(¢) (40)

where f (t) is an arbitrary function of time. From the boundary
condition given by Eqn. (17), f£(t) = cost and Eqn. (40) may be
written

dF, (1)
dt

P.(rt) = cos(t) ‘—’é—

According to our model, the radial inflow accelerates as it
approaches the virtual source, hence it must at some radial distance
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reach a magnitude at which it is equal to the magnitude of the
maximum orifice outlet velocity. It follows since the outlet
flow is subsonic that the outlet pressure must be equal to the
ambient background pressure. Thus the acoustic perturbation at
the orifice outlet must vanish which means that

LSt
R R “o

Since the acoustic velocity has been normalized to unity at the
orifice outlet, we see from Eqns. (39) and (42) that A= r = 1.
Thus, the velocity and the pressure written in complex notation
for convenience are

_ sin{t iett
u°(r3{) = S”:_S_) = lr"- (43)
and
Po(rt) = (I-%)cos(t) = (1- %) eit (44)

Equations (43) and (44) are our desired results. Following Ingard
and Ising, we define the orifice impedance as the ratio. of the
driving pressure far %in terms of the characteristic length
(D*+L*) from the orifice to the velocity at the orifice outlet.
Dividing the pressure P, = @* far upstream of the orifice by the
orifice outlet velocity qu~=uﬁ)=ieﬁt yields for the orifice
impedance

P (r=o0,t :
Z = folr=c t) = —i (45)
u,,(r:l)%:)
In dimensional terms, the impedance is
Z=-ip*w* (D"« L¥) (46)

There is no resistance, only a negative reactance, because
the fluid has been assumed to be inviscid (in the linear sound
regime the only mechanism to dissipate acoustic energy is through
the fluid viscosity). The negative sign occurs because the inward
travelling sound is negative in a spherical coordinate system.
Both the orifice resistance and reactance for the linear and
nonlinear regimes will be negative for this reason. The orifice
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reactance given by Eqn. (45) agrees exceptionally well with the
experimental measurements taken by Ingard and Ising and by Thur-
ston, et. al. which is shown in Figure 5. The reactance derived
above is virtually identical with the reactance derived by the
slug-mass model (Eqn. 2b), thus showing the equivalence of the
two models at low sound pressure levels.

Part 2 - Viscous Solution

At low sound pressure levels, Ingard and Ising's measure-
ments showed that the (linear) resistance of an isolated orifice
may be approximated by the empirical expression repeated here as,

R* = ‘,8/0‘*/0*60* ('+ L'*/D*)j X*"‘:'[)*w*(L.*+O.85 D*) 2)

Ingard"* and Crandall's work led to the derivation of Eqn. (2).
They solved for the relationship between the pressure gradient,
unsteady velocity, and viscosity in an <infimnitely long cylindrical
tube containing an unsteady, viscous, fully-developed one-dimen-
sional flow. Ingard*later corrected this to include finite ori-
fice thickness by including as an end correction, the viscous
contributions of the side walls containing the orifice. This lead
to the development of Eqn. (2). A major deficiency of this approach
is that for most practical orifices of interest, the orifice thick-
ness is small compared to the orifice diameter rather than very
large as the derivation requires. In this sense, the end correc-
tion is not a correction at all but represents instead the major
part of the losses (i.e., the losses associated with the viscous
flow along the side walls containing the orifice) with the losses
inside the orifice being small.

For orifices where L*<<D*, the use of an end correction to
account for viscous losses as given by Eqn. (2a) is unnecessary.
It follows logically from the proposed model that the viscous
losses arise from the boundary layer established by the radial
flow moving inwards along the side walls containing the orifice.

. The importance of viscous effects are characterized by the flow
field Reynolds number. If the Reynolds number is large, then
viscous effects are important usually within a small region called
the boundary-layer region. Conversely, if the Reynolds number is
small, viscous effects are important throughout the whole region
of interest. Assuming values representative of the orifices used
as acoustic liners in present day jet aircraft, that is
(P*1L¥)2015Ccm, £= 10* HZ, V*~015cmPbsee, then the Reynolds number Re = 10°
which is sufficiently large to model viscous effects using
boundary-layer theory.
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Boundary-layer theory assumes (1) that viscous effects are
important only within a small region, in the present application,
adjacent to the side walls containing the orifice, (2) the pressure
gradient normal to the wall is negligible, hence the pressure is
constant through the boundary layer and its value is derived from
inviscid theory and (3) that the velocity at the wall surface is
zero and approaches asymptotically at the boundary layer edge its
inviscid value. The appropriate boundary-layer equations to be
solved are

d (o2
2 (u) =0 (47)

du, X [V 2 [f20u)\_2u. [ d (cine U] _
-—_— + ﬂD_ - [_ _a_r (r‘ .a_@_(snne a_@_):l =Q (48)

rz ar r2 r2sine

oF,
0O

=0 (49)

Equation (48) can be simplified further by introducing the
transformation & = T/2-® and observing that since the boundary
layer is confined to the immediate neighborhood of the wall where
® = m/2 (see Figure 4b), then L is very small and we may appro-
ximate Sine EicoS(§)°=l . Introducing the angle 5 and the above
approximation into Egn. (48) yields

= 0 (50)

at+F_QFa_r or r2~+rﬁ-al,"*

du, P | |:1 p) ( 2 5uo)_ 2u, | 92u°:|

Eqn. (47) may be integrated and inserted into Eqn. (50) which,
after some algebraic manipulation, yields

U, (r, 5,1;Re) = e Er(f’Re) (51)

where we have used complex notation and note explicitly that the
function F, depends both upon the angle ¢ and the Reynolds number

Re. From boundary-layer theory and from the no-slip boundary
condition, Eqn. (16), FO(C, Re) must satisfy that
E(g:o) Qe):o ahd ng‘ell)mFo(g)Re\)‘:‘ (52)
E>0
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The boundary condition on the function F_ has been selected
so that the viscous velocity u approaches asymp%otically (with
increasing Reynolds number) its inviscid value defined by Eqn. (43).
Using Eqn. (44) for the (inviscid) pressure and substituting ug
and py into Eqn. (50) yields after some algebra

~R(5)+ | s dcéz E(5;Re) =0 (53)

To recover the boundary-layer character of Eqn. (53), we introduce
the boundary-layer coordinate n defined by

E VRe r (54)

and set F (¢z,Re) = Fom) . Physically, this means that the
velocity is fnvariant t8 the transformation defined by Eqn. (47).
Substituting Eqn. (54) into Eqn. (53) yields

RO+ ii;f::(’/) =0 (5%)

The solution to Eqn. (55) that satisfies the boundary conditions
given by Egn. (52) is

—(LH)‘[Z-7

R(p)=1—-¢ = (50)

Substituting Egqn. (56) into Eqn. (51) and solving for the real
part yields for the velocity ug,

V27
uo(r,7,Jc) =~ sin(t) — e /25“"1(1'—"?7/2) (57)

vz

The instantaneous velocity distribution (Egqn. 57) is uniform
everywhere near the orifice except near the walls & = 7m/2 where
the velocity decreases from its uniform value to zero through a
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thin (boundary layer) region of thickness REY2 . The retarding
action of the fluid viscosity acts, for a given driving excitation
pressure, to decrease the magnitude of the acoustic velocity pumped
through the orifice by an amount related to the displacement
thickness 6* defined as

u,o" =

J I: L(r ) —u, (1, t)]d (58)

Substituting Eqn. (57) into Eqn. (58) yields

Z.Re

U0 = - ;?\/I—?K_: _sm(%)—-ms(t)] (59)

Since uyd8* represents the amount of mass '"lost'" because of the
effects of viscosity, the effective velocity approaching the
orifice 1is

_ ¥\ _ —sin(t) o _ cos(d)
u,(r,Jr)— uo(l—é - _S_FZL <| ZRe) YT (60)

At v = 1 (the effective orifice outlet), the velocity is, written
in complex notation,

it | | l
uo(lﬂc): e*l:l (I @> mjl (61)

Dividing the pressure p = e1t incident to the orifice by the
velocity ug, given by Eqn. (61) yields for the orifice impedance

2 - |
(z)= zvae_ BRI 2 Re (62)

Resolving Z into its real (resistance) and imaginary (reactance)
parts yields
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and

[—R] - VZI—Re [I +\/%—] (63)
|

[‘X] =0+ Tore | (64)

Written in dimensional terms, the impedance is

ALY S " i P
B [ C B NS Y =7 R

Equation (65) is of interest because it shows the behavior of orifice
resistance as w*»0, namely (-R)>u*/(D*+L*). Thus, we see that the
effects of viscosity are to generate a resistance given by Eqn. (63)
and to perturb the inviscid reactance (Eqn. 45) by the small (con-
stant) amount given by Eqn. (64).

The orifice (linear) resistance was derived using the concept
of a boundary-layer displacement thickness which may be inter-
preted physically as a loss of mass flow along the walls contain-
ing the orifice due to the retarding effects of viscosity. The
derivation demonstrates clearly that the proposed spherical model,
based on fluid mechanical concepts, is the proper way to understand
the acoustic behavior of orifices. In contrast, Ingard and Ising
interpret their (linear) orifice resistance data (for their orifice
L*<<D*--see Figure 1) in terms of a "viscous end correction'. But
the fundamental derivation of this '"end correction' by Rayleigh and
others assumed that to first order the orifice thickness was
infinitely long (i.e., L*>>D*). Their derivation assumed that the
oscillatory motion of the fluid contained within the orifice
thickness was equivalent to a solid body oscillation. To force
agreement between theory and measurements an '"end correction" was
added. To apply this model to predict the resistance of their
orifices where L¥%<D*is clearly unsatisfactory although the empi-
rical formula (Eqn. 2) is in agreement with experimental findings.
This approach, however, breaks down when it is extended to predict
orifice nonlinear resistance. The solid body oscillation approach
is clearly incompatible with the observed nonlinear jetting or
"breaking away' of the fluid from the orifice. 1In contrast, the
model presented herein does not have these deficiencies, but in-
stead includes, in a straight forward manner, the important effects
of viscosity and jetting on the orifice resistance and reactance.

The predicted linear orifice resistance (Eqn. 63) differs
from the empirical prediction (Eqn. 2a) by the factor (2). Apply-
ing both equations to the orifice viscous resistance data measured by
Ingard and Ising (summarized in Figure 2--here IX<DY, it would
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appear, at first glance, that Eqn. (2a) was more accurate. We
shall show that this may not be true because nonlinear effects
will be shown below to be important even at the low orifice velo-
cities.

2.2.2 First-Order Solution

The differential equations,(27), (28}, and (29) represent
nonlinear corrections {of order €U a"'/a.r-) to the lower ordered
linear solution. To simplify the ana1y51s, only the inviscid
correction will be sought. Thus,P*= o and the equations describing
the first order corrections become

2 (oo

L 9P, ulu,

bt or T % T° ©7

0
_a% =0—> P =P (nt) (68)

Equation (67), in its present form, is misleading. By
rewriting it in the form

_ﬁ+aa—r(1>,+'zuf)=o,

it is clear that the term 1/2u0 is in phase with the pressure P,
Since it is always positive, it must be replaced with 1/2 yu, luol
if it is to be in phase with the harmonically fluctuating pressure
pi. This restriction is based mostly on Ingard and Ising's hot-
wire measurements which showed that u_ fluctuated harmonically (at
least along the orifice center line). "An alternate explanation is
that the model is valid only during the half-cycle during which
the acoustic velocity is approaching the orifice; to account for
the other half, the coordinate system must be mathematically
"switched" to the other side of the orifice. While the linear
terms account for this automatically, the non-linear term 1/2u02
does not. It follows from this discussion that the correct momen-
tum equation is

u, 0
= t5- (13|+.L2 Iuoluo) =0 (67a)

Integrating Eqn. (66) yields for the first-order velocity

U (r,t)= -F () /r* (69)
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where F;(t) is an arbitrary function of time.

Substituting Eqn. (69) into Eqn. (67a) and integrating with respect
to r yields
1 dR

T + P+ 2,ﬁ]ulu = £ () (70)

where f; (t) is also an arbitrary function of time and u, is given
"by Eqn. (43). From the boundary contition specified by Eqn. (33)

Limit Pl(r,t)=o — £, (Jc)=o (71)

™ —>» oo

Thus, Eqn. (70) reduces to
\ =
- d‘L‘ ——(?+ lu.lu,) (72)

For application to nonlinear flow, the model assumes that at the
radial location r = 1, the flow uy + eu, is accelerated to its
maximum value and the pressure p, + €p) (providing the maximum
velocity u_ + eu; is subsonic) is equal to the ambient background
pressure. Thus, the acoustic perturbation p; must vanish when the
velocity is a maximum and we write at r = 1

p(r=l,t)=0 (73)
Substituting Eqn. (73) into (72) yields at r =1

dF,

1 ! _ | : :
E = _Z,UQ\UO_+zlsln(-t)‘3ln(t) (74)
The integration of Egn. (74) is split into two parts, one corres-
ponding to t>o and the other to t<o. Thus, Eqn. (74) integrates
to

F__Llr [t _ sin('t) cos(t)] t< o
O | 79)
L+ I,;'[JC - Sih(‘t‘)(‘.os('t)]) t>0
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where the constant of integration has been ignored.

Since we are interested primarily in predicting orifice
impedance, only the fundamental harmonic component of Eqn. (75)
is of interest. Using Fourier analysis, and noting that F,(t)
is an even function, it is straight-forward to show that

- £ fﬂﬁ(-t)cos({)d{‘= Y (76)

and hence that

Flt) = Slt'r_r cos(t) (77)

Combining Eqns. (69) and (77) yields for the nonlinear velocity u;,

cos(%) (78)

w(rt) = -3ﬂ =

The orifice velocity, including both viscous and nonlinear contri-
butions, follows (written in complex notation) by combining Eqns.
(60) and (70) to yield,

08 5 ) 5 57+ )

Again, defining orifice impedance as the ratio of the
driving acoustic pressure to the orifice velocity, it follows that

(79)

(_Z); 4e | 80
E )i (=) o

3m \[—'—‘

The real and imaginary parts of Z are
2 _ 1
Re (81)

R = L,
R ( 2Re +-R€> ( ¥
8¢€ > (82)

C‘)() = |+ VETT; (l I

Both Ingard and Ising and Thurston et. al presented their
orifice impedance data in terms of the ratio of the incident
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driving acoustic pressure to the orifice Znlet velocity. The
definition of impedance used in this model is based on the maximum
orifice velocity rather than the inlet velocity. Before the orifice
resistance and reactance defined by Eqns. (81) and (82) can be
compared with the experimental data of Ingard and Ising and Thur-
ston, et. al, these differences must be resolved. Significant
differences occur between the orifice inlet and maximum (vena
contracta) velocities only for the part of the orifice velocity
that is im-phase (resistive) with the incident driving pressures.
Orifice flows that are in-phase with pressure can be characterized
as quasi-steady and the concept of a discharge coefficient C
(suitably time-averaged) can be introduced to connect the orlfice
inlet velocity Vi to its maximum value V (at the vena contracta)
where

vy, = CDV (83)

In steady-state flows through orifices, the discharge
coefficient is used because it conveniently determines the mass
flow through the orifices for a given driving pressure. In most
applications, the characteristic flow Reynolds number is suffi-
ciently high (above about 1000) that the discharge coefficient is
constant. The solution of the nonlinear acoustic velocity u;
shows that (1) it is in phase with the driving pressure p_ (see
Eqgn. 78), (2) it is quadratically related to the u_ (see Ean5.44 and 67)
and (3) it is independent of viscosity (this corr@sponds to flows
of infinite Reynolds numbers). It is clear that u; is quasi-
steady and inviscid and falls within the category of a Bernouilli-
type of flow. Thus, to connect the model results with experimental
data, Eqn. (83) is used to replace V by V. in the definition of the
perturbation parameter € rewritten as 1

i (84)
Cp @™ (DF+ L)

6:

Substituting Eqns. (83) and (84) into Eqns. (81) and (82) yields the
final form of the resistance and reactance.

Vi %
- l | 4 l 2
8= (e ) s | () o9

2 Re_ Re

and

= |+ ——J——— - & \4* 86
G—)()== V2Re I 3TWCp | w* (D¥+L%) (86)
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Transforming Eqns. (85) and (86) to dimensional terms

CRIVEES (R )+ FE () @
—— —

. v
viscous loss Je:& loss

and

¥\ A~ K K % ¥, % g% 8Vi*
- S P w +17)+ — (88)
LNty T T T
oscillatin s|u3 mass
model Tecovered

The negative signs occur in Eqns. (87) and (88) because
the sound field is incoming. The orifice resistance described by
Eqn. (87) consists primarily of the sum of two terms, one repre-
senting a nonlinear Bernouilli-type of jetting effect and the other
a viscous dissipation loss effect. The orifice reactance, described
by Eqn. (88), is also the sum of two terms, one representing an
oscillating mass flow term and the other a higher-ordered combined
viscous and nonlinear ({Bernouilli) term. Equation (88) shows the
nature of the cross-coupling between the nonlinear Bernouilli
effect and orifice reactance. The effect is to weakly decrease
orifice reactance. The effect is weak because the derivation re-
quires that V.*<<w(D*+L*) which restricts the magnitude of the
jetting effect. The existence of a weak reduction in orifice reac-
tance has been observed experimentally over a wide range of test
conditions including the experiments by Ingard and Ising with air
(Fig. 2) and Thurston, et. al. with water (Fig. 3). A direct com-
parison between the reactance predicted by Eqn. (88) and the ex-
periments by Ingard and Ising and Thurston, et. al is shown in Fig. 5.
The comparison is excellent.

»*

Since Vb/id*(D*+-L*><K | it follows that |[R|<<]|X]| and
that the orifice impedance Z=VR*+X* =X 1is virtually constant.
Although the nonlinear Bernouilli term only weakly affects the
reactance and hence the impedance, it can dominate the viscous
resistance term in Eqn. (85) providing that

31 Cp Vi*

STD o i«

(89)
H\/2Re < w*(D*'*'—*)

Thus an interesting behavior or embedding exists wherein the resis-
tance is dominated by nonlinear (jet) losses of the kind described
by Ingard and Ising but the impedance is dominated by an almost

26



constant reactance - hence the impedance is, to first order, constant.

To verify the usefulness of Eqn. (87), it should be compared
with the experimental data of Ingard and Thurston. Unfortunately,
the behavior of the discharge coefficient C, at these low velocities
is not available. As an indirect means of eerifying its usefulness,
Eqn. (87) will be forced to agree with Ingard's and Thurston's

measurements by computing the required values of C The results
of this force fit are shown in Fig. 6 in terms of Pre required
values of C,. The shape of the required C, curve is similar to the

measured Cp data shown in Melling's paper’ which shows the effect
of Reynolds number. The similarity between these curves despite
their difference in diameter (D*), thickness to diameter ratio
(L*/D*), and the fact that one represents a force fit to a.c.
resistance data and the other d.c. test data is encouraging. To
verify the usefulness of the model and hence Eqn. (87), detailed
a.c. tests of the dependence of Cp to geometry and Reynolds number
are required.

2.3 Nonlinear Regime

The basic equations governing the behavior of intense
sound fields near orifices were derived in Section 2.1 above and
are defined by Eqns. (13), (14), and (15). In the nonlinear regime,
the characteristic orifice Reynolds number, Re = V*(D*+L*)/v*
is independent of the frequency in contrast to the Reynolds number
characterizing the linear regime, Re = w*(D*+L*}2/v*, Since the
Reynolds number is fairly large in the nonlinear regime (typical
jet engine linear values are V* = 50 m/sec, (D*+L*) = 1.5x10 "3m,
v*¥ = 0,15x10 7 *m?/sec to yield Re = 5000), the contribution of
viscous terms to the orifice impedance will be ignored.

Retaining terms to order B and ignoring viscous terms,
Egqns. (13), (14), and (15) simplify to

;%:<r2u> =0 (90)

du d b

P o — p=p{t) (92)
06
The velocity follows immediately from Eqn. (90) to be

ulr,t) = — F(’c)/r"‘ (93)

where F(t) is an arbitrary function of time. Substituting Eqn. (93)
into Eqn. (91) and integrating with respect to radial distance (r)
yields

(PA)%EE TPt Fz/zr* = g(t) (94)
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where g(t) is yet another arbitrary function of time. Since vis-
cosity is ignored, the no-slip boundary condition specified by
Eqn. (16) does not have to be satisfied. The pressure, however,
must satisfy the boundary contitions specified by Eqns. (17) and
(18). Applying the boundary condition specified by Eqn. (17) to
Eqn. (94), it is clear that g(t) = cos(t). Applying the boundary
condition specified by Eqn. (18), p(r = 1, t) = o, yields the fol-
lowing equation at r = 1

dF (J—1
g + TF = cos@:) (95)

The solution to Eqn. (95) describes the time behavior of
the vena contracta velocity (i.e., the maximum velocity of the jet
exiting the orifice). Equation (95) is a nonlinear differential
equation of the Riccati type. Since, to our knowledge, there are
no known analytical solutions to Egn. (95), an approximate solution
is sought sufficiently accurate to elucidate its physical interpre-
tation. Since B<<l, the contribution of the unsteady term is relatively
unimportant; the orifice behaves in an essentially quasi-steady manner.

The usual procedure to solve Eqn. (95) in an approximate way
is to expand the function F imn powers of # and to solve, say, for
the first two functions Fo, F, defined below as

F,p)=R(t)+pF (£)+- (96)

This kind of approach, however, breaks down and the solutions to
F, and F, become singular for values of t = (2n - 1)n/2, n =0, 1,
2.... To illustrate this singular behavior, the solution to Eqn.

(§6), assuming that B = 0, is
F(t) = /2 cos(t) (37)

The derivative of (F) in Eqn. (97) is of order unity every-
where except near t =(2n-1)n/2 where it becomes singular. Physi-
cally, the flow oscillates through the orifice with period 2mwp~}
and near t = (2n - 1)w/2 the function F, is both small and rapidly
decelerating (or agcelerating). Thus, near t = (2n - 1)7/2 the
assumption that Ipdfét| << |yh§:2 is incorrect and both terms
in Eqn. (95) must be retained.

The singular behavior of F(t, Bg) is analogous to the singular
behavior of boundary-layer type flows wherein large changes to the
flow tangential to a surface occur within a small region. A suc-
cessful procedure to remove such singularities is to use the method
of singular perturbation theory. The details of the derivation that
follows are described in the Appendix. To start with, Eqn. (95)
is transformed to the boundary layer form
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_ch; %(4, )+o(§ /3) (98)
where

) - VESSH(Y); b= AYsu, 3-vzp o9

To solve Eqn. (98), the boundary-layer type function f is expanded
as follows

£(8,3) = £.(0)+8%4(E)+ 0 (5%) oo

Substituting Eqn. (100) into Egqn. (98) and collecting the coef-
ficients of 6° and § ¥? yields

_3_12 + ﬁ* - g (101)

o aff - g

2.3.1 Solution to Order B°

Equation (101) is the well-known Riccati equation whose
solution can be expressed in terms of the Airy function Ai(&) as

fi(8) - A4 03)

denotes the operator d/df. A plot of the functions
-F (Q) and-F(g)/VE: are shown in Figure 7. It is evident that
the Ffunction + & has the correct asymptotic behavior to properly
match to the inner behavior of F(E)p) (the details of the matching

of the inner and outer functions are given in the Appendix). De-
f1n1ng the thickness of the inner region (&;,) as the value of &in
where @%m) 0.99 Vg , then from Figure 7, & = 5. Thus, to

first order the solution to Eqn. (95) 1is
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)
JZeos®) , o <t < Voo z'/3<5),s”/3

F(Jc3P) = T (104)
ZpRE | Tk | 0 2R eete

24 F%@

L

It is convenient to rewrite Eqn. (104) in the following form

F(‘t) = \/ZCOS(-{: -1-22[3/5,/3 A‘E |:€(-L—>:l (105)

where Af (t) is defined in Figure 8. Substituting Eqn. (105) into
Eqn. (93), the radial velocity approaching the orifice is approx-

imately

a(t) = FO)fn = ~ Y {f—zcos&) v 2% pRaf ]| o

The harmonic component of Eqn. (106) is determined approximately
by Fourier analyzing the resulting expression yielding

U r‘,-l:) ~ -L157 cos@:) -
~

[.62 g sin (+) (107)
2 I

2.3.2 Solution to Order s‘*/s

The solution to Egn. (102) represents the first-order cor-
rection to f5(&). The homogeneous solution to Eqn. (102) is

&
2 dx
ﬁh(i) = Ae lﬁ(x} (108)
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where A is an arbitrary constant of integration. The particular

solution is

£ g 4

‘E,X)dx - . (x)dx
LORPL A P

(109)

y*dy

The general solution to Eqn. (102) is

fie) - £'(&)+ £ 1)

The only way to match the outer solution of Eqn. (1102 to the inner
behavior of F(t;B) is to set A = 0. Thus, to order 6/3, the solution
to Eqn. (95) is

f/-2_cos(~f:) y 02t < B —5<2l/3)/32/3

<] o el L)

L 1T/2_5(2|/3)P2A S-t-iﬂ/z'

(111)

A plot of the functions f; (&) and its asymptotic behavior -1/12 gsb

is shown in Figure 9. In a manner similar to that used in the de-
rivation of the approximate solution given by Egqn (104), a solution
to order B8*P of Eqn. (95) is

F(Jc)fs) = \2cos(¥)+ 2%/5'/3 A'E[é(t)]+ 2% 5/3A-E [&(4:)] (112)

where the function Af;[ £(t)] is defined in Fig. 10. The harmonic
component of Eqn. (112) is determined by Fourier analysis to yield

Fleyp) = - 1.5Tcos(®) - (1.62p+ 404 p™)sin (¢) (113)

Thus the harmonic component of the radial inflow u; written in com-
plex notation for convenience, is approximately

u.(r‘. 'k> = ['- 57 ety jef* (‘LézP*' 4'04P7/3)]

(114)
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Following Ingard and Ising, we define orifice impedance as the
ratio of acoustic pressure far from the orifice to the orifice inlet
velocity Vi*. As described earlier in Section 2.2.2, the relationship
between the orifice inlet velocity and the orifice maximum velocity
V* (vena contracta velocity) is defined as

where C, is the time-averaged discharge coefficient. Equa-

tion (1?5) is valid only for the part of the velocity that is in
phase with the driving pressure. Replacing u;(r,t) at r = 1 with
Cn 'u. in Eqn. (114) yields the following estimate of the orifice
otitlet velocity uy written in complex notation

u = - 1.57¢py et + i (1.62F+ 4.04F7/3) eit (116)

Using Eqn. (116), the orifice impedance is
Egt

— = (117)
€2) 1.57 ¢p et — L(l.62F+4.o4F,7/3)e"‘

The orifice resistance and reactance follows from Eqn. (117)
to be approximately

(R)= &2 [, _ (‘%;.,&)1 (118)

Cp

and

CZ

D

(x) = 0.66p [|+ 2.48;3%] [t—("T";P—)z] (119)

In dimensional terms, the resistance and reactance are

L 0.6 1.06 Cp? w** (Lf"'D*)z (120)
()« 0884 [ - occ

(W)
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and

O "61’ WD) (D*+L) |- 106 CFWF(D*H¥)](121)
-X | E |+2.48 Spw it
ch Vi* Vi t2

To compare the predicted orifice behavior with the data by Ingard and
Ising and Thurston et.al, Eqns. (120) and (121) are nondimensionalized
by the quantity p*w*(D*+L*) to yield the final form

— % , % * *
R¢ |06t | VM |_L%(c,,w*(:._ +D )>’~ (122
FSOHE)| T Cot | WF D) vie
and
—'X* 0.66 C w*CD*+L* Il’/g d *(D*—*'L* 2
- D) = {1+248 _DT I~1.06 L\/*— (123)
w b i i

Equations (122) and (123) must be interpreted with caution
because of two key assumptions made in their derivation. First, the
solution is valid only when the sound field is approaching the orifice
it is not valid during the other half of the cycle when the sound is
moving away from the orifice. Second, the orifice reactance was
derived only near t = w/2 (where the flow directim changes) - it was
assumed to be zero at t = 0, It is clear from Ingard and Ising's
measurements, that the phase shift between the driving pressure and
the orifice velocity is constant for a constant driving sound pressure
and frequency. Thus a reasonable correction to Eqn. 123 would be to
reduce its value to one-half under the assumption that by forcing the
reactance to be zero at t = 0, the reactance at t = w/2 is likely to be
twice its true value. This is possible even with the first assumption
because Ingard and Ising have shown that the orifice inflow is symmet-
rical during each half-cycle. Accordingly, Egn. (123) is reduced by
one-half to

4,
x* | _o033 Cp o (De1%)] " (D 9|
[+ 2.48 6 (124)
(DL ) Cp? Vi* J
P

Equations (122) and (124) show that orifice resistance and reac-
tance are coupled through C, the discharge coefficient. To verify
the utility of the model, tRe orifice resistance and reactance
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measured by Ingard and Ising for air (D = 7mm, £ = 150Hz) and by
Thurston, et. al for water (D = 3mm, f = 22Hz) are compared with

the predicted values determined by Eqns. (122) and (124). Choosing
Ch = 0.80 the predicted values compare remarkably well (particularly
tRe shape) with the measurements for both very different test condi-
tions (for air and for water) as shown in Fig. 5.

The model shows clearly that at high sound pressure levels
where V.*>>u*(D*+L*), orifices behave in a predominately quasi-steady
manner In agreement with the experimental findings of Zorumski and
Parrott!?. Both orifice resistance and reactance are shown to be
related to a time-averaged discharge coefficient. The quasi-linear
behavior of the orifice is now clear. Over most of the cycle the
orifice reactance term |Bdu/dt|<<|udu/dx| except near the turning
points where t = (2n-1)w/2. Epe aqﬂlysis shows that reactance 'f
important only when w/2-(5) (2Y3) (B¥®)<t<n/2 or about (5)(2¥®)(B¥?)/n/2
of a cycle. Physically, this means that the slight phase shift between
the driving pressure and the orifice velocity is unimportant over
most of cycle but becomes important when the orifice velocity is
sufficiently low (of the order B*?) that the slight phase shift
dominates and the orifice flow direction reverses.

3. SUMMARY OF RESULTS

The results of this model extends significantly our understand-
ing of the acoustic behavior of orifices, particularly reactance.
The model has direct and important application to the connection
between the optimum wall impedance required for maximum sound attenua-
tion and the wall construction having this desired impedance.

The results of this study show the following:

The acoustic flow in the immediate neighborhood of the orifice
(i.e., the near field) can be modelled as a locally spherical flow.
Within this near field, the flow is, to a first approximation, un-
steady and incompressible. This is true regardless of the intensity
of the incident sound pressure field. Thus the behavior of orifices
are hydrodynamic rather than acoustic.

The behavior of orifices can be roughly divided into three
regimes depending upon the value of the ratio V.*/w*(D*+L*) where
V. is the magnitude of the orifice inlet velocity, w®* is the sound
rddian frequency, and (D*+L*) is the orifice diameter and thickness
respectively. When Vi*/w*(D*+L*)<<l, orifice reactance is much
larger than resistancé and the orifice impedance is constant, indepen-
dent of the incident sound pressure (the so-called "linear" regime).
When V.#*/w* (D*+L*)>>1, orifice resistance is much larger than
reactafice and the orifice behaves in a quasi-steady manner, (the so-
called "nonlinear" regime). When V.*/w*(D*+L*) = 0(1), orifice
resistance is approximately equal td reactance.

The parameter V,*/w*(D*+L*) can be directly related to the
incident sound field.” In the linear regime, V.* = P¥*/p*w*(D*+L%)
where p* is the fluid mean density and P* is the amplitude of the
incident sound field. Thus, in the linear regime, the ratio
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V¥ /w* (D*+L*) = PX/p*[w*(D*+L*)]%<<1. In the nonlinear regime,

viz = [C P*/p*]‘l2 where C, is an orifice time-averaged discharge
cdeffici gx. Thus, in th® nonlinear regime, the ratio V%/w*(D*+L) =
(C P*/p*) 2/w*(D*+L*')'>>1 (to be consistent with the paraﬁeter used
above for the linear regime, one could use, since C, = 0(1),
P*/p*[w#* (D*+L*)]2>>1 to identify the nonlinear regiRe). The inter-
mediate regime where orifice resistance and reactance are roughly
equal can be identified when P*/p*[w*(D*+L*)]2 =~ 1,

. For P*/p*[w*(D*+L#*)]2%<<1, corresponding to a reactance domin-
ated orifice impedance, orifice resistance consists of two terms,
one a viscous term related to the boundary layer displacement along
the walls containing the orifice and the other a jetting type term
related to the flow nonlinearity. With the exception of extremely
low sound fields, the nonlinear resistance dominates the viscous
resistance; its behavior is expressed in terms of a time-average
discharge coefficient, Comparison between the model and data shows
that the discharge coefficient is a function of the ratio
P*/p*[w*(D*+L*)]*. Despite the existence of the nonlinear resis-
TaTceltTrm, the orifice impedance is virtually constant because
X|>>{R]|.

. For P*/p[w*(D*+L*)]2>>1, corresponding to a resistance dominated
orifice impedance, the orifice behaves in a quasi-steady manner in
agreement with the experimental findings of Zorumski and Parrott'?.
Both the orifice resistance and reactance are shown to be related to

a time-averaged discharge coefficient.

. The results of the model have been compared with the orifice
impedance measurements by Ingard and Ising in aZr and by Thurston
et. al in water and the agreement between prediction and measurement
is excellent.
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APPENDIX
SUPPORTING ANALYSIS

To simplify the amount of analysis presented in Section 2, many
of the supporting or intermediate steps were omitted. For those
interested, they are described below.

Equations (7), (8) (9)

Assuming spherical symmetry, the flow field incident to the ori-
fice is

du* xdu* | éﬁ* Y d *2 Ju*
Py T P F*—ZF(P SF)
_Qu* | o (sine du*
Zrc; T ™<Zsine Je (Sme _;)]=O (A-2)

Q/

,'gi g—— (A-3)

Assuming that the flow field incident to the orifice consists of a
steady-state part and an oscillating part, then we can write

?*(r*,@,t") 15 * ?*'( r,* ®, t*)

- (A-4)
?*Q”;G,tf) = e'*.+ e (P* tf)
u*(r*e,t*) = *(r* e, t")
Substituting Eqn. (A-4) into Eqns. (A-1), (A-2), and (A-3) and
subtracting out the steady-state terms yields
2'3 *' ~% J 2 %! ) ( w! ! ~x?
3%‘+€br*( )+br*€ )
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dur’ w ou’ | %!\ dp*
ot™ + drr T ?’-‘- (l—e/é*) 3%*
_=%|_1 P o dur’ -2 ur | o (sine ou*' i
v [r*z 55 (" S5 ) T EE t mEeme 35 C1° 55 Jrota-e)

™ e

('_ ?’%*) ?’:I _2E (A-7)

To be precise fi* and Vv* should be replaced with the expressions

fi* + p*! and v* + v*! but this refinement will be ignored. Equations
(7), (8) and (9) of Section 2 follow immediately upon substituting
into Eqns. (A-5), (A-6) and (A-7), the non-dimensional variables

r, t, u, p, p from Egn. (6) and the characteristic values of P%*,

p*, V¥, (D*+L*) and (w*)? described in Section 2.1.

Solution to Eqn. (116)

Introducing the transformations F(t;B) = v2 G(t;8), & = V2B
into Eqgqn. (95) results in a simplified equation

p) j—i + G* = cos(t) (A-8)

Since we are interested in the behavior of Eqn. (A-8) in the neigh-
borhood of t = n/2 (where it is singular - see discussion following
Eqn. (97), we introduce the transformations

Gt = Ga(t;9), T="2-t (A-9)

into Eqn. (A-8) resulting in

_5_21_% +G* = sin(T) (A-10)
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We are interested in the behavior of Eqn. (A-10) near t = 0. An-
ticipating a boundary-layer type behavior near ©v = 0, the solution
to Eqn. (A-10) is divided into two regions, one called the "outer"
region where

| 3 ] «< | G*| (A-11)

and the other the "inner" region where

5%9{|~O|G"| (A-12)

An approximate solution to Egn. (A-11) for § = 0 and T small is

G(t,d=0) = Vsin() = T/z——l'—z_- T% 4 o(’tg/") (A-13)

In the terminology of singular perturbation theory, Eqn. (A-13) is
called the outer solution. Note that dG/dtr is infinite (singular)
at 1t = 0 (t = n/2). To remove the singularity, the inner variable
£ and inner function £(£;8) are introduced

G(&;3)=3F(83) =T/ (A-14)

where a and b are constants that are determined below.

The idea here is to transform both the dependent and independent
variables of Eqn. (A-10) in such a way that both terms on the LHS are
of equal importance. The transformation is valid only within a small
region near 1 = 0 (or t = 7/2). The boundary condition governing
the transformed inner solution are determined by proper matching for
large values of & to the outer solution given by Equn. (A-13). To
be precise, proper matching occurs when the inner behavior of the
outer solutions matches asymptotically with the outer behavior of
the inner solution. _To demonstrate this, Eqn. (A-13) is rewritten
with T replaced by Sag,

G L, 5=0) = 3%k L SPRL () gy
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The transformation defined by Eqn. (A-14) must asymptotically (for
£ large) match Eqn. (A-15). Substituting Eqn. (A-14) into Eqn.
(A-10) and expanding for small §, t fixed, yields

-3l a)i Ff* = sin(0%E)=d g——53°t_, o (3°) (A-16)

A meaningful solution to Eqn. (A-16) follows upon setting

l+b-a=2b=a (A-17)
yielding
a=%3 b ="Y3 (A-18)
Thus
a(t;0)=3%+f(t;9) ,g=f/;% (A-19)

Substituting Eqn. (A-18) into Eqn. (A-16) yields

e )0 (3%)

To solve Eqn. (A-20), expand f as follows

(8,9 = £+ L)+ 3P {8y 0™ @

where the function f (&) and fl(g) must have the following asymptotic
behavior to properly match thé inner and outer solutions.

L1M2——>«> £(&)=8% (A-22)

and

5,
/A (A-23)

LIMIT -ﬁ(g)=_'_'2 E

>
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Substituting Eqn. (A-21) into Eqn. (A-20) and cdllecting the .
coefficients of 6° and 6' yields

-4, g

I
v

(A-24)

and

"ﬂ—’%“f 2ff=-1¢ (A-25)
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