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1. Introduction

In the present paper the response of reusable space

shuttle surface insulation panels to convecting random pressure

field are studied. The current design concept for tt, ,,F^ Thermal

Protection System (TPS) heat shield panels of the space shuttle

consist of a relatively thick ceramic tile mounted on a soft
I

(viscoelastic) foundation, a so-called "strain-isolator",

which in turn is bonded to the primary load carrying metal

structure^ l ' 2) A simplified sketch of a TPS panel is shown in

Fig. 1. The aeroelastic or "flutter" behavior of these panels

has been investigated in Refs. (2,3). We will focus our main

attention on Cie panel response problems.

The load carrying stiffened metallic panel is modeled

ti,
	 as an orthotropic plate. The ceramic tile is modeled by

classical thin plate theory while the strain isolator is taken

as a linear elastic Winkler foundation ^ 4) The basic analytical

approach in formulating the governing equations of motion

uses a Rayleigh-Ritz technique. Then, by determining the

relevant energies of the panel components and virtual work

due to the random acoustic pressure, the necessary equations

of motion are obtained by utilizing Lagrange's equation.

The pressure field is considered as a stationary Gaussian

random process for which the cross-correlation function

(and/or cross-spectral density) is known empirically from

experimental measurements. For the numerical calculations

the random acoustic pressure is assumed to be uniform in span-

wise direction and convected as random plane waves in the
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streamwise direction. When the Rayleigh-Ritz type solution

is imposed, cross-spectral density of the generalized random

forces is determined. This cross-spectral density is used

directly as an input for frequency domain panel response

i	 calculations^5'6) For the time domain approach, it is necessary

to have time histories of the generalized random forces. For

!	 this purpose, the simulation techniques of random processes
i

are utilized! 6 '
7
'" 9) To reduce computation time, Fast

i	 Fourier Transform (FFT) techniques are introduced!8'9)
f

When the frequency domain analysis is employed, the

response of the panel is determined using standard methods

j	 from the theory of random processes^l0-12) By introducing

systematic symplifications in this approach, useful explicit

analytical formulae for panel response are constructed. These

results are then compared with the results obtained by more

,elaborate techniques such as time domain analysis and finite

elements !6,13) For particular applications where the simplifying

assumptions are not valid, numerical simulation of structural

response time histories is used 
!6,14) In this case, the panel

equations of motion are solved numerically on a digital

computer in a Monte Carlo sense.

The numerical results include the rms values, time

histories and spectral density of the panel response. Stress

in the tiles is also calculated. These results then will

be compared with the experimental results, which are being

conducted at Langley Research Center, NASA.

1
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2. Analysis

2.1 Equations of Motion

The basic analytical approach in 'cormulating the governing

equations of motion of a multi-component panel shown in Fig. 1

involves determining relevant energies and virtual work 
!1,3) 

In

Ref. 2 the main load carrying metallic substructure was analyzed

as an orthotropic plate with simply supported edges while in

Ref. 3 the metallic substructure was idealized as an isotropic

plate supported by discrete stiffeners and/or point spring supports.

In the present study, the main metallic substructure is taken as

an orthotropic plate while the ceramic insulation tile is modeled

by the classical thin plate theory. The modeling of the strain

isolator is more difficult and for more detailed discussion see

Ref. 2. For the purpose of this study, the strain isolator is

represented by a linear elastic Winkler foundation. In developing

the governing equations of motion for the multi-component panel

the plate deflection, wM , and the tile deflection, w T , are expanded

in terms of the trial modes

wM = 
x ky b k 

x 
k 

y 
(t) 

^kx 
(x) sky (Y)	 (1)

wT = E	 E ai i {t) ^ i (x) ^ i (y)	 (2)

ix iy x y	 x	 y

in which b  kand ai i are the generalized coordinates for the!
x Y	 x y

metallic plate and ceramic tile, respectively, ^k 1^k are
x y

the trial modes of the metallic plate, and ^i 4 i are the
x y

trial modes of the tile. After the expressions for elastic

energy, kinetic energy and virtual work are determined for

the multi-component pane]. shown in Fig. 1, the Rayleigh-Ritz

;a

1



1 ;

4.

procedure and Lagrange's equation are utilized to develop

the governing equations of motion. Since this procedure,

is rather lengthy for the complex structure considered in

this study and the key expressions are available in Refs. 2

and 3, these equations are not included here. The result is a

set of coupled linear ordinary differential equations in

generalized coordinates b k k and a i i	 The coordinate
X y	 x y

coupling is introduced through the strain isolator.

2.2 Simplified Response Analysis

For the linear case considered in this paper, response

calculations can be performed either in the frequency or time

domain. For the time domain approach the equations of motion

are solved numerically. To obtain preliminary information,

first we consider a simplified response analysis in the

frequency domain. The treatment follows along the conventional

lines of linear s'Cructures and stationary random process

inputs whose correlation function (and/or power spectral

density) is determined from experimental measurements^5,10,11,12)

In this simplified approach, it is assumed that the mass

distribution of the stiffened elastic panel can be represented

by an equivalent evenly distributed mass and the addition

of ceramic tiles merely increases the total mass of the panel.

Furthermore, the tiles are assumed to be rigidly attached to

the metallic substructure and they move according to the

motion of the metallic substructure. Then, the panel deflection

response spectral density can be written as
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Sw (w,x,Y) = j k ^
j
 (x,Y)yk(x,y)

Hi (w)Hk (-w)S jk (w)	 (3)

in which S jk (w) is the input cross-spectral density of gen-

eralized random forces (see Sec. 2.3), H i (w) is the transfer

function

H i (w)	 1	 (4)
Mi Iw 

3
- w + 2 i^ jww 

J l

with M
D 

bei •ig the generalized mass, ^ j the modal damping

coefficients, and w frequencies in rad/sec. The mean square

panel deflection response is determined from

2w 	
(x,Y) = f oo s (w, x ,Y) dw	 (5)

in which Sw is taken to be one-sided.

For the cases when most of the value of the integral

given in Eq. 5 comes from the vicinity of the natural fre-

quency w  and the input cross-spectral density S ij (w) is

slowly varying in these vicinities, the white-noise Idealization

can be assumed to the input spectral density. Furthermore,

by taking the damping in the structure to be relatively :mall

and the natural frequencies well separated so that intermodal

coupling can be neglected, a simplified expression for the

mean square response if obtained.

M2	 n	 j (x,Y)
w	 (x, Y)	 SJJ

 (W j)(6)4 
M,w]C J

One sometimes could make a further assumption that the

input random pressure loading is perfectly correlated over the
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panel surface. This assumption is reasonable when the
i

ch"recteristic length associated with the random input source

is large compared to the panel length and width. If the

response is dominated by a single rrode (both due to random

pressure and the static load), the summation in Eq. 6 can be

ignored and the result written as

M2 	 ^1( x,y) S (w l ) [!lV^ idxdy] 2
w (x ,Y) =	 (7)

•	 m w l ^ l	 UPP1dxdy]

in which Sp ,w) is the random pressure spectral density, and m

is the mass per unit area. If we desire stress rather than

deflection, then it can be shown that analogous to Eq. 7 one

obtains

-2	 Qi	 t l( x •Y) S (w	 [ffdxdy]2

Q (x,Y) _	 (8)
4	 m2wltl	 [ff^2dxdy]

i

in which a 1 is the stress due to w = ^1.

It should be noted that if for a particular application

the simplifying assumptions which lead to the analytical

results presented in this section must be abandoned, numeri-

cal simulation of structural response time histories may be

the method of choice !6,16)

2.3 Simulation of the Generalized Random Forces

The generalized random force due to the acoustic noise

pressure acting on the (m,n) the can be expressed as

a b

	

QMn (t) _	 T	
Tpmn 

(t,x,y) ^^ (x, y) dxdy	 (9)
J

in which pmn is the random noise pressure at -he (m,n) tile.

Taking the mathematical expectation of Eq. 9, the correlation
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of the generalized random force (autocorrelation if j = k

and cross-correlation is j # k) for a (m,n) the is

a b a b
R jk (T) - oT c!T f	 f Rp (T &,n)

Y x1,Yl)^k(x2,y2)dx1dx2dyldy2

in which	 = xl - x2 ,n = Y l - Y2 , T = t l - t 2 , and Rp (T,^,n)

is the autocorrelation function of pmn(t,x,y).

Applying the wiener-Kiiintchine transform to Eq. 10,

the cross-spectral densities (spectral density A.f j = k)

of the generalized random forces are

a b a b
S^k(w) = f	

oT
o T f Sp (w,^,n) ^ j (xl,Yl)

(11)

^ (x2'2)dxldyldx2dY2

in which SP (w,^,n) is the pressure cross-spectral density

(the Wiener-Khintchine transform of RP (T,^,n)).

The statistics of random pressure pmn
(t,x,y) corres-

ponding to rocket engine noise or turbulent boundary layer

are usually determined experimentally. Following Refs. 8, 14.

the cross-spectral density SP (w,S,n) can be expressed in the

following general form

S mn (w, ^ ► n) = Sp (w) I P (^,O, w ) I I P (O,n,w)I e-
iWVUc

0 s w < m

where S p (w) is the spectral density of random pre:_

fluctuations, 1p(^,O,w)I and 1p(O,n,w)I are the sF,,.--31

correlation coefficients corresponding to streamwise and

spanwise directions, respectively, and u  is the convection

(10)
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Velocity. The correlation coefficients for turbulent boundary

layer can be expressed at-

-al(W,uc)I^I
IP(& ► O , w )1	 a	 (13)

IP(O,rl,w)	 = e 
-a2(w,uc)InI	

(14)

where the parameters a l and a2 are determined experimentally.

Because the absolute values I&I = Ix l - x2   and InI = IY l - Y2 I

appear in the exponent of Eqs. 13 and 14, the integration in

Eq. 11 has to be carried out over two ranges for both &

and r,, i.e., for x 1 > x 2 , x1 < x2 and for yl > Y2' y l < Y2'

Time histories of the generalized random forces can be

deterrlined from Eq. 9 by simulating the random pressure

p
Mn

(t,x,y) as a multidimensional process in space-time domain (7,8)

N1 N N3

	

pmn (t,x,y) = 32 i
Z lj 2 N3[ Sp wi'kl.1k2r)Aw 4 iAk 2 ] 1/2	(15)

. cos (w i t + k lj x + k
2ry + 'Pijr)

In Eq. 15, Sp (w,k l k 2 ) is the three-dimensional spectral

density (the Wiener-Khintchine transform of SP (w,^,n) on

and n) corresponding to random pressure p
mn

(x,y,t), i.e.,

mn	 4	 CO
	

-^(k,E+k2n)
,k l ,k 2 ) =	 2 f IS (w,^,n)e	 d^dn,	 (16)

P	 (2n) o o p

6w = 2w u/N11 Ak 1 = 2k lu/N 2 , Ak 2 = 2k 2u/N 3 with wu,klu and

k2u being the upper cutoff frequency and wave numbers,

respectively, ;,; ijr are the random phase angles uniformly

distributed between 0 and 27. From Eqs. 12,13,14 and 16,

1
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V
the three-dimensional spectral density is

S (w)a ( w ,u ) a ( w ,u )
Sp (w,k I k 2 ) =

	

	
1 	 3

IT [a i (w,u c ) + (w/uc +k l ) ) (a I (w,uc ) + k2 

(17)	 J

On substituting the simulated random process from Eq. 15

into Eq. 9, the generalized random force can be expressed

as

N
Qsq(t) _ (2) 1/2 l El ( G sgi cos w i t ^- Hsg i sin w i t)	 (18)

where

Gsq 2 3i	 E	 E A (Wilk lj,k2r)(Bsgjr cos 'Pjri
j=1 r=1

(19)

- Dsgjr sin `'jri

Hsg 2 3

	

i = E	 E A ( w i , k lj , k 2r ) ( Bsgjr sin 'Pjri
j=1 r=1

(20)

+ Dsgjr cos 'Pjri

Amn(w i` k lj' k 2r ) _ IS pn(Wilklj,^2r)6wAklAk211/2	 (21)

Bsgjr = U
sj Ugr - Vsj Vgr	 (22)

Dsgjr = U
grVsj + VgrUsj	 (23)

a
U	 = f cos k xm (x)dx	 (24a)

	

sj	 o	 2j s

b
Uqr = f cos k^ q" r (y)dy	 (24b)
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a
Vsj - f sin k 2j xm s (x)dx	 (24c)

b
Vqr = oT sin k 3gyo ^,,, ( y ) dy	 (24d)

For the purpose of this study, the trial modes of the

individual ceramic tiles were taken to be those of a free-

free beam

0 a (x) = 1,	 s = 1

33 (1 - 2x/a T ) ,	 s = 2
(25)

= cosh 6 
S 
x + cos s 

s x - a s (sinh a s 
x

+ sin 6 sx), s = 3,4 ...

where B s = 0.0,0.0,4.73,7.85, ...; a 3 = 0.9825, a 4 = 1.0008,

1	 a5 = 1.0000, .... From Eqs. 24 and 25, it can be shown that

Usj = S
	

4 [(-l) s n 
c x=aT- (-1) sa s8 s rl x=aT

^	 s	 2j

+ njc Ix=O + as Ss n jc 
I x

=O ]	 (26)

where njc = cos k 2j x and a prime indicates derivative. The

values for Uqr) Vsj and Vqr can be oLtained in a similar

fashion by appropriately adjustin g, the functicn n and the

limits of integration. It should be noted that when s = 2,

Eq. 26 need to be multiplied by 33.

An alternative method to generate time histories of

generalized random forces is to utilize the ex p ression for the

cross-spectral density given in Eq. 11, the simulation pro-

cedures of multivariate random processes, and the Fast Fourier
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Transform (FFT, algorithm!""' ) Then, the generalized

random force can be simulated directly as

Qmn(t) - Re {(26w)1/2 sal rN,Itjs(wr)I

e-i [A^ s (LO
	 + cpsrI i27rk /N1}

k = 0,1...,N1-1	 (27)

in which Re denotes the real part an.,

Im [tjs (wr)
A js r(w) = tan	 Re [ t js ( w :L ) )	 (28)

The elements, t
i
.,, of the lower triangular matrix [T]

can be c'r--.a:.ned from the cross spectral density matrix (Smn)

given in Eq. 11 in the following fashion

[Smn ) = [T][ T *)'	
(29)

where the asterisk indicates the coi T,plex conjug;,:c and a

i
prime denotes r.atriY transposition.

2.3.1 Spatially Uniform Pressure

Consider the acoustic pressure acting on the pane'_ to

be uniformly distributed with respect to spatial. coordinates

(x,y) and varying randomly in time. For this case, due to the

orthogonalit y principle, only the first the mode ccntribute..

to the generalized random `once. Then the cross-spectral

density of the generalized random force rc.iuccs to

Smk(w) = a 2 b 2 SPn (.^)	 j = k = 1	 (30)

= 0 otherwise
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t
and the time history of the generalized random force can be

simul .ted from

N1
Q 	 = aTbT V i 1 I s ( w i ) Awl 1/2

Cos (w i t + Bp i )	 for j = 1	 (31)

= 0 otherwise

2.3.2 Convected Random Pressure

Consider the acoustic pressure to be uniform in the

spanwise direction and convected as random plane waves in the

streamwise direction. The cross-spectral density in this case

can be expressed as (15)

SP (C , w ) = Sp (w) exp jiw^ /u c )	 (32)

in which u  is the convection speed of the random plane waves.
I

From Eqs. 11,25 and 32, it car p be shown that

S TM(w) = SP (w)b 2 a 2 (1 (w) + i K jk (w) l	 (33)

in which

`Tjk (w ) = Z^I^ + ISIS	 (34a)

Kjk (w) = ISIS- I jIS	 (34b)

Ic s = {a c ^ s^ a T - a ^ sA. IaT /(a4 -a4)J o	 J o	 J

a c = -a 2 cos (ax/a^,), as	 a3sin(ax/aT)	 (35)

X s = -
.
asin (a x /aT) , a s = -a3 cos (a x/aT)

with a = -aT/U arA a prime indicating a derivative ( - d/d(x/aT)).

It should be noted that when
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Mode j symmetric, mode k antisymmetric, J jk = 0

Mode j symmetric, mode k symmetric, Kjk = 0

Mode j antisymmetric, mode k antisymmetric, K jk = 0

and Jjk = ,Tkj , Kjk = - Kkj . Then, the time histories of the

generalized random forces due tc convected pressure can be

generated from Eqs. 27 and 33.

2.4 Response Simulation

For the time domain approach, the gover..ing differential

equations of motion are combined with the time histories of

the generalized random forces given in Eqs. 18 or 27.

Utilizing a step-by-step temporal numerical integration and

modal expansion for panel and tile deflections presented

in Eqs. 1 a y . 2, time histories of wM (x,y,t) and WT(x,Y,t)

ti.
are determined. By assuming the response process to be

ergodic, the mean square response can be obtained using the

temporal average. For example, the mean square response

of the metallic panel deflections is

2	 T
M ( x ,Y) = T I° (wM(t,x,y)) 2w	 dt	 (36)

0 0

in which TO is the sample duration. The panel deflection

response spectral density, S w , can be calculated utilizing

the Fast Fourier Transform (FFT) algorithm on the response

history wM (x,y,t). The numerical estimate of spectral density

at frequency w is

Sw (x,y,wk ) = N2t Yw(x,Y,wk)2
	

(37)

where

AV
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N-1
Yw (xY. W k ) = JO wM,	 (x,y,tn)exp(-i26kn/N)

k = 1,2...,N	 (38)

with At being the time increment and N the number of simulated

points.

The stress response in the metallic plate and the supporting

stringers can be determined from the information on the curvature

corresponding to deflection wM (x,y,t). For example, the

maximum stress in the stringer can be estimated from

* 92wM
Q sT _ EMd 3x 

where d is the maximum distance between the centroid of the

cross-section and outer edge of the stringer and E M is the

ela'-ic modulus of the stringer. Similarly, the maximurr,

`	 bending stress in the tile is conservatively estimated by

assuming the tile bonds with the metallic plate,

t  9 
2 
w 
T

cTi1e	 ET -2- a

where t  and ET are thickness and elastic modulus of the tile,

respectively. The normal stress in the tile can be calculated

E z

cTile	 t 
I (wM - w

T )	 (41)
I

in which E  and t  are the elastic modulus and thickness of

the strain isolator, respectively.

M.

(39)

(40)

I 

v
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3. Numerical Results

3.1 Simplified Frequency Domain Analysis

As an example consider an orthotropic panel (with and

without tiles) as shown in Fig. 1. It

follow the metallic panel motion and a

the metallic panel. The physical data

given in Table I. Consider this panel

acoustic random pressure for which the

density is given in Fig. 2.

3.1.1 Uniform Pressure

Assume the acoustic noise pressure to be fully correla-

ted in space over the panel surface. The aluminum panel and

the.tiles have the following properties: EM = 10.5 x 10 6 psi,

ET = \ 34 x 10 3 psi, a  = 6 in, a = 8a To 
a* = 37 in (distance

between the line supports), b  = 6 i n., b = 3bT , d = 0.972 in

(maximum stringer depth measured from the neutral axis of

plate-stringer combination) m.M = 0.0083/386 (lb-sec 2 /in 3),

P T = 9 lb/ft 3 . The mass, the natural frequencies, and the

respective pressure spectra'_ densities at these frequencies,

corresponding to the first streamwise bending mode are

mM = 0.0083/386 (lb-sec 2 /in 3 ), w l = 716 rad/sec,

Sp N i ) = 2.5 x 10 -4 (psi) 2 -sec/rad (no tiles);

mM+T = 0.01351/386 (lb-sec 2 /in 3), W  = 571 rad/sec,

Sp N i ) = 2.78 x 10 -4 (psi) 2 -sec/rad (1" tiles);

MM+T = 0.01663/386 (lb-sec 2 /in 3 ), W 1 = 502 rad/sec,

Sp (w l ) = 2.80 x 10 -4 (psi) 2 -sec/rad (1.6" tiles);
I

4
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mM+T - 0.02030/386 (lb-sec 2 /in 3 ), W 1 = 452 rad/sec,

Sp (w l ) = 2.95 x 10 -4 (-psi) 2 -sec/rad (2.3" tiles) . The panel

shown in Fig. 1 has an overhang of 5.5 in at both ends. The

approximate modes that are chosen for the simplified frequency

domain analysis correspond to the panel length between the

line supports, i.e., a = 37 in. It is assumed that the

response is dominated by the fundamental vibration mode so

that Eqs. 7 and 8 can be applied. The response calculations

are performed first by assuming the panel to be free at the

edges y = O,b and simply supported along the line supports.

Corresponding to these support conditions, the first natural

'	 panel vibration mode can be taken as

1 \ .	 ^l ( x ,Y) = 1 % sin ^)	 (42)
a

Assuming the same free support boundary conditions at the edges

y = O,b, but clamped supports along the line supports, the

first vibration mode can be approximated by

^ J (x,y) = 1• (1 - cos 2Tix 
J
	 (43)

a

Then, utilizing these conditions and Eqs. 7 and 8, the root

mean square response can be determined. The rms values of

deflection, stringer stress and stringer strain are shown

in Table II at the middle of the panel, i.e., y = 5/2, x = a /2.

3.1.2 Convected Pressure

Consider the convected acoustic random pressure characterized

by the cross-spectral density of the following form (15)
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Ef

l

Sp
(w,^) = Sp (w) cos 

u	
(44)

Ci
j

	

	 Then, the effect of the spatial correlation can be included

by multiplying Eqs. 7 and 8 by the following factor

a* a*	 w

2 o f cos U ( xl - x 2 )	 (x 	 l ( x2 ) dxldx2
R = a* '

[I ^ 1 (x) dxl 2
0

Substituting Eqs. 42 and 43 into Eq. 45 and integrating,

we obtain
(7T/a*) 

4 
(1 + cos u * )

R` =	 c	 (46)
2 [ ( ir/a* ) - ( W /uc ) l 2

for free-simple supports, and
*2

R2 = 
22 

(1 - cos u *) ( 
we _
	

u2a w	 2) 2	
(47)

e	 c	 (a*m) - (2nuc)

for free-clamped supports. The values for the reduction

factor, R, corresponding to the case where u  is equal to the

speed of sound at the sea level, i.e., u c = 13,210 in/sec,

are given in Table III. The rms values of deflection,

stringer stress and stringer strain due to a convected

random pressure are shown in Table IV.

3.2 Simulation Analysis

3.2.1 Assumed Sound Pressure Level

Space shuttle panel response calculations were per-

formed in time domain due to acoustic sound pressure near the

base of the orbiter at shuttle lift-off. The generalized

random forces were generated in time domain using Eqs. 27

and 33. The sound pressure spectral density SrM(w)

	

p	 is given
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in Fig. 2. It is assumed that each tile has an identical

sound pressure spectral density, i.e., Sp (w) = S
P
 (w). Thus,

in Eq. 33 aT is replaced by a and b  by b. Numerical compu-

tations are limited to four streamwise (lengthwise) modes

and one spanwise (widthwise) mode. To simulate the transla-

tional elastic supports in the spanwise direction (Fig. 1),

twenty points at x = 5.5 in and x = 42.5 in across the panel

were chosen. At each point an elastic translational spring

with stiffness of 1 x 10 4 lb/in was assumed to be attached.

Simulation of the generalized random forces was accomplished

utilizing the following data: u  = 13,210 in/sec, N 1 = 512,

wu = 27Tx 1000 rad/sec. It was assumed that damping in each
1

mode was the same.

1
The simulated time histories of the generalized random

forces corresponding to convected random sound pressure are

given in Ref. 6 for the first four free-free beam vibration

modes. A portion of the deflection response history at the

middle of the panel to which the 2.3" ceramic tiles are

attached is given in Fig. 3 where the nondimensional time,T,

is

T = t(Dx /ma 4)1/2

The root mean square response corresponding to panel deflection,

stress and strain in the stringer at x/a = 0.5 and y/b = 0.5

is presented in Table V for a combination of several tile

thicknesses and damping coefficients. The normal stresses

in each tile (Eq. 41) along the centerline of the panel are

shown in Fig. 4.

J
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3.2.2 Experimental Sound Pressure Level

Input random sound pressure spectral and cross-

spectral densities were measured at the Langley, NASA,

progressive wave acoustic tunnel. These measurements were

obtained for 140 dB, 150 dB and 160 dB over-all sound

pressure levels. Typical results of the pressure spectal

density at the middle of the panel at 150 dB and 160 dB levels

•	 are shown in Figs. 5 and 6. The experimental results

indicted n^significant decay in the pressure spectral density

with respect either tostreamwise of spanwise spatial sepaza-

tions. For the purpose of this analytical study, it was

assumed that the random pressure is uniform in spanwise

direction and convected as random plane waves in the stream-

.` wise direction. Utilizing the pressure spectral densities

given in Figs. 5 and 6, the generalized random forces were

generated in time domain from Eqs. 27 and 33.

In Fig. 7, the strain response time history in the

stringer at x/a = .5 and y/b = .5 is shown for a panel with

the 2.3" tilers attached corresponding to 160 dB input.

Similar results are presented in Fig. 8 for a panel with 1"

tiles and pressure input of 150 dB level. The root mean

square response of panel deflection, stringer stress and

stringer strain is given in Tables VI and VII corresponding

to 150 dB and 160 dB inputs, respectively. The stringer

strain spectral densities at the middle of the panel are

shown in Figs. 9 - 14 for various combinations of damping

and tile thickness. A portion of stringer strain response
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V

time history at x/a = 0.3 and y/b = 0.5 is shown in Fig. 15.

The stringer strain spectral density corresponding to this

j	 time history is given in Fig. 16.

4. Conclusions and Recommendations for Future Work

A simple analytical model which represents the dynamic

characteristics of the surface insulation panels for the

space shuttle has been developed. Response calculations

were performed utilizing a simplified analysis in the

frequency domain and a simulation procedure in the time

domain. The results indicate that the simplified spectral

density approach is sensitive to the type of vibration mode

chosen. It tends to underestimate the response for free-

fixed mode and to overestimate the response for free-simple

mode when compared to the results obtained by the time

domain simulation procedure.

The computer time for the simulation analysis is

almost negligible. For example, it takes about one minute

on the IBM 360/91 to perform one set of calculations. This

includes simulating the generalized random forces, numerically

integrating the equations of motion, determining the response

root mean square values and the response spectral densities.

To improve upon the numerical results, the following

recommendations for future work are suggested:

1.	 Allow the random sound pressure to vary spatially in

both the spanwise and streamwise directions. (Include spatial

correlations.)
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2. Include a possible nonuniformity in the transverse

elastic supports.

3. Include torsional restraints in modeling the elastic

supports.

4. Model the strain isolator as a nonlinear material.

S.	 Determine panel response due to boundary layer turbulence

during the maximum flight dynamic pressure including the
	 j

effect of fluid-structure interaction (aeroelasticity).

1
	

M
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Table I

Physical Parameters for RSI Panels

Tile Isolator

ET , psi 24 ±	
10 x 103 EZI, psi	 15 t 10

tT ,	 in 1,	 1.6,	 2.3 tI,	 in 0.16

P T ,	 1/ft 3 9
aT ,	 iz 6

bT , in 6

Metallic Panel

EM , psi 10.5 x 10 6 a,	 in 48

v 0.33 b,	 in 18

P M , Vin 0.1 a*,	 in 37

DX ,	 #- in 220,000

Dy ,	 #- in 31

DXy ,	 #- in 9812 or 3300

D 1 ,	 #-in 9

Outer fiber 0.972
location for the
stringer from
neutral axis, in

24.
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Table III

Reduction Factor, R, Due to
Spatial Correlation

Tile Thickness (in)	 R	 R
First Mode	 I Free-simple) Free-fixed

	

Frequency (rad/sec) i support	 supportI	 -

No tiles
w = 714	 0.912	 0.936

26.

r

r

1

tT = 1
w = 572

tT = 1.6
w = 503

tT = 2.3
w = 452

0.941 0.956

0.954 0.968

0.960 0.974
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