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1. Introduction

In the present paper the response of reusable space
shuttle surface insulation panels to convecting random pressure
field are studied. The current design concept for tun= Thermal
Protection System (TPS) heat shield panels of the space shcttle
consist of a relatively thick ceramic tile mounted on a soft
(viscoelastic) foundation, a so-called "strain-isolator",
which in turn is bonded to the primary load carrying metal
structurefl'z) A simplified sketch of a TPS panel is shown in
Fig. 1. The aeroelastic or "flutter" behavior of these panels
has been investigated in Refs. (2,3). We will focus our main
attention on tile panel response problems.

The load carrying stiffened metallic panel is modeled
as an orthotropic plate. The ceramic tile is modeled by
classical thin plate theory while the strain isolator is taken
as a linear elastic Winkler foundationf4) The basic analytical
approach in formulating the governing equations of motion
uses a Rayleigh-Ritz technique. Then, by determining the
relevant energies of the panel components and virtual work
due to the random acoustic pressure, the necessary equations
of motion are obtained by utilizing Lagrange's equation.

The pressure field is considered as a stationary Gaussian
random process for which the cross-correlation function
(and/or cross-spectral density) is known empirically from
experimental measurements. For the numerical calculations

the random acoustic pressure is assumed to be uniform in span-

wise direction and convected as random plane waves in the



streamwise direction. When the Rayleigh-Ritz type solution

is imposed, cross-spectral density of the generalized random
forces is determined. This cross-spectral density is used
directly as an input for frequency domain panel response
calculationsfs's) For the time domain approach, it is necessary
to have time histories of the generalized random forces. For
this purpose, the simulation techniques of random processes

are utilized56'7'8'9) To reduce computation time, Fast

Fourier Transform (FFT) techniques are introducedfs'g)
When the frequency domain analysis is employed, the

response of the panel is determined using standard methods
(10-12)

- from the theory of random processes. By introducing

systematic symplifications in this approach, useful explicit
analytical formulae for'panel response are constructed. These
results are then compared with the results obtained by nore
elaborate techniques such as time domain analysis and finite
element556'13) For particular applications where the simplifying
assumptions are not valid, numerical simulation of structural
response time histories is used56'14) In this case, the panel
equations of motion are solved numerically on a digital

computer in a Monte Carlo sense.

The numerical results include the rms values, time
histories and spectral density of the panel response. Stress
in the tiles is also calculated. These results then will
be compared with the experimental results, which are being

conducted at Langley Research Center, NASA.



2. Analysis

2.1 Equations of Motion

The basic analytical approach in formulating the governing
equations of motion of a multi-component panel shown in Fig. 1

involves determining relevant energies and virtual work52'3) In
Ref. 2 the main load carrying metallic substructure was analyzed

as an orthotropic plate with simply supported edges while in

Ref. 3 the metallic substructure was idealized as an isotropic
plate supported by discrete stiffeners and/or point spring supports.
In the present study, the main metallic substructure is taken as

an orthotropic plate while the ceramic insulation tile is modeled
by the classical thin plate theory. The modeling of the strain
isolator is more difficult énd for more detailed discussion see
Ref. 2. For the purpose of this study, the strain isolator is
represented by a linear elastic Winkler foundation. 1In developing
the governing equations of motion for the multi-component panel

the plate deflection, wM, and the tile deflection, wT, are expanded

in terms of the trial modes
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in which bk kand a; ; are the generalized coordinates for the
x’ Xy
metallic plate and ceramic tile, respectively, Yy 1V are
X

Y
the trial modes of the metallic plate, and ¢i '¢i are the

x Y
trial modes of the tile. After the expressions for elastip
energy, kinetic energy and virtual work are determined for

the multi-component panel shown in Fig. 1, the Rayleigh-Ritz



procedure and Lagrange's equation are utilized to develop

- the governing equations of motion. Since this procedure.

is rather lengthy for the complex structure considered in

this study and the key expressions are available in Refs. 2
and 3, these equations are not included here. The result is a
set of coupled linear ordinary differential equations in
generalized coordinates b, x and a; ; - The coordinate

xy Xy
coupling is introduced through the strain isolator.

2.2 Simplified Response Analysis
For the linear case considered in this paper, response
calculations can be performed either in the frequency or time
domain. For the time domain approach the equations of motion
are solved numerically. To obtain preliminary informqtion,
first we consider a simplified response analysis in the
frequency domain. The treatment follows along the conventional
lines of linear structures and stationary random process
inputs whose correlation function (and/or power spectral
density) is determined from experimental measurementsss'lo'll'lz)
In this simplified approach, it is assumed that the mass
distribution of the stiffened elastic panel can be represented
by an equivalent evenly distributed mass and the addition
of ceramic tiles merely increases the total mass of the panel.
Furthermore, the tiles are assumed to be rigidly attached to
the metallic substructure and they move according to the
motion of the metallic substructure. Then, the panel deflection

response spectral density can be written as



S, wex,y) = zj"- ﬁwj(X.y)wk(x,y)
Hj(w)Hk(-w)Sjk(w) (3)

in which Sjk(m) is the input cross-spectral density of gen-
eralized random forces (see Sec. 2.3), Hj(m) is the transfer

function

1
. (4)

2
. g ™= U + 2 i o
MJ[mJ ") lewa]
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with Mj beiig the generalized mass, Cj the modal damping
coefficients, and y frequencies in rad/sec. The mean square
panel deflection response is determined from

MZ

wio(x,y) = [7S (w,x,y)d (5)
in which Sy is taken to be one-sided.

For the cases when most of the value of the integral
given in Eq. 5 comes from the vicinity of the natural fre-
quency w3 and the input cross-spectral density Sij(w) is
slowly varying in these vicinities, the white-noise idealization
can be assumed to the input spectral density. Furthermore,
by taking the damping in the structure to be relatively small
and the natural frequencies well separated so that intermodal.
coupling can be neglected, a simplified ekpression for the

mean square response if obtained.

woo(x,y) ~ Ao ) (6)

One sometimes could make a further assumption that the

input random pressure loading is perfectly correlated over the '



panel surface. This assumption is reasonable when the
churacteristic length associated with the random input source
is large compared to the panel length and width. 1If the
response is dominated by a single rode (both due to random
pressure and the static load), the summation in Eg. 6 can be

ignored and the result written as

Mo v3 x9S (w)) /14, dxay)?
X¥) =7 —73 7 z (7
mw ity [//y]dxdy]

in which Sp:w) is the random pressure spectral density, and m
is the mass per unit area. If we desire stress rather than
deflection, then it can be shown that analogous to Eq. 7 one

obtains

" L o1 tuyIS (vg) 11y axdy)?
o (x,y) = % 73 2 3
m Wity [ffwldxdy]

(8)

-

in which 9y is the stress due to w = wl.

It should be noted that if for a particular application
the simplifying assumptions which lead to the analytical
results presented in this section must be abandoned, numeri-
cal simulation of structural response time histories may be

the method of choicefe'ls)

2.3 Simulation of the Generalized Random'Forces
The generalized random force due to the acoustic noise
pressure acting on the (m,n) tile can be expressed as
a b

Q™ (e) = £ T g TE™(t,x,y) 6, (x,y) dxdy (9)
j J

in which p™ is the random noise pressure at -he (m,n) tile.

Taking the mathematical expectation of Eg. 9, the correlation
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of the generalized random force (autocorrelation if j = k
and cross-correlation is j # k) for a (m,n) tile is

b a b

Ry (1) = f 100 TR e ) (10)

¢j (xl 'yl) bx (xz .yz) dxldxzdyldYZ

in which ¢ = X, = Xn =¥) " ¥y T =t -ty and R (t,E,n)
is the autocorrelation function of pmn(t,x,y).

Applying the Wiener-Khintchine transform to Eq. 10,
the cross-spectral densities (spectral density if j = k)

of the generalized random forces are

a b a b
mn - T T T_.mn
Sjk(m) {)‘ g é é Sp (m:E:n)¢j(xl,Y1)
(11)
¢k(x2y2)dxldyldx2dy2

in which Sgn(w,g,n) is the pressure'cross-spectral density
(the Wiener-Khintchine transform of R (t,E,n)).

The statistics of random pressure p (t,x,Y) corres-
ponding to rocket engine noise or turbulent boundary layer
are usually determined experimentglly. Following Refs. 8, 14.
the cross-spectral density Sgn(w,i,n) can be expressed in the
following general form

Sp"(w,E,m) = S, () [p(E,0,u) | [p(0,n,u) o EBE

0 s w < =

where Sp(w) is the spectral density of random pres. : »
fluctuations, |p(£,0,w)| and |p(0,n,w)| are the spc‘ .al
correlation coefficients corresponding to streamwise and

spanwise directions, respectively, and u, is the convection



velocity. The correlation coefficients for turbulent boundary
layer can be expressec at
~a, (w,u ) | €|
lp(E,0,w)| =e * "€ (13)

~a,(w,u.) |n]
Ip(ooﬂrw) =e . (14)

where the parameters ay and a, are determined experimentally.
Because the absolute values [£| = [x; = x,| and |n]| = |yl - y2|
appear in the exponent of Egs. 13 and 14, the integration in
Eq. 11 has to be carried out over two ranges for both £
and r,, i.e., for Xy > Xy, X < X, arnd for Y1 > Y30 ¥y < ¥y

Time histories of the generalized random forces can be
deternined from Eq. 9 by simulating the random pressure

(t,x,y) as a multidimensional process in space-time domain(7’8)

Nl N N3
mn _ 2 1/2
p (t,x,y) = /2 i 15& lr 1[S 2w ,li,kz )AwAklAkzl (15)

. cos(u,t + kljx + kv + ¢ijr)

In Eq. 15, Sgn(w,klkz) is the three-dimensional spectral
density (the Wiener-Khintchine transform of Sgn(w,ﬁ.n) on
£ and n) corresponding to random pressure pmn(x,y,t), i.e.,
-3 (kE+k,n)

3 é é Sp(w.E;n)e d&dn, (16)

4
(2m)

mn &
Sp (w'kl'k2) =

k2u being the upper cutoff frequency and wave numbers,
respectively, Vijr are the random phase angles uniformly

distributed between 0 and 2n. From Egs. 12,13,14 and 16,



the three-dimensional spectral density is

sp(w)cn1 (w.uc)m2 (w.uc)

mn
S (w,k k,) = ]
P12 pftadw,uy) + w/ug kD) TS w,uy) + k3]

(17)
On substituting the simulated random process from Eq. 15

into Eq. 9, the generalized random force can be expressed

as
Q™ (t) = (2)1/2 gl(cm" cos w,t -~ H'. sin w,t) (18)
8g i=1 sgi i sqi %1
where
N2 N3
mn mn
G = I I A (w,,ky./k, )(B__._COS . _.
sqi j=1 r=1 i’"1l3'2r sgjr jri
(19)
= D sin . ._.
sqgjr g f o !
N2 N3
mn _ mn .
Hoqi = I L AT (05K g0kpp) (Bggyy SIN @ypy
j=1 r=1
(20)
+ Dsqu cos Piri
mn _ (eln i 1/2
Bsqu = Usqur - vsjvqr (22)
Dsqu = Uqrvsj + Vqrusj (23)
ar
Usj = é cos kzjx¢s(x)dx (24a)
- b'r
Uqr = é cos quy¢r(y)dy (?4b)
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a
V’j = éT sin k2j8¢s(x)dx (24c)
- b'r
Vqr = é sin k3qy¢r(¥)dy (244)

For the purpose of this study, the trial modes of the
individual ceramic tiles were taken to be those of a free-

]
free beam

¢B(x) =1, s =1

= /3 (1 - 2x/aT).
(25)

= cosh Bsx + cos Bsx - as(sinh Bsx

+ sin Bsx), s = 3,4 ...
where Bs = 0.0,0.0,4.73,7.85, ...; ag = 0.9825, a, = 1.0008,

ag = 1.0000, .... From Egs. 24 and 25, it can be shown that

= 1 _ o s "
Usj < (-1 njc'x=a - (-1) o'sss"jc|x=a
Bs 2j T T

¥ njc|5c=0 * “sBs"1c|x=ol

(26)
" where njc = cos k2jx and a prime indicates derivative. The
values for Uqu vsj and Vqr can be okttained in a similar
fashion by appropriately adjusting the functicn p and the
limits of integration. It should be noted that when s = 2,
Eq. 26 need to be multiplied by /3.

An alternative method to generate time histories of
generalized random forces is to utilize the expression for the

cross-spectral density given in Eg. 11, the simulation pro-

cedures of multivariate random processes, and the Fast Fourier
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Transform (FFT; algorithm!7'8'9) Then, the generalized

random force can be simulated directly as

I N
M (e) = Re(200 /2 B} B leg (0|
-i[(6;_(w ) + @__] . i2nrk/N
e Isr sr’ g 1

k=0,1...,N,-1 (27)

1"
in which Re denotes the real part an.

1 Im[tjs(wr)]
Relt; (w )] (28)

ejs(wr) = tan

The elements, tjs' of the lower triangular matrix [T]
can be cc*i:aed from the cross spectral density matrix (8™

given in Eg. 11 in the following fashion

(s™) = (ry)(r) (29)

where the asterisk indicates the complex conjugize and a

prime denotes matriy transposition.

2.3.1 Spatially Uniform Pressure
Consider the acoustic pressure acting on the panel to
be uvniformly distributed with respect to spatial coordinates
(x,y) and varying randomly in time. For this case, cdue to the
orthogonality principle, only the first tile mede ccntribute..
to the generalized random force. Then the cross-spectral
density of the generalized random force reduces to

o ()

Sjk

2. 2_.mn T =
aTbTSp (w) j =k =1 (30)

0 otherwise
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and the time history of the generalized random force can be

simul:.ted from
M (t) = abvE Ll Is™ () 001l
j - Spp e 141 0p Wil
cos(wzt + o;) for j =1 (31)

= 0 otherwise

2.3.2 Convected Random Pressure

Consider the acoustic pressure to be uniform in the
spanwise direction and convected as random plane waves in the

~

streamwise direction. The cross-spectral density in this case

can be expressed as(ls)

sy (€,0) = ST () expliut/uy) (32)

in which g is the convection speed of the random plane waves.

From Egs. 11,25 and 32, it can be shown that

mn, . _ mn 2.2 .
in which
= 77k i k
ij(w) = ICIC + IsIs (342)
K., W) = 1I1¥ - 137% (34b)
jk s’ c c’s
3j - " ''a w 'la 4 4
158 {)‘c,sd)j'o'r _ Aé'stbj i /(;3j o)
N, = cos(ax/a,,), A\ = a3sin(ax/a )
o % T'" "s ¢ T (35)
A" 2 o w 3
g = 51n(0tx/aT) ’ As = -0 ~“cos (o x/aT)
withao = —aT/U and a prime indicating a derivative (' = d/d(x/aT)).

It should be noted that when -
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Mode j symmetric, mode k antisymmetric, ij =0

Mode j symmetric, mode k symmetric, Kjk 0

Mode j antisymmetric, mode k antisymmetric, Kjk =0
and ij = ka, Kjk = - Kkj' Then, the time histories of the
generalized random forces due tc convected pressure can be

generated from Egs. 27 and 33.

2.4 Response Simulation

For the time domain approach, the gover..ing differential
equations of motion are combined with the time histories of
the generalized random forces given in Egs. 18 or 27.
Utilizing a step-by-step temporal numerical integration and
modal expansion for panel and tile deflections presented
in Egs. 1 ar. 2, time histories of wM(x,y,t) and WT(x,y,t)
are determined. By assuming the response process to be
ergoéic, the mean square response can be obtained using the
temporal average. For example, the mean square response

of the metallic panel deflections is

—2 T
Wwx,y) = & rPwMt,x,y)) 2at (36)
(o]

= T
in which To is the sample duration. The panel deflection
response spectral density, Sw’ can be calculated utilizing
the Fast Fourier Transform (FFT) algorithm on the response
history wM(x,y,t). The numerical estimate of spectral density

at frequency w is

2 2

where
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Yw(x,y,wk) = :;: wM(x,y,tn)exp(-izﬁkn/N)
k=1,2,..,N (38)
with At being the time increment and N the number of simulated
points.
The stress response in the metallic plate and the supporting
stringers can be determined from the information on the curvature
corresponding to defliection wM(x,y,t). For example, the

maximum stress in the stringer can be estimated from

2 M
* a w
g =
sT EMd axz (39)

where d* is the maximum distance between the centroid of the
cross-section and outer edge of the stringer and EM is the
elastic modulus of the stringer. Similarly, the maximum
bending stress in the tile is conservatively estimated by

assuming the tile bonds with the metallic plate,

ty 2T
_ T 3w
‘rite T Fr 7T 7 G

where tT and ET are thickness and elastic modulus of the tile,

respectively. The normal stress in the tile can be calculated

ogile = =S - W) : (41)

in which EI and tI are the elastic modulus and thickness of

the strain isolator, respectively.
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3. Numerical Results
3.1 Simplified Frequency Domain Analysis

As an example consider an orthotropic panel (with and
without tiles) as shown in Fig. 1. It is assumed that tiles
follow the metallic panel motion and are rigidly attached to
the metallic panel. The physical data for this panel is
given in Table I. Consider this panel to be loaded by the
acoustic random pressure for which the suggested power spectral

density is given in Fig. 2.

3.1.1 Uniform Pressure
Assume the acoustic noise pressure to be fully correla-
ted in space over the panel surface. The aluminum panel and

the. tiles have the following properties: Ey = 10.5x106 psi,
X ,

*
E, = 34 x 103 pPsi, ag = 6 in, a = 8aT, a = 37 in . (distance

T

*
between the line supports), bT =6 in, b = 3bT' d = 0.972 in

(maximum stringer depth measured from the neutral axis of

plate-stringer combination) m,, = 0.0083/386 (1b-sec2/in3),

M
Pp = 9 1b/ft3. The mass, the natural frequencies, and the
respective pressure spectral densities at these frequencies,
corresponding to the first streamwise bending mode are

m, = 0.0083/386 (1b-sec® /in”) , w, = 716 rad/sec,

Sp(wl) = 2.5 x 10-4(psi)2-sec/rad (no tiles);

My,p = 0.01351/386 (1b-sec?/in’) , w, = 571 rad/sec,
Sp(wl) = 2.78 x 10-4(psi)2-sec/rad (1" tiles);
Mmy,p = 0.01663/386 (1b-sec?/in3), w, = 502 rad/sec,

Sp(wl) = 2.80 x 10-4(psi)2-sec/rad (1.6" tiles);
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My,q = 0.02030/386 (lb-sec’/in’), w, = 452 rad/sec,

Sp(ml) = 2.95 x 10" 4(si)%-sec/rad (2.3" tiles). The panel
shown in Fig. 1 has an overhang of 5.5 in at both ends. The
approximata modes that are chosen for the simplified frequency
domain analysis correspond to the panel length between the
line supports, 1€, , a* = 37 in. It is assumed that the
response is dominated by the fundamental vibration mode so
that Egs. 7 and 8 can be applied. The response calculations
are performed first by assuming the panel to be free at the

edges y = 0,b and simply supported along the line supports. ’

Corresponding to these support conditions, the first natural

panel vibration mode can be taken as

: - wl(XIY) = 1 v sin ll’%(.) (42)
a

Assuming the same free support boundary conditions at the edges

y = 0,b, but clamped supports along the line supports, the

first vibration mode can be approximated by

wl(x,Y) = 11 - cos 225)

a

(43)

Then, utilizing these conditions and Egs. 7 and 8, the root
mean square response can be determined. The rms values of
deflection, stringer stress and stringer strain are shown

*
in Table II at the middle of the panel, i.e., y = b/2, x = a /2.

3.1.2 Convected Pressure

Consider the convected acoustic random pressure characterized

by the cross-spectral density of the following form(IS)
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Sp(w,E) = Sp(w) cos ﬁ; (44)

Then, the effect of the spatial correlation can be included
by multiplying Egqs. 7 and 8 by the following factor
a* a*

W
R2 ) £ g COSucbﬁ_' xz)wl(xl)wl(xz)dxldx2

a* 2 .
s wl(x)dx]
)

Substituting Eqs. 42 and 43 into Eq. 45 and integrating,

we obtain *

(n/a*)4(l + cos %?—)

R¢ = g (46)

20(1/a*) *- (w/u_) *1° .

for free-simple supports, and
2
*
2 2 wa* Yc usas v 2

R® = (47)

(1 - cos —) (— - )
2 uc

a* W (a%y)? - (2nucf2

for ffee-clamped supports. The values for the reduction
factor, R, corresponding to the case where u. is equal to the
speed of sound at the sea level, i.e., u, = 13,210 in/sec,
are given in Table III. The rms values of deflection,
stringer stress and stringer strain due to a convected

random pressure are shown in Table 1IV.

3.2 Simulation Analysis
3.2.1 Assumed Sound Pressure Level
Space shuttle panel response calculations were per-
formed in time domain due to acoustic sound pressure near the
base of the orbiter at shuttle lift-off. The generalized
random forces were generated in time domain using Egs. 27

. mn
and 33. The sound pressure spectral density Sp (w) is given
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in Fig. 2. It is assumed that each tile has an identical
sound pressure spectral density, i.e., Sgn(w) = sp(w). Thus,
in Eq. 33 ap is replaced by a and bT by b. Numerical compu-
tations are limited to four streamwise (lengthwise) modes
and one spanwise (widthwise) mode. To simulate the transla-
tional elastic supports in the spanwise direction (Fig. 1),
twenty points at x = 5.5 in and x = 42.5 in across the panel
were chosen. At each point an elastic translational spring

with stiffness of 1 x 104 l1b/in was assumed to be attached.

/
Simulation of the generalized random forces was accomplished

utilizing the following data: u, = 13,210 in/sec, N, = 512,

1
w, = 2mx 1000 rad/sec. It was assumed that damping in each
mode was the same.

"\ ‘The simulated time histories of the generalized random
forces corresponding to convected random sound pressure are
given in Ref. 6 for the first four free-free beam vibration
modes. A portion of the deflection response history at the
middle of the panel to which the 2.3" ceramic tiles are

attached is given in Fig. 3 where the nondimensional time,T,

is - W

T = t(Dx/ma“‘)l/2

The root mean square response corresponding to panel deflection,
stress and strain in the stringer at x/a = 0.5 and y/b = 0.5

is presented in Table V for a combination of several tile
thicknesses and damping coefficients. The normal stresses

in each tile (Eq. 41) along the centerline cof the panel arec

shown in Fig. 4.
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3.2.2 Experimental Sound Pressure Level

Input random sound pressure spectral and cross-
spectral densities were measured at the Langley, NASA,
progressive wave acoustic tunnel. These measurements were
obtained for 140 dB, 150 dB and 160 dB over-all sound
pressure levels., Typical results of the pressure spectal
density at the middle of the panel at 150 dB and 160 4B levels
are shown in Figs. 5 and 6. The experimental results
indicated nesignificant decay in the pressure spectral density
with respect either to streamwise of spanwise spatial separa-
tions. For the purpose of this analytical study, it was
assumed that the random pressure is uniform in spanwise
di;ection and convected as random plane waves in the stream-
wise direction. Utilizing the pressure sﬁectral densities
given in Figs. 5 and 6, the generalized random forces were
generated in time domain from Egs. 27 and 33.

In Fig. 7, the strain response time history in the
stringer at x/a = .5 and y/b = .5 is shown for a panel with
the 2.3" tilec attached corresponding to 160 dB input.
Similar results are presented in Fig. 8 for a panel with 1"
tiles and pressure input of 150 dB level. = The root mean
square response of panel deflection, stringer stress and
stringer strain is given in Tables VI and VII corresponding
to 150 dB and 160 dB inputs, respectively. The stringer
strain spectral densities at the middle of the panel are
shown in Figs. 9 - 14 for various cocmbinations of damping -

and tile thickness. A portion of stringer strain response
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time history at x/a = 0.3 and y/b = 0.5 is shown in Fig. 15.
The stringer strain spectral density corresponding to this

time history is given in Fig. 16.

4. Conclusions and Recommendations for Future Work

A simple analytical model which represents the dynamic
characteristics of the surface insulation panels for the
space shuttle has been developed. Response calculations
were performed utilizing a simplified analysis in the
frequency domain and a simulation procedure in the time
domain. The results indicate that the simplified spectral
density approach is sensitive to the type of vibration mode
chosen. It tends to underestimate the response for free-
fixeg mode and to overestimate the response for free-simple
mode when compared to the results obtained by the time
domain simulation procedure.

The computer time for the simulation analysis is
almost negligible. For example, it takes about one minute
on the IBM 360/91 to perform one set of calculations. This
includes simulating the generalized random forces, numerically
integrating the equations of motion, determining the tesponse.
root mean square values and the response spectral densities.

To improve upon the numerical results, the following
recommendations for future work are suggested:

) I Allow the random sound pressure to vary spatially in
both the spanwise and streamwise directions. (Include spatial

correlations.)
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Include a possible nonuniformity in the transverse
elastic supports.

Include torsional restraints in modeling the elastic
supports.

Model the strain isolatof as a nonlinear material,.
Determine panel response due to boundary layer turbulence
during the maximum flight dynamic pressure including the

effect of fluid-structure interaction (aeroelasticity).
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Table I

Physical Parameters for RSI Panels

Tile Isolator
Ep, psi 24 ¢ 30 x 10° Exze P21 13 & 20
tT' in 3 1, 1.6, 2.3 tI' in 0.16
Py, ¥/t 9 -
ame in 6
bp, in 6

Metallic Panel

Eys Psi 10.5 x 10° a, in 48
Yy 0.33 b, in 18
pys #/in’ 0.1 a*, in 37
Dx' #$-in 220,000
Dy' $-in 31
ny, #-in 9812 or 3300
Dy, #-in 9
Outer fiber 0.972

location for the
stringer from
neutral axis, in
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Reduction Factor, R, Due to

Spatial Correlation

Tile Thickness (in) | R
First Mode Free-simple
Frequency (rad/sec) support

R
Free-fixed
support

No tiles
w= 714
ty =1

w = 572
tp = 1.6
w = 503
tp = 2.3
w = 452

0.912

0.941

0.954

0.960

0.936

0.956

0.968

0.574
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Fig. 1. Model for a Surface Insulation Panel (Space Shuttle)
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Fig. 5. Experimental Pressure Spectral Density (150 dB)
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