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SONIC ENVIRONMENT OF AIRCRAFT STRUCTURE
IMMERSED IN A SUPERSONIC JET FLOW STREAM

Wiley A. Guinn, Frank J. Balena, and Jaak Soovere
Lockheed-California Company
Burbank, California

SUMMARY

Results of a study that was performed to make an assessment of the
technological basis for using a small model to determine the sonic environ-
ment on aircraft structure immersed in a supersonic jet flow stream is
reported herein.

Background information is given that pertains to noise source consider-
ations, selection of test conditions, and resolution of hydrodynamic and
acoustic pressure fields.

Test data requirements that are needed to make sconic fatigue, crack
growth, interior noise and equipment analyses are defined. Data reporting
formats are illustrated and data.applications are discussed.

Instrumentation requirements for data acquisition, storage and reduction
are given. Detailed discussions are given that pertain to pressure transducer
and tape recorder requirements. Methods are given for computing cross-
correlation coefficients from autocorrelation and space-time cross-correlation
function plots. Instrumentation used for a SCAT 15-F sonic environment test
is discussed and methods used for data reduction are explained. A list of
methods for improving data acquisition and reduction for future sonic
environment test programs is given.

Methods are given for scaling of model data to full-size aircraft
conditions. A literature search failed to provide a set of corresponding
model and full-size engine test data associated with supersonic jet flows
that was suitable for evaluating the scaling procedure. Therefore, subsonic
jet test data for S-3A, L-1011, and a V/STOL configuration are compared.

The SCAT 15-F model test data are scaled to dimensions and operating charac-
teristics of a current SST duct burning turbofan engine concept.

Appendixes include a derivation of the response spectral density equa-
tion, a synopsis of the literature search, a listing of the computer program
used for data scaling and computer program outputs for S-3A, L-1011, V/STOL,
and SCAT 15-F test data.



1. INTRODUCTION

A supersonic cruise aircraft research (SCAR) program was initiated by
NASA in 1972 to develop technology for an advanced supersonic transport.
Prediction of the sonic enviromment on aircraft surfaces that is caused by
high velocity jet flows 1s one technology area that has been identified where
advances are required. The accuracy of analytical prediction methods or
scaling of model test data to full size aircraft dimensions has not been
established. However, the sonic environment must be known in order to per-
form analysis of sonic fatigue, crack growth, equipment environment and
interior noise. '

One of the SCAR program aircraft concepts that requires sonic environ-
ment evaluation is an over-the-wing engine configuration that gains 1lift
for slow-speed flight by using Coanda turning of the jet stream. To achieve
Coanda turning, the jet flow stream must be attached to the upper wing sur-
face. The resulting thermal-acoustic environment on the parts of the wing
surfaces that are immersed in the flow field will reduce the structural life
of a typical wing structure. Therefore, special designs are required to with-
stand the adverse environment. Design methods for skin-stringer-type struc-
tures that will withstand the thermal-acoustic environment are given in
References 1 through 3. However, more efficient designs may use hat-stiffened
skins (Refs. L4 and 5), thermal tiles (Ref. 6) or ceramic composites.

The current study was performed to investigate problems encountered in
conducting model tests for supersonic jets and to evaluate accuracy of the
test results. Background informetion leading to the study are given in the
following paragraphs. : ' '

1.1 Noise Source Considerations

The degree to which model test data is comparable to full-size air-
craft dimensions is dependent .on several factors. These include the following
noise source considerations:

e ©Shock cell noise

e Crackle

o Internally generated noise

o Aircraft speed

Shock cell noise is generated by supersonic jets when the exhaust flow

is not fully expanded (Refs. T through 12). In cold jets a pure tone noise
called screech is generated, whereas in hot jets the shock noise is broad



band (Ref. 13). Because K of difficulties associated with designing and
manufacturing a practical convergent-divergent nozzle which operates at fully
expanded conditions during the entire flight mission, shock noise may occur
during some portion of the flight (Refs. 9 through 12). Shock cell noise
intensity and frequency are functions of the nozzle pressure ratio. There-
fore, as the pressure ratio changes with altitude, shock cell noise may sweep
through the frequency range of predominant response. Consequently, premature
structural failures may occur as a result of shock cell noise unless it is
accounted for in the design phase (Ref..9). Model tests to investigate true
effects of shock cell noise must be conducted with hot jets.

Crackle may be significant in high-velocity jets (Ref. 13). .When this
phenomenon occurs, the noise signature has a distinctive bias toward high-
amplitude, positive, short-duration peaks. This results in increased skewness
of the noise probability density distribution with increasing jet velocity.
Therefore, when crackle occurs, a substantial number of positive peaks may
exceed the 30 rms peak level.

Internally generated noise associated with rotating machinery, combus-
tion, or high-velocity flows over obstructions is not simulated in a model
test. If these noise sources are-significant, model test data may be
misleading.

The effect of aircraft speed on the sonic environment of a structure
immersed in a Jet flow stream is dependent on the relative importance of -
hydrodynamic and acoustic-pressure fluctuations on the structure. If the
acoustic pressure field is predominant, the structure environment is likely
to decrease with aircraft velocity because noise generated by a jet is a func-

tion of the relative jet velocity (V, = Vi - Va). If the hydrodynamic pres-
sure field is predominant, the aircraft velocity may not significantly alter
the sonic enviromment since the jet velocity relative to the wing surface is
virtually unchanged. Wind tunnel, sled, or whirling mocdel tests are required

. to evaluate the effects of aircraft velocity on sonic environment
characteristics.

1.2 Selection of Test Conditions

Before a meaningful. test can be conducted, aircraft operating condltlons
that are likely to establish noise design criteria must be determined.
Static takeoff thrust generally produces the highest noise on a structure
in and adjacent to a jet flow stream. Thus, structure that is designed to
withstand takeoff noise can usually withstand the sonic environment for other
operating modes. Reverse thrust also produces high noise levels that may be
predominant on some areas of the structure. Although jet noise decreases as
aircraft velocity increases, the lower sonic environment may produce signifi-
cant structural damage because of the relatively long length of exposure time



duringAflight. The relative importance of each test condition must be
determined to ensure that test results obtained will provide the correct
environment for design of the structure.

1.3 Resolution of Hydrodynamic and Acoustic
Pressure Fields

Fluctuating pressures in a supersonic jet are composed of hydrodynamic
and acoustic pressures. The impinging and attached jet flow surface pressure
fluctuations (Refs. 14 and 15) and separated flow pressures (Refs. 16 through
18) which may occur over the trailing-edge control surfaces due to adverse
pressure gradients differ from the acoustic field pressure in convection
velocity and correlation signature. Therefore, it may be possible to resolve
the two pressure fields by narrowband space-time correlation coefficient
analyses if the local flow convection velocity differs from the speed of sound
in the jet flow field. Generally, flow pressure fluctuations associated
with boundary layers (Refs. 19 through 22) and with separated flow pressure
exhibit a reduced coupling with the structure relative to that produced by the’
acoustic field. Therefore, unless the degree of coupling is considered when
making structural design analyses, overdesign of the structure and correspond—
ing weight increases are likely to occur.



2. TASK I -~ TEST DATA REQUIREMENTS

Predictions for sonic fatigue, crack growth, equipment vibration and-
interior noise analyses require that response of the structure be determined.
FPrequency ranges normally investigated are:

e Sonic fatigue and crack growth (50 to 1000 Hz)

e Equipment vibration (50 to 2000 Hz)

e Interior noise (50 to 10,000 Hz)

The following sections define test data parameters, show data presenta-
tion formats, and discuss data applications that are required to determine

structural response caused by a random pressure loading on an aircraft
structure.

2.1 Data Reguirements

Noise Contours.-An OASPL distribution over the surface of an aircraft
structure provides an indication of potential noise areas. The following
guideline (based on rule-of-thumb estimates) can be used for making an assess-—
ment of potential problems.

e OASPL > 120 dB: 'Interior noise and equipment vibration problems may
exist

o OASPL > 150 dB: Sonic fatigue and crack-growth problems may exist

Noise Spectra.-Spectral noise contours for the octave-band center fre-
quencies over the range of 63 to 1000 Hz are generally sufficient to allow a
designer to evaluate integrity and estimate weight of an aircraft structure.
Octave~band, one-third-octave-band, or narrow-band frequencies provide suffi-
cient information that can be used by empirical predictions to predict
interior-noise and equipment-vibration environments.

Correlation Functions and Spectral Densities.-Cross-spectral density of
the excitation is required to compute response of a structure by the normal
mode method. The cross-spectral density can be determined directly from a
noise signal. However, when this is done, signal-phase relations are lost.
Therefore, autocorrelation and cross-correlation functions are normally deter-
mined and Fourier Transforms are used to compute the spectral densities.




Distribution Functions.-The probability density function indicates
percentage of time that a random signal dwells between two amplitude limits.
Two probability density distributions are commonly used in performing sonic
fatigue analyses. They are: '

e Gaussian distribution
e Rayleigh distribution
Jet noise is generally consideréd to have a Gaussian distribution that

is defined by Equation (1).

1 e—x2/202

gy 2n

p(x) = probability_density

X = instantaneous value of the noise signal with zero mean

2 2(

o = variance = <x (t)>

o = standard deviation = V<X2(t)>

Instantaneous stress peaks of an aircraft structure that is subjected
to a narrow-band random signal are generally considered to have a Rayleigh
distribution that is_definéd by Equation (2).

X —X2/202
p(x) =—=e
g

instantanebus value of the envelope of noise peaks

X

Assumptions are often made that excitation signal and stress response
have Gaussian and Rayleigh distributions, respectively. Increased confidence
in accuracy of fatigue analyses may be established by analyzing a random sig--
nal to show that its distribution compares with the Gaussian and Rayleigh
distributions.

Model Data.-Atmospheric conditions, model geometry, flow conditions and
pressure transducer characteristics should be reported. Also, flow-field
boundaries, convection velocities and boundary-layer thickness may need to be
determined. The use of these data will become evident in the subsequent
discussions. '



2.2 Data Reporting Formats

Table 1 gives a summary of the test data requirements that were defined
in Section 2.1 and shows why each type of data is needed. The following
paragraphs depict the format for data presentation.

Noise Contours.-Figure 1 is a typical example of takeoff OASPL contours
for an arrow wing supersonic transport. The values shown are for engines -
that are equipped with high-attenuation mechanical suppressors. The spectral
level contours for the 63- to 1000-Hz freguency range octave-band center
frequencies can be presented in a similar manner.

Noise Spectra.-Figure 2 shows typical octave-band, one-third-octave~
band, narrowband (20-Hz) and spectrum (1 Hz) plots. The abscissa of these
plots can be changed to Strouhal numbers by application of Equation (3) for
noise of a Jjet flow stream ’ :

SN =%§— ' (3)
SN = Strouhal number

f = band center frequency

D = diameter of nozzle

Vj = jet velocity

The noise levels of one type of spectrum (e.g., one-third-octave band)
can be converted to another type spectrum (e.g., octave bauds) by application
of Equation (k).

L s AF
SP; = SPL_ + 10 loglo——Afr (4)

SPL, = sound bressure level for desired bandwidth spectrum
SPLr = sound pressure level for reference spectrum

AT = desired frequency bandwidth

Afr = reference bandwidth



TABLE 1., UTILIZATION OF SONIC ENVIRONMENT TEST DATA

Preliminary Sonic Equipment Interior
Structural Fatigue Vibration Noise
Design Analysis Analysis Analysis
Noise X . X
Contours
Noise ' X X : X
Spectra
Cross X
Correlation
Distribution : X -
Functions
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Correlation Density Functions and Spectral Densities.-Figure 3 shows a
typical power spectral plot. this plot can be converted toc sound pressure
levels for any bandwidth by Equation (5).

2
= .—I—)_— 4 >
SPL = 10 log, ~—+ 10 log,, Af (5)
Pr .

2 . .
P = ordinate value of Figure 3

2 _
P = reference pressure squared

r
Figure 4 shows typical autocorrelation and cross-correlation plots.
Section 3.2 contains equations for computing correlation coefficients from

these curves. Section 2.3 describes methods for determining the spectral
density by using the correlation coefficient values. :

Distribution Functions.-Figure 5 gives plots of the probability density
Gaussian and Rayleigh distributions that are defined by Equations (1) and (2),
respectively. The curves shown are normalized with respect to the standard
deviation.

2.3 Utilization of Data

Sonic Fatigue.-The first step in sonic fatigue analysis is to establish
the design life of a structure at the highest noise level. This is achieved
by studying the aircraft utilization pattern. Parameters included are take-
off, landing, flight profiles, ground taxi, and static aircraft test noise
levels. A general procedure used for sonic fatigue analyses (Ref. 9) is to
account for noise-reduction levels during the ground run and flight by com-
puting the equivalent damage Auration at static takeoff noise levels. This
procedure assumes that the nature of the flight and takeoff acoustic environ-
-ments remain essentially the same.

It is current practice to require sonic fatigue proof testing of any
novel structures, such as those required for high thermal-acoustic environ-
ments, because structural details cannot be accounted for by analyses. These
tests are usually conducted in an acoustic progressive wave test facility
that provides for adjustment of spectrum levels and shapes for a predefined
correlation function. '

Two basic methods are used for performing sonic fatigue analyses. The
first is an empirical method that is based on design charts. The other
method 1s-the normal mode approach based on the procedure given in Ref-
erence 23. Current sonic fatigue analyses are based on a predominant

11
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single-mode response. The analyses are used in conjunction with random
fatigue data for critical joints. Most random fatigue data are based on the

- Rayleigh distribution of stress peaks which is obtained from a single modal
response to a broadband Gaussian-type random excitation. A reasonable
 approximation to the Rayleigh distribution occurs when the multimodal response
- falls within a frequency band that has an upper limit approximately twice
that of the lower limit (Ref. 24). The current trends in generation of ran-
dom S/N data by coupon testing is to use a broader spectrum of excitation

to include the contribution from the'higher modes.

The empirical analysis method of obtaining data is expensive and is
usually restricted to simple rectangular structures such as skin-stiffener
structure, simple honeycomb panels and beaded panels. After the panel dimen-
sions are selected, the panel frequency is computed. The structural life is
determined by assuming the single-mode response and using the equivalent
damage duration for static takeoff levels. This process is repeated until a
suitable design has been achieved.

The basic normal mode approach equation for the response spectral density
at a point (x,y) is given by Equation (6).

E : E : 1.
(ayw)_ 2 2
w - +216 ww) M (0 -0 +2i6 SO w)

M. T s''s s

(6)

x ( ,y)f (x,y) f f ,yl £, (x ,yg) P(E ns w)dA 144,

'G(x,y;w)' = response spectrai density

fr(x,y),fs(x,y) = normal mode deflection at point (x,y) for modes r and s

f(xl,yl) = normal mode deflection at point (xl,yl)
f(xz,y2) = normal deflection at point (x2,y2)
GP(E,n;m) = excitation cross-spectral density at separation dis-
tances & and n between points (xl,yl) and xg,y2)
Mr’Ms = generalized mass corresponding to r and s modes
W_ .w = natural frequency corresponding to mode shapes r and
r*¥s .

s, respectively
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forced frequency

viscous damping factor corresponding to modes r and s
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Derivation of Equation (6) is given in Appendix A. The first two factors
Tfollowing the summation signs are the receptances of the system for modes r
and s, respectively. The double integral term represents the degree of
coupling between the excitation and structural response. The equation is
applicable to jet noise, turbulent boundary layer excitation (Ref. 20), and
separated flow excitation (Ref. 17). For turbulent boundary-layer excitation,
the cross-spectral density can be computed by Equation (7).

: ~1wE/U_
Go(E,n30) = GP(@)IDP(E,O,T;w)llpP(O,n,T;w)le

G (w) = direct spectral density

= longitudinal narrowband space~time correlation coefficient

°
g

—~—
UAa1
o
~
S

S

|

pP(O,n,T;w) = lateral narrowband space-time correlation coefficient
P = subscript designating excitation gquantities

€ = longitudinal separation distance between transducers
(e.g. transducers 1 and 2)

n = lateral séparation distance between transducers
Uc = convection velocity of the flow stream

Narrow-band correlation coefficients for a traveling acoustic wave at grazing
incidence can be computed by use of Equation (8) or from test data (Sec-~
tion 3.2). .

o(£, ny T, w) = cos (1 - £/a) (8)

a = speed of sound in the flow field
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Considerable simplification of Equation (6) is obtained by making
assumptions that are commonly used when making sonic fatigue analyses. The
assumptions are: ‘

e A predominant single-mode response

e A fully correlated excitation across the panel

e A constant excitation spectrum level.
The double area integral in Equation (6) is reduced to an integral of mode
shapes if the pressure field is assumed to be fully correlated over the
panel area. This assumption is correct for normal incident acoustic waves
and results in very small errors for a fundamental mode progressive wave.

Therefore, the mean-square response obtained by integrating Equation (6)
with respect to circular frequency (w) results in Eguation (9a).

(9a)

A similar expression to Equation (9a) was developed by Miles (Ref. 25). The
expression (Equation 9b) is based on the static displacement yo(x,y) at
point (x,y) due to a unit pressure on the structure.

<y2( X,y,t)>= % wrGP(w)yi(x,y) (9b)

The corresponding expression for mean-square panel stress is given by Equa-
tion (10). v '

2 . _ T 2
<" ( %,57,t)> = 15w Go(w)o_(x,y) (10)
o_ = static stress at point (x,y) on the structure due to a unit pres-

sure over the structure

The panel stress is used with random fatigue data for representative struc-
ture to determine fatigue life of the structure (Ref. 26).
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Crack Growth.-Crack-growth analyses (Ref. 27) are based on a modified
Rayleigh Ritz method of assumed cracked-panel modes. Initially the panel
response spectral density is computed by Equation (6). Expressions for com-
puting stress spectra are then developed by using the assumed cracked-panel
modes. Baseline panel crack-growth data due to a random loading are obtained
from electromagnetic shaker-excited coupon specimens. The baseline crack-
growth test data are used in conjunction with computed stress spectra to
predict crack growth.

BEquipment Vibration.-Dynamic characteristics of structural vibration
reflects the combined effects of sonic environment and structural response
characteristics. Complexity of the aircraft structure makes a theoretical
prediction method impractical for making engineering analyses. Therefore,
empirical methods are used. These methods are based on the use of correla-
tion curves. The curves are established by correlating acceleration response
levels that are measured on primary structure of existing aircraft with the
airecraft sonic environment (Refs. 28 and 29). The problem approach is:

e Division of the aircraft into zones of approximately equal-vibration
response levels

e Estimation of the octave-band acoustic levels over the aircraft flight
conditions of interest '

e Use of response correlation curves (Refs. 28 and 29)
e Prediction of frequency-dependent vibration spectra

Typical vibration zones for a jet-powered subsonic airplane are shown
in Figure 6. Figure 7 illustrates the procedure for converting the sonic
environment of each zone to acceleration spectral density. A typical environ-
ment for the outboard wing area is shown in Figure 8 (Ref. 29). The spectral
density levels are used as standards for equipment qualification test levels.

Interior Noise.-Interior noise in passenger-occupied areas of an aircraft
that is associated with jet noise is maximum at takeoff. It is still present
during flight at a level comparable to turbulent boundary-layer noise for the
lower-frequency region (Ref. 30). Once the exterior noise levels on the
fuselage have been determined, interior noise analysis includes obtaining
values for the following quantities.

e Transmission loss of the structure and acoustic treatments
e Interior absorptivity

o Interior equipment noise

18
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e Mechanical vibration noise generation
e Size and shape of interior

Computation of the interior noise is an intricate task. Currently,
analytical prediction methods have not been developed that can be used to
accurately predict the interior noise. Methods that are representative of
the technology are given in References 22 and 31. Impirical methods for
interior noise predictions rely heavily on test data banks that have been
compiled which give noise levels in existing aircraft along with the corre-
sponding acoustic treatments. The aircraft data are supplemented by mounting
a representative section of the aircraft fuselage (e.g., structure plus
acoustic treatment plus interior trim) between two reverberation rooms and
measuring the transmission loss. Normally, the noise on the exterior side of
the panel has approximately the same spectral content as the jet or turbulent
boundary-layer noise, but it is a normal incident wave which does not simulate
the degree of coupling for a turbulent flow field. Nevertheless, comparison
of different acoustically treated panel configurations provides a relative
comparison of the panel noise reduction characteristics.
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3. TASK II - DATA ACQUISITION AND REDUCTION

3.1 Instrumentation and Procedures

Pressure transducers and tape recorders that are used to record the noise
"for a jet model test must be carefully selected. Required characteristics for
each of these are discussed below. ‘

Pressure Transducers.~-Selection of pressure transducers for a sonic
enviroment test must include the following considerations.

e Envirommental conditions to which the transducers are exposed (e.g.
temperature, humidity, and Vibration)

e Size of the sensing element .
e Dynamic range

e TFrequency response.

Temperature Environment: The temperature enviromment in a hot jet flow
stream is a formidable requirement for pressure transducers. Pressure trans-
ducer manufacturers have developed several transducers for measuring pressure
fluctuations in a high temperature jet flow stream. The suitability of these
for use on hot jet model tests.remains to be determined. Limitations for
various types of the high temperature pressure transducers include the
following:

e They cannot be flush mounted
e - They require water cooling
e They have,insufficiént frequency response

The accuracy of these transducers needs to be determined. The rationale
for this statement is based on a comparison of measurements made by 12 differ-
ent low-temperature pressure transducers (Ref. 32) in a wind tunnel. Data
recorded by the various transducers for Mach numbers of 1.6 to 2.5 showed
significant differences. A similar test has not been conducted for high-
temperature transducers, but it is anticipated that a compariscn of data
recorded by different models would result in large discrepancies.

Size of Sensing Element: Finite size of a transducer senéing element
limits its space resolution of a pressure field (Ref. 33). As the value of
the quantity mR/Uc‘increases, there is a corresponding increase  in measurement
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error (Figure 9). For a given jet flow stream, the circular frequency (w)
and the convection velocity (U.) are fixed. Consequently, space resolution
can be improved only by making the transducer sensing element radius (R)
smaller.

~ Dynamic Range: The dynamic range of a pressure transducer must be com-
patible with the magnitude of pressure fluctuations that are to be measured.
The lower level of the range is limited by‘the signal-to-noise ratio and the
" upper level is limited by clipping of the signal.

Frequency Response: The transducer frequency response required for model
testing depends on the model scale (Section L4.1). As the model size is
decreased, the frequency range to be measured increases. Transducers that
are suitable for measurement of high-frequency noise need small sensing ele-
ments to ensure good frequency response. However, frequency response and
 sensitivity of a transducer vary inversely. Therefore, the most suitable
transducer for making sonic environment measurements is the one with the
smallest sensing element that has sufficient sensitivity for the intensity
levels being measured. '

Data Storage.-Test data are generally stored on magnetic tape. This can
be accomplished by recording data in the direct or the FM mode. The mode to
be used depends on the frequency bandwidth to be measured and the manner in
which the data will be analyzed.

-

Direct Recording Mode: The direct mode permits measurements up to 600 kHz
in the intermediate band mode of operation and to 2 MHz in the wideband mode
of operation. Disadvantages of the direct mode are poor low-frequency
response, complexity of frequency response corrections for time expansion,
amplitude instability (commonly referred to as dropout) at very high fre-
quencies and low signal-to-noise ratio. The poor low-frequency response will
not be a problem if the model scale is sufficiently small so that measurement
of frequencies below approximately 400 Hz are not required. Time expansion
is not .required if a spectral analyzer is used for data processing that has a
sufficiently wide bandwidth so that data can be reproduced at the same speed
at which it is recorded. Amplitude instability can be minimized by using
high-quality magnetic tape and keeping recorder heads, guides and other parts
of the recorder that come in contact with the tape scrupulously clean. The
low signal~to-noise ratio is a definite limitation.

FM Recording Mode: The FM mode has good amplitude stability (virtually
insensitive to dropouts) and low-frequency measurement capability (down
to dc). Wideband Group 2 FM recording permits measurements of frequencies
ranging from dc to 500 kHz. Time expansion can be accomplished by recording

2k
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at a high tape speed and playing back at a low tape speed. When this is
accomplished in the FM mode, minimal frequency response corrections are
required in comparison to those for the direct mode of operation. This time-
expansion capability is useful when analyzing transient signals or when the
measured data bandwidth is wider than that of the data-reduction analyzer.
Group I FM recordings have a singal-to-noise ratio that is approximately 15 dB
greater than the direct mode and the Group II signal-to-noise ratio is approx-
imately the same as that of the direct mode. The Group I mode can be used if
frequencies of the data to be measured do not exceed approximately 80 kHz.

- The FM mode of operation is considered to be most favorable in light of
the aforementioned considerations.

Phase Calibration.-When cross-correlation plots are to be made, a phase
calibration of all data channels that are to be used for cross correlations
is necessary. If this calibration is not performed, the cross-correlation
" functipns will include initial phase differences which result in a time shift
of the entire function. It is good practice to record all data to be corre-
lated on either even- or odd-numbered tape recorder channels. This eliminates
the possibility of errors caused by differences in the recording head loca-
tions for even and odd channels.

Cross—Correlation Coefficient.-Figure 10 illustrates the manner in which
narrowband cross correlation coefficients are determined. The autocorrelation -
functions are determined by taking the time average of the product p(t)p(t+t)
where T is the delay time. Rpl(r) and RP2(T) are typical narrowband plots for
pressure measurements at locations Pj and Pp, respectively. The cross-
correlation plot is determined by taking the time average of the product
p1(t)po(t+t). This plot is the lower plot in Figure 10. The.cross-correlation
coefficient is obtained by dividing the peak amplitude of the cross-correlation
plot corresponding to the delay time T1,2 by the square root of the product
of the amplitudes of the autocorrelation functions for t=0. Figure 10 shows
the narrowband autocorrelation functions and the cross-correlation function to
be slowly decaying periodic functions. However, correlation plots for wide-
band random signals decay rapidly to zero as the value of T increases.

3.2 SCAT 15-F Model Test Data Analyses

A schematic diagram of the data acquisition and data-processing system
used for the SCAT 15-F model test (Ref. 34) are shown in Figure 11.

Pressure Transducers.-Three different models of pressure transducers were
used for measuring the sonic enviromment of the upper wing surface during the
SCAT 15-F model test. They were Bruel and Kjaer (B&K) 4138 microphones,
Kulite VQL-250-25 transducers and Piezatronics 112A02 pressure transducers.

Characteristics of these transducers are listed in Table 2.
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;TABLE 2. SCAT 15-F ;TEST PRESSURE TRANSDUCER CHARACTERISTICS

B&K KULITE | PTEZATRONICS

4138 VQL-250-25 112402
Diameter | 3.175x1073n 6.35x10_3mj—f ' 5.537%10 3
Dynamic Range 76-168 4B - 131 to 211
Frequency Response h 7-140 kHz - -~
Resonant Frequency - 35 kHz ' 250 kHz
Vibration Sensitivity 16 = 80 aB 1G = 100 dB | 0.002 N/m2/G
Thermal Sensitivity 0.0028 dB/°C | 0.011% FS/°C | 0.011% Fs/°C
Static Pressure Sensit. -1 4B/ATM NA | NA

Initially three B&K microphones were flush mounted in the wing surface
of the model (Figure 12). However, as the jet velocity was increased during
the first test condition when the nozzle was located at position 1, the
diaphragm of one of the microphones was destroyed. Since time allotted for
conducting the test was two weeks and the primary objective of the test pro-
gram was to determine far-field noise reductions that can be attained’
through shielding of a jet noise source by an arrow wing structure, the B&K
microphones had to be replaced by transducers that were readily available.
Two Piezatronics transducers and one Kulite transducer appeasred to be the
best that were available. Therefore, they were flush mounted in the wing sur-
face. These transducers are extremely rugged. The Kulite transducer is a
s0lid state sensor that is rated for 1.72Lx10° N/m® with a maximum usable
pressure of 3.447x10° N/m2 and the Piezatroniﬁs pressure transducers can
withstand a maximum static pressure of 1.3x10% N/mZ.

Environmental Conditions.-Environmental conditions did not appear to
have a significant influence on the choice of transducers. Since the
test was conducted in an anechoic room, humidity was not considered to be a
problem. Model weight and rigidity of the model support were believed to be
sufficient to prevent excessive vibration levels that would affect the noise
measurements. Air supply to the nozzle was near ambient conditions. There-
fore, the jet temperature was not considered to affect the transducer sensi-
tivities.  However, the fully expanded jet static temperature was about
-157 degrees Celsius and may have been a factor that contributed to
failure of the B&K microphone.
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Finite Size of Sensing Element.-The sensing element for the Kulite and
for the Piezatronics transducers was 6.35x10-3 and 5.537x10~3m, respectively.
Therefore, if the convection velocity (U.) is considered to be 0.62 of the jet
velocity, convection velocities for the Mach 2.5 (Vj = 550 m/s) and
Mach 1.5 (Vj = 427 m/s) are 340 and 265 m/s, respectively. Correction
values (10 logy, ¢m/¢) for the 80 kHz upper frequency are:

“Mach 1.5 Nozzle Mach 2.5 Nozzle
Kulite Piezatronics - Kulite Piezatronics
wR/U, 6.05 ©5.27 4.70 Lo
om/¢ (Fig. 9) 0.0067 0.0103 . 0.012k 0.0136
10 logloq%l. —21.7h 4B ~19.87 aB' -19.06 dB 19.87 aB

As can be seen, the finite size effect for the transducers used for the
SCAT 15-F test is large.

Dynamic Range.-The sonic environment on the wing surface of the SCAT 15-F
model was estimated to be within a range of 100 to 160 dB. Table 2 shows that
the dynamic range of the B&K 4138 microphone is 76 to 168 dB. However, the
sonic enviromment may have exceeded the upper limit of the dynamic range and
contributed to failure of the microphone. The dynamic range of the Pieza~
tronics and Kulite transducers is suitable for the higher intensity environ-
ment encountered in the test.

Sensitivity of the Piezatronics transducers used for the SCAT 15-F model
test were considered to be marginal for the range of pressures measured.
Table 2 shows the lower limit of the dynamic range to be 131 dB. Therefore,
internally generated noise of the measuring system may have affected the lower
intensity noise level measurements. Frequency response calibrations were not
available for either the Piezatronics or Kulite transducers and means were not
available for performing them. Therefore, the response was assumed to be
uniform with frequency. .

Frequency Response.-Model scale for the SCAT 15-F model test was con-
sidered to be 0.03. Therefore, if the model jet velocity is considered to be
equal to full-size engine jet velocity, fz = 0.03 x f (see Section L.1).
Measured noise levels covered the frequency range. from 50 to 80,000 Hz. Con-
sequently, the corresponding full-scale frequency range was from 1.5 to
2400 Hz. It should be noted the the frequency range of interest for struct-
ural analyses (50 to 2000 Hz) is well within limits of the measured noise
levels.
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Data Storage.-The FM mode was used for recording the SCAT 15-F model
test data. Data were recorded at 3.048 m/sec tape speed on a 432 kHz carrier.
Time expansion was accomplished by playing back the tape at 0.38 m/sec on a
54 kHz carrier. Therefore, the 80-kHz frequency was reduced to 10 kHz, and
it was possible to reduce the data with a spectral analyzer that had a 10-kHz
upper frequency limit. '

Data Reduction.-Upper-wing surface pressure data were recorded during the
SCAT 15-F test runs L6P and 4TP at Mach 2.5 and runs 20P, 31P, 32P, 33P, 36P,
37TP, and 92P at Mach 1.5. The test parameters for each of the conditions are
given in Table 3. The locations of microphones 10, 11, and 12 relative to
the several jet locations used are shown in Figure 12. The initial data-
reduction included one-third-octave-band analyses from 50 Hz to 80 kHz (Fig-
ure 13) and narrowband analyses from 50 to 80 kHz (Figure 1L4). Later the
narrowband data were plotted for 50 to 16 kHz (Figure 15) in order to better

resolve the frequency content.

In the process of reducing the data, a difference of 7.2 4B was noted
between the pre- and post-calibration of the Kulite transducer (Location 10).
These calibrations were recorded several days apart, and it was not readily
apparent when the shift occurred. Calibrations were performed each day and
used to verify the operation of each microphone system prior to each day of
testing. However, the calibrations were not recorded on magnetic tape each

TABLE 3: SUMMARY OF TEST CONDITIONS

Run Nozzle Pressure Nozzle Exit Velocity
No. Location " Ratio . Mach No. Meters/Second
31p 1 3.67 1.5 ko7
32p 2 3.67 1.5 427
33P 3 367 ' i.5 ' Lo7
20P | L 3.67 1.5 Lot
92P 5 3.67 1.5 Lot
36P 6 3.67 1.5 LoT
37P 7 3.67 1.5 L27
46P 6 1.70 2.5 550
7P T 1.70 2.5 550
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. lay, in the interest of completing all of the scheduled tests within the
allotted time period. The change in calibration level was not noted until
the post-calibration was recorded at completion of the test program. The
_calibration problem was investigated for the Mach 1.5 tests by plotting
sound pressure level contours (Figure 16). First, the precalibration value
was used and then the post-calibration value was used. The contours which
assumed the precalibration value to be correct were disjointed, whereas,
those which assumed the post-calibration value to be correct was smoother.
The contours given in Figure 16 were constructed from the transducer data
grid shown- in Figure 17.

The narrow-band plots such as the one shown in Figure 15 were used to
determine frequencies for making correlation plots. The frequencies chosen
are given in Table L. Typical autocorrelation and cross-correlation plots
are shown in Figures 18 through 20. The plots are for run 31P at a 1000-Hz
frequency. Figures 18 and 19 are the autocorrelation plots for transducers
11 and 12 respectively. Figure 20 is the cross-correlation plot for
transducers 11 and 12. The ordinate of plots 18 through 20 are given in
terms o6f linear dimensions that are proportional to pressure squared. Since
the autocorrelation and cross-correlation curves are used only for computing
normalized cross-correlation coefficients, the conversion factor for convert-
ing linear dimensions to pressure squared cancel out. Computation of the
cross—correlation coefficient at the top of Figure 20 was accomplished by
using the method illustrated in Figure 10. The narrow-band cross-correlation
coefficients were determined for all of the frequencies defined in Table L in
a similar manner. Tables 5 and 6 give the correlation summaries for the
Mach 1.5 and 2.5 nozzles, respectively. The maximum correlation coefficient
values given in column 5 are the p_(0O,n,T,w) values that are used in
Equation (7) to compute excitation cross-spectral density.

3.3 Methods for Improving Data Acquisition and Reduction

Improvements listed below are with reference to the'SCAT‘lS—F model test
program.

e A hot jet will better simulate a SST-type engine. Current SST
engine concepts have exhaust velocities on the order of 823 m/s.

° The pressure transducers should have smaller sensing elements to
improve high-frequency space resolutions.

. The transducer array should include longitudinal and lateral pos-—
itions so that true convection velocities can be determined.
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RUN NUMBER — TRANSDUCER NUMBER

31P-12 31P-11 31P-10
o) @) 0]
-———— (0.152m —————
0.076m —»
32P-12 32P-11 32P-10
o) O O [
0.838m
20P-12 20P-11 20P-10
0 o} o) — 0.584m
—ﬁ 0.05m fat—— 0.33m
{
- 36P-12 36P-11 36P-10 !
0] O ! O ,
051m ——l ’4— 0.076m y
LOCATION :
OF JET NOZZLE

Figure 17.

Contour Data Grid



TABLE L.

CORRELATTON MATRIX

» Transducer Transducer
Run No. A B __Correlatiqn Frequencies - kHz
31P 11 12 1.0 2.k 4.8
32P S11 12 1.0 2.4 4.8
33P 12 10 1.0 2.b h.8
33P 12 11 1.0 2.4 4.8
éOP 11 12 1.0 2.4 L.8
92P 12 11 1.0 2.k 6.6
92P 12 10 1.0 2.4 6.6
36P 11' 12 1.5 2.k 676
37TP 12 11 1.0 2.4 6.6 15
37P 12 10 1.0 2.4 6.6 15
37P 11 10 1.0 2.4
Lép 11 i2 1.0 6.6 9.0 15
 L7P 10° 12 1.6 6.6 7.2 15
hyP 11 12 1.6 6.6 7.2 15 -
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TABLE 5. MACH 1.5 NOZZLE CORRELATION SUMMARY-

LR 27338

Maximum _
Correl. Correlation Maximum Peak
Run Freq Function Correlation T
No. Transducers |(kHz) (m) Coefficient (sec)

31P 11-11 1 6.56 x 10‘2 0
12-12 7.33 x 10‘2 0 )
11-12 2.98 x 10 0.543 1.46 x 10”
11-11 2.4 2.71 x 10‘2 0
12-12 3.70 x 10:3 0
11-12 7.59 x 10 0.24 11.775 % 107
11-11 4.8 h.11 x 10:2 0
12-12 4,57 x 10_3 0 !
11-12 6.60 x 10 0.15 1.96 x 10~

32p 11-11 1 7.32 x 107 0
12-12 6.86 x 10_2 0 )
11-12 3.86 x 10 0.55 1.30 x 107
11-11 2.4 3.33 x 10:2 0
12-12 4.85 x 105 0 )
11-12 1.19 x 10 0.30 '0.65 x 10~
11-11 4.8 5.51 x 10:2: 0
12-12 8.28 x 105 : 0 L
11-12 1.22 x 10 0.18 0.80 x 10~

33P 10-10 1 '3.10 x 10:2 0
11-11 '7.37 x 10 5 0
12-12 $3.38 x 10 % o
10-12 3.3 x 10_3 0.10 L2 x 1o_h'
11-12 "7.37 x 10 0.15 1.9 x 10
10-10 2.4 8.08 x 10:2‘ 0
11-11 8.64 x 10 5 0
12-12 7.54 x 10:2 0 L
10-12 6.86 x 10_7 0.09 0.65 x 10"h
11-12 2.21 x 10 0.27 0.45 x 10~
10-10 L.8 5.46 x 10:2 0
11-11 6.99 x 10_2 0
12-12 - 7.87 x 10_3 0 y
10-12 7.62 x 10_3 0.12 1.9 x 10‘1L
11-12 2.54 x 10 0.03 i.h ox 107
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LR 27338

TABLE 5. MACH 1.5 NOZZLE CORRELATION SUMMARY - Continued

Maximum
Correl. Correlation Maximum Peak
Run Freq Function Correlation T
No. Transducers | {(kHz) (m) Coefficient (sec)
20p 11-11 1 6.85 x 10:5 0
12-12 6.46 x 10 5 : 0 5
11-12 2.2k x 107 0.338 1.6. x 10~
11-11 2.h 7.94 x 10:2 0
12-12 7.68 x 10_2 : 0
11-12 2.91 x 10 0.372 6.9 x 107
11-11 .8 2.92 x 10‘2 0
12-12 3.49 x 10:3 0
11-12 1.27 x 10 0.0k _—
92p 10-10 1 3.87 x 10:2 0
11-11 7.9% x 10_2 0
12-12 6.20 x 10 5 v 0 ’
10-12 1.07 x 10:2 0.22 3.96 x 10~
11-12 2.41 x 10 0.4k -
10-10 2.4 9.02 x 10:2 0
11-11 2.54 x 10 5 0 .
12-12 5.59 x 10:3 : 0 L
10-12 7.1 x 103 0.10 1.97 x 107
11-12 L.32 x 10 0.09 -
10-10 6.6 3.86 x 10'2 0
11-11 5.64 x 10’2 0
12-12 5.08 x 10'3 0 L
10-12 2.79 x 10:3 0.063 1.78 x 10'h
11-12 9.65 x 10 0.18 1.83 x 107
36P 11-11 1.5 k.38 x 10‘2‘ 0
12-12 4.85 x 10 7 o
11-12 1.47 x 1077 0.32 6.3 x 1077
11-11 2.4 5.84 x 10"2 0
12-12 5.91 x 10 3 U
11-12 9.65 x 10 0.16 2.82 x 10°
11-11 6.6 h.ool x 10'2; 0
12-12 2.71 x 10'3, 0 5
11-12 8.89 x 107~ 0.2k ho77 x 107
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IR 27338

TABLE 5. MACH 1.5 NOZZLE CORRELATION SUMMARY - Concluded

Maximum
Correl. Correlation Maximum . Peak
Run Freq Function Correlation T
No. Transducers | (kHz) (m) Coefficient (sec)
37P 10-10 1.5 . 7.25 x 10‘2 0
11-11 .. 6.54 x 10‘2 0
12-12 e 7.87 x 10‘3 0
10-12 ! 5.59 x 10_3 0.07h 0.0
11-12 h. k2 x 10 0.616 0.0
10-10 2.4 377 x 10‘2 0
11-11 '5.65 x 1077 0
12-12 4,95 x 10‘2 0 L
10-12 2.10 x 10:2 0.485 1.66 x lo—h
11-12 2.92 x 10 0.719 1.65 x 10~
i
10-10 6.6 7.68 x 10‘2 0
11-11 6.hh x 10‘2 0
12-12 2.07 x 10~
10-12 2.79 x 10‘3 0.07 6.59 x 1072
11-12 3.81 x 10 0.10k 8.63 x 1077
10-10 15 : .5.8h x 10‘2 0
11-11 . T.2h x 10“2 i 0
12-12 ' h.76 x 10‘3 0
10-12 1.27 x 10~ 0.02 -
11-12 2.54h x 1073 0.0h -
Repeat ’ o
37P 10-10 1.5 8.89 x 10 5 0
11-11 4.83 x 10'2 0 !
10-11 3.30 x 10~ 0.54 6.12 x 10~
10-10 " 2.4 3.45 x 10‘2 . 0
11-11 4,72 x 10'2 0 )
10-11 1.52 x 10~ 0.38 1.3 x 10°




LR 27338

TABLE 6. MACH 2.5 NOZZLE CORRELATION SUMMARY

Maximum

Correl. Correlation Maximum Peak
Run Freq Function Correlation T
No. | Transducers |(kHz) - (m) Coefficient (sec)
Lep 11-11 1 8.00 x 1052 0
12-12 4.60 x 10_5 4
11-12 L4.65 x 10 0.77 2.5 x 107
11-11 6.6 7.11 x 10'2
12-12 7.70 x 10_,- )
11-12 4.83 x 10 0.65 9 x 10
11-11 9 b.3kh x 10'2'
12-12 3.05 x.lO:2 _h
11-12 1.27 x 10 0.35 1.02 x 10
11-11 15 T.77 % 10:2
12-12 L.57 x 10 3 , 5
11-12 6.25 x 10~ 0.11 0.6 x 10~
L7p 10-10 1.6 ho11 x 10'2
11-11 1.85 x 10’2
12-12 8.81 x 10~ _l
10-12 2.1 x 10_2' 0.40 2.3 x 10_,
11-12 2.11 x 10 °. 0.52 1.2 x 10
10-10 6.6 1.80 x 1o'§
11-11 L.11 x 1o'é
12-12 3.8k x 103 , i
10-12 6.35 x 10“3 0.24 0.6 x 10 4
11-12 3.30 x 10~ 0.08 '0.5 x 10~
10-10 7.2 277 x 10:2
11-11 ' 6.60 x 10 5
12-12 3.48 x 10™ L
10-12 3.30 x 10'3 0.11 3.3 x 101L
11-12 2.46 x 10 0.51 5.6 x 10
10-10 15 3.33 x 10:2
11-11 2.36 x 10 -
12-12 3.89 x 10'3 )
10-12 5.08 x 10'2 0.1k 0.4 x 1o'h
11-12 1.09 x 10~ 0.36 0.6 x 10~
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The,tranéduceg systems should be phase synchronized, and
calibrations should be recorded at the beginning and end of

each day's testing.

A suffi&iéht number of transducers should be available so that
measurements can be made in and adjacent to the jet flow stream.
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Iy, TASK IIT - DATA SCALING

4.1 - Scaling Procedures

A literature search (Appendix B) failed to produce a procedure that
appears to be more representative of current technology for scaling model data
to full-scale aircraft sonic enviromments than the procedure discussed in the
following paragraphs. '

Frequency scaling is accomplished by considering the Strouhal number of
the model flow field to be equal to the Strouhal number of the aircraft flow
field Equation (11).

fm Dm fa Da
= — - 11
("), %) Y
J m Jd a
fm " = model noise data frequency
Dm = model nozzle diameter
(V.) = model jet velocity
Ca)
f = aircraft sonic environment frequency
a :
Da = aircraft engine nozzle diameter

aircraft engine jet velocity

—
<3
Ce
—
il

-Equation (11) can be solved for fy to obtain the aircraft sonic environ-
ment frequency that corresponds to a designated model noise data frequency,
Equation (12). '

(V_) D

J a m

fa = fm (V) x5 (12}
J m a

The ratio (Dp/Dy) is equal to the model scale. Therefore, when the model
jet velocity is equal to the aircraft engine jet velocity (which is generally
the case), the frequency is accomplished by a simple equation, Equation (13)

f = f x Model Scale ' (13)
a m
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Amplitude scailng is easily accomplished when flow velocity and tem-
perature of the model jet simulate the full-scale jet. Model sound pressure
levels (SPLm) need. only to be corrected for pressure transducer sensing ele-
ment size (Ref. 33) to obtain actual full-scale sound pressure levels (SPLg).
Therefore, scaling is accomplished by using Fquation (1k).

SPL, = SPL_ + 10 log,, ém/¢ : (1k)

The value of ¢p/¢ is determined froﬁ Figure 9. Distance from the nozzle exit
to a location on the aircraft that corresponds to the model measurement loca~
tion is given by Equation (15).

D
a
Ra—(D )V(R ) (15)
m
Ra = distance from a point at the centerline of the aircraft engine
© nozzle exit plane to the sonic environment location of interest
Da = diameter of aircraft nozzle
Dm = diameter of model nozzle
Rﬁ = distance from a point at the centerline of the model nozzle exit

plane to the pressure transducer location

When the model jet velocity and temperature do not: simulate full-scale
jet operating conditions, additional terms are required in the scaling
equation. These addition terms are defined in Equation (16).

v
o ( J)a Py :
SPLa = SPL_ + 10 log,, b + K log (v) + 10 1gglo o (16)
Im
K = Constant (80 for \A < 610 m/sec and
30 for Vj > 610 m/sec)

The third and fourth terms in Equation (16) must be scrutinized. Since
the sonic environment on a panel immersed in a jet flow stream is a combina-
tion of hydrodynamic and acoustic pressure fluctuations, a unified scaling
equation must account for both phenomena at all points in and adjacent to the

L9



jet flow field. Such an equation hds not been developed to date. There-
fore, Equation (16) is a provisional equation that has been defined in order
to scale the SCAT 15-F data to full-scale supersonic transport engine oper-
ating conditions. The velocity and density terms are based on methods for
predicting acoustic power of free jets as defined in References 35 and 36.
The basic assumption made to derive Equation (16) was that acoustic pressure
fluctuations have a greater impact than hydrodynamic pressure fluctuations on
the sonic environment of a panel immersed in the flow field of a high temper-
ature supersonic jet. If the hydrodynamic flow field is considered to have a
predominant impact on the sonic environment, the sound pressure levels will
be a function of dynamlc pressure (q). The relation normally used is

SPL=20 log q + constant. Therefore, since g=1/2 V2 the scaling equation
will be in terms of velocity to the fourth power. ﬁeference 37 shows that
the sonic environment of surfaces immersed in a jet flow stream increases
according to Vh. The relative importance of acoustic and'hydrodynamic pressure
fluctuations will not be pursued further in this report. However, a computer
program has been developed (Appendix C) based on Equation (16) and is
subsequently evaluated in Section 4.2,

4.2 Comparison of Scaled Model Data and Full Scale Aircraft Date

The literature search (Appendix B) did not result in finding a corre-
sponding set of model and full-scale aircraft data that is pertinent to sonic
environment in a supersonic jet flow stream. However, subsonic jet data was
available for the following three aircraft.

e S-3A (Refs. 38 and 39)

e L-1011 (Refs. 39 and L40)

e V/STOL (Ref. 41)

The full-scale sonic environment data for the V/STOL aircraft were
obtained from unpublished data that were provided by Langley Research-Center.

To compile the model test data in a format for input to the computer
program, the following information must be available.

® Model Data: scafac, ttmr, ptmi, dmi, mixm, rmi, trim fm, spim

e Aircraft Data: ttar, pra, wa, mixa, tris

50



data.

e Atmospheric Data: psi

scafac
ttmr
ptmi
dmi
@ixm
rmi
trim
fm
spim
ttar
-pra
wa
mixa

tria

psi

1

model scale factor

total temperature of model jet - deg ‘R

total pressure upstream of the nozzle - lb/in2

model nozzle diameter (exit) - 1in.
fuel/air mixture of model jet

distance from model nozzle exit to pressure transducer - in.

‘ diameter of pressure transducer sensing element (model test) - in.

model frequency band center frequency - Hz
sound pressure levels corresponding to fm - 4B
total temperature of engine jeti- deg R
engiﬁe nozzle pressure ratio

engine exhausf flow' - lb/sec”

engine exhaust fuel/air ratio

diameter of pressurevtransducer sensing element (Full scale
test) - in.

atmospheric pressure ; lb/in2

Several problems were found to exist in compiling the required input
These included.

e Sufficient information was not reported with regard to propulsion,
geometry, and instrumentation.

® Decisions had to be made regarding the relative importance of the
core and bypass Jet streams

® Opectra that was expressed in terms of spectral density had to be
converted to third octave band data.

¢ Range of the frequency spectrum was too small

e Validity of test data could not be assessed.
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The data compiled in Table T were determined to be the best available
and were used for scaling the model data to full-scale conditions.

Figure 21‘shows location of the pressure transducers for the S-3A. The
locations were similar for the model and aircraft. Figures 22, 23 and 2L
show the measured model data, measured aircraft data and scaled sonic envi-
ronment for pressure transducer locations 1, 2 and 3, respectively..

Figure 25/shows the transducer location for the L-1011 tests and Fig-
ure 26 shows the comparison between scaled and measured noise.

Figures 27 and 28 give the geometrical and noise data for a V/STOL air-
craft with lower surface blowing of the flaps by the jet stredm

~ The S-3A and L-1011 model jets simulated full-scale aircraft engine
characteristics. Therefore, velocity and density terms in Equation (16)
have a minimal effect on noise scaling. Consequently, scaling of the model
data is accomplished according to Equations (13) and (1k4) for the frequency
and amplitude respectively. Figures 22 through 24 and Figure 26 show that
the scaled noise spectrum has approximately the same shape and magnitude as
the measured model spectrum and has a frequency shift that is proportional
to the model scale factor. Pressure transducers 1 and 3 on the S-3A air-
craft (Figure 21) and the transducer on the L-1011 aircraft (Figure 25) are
believed to be in the jet flow stream whereas the number 2 S-3A transducer
is outside of and adjacent to the flow stream. Observation shows that the
scaled model spectrum for the No. 2 5-3A transducer agrees reasonably well
. in shape and magnitude with the measured full-scale data whereas the scaled-
model spectra in Figures 22, 2L and 26 are not representative of the full-
scale measured spectra. Comparison of the scaled spectra with full-scale
measured data does not show any specific trend regarding shape, peak fre-
quencies or magnitude.

Scaling of the V/STOL transducer data (Figure 28) for the transducer
location shown in Figure 27 involved accounting for velocity and density
differences in model and full-scale Jets. Figure 28 shows that the scaled
model data is significantly higher than the full-scale measured data.

- Discrepancies between the scaled model data and full-scale measured data
may be attributed to several factors. These factors include:

e The models and full-size engines had coaxial no7zles and bypass J“t
parameters were used to scale the data

e Noise measurements were made by different investigators which used
different types of instrumentation and had different test
environments.

e The compatible model and full-size aircraft data that were available

for evaluating the prediction method were for subsonic jets whereas
the scaling equation was developed for supersonic jets.
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TABLE 7. COMPUTER PROGRAM INPUT DATA

S-3A L1011 V/STOL
LoC 1 LocC 2 LOC 3
scafac 0.143 ’ 0.05 0.185
ttmr 537 837 537
ptmi 20.8 22.2 22.2
dmi a2 2.88 6.95
mixm 0 0 0
rmi 8 18 30 115 30.5
trim ' 0.25 0.25 0.218
ttar 593 620 1,515
pra 1.42 1.49 15
wa an 1,159.5 333.5
mixa 0 0 l 0.033
tria 0.25 0.25 0.5
psi 14.7 14.7 14.7
n fm spim fm spim fm splm fm spim fm splm
1 250 142.7 132.2 130.7 1,250 126.4 315 | 144.1-
2 315 1436 132.3 1275 1,600 126.2 400 144.9
3 400 145.1 1325 125.4 2,000 125.3 500 145.6
4 500 1456 130.2 121.8 2,500 125.3 630 145.4
5 630 146.4 128.2 120.4 | - 3,150 124.2 800 145.1
6 800 146.3 126.2 119.5 4,000 123.2 1,000 144.9
7 1,000 146.8 125.0 120.0 5,000 122.0 1,250 144.7
8 1,250 1471 124.4 120.5 6.300 120.2 1,600 143.8
9 1,600 146.2 123.3 120.4 8,000 119.0 2,000 143.9
10 2,000 145.5 122.1 120.0 | 10,000 117.0 2,500 .143.0
1 2,500 144.5 120.0 119.5 0 0 3,150 142.3
12 3,150 1428 118.2 117.9 (] ] 4,000 141.0
13 4,000 | 1415 117.0 117.8 o ] 5,000 139.0
14 5,000 139.8 116.2 116.4 0 ] 6,300 137.8
15 6,300 | 138.6 115.0 115.3 0 0 8,000 136.2
16 8,000 136.6 114.0 113.4 0 0 10,000 | 1330
17 10,000 134.2 112.4 110.5 0 (] 12,500 129.2
18 0 0 ] 0 ] o 16,000 1255
19 0 0 0 0 0 0 20,000 121.6
20 0 0 0 ] ] (] 25,000 116.3
: 0 0 0 0 (] 0 31,500 112.0
24 0 0 0 (] 0 ] 40,000 110.0
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Figure 21. S-3A Measurement Locations
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THIRD-OCTAVE BAND LEVEL IN DB RE 2 x 10°5 N/m2

170

160

Y
W
o

-
N
o

110

. 100

THE COMPUTER PRINTOUT SHOWING THE MODEL SPECTRA,
FULL SCALE SPECTRA, AND.SCALED SPECTRA FOR FIGURES
22,23, 24, 26 AND 28 ARE GIVEN IN APPENDIX C.

- SCALED

TEST CONDITIONS: TABLE 7
COMPUTER OUTPUT: TABLE 8

0.14-SCALE
MEASURED MODEL DATA
. | |

MODEL
DATA

MEASURED U

FREQUENCY IN HERTZ

Figure 22. §$S-3A Spectra - Location 1

FULL-SCALE

DATA
lLJ#lllLl]lellLlllLllJ#l‘lLl
50 125 315 800 2000 5000 12,500 31,500
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THIRD-OCTAVE BAND LEVEL IN DB RE 2 x 105 N/m?

56

170,

160.

150

- 140

130

120

11'(,)‘;

100

. - TEST CONDITIONS: TABLE 7
- COMPUTER OUTPUT: TABLE 9

— MEASURED .
FULL-SCALE

- - 0.14:SCALE -
MEASURED MODEL DATA

»
}—
i SCALED

.MODEL

DATA

LJLLJJll1|JL1|4L1_1111]111L114
50 125 315 "800 2000 5000 12,500 31,500

FREQUENCY IN HERTZ

Figure 23. 8S-3A Spectra - Location 2




THIRD-OCTAVE BAND LEVEL IN DB RE 2 x 10°5 N/m?2
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TEST CONDlTIONS: TABLE 7
COMPUTER OUTPUT: TABLE 10

MEASURED
FULL-SCALE
DATA

— SCALED- -
MODEL
DATA

0.14-SCALE : ,
O~Ow MEASURED MODEL DATA

R N A GRS AT SN SN AN AN A AR A A

. 50 125 - 315 800 2000 5000 12,5600 31,500

FREQUENCY IN HERTZ

Figure'Qh. S-3A Spectra - Location 3
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TRANSDUCER ON
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ENGINE"

Figure 25. L~1011 Measurement Location
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THIRD-OCTAVE BAND LEVEL IN DB RE 2 x 10°® N/m?

170

160

150

140
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110

100

TEST CONDITIONS: TABLE 7

SCALED-MODEL DATA MEASURED MODEL DATA

o COMPUTER QUTPUT: TABLE 11
-

i

i

[ 0.05-SCALE

MEASURED
u FULL-SCALE
DATA
lLlllllLlLlJlL}lllllLLllllJLl
50 125 315 800 2000 5000 12,500

FREQUENCY IN HERTZ

Figure 26. L-1011 Spectra

31,500 -
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Figure 27. V/STOL Measurement Locations



THIRD-OCTAVE BAND LEVEL IN DB RE 2 x 10 N/m?2
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160
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140
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100

TEST CONDITIONS: TABLE 7
COMPUTER OUTPUT: TABLE 12

L
MEASURED
| FULL-SCALE
. .DATA
—
»
_
0.185-SCALE
MEASURED MODEL DATA

pe

lLlllAJll { 'lvl |JJL4L1 L I [ JJLI .

50 125 315 800 2000 5,000 12,500 31,500

FREQUENCY IN HERTZ:

Figure 28. V/STOL Spectra
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4.3 SCAT 15-F Scaled Model Data

Inability to accurately scale the data in Section 4.2 may be due to the
complex confluent flow field of the coaxial jets. Therefore, even with the
limitations of the SCAT 15~F model test data {see Section 3;3), scaling of
the data to full size aircraft dimensions should provide some insight as to
the severity of the sonic environment for a SST with over-the-wing engine
installations. TFigure 29 gives a comparison .of SCAT 15-F measured model data
with scaled spectra for a realistic SST engine. The spectra plotted are for
run number 31P transducer 10. Model data and scaled spectra are given in
Table 15 of Appendix D along with model and full scale engine operating char-
acteristics. Table 15 shows model velocity and full-scale engine veloeity
to be 440 m/s (1150.5 ft/s) and 845 m/s (2766 ft/s), respectively. . This
differential velocity has a significant impact on the scaled noise level, see
Fquation (16). The computed value, because of decreased density for the
full-scale engine jet, is shown in Table 15 to be -6.68 dB. Comparison for
other run numbers and transducer locations could be made by plotting values
given in Tables 16 through 30.

Figure 30 shows scaled OASPL contours on the wing surface of an arrow
wing for Mach 1.5 nozzle cold jet test conditions. This is the same contour
plot that is given in Figure 16. Maximum OASPL values occur approximately
22 meters downstream of the nozzle exit. Since the scaled-nozzle diameter is
1.69 meters, the ratio of downstream distance to nozzle diameter is 13.

OASPL contour plots were not made for the scaled SST engine -operating
conditions. However, Figure 31 gives a point-by-point comparison of scaled
Mach-1.5 nozzle data and realistic SST engine OASPL values. Differences in
the Mach 1.5 scaled OASPL values and realistic SST engine OASPL values range
from 6 to 20 dB because of sensitivity of the scaling method to spectrum
shape. The peak sonic environment level for the wing structure is shown to.
have an OASPL value of 181 4B. '
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Figure 31.
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5. CONCLUSIONS

Accuracy of the prediction method used for scaling the SCAT 15-F test
data to full-size supersonic transport dimensions has not been established.
However, scaling of the SCAT 15-F data by considering the bypass flow condi-
tions of an SST duct-burning turbofan engine concept, results in noise levels
of up to 180 dB on a surface immersed in the jet flow stream. It is not
inconceivable to believe that noise levels of this magnitude are possible for
Jet velocities that are on the order of 1000 m/s as are typical of duct-
burning turbofan engines.

Sufficient test data pertaining to the sonic environment of a surface
immersed in a supersonic Jet flow stream does not exist to compile a data
bank for determining validity of model scaling procedures. However, scaling
of the S-3A, L-1011 and a V/STOL subsonic jet model data to full-size air-
craft conditions and making comparisons with measured aircraft data show
discrepancies of up to approximately 20 dB in some of the spectra one-third-
octave bands. These results indicate that additional studies are needed to
evaluate scaling methods and model test procedures.

The relation between sonic environments on a structure that are associ-
ated with hot and cold jet flow fields has not been determined. Hot jet flow
sonic environment measurements have not been obtained because pressure trans-
ducers have not been developed that are known to provide accurate measurements
in a hot jet flow stream. Therefore, significant improvements in.high~
temperature pressure transducers are needed.

Finite size of -a transducer sensing element limits its space resolution
of a pressure field. The error becomes progressively larger as the value of
the quantity’wRﬁucincreases. Therefore, values of the circular frequency
should be as low as possible. This can be accomplished by increasing the
model size so that the model frequency range required is made smaller. Also,
‘tie sensing element of the transducer should be as small as possible. The
sensitivity of the transducer decreases as the sensing element becomes
smaller. Consequently, a compromise must be made between sen51t1v1ty verses
spatial resolution characteristics.

If narrow-band cross-correlation functions are required for making modal
analyses, the transducer systems must be phase synchronized. Otherwise, an
initial phase shift will result in a time shift of the entire function.

Scaling of data from coaxial Jets is more complex than scaling the data
for simple circular nozzles. Therefore, it appears that simple circular
nozzle tests will provide a better basis than coaxial nozzle tests for inves-
tigation and refining of supersonic jet noise scaling procedures. ‘
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APPENDIX A

DERIVATION OF RESPONSE SPECTRAL DENSITY EQUATION

Determining the response of a structure that is subjected to a random
excltation force consists of three major steps. They are:

e Expression of the random excitation force in terms of the excitation
spectral density

e Determining the receptance of the system

e Expressing the response spectral density in terms of receptance
and excitation spectral density

The computation procedure will first be developed for a simple spring mass
system and then extended to the general procedure for a structure.

A.1 Simple Spring-Mass System

Figure 32 shows the steps required for determining the response of a
simple spring-mass system. Plot a is a time history of the excitation force,
Plot b is a typical excitation spectral density curve, Plot ¢ expresses the
receptance in terms of the absolute value of the receptance squared and Plot d
shows the response spectral density. Computation methods for obtaining plots
b, ¢ and d are given below.

Excitation Spectral Density. - The excitation spectral density can be
obtained by relating the spectral density to the autocorrelation function by
use of the Fourier Transform, Equation (17).

n
€
1
=)
=
I
furn
€
,_‘
o3}
-
'__l
-3

=

S_(w) = Excitation spectral density
R_(t) = Autocorrelation function
W = Circular frequency

T = Delay .time
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Figure 32. Steps Involved in Determining the Structural
Response Caused by a Random Excitation Force
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The autocorrelation function can be determined from the random excitation
signal by using an autocorrelation function analyzer to determine the time
average of the product of the signal at times t and t + 1, Equation (18)

R(t) = <P(t) P(t + 1)> - ' - (18)
T = Delay time
CP(t) .= Value of signal at time t

P{t + 1)

Value of signal at time (t + 1)

Receptance of the System. - The equation of motion for a simple spring-
mass system (Figure 33) is given by Equation (19).

m¥X + ¢cx + kx = P(t) - : : (19)

The response to a transient force can be determined from the receptance
by using a Fourier integral technique, but it is usually more convenient to
make use of a convolution integral which expresses the response in terms of
the response to a unit impulse. An impulsive loading can be expressed mathe-
matically by Equation {20). :

P(t) = I8(t) ' _ . (20)
P(t) = exciting force

I = magnitude of the impulse

§(t) = dirac delta function

x(t) = wW(t) I ’ . (21)

x(t)

System response

W(t) = Response to a unit impulse

The solution of the equation of motion when P(t) = I8(t) is given by
Equation (22). A

ejﬂc/Zm)t sin w.t ' ' (22)

L oL
mwd d
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Figure 33. Simple Spring Mass System
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where

w, = —f;—@-—(ﬁ-)2

i 5 Damped natural frequency

Substitution of Equation (22) into Equation (21) and solving for W(t)
" results in Equation (23).

W(t) =.E£T4é‘(°/2m)t sin gt | (23)
a

If the loading is continuous instead of a single impulse (see Figure 3L),
the area under the loading-time curve can be divided into impulsive loadings
P(t)8T and the response at any time t is given by the convolution integral,
Equation (2L4).

x(t) = | W(t - t) P(t) dr (2k4)

The value of the convolution integral is not changed by a shift in time.
Therefore, the response can also be determined by Equation (25).

x(t) =] w(t) P(t - 1) dr ' (25)

x(t) = poe-l“’tf H(o)e 0T ar=P e 6(iw) (26)
O

T1



w(t)e T ar

(o)
—_
[N

€
~
1

o)

S(iw)

Receptance of the system

Equation (26) will be used subsequently for determining the response
spectral density. The value of the receptance can be determlned by determin-
ing the partlcular integral of Equation (27).

mX + cx + kx = Poe-lmt : ' (27)

Divide Equation {27) by m then let ¢/m = 2Zw_ and k/m = w2 to obtain
n n
Equatlon (28).

X + 2w X +,w2X =_Eg_e1wt‘ (28)
n o n m

. : L Lwt .
The solution of Equation (28) is x = xoelw Therefore, by taking the
first and second time derivatives of the solution and substituting the

results into Equation (28), Equation (29) is derived.

P

2 . 2 0 ‘
- + + = —
( w i2Cw w w ) X (29)

Solving for X gives Eguation (30).

Po :
Xo i ﬁ(wg - w2 + izw w) (30)
n n

The required response, Equation (31), is determined by substltutlng the
value for X into the solution.
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' 1 -1 . : v
x = P‘e‘ wt (31)
2 2 . 0
m(w” - o + iZw w) A
n n , -

The term in the brackets is the receptance of the system, Equation (32).

I (32)

al(iw) = 5
Com(w” - 0 + idw w)
n , n

The ordinate of the plot in-Figure 324§7is the square of the absolute
valve of the receptance.

Response Spectral Density. — The response autocorrelation function is
given by Equation (33).

RX(T) = <xkfj;x(t;r)>~_ o : | (33)

Substitution x(t) from Equation (25) gives:

) dt

x(t+1) = W(Te) P.(t+T-T2

o}

Substitution of Equation (3L) into Equation (33) gives:

R (t) =f W(Tl)f W(t,) <P(t—‘rl)§;P(€;T-12)>dr2dr, “ (35)
o e}
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By changing the origin of t:

(oo oo

= ' + - . - :
Rx(t) | W(Tl).f W(T2) <P{t) P (¢t T T2T)§dT2d;l (36)
o) o -
The time average <P(t) P (t + ©, - T, + 1)> is the autocorrelation func-
tion of the exciting force. Therefore:
R (1) =f W(rl)f W(t,) RP(rl - T, * T),dr2d_¢_1 (37)
o o o

The relationship between the response and excitation spectral densities
can be obtained from Equation(37)by making use of the Fourier transform rela-
tionship between the autocorrelation function and spectral density, Equa-
tion (38).

oo

s_(w) =/ RX(T)é_in at | (38)

Substitution of Equation (21) into Equation (38) gives:

sx.(;») =/ [f w(t,) | wiry) ﬁP'G'l-'_VTg*T) dfngl] et a (39)
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The separate factors of the above expression are a*(iw),'a(lw) and
S_(w) . a*(iw) is the complex conjugate of the receptance and-S_(w) is the
excitation spectral density. Therefore, the response spectral gens1ty is
given by Equation (LO). '

5,(0) = a*(10) o (10) Sy(w) = |a(iw)|? 5p(w) (40)

This is the plot shown in Figure 31-d.

A.2 Response of a Structure

A detailed development of the generalized structural response spectral
density Equation is given in References h2 and 43. Therefore, only the basic
equations will be given herein. The response spectral density of any point.
(xl)'will be determined for distributed pressures at points Xp and xg for a
beam of length %. This development shows all the essential features for more
complicated systems. The beam'problem‘requires that the displacement at any
point be expressed in terms of the normal modes and normal coordinates as
given in Equation (L1). :

wix,t) = £ w_(x) £ (t) (k1)
T r
T
w(x,t) = Displacement at any point.
wr(x) = Normal mode of the beam
gr(t) = Normal coordinate

It should be noted that the normal coordinates are obtained by transform-
ing the generalized coordinates of a system by the normal mode matrix. When
the equations of motlon are expressed in terms of the normal coordinates the
system is inertially and elastically uncoupled. Therefore, the equations do
not have to be solved simultaneously. '

For a body Qf any shape the position at any.point is described by a
position vector P and the displacement vector w(P,t) is given by Equation (L2).

w(P,t) = 2w (P) £ (¢) (42)

r -
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Therefore, the only difference between the beam equations given below

and the equations foxr a body of any shape is that the coordinate x is used
instead of a vector P. The steps involved in determining the generalized
response spectral density equation are the same as for the simple spring-mass
system. However, the cro®s correlation functions and cross spectral densities
must now be determined. Also, the receptances of the system must be defined
in terms of the normal modes.

Excitation Spectral Density. - The excitation cross spectral density is

obtained by relating it to the cross-correlation function by use of the Fourier
Transform Equation (43).

SP(XA, X5 w) '.. , = R (XA, X5 T)e_in dT (34)

The cross-—-correlation function is:

: : = . +"f C
Rplxys xps ©) 0= <Plxy )ax,Plxg, t+7)dxp> | (k)
SP(XA, xB; m) - . = excitation cross spectral density at any two
‘ points Xy and Xy
RP(XA, XB’ T) = cross-correlation function for points XA and XB
P(XA,t) = distributed pressure at point x, at time t
P(XB, t+1) = distributed pressure at point x, at time (t + 1)
Receptance of the system. - The receptance of the system at point Xy for
a load at x, in terms of the normal modes is given by Equation (L5).
wr(xl)wr(xA)
o =3 (45)
XXy Ty (02 - W+ i;wrw) '
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The receptance at x, for a load at x, is:

1 B

ws(xl) ws(x )
Ms(wi -~ w2 + ijSw)

B

a,
Xq 5%



v (x ), w_(x) .=4modéi:deflections at x

r 1 s 1 1
Wr(xA) = modal.deflectlon at XA .
w (XB) = modal'deflectioh at X

w w
'S

4 = viscous damping factor

Response Spectral Density; - The.spectral density at xj can now be

5 v
=il.wf(X) mdx = generalized mass for mode r
o

generalized mass for mode s

1] ..
o=
U)z: )
%

g
&
I

= modal frequencies

expressed in terms of the receptances and excitation cross-spectral density
by Equation (L46).

. 9 £
_Zzwr(xl)ws(xl) ,! ’of wr(XA)WS'(XB)SP(XA’XB;w) dxAde
Sw(xl’w) T rs 2 2 2
M (0™ - 0 + 12w w) M (0 - 0 + itw w)
ror r X' s

This equation is easily changed to Equation 6 in Section?2.3 by:

Replacing x, with x,y

Changing integration limits to A

Letting xA =
Letting XB =n
Replacing dx, and dx, with dA

A B

Representing modal values v and LA by fr and fs respectively

Changing symbol for damping factor from £ to 6t°'5r and Gs
respectively k
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APPENDIX B

LITERATURE SEARCH

A search was made of the following files via DIALOG - the Lockheed-
-California Company on-line information retrieval system - to locate informa-
tion relevant to "Acoustic Loads on a Panel immersed in a Jet Flow Stream."

e NTIS - File of Government Reports: The file contains over 400,000
abstracts of research reports from over 240 government agencies,
including NASA. The file dates from 196k.

e ENGINEERING INDEX - Publications of engineering organizations: The
file contains approximately 360,000 citations and abstracts from
3,500 Journals. The file dates from 1970.

e ISMEC - Mechanical engineering and engineering management data base:
The file includes about 30,000 items and dates from 1973.

A search was made by_the.NASA Scientific and Technical Information Facility.
The search also included:
e Journal of the Acoustic Society of America Index - 1971 to present
e TLockheed California Company Central Library Catalog -
o  Applied Mechanics Services 1974 to Sept 1975
° Applied Science and Technology Index - 1971 to Sept 1975
® AGARD Index. - 1971 thru 1973
® Shock and Vibration Digest - 1971 to Sept 1975
Test Data directly related to "Acoustic loads on a Panel Immersed in a Jet
Flow Stream" were not located. However, many publications were located which

~ provide pertinent information for development of sonic environment analysis
methods (see report references). :
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APPENDIX C

SCALING COMPUTER PROGRAM

A listing of the noise scaling computer program is given in the following
pages. The program is written in terms of the International Business
Machine (IBM) conversational program system (CPS) CPS PL/1 language. The
CPS PL/1 language can be regarded as a modified subset of the full set PL/1
language. :

Input to the program is:

|scafac | ttmr | ptmi | mixm | dmi | rmi | trim|

I, fm | splm l n I
| ttar | pra | wa | mixa | trial
| psi |

These input symbols are defined in the program symbol list that follows
the program listing. Input required is in terms of the English system of
units.
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1.
2.

3.
b,

6.
7.

9.
10.
11.

13.
14,
15,
16.

‘18.
19.
20.

21.

22,
23.
24,
25.
26.
27.
28.
29.
30.

31.

32.
33.
34,
35.

36.
37.

38.
39.
40.
41,

42,
43.

80 -

127:

115:

NOISE SCALING COMPUTER PROGRAM

DECLARE fm(24) DEC(6),fa(24) DEC(6),aspla(24) DEC(6),.
spIm(24) DEC(6);

DECLARE tabsc(12) DEC(6),tord(12) DEC(6),mspla(24) DE
C(6);

DECLARE scm(2L4) DEC(6),tc(24) DEC(6), sca(2h) DEC(G),
DECLARE gam ENTRY FXT KEY(wag);

GET LIST(scafac,ttmr,ptmi,mixm,dmi,rmi,trim);

GET LIST(fm,splm,n);

GET LIST(ttar,pra,wa,mixa,tria);

GET LIST(psti);

GET LIST(start);

dmf=dmi/12;

daf=dmf/scafac;

rmf=rmi/12;

rat=rmf/scafac;

prm=ptmi/psi;

cv,cvm,cva=,98;

ami=,785«*dmi»+2;

amf=ami/144;

CALL gam(mlxa,ttar,pra,gamaa,tjar);

CALL gam(mixm, ttmr,prm,gamam,timr);

vm=sqrt (64 . 4x(gamam/ (gamam~1))*53 3«ttmr+(1-1/prm=«((
gamam=-1)/gamam)));

vassqrt (64 . 4*(gamaa/(gamaa-1))*53, 3*ttar*(1 1/pra**((
gamaa=1)/gamaa)l));

rhom=psi*1kl/ (53 .3*ttmr)*prm*+((gamam=-1)/gamam);
rhoa=psi*1ul/ (53, 3*ttar)*pra**((gamaa 1)/zamaa);
wm=zrhom*amfrvmscv;

aa=wa/(cv*varrhoa);

- famecv* (wm/32.2)*vm;

fna=scv*(wa/32.2)*va;

sd=10*10g10(rhoa/rhom);

print=1;

ucme,62%vm;

DO i=1 TO n;
omegam=6,28+*fm(1);
abscm=omegam*(trim/24)/ucm;
DO j=1 TO 11;

IF abscm>=tabsc(j)&abscm<{atabsc(j+1l) THEN GO TO 1
15;

END ;
phirm= (abscm-tabsc(;))/(tabsc(J+1)+tabsc(J))*(tord(
j*l)=tord(j))+tord(j);
scm(I)=-10*10010(phirm);
tc(1)=scm(i)+sd;
fa(l)=fm(i)*(va/vm*(dmf/daf));
IF va<=2000 THEN aspla(id=spim(i)+scm(i
0(va/vm); ELSE aspla(l)=spIm(i)+sem(1)+
Oxlogl0(va)-80*logl0(vm);

END ;

uca=.62+*va;

[7, L
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Ly,
us.
u6.
L7,
L8.

L9,
50.

51.
52.

53.
S54.

55.

56.
57.
58.

59,
60,

- 61,

62.
63.

6.
65..

66.
67‘

68.
69.

70,
71.

72.

730

7“.
75.

76.
17.

78.
79.

119:.

140:

110:

117:

118:
tt

ts

125:
pr

133:
w

' 121:

mix

135:
cv

123:
dia

130:
area

1322
rho

" 126

gama

NOISE SCALING COMPUTER PROGRAM - Continued

DO i=1 TO n;
omegaa=6.28+fa(l);
absca=omegaar*{(tria/24)/uca;
DO j=1 TO 11;
IF absca)ntabsc(;)&absca(-tabsc(1+1) THFN GO T0O 1
40;
END ;
phlraa(absca-tabsc(J))/(tabsc(J+1)+tabsc(J))*(tord(
j+l)~tord(j))+tord(j);
. sca(l)=10*10gl0(phira); :
{F i<=n THEN mspla(i)=aspla(i)+sca(l); ELSE mspla=0

’
END ;
PUT IMAGE(prlnt)(llO),
I MAGE;
SONIC ENVIRONMENT SCALING PROGRAM
PUT LIST(1f(2));
PUT lMAGE(prlnt)(117),

© IMAGE;

MODEL AI1RCRAFT

PUT LIST(' ');

PUT IMAGE(ttmr,ttar)(118);

I MAGE; .
-------- o deg R

PUT |MAGE(ter tjar)(119);

IMAGE; .
........ .= deg R
PUT IMAGE(prm pra)(125);
I MAGE;
PUT IMAGE(wm,wa)(133);
IMAGE;
mm——— e ees- o= 1h/sec
PUT IMAGE(mixm,mixa)(121);
IMAGE“
P - m——— #f/#a
?UT lMAGE(cvm,cva)(lSS)

it ;

PUT INAGE(dmi daf)(123)
| MAGE;

----- : in ————- ft
PUT IMAGE(ami aa)(130);
| MAGE ;

----- sq In —m——=- sq ft
PUT lMAGE(rhom,rhoa)(lSZ)
I MAGE ; ‘

-------- g m——— 1b/sq ft

PUT lMAGE(gamam,zamaa)(lZG)
IMAGE
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NOISE SCAﬁING,COMPUTER.PROGRAM - Concluded

80. PUT IMAGE(vm,va)(122);
8l. 122: IMAGE; A
vel emmmml- eeee- .- ft/sec
82, PUT lMAGE(ucm,uca)(lBG),
83. 136 IMAGE;
conv ———— - [ e ft/sec
84, ' PUT IMAGE (rmi,raf)(124); '
85. 124 I MAGE;
dist  ==cem=, == in  —m--- o= ft
86. PUT IMAGE(fnm,fna)(lSh) '
87. 134 IMAGE;
FR  memmmm,= 0 eeee- .= 1bs
88. . PUT lMAGE(trlm tria)(138),
89. 138: IMAGE;
trdia -y - - In
90. PUT LIST(1f(2))
91. . PUT IMAGE(sd) (1 7);
92. 137 1MAGE;
Density Correction = ~--,-~ dB
93. _ PUT LIST(1F(2));
94 . PUT IMAGE(prlnt)(IIS)
95. 113: | MAGE ;
_ fm : splm scm tc fa
aspla ‘ sca L mspla
96. PUT IMAGE(print)(139);
97. 139: IMAGE; : .
(Hz) (dB) (dp) (dB) (Hz)
(dB) (dB) (dB) '
98. PUT LIST(' ")
99, DO i=1 TO n;
100. PUT IMAGE(fm(1),spim(t),scm(i),tc(i), fa(l),aspla(l)
' ,sca(i), mspla(l))(llb),
101. 114 . IMAGE;
- 102, END ;
103. . s=(;
104. . ‘ DO i=1 TO n;
105. s=10**(mspla(i)/10)+s;
106. END ;
107. oaspl=10*loglO(s),
108. PUT LIST(1f(1));
108. PUT IMAGE(oasp1)(120);
110. 120: - IMAGE;
. OASPL= ==-,~- dB
111. _ PUT LIST(1f(15));
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aa

absca

abscm

ami

aspla

cva,

cvm

daf

fa
fm
fna
fnm

gam

gamaa

gamam

COMPUTER PROGRAM VARIABLES

Aircraft engine fully expanded jet area

Abscissa of finite size correction curve
(Figure 9) for aircraft noise '

Abscissa of finite size correction curve
(Figure 9) for modeél noise

Area of model jet
Area of model jet
Aircraft noise overall sound pressuré level

Nozzle velocity coefficient of aircraft engine
nozzle

Nozzle velocity coefficient of model engine
nozzle

Diameter of aircraft engine nozzle exit

" Diameter of model nozzle exit

Diameter of model nozzle exit
Aircraft noise frequency (one-third octave)
Model noise frequency (one-third octave)

Ajrcraft engine jet thrust

‘Model jet thrust

Subroutine for computing values of ratio of
specific heat

Ratio of specific heat for aircraft engine fully

_ expanded jet

Ratio of épecific heat for model engine fully
expanded jet ‘

Do loop counter

bige

Units

ft/sec

ft

in.

Hz

"Hz

10

1b:
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mixa
mixm
mspla
n

omegag
omegam
phira

phirﬁv
pra
prm
print
psi.
rta
?tmi

raf

rmf
rhoa
rhom
rmi

5¢C8

8k

I}

COMPUTER PROGRAM VARIABLES - Continued
B
Do loop counter
Fuel/air mixture of aircraft jet
Fuel/air mixture of model jet
Model noise overall sound preséure level
Number of one-third octave bands

Aircraft noise one-third octave band circular
frequency

Model noise one-third octave band circular
noise

Transducer finite size correction for aircraft
noise

Aircraft engine nogzzle pressure ratio
Model nozzle pressure réﬁio

Dummy variable used to facilifate printout.
Atmospheric pressure

Total pressure of aircraft jet

Tofal pressure of model jet

Distance from aircraft engine nozzle exit to
transducer

Distance from model nozzle exit to transducer
Fully expanded aircraft jet density

Fully expanded model jet density

Distance from model ﬁozzle exit to transducer

Transducer finite size vorrection for aircraft
noise : '

Transducer finite size correction for model noise

Units
1b-fuel/lb-air
1b~-fuel/lb-air

daB
rad/sec
rad/sec

daB

dB

ft
slug/ft3
slu-g/ft3
in.

daB



scafac
scm

sd

spla
splm
start

tabsc
te
tjar
tjmr
ford

tria
trim

ttar
ttmr
uca
ucm

va

wa

COMPUTER PROGRAM VARIABLES - Concluded

Model scale factor

Transducer finite size corrections for model. noise

Density correction

Aircraft noise one~third octave band sound ' -
pressure levels :

Model noise  one-third octave band sound
pressure levels

Dummy variable used to initiate start of analysis

- and output

Abscissa values of Figure 9

Sum of finité size and density correcfions
Static fully expanded éircraft Jet temperature
Static fully expanaéd model jet temperature
Ordinate valués of Figure 9

Diameter of transducer sensiné element (aircraft
test)

Diameter of transducer sensing element (model
test)

- Total temperature of aircraft engine jet

Total temperature of model engine jet
Coﬁvection velocity of aircraft éngine Jjet
Convection velocity of model jet

Aircraft engine fully expanded jet velociﬁy
Model fully expanded jet velocity

Aircraft engine exhaust flow

Model engine exhaust flow

Units -

- dB

dB
dB

4B

aB

dB
deg R
deg R
in.
in.

deg R

‘ deg R

ft/seé
ft/sec
ft/sec
ft/sec
1b/sec

1b/sec

85



APPENDIX D

COMPUTER PROGRAM OUTPUT

Included in this appendix are the output data for:
® S-3A (Tables 8 through 10)

e 1-1011 (Table 11)

. V/STOL (Table 12)

e .SCAT 15-F (Tables 13 through 30)

The symbols used on the printout sheet correspoﬁd—to those given in

Appendix C. However for convenience the symbols for each column are defined
below. : B '

86

1. fm  ; .Model frequéncy

2. splm = Médei noise one—thifd'octave spl

3. sem = Transducer finite sizé correction for model noise

b, te = Suﬁ of finite size and density correction

5. fa = Aircraft noise frequency

6: aspia“ = Actual sonic environment one-third octave sfl'sAon
aircraft structure

T. scé = Transducer finite size coTredtion,for aircraft noise

8. mspla = Measured one-third octave spl for aircraft noise
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