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SECTION 1
INTRODUCTION AND SUMMARY

Rocket nozzles for the Space Shuttle SRM are being designed using materials which have been
_proven successful by many years of testing. However, the Shuttle philosophy of providing an econ-
omical means of placing material and personnel into earth orbit requires a continued effort to reduce
mission costs. One area in which significant cost reductions can be realized is in the area of the
nozzle ablative liners. The primary high heat load material for current nozzles is a rayon precursor
carbon phenolic (e.g., Fiberite MX 4926). The material for lower heating conditions in the exit

cohe and nozzle backside is a silica phenotic {e.g., Fiberite MX 2600). Over the past several years,
& number of low cost materials have been proposed as substitutes for the above materials; however,

the Tevel to which these materials have been characterized was insufficient to allow a thermal anal-
ysis of a full scale nozzle design. A need therefore existed to obtain the thermophysical and thermo-

chemical properties of promising Tow cost materials.

Low cost carbon phenolic materials development has centered on the replacement of rayon pre-
cursor carbon with pitch precursor carbon. Using continuous filament pitch carbon fabrics, the pro-
jected costs for carbon phenolic in the early 1980's may be about 23$/pound. Using pitch carbon mats,
the cost may decrease to as low as 12$/pound. Further reductions may be possible as pitch carbon makes
a deeper penetration into consumer goods. These projected costs may be compared to about 30%/pound for

current carbon phenolic prepreg.

Low cost materials development to replace current silica phenolics has centered on the use of
double thickness cloths and elastomeric resins to increase the component fabrication speed. Material
costs are not projected to be altered significantly in the next decade. Alternative reinforcements,

such as canvas, have also been considered.

The objective of this investigation was to develop the analytic capability to predict the‘thermal

ablation response of promising low cost materials. To achieve this objective, it was necessary to

1. Select potentially viable low cost materials. This was accompiished by a questionnaire and

telephone survey of material prepreggers and nozzle fabricators.



2. Experimentally determine the relative thermal performance of these materials. This was
accomplished by screening potential low cost materials in the Aerotherm arc plasma gener-

ator.

3. Determine if materials of the same generic class but from different suppliers performed

differently. This was determined from the screening test data.

4. Select representative materials from each generic class and determine their thermophysical
and thermochemical properties. This was accomplished by appropriate characterization ex-

periments.

5. Define these characteristics in a form which is compatible with current thermal performance

prediction techniques.

In the arc plasma generator ablation tests performed in Steps 2 and 4, Fiberite MX 4926 (carbon
phenolic) and MX 2600 (silica phenolic) were used as reference baseline materials. For the low cost
materials primary emphasis was on pitch carbon reinforced phenolics; however silica and canvas rein-

forced phenolics were also tested.
The generic classes of materials sefected for iow cost evaluation were
1. Pitch carbon mat reinforced phenolic
2. Pitch carbon fabric reinforced phenolic
3. Pitch carbon molding compound
4. Hybrid pitch carbon mat/rayon carbon cloth reinforced phenolic
5. Silica reinforced phenolics
6. Canvas cloth reinforced phenolic.

Phenolic or elastomer modified phenolic was the resin for each generic class. Materials were
obtained from a number of prepreg suppliers. These materials were guantitatively compared in terms of
thermal performance by a simulation of propellant environments in an arc plasma generator. It was
found that material response was not very dependent upon the supplier of the material; however, a de-

pendence on cure cycle was observed.

In order to provide data for analytic purposes, the thermophysical properties of these low cost
materials were evaluated. These data were assembled in a form which is compatible with current pre-
diction procedures. As a result of this program an analytic capability has been established to pre-

dict the thermal performance of new Tow cost rocket nozzle liner materials,
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Aerotherm is pleased to acknowledge the cooperation and contributions of the Fiberite, Ferro,
Hexcel and U.$. Polymeric Corporations. These organizations responded to a Tengthy questionnaire

and provided all of the required test materials.
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SECTION 2
MATERIAL SURVEY STUDY

Since there is only limited knowledge of the performance of low cost materials in rocket
nozzles, a material survey study was necessary to capitalize on the background of material suppliers.
Such a survey study will not only enable one to have a better understanding of the thermal behavior
of Tow cost materials, it will also provide a better perspective in designing a test matrix for the

Tow cost materials performance study.

The survey study started with data coliection. Material manufacturers and nozzle fabricators
were contacted to participate in this program and to propose promising Tow cost materials. The com-

panies which responded were as follows:
¢ Fiberite Corporation
e Hexcel Corporation
e U. S. Polymeric Corporation
e Ferro Corporation

Questionnaires covering the areas such as material properties, fabrication techniques, cure procedure,
and material characteristics were sent to the above companies for their response. This information

was subsequently compiled and integrated qualitatively into a screening test matrix,

The second part of the survey study was to perform a qualitative analysis on the proposed low
cost materials based upon the information received. By utilizing mechanical and thermal properties
from qualified materials (MX 4926 — Shuttle SRM baseline throat material, MX 2600 — Shuttle SRM base-
line exit cone material) as a guideline to analyze the proposed materials, less favorable materials

were eliminated before the screening test..

The results of this study are shown in Tables 2-1 and 2-2. As can be seen, the properties of

the selected low cost materials are of the same order of magnitude as the qualified materials.

Information on the cost of some of the selected screening materials was also collected from
the above companies. An estimated trend of cost for each generic class of materials for calendar

years between 1975 to 1987 are presented in Figure 2-1.
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SECTION 3
SUB-SCALE SCREENING TESTS

The thermal performance of a number of Tow cost materials was evaluated by a screening test
program using an arc plasma generator {(APG) as a convective heat source. The low cost materials in
this program {see Tables 3-1 and 3-2) included pitch carbon phenolic candidate throat materials, and
silica and canvas phenolic candidate exit cone materials. A major part of the screening program was
devoted to the pitch carbon phenolics since these materials show promise for very significant reduc-

tions in material costs.

The screening test conditions were designed to simulate the actual motor firing conditions as
closely as possible. Since the major emphasis was the thermal performance of a meterial in a rocket

nozzle, simulation of the following parameters was considered important:
e Heat flux to the material (g)
e Reactive chemical species (H, 0) composition

These two parameters were chosen because the former represents the simulation of in-depth temperature
profile and the Tatter represents the simulation of surface chemical erosion. An exact simulation

would, of course, not be possible so some compromises were necessary for testing in ah arc plasma gen-
erator. Tables 3-1 and 3-2 show the comparisons between the screening test conditions and anticipated

motor firing conditions.

Low cost materials were tested in the APG in a planar nozzle configuration (see Figure 3-1).
As can be seen two samples can be tested simultanecusly. Due to supplier difficulties, not all of
the materials selected for screening tests were received in time. The screening tests were there-
fore performed in two series. Series I screening tests were performed with the composite plies in
the 0 degree orientation for exit and molding compound materials and 90 degree orientation for
throat materials. .Continuous filament pitch carbon phenolic material {Series 1I) was tested in the
90° orientation with a dummy model on the opposite wall. These dummy models were fabricated from
the same materials but plies were oriented at 20° rather than 90°. A tentative selection of

materials for full characterization was made based on the first screening test series.
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TABLE 3-1.

Rocket Motor Convective Environment

COMPARISON OF ROCKET MOTOR AND APG ENVIRONMENTS

A A Pe Ve he PeeCy q
A (ft) | {atm) | (ft/sec) | (Btu/1bm} | {Ibm/ft2-sec) | (Btu/ft2-sec)
1.0 3.1 26 3430 595 0.78 1170
3.0 7.8 3,2 7050 =190 <2 277
4.0 9.6 2.2 7440 =320 .15 265
ARC Plasma Generator Environment

A Pe he PgleCy Yew

A | (atm) (8tu/1bm) (1bm/ft2-sec) (Btu/ft2-sec)

1.0 2.93 8713 0.074 982

3.0 1.82 2456 042 281 *

8,0 | 1.76 2658 .037 250

TABLE 3-2. COMPARISON OF APG TEST GAS AND TYPICAL

NOZZLE EXHAUST GAS EQUILIRBIUM COMPOSITION

Test Gas Equilibrium Composition

2 H20 +C0 + 8.3 H2

2 Hy0 + CO

Typical Nozzle Exhaust Gas H, €, 0 Equilibrium Composition

3-2
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In the Series I tests, the throat entrance insert ("C" section) was fabricated from pyrolytic
graphite. Very 1ittie ablation was observed on this section so that subsequent Series I1 testing was
done using P03 graphite throat entrance inserts. However, as a precaution, the inlet end of the throat
test section was increased to minimize any possible effects due to waterial discontinuities. The test
configurations for both Series I and II are shown in Figure 3-2 and the test matrix is shown in Table
3-3. As can be seen, materials from the same generic class were arranged to be tested simultanesusly

on the premise that their performance should be similar.

The screening test results are shown in Tables 3-4 and 3-5 respectively for pitch and silica-
reinforced material. As can be seen, the ablation performance of the selected low cost materials for
tha Shuttle SRM throat were all comparable to the baseline material, rayon carbon cloth phenolic.

In fact, some materials appeared to be even superior to rayon precursor carbon cloth phenolic. Some
similarity in ablation performance is expected because the thermal and physical_properties of the test-
ed materials were of the same order of magnitude (see Table 2-1), however superior performance was an
unexpected benefits. Typical post-test surface conditions for some APG screening test samples are

shown in Figure 3-3 to 3-5.

The screaning test results for Shuttle SRM exit cone materials indicate that {see Table 3-5)
double thick silica cloth phenolic had the best ablation performance among the silica cloth phenolic
materials. The reason for this superior performance is not clear because no correlation was. found
based on the material properties. Canvas cloth phenolic has poorer performance compared to silica
cloth phenolic. The reason here is obvious; canvas cloth phenolic has higher hydrogen and oxygen

contents which result in a higher degree of thermal decomposition.

Also shown in Tahles 3-4 and 3-5 are the residual volatiles content for the cured composites

tested in Series I. These measurements were made by Hexcel Corporation.

From the screening test results, five generic materials were selected for full thermophysical
property characterization. Of these five, four were selected from the throat material category and
one from the exit cone mgteriaﬁ category. Since the main objective of this program was to study low cost
materials, the selection was based on ablation perforimance as well as cost performance. Cost perfor-
mance here is defined as total ablation times material cost per pound. Ouring the first round of
selection, one representative material from each generic title was selected based on ablation perfor-
mance. On the second round of selection, a comparison of cost performance among the representative

materials was made (see Tables 3-6 and 3-7), and the five materials were selected accbrdingly.
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Screening Test Series ]
0° & 90°
I

scale
PG 1.0

Screening Tests Series 2

20° 90°

scale scale S

PO3 2.17 PO3 1.56 ;

i %

——l 2.25 !—- ——l 1.619 L-—
11-A I-B

Figure 3-2. Screening test sample dimensions.
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TABLE 3-3.

SCREENING TEST MATRIX

Series Tﬁg? Model Description Ori(eDnetga.t)ion
I 2524 FM5782MC MXC313p 0
2525 4CSPOSMC ACS-C86PMC
2530 4CSPOBMC ACS-CB6PMC
2534 MX2600 CA-2221
2535 MX2600 MXSE-55
2536 MX2600 4K9502
2537 MX2600 MXKF-418
2541 MX4926 ACX-C86PM 80
2542 ACX-CBB6K ACX-C861C
| 2543 XFM5795 ACX-CPH
2544 MX-4929 FM5782BG
2545 4CSP08/4C1008| MX4926
2546 MX4928 FM5790
11 1 DUMMY 4C1246 90°
DUMMY FM5795 90°
DuMMY MXGTO33FMC 90°




TABLE 3-4.

SHUTTLE SRM THROAT MATERIAL SCREENING TEST RESULTS

Volatile?

Mass®

. . Material Surface
Generic Title Source Designation Co?;§nt (éﬁgﬁ;) Appearance
Rayon Cloth Fiberite MX4926 0.56 5.2 Smooth

~ Cloth Phenolic
Pitch Mat Fiberite MX4929 1.30 4.9 1 Smooth
Carbon Phenolic U.S. Polymeric FM5782BG 2.05 4.4 Smooth
Ferro ACX-C86PM 1.38 5.0 Smooth
Hybrid Pitch Fiberite MX4928 1.70 4.8 Rough
Mat/Rayon U.S. Polymeric FM5790 2.81 4.0 Rough
Cloth Phenolic Hexcel 4CSP08/4C1008 1.47 5.3 Rough
Kyrol Carbon Fiberite XFM5795 5.4] 3.6 Smooth
Cloth Phenolic Ferro ACX-CPH 1.46 3.3 Smooth
Kureha Pitch Ferro ACX-C86K 4.04 5.8 Rough
Carbon Cloth
Phenolic
Pitch Mat! Fiberite MXC-313P 1.08 5.7 Spalled
Molding Compound | U.S. Polymeric FM5782MC 1.76 6.8 Spalled
Hexcel 4CSPOBMC 1.69 6.6 Spalled
Kureha Pitch’ Ferro ACX-C86KMC 2.33 4.1 Rough
Fabric Molding .
Compound
Pitch Carbon Fiberite MXC1033F 3.80 )
Cloth Phenolic U.S5. Polymeric FM5795 5.41 4.6
Hexcel 41246 5.2
UC Pitch Fabric Fiberite MSG1033FMC 6.4 Rough
Molding Compound

'Fabric plies were oriented 90° to the heated surface except for these materials.
For these materials, the heated surface was perpendicular to the molding direction.

2Cured composite

INormalized to 30 seconds and Series I configuration

“APG malfunction
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The final selection of low cost materials for further study is shown in Table 3-8. With the
exception of MXG1033F and 4K9502, these selected materials have shown good abfation performance and
low cost potential. MXG1033F was selected arbitrarily since no screening test data was obtained for
this material class. Silica phenolic 1s an obvious exit cone material; however low cost silica mate-
rials are very similar to those that have been previously characterized. Canvas phenclic was there-
fore selected as an exit cone material for full characterization. Canvas cloth phenolic has a
reasonable low cost potential although quality control and material traceability leaves something to

be desired.

TABLE 3-8. SELECTION OF SHUTTLE SRM LOW COST NOZZLE EVALUATION MATERIALS

. R Material
Generic Title Source Designation
Pitch Fabric Carbon Fiberite MXG 1033F
Phenolic
Pitch Mat Phenolic Hexcel 4CS P08

Hybrid Pitch Mat/
Rayon Fabric Carbon U.5. Polymeric FM 5790
Phenolic

Pitch Mat Phenelic Fiberite MXC 313p
Molding Compound

ng:gg1gloth Hexcel 4K 9502
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SECTION 4
INTERMEDIATE TEST PROGRAM

In the low cost materials screening test, five generic materials (see Table 3-8) were selected
for further evaluation. Both 20° and 90° composite ply orientation tests were performed on each of
the five intermediate test materials. In addition, some materials were subjected to an extended cure*

to determine whether or not this would affect the ablation performance.

The intermediate test matrix is shown in Table 4-1. The test configuration was the same as

Series I1 of the screening test program.

TABLE 4-1. INTERMEDIATE TEST MATRIX

CARBON PHENOLIC, A/A* = 1.0
90° orientation

MXGI033F A.R.*  Mxg1033F P.c.t
FM5790  A.R.  FM5790  P.C.
MXC313P A.R.  MXC313P P.C.
4CSPOS  A.R.  4CSPO8  P.C.
20° orientation
MXG1033 A.R.  MXGI033F P.C.
FM5790 AR FM5790 P.C.
MXC313P A.R. . MXC313P P.C.
4CSPD8 A.R.  4CSPO8  P.C

CANVAS PHENOLIC
90° orientation
4K9502 A.R. 4K9502 P.C.
20° orientation
4K9502 AR, 4K9502 P.C.

*
As received material

TPost-cured material

*To be referred to as post-cured material.
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The intermediate test results are shown in Table 4-2.

TABLE 4-2.

SHUTTLE SRM EVALUATION MATERIALS

INTERMEDIATE TEST RESULTS!

2002 9002
R Material Mass Mass %3
Generic Title Seurce Designation | Loss Loss A/A
(6MS) {GMS)
Pitch Mat
Carbon Phenolic Hexcel 4CSP08 2.9 4.8 ].DAAJ
Hybrid Pitch ‘
Mat/Rayon use FM5790 2.5 4.5 1.0
Fabric Phenolic
Pitch Fabric Fiberite | Mxgl033F | Test Facility | 4 g
Phenolic Failure
Pitch Mat ; :
o Compound | Fiberite | Mxcaip 2.6 | 6.0 | 1.0 J
Canvas Phenolic 1 Hexcel 4K9502 4.6 | 5.2 4.ﬂ

'A11 tests conducted in both the 20° and 90° ply orientation

2Normalized to 30 seconds and initial screening configuration,
material as received

8Simulated Shuttle SRM nozzle expansion ratio

No delamination was observed in the 20° orientation faor both cured (as received) and post-cured
materials, It was also found that the post-cured materials {except for pitch mat molding compound)
perform slightly better than the as-received materials (see Figures 4-1 and 4-2).

mance is probably due to lower volatile and water contents in the post-cured materials since these

two elements would induce exothermic reactions and chemical erosion at the surface.

the 90° orientation as-received materials did not provide any new information, but do provide as-

surance that materials to be fully characterized have a reproducible thermal performance.

The following conclusions can be extracted from this study.

e Intermediate test data are consistent with screening test data.

s The tests provided assurance that materials to be fully characterized are reproducible.
8 Post-cured materials have hetter ablation performance than as-received materials.

¢ The results indicate that full characterization tests should be performed on post-cured

materials.

4-2

The better perfor-

The results of
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SECTION 5
MATERIALS FULL CHARACTERIZATION PROGRAM

Since the properties for charring ablative materials are dependent upon fabric orientation
and thermodynamic state (T and p), material properties were evaluated for virgin and charred com-

posites in at least two fabric orientations. The properties determined were
8 Decomposition kinetics
e Elemental composition
e Heat of formation
e Density
o Specific heat capacity
¢ Thermal conducfivity

The materials for which these properties were determined are

e U.S. Polymeric FMG790
e Fiberite MXG1033F
¢ Hexcel 4K9502
e Fiberite MXC313P
] Héxce] 4CSPO8

5.1 DECOMPOSITION KINETICS

Resinous materials degrade in a highly complex manner, These complex degradation mechanisms
are generally not understood sufficiently to formulate exact analytical expressions. Therefore,

empirical homogeneous kinetics are normally used to describe the degradation.
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The thermal degradation reactions, if assumed to be irreversible, may be described by a psuedo-

order classical rate expression,

%y Eai Py _ Pri\¥i
w5 = -B; exp ("ﬁTh Poi \ ooy (5-1)

The kinetic parameters {activation energy Eai’ frequency factor Bi’ and reaction order ¢i) can be

determined by reducing thermogravimetric analysis (TGA) data.

The multiple-1inear-regression analysis is one of the procedures which can be used to reduce
TGA data. This analysis has the capability to evaluate the three kinetic parameters simultanecusiy

and also to curve fit the input data in a theoretically optimal manner.

The evaluation procedure is straightforward. Equation (5-1) is first Tinearized to yjeld

d Pi/fo4) _ £ai 1 P - Pry
n (‘T“)"“‘%*T'T AT (5-2)

The bracketed terms in Equation (5-2) can be obtained from TGA data. As the number of data points

the following form

is Targer than three, the equations will overdetermine the values of kinetic constants. Hence, an
optimum curve fitting procedure is required. If we write Equation {5-2) in matrix notation, it has

the form
B = AX (5-3)

where B and A are matrices whose elements are determined from the TGA data and X is the matrix of
best fit parameters. The curve fitting procedure i5 then applied by multiplying Equation (5-3) by

the transpose of A

A'B = aTAx (5-4)

where ATA is square and determinate. Hence, the X matrix can be evaluated by Gaussian elimination

from the transformed normal egquations.

The experimental data used for data reduction are obtained from thermogravimetric analysis
(TGA). TGA is an experimental procedure to measure the pyrolysis mass loss history at a prescribed
heating rate. The heating agent is usually an inert gas such as argon or nitrogen in order to pre-

vent any surface chemical reaction. Heating rates may range from 0.1°C to 100°C per minute. For the
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Tow cost materials, a heating rate of 10°C per minute was used to obtain TGA data since the higher
the heating rate, the lower the accuracy of the data. 10°C per minute is a value that has yielded
reliable data in the past. In addition, the pyrolysis kinetics of charring materials behave

almost Tinearly with respect to heating rate. The experimental data was obtained by a subcontract

to The Boeing Company.

The kinetic canstants which were determined for the low cost materials are presented in
Table 5-1. Equation (5-1} was integrated to reproduce TGA results. Excellent agreement was

achieved which indicates the quality of the correlated kinetic constants (sée Figures 5-1 to 5-5).

5.2 ELEMENTAL COMPOSITION

The elemental composition of the pyrolysis gas and char tust be known in order to generate
surface thermochemistry tables and determine the pyrolysis gas enthalpy. The char composition for
canvas and carbon phenolic materials is often easy to determine as it is merely carbon residue. To
determine the pyralysis gas composition, however, requires a knowledge of both the virgin material
composition and the residual mass fraction. The virgin material composition is usually provided by
the manufacturers, and the residual mass fraction is known from TGA. With this information,

the elemental composition of pyrolysis gas can then be evaluated by the following equations:

Ky
Koyi = 77 (5-5)
I'(v -r
- c
Koye = T+ (5-6)

where K is the mass fraction; r is the residual mass fraction; and subscripts py, ¢, v denote py-

rolysis gas, carbon, and virgin material, respectively.

The evaluated pyrolysis gas elemental compositions of the low cost materials are presented

in Table 5-2.

5.3 HEAT OF FORMATION

The virgin material heat of formation is determined from

AHf = r(AHf ) +>(T - r)(?Hf ) (5-7)
virgin resin reinf
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TABLE 5-1.

DECOMPOSITION KINETICS OF LOW COST MATERIALS

. I 06+ Oy - B. .
. Reaction Ci T3 i Eai/R
Material | Tno T | (bm/Fe3) | (Tom/£t?) (sec-1) 2 (°r) r
FM5790 1 2.375 0 4.8 0.358 7787.6 | 1.0
2. 19.135 75.560 3.5712 x 105 | 2.259 | 27825.0
3 - - - - -
MXG1033F 1 1.0226 0 6.4977 x 10* | 0.838 | 12095.0 | 1.0
2 101.2374 | 90.3949 | 2.09904 x 10° | 2.667 | 23372.0
3 - - - - -
4K9502 ) 6.622 0 | 5.9285 x 10° | 1.091 | 10096.0 | 0.5
2 88.906 0 2.39295 x 10*! | 1.317 | 35602.0
3 81.048 51.206 | 2.37558 x 107 | 3.101 28225.0
MXC313P 1 2.4756 0 160.464 2.5691 | 8302.88 | 0.5
2 8.5764 0 4.88% x 10° | 1.2265 | 35541.80
3 165.7818 | 143.2356 | 1.70007 x 1022 | 6.9232 | 64876.00
4CSPO8 1 1.8965 0 0.77715 0.91273 | 5522.17 | 1.0
2 79.6735 | 67.4993 7.791 0.96349 | 13005.18
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TABLE 5-2. ELEMENTAL COMPOSITION OF
PYROLYSTS GAS

Type of Mass Fraction

Material H C 0

FM5790 0.14727 | 0.46301 | 0.38972
MXGI1033F | 0.19383 | 0.29337 | 0.51280
4CSPO8 0.16766 | 0.38884 | 0.44350
MXc313p 0.13526 | 0.50679 | 0.35795
4K9502 0.08880 | 0.40760 | 0.50360

The reinforcement material for the five selected low cost materials is either carbon or canvas.

The nominal values for resin and reinforcement heats of formation are shown in Table 5-3. For the

TABLE 5-3. NOMINAL VALUES FOR RESIN AND
REINFORCEMENT HEATS OF

FORMATION
A!-LF -1083 Btu/1bm
CoH20
AHf -2569 Btu/1bm
canvas
AH 0 Btu/1bm
carbon

char, the heat of formation again is just merely the carbon heat of formation, i.e., zero.

Table 5-4 presents the evaluated heats of formation of the virgin low cost materials.

TABLE 5-4, HEAT OF FORMATION OF VIRGIN
LOW COST MATERIALS

Type of Material AHe (Btu/Tbm)
4CSP0O8 - 487.35
FM5790 - 476.52

MXGT033F - 379.05
MXC313p - 433.20
4K9502 -1944.88

5.4 DENSITY

The virgin material density was determined by precise weight and dimension measurement of
samples which have regular geometric shapes. The char density is evaluated by multiplying the wir-

gin material density by the residual mass fraction which was obtained from the TGA data.



The measured or evaluated densities are shown in Table 5-5.

TABLE 5-5. DENSITIES OF LOW COST MATERIALS

Materials VTQ%E;}¥¥?;ty Cqﬁgé¥¥?j;y
4CSP0O8 81.570 67.500
FM5790 §3.510 75.560
MXG1033F 102. 260 90.395
MXC313P 88.417 71.6178
4K9502 88.288 25.603

5.5 SPECIFIC HEAT CAPACITY

The specific heat of the virgin material was determined by graphical differentiation of spe-
cific enthalpy versus temperature curves. The enthalpy was measured using an ice mantle calorim-
eter. The calorimeter consists of a copper well, a distilled water vessel surrounding the copper
well, an ice bath surrounding the vessel, and an insulation filled container surrounding the ice

bath. An ice mantle is formed on the outer surface of the copper well.

The material sample is heated to the desired uniform temperature in a muffle furnace and
then dropped directly from the furnace inte the calorimeter. The energy lost by the sample as it
cools results in a volume change in the distilled water due to the partial melting of the ice man-
tle. This volume change is quantitatively related to the original energy of the sampte. A small
leak inherent in the apparatus is calibrated after each test and accounted for in the data reduction.

The samples used in the calorimeter tests are approximately 0.02 cubic inch in volume.

Table 5-6 shows the evaluated virgin material specific heat as a function of temperature.
The char specific heat, however, need not be determined since the specific heat capacity of carbon

is known.

5.6 THERMAL CONDUCTIVITY

The material thermal conductivity was determined by two separate techniques. The applicabil-
ity of each technique is dependent on the temperature and state of the material. The conventional
technique is applicable for the virgin material over the temperature range from room temperature to
approximately 700°F. The dynamic technique is appiicable for the virgin, partially charred, or

fully charred material over the temperature range from 700°F to approximately 4000°F.

5-11
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TABLE 5-6. VIRGIN MATERIAL SPECIFIC HEAT CAPACITY

Materials Temaﬁﬁsfure (Btu/sgm-°R)
4K9502 500 0.360
800 0.440
1000 0.500
1200 0.540
2000 0.540
6000 0.540
4CsPO8 500 0.200
800 0.320
1000 0.400
1200 0.460
1460 0.500
2000 0.500
6000 0.500
MXG1033F 500 0.120
800 Q.320
1000 0.380
1200 0.430
1400 0.440
2000 0.440
6000 0.440
MXC313P 500 0.160
800 0.340
1000 0.380
1200 0.420
1400 0.440
2000 0.440
6000 0.440
FM5790 500 0.160
800 0.360
1000 0.420
1200 0.420
1400 0.420
2000 0.420
6000 0.420
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5.6.1 Virgin Material Thermal Conductivity

Virgin material thermal conductivity was determined using a small thermal conductivity cell.
In this apparatus, the testing sample (1/6" thick wafer) is sandwiched between an aluminum block
(0.75 x 1.25 x 1.50 inches), and an aluminum slab (0.25 x 1.25 x 1.50 inches). The temperature
difference (AT) is then measured across the testing sample as the block is heated at a linear rate

equal to 4°C/min.

For calibration, an aluminum wafer is placed in the cell. The resulting AT is assumed to be
the temperature baseline. A wafer of fused silica is run as a reference sample, and an iﬁstrument
constant is calculated for each 100° interval. The comparative values are then calculated from the
exprassion:

_ CL?

k=5

(5-8)

where k is the thermal conductivity, C is the instrument constant, L is the wafer thickness, and

AT is the temperature difference across the wafer.

Figures 5-6 to 5-10 present the measured thermal conductivity at both 0° and 90° orientation

for the virgin materials.

5.6.2 Dynamic Thermal Conductivity

The dynamic thermal conductivity technique is a combined experimental and analytical technique
which has the inherent advantage that the char characteristics of the materials are accurately du-
pticated. This technique has been described in detail in References 2 through 5, and thus, will

only be summarized in the paragraphs below.

The analysis portion of this procedure involves solving the governing equation for transient
one-dimensional heat conduction in a charring ablating material. Incorporated within this equation
is the model for defining the thermal conductivity of the partially-charred and fully-charred mate-

rials. This model is represented by the equation

k= (1 -x) kj + xk, {5-9)

p

where y is the mass fraction of virgin material and kp and kv are the thermal conductivities for

virgin and charred materials, respectively.



*AILALIONPUOD [BWUDYF [BLUBIBW ULBJALA paunsesly °9-G auanbird

o&h@

6vEEL-Y

4o ~ dwa]
00€ ] 0021 0011 0001 006 008 004 2,
0"l
‘I\\\é“
7 7
1 . —{:]
| .
&} \t¢MT|I||||||1w 0°¢
0 iT, .
0°¢
_L
= !
02 A
0 o't
06 ©
(utBaLA) JEE0LIXNW
_ Jo-s

09S-¥o-334/M39 401X ~ A3LALJONPUOIOWUDY]

5-14



*A3LALIONPUOD | PUIBYY |Riadjeu uLbuiA paunsesy

‘-G P4nb1y

Yo ~ dwo]
(s]0} 21 00¢€lL 0021 0011l 0001 006 008 00Z 009
0
0°1
v . vy |
=\/ N/
G \\%
—{ onn U 02
f/\.\? ‘/\W\ 0
0°¢
02 [
0°'d
> 0 7
% 306 ©
e (utbuta) dELEIXMW
{ |
0°S

95-Yo-34/019 ,-0LX ~ AILALIDNPUOIOWIBY |

5-15



*A3LALIONPUOD [BUWUBYF [eLUdtRW ULDBJULA paunseay ‘-G aunblLj

Yo ~ dway
00pL 00€L 0021 0oLl 0001 006 008 0oL ° oomo
IlQ‘\“r 0t
el R~ S
0°2
0O (0]
0°€
0203
0¥
> 0
m .06 ®
o
(utbapa) 06£SH4
1 o ]

0°§

295-Y,~34/N39 ,,-0LX ~ AJLAL3ONpUOOOWIBY]

5-16



*A3LALIONPUOD [RUUBYY |eL4d3ell ULBALA paunsesy

"6~G 24nbL4

Yo ~ dwal
0oyl 00€1L 0021 0011 0001 006 008 00/ 009
mm 0
e 1 0"l
\@-‘ \Ilﬂ \v 4 — A4
I 1) g
= - o e
0°2
o I o W=
o 0°¢€
02 B
unv oO q O.v
@
8 06 ©
Z .
(uLBaiA) 80dSOY
! 0'G

995-Yo~34/N1G ,-01X ~ A3LALIONPUODOUIBY]

5-17



*A2LAL7ONPUOD |RWUBY] [eLJd3ew ULBULA paansesW ‘QL-§ d4nbly

: Yo ~ Dunjedadun}
00 L 00€ L 0021 0oLt 0001 006 008 00/ 009

ol

295-Y,-34/n39 ,-0LX ~ AILALIONPUOIOWIBY ]

1 ] ] ] ] . ]
02
0°€
002
0 V ot
T 06 ©
s ~
b (uLBaia) ZoseMy
(58]
1 ! J0°g

5-18



The analytical procedure for defining the thermal conductivity of in-depth charring materials in-
volves solving the governing one-dimentional conservation of energy and mass equations for an im-

pressed surface boundary condition. The flux terms considered in these equations are illustrated

in Figure 5-11.

Tow m, NIpveo ogr N\ N Sfoor NN N NN
! ! R } i
e, S L, T TeENeRaTIon . by

9COND QUT IpYROL OUT PN

A-13343

Figure 5-11. Control volumes for in-depth energy and mass balances,

If it is assumed that the pyrolysis gases do not react chemically with the char and the py-
rolysis gases pass immediately out through the char, then the conservation of energy equation

becomes

3 = 9_ aT a_fs -
e (phA)y 5y (KA By)t + 5 (:mghg)t (5-10)
where

A — area

h — total material enthalpy (chemical plus sensible)
hg — total pyrolysis gas enthalpy
&g — pyrolysis gas flowrate

t — time
T — temperature

y — distance from surface

p — density

and the conservation of mass equation becomes

am
_ a3
ay‘q‘)t - Aﬁ%)y (5-11)
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The first term in Equation (5-10) accounts for the change in energy stored within the element, the
second term accounts for the net thermal heat conduction across the element, and the third term ac-
counts for the net transfer of thermal energy due to the flow of pyrolysis gases. Equation (5-11)
describes the degradation of the material. The decomposition rate (ap/at)y is defined as an Arrhenius

type expression of the form

v
-E_/RT_ fPi - Peiy! )
Bie "Tai ppi(-jgf:w—— (5-12)

3
=1 pi

at
Yo
where
B — pre-exponental factor

E, —activation energy

R — gas constant
°p — original density

g — residual density

c
y —~ density factor exponent

For most materials, it is sufficient to consider three different decomposing constituents, two
describing the resin and one describing the reinforcement. Equations (5-10) through {5-12) are

sotved by the CMA program which is described in detail in Reference 1.
If the following material thermal and chemical properties are known
o Virgin and char specific heat
s Virgin thermal conductivity
e Virgin and char density
® Resin mass fraction
® Virgin and char heat of formation
o Decomposition kinetics of the resin system

then Fquations (5-10) through (5-12) can be solved for the thermal conductivity by using measured
in-depth and surface transient temperatures. The method for obtaining the in-depth and surface

temperatures is described in the following paragraphs.
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The thermal conductivity test samples were tested in the Aerotherm T MW APG. The APG is
shown schematically in Figure 5-12. The test gases and tesf conditions were chosen to yield a
material thermal response typical of that in the actual application of interest. In addition,
chemically inert test gases were used so that the surface recession due to chemical corrosivity is
zero., Therefore, this surface boundary condition which is required in the data reduction process
was accurately known. The selected test gas, which is shown below, is chemically inert to most
materials at high temperatures and also approximates the specific heat capacity of rocket motor com-

bustion products {Reference 2).

Species Mass Fraction
H 0.2236

e
0.7764

Ny

The test configuration used was a two-dimensional (2-D} supersonic nozzle in which the con-
ductivity test section formed one wall as shown in Figure 5-13. The measurement station was the
nozzle throat which is of finite length and yields a significant region of well-defined, constant
test conditions. The 2-D configuration allowed the test section to be obtained from parts fabricated
by representative techniques (e.g., tape wrapped at any layup angle), allowed an accurate thermo-

couple instrumentation technique, and provided an approximately one-dimensional heat flux path.

The surface temperature boundary condition was measured continuously during each test with an
infrared optical pyrometer. The in-depth temperatures were measured continuously during each test
at four locations and, together with the measured surface recession and surface temperature, provided
the test results on which'the calculation of thermal conductivity was based. Tungsten-5 percent
rhenium thermocouples were used for temperature measurements at the two locations nearest the surface.
Chromel/alumel thermocouples were used at the other locations. The thermocouple installation tech-
nigque is illustrated in Figure 5-13. The stepped hole which accepts the thermocouple provides inti-
mate contact with the material. The thermocouple wires were brought down the side walis through
alumina sleeving to prevent shorting across the electrically conductive char and/or virgin material.
The thermocouple wire size, compatible with the capabilities of thermocouple hole drilling, was
0.005 inch. The nominal thermocouple depths were 0.075, 0.150, 0.250, and 0.400. The actual thermo-
couple depths were accurately determined from x-ray negatives. The details and techniques for

drilling the stepped hole and for thermally instrumenting the model are presented in Reference 3.

Since delamination is likely in D° orientation testing, this experiment was conducted in

the 20° and 90° orientations.
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nted duct flow test section.

Figure 5-13. Typical instrume



The following equation was then applied to back out the 0° orientation conductivity after conducti-
vities in the 20° and 90° orientations were evaluated.

_ kage - Kgge sin 200

ks T=sin 20°

The evaluated char conductivities for 0° and 90° orientation are shown in Figures 5-14 and
5-15. The accuracy of the calculated char conductivity can be judged by comparing the calculated
and measured in-depth temperature histories (see Figures 5-16 through 5-25). Except for a few anom-
alies the comparisons are excelient for the first 30 seconds of the tests. Subsequently, the pre-
dictions deviate from the measured values. This deviation was due to heat losses to the water '

cooled APG components so that no attempt was made to match this data.

Post test char depth profiles are shown schematically in Figure 5-26. Differences in char
penetration between 20° and 90° orientation are obvious as are the effects of sidewall cooling. The
canvas phenolic material exhibited very erratic data and shows a correspondingly poor char profile,
especially for the 20° orientation. Of the data presented in Figures 5-14 and 5-15, the canvas

phenolic has the lowest confidence level.

The anomalies are due to thermocouple breakage or a separation of the thermocouples from the
char. The latter would result in very erratic temperatures which, for instance, were observed for

canvas phenolic {4K3502).

5.7 CHARACTERIZATION SUMMARY

The full characterization data is summarized in Tables 5-7 through 5-11. These tables pro-

vided the information required for a thermal analysis of low cost materials.
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Figure 5-14. 0° char thermal conductivity.
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Figure 5-15. 90° char thermal conductivity.
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Figure 5-16. Comparison of in-depth thermocouple measurements
and CMA prediction.
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Figure 5-17. Comparison of in-depth thermocouple measurements
and CMA prediction.
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Figure 5-18. Comparison of in-depth thermocouple measurements
and CMA prediction.
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Figure 5-19. Comparison of in-depth thermocouple measurements

and CMA prediction.
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Figure 5-20. Comparison of in-depth thermocouple measurements
and CMA prediction.
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Figure 5-21. Comparison of in-depth thermocouple measurements
and CMA prediction.
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Figure 5-22. Comparison of in-depth thermocouple measurements
and CMA prediction.
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Figure 5-23. Comparison of in-depth thermocouple measurements

and CMA prediction.
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Figure 5-25. Comparison of in-depth thermocouple measurements
and CMA prediction.

5-36



A-13570

4CSPO8
Post-cure 90°

7084-090
1.0 0.0" virgin
MXC-313P
Past-cure 90°
7084-092
1.0" 0.0" virgin
MXC-313P
Post-cure 20°
7084-094 &
* 0.36" virgin'
Lo o
4K9502
Post-cure 90°
7084-096

+—

1.0"

]

T

0.0" virgin

i

4CSP08
Past-cure 20°
7084-098 {
’ 0.50" virgin
1.0" ____h¥__
Figure 5-26.

MXG-1033F
Post-cure 90°
7084-091
1.0" 0.0" virgin
FM5790
Post-cure 20°
7084-093 L
1 0.93" virgin
1.0"
MXG-1033F
Post-cure 20° :
7084-095 i,

-

1.o"

0.54" virgin

v

FM5790
Post-cure 906°
7084-097
1.07 0.8" virgin
4K9502
Post-cure 20°
7084-099

!

].0"

i

: 0.0" virgin

5-37

'

Char layer profiles for char conductivity test samples.
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SECTION 6
CONCLUSTONS

In summary, the following conclusions can be extracted from this study:

With the exception of molding compounds and Kureha fabric, all carbon phencolics perform

equal to or better than MX4926 in the APG.

With the exception of hybrid materials the performance of a particular generic class was

not especially dependent upon the material supplier.

Higher mass losses in the 90° orientatien are due to thicker char formations (higher con-

ductivities).

Kynol materials had satisfactory thermal performances in the APG, but they are not really

low cost materials. However, these materials may be considered as good alternate materials.
Pitch carbon mat materials have a combination of good performance and low cost.

There was a large variance in residual volatile measurements but no cbvious correlation
between this and abltation performance was found. However, post-cured materials generally

performed better than as received materials.

Data required for thermal performance predictions were determined for thermal conducti-
vity {both 0° and 90° orientations}, specific heat, density, pyrolysis kinetics, heat of
formation, and pyrolysis gas elemental composition. These data will subsequently be used

as inputs to the Aerotherm computer codes (ACE and CMA).
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APPENDIX A

RESTDUAL VOLATILE MEASUREMENTS

Coded samples of each screening test material were sent to Hexcel Corporation for a determin-
ation of the residual volatile concentrations. These tests were performed in an attempt to resolve
the anomalous arc plasma jet performance of MX4926 in the Series I tests. In these screening tests,
MX4926 exhibited severe delamination when convectively heated with the fabric plys parallel to the flow
direction. This delamination was of special concern since all other materials exhibited little or
ne delamination problems. The residuyal measurement was one of two steps being taken to determine

the reasons for this delamination.

The residual tests were conducted by crushing appropriate size samples which were then des-
iccated for 48 hours and weighed. These dried samples were heated at 325°F for 4 hours, removed
from the oven and desiccated for an additional 3 hours and weighed again. The percentage weight
toss was defined as the percent residual volatiles content. In some cases, two measurements were
made on the same material (but not necessarily the same physical block) to determine consistency.
Since the cure size may influence the magnitude of the residuals the approximate dimensions of the
as-received materials are shown along with the volatiles content in Table A-1. For cases where two

samples were measured the block sizes of each sample, if different, are also shown.

From TabTe A-T it can be seen that the measurement repeatability was very good when samples
were taken from the same size blocks. However, there is some dependence on block size as seen in
sample numbers 2, 5, 12, and 14. The Fiberite wmaterials showed consistently higher volatile contents
for 2" diameter samples than for flat blocks (e.g., 4 x 4 x 1-1/2). The reverse is true for the

Hexcel material although only 1 material was tested redundantly.

The residuals content of the MX4926 was the lowest of all materials tested. This measured
value of 0.56 percent may be compared with a value of 1.1 percent as measured by Fiberite. This
difference is probably due fo measurement techniques since there is no industry-wide accepted standard
for residual volatiles measured techniques. The significance of the reported measurements is that

all materials were measured under identical conditions and can therefore be ranked in a relative

A-1



TABLE A-1.

SCREENING MATERIAL RESIDUAL

VOLATILE MEASUREMENTS

Number Material Supplier Designation g§m§ﬁ§$3;§2 %g?ii?#g?
1 Pitch Mat/Phenalic usp FM57828G 5-1/2 x 5-1/2 x 3/8 2.06
2 Pitch Mat/Phenolic | Fiberite MX4929 4 x4 x1-1/2 1.15/1.40
3 Pitch Mat/Phenolic | - Ferro ACX-C86PM 2-1/2 x 2-11/16 x 1-7/8 1.38/1.39
4 Hybrid Hexcel 4CSPO8/4C1008 | 2-1/8 x 1-3/16 x 1-5/16 1.49/7.45
5 Hybrid Fiberife MX4928 2D x 1-3/4 1.97/1.44
6 Hybrid yse FM5790 6 x 6 x1-1/4 2.81
7 Kynol/Phenolic Ferro ACX-CPH ~4 x84 x3 1.45/1.47
8 Kynol/Phenolic ysp AFM5795 6x6x1-1/4 5.41
9 Kureha/Phenolic Ferro ACXCB6K 2-1/2 x 2-11/16 x 1-7/16 | 4.08/4.00
10 Molding Compound Usp FM5782MC 20 x 1-3/4 1.76
1 Molding Compound Fiberite MXC313pP 20 x 1-3/4 1.08
12 Molding Compound Hexcel 4CSPO8MC 3B x 1-1/2 1.44/1.69
2-3/8 x 1-3/8 x 1-3/8
13 Molding Compound Ferro ACX-CBBPMC 4 x4x2 2.33
14 Silica/Phenolic Fiberite MX-260D 20 x 1-7/8 4.18/1.23
4 x 4 x 1-1/2
15 Silica/Phenotlic Ferro CA/2221/96 1-9/16 x 2-3/8 x 1-3/4 2.22
16 Silica/Phenolic Fiberite MXSE-55 4 x 4 x 1-1/4 1.83
17 Canvas/Phenolic Hexcel 4K9502 4 x4 x1 4.26
18 Canvas/Phenolic Fiberite MXKF-418 4 x4 x 1-1/4 4.12
19 Canvas/Phenolic Fiberite MX4926 2D x 1-3/4 0.56

*
First 2 dimensions define plane of fabric or mat layup.
perpendicular to axis.

CyTindrical samples have layup

A-2




sense. Since the residual's content of MX4926 was lower than the other materials, the delamination
problem cannot be attributed to a high volatile content. Since there is no rationale for relating
delaminations to low volatiles content, it is concluded that volatiles evolution during APG testing

did not cause the observed delaminations.
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