MCR-75-17
Contract NAS5. 11996

Volume II
Final Report

April 1975

PROGRAM USERS' GUIDE
COMPUTER PROGRAM SYSTEM FOR DYNAMIC SIMULATION AND STABILITY ANALYSIS OF PASSIVE AND ACTIVELY CONTROLLED SPACECRAFT

Authors

Carl S. Bodley
A. Darrell Devers
A. Colton Park

Approved

MARTIN MARIETTA CORPORATION
P. O. Box 179

Denver, Colorado 80201

This report, prepared by the Dynamics and Loads Section, Martin Marietta Corporation, Denver Division, under Contract NAS5-11996, presents the results of a study whose purpose was to develop a computer program system for dynamic simulation and stability analysis of passive and actively controlled spacecraft. The study was performed from May 1973 to April 1975 and was administered by the National Aeronatics and Space Administration, Goddard Space Flight Center, Greenbelt, Maryland, under the direction of Mr. Joseph P. Young.

The report is published in four volumes:
Volume I - Theory
Volume II - Program Users' Guide
Volume III - Demonstration Problems
Volume IV - Program Listing

ACKNOWLEDGEMENTS

The authors wish to acknowledge the assistance provided by Goddard Space Flight Center personnel. Mr. Harold Frisch and Mr. James Donohue contributed many valuable technical comments and suggestions throughout the program. In particular, they layed out the basic approach which was to be used for data input, defined exactly what should be included in the transfer function and stability analysis portion of the program and defined 8 of the 11 demonstration problems. They provided the associated data which was used to verify both the nonlinear time response and linear transfer function and stability analysis portions of the program. Mr. Raymond Welch provided the subroutine used in the generation of root locus plots. Dr. William Case provided valuable advice on the interfacing with NASTRAN output and also he generated the demonstration problem utilized to validate the interface subroutine (NASFOR). During the very early program development stage, Df. James Mason offered significant advice on the need to compute internal forces at the interconnect points. Mr. Reginald Mitchell contributed invaluable advice on requirements for making the program compatible with the GSFC IBM $360 / 95$ computer system. In addition, he supplied the contractor with a 360 system compatible plot package, furnished the contractor a self authored subroutine to read NASTRAN output, and was responsible for running all of the eleven demonstration problems on the 360/95 computer. Finally; the authors wish to acknowledge the encouragement and efforts of Mr. Joseph P. Young, Technical Monitor, who made numerous valuable comments and suggestions throughout the study.

Figure

I.B-1 Simulation Nomenclature I-3
II.A-1 DISCOS Program Segmentation II-1
III.A-1 Chronology of Addressing User-Pak III-2
III.B-1 Subroutine TORQUE Flow Diagram III-4
IV.B-1 Program System DISCOS Data Stream Flow IV-3
IV.B-1 Logic Flow, Program NASFOR VI-11
Table
II.A-1 DISCOS Overlay Description II-2
VI.B-1 Description of NASFOR Subroutines VI-9

A theoretical development and associated digital computer program system for the dynamic simulation and stability analysis of passive and actively controlled spacecraft is presented. The dynamic system (spacecraft) is modeled as an assembly of rigid and/or flexible bodies not necessarily in a topological tree configuration. The computer program system may be used to investigate total system dynamic characteristics including interaction effects between rigid and/or flexible bodies, control systems, and a wide range of environmental loadings. Additionally, the program system may be used for design of attitude control systems and for evaluation of total dynamic system performance including time domain response and frequency domain stability analyses.

Volume I presents the theoretical developments including a description of the physical system, the equations of dynamic equilibrium, discussion of kinematics and system topology, a complete treatment of momentum wheel coupling, and a discussion of gravity gradient and environmental effects.

The development of synthesis and analysis techniques for the linearized system includes a discussion of the numerical linearization technique, procedures for definition of system transfer functions, and linear time domain response.

Volume II is a program users' guide and includes a description of the overall digital program code, individual subroutines and a description of required program input and generatec program output.

Volume III presents the results of selected demonstration problems that illustrate all program system capabilities.

Volume IV contains a listing of the digital code.

I. PROGRAM SYSTEM OVERVIEW

This volume is intended to provide the reader with sufficient understanding of program system DISCOS*and its capabilities so as to permit a user to employ the program as a basic tool to analyze the behavior of a wide range of dynamical problems. Specific emphasis will be on a simulation for multiply-interconnected spinning elastic bodies responding under the combined influences of external environments and either active or passive control.

A. INTRODUCTION

The simulation employs a state-space approach that was developed in detail in Volume I. The state-space formulation provides an attractive basis for simulation of nonlinear dynamical problems in a general sense as well as permitting linearization of the governing equations to provide an additional foundation with which to evaluate frequency domain and linearized time domain characteristics.

An attempt has been made to relieve the user from the requirement of having to communicate with the digital program via large amounts of bulk data input. Although the program has many options available, the program data stream has been organized to require only a minimal amount of basic input data for a particular simulation. The data requirements have been further consolidated in a manner that is quite definitive for the physical system being simulated. In summary, the user can quite easily relate to the particular elements of the program requirements and thus minimize setup time required to prepare data input for a given problem. In addition, a set of self-checking features has been included in an attempt to identify and check certain compatabilities that are necessary for a proper simulation of a physically realizable system.

In an overall sense, the digital program can be employed by the user to obtain

1. nonlinear time response,
2. interaction constraint forces,

* Dynamic Interaction Simulation of Controls and Structure

3. total system resonance properties,
4. frequency domain response and stability information,
5. linearized time response.

The program outputs consist of printed and plotted results depicting

1. dynamic model construction,
2. time domain response,
3. frequency domain characteristics.

The printed outputs are of a fixed form while the user controls the plotted information through the input data stream.
B. SIMULATION OVERVIEW AND NOMENCLATURE

This discussion identifies the basic nomenclature used to synthesize a typical assembly of interconnected bodies. The theoretical development, program users' manual, and demonstration problems make extensive reference to various terminologies that are clarified here. Figure I.B-l provides a visual display that illustrates many of the items being discussed and will be repeatedly referred to in the ensuing discussions.

The overall system "topology" is identified by the user via the input integer array ITOPOL that contains the necessary information describing which "hinges" interface which bodies. Each body contains a body reference point that is the origin of an orthogonal cartesian body axis system. This point need not coincide with the body center of mass.

Contiguous "bodies" are interfaced through a "hinge". We say interfaced in lieu of connected to emphasize the fact that the common "hinge" point between contiguous bodies may actually permit relative translational motion of the two bodies at the hinge. The degree of fixity at the hinge is identified by the user via the input integer array IHDATA. A typical body may contain "sensor" points that identify particular points where additional information is required to complete the desired simulation. A sensor point might sense on position or rate for the control system inputs, but could also represent a point on a body where certain other information is desired, such as a momentum wheel location or a point of force/torque application.

Figure \therefore :p-1 Simination ion-miature
1-3 and 1-6

The integer input array IFTSMW identifies the body, where a particular sensor point is located.

A body may also contain "momentum wheels". This special consideration accommodates a disk or rotating mass with a single relative rotational degree of freedom into the simulation without introducing another body. The momentum wheel capability is more efficient for the simulation of a single degree of freedom rotating mass than is constraining 5 of 6 rigid body degrees of freedom via constraint equations. All momentum wheels must have an associated sensor point. A wheel may either be active or constant speed; an active wheel has a variable spin rate and receives an input torque (generally via some sensor output relationship) and a shaft torque is applied to the wheel inducing a wheel angular acceleration. The array IMO identifies whether or not the wheel is active, and which axis is the spin axis. The reference axis for the wheel is the same as the sensor point axis system where the wheel is located. The array AMO identifies the wheel spin rates (initial rate only for the active wheel) and the wheel spin inertia about the spin axis.

The system state vector is arranged in a specific manner within the program and it is necessary for the user to be very familiar with this arrangement for a number of reasons. First, the user must know where certain variables are located so that he can couple the control law into the simulation, and secondly, the user must know the order of the state variables in order to interpret results. Figure I.B-l presents the state variable order consistent with the illustrative problem and other related information. The state variables shown do indeed represent a typical arrangement in that all of the various types of variables resulting from the multiple options available within the simulation are present. The order of the constraints (λ) is also noted. Note that the user introduces the control variables into the state vector but these variables (δ) will always appear after the betas (β). Furthermore, the user may also introduce auxiliary variables (plant sensor signals and control system outputs) for use in the linearized studies. These auxiliary variables should be placed (by the user) after the control variables (δ) and in the order: plant sensor signals (X_{SS}) followed by the control system outputs (B).
C. GENERAL USAGE INFORMATION

There are a number of guidelines that must be adhered to in setting up a particular simulation. Some were detailed previously and are concisely summarized here:

1. there must be at least two bodies; a single body problem is simulated by including a dummy body that is not connected to the body to be analyzed;
2. body no. l is always positioned relative to the inertial reference;
3. bodies are numbered from 1 to NB in an arbitrary order;
4. every body (except body 1) must have at least one hinge; body 1 must have at least two hinges;
5. hinges are numbered from 1 to NH in an arbitrary order but hinge no. l is, by definition, the hinge on body 1 between body land the inertial origin; hence, hinge no. l can only appear on body l;
6. there must be at least one sensor point for a given simulation;
7. sensor points are numbered from 1 to $N S$ in an arbitrary manner;
8. a typical flexible body requires mass and modal data that reflects a coordinate system that is consistent with the body axis reference system for that body, e.g., a modal coupling approach establishing modal properties for a given body would have to use the same reference body axis system;
9. for frequency domain studies, there can only be as many control output variables identified to introduce into the state equations as there are control system variables to begin with. Similarly, there can be no more sensor signal variables identified than plant variables which appear in the original independent state equations.
10. the user must make certain that the user supplied package has dimensions consistent with NHMAX for the arrays

SK(NSK, NHMAX), DK(NDK, NHMAX), and HNGT (NHT, NHMAX) where $\operatorname{NHMAX}=$ dimensioned maximum number of hinges,

NSK $=3$ or 6 depending upon nature of hinge freedom,

NDK $=3$ or 6 depending upon nature of hinge freedom,

NHT $=3$ or 6 depending upon nature of hinge freedom,
and if rotation only, then $N S K=N D K=N H T=3$, if rotation and translation, then $\mathrm{NSK}=\mathrm{NDK}=\mathrm{NHT}=6$;
11. the inertial properties of all the momentum wheels in a particular body must be included in that body's inertia description (whether rigid or flexible) since inertial coupling is used.

The digital code has been segmented into an executive overlay which governs the succeeding program flow and four supporting primary overlays, each with a separate and dedicated purpose. The basic program flow is depicted in Figure II.A-1.

Figure II.A-1. DISCOS Program Segmentation

Table II.A-1 summarizes the intended purpose of the fundamental components in the program structure.

Table II.A-1 DISCOS Overlay Description

Primary Overlays	
Segment Name	Purpose
MAIN	Executive program control
DYNS 10	Data input
DYNS 20	Simulation of problem, linearization of state cq's, nonlinear time response
DYNS30	Plot results from nonlinear or linearized time response
DYNS40	Frequency domain analysis, linearized time response, frequency domain displays, (Bode, Nichols, Nyquist, Root Locus)
Secondary Overlays (called from DYNS 10)	
MSMODL	Flexible body data inputs for lumped mass representation
MSMODC	Flexible body data inputs for consistent mass representation

The executive overlay (MAIN) initiates the simulation by reading job identification information and then passes control to the first primary overlay (DNYS10) which represents the basic data input segment. This overlay may be viewed as the program segment which builds the model from the input data. A series of topology checks are made as the data is loaded within this overlay to better assure proper modeling of the physical system. This overlay utilizes two additional secondary overlays for processing certain types of inertial and modal data.

After overlay DYNS 10 has structured the basic data for simulation, control is returned to the executive overlay which in turn passes control on to the second overlay DYNS 20 . This overlay performs the actual problem mechanization and develops the nonlinear formulation which is the foundation for the entire dynamic simulation program.

During a given simulation, the executive overlay always calls both the first and second primary overlays (DYNS10 and DYNS20) but, depending upon certain input control parameters, may or may not call the time history plot overlay DYNS30 or the linearized system analysis overlay DYNS40.

Simulation of a particular problem has its basis within the algorithms contained in the program subroutine YDøT which establishes the canonical first-order differential equations that govern the dynamical motion. This routine in turn addresses another subprogram TøRQUE which in turn activates the user supplied modules that relate to the particular simulation being considered. These modules are discussed in further detail in a following section.

III. DELINEATION OF USER-SUPPLIED MODULES

The program has been written under the assumption that certain user-supplied modules are available to complete a given problem. In this manner, the user has considerable latitude with regard to how certain particulars related to a given simulation are to be handled. Control law specification, external torque inputs, and identification of plant sensor signals and control system outputs are examples of items handled by the user. With this concept in mind, several subprograms have been placed under user control but with certain restrictions and guidelines to which the user must adher. Later comments will identify certain requirements associated with these user supplied modules.
\therefore LOGIC FLOW

It is worthwhile to consider a flow chart segment of the program (Figure III.A-1) and its chronology within the solution process. The ordur which the user supplied modules are called is indicated by the integers 1 through 7 (for subroutines) and 8 and 9 for functions.

Figure III.A-1 Chronology of Addressing User-Pak

III-2

The separate uscr supplied subprograms each have specific inLended purposes and have been coded to fulfill these goals. The user can extend the scope of any of these modules with his own code, but there are certain items that these routines must perform. In any case, the potential user should be very familiar with many of the details of the user supplied package, and it is with this fact in mind that a separate discussion will now be devoted to , c, of the user supplied modules. Reference will be made to some of the programming logic contained in the DISCOS subroutine TØRQUE, and so this logic has been put into flow chart form as Figure III.B-1. Also, for reference purposes, the seven user-pak subroutines and two subfunctions (ADT, ADDT) are included in Appendix B corresponding to typical situations.

Creates external torques/forces

Note: \{G\} is force/torque vector \sim RHS of equation of motion

Adds momentum wheel shaft torques to $\{G\}$

Adds hinge spring tarques to $\{G\}$ and sums spring energy to potential energy

Gets $\Delta \xi$ due to thermal environment

Figure III.B-1 Subroutine TøRQUE FLow Diagram

This is the first of the user-supplied routines and is always called by DYNS20. The primary purpose of C \emptyset NTRL is to establish the time derivatives of the control system variables. These variables may be required by some of the other user routincs that are activated after C \varnothing NTRL has been addressed. The routine must also establish the number of plant sensor signals (NXSS) and the number of control system outputs (NBTQ) which are transmitted through common block (/LDSIZE/) to the remainder of the program. For transfer function studies, the user is also required to identify whether or not transfer function polynominals are to be utilized. This is accomplished in a data statement (in CøNTRL) with the variable NPLY which is the number of polynominal ratio pairs (numerator and denominator) to be utilized. The first call to C \emptyset NTRL will read in the polynominal coefficients (for NPLY $\neq 0$).

Subroutine CONTRL concains a good deal of information pertaining to the simulation by virtue of its common blocks. Section C identifics the constiuents of the common blocks contained in this and other modules. Additional common blocks can be established by the program user to transfer information between the separate user-pak modules.

2. EXT \varnothing R

This subroutine establishes the system external torques. Typically, chis module can be utilized to accommodate such items as RCS (Reaction Control System) forces and torques, aerodynamics, and/or solar wind. The user can also extend this routinc to include the addition of other state dependent corques. In summary, EXI \emptyset, can be used as a "catch all" for inclusion of any additional forces and torques acting on the system. A single call to EXTØR from subroutine TøRQUE establishes an integer array (ISNP) whose elements identify which sensor points are to be used for force/torque inputs. A vector containing torque and force components (ordered: T_{x}, T_{y}, T_{z}, F_{x}, F_{y}, F_{z}) is then established for each of the force/torque sensor points and placed as a column into the array TEX. The vector of discretc foreos and torques (referred to the local sensor-axis system) is returned to subroutine TøRQUE from EXTOR. These forces and torques are then Lransformed and added to the cotal system exturnal force/torque array $\{G\}$. The user can bypass EXTめR related calculations by seting the variable NTEX equal to zero.
3.
4.

This routine establishes the shaft torque for each of the nonconstant speed monentum wheels. Zeros are inserted for the torque contributions to the external torque vector for a constant speed wheel.

KHINGE
This routine sets up hinge spring and dashpot torques/forces. It also accounts for potential energy contributions due to hinge spring deflections. The user must identify where spring rates and dashpot constants are to be found. This can easily be handled by a user specified equivalence statement within subroutine KHINGE to locate the leading stiffness and damping elements within the data block identified as CNTDTA. Note: within subroutine KHNGE (see subroutine listing, Appendix B) there are statements of the following form
dimension sk (3, NHMAX), DK(3, NHMAX), HNGT (3, NHMAX)
-
\cdot
D0 $10 \mathrm{I}=1,3$
.

DO $15 \mathrm{I}=1,3$
.
DO $20 \mathrm{I}=1,3$
where the integer 3 reflects the fact that consideration has been restricted to admitting only rotational springs at each hinge. If the user wants to also include springs/dashpots in relative translation at the hinge points, the three (3) in the statements above must be changed to a six (6), and appropriate spring rates and/or dashpots included within the data input array CNIDTA. Further, the equivalence statement locating the first spring rate (SK(1)) and dashpot constant (DK(1)) reflect an order that is consistent with the hinge order; that is the first three elements in CNTDTA starting with the location corresponding to the leading element of SK represents in order $\mathrm{K}_{\theta_{1}}$, $\mathrm{K}_{\theta_{2}}, \mathrm{~K}_{\theta_{3}}$ for the first hinge. A similar relationship exists
for the array DK.
Example: In KHINGE note that
EQUIVALENCE (CNTDTA(K), SK(1)), (CNTDTA (L), DK(1))
and the array CNTDTA would by

where the order of $\theta_{1}, 2,3$ is consistent with the Euler rotation type (1-12) for the hinge " q " triad.

The remainder of KHINGE is concerned with the proper placement of the spring/dashpot forces and torques onto the composite NB bodies (generalization of forces and torques) and should remain unchanged.

The user can modify the referenced torques and forces immediately after the ($\mathrm{D} \neq 10 \mathrm{~L}=1, \mathrm{NH}$) loop if he desires, but care must be taken to assure that the proper force or torque is correctly applied to accomplish the desired result. Several of the demonstration problems (refer to Volume III) employ this process to apply control system outputs.
5. GMISC

This routine is reserved to implement torque/force contributions from thermal gradient effects. The entire state vector, along with component position and attitude information, is available via transfer through labeled common arrays. Section C provides more insight into the information contained in these common blocks.

EQADD

This routine establishes additional equations for use in the linearized time domain analyses. It must identify the number
of additional equations introduced via the variable NAUX (number of auxiliary equacions). These equations relate plant scnsor signals, $X_{s s}^{i}$ and control system output forces/torques, B^{i}, to the system state and in the specified order. The additional variables must be placed in the state vector as the last NAUX state variables and in the order, $X_{S s}^{i}$, then B^{i} and they become an integral part of system transfer function evaluations.
8. ADT (Subfunction)

This function is used in conjunction with ADDT to implement prescribed kinematical motion in the hinge coordinates. With reference to Figure $I . B-1$, the array IHDATA (I, J), $I>1$, may have 2 as an entry indicating that the Jth hinge has velocity and acceleration prescribed in that coordinate. The argument of this subfunction is: ADT(IC,T), with IC=6* (J-I) $+(I-1)$ corresponding to IHDATA $(I, J)=2$. The integer $I C$ and the time T are passed into $A D T$ via argument by the calling subroutine so that the velocity ($\dot{\alpha}$) may be established for the proper hinge coordinate as a function of time.

For a given rheonomic constraint, we note that both $\dot{\alpha}$ and $\ddot{\alpha}$ must be set by subfunction. Now, it is conceivable that the user knows $\ddot{\alpha}$ as the exact mathematical time derivative of $\dot{\alpha}$. It would seem that the natural thing to do would be to create ADT and ADDT subfunctions to return consistent $\dot{\alpha}$ and $\ddot{\alpha}$ respectively. This is not the best thing to do, however, because of numerical integration characteristics. The numerical integration of $\{\dot{U}\}$ reflects the use of $\ddot{\alpha}$. The resulting $\{U\}$ reflects a numerically integrated $\dot{\alpha}$ which cannot be consistent with a value obtained any way other than numerical integration. The consequences of this are seen as slight errors in motion response, but also, there is a large spurious change in system momenta.

The best way to effect rheonomic constraints is to use values of $\dot{\alpha}$ obtained from numerically integrating $\ddot{\alpha}$. This can be easily done by using additional differential equations that are accommodated in the state vector as additional "control variables" or $\{\delta\}$. Thus, after all of the actual control variable rates are established (in subroutine C $\emptyset N T R L$), one need only code additional expressions to set $\dot{\delta}$ (additional) $=\ddot{\alpha}$ (desired). The statements within subfunction $A D T$ merely return $A D T=Y(K)$; the state vector Y is available in labeled common./VECTOR/, and K corresponds to the location in Y where the $\delta=\dot{\alpha}$ control variable resides. Of course, IC must be tested such that the appropriate $\dot{\alpha}=\delta$ is returned.

9. ADDI (Subfunction)

This function is discussed with regard to its relationship to ADT in Section (8) above. This function has arguments: ADDT (IC,T), exactly the same as ADT, and returns values of $\ddot{\alpha}$ for appropriate IC and T consistent with the $\dot{\gamma}$ returned by ADT. Note in Figure III.A-1, the chronology is such that subroutine $C \emptyset N T R L$ is addressed prior to function $A D D T$. This is so that $C \emptyset N T R L$ can establish a value of $\dot{\delta}$ (additional) $=\ddot{\alpha}$ (desired) to put in the state vector time derivative (YDT, also available in labeled common/VICTOR/). Now, for the appropriate time T and IC, it is only necessary to set $A D D T=Y D T(K)$, where again K corresponds to the location in Y where the $\delta=\dot{\alpha}$ auxiliary control variable resides.
C. DISCUSSION OF SELECTED COMMON BLOCK INFORMATION

The program user will very often have a need to access certain information that is calculated and stored within the program in order to compute specific variables required for the user supplied modules. Such information about the simulation is stored in multi-dimensional array form within labeled common blocks. These data provide a good supplement to the state variable content which has becn previously discussed in that the user can extract both total and relative positions and rates for any component of the simulated dynamical system once he has a firm understanding of where ccrtain data reside within the program. The following subsections will discuss selected common block arrays to better familiarize the potential user with their content.

1. Common block/BHBSRD/ contains three separate groups of information which the user may need to access. This information is conciscly summarized in double and/or triple subscripted arrays as

BS ($6,6+\mathrm{NMDBOD}, \mathrm{NSPMAX})$
ROL (3,3 , NBMAX)
DOL (3, NBMAX)
where the following items are noted -
NMDBOD = maximum dimensioned number of modes per body,
NBMAX = maximum dimensioned number of bodies,
NSPMAX = maximum dimensioned number of sensor points.
The array, BS(i,j,k), contains the kinematical coefficients for all of the "sensor" points. The rows (subscript $i=1,2 \ldots 6$) of the array refer to (in order: $\omega_{x}, \omega_{y}, \omega_{z}, u, v, w$) the components of absolute angular and translational velocity (sensor referenced) at sensor point k. The columns of the array (subscript j) refer to the $j=1,2, \ldots 6+$ no. of elastic modes on body containing sensor point k. Thus, in general, if we want to know the projection (the ith velocity component) onto the triad located at sensor point k, the following expression is noted
$V \in I_{i}=B S\left(i, j_{1}, \ldots, j_{L}, k\right) \cdot \tilde{U}^{j}$.

The array, ROL(i,j,k) contains the rotation transformations relating the body axis systems to the inertial reference. The elements of the array are the direction cosines between the body axes, \hat{e}_{k}, and the fixed inertial system, \hat{e}_{o}. Subscript k denotes the body number.

The array DOL(i,k) contains the three vector components, (X, $Y, Z)$, from the inertial reference to the body axis system, \hat{e}_{k}, for each body.
2. Common block /SPECIF/ contains information which the user may require. These arrays are

```
BETAH(6,NHMAX)
BETAHD (6,NHMAX)
RS(3,3,2*(NSPMAX))
DS (3,2*(NSPMAX))
where the following items are noted -
NHMAX = maximum dimensioned number of hinges,
NSPMAX = maximum dimensioned number of sensor points.
The arrays BETAH(i,j) and BETAHD(i,j) contain the hinge BETA's
and rates respectively (for hinge j). The order (i subscript)
is given as
\(\left[\begin{array}{l}\dot{\theta}_{1} \\ \dot{\theta}_{2} \\ \dot{\theta}_{3} \\ \dot{j}_{1} \\ \dot{\Delta}_{2} \\ \dot{j}_{3}\end{array}\right]\)
```

where $\dot{\theta}_{i}$ is the ith Euler angle rate consistent with ITYPE for hinge j and $\dot{\Delta}_{i}$ is the ith velocity component of point q relative to point p in the p frame for hinge j.

The array $R S(i, j, k)$ contains the rotation transformations (direction cosines) between the sensor point axis system and the body axis system (body on which sensor is located). Two sets of transformations are identified for a given sensor point. The first represents misalignment of the two triads without elastic deformation and the second includes the elastic deformation. The ordering (subscript k) proceeds as follows: the ℓ th sensor rotation (without elastic deformation) is located at $k=2 \pi \ell-1$. The total rotation transformation for the l th sensor is located at $k=2 \% \ell$. For a rigid body, these two transformations are identical.

The array $D S(i, k)$ contains the three components of the vector from the body axis system to the body sensor points (in the body axis system). Here again, there are two sets of vectors (rigid body and rigid body + elastic) for each sensor point. The first is for rigid body and the second includes the elastic deformation. The addressing algorithm is the same as for RS(i,j,k).
IV. PROGRAM INPUTS

The dynamic simulation program utilizes some basic data input subroutines in an attempt to standardize a large amount of the bulk data input. Additional formatted inputs have been used where it is more meaningful (and more efficient) to do so. As will be noted in the following section, there is a large amount of data input via subroutines READ and READIM. Therefore, it is useful to familiarize the reader with these two routines prior to describing overall program data input requirements.
A. DISCUSSION OF SUBROUTINES READ AND READIM

These two subprograms are structured to read matrix arrays in floating point (real) notation (subroutine READ) or fixed point (integer) notation (subroutine READIM). A thorough discussion of the routines and their supporting subroutines is contained in Appendix A. The following discussion gives a cursory overview of their usage.

The routines are activated by a FORTRAN call of the form:
CALL READ (A, NR, NC, KR, KC) or
CALL READIM (IA, NR, NC, KR, KC)
where the arguments in the call statement are
$A,(I A)=f l o a t i n g$ (fixed) matrix array of size NR by NC
NR $\quad=$ number of rows in array
NC $\quad=$ number of columns in array
$\mathrm{KR} \quad=$ row dimension of array in calling program
$\mathrm{KC} \quad=$ column dimension of array in calling program
A call to either of these input routines requires that the data be in the following format:
1.

Subroutine READ
First card - matrix name, NR, NC with format (A6,I4,I5)
Middle cards - data with format (2I5, 4D17.8)
first 15 is row number
second 15 is column number of leading D17.8 field next 4D17.8 are elements of the array

Last card - ten zeros in columns 1 through 10
2. Subroutine READIM

First card - matrix name, NR, NC with format (A6,I4,I5)
Middle cards - data with format (2I5, 14I5)
first 15 is row number
second 15 is column number of leading 15 field next 14I5 are elements of the array

Last card - ten zeros in columns 1 through 10
B. INPUT DATA STREAM

This section presents the program system input data stream together with the data input control logic. The approach taken herein is to first introduce an overview of the data inputs and program control logic in the form of a flow diagram (Figure IV.B-1) and to then identify the details in much the same way as the FORTRAN code accepts the data inputs. This method of presentation has been chosen as it most closely relates to the actual processing of the user inputs for a given simulation. In addition, the user can follow the program control or switching logic to determine just what data are required to complete a particular simulation.

Figure IV. B-1
Program System DISCOS Data Stream Flow (Sheet 1 of 9)

Figure IV.B-1
Prozram Sjstem DISCOS Data Strean Flow (Sheet 2 of 9)

IV-4

$F i_{i j} u^{\top} e$ IV. $\overline{B-1}$
Progrun DISGOS Juia Strexn Flow (Sineet 3 of 9)
IV-5

Figure IV.B-1
Program System DISCOS Data Stream Flow (Sheet 7 of 9)

Figure IV.B-I
Program System DISCOS Data Stream Elow (Sheet 8 of 9)


```
C
C
r
C
C
r.***** DISC,CS FRCT,RAM OATA STPEAM *****
C
r
r
C
```



```
C*
C* NAIN MONGQAM
r*
r
C
r. NTT = INFUT TAPE NUFPEQ
C
C---------------------- IS FEASINTC FROGRAM
r
r
r.-----999 CALl cTAET
\Gamma
C----------MALL COMENT
r
C----=----MALL TYNSIO
r
r---------CALL \GammaVNSここ
C
Cr IFLAEF= LINEAFITATTCA FLAG= TFCATA(3)
C. A.PLCT = PLCT CCNTENL FLAC, = IDCATA(2)
r
C.--------IF IIFLNER.EC. 11 CALL NYACLJ
\Gamma
C--------JF (NCPLCT .CT. E) CALL OYAS?S
C
r. rOTO OOQ
C
r. =ñ
```

3711 ソ317adnS a3Sn aヨ1UจOロHJ $22=237111$$\sim$
0
 j
Jj
 3
 $」$3
 j
 J
J
 j

 SI TOVA IVNATIMO

LT－AI

ON3
 J
 Nallミこ

OI TOHL T SNAT700

9ロ7」 ju＊a Mジ＝9Hjal J

IV-19

ITYOE FERMUTATIGN OFCEQ	
1	$(1,2,3)$
2	$(1,2,1)$
3	$(1,3,1)$
4	$(1,3,2)$
5	$(2,3,1)$
7	$(2,3,2)$
8	$(2,1,3)$
$1:$	$(3,1,2)$
$1:$	$(3,1,3)$
12	$(2,2,3)$

```
    NCTF -- NUMZFR GF DETA STATE VADTAELES COMFUTEN FRCN
    IMTATA AS SUM OF NUMREO CF TERCS + SUN DF
    NUMBEO OF TWOS IN ROWS 2 THRU }
    ALMBER DF CCNSTRAINTE CCYFUTET FPCM
    IHMATA AS SUM CF NUMOED CF RAES + SUM RF
    NUMDER OF THCN IN RCHS 2 THEU'
cear (eftak, 6, NH, f, NHMAX)
    MATRIX SITE 6 OY NH TC DEFTNE INITIAL YALUES
    CF DETA WHICH CRTEAT TWC ONDIES ASSCRIATEE
    WITH EACH HINGE
    fCR THE JTH hinge -
    DETAH(1,J) = THETA 1 FCTATICA
    RETAH(E,J) = THETA E ROTATIOA
    aETAH(3,J) = THETA 3 ROTATION
    RETAM(4,J) = x teanslatica
    3ETAH(E,J) = Y TPAASIATICA
    QETAL(E,J) = z TFANSLATICN
```

$\stackrel{5}{5}$
r---------CALL
C.
r
C
C
r
r


```
r
r
C
r
C---------READIM (TFTATA, 1, 3, 1, ?)
    VERTCF STZE 1 BY 3 CONTAINING INTFRER
    CCATROI RATA
    IOOATAIII= DRTNT CCNTOOL FOO TIME FESORNCE - POINT
    EVERY IDNATA(1) MULTIPLEC CF \capFLTAT
    IFCATA(Z)= FLOT CCNTFOL FCR TIME RFSFCNSE - SAVE
    EVERY TPNATARZI MURTIPLES CF RFLTAT
    TFOATA\3)= S PERFCDN NOMLINEAR TTME RESPRNSE
        = 1 PERFCCY LINEAC TIME CO FFEOUENCY
                        FFSRCNSE
GEAO (CAIOTA, I. NCNRAR, 1, KCORNTI
    VECTCF SIZE 1 RY NRNPAP FCO CCATDCL SYCTEM VARIADLES
        ANO USFR SUPPLIFO VARIAOLFS
    THIC TS A CATCH-ALL VECTOF FOF UCEF DAK RATA
    INFCENATICN IS PUT INTC CCMMCN ICCNTPL/ ANT IS
    IRENTIFIER QY USEO SUPDLIEN ENUTVAIENCS MAE
        IA USEF cAV
        FICST NMELTA ELENEATS MUST CONTAIN INITIAL VALUES
        FCR PELTA VARIARLES IN STATE VECTOR
        AONITYCNAL SFACE TS AVATLARLE TO THE LSEP
            REAN (WV, 1, 4, 1, 5)
        VECT\capR SITE 1 BY & FCP GRAVITY GRADIENT DATA
        WV(1) = PROJECTICN CF GYAVITY VECTOR CA X INERTIAL AXIS
        WV(2) = PROJERTION CF GRAVITY VECTOR CA Y TNERTIAL AXIS
        HV(3) = FOOJECTION CF GRAVITY VECTOR CN T INERTIAL AXTS
        WV(4) = RAOILS VECTCR FQCM GRAVITY SCUECE TO GFNEQAL
        \forallICINITY OF BODY CLUSTER
        NCTE- IF(WV(1)**? & WV(2)**2 +WV(3)**2)
        ER O, WV(4) IS IGNCRER.
        NF 3, WV(4) MUST RE GT 1
        UNITS OF ACCELERATION
```


r.
r.
r
C

-
?. VECTOFSITF 1 QY 4
r r. $V(i)=M \Delta C S$ CF ROCY
$\begin{aligned} C . & V(1)=M A S C F \text { ROMY ECIAT TC DODY CRE OCOY TOIADI }\end{aligned}$
C VI3) $=Y$ (ROQY REF POINT TC BRCY CGO EROY TPIAN)
$r_{1} \quad V(4)=7$ (nORY PEF FCINT Tח ACEY CG, ECOY TOIAN)
C
r

Γ_{1} NHQ = NUWREN CF HTNGES CN EODY N EXCLUSIVE CF HINGE 1, DCDY 1
r
r. Or $12 I=1, A H^{D}$
r.
r

NCH $=$ HINGE NUMDEQ
ITYEE = EULEF FOTAYION TYPE TO ORIENT FINGE
C
5
-


```
C
C
C
C
```



```
C*
T. SUPFOUTINF. MSMOOL - INFUT FOR FLEXTPLE FCOV, LUMPEO WASS MATOYX
C
```



```
r
C
C--\infty-0----r.ALL READ (A, NJ, 1, KJCTNT, KMCC=)
C
C MATPIX SIZE AJ OY 1 WHERE NJ = NUMRER OF JCTNTS
C ca ecty N
C FCR THF ITH JCINT -
C
C
r
r,------*--rALL CEAO (A, NJ, 6, KJCTAT, KYOCE)
MATGIX SIZE NJ RYE
FCD THE ITH JCTAT -
A(I,1)= 3OINT INEGTTA, JXX
A(Y,ह) = JOIAT INEFYIA, JYY
A(I,3)=JOINT INEFTIA. Jフ7
A(T,4) = J\cap[AT INEETTA, JXY
A(I,5)= JOIAT TNEFTIA, JX7
\Delta(I,G)=J\capIAT INFETIA, JYZ
O On 5k=1,2
r
C
F---\infty-----CALL QEAD (A,NJ, 3, KJOTAT, KMOCE)
                    MATRIX SITE NJ QY Z
                    FCG THE ITH JCINT.
K=1 ATT,II = JCTNT STATTC NASS NCMENT. SX
                        A(I,Z) = JCINT STATIC MASS MCMENT, EY
                                AI,3)= JCTNT STATIC MASC MCMENT, SZ
                        v=2 A(I,I) = X (OONY FEF DCINT TC JCINT, BCOY TOIAO)
                        A(I,Z)=Y (BOחY FEF OOINT TO JOINT, QnחV TETANS
                        A(I, ?) = Z (EOCY GEF FCTNT IR JOINT, ECNY TRIAN)
                        5 CCNTINUE
```

C
r
C
?
r
c no 10 k=1,6
C
r
C--------CALL EEAC (A, NJ, NE, KJDINT, KMCDF)
mATQTX STTE MJ by AE hHEPE NE = NUMPER CF flastic
Mrres fetaINED FCR DONY N
FOR THE ITH JOINT -
K=1 A(I,J) = X MISPLACENENT AT JCIAT, wRCE J
K=2 API,JI = Y חISPLACEMENT AT JCIAT, MCRE J
k=3 A(I,J) = Z OISPLACFMENT AT JCINT, MCRF J
k=4 A(I,J) = THETA x POTATICN AT JCTNT, MCDE J
k=5 A(I,J) = THETA Y ROTATICN AT JOIAT, MCOE. J
K=G. A(I,J) = THETA? FCTATICN AT JCTAT, MCCE J
13 CONTINUE
On 20 k=1,z
C
C,--------CALL fEAD (A, NE, NE, KJOTAT, kNCDE)
C
C METGIX SIZE NE BY NE
r. K=1 A = MODAL STIFFNESS
C. K=2 A = mOCAL CAMPINr.
CO
C
C,--.---.--DEA\cap(NIT,FOFMAT = BOIC.?) (A(J),J=1,NE)
C
F
VEftGR OF INITIAL MCDAL DEFLECTICN CCCROINATES
C--.------REAN(NIT,FCRMAT = 8DID.3) (A(J),J=1,NE)
C
C VECTCE OF INITIAL MONAL VELOCIYY r.COROINATES
C
C
C

```
```

:
NCTE -- fCLLOWING EULER AafilES mea SurEC
IN UNDEFODMED CONFIGURATIOA
NHG = NUMRER CF HINGES CN QODY N - EXCLUSIVE CF HINGE 1, ROOY \&
ON 15! L=1,AHE
---------FEAO(AIT,FCFPAT = 315) A\capH, ITYPE, JCTNT
NOH = HINGE NUMRER
ITYFF = EULEF ROTATICN TYFE TO ORIENT HINGF
TRIAC HRT DOOY TRIAO
JCINT = JCYNT NUMRED RCRRESOCNCING TC HINGE PCTNT
PEAO(NIT,FCRPAT = 3010.3) (HV(J),J=1,3)
EULEG ANf,LES TO CPIENT HTNGE TRIAD - PERMIITATTCN
DFEEF rEFINEO EY ITYPE
HV(1) = THETA 1 (FIRST POTATION)
WV(2) = THETA 2 (SECND RCTATICN)
WV(3) = THETA 3 [THIRO ROTATION)
150 CCNTINUF

```
```

ASQ = NUMBFR OF SENSOR FOIATS CN DCOY N

```
ASQ = NUMBFR OF SENSOR FOIATS CN DCOY N
IF PNSQ .EQ. OI PETUPN
nn 1fg L=1,NSO
PEAD(NIT,FCRMAT = 315) NOS, ITYPE, JCIAT
    NCS = SENSCO POTNT NUYPEE
    ITYPE = EULEF ROTATICN TYFE TO CRIENT SFNSCR POINT
        TOIAC WRT PCOY TRIAD
    JCINT = JCINT NUMBER CORRESPCNOTNE TC SENSCR POINT
```

```
C
C
C
r
C
C-0-0-----FEAO(NIT,FCCMAT = 3[10.3) (HV(J),J=1,3)
```

r
C C r r C C c C 160 RCNTINUE
r.

```
EULFR ANGLES TO COIENT SEASCQ PCINT TRTAD - PERMUTATIO
OGCER DEFINEO QY TTYFE
HV(1) = THETA 1 (FIEST DOTATION)
HV(2) = TMETA 2 (SECNO ROTATICN)
WV(3) = THETA 3 (THIRD ROTATION)
```



```
r
r
C
r
\Gamma
C----=---CALL GEACIN (JV, 1, ANCCT, 1, KAD)
C. VECTOF SIZF 1 RY NWGOT = NUMPEE CF EICIO ZONY NONES *
r. NUMAED OF ELAETYC MONES
```



```
M MONAL MATQIX WILL APDEAR TN
                                    RFVISET MODE MATEIX
    JNC FT J OEPLARE COLUMN
    INCER Q CFLETE CCLUNN
    INCLT D REDLACE CCLUMN, CHANPE STTNE
C
r---------rNLL DEAE (A,NDA,NCA,KAD,KAR)
    WAT&IX STTE E*NY OY G*NX CRNTATNS COCNCTSTENT
    NASG FEPEESEATATION
    OCH-COLUNA CONEOINATE CROER NUST BE CCASTETENT
    WTTH THE CEGFEE CF FEFEDOM TADLE, JNOF
                                OFAD (A, NOA, NMCOT, KAD, KAO)
    YATEIY CITE E*NX RY NMCIT CONTAINC MPOAL CEEINTTION
    THF CCLUMNE (YONE (RMFR) WILL QF OFOOREQED QY
    THE TAFIT UOCTCE JV
    IF IINIAK.EC. : .ANO. TCIAR.EN.E GC IC I1
C--.------rALL EEAC (rN2, i, NMCOT, 1, KARI
    VFCTOF SIZF 1 EV NNCTT CRATAINTNF SCLAOES OF NATURAL
    FRCCUEACIFS
    GNZIJI = SRUARE OF JTH NATUEAL FOECUEARY CROOESORNOINS
    TC STH INCIIT NCDE SHAPE
    11 rCNTINUE
```

```
r
C
r.
C. IF (IFRZN EG. O) GC TO 5
C
C
C--.-----FEAD(NIT,FCFNAT = IE) JTYFCL
C
C. JTYPRL = REFEDFNCE JOTNT NUMDER WHOSE GEONETOIC
                                    FGSITICA CCODCINATES WILL PE UCEN TO
                                    ESTAOLISH FISID CODY MOCAL WATFIX
C
C--------FEAO(NIT,FORNAT = 301i.3) (OM)(J),J=1,3)
C
C
C
r
C
r
C
C 5 CONTINUE
c
C IF (IEIAK.EC. 1) TCC TO EC
r
C---.-.---CALL PEAN (A, NRA, ACA, KAG, KAR)
    STIFFA=SS MATRIX -- SEE NCTE RELOW
50 conttaue
    IF IIDIAD .EO. 1) GC TC 6C
c
C---.-.---CALL FEAD (A, NGA, NCA, KAR, KAR)
C
c
G
c
C
F
C
r
C--------FEAD(NIT,F(FNAT = 9[10.3) (OM2(J),J=1,NE)
VECTOR SITE 1 OY NE = NUMDER OF ELASTIC MCDES
RETAIAEg VIA INPUT JV SELECTION VECTCR
CMZ(J) = MOQAL DAMFIN, QATTO FCO JTH ELASTIC MCDE
    6 1 ~ C O N T T N U E ~
VECTOF GCMNOAENTS FEFE=EO TO OCDY TRIAC
r
C
C
                                    dAMPING Matrix =- see note qel ch
    Gr tn EL
        6J CCNTINUE
    IV-34
```


NCS = SENSOR POIAT NUMREE
ITYPE = EULEK RCTATION TYFE TO ORIENT SENSCR POINT
TRIAD WRT DODY TRIAD
JCINT = JCINT NUMRER CORRESPCNOING TC SENSCR POINT

	－			！
	\cdots			1
πn	\bigcirc			\％
\geq	0			7
	z			D
\bar{C}_{0}	\pm			2
$>$	z			7
	c			\cdots
	m	$\bigcirc 00$	311	\rightarrow
			${ }_{0}^{8}$	$\stackrel{\square}{7}$
		nNM	mm	π
		いへッ	0π	3
		－ーー		\％
		1111	$\cdots 2$	\pm
			\％	
			3 m	11
		min	mu	W
		$\vec{D} \vec{D} \vec{D}$	$0 \rightarrow$	\cdots
			03	\cdots
		Wべ	\checkmark	－
		－－	43	－
		$\underline{-1} 0$	\rightarrow－	
		エ．n	く	－
		$\rightarrow 8$	－	3
		つつ		\sim
			\cdots	2
		300	7	
		$\overrightarrow{-1} \vec{\square}$	Ω	：
		D \square_{-1}	8	11
		以以ッ		$\stackrel{ }{\sim}$
		73 2	3	－
		－－	\cdots	－
			3	
			4	
			1	
			$\xrightarrow{-1}$	
			8	
			1	
			0	
			17	
			0	
			2	
			－	
			\rightarrow	
			3	

VARIAQLES TO QF SELECTED
FRCM THE SET RF VAPIADLES
WEITTEN PE CIJOPCUTINF ELCTHD
OF LPLTWF.
C
C
C NO LUSO TSET=1, ASET
r
$C-=-0-0-=-C F A O(N I T, F C G F A T=I 51 \mathrm{JFL}$
$J P L=N O, O F$ VAPIADLES TO QE
CEIECTEC FPCN THE ACFICT
VARIARLES FREVICUSLY WRITTFN
CN NTAPE3 FOR FLCTTING.
(JPL -LE. 1F) FCD A SET
NCFLOT $=1+2 * N E C+N L A: 1+N U+J F+3+3+2 * N Q+5$
(NCHLIAEAR ANALYSIC)
ACFIOT $=1+2 * N F C$
(LINFAF AMALYSIS)
WHERE --.
NFO $=$ NC. CF EOUATICNS
TNTEGRATER.
NLAM = NO. CF LANADA VAFIAOLES
NU $=$ NC. CF U VARTADLES
$J F=6 * N F$
AR $=$ NO. CE RCEIES.


```
C
C
r
r
r
C---------FEAM(NIT,FCENAT = 1EI5) (JVPL(J),J=1,JEL)
\Gamma
C
C JVPLIJ) = INTEGEE DENRTINGGGGPAL
C
G
\Gamma
r
C. 20 CCNTINUE
C
\square
C
C
c.
    NCI = ELEMENT LCCATION ILCCAL WET
                                    JVFL ARQAY) FCO THF INCEFEN-
                                    DENT PLOT VARIARLE.
                    NCC = ELEMENT LCCATICN ILCCAL WET
                            JVFL APOAY) FCR UP TO?
                                DEfENTENT VAOIADLES TC PLOT
                                <IMULTANECUSIY vERSES the.
                                PCI OEPENTENT VAFTAPI.E.
                    NGRIN = NC. OF FLCT FRAMES IC USF
                        FCR FLOTTING THF NRT-NCO
                                erCup. IE, the Nr. CF feamES
                                TO USE SIOE OY STOE TO
                                exhaust the qange cF the
                                INDEDENCENT VARTAOLE.
        IF INCI .EG. i) SO TO 100C
            THIS IP CUE TC DPOCEDE TO NEXT SET
            THIS OFEN ENJEO LTOF PERYITS MANY SELECTITNS OF THE
                JVPL OATA VARIAGLES WITH RFGARD TO INOFFENDFNT ANT
                CFPENDENT UARIABLES IN ORDEG TO FCRM CRCSE-FLOTS.
```


[^0] 3aAlI NO NuIS SinNIW \square
－」ココ1 Van」ミy ヨuNIS
P jJ SNINJdO SLImảd
－د001 Vヨa0 00nisa $4=$ 000145301J $9=$
$((n j+\hbar) / 4 j)$ dOU $7035070 S=$ （כH）בココ 7 Vミaう ヶ＝
 （H）dミ770adNOJ $Z=$ （シ）A TNJ LVロ7a I＝ヨak 11
－ココA1 VOILJNOA aラذSiv＊al

－ヨาวaj hir jhl aug
VOIDVINWIS SIHL dOg
3
3
3
3 33兑j0－53 （H）ATNJ LVロ7d $=$J33〕3J3j0ככ00
 J
 0J

OLVO 70』LNOJ SLدATVNG \downarrow

 J－
 NLOOJ 0
 3 J
3
j

 \lrcorner
 JJJ
J

nCTF - PfCGQAM EXTPACTS RCCTS FCD OMTH AE AND ITS TRAASPOSE. THIS SEDVES as a soft cf self check ca the RCOT OUALITY. ALTHOUGH IT IS A RADE OCCUROANCE, DCCTS FRCM AE TRANSPOSE RAN fe - CLEANER- ThAN THOSE OETATNED FRGM AF.

LRY(E.J) $=$ NC. OF Q VAPIAOLES TC FEEE AACK - - TTYEE $=7$ MAX OF 3 b VARIAGLES CAN FE FER a ACK FOR THE TyEE ? DSELCC CDEN ICCE tRANSFER FUNCTICA.

LRY(7,J) = LCCAL ID. CFFIPST \quad TC GETAIN.
LRY(R,J) $=$ LOCAL IT. CF SECONT E TC cetain.
LgYe g,J) = LOCAL TD. CF THIZN a TR RETATA.

EFACIM (IPY, 3, NCYC, 3, KR)

```
MATEIX SITE 3 OY NCYC DEFINING EXECNENT FCE
TCLERAPCES TOL = 110.1FEEXD
FCR the Jth cyCLE -
IPY(1.J) = PCOT TOLEQANCE EXPCNENT
IFY(2,J) = GAIN TOLEOANCE EXPCNENT
IEY(3,J) = GCOT TOLERANCE EXPCNENT USER TC
                                REYOVE SHIFT FREOUENSY (SUGRDUTTNE NUMSI
NOTE - IF ROOT OR GAIN LI TOL, SET
    ROOT OR GAIN EQ O.
```



```
            #0 50. ICF=1,5
            TF ILPNANEPTMOI .EN. 4H Y GC TOSEDC
            IF (LDNAMF(ICO) EN. 4HDODF
                *.OR. LOMANE(ICF) .EN. 4HNTCH
                *.OQ. LPAANEIICE! .EQ. LHAYOU
                *.CC. LPADME(IOP) -EQ. LHNINY
                *.OF. LDNAME(ICF) EO. 4HECNN) GC TO 20J
                IF (LFAAME(IOP) EC. 4HFNOT) GCTO 300
                    2こう RONTINUF
                    *** FRECUENCY RESPCNSE SECTTON ***
                    C
                F
                    C-O-------FEAD(NIT,FCPNAT = GFIC,O) FMIN, FNAX, OBMIN, RDMAX, AMYN, ANAY
                    FWIN = FFERUENCY SHEEF LCWED LINIT
                            FNAX = FDFQLENRY SWFEP UFEER LINIT
                            DPNIN = NTIMUM CD AMFLTTLCE FCQ PCCE, NICHOLS PLCTS
                ПAMAX = WAXTWIM DA AMPLITUOF FCP nCDE, NICHCLS PLCTS
                AMIN = MINIMUM AMFLITUNE FOR AYOUTST ELOTS
                AMAX = AXIMUM A:IFLITUOE FOR AYGUIST FLCTS
            gr TO 500
                        3こ0 CCNTINUE
```

 IV-48

This section discusses the various program output information and correlates the output data with both the input data and the problem simulation. This information is presented in much the same fashion as was the input data stream of the previous chapter so as to better acquaint the reader with the actual formated output as it is presented by the program.

It is pointed out that the output stream will not reflect certain outputs that occur from routines that identify troublesome areas such as matrix singularities. Recall also that the basic input routines READ and READIM can also print out input matrix data as dictated by the user. These printouts will not be included either. Reference is made to the theoretical volume (Vol. I) and to the input data stream (Chapter IV) to correlate certain outputs with both the theory and the user input requirements.
＊

＊＊＊＊＊＊＊＊＊
－Jy3H USLNLyd 3yy
1NJWOS 3NILNO甘甘NS H1IM WV\＆9O甘d


```
C
C
C
C
C---m---THF SDFCIFIFD INTTAL HINGF RATFS (BETAHN) FOLIOW
\begin{tabular}{llll}
\(C\) \\
\(C\) & \((1)\) & \(17) \ldots\) & (NH)
\end{tabular}
C
C-m-0-0----- 2 1 ROWG 1-3 = ANGULAR RATFS.
C---N---- - - . . OWW 4-6 = DISPIACFMFNT DATFS- O RFIATTVF TO P.
C------------- i i
C
C--------THE NO. OF FLASTTC MONESS/GODY ARRAY (IRGFLX) F'OIINWS
C
C
(1) (2) ... (NA)
C-m-0---- 1 I THE JTH FNTRY IS THF NO. OF FLASTIC
r
MODES FOR QOOY .I.
C
C---------THF NO. DF P/O HTNGF DOINTS/RODY ARRAY (NHPOII FOILOWE
C
C (1) (כi \ldots...(NR)
C-0--m-.- 1 1 EIFMFNTS ARE THF NO. OF D/Q
r
C
C--------THF NO. OF SENSOR OOINTS/RO\capY ARRAY (NSPOTI FOIOINWS
c
C
C-0-m-*-*- 1
C
C
C
C-----.---THF MOM. WHEFL/ROOYY TÄBLE INMOW; FOLLOWS
C
C_O-m 1 1 COL J = JTH BOחY
C-m-m-n 2 I ROW 1 = NO. OF MOM. WHFELS ON RONY J.
C--m-a-m- . ROW ? = NO. OF VARIARLF SPEED WHFFI.S ON RONY J.
C------- * OOW 3 = SUCCFSSTVE ROWS ARF THE MOMFNTUM WHFFL NUMBFRQ
C--m- ON RODY J (IN ASCENDING ORNFRI.

```

r
C
C
c
C-------THF FOIIOWING DATA IS SPECIFIFO MOM. WHFEL INEOQMATION (IF ANY)
c
C
C
r}r\mathrm{ r (1) iPj ... (NOFMO)
C
r .. COL .I = JTH MOMFNTUM WHFFL
C-O--N-- 1 1 ROW 1 = WHFFI SENSOR DOINT NO.
C-m-m-m 2 ROW }2=\mathrm{ SPINAXIS
C--m-m-- 3 1 ROW 3 = 1 ACTIVF
c }=0\mathrm{ CONSTANT SPFFD
¿
C--------THF SDFCIFIED MOM. WHFEL RATFG AND INFRTIAS IAMOS FOLIOW
C
C
r
C-m-m-*-1 1 POW 1 = INITIAL WHFFL SPIN RATF
C-m-m---- ? ROW ? = SPIN INFRTIA
r
C
(1) (2) ... (NOFMO)
COL J = JTH MOMFNTUM WHEFL
THE SPFCTFIED CONTROLIER INITTAL CONDITIONS
C INO CHARACTERISTTCS FOLLSW
C ITHFFIRST NDEITA ADF INITIAL CONTROLIER STATF
r
r THIS IS THF USF.R INDUT ARRAY CNTNTA.
C THE AONTTTOAIAL K PARAMETERS, TF ANY. ARF
C AVATLARLF TO THF USER FOR USER-PAK NATA.
C THE FIRST NOLLTA ENTRTFS IN THIS ARRAY
C ARE THF INITIAL CONDITIONS FOR THF
C CONTROL VÄTARLES.
C
r
C
C*\#
C*\&\#

```

```

r
C
C
r
C
C*\#
C
C* SIIOOIITJNF MSMONC - NUTDUT FOR FLFXIRIF RONY, CONGTCTFNT MACS MATRTX
C*
C\&क\#
c
C C TYPICAL OUTPUT FOR ITH ROOY
c
C THIS SURROUTINF DRTNTS OUT SFVERAL MATRTCFS THAT ADE
C RFL\triangleTFO TO THE FORM OF THF GOVERNING EDUATIONS.
C. THE DFADER WTLL RF RFEFRRFO TO VOL I ANNT THF TNPUT
C. HATA GTRFAM FOR FURTHFR CLARIFTCATION.
C
C-------S!JMMAPY OF INDUT \capATA FOR ROOY Y WHICH TS
C FIEXIRIF W/CONSISTFNT MASS MATPTX.
c
C---------THF INPUT PARAMETFRS--- IFRBM, IF\capIAK. TFDIAN AOF
C SFF TNPUT DATA FOP MSMNDC
e
C

```

```

C NEGRFE OF FRFFNOM AS INPUT
C
C GFF INPUT DATA FOR MSMNDC
C
c
C
C
C MONF SELFCTION VFCTOR AS INPIIT
C SFF INPUUT DATA FOR MSMODC
c
C
C--------FOD RONY NO. I THF POSITION VFCTOR FROM THF RONY ORTGIN
C. TN JOINT K IS
x = Y = Z =
WHFRF K IS JOINT COORDINATFG
IISFD TO MFVELOP RIGIN RODY MODFS
gFF tNPUT DATA FOR MSMODC

```
```

C
C
C
C
C---------THF CONSTSTFNT. DFPARTITIONFN MASS MATRTX TS--
C C THTS IS THF QFOADTITIONFN MAGS
C. MATRTX ANN IC CONSISTFNT WTTH
C THF IDOF TAPLF.
C

```

```

C THTS IS THF QFPARTITIONFNMMNAI
THTS ISTX. THF OOWS ARF CONSTSTFNT
WTTH THE RFPARTITIONFN MASS MATRTX
ANI THF COLS ADF CONSTCTFNT WTTH
THF FLEMFNTS OF THE MONF SFIFCTTON
VFCTOR.
C-0------THF -UNNFFORMET- TNFRTIA MATOTX (MU) TS----
C THTS IS THF MO MATRIX NOTFN AS
C
C
C
C--------- THEPF THEN FOLI OWC MATRTRES
C A COFFFIRIFNTS
A COFFFICIFNTS
COFXY COFFFICIFNTS
COFX7 COFFFICTENTS
OOFYT rOFFFICIFNTS
WHICH ADF THE AIPHA, R, ANN C COEFFICIFNTS
GTVFN IN THF FXORFGGION
EQUATION II-88 (VOL I)
THFRF THFN FOLINWG MATRTCFS
ril. c?>. C73.
cl?, Cl3. C?3
WHICH ARF INENTTFIFN IN
EQUATION II-89 (VOL I)
r

```

```

C
C
C
r
C
C* GIOROITTNF MSMODL - OUTPUT FOR FLFXTRLE RONY, LUMDFN MASS MATRTX
r*
C
r. TYPICAL OUTPUT FOR THE ITH RONY
C THTG GURROUTTNF PRTNTG OUT SFVFRAL MATRTCFG THAT ARF

```

```

r
C. TMF DFADFR WILL RF RFFERRFN TO VNI I ANN THF TNDUT
C HATA STREAM FOR FURTHFR CIARIFTCATION.
C

```



```

r. TN VNL T.
r
C
r

```

```

C ADF THF ALPHA, R, ANDC
C TOFFFICIFNTS TN THE MATRIX
C CTVNEN AS EQUATION II-88 (VOL I)
r
C

```
```

C
C
C
C
C
C
C
C
r
C
C ARF THE CONSTITUFNTS OF THF
C MÄTRTX GTVEN AS EQUATION II-89 (VOL I)
C
C CONTÄTNS THF INITIAL MODAL
OFFLFCTIONS. (AS INPIIT)
C
C-m-----\infty-nUTPUT MATRIX XEnN
r.
C CONTAINS THF INITIAL MODAL
C VFIOCITIFS. (AS INPUT)
C
C---m-0---FOR RO\capY I THE P-O HINGF NO.. THF FINLFR ROTATION TYPF
ANN THF JOTNT NO. FIORRESPONIING TO THF D-O HTNGF
APDEAR IN THE FOILOWING INTFGFR ARRAY WHICH IS FOLIOWFN RY AN
ARRAY CONTAINING FIIIFR ANGLFS THAT POSITION THF HTNGF
TRIAD WRT THE BONY TRTAD
---- nATAं HERF =----
IF RONY I HAS ANY SFNSOR POINTS.
TLF FOILOWING WIIL AF PRINTEN
C
C
C---------FOR RONY I THE SFNSOR POINT NO.. THE EUIFR ROTATTON TYPF
AND THF JOINT NO. CORRESPONDING TO THF SENGOR POINT
ADPFAR IN THE FOILOWING INTEGFR ARRAY WHICH IS FOLI OWFN
RY AN ARRAY CONTATNTNG FULFR ANGIIFS THAT POSITION THE
GFNSOR TRIAN WRT THF RODY TRIAN
---- n\grave{TA} HERF -----
c
C
C
C

```

```

C\#

```
\(C\)
\(C\) C
C
C
\(C\)
\(C\)
IF THE USER UTILTTFS POLYNOMIAL JNPUT FOR CONTROI. SYSTEM TRANSFFR FUNCTIONS, THE FOLLOWTNG MATRIX WILL RE PRTNTEN.
\(C\)
C

C
C
C
C
C
                    WHFRE KPLY = ROW NIMENSION SIZE OF RPLY TAI CURROUTTNE CONTRI
                    WHFRE KPLY = ROW NIMENSION SIZE OF RPLY TAI CURROUTTNE CONTRI
            NPLY \(=\) NO. OF INPUT POLYNOMIAL RATTOC
                ANN FOR \(I=\) OND INTFGFR \(=-\)
            COL I = NFNOMINATOR POLYNOMTAL COFFFTCTFNTS
                                    IN ASCFAINING ORDER
                                COL \(\mathrm{J}+\mathrm{I}=\) NIJMFRATOR POLYNOMIAL COFFFICTFNTS
                        IN ASCFNTING ORNER

                        väriafigs (1) añ nfpennent vartarl.es (0)
                    THF FLEMFNTS OF THIS ARRAY TOFNTIFY
                    WHICH VARIARIFG GURVIVF IN THF FINDU
                        CFARCH TO DETFRMINF AN INDFPFNDFNT
                        GFT TO RF TNTFGRATEN.
                        THF CIIRVIVING VARJARIFG WILL AI SO
                        RFPRFSFNT THF FTRST NX ROWS OF
                        THF IINEADIZFD MATRIX, A, USFN
                        RY SIIRROUTTNF NYNS4O.
                                NOTF - AX = NO. OF NON-ZFRO FNTRTFS TN ARRAY TAINEP
\(c\)
C
\(r\)
C
c.


```

C
C
C
C
C
C***\&***\&力\#
C*
C* SHDONUTINF EYNSZO DUTDIT
C*
C*\#
C
C
C THF PRINTOUT TS TYPICAL. FOD A GIVFN SIMIJLATION TYMF, T.
C
C (F.VFN FOR A IINFARTTED ANALYSTS)
%
C THE RATA ARF DRESENTFN IN VECTOR FORM ANN
C. ORNFRFS AS FOIIOWS---
C
C---------TMF STATF VECTOR Y =
C
C---------THF STATE VECTOR TYMF DERTVATIVF YDT =
C
C---------THF RFTAS (FULFR ANGLFS, POSITION COOROTNATFSI ARF
r
C-\infty-------THE RETA TTME OFQTVÄTIVES ARE
r
C-------THF NFLTAS (CONTQOI SYSTEM VARTARLES) ARF
C
C--=-=----THE DELTA TIME MFPTVATIVES ARF
r
C
C

```
```

C
C
C
C--m---- THE FOLLOWING INF\capRMATION IS TYPICAL FOR RONY T.
C
C
C
C
C
C
C
C
C
C
C
C
ORDFR IS OMGX OMOM
xTп\il
x!n(?)
-
-
xininfi
thftÃ(i)
MOMFNTUM WHEFL ANGULAR VFI.OCTTY
* (RFIATIVF TO SFNSOR DOTNT TRTAN)
:(RFIATIVFTO SFNSOR
C
RONY I THE CORRFSOONOING MOMFNTA ARF
OROER IS HX RY RODY AXFS DEF. ANGILLAR MOMFNTUM
HY RODY AXFS DEF. ANGIILAR MOMFNTUM
IX
I.Y RODY \triangleXFE REF. LINFAR MOMFNTIJM
L7
D XT(1)
p Xi(?)
- RODY AXES RFF. MODAL MOMENTUM
\bullet
P \dot{X}
H MW(1)
- MONY AXFS RFF. MOM WHFFL MOMFNTUM
- (aCTTVE WHFEL)
\bullet

```
```

C
C
C
C
C
C
C-----*---FOR ROOY I ITS CONYQIRUTION TO TOTAL ANGULAQ
C ANO LTNFAR MOMFNTUM IS
C
C. OROFR IS HX
C
C
C
C
C
C
r.
C:---m----FOR RONY T ITS CONTRIRUTION TO TOTAL KINETIC ANN
C POTENTIAI FNERGTESIS
C
C
C-----.---FOR RONYY I THE FLASTTC DFFLFCTIONS ARE
C
C
C
C
C
C X,Y,Z COMPONFNTS IN TNFRTIAL RFF.AXIS SYSTFM.
C
C
C. X,Y,Z COMPONENTS IN INERTIAI REF. IXIS SYSTFM.
C
C
C---m---THE TOTAL ANGULAR MNMFNTUM =
C-\infty------TMF TOTAL LINEAR MOMENTUM =
C---m---THF TOTAL KINETIC FNERGY =
C=-------THE TOTAL POTFNTTAI.. ENERGY =
C-------THF TOTAL FNERGY (T+Vi=
C
C
C
C*\&\#
C\#

```
```

C
C
C
C
C
C
C\#\&\#
C*
C* SIIROOIITINF NYNS3O OISTDIJT
r*

```

```

C
C
C
C------...-
SIJMMARY OF
C
C
C
C
C
C
C. SEE TNDUT DATA FOR NYNS3O FOR
C
DETATLFO NESCPTPTINNS.
C
C
r
C
C
C
C
r
C
C\#\#今\&\#
C\#\#\#\#\#\#\#要名\#

```
```

C
C
C
C
r
C
r*
C* SURDOIITTNF MYNG4N DUTPUT - IINFARIZFD SYSTFM ANAIYCTS
C*
C
C
C
C=--------NIITPUT MATRYX-A- (N,JN,NX)
C
C
c
C
C
r
c
C
C
N.NQ = TOTAL NO. OF EOUATIONS
LINFARTIFD (INCLIIDING
AUXILIARY EQUATIONS FROM
SURPOUTIAFF EQANCI
NX = NO OF TNNEDENOFNT STATF FOIITIONS
OETFPMTNFO RY FINDU IN IYNS?O.
THTS IS THF MATRIX OF PARTIAL NFRTVATTVFS
WHICH ARF THF I INEARITFD COMDONFNTS DF THF
GTATF VARIABLFG AS DETFRMINFN RY
GIIRROUTINF LINFAR.
THF ORNFR OF THE VARTARLES FOR THF
DOWS IS
SI2F
DLANT VARTARLFS NY
CONTOOL VARIARLFS NDELTA
CONTPOLLFR OUTPUTS NBTA
SENSIR STGNALS NXSS
THF COOLIJMN ORDFR IS
plANT VAPIABLES NY
CONTROL VARIARLES NDELTA

```
```

C
C
C
C
C
C-m--------NIITPUT MATRIX -T- (NX,NX)
C
C
C
C
c
C
C
C
THIS IS THF GIMILARITY
TOANGFORMATION MATRIX
THAT INTRODUCES THF (NRTO + NXCSI
AllXJIIIARY VARTARLES INTO THE
TPANCFORMED STATE EOUATIONS.
RFF. MATRTX R IN EQUATION III-24 (VOL I)
Cr---------O|TDUST MATRTX Y* (1,NX)
C
C
C
C
r
c
C
C----------nUTPUT MATRTX A* (NX,NX)
C
r
r
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

```
    THTG IG THF TRANGFORMEN STATF
```

 THTG IG THF TRANGFORMEN STATF
 VFrTOR INJTIAL CONOITIONS.
 VFrTOR INJTIAL CONOITIONS.
 RFF. VFCTOR }7\mathrm{ PA EQUATION III-24 (VOL I)
 RFF. VFCTOR }7\mathrm{ PA EQUATION III-24 (VOL I)
 G THF TRANGFORMEN, LTNFARITFN
 G THF TRANGFORMEN, LTNFARITFN
 STATF VARIARLE COEFFICIENT MATPTX
 STATF VARIARLE COEFFICIENT MATPTX
 THAT IS THF RASIS FOR THF FNTIRF
 THAT IS THF RASIS FOR THF FNTIRF
 LINFARTZATTON PACKAGE.
 LINFARTZATTON PACKAGE.
 RFF. EQUATION III-28 (VOL I)
 RFF. EQUATION III-28 (VOL I)
 THE ROW/COL VARTAPLE ORIFRING ANN
 THE ROW/COL VARTAPLE ORIFRING ANN
 SITFS ARE:
 SITFS ARE:
 VAQTABLE IN. STMF
    ```
            VAQTABLE IN. STMF
```



```
            PIINT VARIARLFS NY?
```

 PIINT VARIARLFS NY?
 DIÄNT SENSOR SIGNALS NXSS
 DIÄNT SENSOR SIGNALS NXSS
 CONTROL EYSTFM VARIARLFG NN̈?
 CONTROL EYSTFM VARIARLFG NN̈?
 CONTROL OUTPUTS (B'S) NRTO
 CONTROL OUTPUTS (B'S) NRTO
 NOTE- NYP = NY - NXSS
 NOTE- NYP = NY - NXSS
 NO> = NDFLTA - NRTQ
    ```
            NO> = NDFLTA - NRTQ
```

```
C
C
C
C
C
c
C RFAI PART IMAGTNARY PART RFAL PART TMAGINARY PADPT
    COMDIEX ROOTS ORTATNEN FROM
        A ANO A RFSPECTIVELY.
        THESF ARF THF POLFS OF
        THE CLOSEN IOOP SYSTEM.
C***&##########################################################################
C
C
C THF FOLLOWING OUTPUTS ARF CHARACTERISTTC OF
C A SINGLE TRANGFER FUNCTION FREQUENCY RFSOONSF.
C
C-----*---OHTPUT MATRTX -AR-
C
C THIS IS THF RFDUCED A MATRTX
C FOQ A PARTICILAR USER SPECTFTFN
C
C
C
C

```

C
C
C
C
C
C
C---m-----nHTPUT MATRIX RRFN
c
C
C
C
C
C
C
e
TRANSFER FUNCTTON ROOT ARPAY CONTATNING DONT COIINTS. TIMF FONSTANTS, ПAMPTNG, AND FRFOUFNITY FOR ZFROS AND POIES.
FI.F $1=$ NO. OF NUMFRATOR REAL. ROOTS. NND
FLE $2=$ NO. OF NIJMERATOR COMPLEX PATPS. NNC.
FLE $3=$ NO. OF NUMFRATOR FREE SIS, NNT
ELE $4=$ NO. OF NFNOMTNATOR RFAL RONTS. NDR
FLE $5=$ NO. OF OFNOMTNATOR COMPLFX DATRSANDR.
ELE $G=$ NO. OF OFNOMTNATOR FRFE S•S. NOZ
FLE $7=$ RODF GATN, KR.
THF DOOTS FOLIAW IN THF ORNFQ
ELEMFNT L.OCATION DFGRRIPTION

```

```

p THRU NNR + 7 NNR + R THRU 2*NNC : 7 NUMFRATOR DAMDING ANO FREDUFNCTTFS - -

```

```

FRFF SPS ARE NOT INCLUNED
RFMAINING EIFMFNTS ARF DFMONINATOR ROOTS TN GAME ORDER AS NUMFRATOR ROOTS. TF..
TĀU(1),..,TAU(NDR), ZFTA(1). OMEGA(1).... ZFTÄ(NDC). OMEAA (NDC)

```
```

C
C
c
C
C THF TRANSFER FIINOTION FRFOIIFNCY RFGPNNSF FOIINWS
r
C------ FRFG/RAD/GFC FRFO/HERTT RFAI IMAG AMP NFCTIRFIS DAD NFG
THF DAMPFD RFGONANCEG (RAGFD ON A
ONLE OR ZEROI ARF IDENTIFYFN
RY \#\#\# IN ROTH THF LFFT ANN RIGHT MADGTNS.
\#*\#
THF FOLLOWING OIITOUTS ARF TYPICAL OF A ROOT
LOCUS INVESTIGOTTON.
C
C---------nIITOIIT MATRICES PNFN
r. DNIIM
C THF NENOMINATOR ANO NIIMERATOR
C TQANGFER FUNCTTON POLYNOMTNAI
C. COFFFICIFNTS -m ASCFNNING DNWFRS OF S.
C--------- }P(S)= NUMFR\&TOD
O(S)= . DFMONTNATOR
PRFPROCEGSEN
POLYNOMINAL COFFFICTFNTS AS USED RY RLOCIJS.
C
C FOR THE LOCT.
C
C------.- SCANLIMITS = IIMITS ON REAL AND IMAGTNARY
C
C
C
C---m-*---- G\DeltaIN
ROOTS FRROR
C
C
C}\mathrm{ OONT LOCIS OUTPUT
C
C
C
C\#
CH\#ず\#

```

\section*{VI. AUXILIARY PROGRAMS}

This section describes two auxiliary digital codes that have been developed to aid the DISCOS program system user. The first code is a FORTRAN program which accepts the DISCOS code as input and, based upon some additional user-supplied input, automatically redimensions the DISCOS source program to minimize core storage requirements. The second code is a DISCOS/NASTRAN interface which processes user-supplied NASTRAN generated data into the required DISCOS input formats.
A. REDIM - THE REDIMENSION PROGRAM

This code was developed to aid the user in the efficient use of available digital computer core storage locations. Examination of existing digital computer codes for generalized analyses of (possibly) large systems indicates that very frequently the nature of the code dictates that a great deal of core storage locations are required (due to the sizes of program DIMENSION and COMMON blocks). This often leads to inefficient use of core storage as the user must have available sufficient core storage locations so as to satisfy the program size. As a large percentage of program executions probably don't require the maximum dimension sizes of program storage blocks, it is obvious that a automatic procedure to alter the program code to meet a user's specific requirements would be desirable. Program REDIM was developed to satisfy these requirements.

REDIM is a self-contained code that contains an extensive list of format statements. The code reads the DISCOS source code from tape as coded data and reproduces it on the tape unless it finds an identifying format number in columns 73-75. In this case, it rewrites the source code according to the format corresponding to the identification. REDIM, therefore, provides an efficient and foolproof method of recasting the source input code to meet the user's requirements.

Following is a more detailed explanation of the manner in which the REDIM program can be used.

PRGGGAM REこIM INFUT SATA STREAM

THF FCLLOWING PRCGKAM [ATA VARIALLES CAN EE afjusted
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline NEMAX & \(=\) & MAXIMUM & NLMEER C & CF & tcoies & & \(\epsilon\) \\
\hline NHMAX & \(=\) & MAX IMUM & NUMEEK © & CF & HINGES & & \(t\) \\
\hline NSPMAX & \(=\) & MAX IMUM & NLMEEf C & CF & SENSCR & POINTS & 15 \\
\hline NMWMAX & \(=\) & Maximum & NUMEER C & CF & MCMENTU & UM WHEELS & 5 \\
\hline NMWEOD & \(=\) & MAXIMUM WHEELS & Numeer u PER EODY & & MOMENTU & & \(<\) \\
\hline NMOEOO & \(=\) & MAXIMUM MODES & NUMEER C PER ECOY & & elastic & & 12 \\
\hline KY & \(=\) & MAXIMLM & Numbek of & & state v & varjaeles & 250 \\
\hline JMAXC & \(=\) & MAXIMUM ECOY - & NLMEER C CONSISTEN & & \[
\begin{aligned}
& \text { JCINTS } \\
& \text { MASS }
\end{aligned}
\] & UNA & 7 \\
\hline JMAXL & \(=\) & MAXIMUM RODY - & NUMEER C LUMFES MA & \[
\begin{aligned}
& \text { CF } \\
& \text { IAS: }
\end{aligned}
\] & JCINTS & \[
C N A
\] & 105 \\
\hline
\end{tabular}


\section*{B. NASFOR - THE NASTRAN INTERFACE PROGRAM}

The multi-purpose programming system described herein can be made more versatile if a reliable and efficient means to process input data arising from other sources can be provided. One other source of input data is NASTRAN, a digital code that is gaining wide acceptance in the aerospace and other industries. Program NASFOR, described in this section, was developed to provide an interface between NASTRAN and DISCOS. The program assumes NASTRAN generated structural data is available in a prescribed format and transforms these data to a format acceptable to the DISCOS system. Either tape or punch card data may be processed.

NASFOR is a self-contained code; it processes data from one source (NASTRAN) and generates data for application in DISCOS. Originally, it was felt that this interface should be an integral part of the DISCOS code. However, during development, it was realized that this would impose a large overhead on the dynamic response program and it was, therefore, decided that NASFOR should be a stand-alone program.

NASFOR has the capability to process either tape or punch card input and create either tape or punch card output. The output formats are consistent with the input requirements of the DISCOS program system. The input formats assume that NASTRAN generated data is double precision and in OUTPUT2 format if on tape or is single precision and of the format ( \(24 \mathrm{X}, 3 \mathrm{~F} 8.0\) ) if on punched cards. Reference to the example following indicates the format requirements for all other date required to exercise the program.

The code was designed to process NASTRAN generated structural data for a series of bodies and to create DISCOS input compatible with subroutine MSMODL, the lumped mass input routine. It is assumed that the available data is in a specific format as follows:

For a body whose inertial and geometric characteristics are defined at a set of NJ discrete joints,
1. Inertial Properties
\(m_{i}=\left[\begin{array}{ccccc}m & & & & S_{z} \\ & m & & -S_{y} \\ & & m & & S_{x} \\ & & & S_{y x} & -S_{x} \\ & & -J_{x y} & -J_{x z} \\ & & & & J_{y y} \\ & & & & -J_{y z} \\ & & & & J_{z z}\end{array}\right] \quad 6 \times 6\)
where \(\mathfrak{m}=\) mass
\[
\begin{aligned}
& \mathrm{S}_{x, y, z}=s t a t i c \text { mass moments } \\
& \mathrm{J}_{x x, \ldots, z z}=\text { inertias }
\end{aligned}
\]
and the total assembled mass matrix is of the quasi-diagonal form
\(M=\left[\begin{array}{llllll}m_{1} & & & & \\ & m_{2} & & & \\ & & \cdot & & \\ & & & \cdot & \\ & & & & & \\ & & & & & m_{N J}\end{array}\right]_{6 N J \times 6 N J}\).
2. Joint Coordinate Locations
i) card input data
\(G=\left[\begin{array}{lll}x & y & z\end{array}\right] N J \times 3\)
with \(\mathrm{x}=\left\lfloor\begin{array}{llll}\mathrm{x}_{1} & \mathrm{x}_{2} & \cdots & \cdots\end{array} \mathrm{x}_{\mathrm{NJ}}\right]_{{ }_{1 \mathrm{XNJ}}}^{\mathrm{T}}\)
\(\mathrm{y}=\left[\begin{array}{llll}\mathrm{y}_{1} & \mathrm{y}_{2} & \cdots & \cdot \\ \mathrm{y}_{\mathrm{NJ}}\end{array}\right]_{1 \mathrm{xNJ}}^{\mathrm{T}}\)
\[
z=\left\lfloor z_{1} z_{2} \cdot \cdots z_{N J}\right]_{1 \times N J}^{T}
\]
or ii) tape input data
\(G=G_{1}-G_{0}\)
with \(G_{1}=\left[\begin{array}{llll}n & x & y & z\end{array}\right] N J x 4\)
where \(n=\left\lfloor n_{1} n_{2} \ldots . n_{N J}\right\rfloor_{\text {IxNJ }}^{T}\) are joint numbers and will be ignored by the tape reading section and \(x, y\) and \(z\) are as above and \(G_{0}=\left[\begin{array}{lll}x_{0} & y_{0} & z_{0}\end{array}\right] N J x 3\)
where \(x_{0}, y_{0}\) and \(z_{o}\) are user-supplied card inputs and may be null.
3. Modal Properties
\(\boldsymbol{\Phi}=\left[\begin{array}{ll}\Phi_{R} & \left.\Phi_{\mathrm{E}}\right]_{6 \mathrm{NJ}_{X N M}}\end{array}\right.\)
\[
\text { where } \begin{aligned}
\Phi_{R} & =N R \text { rigid body modes } \\
\Phi_{E} & =N E \text { elastic modes and } N M=N R+N E
\end{aligned}
\]
and where
\[
\begin{aligned}
& \Phi_{j}=\left\lfloor\left.\begin{array}{llllllll}
\Phi_{1} & \Phi_{2} & \cdots & \cdot & \Phi_{i} & \cdots & \Phi_{N J}
\end{array}\right|_{1 x 6 N J} ^{T}\right. \\
& \text { and } \Phi_{i}=\left\lfloor\begin{array}{llllll}
h_{x} & h_{y} & h_{z} & \sigma_{x} & \sigma_{y} & \sigma_{z}
\end{array} \int_{1 x 6}^{T}\right.
\end{aligned}
\]
with \(h_{x, y, z}=\) modal displacement amplitude
\[
\sigma_{x, y, z}=\text { modal rotation amplitude. }
\]
4. Generalized Stiffness and Damping
\(K=\left[K_{g e n}\right]_{N E x N E}\) and \(C=\left[C_{g e n}\right]_{N E x N E}\)
The data input as previously noted, are manipulated within the program and the results are written on tape and/or provided as punch card output as follows:
1. inertial properties
\(M=\left\lfloor m_{1} m_{2} \cdots \cdots \cdot m_{N J}\right\rfloor_{1 \mathrm{xNJ}}^{T}\)
\(s=\left[\begin{array}{ccc}s_{x_{1}} & s_{y_{1}} & s_{z_{1}} \\ \cdot & & \\ \cdot & & \\ s_{x_{N J}} & s_{y_{N J}} & s_{z_{N J}}\end{array}\right]_{\mathrm{NJx}_{\mathrm{x}}}\)
\(J=\left[\begin{array}{cccccc}J_{x_{1} 1} & J_{y y_{1}} & J_{z z_{1}} & J_{x y_{1}} & J_{x z_{1}} & J_{y z_{1}} \\ \cdot & \cdot & \cdot & & & \\ \cdot & \cdot & \cdot & & & \\ \cdot & \cdot & \cdot & J_{x x_{N J}} & J_{y y N J} & J_{z z_{N J}} \\ J_{x y_{N J}} & J_{y z N J}\end{array}\right]_{N J x 6}\)
2. joint coordinate locations
\(G=\left[\begin{array}{ccc}x_{1} & y_{1} & z_{1} \\ \cdot & & \\ \cdot & & \\ \cdot x_{N J} & y_{N J} & z_{N J}\end{array}\right]_{N J \times 3}\).
3. modal properties
\(h_{x, y, z}=\left[\begin{array}{cccc}h_{x, y, z}^{1,1} & h_{x, y, z}^{1,2} & \cdots & h_{x, y, z}^{1, N E} \\ \vdots & & & \\ \vdots & & & \\ h_{x, y, z}^{N J, 1} & \cdots & \cdots & \cdots \\ h_{x, y, z}^{N J, N E}\end{array}\right]_{\text {NJXNE }}\)

4. generalized stiffness and damping
\[
\mathrm{K}_{\mathrm{gen}}=\left[\begin{array}{ccccc}
\mathrm{K}_{11} & \mathrm{~K}_{12} & \cdots & \mathrm{~K}_{1, \mathrm{NE}} \\
\vdots & & & & \\
\vdots & & & & \\
\mathrm{~K}_{\mathrm{NE}, 1} & \cdots & \cdots & K_{\mathrm{NE}, \mathrm{NE}}
\end{array}\right]_{\mathrm{NEXNE}}
\]
\[
\mathrm{c}_{\text {gen }}=\left[\begin{array}{cccc}
\mathrm{c}_{11} & \mathrm{c}_{12} & \cdots & c_{1, N E} \\
\vdots & & & \\
\vdots & & & \\
\mathrm{C}_{\mathrm{NE}, 1} & \cdots & \cdots & \mathrm{c}_{\mathrm{NE}, \mathrm{NE}}
\end{array}\right]_{\mathrm{NExNE}}
\]

NASFOR consists of a main program, 8 program subroutines to process the data and 10 auxiliary input/output routines. The function of the program routines is indicated in Table VI.B-1. and a logic flow diagram appears as Figure VI.B-1.

Table VI.B-1. Description of NASFOR Subroutines
\begin{tabular}{|l|l|}
\hline Subroutine & Function \\
\hline MAIN & Program control \\
TFETCH & Fetch a matrix from NASTRAN tape \\
CFETCH & Fetch a matrix from cards \\
GMASS & Generate mass data \\
GMODE & Generate modal displacement data \\
GGEOM & Generate geometric data \\
GSTIF & Generate stiffness data \\
GDAMP & Generate damping data \\
PRINTI & Print entire input tape (on option) \\
\hline
\end{tabular}

The code has been designed to minimize input data requirements yet provide a high degree of flexibility. Following is a detailed explanation of the input data stream requirements.


.

\section*{}

```

C
NCTE -
C---m--------INDICATES WHERE DATA INPUT
IS REQUIRED
NIT = INPUT TAPE NUMBER
C
C-m-m-m-m---- CALL COMENT (SEE FOLLOWING)
C
C-m-m-m-m-m READ(NIT,FORMAT = 3I5) NTAPE1, NTAPE2, NTAPE3

```

```

VI-14

```
```

C
C
C
C
C

```

```

C
C IFPRTINE O PRINT NASTRANDATA
IFPRTZ NE O PRINT OUTPUT DATA
IFPRT3 NE O PRINT NASTRAN HEX TAPE IF ERROR FOUND
IFPNCH NE O PUNCH CLTTPUT DATA
READ(NIT,FORMAT = I5) NE
NB = NO. OF BCDIES FOR WHICH DATA AVAILABLE
ON THE NASTRAN TAPE (EG, 2)
IFINE .EQ. OI STOP WRITE ERROR MESSAGE
AND TERMINATE
THE FCLLOWING LOOP IS EXECUTED FCR EACH BODY
OO 5000 NECDY = 1,NB
READ(NIT,FORMAT = 3I5) NJ, NE, NR
NJ = NC. OF JCINTS ON BODY (EG, 11)
NE = NO. OF ELASTIC MODE RETAINED FOR GODY (EG, 5)
NR = NO. OF RIGID ECDY MODES (EG; O)
READ(NIT,FORMAT = 5(A4,6X))((IDMAT(I,J),J=1,5),I=1,2)
IDMAT IS AN INPUT ARRAY OF SIZE 2 X 5 THAT
DEFINES THE ORDER OF INPUT DATA TO BE READ
FROM TAPE CR CARDS EY MATRIX FUNCIION AND
ALSO SPECIFIES WHETHER DATA IS TU BE READ
FROM TADE OR CARDS
THE DATA WILL BE PROCESSED IN THE ORDER J=1,2,...5

```

```

c
C
C
C
C
C***
C*
C* SlERCUTINE START - INPUT IDENTIFICATIONS
C*

```

```

C
C-m-m-m-m-m- READ(NIT,FOKMAT = A6,4X,3A6) IRUNNO (UNAME(1),I=1,3)
C
C IRUNNC = RUN IDENTIFICATION (6 CHARACTERS)
C
C
C IRUNNO EQ 4HSTOP - TERMINATE THE RUN
C IRUNNG NE 4HSTCF - CONTINUE THE RUN
C
C
C--m-n------ READ(NIT,FORMAT = 12AO}) (TITLEI(I),I=1,12
C-m-m-m-mEMD(NIT,FGRMAT = I2AO) (TITLEZ(I;,I=1,12)
C
C
C
TITLEl = 72 CHAEACTEF TITLE
TITLE2 = 72 ChARACTER TITLE
REILRN
END
C
C
C
C
C
C*\#***
C*
C* SUGROUTINE COMENT - INPUT USER SUPPLIED COMMENTS
C*
C*******\#\#\#*****************************\#\#\#\#\#\#\#\#\#\#****************************
C
C-m-m-mEAD(NIT,FORMAT = 13Ao,1X,A1) (IREMRK(1),1=1,13), IPGHD
IREMRK = 76 CHARACTER COMMENT
IPGHD = NEW PAGE FLAG
IPGHD = IMP -- NEW PAGE BEFORE PRINTING
THERE IS NC LIMIT TC THE NUMGER OF COMMENT
CARDS EUT THE LAST ONE MUST CONTAIN ZERO
IN COLUMNS l THRU IU
RETURN
END
C
C


```
C
C
C
C
```



```
C*
C* SUBRCUTINE GMASS
C*
C*#######################################################################
C SUGRCUTINE READS CUTPUT TITLE CARD FOR
C EACH EUDYS MASS, STATIC MASS MOMENT AND
C INERTIAL DATA
C DATA READ ON FIKST CALL FOR EACH EODY
C
C-m-m-m-m- READ(NIT,FUKMAT = 3(AG,4X)) ANI, AN2, AN3
C
C ANI = 6 CHARACTER CUTPUT TITLE FOR MASSES
C
C
C
C RETLRN
C END
C
C
C
C
C
C********&********************************************************************
C*
C* SLERCUTINE GMCDE
C*
C***************************************************************************
C
C SUEROUTINE READS OUTPUT TITLE CARD FOR
EACH GODYS MODIL EATA
C
C
    DATA READ ON FIRST GALL FOR EACH GOLY
C
C
C
C
C
C
C
C
C
C
RETURN
ENE
C
C

```

C
C
C
C
C
C*\#
C*
C* SURROUTINE GSTIF
C*
C\#
C
C
C SUBRCUTINE REAOS CUTPUT TITLE CARD FOR
C EACH EODYS MGOAL STIFFNESS DATA
C
C DATA REAL CN FIRST CALL FOR EACH EODY
C
C
C--m--m-=-ー-ー- READ(NIT,FCRMAT = AG) ANI
C
C
C
C
C
C RETURN
C
C
C
C
C
C
C

```

```

C*
C* SUBROUTINE GOAMP
C*

```

```

C
C
C SUEROUTINE READS OUTPUT TITLE CARD FOR
C EACH EODYS MEDAL OAMPING DAIA
C
C DATA READ UN FIRST CALL FOR EACH ECDY
C
C
C-m-m-m-m- READ(NIT,FORMAT=AG) ANI
C
C
C
C
C
C RETURN
C
END
C
C
C

```

This appendix presents excerpts from Synthesis of Dynamic Systems Using FORMA--Fortran Matrix Analysis, MCR-71-75, Martin Marletta Corporation, Denver, Colorado, May 1971, that explain the subroutines from the FORMA library used in the digital computer program.

Subroutine COMENT reads input comment cards and reproduces each card in the printed output of the computer run. Each comment card may have any keypunch symbol in card column 1 thru 78. A use of COMEN: is to print an explanation of coordinates used in a computer run. Thus, this information is always retained with a run to correlate matrix location numbers with physical coordinates.
R. L. Wohlen

May 1971
Lest Rovision: R. L. Wohlen Sept. 1971

Subroutine INTAPE inftializes a tape (a disk is preferred. See writeup of Subroutine WTAPE.) for the FORMA tape system by writing EOT (end of tape) at the beginning of the tape (disk). All FORMA tape subroutines recognize this EOT as being the end of written data. Each "new" tape (disk) must be initialized with this Subroutine INTAPE to make the tape (disk) compatible with the other FORMA tape subroutines (LTAPE, RTAPE, WTAPE, and UPDATE).

A "new" tape (disk) is defined as a tape (disk) for which it is desired to s:art writing matrix data at the front of the tape (disk). Thus, a "new" tape (disk) could be one with obsolete FORMA matrix data on it as well as one that has never been written on by the FORMA system.

As an example, pertinent statements from a program containing INTAPE could be:

DATA NIT,NOT/5,6/
1001 FORMAT (12A6)
NRTAPE \(=10\)
READ (NIT,1001) IEINIT, TAPEID
IF (IFINIT .EQ. 6HINITIL) CALL INTAPE (NRTAPE,TAPEID)

The input data (starting in card column 1) to this example program would be:
either INITILTXXXX, if the tape is to be initialized. (TXXXX represents the particular tape number used, e.g., T1234);
or NOINIT, if the tape is not to be initialized. The tape identification is not needed.

Subroutine LTAPE lists the matrix headings (see Subroutine WTAPE writeup) written on a FORMA tape (or disk). These matrix headings were written by Subroutine liTAPE and consist of:
\begin{tabular}{|c|c|}
\hline NU. & \(=\) Matrix number on tape; \\
\hline RUN NO. & \(=\) Run number of problem when matrix was written on tape; \\
\hline NAME & \(=\) Matrix name; \\
\hline NROWS & = Number of rows of matrix; \\
\hline NCOLS & = Number of columns of matrix; \\
\hline DATE & = Date when matrix was written on tape; \\
\hline NNZ & - Number of nonzeros (just used in sparse FORMA where only nonzeros are used); \\
\hline PARTITIO & \(=\) Partition number of sparse matrix. \\
\hline
\end{tabular}

Subroutine READ reads a matrix of real numbers (a FORTRAN term for numbers with a decimal point) from either cards or tape into the computier. The matrix is then printed so that these input data are recorded with the answers of a run. A print suppression option is avallable for a matrix read from tape. On option, the matrix read from either cards or tape may be written on a tape (by Subroutine WTAPE).

The first data card read by Subroutine REAl) contains the information to indicate whether cards or tape will be used. The information entered on this card (and subsequent cards for card input) is given below.

\section*{Card Data Input Form}

Required entries are denoted by an \(*\) symbol below. Any other entry is optional.
\begin{tabular}{|c|c|c|c|}
\hline & Card Columns & \begin{tabular}{l}
Format \\
Type (1)
\end{tabular} & Entry \\
\hline \multirow[t]{11}{*}{First Card} & 1-6 & A & *Matrix Name. Will appear in printout. \\
\hline & 7-10 & I & *Matrix Row Size. \\
\hline & 11-15 & I & *Matrix Column Size. \\
\hline & 16-69 & A & Any remarks to further identify the input matrix. \\
\hline & 72 & & \$. Only if the Write-Tape is to be initialized by Subroutine INTAPE. The WriteTape identiftcation will be from card columns 73-78. \\
\hline & 72 & or & Anything other chan \(\$\) is the Write-Tape is not to be initialized. \\
\hline & 73-78 & A & The Write-Tape identification. (e.g., T1234). Use with \(\$\) in card column 72. \\
\hline & 73-78 & or & REWIND. The Write-Tape will be rewound before being used. \\
\hline & 73-76 & or & LIST. The Write-Tape will be listed by Subroutine LTAPE after the matrix has been written on the Write-Tape. \\
\hline & 73-78 & or & Anything else will be ignored. \\
\hline & 79-80 & I or & The Write-Tapo Number. (e.g., 21) Blank if the matrix is not to be written on tape. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & \begin{tabular}{l}
Card \\
Columns
\end{tabular} & \begin{tabular}{l}
Format \\
Type (1)
\end{tabular} & Ent ry \\
\hline \multirow[t]{6}{*}{Middle Cards} & 1-5 & I & *Row Number of matrix elements on card. \\
\hline & 6-10 & I & *Column Number of matrix element in first data field. \\
\hline & 11-27 & E & *First data field with matrix elements. (2) \\
\hline & 28-44 & E & *Second data field with matrix elements. (2) \\
\hline & 45-61 & E & *Third data field with matrix elements. (2) \\
\hline & 62-78 & E & \begin{tabular}{l}
*Fourth data field with matrix \\
elements. \\
(2)
\end{tabular} \\
\hline Last Card & 1-10 & I & *Ten zeroes. \\
\hline Note (1) & \begin{tabular}{l}
ormat Typ \\
Format Typ \\
the fi \\
FORTRA \\
here in
\end{tabular} & \begin{tabular}{l}
llows any \\
llows onl Format Ty for numb eld.
\end{tabular} & \begin{tabular}{l}
keypunch symbol. \\
integer numbers right justified \\
\(E\) allows only real numbers \\
s with a decimal point) any-
\end{tabular} \\
\hline \multicolumn{4}{|l|}{Note (2) Only nonzero elements need be entered.} \\
\hline As an ex following & xample atrix: & input t & broutine READ consider the \\
\hline
\end{tabular}
\[
[\mathrm{Al} * \mathrm{C}]_{3 \times 6}=\left[\begin{array}{llllll}
1 . & 0 . & 3 . & 0 . & 6 . & 5 . \\
0 . & 2 . & 4 . & 0 . & 0 . & 0 . \\
0 . & 7 . & 0 . & 0 . & 0 . & 0 .
\end{array}\right]
\]

This matrix is also to be written on tape number 21 that is to be initialized and identified as T4334. Figure 1 demonstrates how this information could be written on a coding form to facilitate keypunching to cards.
A-7


\section*{Tape Data Input Form}

Required entries are denoted with an * symbol below. Any other entry is optional. Only one card is used for each matrix read.

\begin{tabular}{|c|c|c|c|}
\hline & Card Columns & \begin{tabular}{l}
Format \\
Type (1)
\end{tabular} & Entry \\
\hline & 28-69 & A & Any remarks to further identify the input matrix. \\
\hline & 72 & & \$. Only if the Write-Tape is to be initialized by Subroutine INTAPE. The WriteTape identification will be from card columns 73-78. \\
\hline \(\stackrel{0}{\text { E }}\) & 72 & or & Anything other than \(\$\) if the Write-Tape is not to be initialized. \\
\hline ロ
0
0
0
0 & 73-78 & A & The Write-Tape identification. (e.g., T1234). Use with \(\$\) in card column 72. \\
\hline \(\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}\) & 73-78 & or & REWIND. The Write-Tape will be rewound before being used. \\
\hline \(\underset{\sim}{4}\) & 73-76 & or & LIST. The Write-Tape will be listed by Subroutine LTAPE after the matrix has been written on the Write-Tape. \\
\hline & \[
\begin{aligned}
& 73-78 \\
& 79-80
\end{aligned}
\] & I or & \begin{tabular}{l}
Anything else will be ignored. \\
The Write-Tape Number. (e.g., 21). Blank if the matrix is not to be written on tape.
\end{tabular} \\
\hline
\end{tabular}

Note (1) Format Type A allows any keypunch symbol.
Format Type \(I\) allows only integer numbers right justified in the field.

As examples of tape input to Subroutine Read consider:
Example 1. A matrix named \(A B 2\) with run number of RUN-46 is to be read from tape number 11 into the computer and printed. This matrix is also to be written on tape number 22 that is to be initialized and identified as T4321.
Example 2. A matrix named XYZ4 with run number of TKD is on tape number 13 twice. The first time is at location 29 and the second time is at location 54. It is desired to read the second matrix.

Figure 2 demonstrates how these two examples would be written on a coding form to facilitate keypunching to cards.


Subroutine READIM reads a matrix of integer numbers from either cards or tape into the computer. The matrix is then printed so that these input data are recorded with the answers of a run. A print suppression option is avallable for a matrix read from tape. On option, the matrix read from either cards or tape may be written on a tape (by Subroutine WTAPE).

The first data card read by Subroutine READIM contains the information to indicate whether cards or tape will be used. The information entered on this card (and subsequent cards for card input) is given below.

\section*{Card Data Input Form}

Required entries are denoted by an \(*\) symbol below. Any other entry is optional.

Card
Columns
First Card 1-6


Format Type (1)

7-10
11-15 16-69

A

I
I
A

72

72

73-78

73-78

73-76

73-78
79-80
I
*Matrix Name. Will appear in printout.
*Matrix Row Size.
*Matrix Column Size. Any remarks to further identify the input matrix.
S. Only if the Write-Tape is to be initialized by Subroutine INTAPE. The WriteTape identification will be from card columns 73-78.
or Anything other than \(\$\) if the Write-Tape is not to be initialized. The Write-Tape identification. (e.g., T1234). Use with \(\$\) card column 72.
or REWIND. The Write-Tape will be rewound before being used. LIST. The Write-Tape will be listed by Subroutine LTAPE after the matrix has been written on the Write-Tape. Anything else will be ignored. The Write-Tape Number. (e.g., 21).
or Blank if the matrix is not to be written on tape.
\begin{tabular}{|c|c|c|c|}
\hline & Card Columns & \begin{tabular}{l}
Format \\
Type (1)
\end{tabular} & Entry \\
\hline \multirow[t]{5}{*}{Middle Cards} & 3 1-5 & I & *Row Number of matrix elements on card. \\
\hline & 6-10 & I & *Column Number of matrix element in first data field. \\
\hline & 11-15 & I & *First data field with matrix elements. (2) \\
\hline & 16-20 & I & *Second data field with matrix elements. (2) \\
\hline & \[
\begin{gathered}
\text { etc } \\
76-80
\end{gathered}
\] & I & *Fourteenth data field with matrix elements. (2) \\
\hline Last Card & 1-10 & I & *Ten zeroes. \\
\hline Note (1) For \(\begin{aligned} & \text { F } \\ & \mathrm{E}\end{aligned}\) & \begin{tabular}{l}
Format Ty \\
Format Ty \\
ied in
\end{tabular} & 110ws any 110ws onl 1d. & \begin{tabular}{l}
keypunch symbol. \\
integer numbers right fusti-
\end{tabular} \\
\hline Note (2) On & only nonz & ements \(n\) & be entered. \\
\hline As an e following m & example matrix: & input & Subroutine READIM consider the \\
\hline
\end{tabular}
\[
[A 1 * C]_{3 \times 6}=\left[\begin{array}{llllll}
1 & 0 & 3 & 0 & 6 & 5 \\
0 & 2 & 4 & 0 & 0 & 0 \\
0 & 7 & 0 & 0 & 0 & 0
\end{array}\right]
\]

This matrix is also to be written on tape number 21 that is to be initialized and identified as T4334. Figure 1 demonstrates how this information could be written on a coding form to facilitate keypunching to cards.


Figure 1 Example of Card Input for Subroutine READIM

\section*{Tape Data Input Form}

Required entries are denoted with an * symbol below. Any other entry is optional. Only one card is used for each matrix read.
\begin{tabular}{lll} 
Card & Format & \\
Columns & Type (1) & Entry
\end{tabular}
One Card 1-6

10



7-10

11-15

16-21
22-27
22-25
22-27

A
Format Type (1)

> or
or
*Name of matrix to be read from the Read-Tape.
Zero. The Read-Tape will move forward from its present position and search to the end of the tape. If the matrix is not found upon the first end-of-tape encounter, the tape will automatically rewind and make one more pass. If it is not found on the second end-of-tape encounter, an error message will be printed and the program will stop.
Minus the location number of matrix on the Read-Tape. Tape will be positioned at the beginning of the location specified and then continue as described above for a zero in column 10.
*The Read-Tape Number. (e.g., 11). If positive, the matrix read will be printed in the output. If negative, the matrix read will not be printed in the output.
*Run number of matrix to be read from the Read-Tape. REWIND. The Read-Tape will be rewound before being used. LIST. The Read-Tape will be listed by Subroutine LTAPE. Anything else will be considered as part of the remarks described below.


Note (1) Format Type A allows any keypunch syabol.
Format Type \(I\) allows only integer numbers right justified in the field.

As examples of tape input to Subroutine READIM consider:
Example 1. A matrix named \(A B 2\) with run number of RUN-46 is to be read from tape number 11 into the computer and printed. This matrix is also to be written on tape number 22 that is to be initialized and identified as T 4321.
Example 2. A matrix named XYZ4 with run number of TKD is on tape number 13 twice. The first time is at location 29 and the second time is at location 54. It is desired to read the second matrix.

Figure 2 demonstrates how these two examples would be written on a coding form to facilitate keypunching to cards.


Figure 2 Examples of Tape Input for Subroutine READIM

Subroutine RTAPE reads a selected matrix from tape (disk) into the computer core. The matrix to be selected is identified by the desired run number and matrix name. This procedure is accomplished by searching the matrix headings (see Subroutine WTAPE writeup) until a match with the desired run number and matrix name is obtained and then reading the matrix elements from tape (disk) into the computer core. The search starts from the currer.t position (does not rewind) of the tape (disk) and proceeds to the EOT (end of tape defined in Subroutine WTAPE writeup). If the desired matrix was not found upon reaching the EOT, a rewind is performed and one more search to the EOT is made. If the desired matrix is again not found, (1) an error message is printed, (2) a listing of the matrix headings is printed (see Subroutine L'TAPF writeup), and (3) transfer is made to Subroutine \(Z 2 B O M B\) where the program is terminated.

Subroutine START performs the following operations:
1) Reads Input Card 1 for the run number (any keypunch symbol in card columns 1 thru 6) and the user's name (any keypunch symbol in card columns 11 thru 28).

If the run number is equal to STOP (Card columns 1 thru 4), the run is terminated.

If the run number is not equal to STOP, the run continues in Subroutine START as follows.
2) Reads Input Card 2 for Title Card i. Any keypunch symbols may be used in Card columns 1 thru 72.
3) Reads Input Card 3 for Title Card 2. Any keypunch symbols may be used in Card columns 1 thru 72.
4) Initializes page number as zero for use in Subroutine PAGEHD.
5) Interrogates computer for the date.

Run number, date, page number, user's name, Title Card 1 , and Title Card 2 are transferred. by a COMMON block labeled LSTART for use in other subroutines PAGEHD, PLOT1, PLOT2, PLOT3, and WTAPE.

Subroutine START is used to start each computer run in the FORMA system and will normally be the first subroutine called in a computer program. As an example, pertinent statements from a program using START could be:

1 CALL START

GO TO 1
END

May 1971

Subroutine WRITE writes a matrix of real numbers (a Fortran term for numbers with a decimal point) on paper. A group of up to ten consecutive elements from a row of the matrix are printed on each line. If all of the elements of a group are zero, printing of this line is suppressed.

Each matrix printed begins on a new page. On each page of printout is the page heading given by Subroutine PAGEHD, the name of the matrix, and the row size and column size of the matrix. This is followed by the matrix data. On any line of matrix data the first integer number is the row number of the natrix elements on that line. The second integer number is the column number of the matrix element in the first data field. The next group of real numbers (up to ten) are the values of the matrix elements. This group of matrix elements is given in consecutive column order.

Subroutine WRITIM writes a matrix of integer numbers on paper. A group of up to twenty consecutive elements from a row of the matrix are.printed on each line. If all of the elements of a group are zero, printing of this line is suppressed.

Each matrix printed begins on a new page. On each page of printout is the page heading given by Subroutine PAGEHD, the name of the matrix, and the row size and column size of the matrix. This is followed by the matrix data. On any line of matrix data the first integer number is the row number of the matrix elements on that line. The second integer number is the column number of the matrix element in the first data field. The next group of Integer numbers (up to twenty) are the values of the matrix elements. This group of matrix elements is given in consecutive column order.

Subroutine WTAPE writes matrix data at the end of existing written matrix data on a FORMA tape (disk is preferred, see below). Each set of matrix data consists of two logical records. The first record contains the matrix heading (tape identification, location number, run number, matrix name, number of rows of matrix, number of columns of matrix, date, and the word "dense"). The second record consists of the matrix elements.

A schematic representation of the tape (disk) is given by the following sketch.

where
\(H_{1}=\) Matrix heading of the \(1^{\text {th }}\) written matrix,
\(E_{i}=\) Matrix elements of the \(1^{\text {th }}\) written matrix,
EOT = End of Tape. Data written by Subroutine WTAPE or INTAPE that all FORMA tape subroutines recognize as being the end of written data.

Each vertical line is an end of logical record put on by computer system's routines. The tape is written in binary form as opposed to binary coded decimal ( \(B C D\) ) form.

To find the end of written matrix data, a search is made of the matrix headings until the EOT is found. For this reason, a "new" tape (disk) must be initialized with Subroutine INTAPE so that the tape (disk) contains an EOT. A "new" tape (disk) is defined to be a tape (disk) for which it is desired to start writing matrix data at the front of the tape. (disk). Thus, a "new" tape (disk) could be one with obsolete FORMA matrix data on it as well as one that has never been written on by the FORMA system. When the EOT is found, a backspace operation is done over the EOT, and then the current matrix heading, current matrix elements, and a new EOT is written.

A disk is preferred to a tape for the following reason. Because of the physical separation of the read and write heads on most tape drives there may be tape tolerance problems thus backspacing over the EOT is usually not successful. Instead of ending up positioned in front of the EOT, the write head is of ten positioned in front of the previous matrix elements ( \(E_{n}\) in the above sketch). The current matrix heading will be written over the previous matrix elements. This causes problems later when trying to read the records written on the tape. To alleviate this problem, it is strongly recommended that all FORMA tape subroutines (INTAPE, LTAPE, RTAPE, WTAPE, and UPDATE) use an intermediate device such as a disk. At the start of a computer run, the existing tape should be copied onto the disk by using computer control cards. Likewise, at the end of the run, the disk should be copied back onto tape by using computer control cards.

APPENDIX B -- BASELINE USER-PAK DEFINITION

This appendix presents a listing of the seven subroutines and two functions which comprise the basic user-supplied packages required for any simulation.

:




\begin{tabular}{|c|c|c|c|}
\hline & \[
\stackrel{\rightharpoonup}{\prime \prime}
\] & & + + + + \\
\hline ， & （\％）¢－－－－ & \(\cdots \rightarrow-1\) & ○から \\
\hline \(7 \cdot\) & \(r \rightarrow r\) rrar &  & \(\bigcirc 7\) \\
\hline \(1-1\) & フ A \(1 \rightarrow \rightarrow\) & ＜ 17 & 픋 \\
\hline － & －－－\({ }^{\circ}\) & －－－ & － \\
\hline 4 & ：リ \(11 \times r\) & 619 & － \\
\hline \(\geq\) & － & －Y：－ & \％ \\
\hline & \(\|=<r\|\) & 11.91 & －1 \\
\hline & \(1 \rightarrow+\omega\) & － & \\
\hline & ーッていい。 & －IT & － \\
\hline & ¢ー－－－ & cri & \(\cdots\) \\
\hline & フis & iv \(\boldsymbol{r} \rightarrow\) & \(\bigcirc\) \\
\hline & f－－ 11 & \(\cdots \square\) & \\
\hline & \(\cdots \square\) & \(\because \sum \sim\) & \\
\hline & － 3 －－ & \(\because-N\) & \\
\hline & －＂1：n－i & ヤリ & \\
\hline & 「rrm． & \(\cdots\) & \\
\hline & r－4－1－ & \＃－＋ & \\
\hline & 1－＞？－ & r & \\
\hline & \(\cdots++\) & \(\cdots \cdot\) & \\
\hline & ＋＋＋ & \(\cdots 6\) & \\
\hline & 」－－ & －1 & \\
\hline & \(\sim\) & － & \\
\hline & ＋ & 19．\％＊ & \\
\hline & & －リー & \\
\hline & 0 & CJ & \\
\hline & － & \(1 \times \sqrt{1}\) & \\
\hline & 4 & \(\simeq-\) & \\
\hline & ＊ & 1－～1 & \\
\hline & \(<\) & \(\cdots 6\) & \\
\hline & 17 & \(\rightarrow\) inc & \\
\hline & －1 & 戸いッ & \\
\hline & － & 1 0 O & \\
\hline & \(r\) & ！ & \\
\hline & C & 5 & \\
\hline & 7 & \(\cdots 5\) & \\
\hline & 5 & W & \\
\hline & \(+\) & \(-5\) & \\
\hline & \(\checkmark\) & 10 & \\
\hline & － & & \\
\hline & － & 0 & \\
\hline & & － & \\
\hline & & c & \\
\hline
\end{tabular}



00-0coucosocooocïnconor

```


[^0]:

