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FOREWORD

This report presents results of the expansion and improvement of the
FORMA system for response and load analysis. The acronym FORMA stands
for FORTRAN Matrix Analysis. The study, performed from 16 May 1975
through 17 May 1976 was conducted by the Analytical Mechanics Department,
Martin Marietta Corporation, Denver Division, under the contract NAS8-
31376. The program was administered by the National Aeronautics and
Space Administration, George C. Marshall Space Flight Center, Huntsville,
Alabama under the direction of Dr. John R. Admire, Structural Dynamics
Division, Systems Dynamics Laboratory.

This report is published in seven volumes:

Volume I ~ Programming Manual,

Volume IIA - Listings, Dense FORMA Subroutines,

Volume IIB - Listings, Sparse FORMA Subroutines,

Volume IIC - Listings, Finite Element FORMA Subroutines,
Volume IITA - Explanations, Dense FORMA Subroutines,

Volune IIIB - Explanations, Sparse FORMA Subroutines, and
Volume IIIC - Explanations, Finite Element FORMA Subroutines.
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ABSTRACT

This report presents techniques for the solution of structural
dynamic systems on an electronic digital computer using FORMA (FORTRAN
Matrix Analysis).

FORMA is a libiary of subroutines coded in FORTIRAN IV for the effi-
cient solution of structural dynamics problems. These subroutines are
in the form of building blocks that can be put together to solve a large
variety of structural dynamics problems. The obvious advantage of the
building block approach is that programming and checkout time are limi-
ted to that required for putting the blocks together in the proper order.

The FORMA method has advantageous features such as:

1. subroutines in the library have been used extensively for many
years and as a result are well checked out and debugged;

2. method will work on any computer with a FORTRAN 1V compiler;

(P8

incorporation of new subroutines is no problem;

4. basic FORTRAN statements may be used to give ertreme flexi-
bility in writing a program.

Two programming techniques are used in FORMA: dense and sparse.
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LIST OF SYMBOLS

matrix

column matrix

row matrix

} vector

transpose (when symbol is a superscript)

m designates
n designates
a designates
i designates

j_designates

the row size of matrix

the column size of matrix

an element of matrix [A]

the ith row of matrix [A]
the jth column of matrix (A]



I. INTRODUCTION

This volume presents ar explanation of the function of each sparse
subroutine in the FORMA library. Example problems are given in some
cases to clarify the operations performed by a subroutine.
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I1. SUBROUTINE EXPLANATIONS

The subroutines are given in alphabetical order with numbers
coming before letters.



Subroutine YAA calculates the multiplication of a matrix, in FORMA
sparse notation, by a scalar. In matrix notation,

(2 wrave = = (4] e

where

[ I ]

z,,. = aa,, for 1, R
1] ij j=1,N] *

NR is the number of rows of each matrix, and
NC is the number of columns of each matrix.

EXAMPLE

Consider input of a = 2; and

(a3 a7 2. -3.
J 2x3 4. 5. 6,

The reader can easily verify the output to be

DESCRIPTION OF TECHNIQUE

[A] and [Z] are stored on utility tapes NUTA and NUTZ as row partitioned
matrices in FORMA gparse notation.

Matrix [A] is read from NUTA and each non-zerc element is multiplied by a.
Each partition of [A] then becomes a partition of fZ] and is stored on
NUTZ.



YAABB

Subroutine YAABB calculates the summation of two matrices, each
matrix multiplied by a scalar. Both matrices are in FORMA sparse
notation. In matrix notation,

(Zlgrane = *{A)yrane + BB lgRrane
where

1 =1, NR
zij a aij + 8 bij y =1, NC

NR is the number of rows of each matrix, and

NC is the number of columns of each matrix.

The number of rows of [A]) and [B] must be equal, and the number
of columns of [A] and [B] must be equal.

DESCRIPTION OF TECHNIQUE

[A], [B]), and {2] are stored on utility tapes NUTA, NUTB, and NUTZ
as row partitioned matrices in snarse notation.

Partitions of the matrices are operated on in core in the V and
LV work spaces as follows: (%, m, n refer to partition number)

v LV

(Al (v) % = 1, NPARTA

[(B] (m) m = 1, NPARTB

[2) (n) n = 1, NPARTZ

The locations of elements in [A] and [B] are compared with each
other. If the locations are equal, elements a and b are summed
and stored in [Z]. If the locations are not equal, the lesser
location element is stered in [Z]).



YASSEM - 1/2

Subroutine YASSEM places (assembles) a matrix EA] into a se-ond matrix [Z]
starting at a designated row, column location (IRZ, JCZ, respectively) in
[Z]. Both matrices are in FORMA sparse notation._ The elements of [Aj will
replace corresponding elements in the original [Z] . Before the first use
of this subroutine in forming [Z] » it is important that [Z] is correctly
defined. For example, if [Z] is to be originally null, subroutine YZERO
should be used. This subroutine may be called repeatedly to form [Z] from
the assembly of several A] matrices. The [A] matrix must be within the

row, column limits of [Z . In subscript notation,
= 1, NRA

2y = akl for (z =1, NCA)

where

i =%+ IRZ -1;

j = l + JCZ -1;

NRA is the number of rows in [A].; and
NCA is the number of columms in [A] .

EXAMPLE

Consider a matrix defined as

oNO
OO
(=N e

1.
[z],., = |o.
3x4 0

_ 13. 4. 5.
Matrix [A]2x3 = [6. 7. 8.] is to be assembled
into [Z] starting at the 2, 1 location (IRZ = 2, JUZ = 1) of [Z] .
The result of this operation will be

0. 0. O.

4. 5. 0.

7. 8. 0

[Z]3x4 - [éf

|

DESCRIPTION OF TECHNIQUE

[A] and (2] are stored on utility tapes NUTA and NUTZ as row partitioned
matrices in FORMA sparse notation.



YASSEM - 2/2

Matrix [A] is read from NUTA one partit.on at a time. The location
numbers of its non-zero elements are revised by adding the gquantity
[100000*(IRZ—1) + (JCZ-I)] to them and the revised matriz [ii is stored
on NUT1.

In the next operation, matrix [Z] is read from NUTZ one partition at a
E%Te. Any non-zero elements existing in the_area of the matrix where
is

to be inserted, are eliminated and 7] is stored on NUIZ.
Matri: [Z) is read from NUT2 an%? itten on NUTZ. Matrix [A) is then
read from NUI1l and stored with Zfron NUTZ.
The final step is a_:omplished by calling subroutine YLORD to correctly

order the remaining non-zero elements of &ﬂ together with the revised
elements of [A] , and the resulting matrix is stored on NUTZ,



YBSL3A - 1/2

Subroutine YBSL3A solves the linear simultaneous algebraic equa-
tions [A] [2] = {B], where [A] has been previously decomposed

into [U]T (D] (U]. 1In matrix notation,

Decomposition of [A] gives

;T g (U] (2] = (B) [2]
Letting
(u) (2] = [Y] [3]
and
fp] [y} = fG) (4]
glves
w1t 61 = [8]. (5]
Because
T [ ]

[u}® = 1 0

u12 1

u}3 u23 1

UIN Moy Yy ce b

the elenents of [G] can be solved as

/]
o
(.

1l
-
=

[
[
[ Sy
u
(=
-
.
[
|
[
[=
[
~
[
~
Cde
—
[
W
Landl
= =
N —



YBSL3A 2/2
Using [4) we can now solve for [Y] as
Yy = Byy/dyy-

Now, because

[ . 7]
1 412 ul3 e ulN
1 Uzttt Upy
[u] =
1 YN
0 ..
1
e —
the back solution for [Z] is
zNj - yNJ ij=1, M
N
1=2, N)
CIR T T Z Uy Py 1=1, M
k=1+1

Subroutine YBSL3A uses [U) and [D]) as input, but expects them in a
special format. They are not in FORMA sparse notation. Input
matrix [B] and output matrix [Z] are in standard FORMA sparse
notation.



YBTAB - 1/2

Subroutine YBTAB calculates the triple matrix product for matrices in
FORMA sparse notation. In matrix notation

lZ]NCBxNCB = [B]§CBxNRB [A]NRBxNRB [B]NRBXNCB

NRB NRB

- { =1, NCB
“3 T El kz__:l 8¢ 2 i (j =1, NCB)

NRB is the number of rows of [B) and the size of [A] (square).
NCB is the number of columns of [B] and the size of [Z] (square).

Because the number of columns of Bﬂ must be equa) to the number of rows
of [B , and because the number of columns of | B|" (or the number of rows
of [B)) must be equal to the number of rows of [A] , then [A] must be a
square matrix. The answer Eﬂ is likewise a square matrix.

Theorm: If [A] is symmetric (that is, [A] = [A]T), then [Z] is symme-
tric.

([s1° (] ()"
(a7 [a1" (1%
(817 (a] (5]

[2] .

n

Proof: [2JF

n

"

DESCRIPTION OF TECHNIQUE

EA] . [B] , and [Z] are stored on utility tapes NUTA, NUTB, and NUTZ
respectively as row partitioned matrices in FORMA sparse notation.

Partitions of matrix [BJ are read from NUIB and the location numbers
of the non-zerp elements are transposed. These partitions now are
partitions of [B]T and are stored on NUTZ.

Subroutine YMULT is called to form the product of [B]T [A] . This
product is stored on NUTL.
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If [A] is not symmetrict subroutine YMULT 18 called to complete the
(|B

triple matrix product ]T {A]) ) , and the resulting (Z] is stored
on NUTZ.

1f {A] is symmetric, the result of [B]T (A}is read into core, one par-
tition at a time, from NUT1. Each row of (B)T (AJis postmultiplied by
(B] giving a row of [Z] . To save computer time, only the zjj for j = 1,1
are formed givirg the lower half of the symmetric matrix (2] | [2Z] is
stored on NUTZ. The logic used in this portion of YBTAB is a slight modi-
fication of the logic used in YMULT.



YDCM3A - 1/4
Subroutine :DCM3A decomposes [A] a matrix in FORMA sparse nota-~
tion to £y 'm an upper triangular matrix with ones on the diagonal
[U] and a diagonal matrix [D] such that [A] = [U]T fp) [u). [A)

must be r=:l, square, and symmetric. The decomposition technique
is attributed to Gauss. In matrix notation

I
(Al = Mgy DIgey Ul [1)
where

o Ulz U13 ) UlN

¢ 1 Uy, UoN

0 0 1 oo u
[0y N [1a]

0 0 0 een 1
and

G, o o

0 d22 0 . 0

_ 10 0 d 0

tDJNKN = 33

0 0 0 Ce d

- NN

N is the size £ the matrices (square):

DESCRIPTIC"" OF TECHNIQUE

To der .lne the elements of [U}] and [D], first consider the
mult ‘plication of two -iatrices.

(a} = (C] [uU] (2]

where {C] 1s a lower triangular matrix of the form



c11 0
C [+
21 S22
[c]) =
°N1 w2
-

[

NN

and [U] has been previously defined.

Because [A] 1s symmetric,

(a] = (a1"
= w1t ef

- ' 11

°

0

[d

1 A
‘1

0 1

Lg 0

N1
11
N2
22

YDCM3A - 2/4

Due to the uniqueness of the factorization of [A] into the product
of the two triangular matrices, one of which has ones on the diagonal,

it follows that

.
[

N S
11

ol »

= [U].



YDCM3A - 3/4
By defining

— —
cll 0 oo O
0 Cpy ve 0

(D] =
0 0 CNN >

Equation (1] 1s thus derived from Equation [2].

By performing the matrix products indicated by Equation [1], the
elements in [A] are obtained generally as

d

854 % Uy 91 Ypy T upp dpp Upy toeee T dyy gy
and
a a d u2 +d u2 + +d

g4 = 9yp Yrg T dpp Uy *ee +dyy

From these two equations we calculate

411 = 31
upy = agyfdyy (=2, N)
1-1
2
dyy =344~ Z de Ui 1=2,N
=1
-1
Uy T {8y }E: et ke Yky)as d <9
-1
Uy ® 1.0 (L =1, N)
uiJ = 0.0 (i > 3)

Because of the shape of [A] and the corresponding shape and
density of [U], this decomposition is performed using banded
programming logic. [U] and [D] are not stored in FORMA sparse
notation but are in a form to be used as input to subroutine
YBSL3A.



YDCM3A - 4/4
MISCELLANEOUS

The diagonal clements of [D] are the determinant ratios of [A].
The determ!rant of [A] is the product of these determinant ratios.
That is,

N
i=1
REFERENCE

V. N. Faddeeve, Computational Methods of Linear Algebra. Dover
Publications, Inc., New York, 1959.



YDCOM2 - 1/4

Subroutine YDCOM2 decomposes [A] a matrix in FORMA sparse nota-
tion to form an upper triangular matrix with ones on the diagonal

(U] and a diagonal matrix [D] such that [A] = (U]% D) (U]. (A]
must be real, square, and symmetric. The decomposition technique
is attributed to Causs. In matrix notation

T

(Al = 00y Py Wy
where
Louyy Y3 YN
0 1 u23 v UZN
0 0 1 . u
L) I 3N
0 0 0 .. 1
and
dy, O 0 .. 0
0 d,, 0 .. 0
_ o 0 d . 0
Dy, x 33
0 0 0 v dygy

N is the size of the matrices (square):

DESCRIPTION OF TECHNIQUE

To determine the elements of [U) and [DJ, first consider the
multiplication of two matrices.

{a} = [c] (U]

where [C] is a lower triangular matrix of the form

[la]

(2]



YDCOM2 - 2/4

c11 0 oo 0
a1 “22 0
[c] =
_“m “N2 cmb

and [U] has been previously defined.

Because [A] is symmetric,

T
(aA] = [A]
o
= w3t (e
— — — —
c c,,
= it ey O e O 1 cz—l --c"l
11 11
CN2
0 ey eee O 0 1 A
K 0 e 00

Due to the uniqueness of the factorization of {A} into the product
of the two triangular matrices, one of which has ones on the diagonal,
it follows that

C c
. N
Lo AR
1 1
C
2
0 1 ... 22| =)
22
o o )
e —~—d



YDCOM2 - 3/4
By defining

c11 0 P
0 c22 ... 0
(D] =
0 0 CNN ’
L —

Equation [1] is thus derived from Equation [2].

By performing the matrjx products Indicated by Equation [1l], the
elements in [A] are obtained generally as

¢ = + + ...+
T IR T A R T dyg Yp; dii i
and
2 2
aiq Ty uyy vy Uyt Hdy

From these two equations we calculate

d = a

11 1
Y1y 7 %5740 (3=2,N
£-)
d = d 2 (1 =2, N)
'11'311“2 kk “ki RS
k=1
i-1
Uiy T \% T Z Ut Y Ukl (-
k-1
upgoE 1.0 (i=1, N)
oy = 0.0 (i > 3)

Because of the shape of [A] and the corresponding shape and
density of (U], this decomposition is performed using banded
programming logic.
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For the banded programming logic employed in YDCOM2, only half of [A] is
stored. Rows of [A] are stored which include only the diagonal element
through the last non-zero in the row. Output matrices (U] and {D] are
written on NUTU and NUID in FORMA sparse notation.

MI SCELLANEQUS

The diagonal elements of (D] are the determinant ratios of [A] . The
determinant of [A] is the product of these determinant ratios. That is,

N
|a] = ;El- diy
REFERENCE

V. N. Paddeeve, "Computational Methods of Linear Algebra'. Dover
Publications, Inc., New York, 1959.



YDCOM3 - 1/4
Subroutine YDCOM3 decomposer [A] a matrix in FORMA sparse nota-
tion to form an upper triangular matrix with -nes on the diagonal

{U] and a diagonal matrix [D] such that [A] = [U]T tn (U]. 1A]
must be real, square, and symmetric. The decomposition technique
19 attributed to Gauss. In matrix notation

T

where

r— —

Loy W3 o Uy

0 1 u23 .o u2N

0 0 1 . u
(Ul N (1a)

0 0 0 ees 1

L —
and

dll 0 0 .. 0

0 d22. 0 0

0 0 d e 0
EDdyn 33

0 0 0 N d

- NN

N is the size of the matrices (square):

DESCRIPTION OF TECHNIQUE

To determine the elements of [U] and [D], first consider the
multiplication of two matrices.

(A] = [C] (U] (2]

where [C] 1s a lower triangular matrix of the form



c) =

foi Sy

N

N
-

and [U] has bLeen previously defined.

because [A] is symmetric,

(A} =

it

T
[A]
it )t
T
LU} 1 0 P ¢
0 c22 . 0
_9 0 e CNEJ

[

0

YDCOM3 - 2/4

Due to the uniqueness of the [actorization of [A] into the product
of the two triangular matrices, one of which has ones on the diagonal,
it follows that

-

L

0

a1 N1
€11 “11
.
.
€22
0 ]

= [U].




YbCOM3 - 3/4
By defining

r- —
€1 0 oo 0O
0 c22 R
(b} =
0 ¢ ses C
NN
_ —

Equation [1] is thus derived from Equation [2].

By performing the matrix products indicated by Equation [1}, the
elements in [A] are obtained generally as

aij = uli dll ulj + UZi d22 u2j 4+ ... + dii uij
and
a = d u2 +d u2 + +d
it 11 "1i 22 724 ot ii
From these two equations we calculate
diy = 2
u,, =a, . /d
13 17 11 (J =2, N)
i-1
d = - d 2 (i = 2 N)
i1~ 4 Z kk “ki = S
k=1
i-1
i3 7%y T Z Yt ke Bkl G-
k-1
uii = 1-0 (1 = 19 N)
uij = 0.0 (i > 3j)

Because of the shape of [A] and the corresponding shape and
density of [U], this decomposition is performed using banded
programming logic.



YDCOM3 - 4/4

For the banded programming logic employed in YDCOM3, only half of [A) is
stored. Columns of [A) are stored which include only the top non-zero
down to the diagonal element of the column. Output matrices [U) and (D)
are written on NULU and NUTD in FORMA sparse notation.

MISCELLANEOUS

The diagonal elements of [D] are the determinant ratios of (A} . The
determinant of [A] is the product of these determinant ratios. That is,

N
LI IN

=1 it
REFERENCE

V. N. Faddeeve, Computational Methods of Linear Algebra. Dover Publi-
cations, Inc., New York, 1959.



YDIAG ~ 1/2

Subroutine YDIAG places the elements from a vector (row or column matrix
A} into the corresponding diagonal locations of a square matrix (2] .
A} and (2] are stored on NUTA and NUIZ in FORMA sparse notation. In

subscript notation,

z = 3 (i‘l,N)

i i
z:lj = 0. +3
The z.. are not stored.

ij

In matrix notation

[Z]NxN = a

where N is the size of { 2] (square), and the length of {A} .

EXAMPLE

Consider input of

1.
{A!le = §'
where N = 3.

The result of this subroutine will give

2] 1. 0. oO.
21 .= lo. 2. o.].
3x3 0. 0. 3.

DESCRI OF TECHNIQUE

Vector {A} is read from NUTA, one partition at a time. The location



YDIAG -~ 2/2

numbers for the non-zero elements of {A} are modified to reflect diagonal
elements. These partitions are then written on NUTZ to form [2] .



YDISA - 1/2

Subroutine YDISA removes (disassembles) a matrix (2} from matrix [A)
starting at a designated row, column location (IRA, JCA, respectivel:-)
in (A] . The (2] matrix must be within the row, column limits of (4] .
Matrices [A) and ([2) are stored in FORMA sparse n>:.tion. In subscript

notation,
1, NRZ
1, NCZ

{1

i3 - *xd \J

where

k=1 +IRA-1
L=3+JcAa -1
NRZ is the number of rows of [Z) , and

NCZ is the number of columms of (2] .

EXAMPLE

Consider a matrix defined as

) 1. 0. 0. 0.
A = 3. &4 5. o.
3x4 6. 7. 8. 0

Matrix [Z]2x3 is to be obtained from [A) star:ing at the 2,1 location

(IRA = 2, JCA = 1) of [A) . The result of this operation will be

'v] = 3. 4. 5.
b=l uxs 6. 7. 8.
The matrix [A) remains as originally defined.

DESCRIPTION OF TECHNIQUE

Partitions of [A) are rcad from NUTA into the first quarters of the V
and LV workspaces. The element locations of [A] are searched for
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locations in the range of (2} . Any elemenis found in this range are
moved to the second quarter of V and location numbers for these elements
are formed in the second quarter of LV. The data in the second quarters
of V and LV become partitions of (2] which is stored on NUTZ.



Subroutine YSTOD converts a dense matrix in core to a FORMA sparse
matrix written on a peripheral device. Only the nonzero elements
of dense matrix [A] are stored in sparse matrix [2]. For each aij’

a location number is formed as

LV(k) = 100000 * i + j and

V(k) = aij'

LV(k) and V(k) for k = 1, NNZA are then written on the peripheral
device, where NNZA is equal to the number of nonzeroes ia [A].

YDTOS



Subroutine YIN is used to transfer real data from a computer
peripheral device into core. Utilization of this subroutine enables
a programmer to easily take advantage of computer-dependent input
routinegs which may be more efficient than FORTRAN read statements.
Data transmitted using subroutine YOUT may be retrieved using sub-
routine YIN.

YIN



Subroutine YINI is used to transfer integer data from a computer
peripheral device inte core. Utilization of this subroutine en-
ables a programmer to easlly take advantage of computer dependent
input routines which may be more efficient than FORTRAN read state-
ments. Data transmitted using subroutine YOUTI may be retrieved
using subroutine YIMI.

YINI



The logic in FORMA sparse subroutines depends on the fact that
the locations of elements in the matrices are in order by row and
column.

Subroutine YLORD orders all nonzero matrix element locations and
the elements. Ordering is defined as follows: all elements of

a row are ordered by column from left to right; all rows are then
ordered from the firast through the last.

DESCRIPTION OF TECHNIQUE

Because no partition of a FORMA sparse matrix exceeds KV/4 in
length, four partitions of [A] are brought into core together and
the element locations and elements of all four are ordered simul-
taneously. The method of ordering employed in this process is
derived from the method of R. C. Singleton.* All partitions of
[A} are ordered, four at a time, using this process. The ordered
partitions then are merged together to form the completely ordered
matrix [Z].

*R. C. Singleton: An Efficient Algorithm for Sorting with Minimal
STorage. Research Memorandum, SRI Project 387531-132, September
1968.

YLORD



YMOD2A

Subroutine YMOD2A calculates the mode shapes and natural fre-
quencies of a structural model described as

(K] (6] = [M] [6] o2
where

(K] = [K] = A, [M]

S
and

(2 = (Wil - Ag (I].

If Ag = 0, then [K] = [K] and [02] = [w2], and [1] becomes the
more familiar eigen problem

(K1 [¢] = (M] (] [w2l.

Subroutine YMOD2A uses the composite structure iterative Rayleigh-~
Ritz method of Dr. John Admire.

1f initial Rayleigh-Ritz coordinate displacements [q] are avail-
able, they may be input to the subroutine. Otherwise random numbers
will be used.

Input matrices [K], [M], end [q] and output matrix [¢] are in
FORMA sparse notation.

[1]
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Subroutine YMULT calculetes the product of two matrices stored in FORMA

sparse notation.

(yraes = Plaraoms  Blarssvcs
where
z = 851 a b =1,

NRA is the number of rows of [A] and
(B] and the number of columns of [A]
{B) and [Z) . The number of columms
of rows of [B]

JTheorem: Multiplication of matrices
That is,

(a1 (2] # [3] (4]

1] and bij

Theorem: Multiplication of matrices

for any values of a

(4] <[] [cD = (@] [eD [c].

Theorem: Multiplication of matrices

(4] ([8] + [c]) = [a] [8] + [a](c].

EXAMPLE

Consider input of [A]lxz = [1. 2.)

“n matrix notation,

)

(z) . NRB is the number of rows of
. NCB is the number of columns of
of [A) must be equal to the number

is not commutative in general.

is associative. That is,

is distributive. That is,

-80

_[7.
and [B]2x3 - [10. 11.

9.
12‘

The reader can easily verify the output to be

-8. 9
11. 12

[y = B 21 [

[27. 14. 33.].

]
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DESCRIPTION OF TECHNIQUE

Partitions of [A]} are read from NUTA into the first quarters of the V
and LV workspaces. Partitions of [B} are read into the second quarters
of the workspaces and are premultiplied by « row of [A] . A dense row
of (2] is formed in the third quarter of V based on the row of [A] mul-
tiplied by all of matr.x [B] . When the dense rew of [Z2) is completely
formed, the non-zeros are transferred to the fourth quarter of V and an
appropriate vector of location numbers is formed in the fourth quarter
of LV. The data generated in the fourtli quarters of V and LV become
partitions of [2) and are written on NUTZ.

Limitation:

One fourth of the dimension size of V and LV, (K\/4), must exceed or be
equal to NCB and NRB.
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Subroutine YMULT1 calculates the special product of two FORMA
sparse notation matrices. In matrix notation,

iZlgaxnce = [Alypara [Blyraxncs
NRA
Z we a b (i - 1, NRA)
14 1k Pkj j =1, NCB
k=1

NRA is the number of rows of [A], [B], and [Z]) where [A] is
square. NCB is the number of columns of [B] and [Z]. NRA is
assumed to be greater than NCB.

[B] and therefore [Z] are assumed to have no elements equal to zero.

{a], [B], and [Z] are storec ou utility tapes as row partitioned
matrices in sparse notation.

Partitions of the matrices are operated on in central memory as
follows (2, m, and n refer to partition number):

\' LV
s o
A1) % = 1, NPARTA
KV/4
B{(m) m = 1, NPARTB
KV/2
Z(n) n = 1, NPARTZ
not used
KV not used

where V and LV are dimensioned work spaces and KV is the dimension
size of V and LV.

The number of nonzero terms in each partition of [Z], NNZPZ, is
Kv\

(z~A/NCB * NCB.

The number of rows in each partition of [2], NRPZ, is NNZPZ/NCB.

The number of partitions of [Z2], NPARTZ (=NPARTB), is (NRA-1)/
NRPZ + 1.



Anparta

-—

(2,] = (A ] (8]

Where

NFRPZ is the number of the
LLRPZ is the number of the

o A G

YMULTL - 2/2
NFRPZ(1) = 1

. . NLRPZ (1)

.« . NFRPZ (*IPARTZ)

PPArtZ | NLRPZ(NPARTZ) = NRA

NFRPZ () ,NLRPZ (%)
1, NCB

1, NRA

1, NPARTZ

first row in a partition of Z, and

last row in a partition of Z.



YMULT2

Subroutine YMULTZ calcilates the special product of two FORMA
sparse notation matrices, in matrix notation,

T
(2)ycpnce = [Alncaars (Blurexnce
NRB
. o b £ =1, NCB
213 Z ki kj i =1, NCB/
k=1

NRB is the number of rows of [A] and [B] and the number of columns

of [A]T. NCB is the number of rows of [A]T and [Z]! and the number
of columns of {A}, [B], and [Z). [A], [B]}, and [Z] are assumed to
have no elements equal to zero and [Z] is symmetric.

Statements from FORMA subroutine ATXBB2 are used in this subroutine.



YMULT4
Subroutine YMULT4 calculates the special product of a FORMA sparse

notation matrix postmultiplied by a square matrix stored in core.
In matrix notation,

(Z]ygaxnce = [Alyrasnce [Blycexncs

NCB
e Y (1hm)
ij . ik "kj j =1, NCB ,
k=1

where

NRA is the number of rows of [A) and [Z], and NCB is the number of rows

of [B) and the number of colummns of [A), {B] and {Z]. NRA is greater
than NCB.

{A] and [Z] are assumed to have no elements equal to zero. They
are stored on utility tapes in FORMA sparse notation.
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Subroutine YMULTA calculates the product of two matrices stored in FORMA
sparse notation. In matrix notation

Bwancs = Blraoms  Blyrsacs
where
N&B 1=1, NRA)
z,, = a,. b, . _
ij =1 ik kj (j = 1, NCB

NRA is tbe number of rows of [A] and {Z] . NRB is the number of rows
of [B] and the number of colums of [A) . NCB is the number of columns
of [B) and (2] . The number of columns of [A] must be equal to the
number of rows of {B] .

Theorem: Multiplication of matrices is not commutative in general.
That is,

(4 ) # 8] [a]

for any values of a,, and b, ..
ij ij

Theorem: Multiplication of matrices is associative. That is,

(4] <[8] [cD = ([a] [e]) [c] .

Theoxe!

Multiplication of matrices is distributive. That is,

[a] <[8] + [c]) = [a] (8] + [4] [c] .

EXAMPLE
Consider input of [A]1x2 = [1- 2-] and [B]2x3 = [13. 12. lg.]

The reader can easily verify the output to be

(= [ 2] [1(7): it 13:]

= [27. 1. 33.].
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DESCRIPTION OF TECHNIQUE

Partitions of [A] are read from NUTA into the first quarters of the V
and LV workspaces. Partitions of [B] are read into the second quarter
of the workspaces and are premultiplied by a row of [A) . A dense row
of [2)is formed in the third quarter of V based on the row of [A] mul-
tiplied by all of matrix {B] . When the dense row of [2] is completely
formed, the non-zeros are transferred to the fourth quarter of V and an
appropriate vector of location numbers is formed in the fourth quarter
of LV. The data generated in the fourth quarters of V and LV become
partitions of [Z) and are written on NUTAZ. Matrix [A]) is, therefore,
replaced by matrix (2] in this subroutine.

Limitation:

One fourth of the dimension size of V and LV, (KV/4), must exceed or be
equal to NCA and NCB.
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Subroutine YMULTB calculates the product of two matrices stored in FORMA
sparse not. _ion. In matrix notation

@ iramice = Braairs  Blursaarce
where
NRB
i=1, NRA
233 " k{:l 31 P (j =1, NCB)

NRA is the number of rows of {A) and {Z] . NRB is the number of rows of
[(B) and the number of columns of [A] . NCB is the number of columns of

(B) and (2] . The number of columns of {A] must be equal to the number
of rows of [B)

Theorem: Multiplication of matrices is not commutative in general.
That is,

[a] [2] # (] [a]

for any values of a,, and b, ..
i] ij

Multiplication of matrices is associative. That is,

Theorem
(4] <[] [c]) = ([a] [y [c].

Theorem: Multiplication of matrices is distributive. That is,

(2] <[] + [cD = [a] 8] + [a] [c] .

EXAMPLE
Consider input of [A]le =[1. 2.) and [B]2x3 = [}g: 1?' lg’]

The reader can easily verify the output to be

[2)}5 = 01 2] [13: Y 131]

= [27. 14, 33.)
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DESCRIPTION OF TECENIQUE

Partitions of [A) are read from NUTA into the first quarters of the V
and LV workspaces. Partitions of [B) are read into the second quarters
of the workspaces and are premultiplied by a row of (A} . A dense row
of [2) 1s formed in the third quarter of V based on the row of [A] mul-
tiplied by all of matrix [B] . When the dense row of [2] is completely
formed, the non-zeros are transferred to the fourth quarter of V and an
appropriate vector of location numbers is formed in the fourth quarter
of LV. The data generated in the fourth quarters of V and LV become
partitions of (2] and are written on NUTBZ. Matrix (B) is therefore
replaced by matrix (2] in this subroutine.

Limitation:

One fourth of the dimension size of V and LV, (KV/4), must exceed or be
equal to NCA and NCB.



YNOZEn

Subroutine YNOZER scans each partition of a FORMA sparse matrix
and deletes any terms equal to zero. The logic of sparse matrix
subroutines becomes inefficient if matrix terms equal to zero are
stored and operated on. If prior matrix operations have computed
values in [A] such that any a,, are equal to zero, these a,, are
i) i)
deleted.



YOutr

Subroutine YOUT 1s used to transfer real data from computer central
memory to a peripheral device. Utilization of this subroutine
enables a programmer to easily take advantage of computer-dependent
output routines which may be more efficient than FORTRAN write
statements. Data transmitted using subroutine YOUT may be re-
trieved using subroutine YIN.



Subroutine YOUTI is used to transfer integer data from computer
central memory to a peripheral device. Utilization of this sub-
routine enables a programmer to easily take advantage of computer
dependent output routines which may be more efficient thai FORTRAN
write statements. Data transmitted using subroutine YOUTI may be
retrieved using subroutine YINI.

YOUTIL



YPART

Subroutine YPART partitions newly generated matrices and reparti-
tions existing matrices in which the partition length is not
compatitle with the work -pace dimension (KV) of the current
computer program. Partitioning ensures that no matrix row spans
two partitions and the length of all partitions is less than or
equal to one fourth of KV.



YPNCHO

Subroutine YPNCHO punches a matrix EA} onto cards using octal format to
eliminate round-off error. Matrix [A] is stored on NUTA in FORMA sparse
notation, Octal representation of the matrix elements is used because

it gives an exact replica of the binary number used by a digital computer.
A decimal representation will not give an exact replica. The matrix on
punched cards is to be used only as an emergency backup for the matrix
written on a storage tape.

This matrix on cards 1s compa*ible with the input form for Subroutine
YREADO. A group of up to three consecutive elements from a row of the
matrix are punched on each card. If all of the elements of a group are
zero, punching of this card is suppressed.

The first card punched contains the matrix name (in card columns 1-6),

the matrix row size (in card columns 7-10), the matrix column size (in
card coiumns 11-15), and the matrix shape (in card columns 16-21). This
is followed by the matrix data. On any card of the matrix data, the first
integer number (card columns 1-5) is the row number of the matrix elements
on that card. The second integer number (card columns 6-10) is the column
number of the matrix element in the first data field (card columns 14-25).
The next group contains octal numbers (up to three numbers in card columns
14-25, 29-40, 44-55) that are the values of the matrix elements. This
group of matrix elements 15 given in consecutive column order. The last
card punched contains ten zeroes in card co'umns 1-10 to indicate the end
of the matrix.



YPUNCH

Subroutine YPUNCH punches a matrix (A] of real rumbers (a Fortran term
for numbers with a decimal point) onto cards. Matrix (A) is stored on
NUTA in FORMA sparse notation. This matrix on cards is compatible with
the input form for Subroutine YREAD. A group of up to four consecutive
elements from a row of the matrix are punched on each card. If all of
the elements of a group are zero, punching of this card is suppressed.

The first card punched contains the matrix name (in card columns 1-6),

the matrix row size (in card columns 7-10), the matrix column size (in
card colums 11-15), and the matrix shape (in card columns 16-21). This
is followed by the matrix data. On any card of matrix data, the first
integer number (card columns 1-5) is the row number of the matrix elements
on that card. The second integer number (card columns 6-10) is the column
number of the matrix element in the first data field (card columns 11-27).
The next group contains real numbers (up to four numbers in card columns
11-27, 28-44, 45-61, 62-78) that are the values of the matrix elements.
This group of matrix elements is given in consecutive column order. The
last card punched contains ten zeroes in card columns 1-10 to indicate

the end of the matrix.



YREAD - 1/6

Subroutine YREAD reads a matrix of real numbers (a FURTRAN term
for numbers with a decimal point) from either cards or tape and
stores the matrix on a utility tape in FORia sparse notation. The
matrix is then printed so that these input data are recorded with

the arawers of a run.
for a matrix read from tape.

A print suppression optiou i. available
On option, the matrix read from

either cards or tape may be written on a tape (by Subroutine

YWTAPE).

The first data card read by Subroutine YREAD contains informatior

to indicate whether cards or tape will be used.

The information

entered on this card (and subsequent curds for card input) is given

below.

Card Data Input Form

Required entries are deaoted by an * symbol below.

entry is optional

Card Format
Columns Type (1)
First Card 1-6 A
7-10 I
11-15 I
16-69 A
16-20 A
72
)]
=1
o
o
&
(=9
©] 72 or
v
[=9
m
=
&1 73-78 A
49
ol
} 51
=
73-78 or
L.

*Matrix Name.

The format is iidentical tu that used by Subroutine READ.

Any other

Entry

Will appear in
printou’.
*Matrix Row Size.
“Matrix Column Size.

Any remarks to further identify
the input matrix.

The word upper (or lower) must
be specified if only the upper
(or lower) half of a symmetric
matrix is on the punched cards.

3. Only if the Write-Tape is
to be initialized by Subroutine
INTAPE. The Write-Tape identi~
fication will be from card
columns 73-78.

Anything other than $ is the
Write-Tape is not to be ini=-
tialized.

The Write-Tape identification.
(e.g., T1234). Use with $ in
card colum 72.

REWIND. The Write-Tape will
be rewound tefore being used.



Card
Columns

(coatd) -;3—76

73-78
L,79—80

Middle Cards 1-5
6-10
11-27
28-44
45-61
62-78

Last Card 1-10

Format

Type (1)
or
or

I
cr

I

1

E

E

E

E

I

YREAD - 2/6

Entry

LIST. The Write-Tape will be
listed by Subroutine LTAPE

after the matrix has been
written on the Write-Tape.
Anything else will be ignored.
The Write-Tape Number (e.g., 21).
3lank if the matrix is not to

be written on tape.

*Row Number of matrix elements
on card.

*Column Number of matrix ele-
ment in first data field.

*First data field with matrix
elements. (2)

*Second data field with matrix
elements. (2)

*Third data field with matrix
elements. (2)

*Fourth data field with matrix
elements. (2)

*Ten zeroes.

Note (1) TFormat Type A allows any keypunch symbol.

Format Type I allows only integer numbers right justified
. Format Type E allows only real numbers
(a FORTRAN term for numbers with a decimal point) any-
where in the field.

in the field

Note (2) Only nonzero elements neasd be entered.

A~ an oxample of card input to Subroutine YREAD consider the fol-

lowing matrix:
1. 0.
* =
[Al C]3x6 0. 2
0.

~
.

0.

This matrix is also to be written on tape aumber 21 ttat is to
be initialized and identified as T4334. Figure 1 demonstrates
how this information could be written on a coding form to facili-

tate keypunching to ca

rds.
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Tape Data Input Form

Required entries are denoted with an * syvmbol below. Any other
entry is optional. Only one card is used for each matrix read.

Card Format
Columns Tyre (1) Entry

One Card 1-7 A *Name of matrix to be read from
the Read-Tape.
10 Zero. The Read-Tape will move

forward from its present posi-
tion and sezrch to the end of
the tape. If the matrix is
not found upon the first end-
of -tape encounter, the tape
will automatically rewind and
make one more pass. If it is
not found on the second end-of-
tape encounter, an error message
will be printed and tke program
will stop.

7~10 T or Minus the location number of
matrix on the Read-Tape. Tape
will be positioned at the be-
ginning of the location specified
and then continue as described
above for a zero irn column 10.

11-15 1 *The Read-Tape Number (e.g., 11).
If positive, the matrix read will
be printed in the output. 1f
negative, the matrix read will
not be printed in the output.

to~21 A *Run number ot matrix to be read
from the Read-Tape.

S2=27 REIIND. The Read-Tape will b.
revound befn.e being used.

22-25 or LIST. The Read-Tape will be
T{sted by Subroutine LTAPE.

221-27 cr Anything else will be considered
as part of the remarks described
beiow.

28-69 A Anv remarks to further identify
the input matrix.



Note (1)
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Card Format
Columns Type (1)  Entry
—

72 $. Only if the Write-Tape is
to be initialized by Sub-
routine INTAPE. The Write-
Tape identification will be
from card columns 73-78.

72 or Anything other than $ if the
Write-Tape is not to be ini-
tialized.

73-78 A The Write-Tape identification
(e.g., T1234). Use with § in
card column 72.
73-78 oxr REWIND. The Write~Tape will
be rewound before being used.
73~76 or LIST. The Write~Tape will be
listed by Subroutine LTAPE
after the matrix has been
written on the Write-Tape.
73-78 or Anything else will be ignored.
79-80 1 The Write-Tape Number (e.g.,
21).
or Blank if the matrix is not to
be writcen on tape.

-

Format Type A allows any keypunch symbol.
{ormat Type I allows only integer numbers right justified
in the field.

As examples of tape input to Subroutine YREAD consider:

Example 1.

Example 2.

A matrix named AB2 with run number of RUN-46 is to
be read from tape number 11 into the computer and
printed. This matrix is also to be writfen on tape
number 22 that is to be initialized and identified as
T4321.

A matrix named XYZ4 with run number of TKD is on tape
number 13 twice. The first time is at location 29
and the second time is at location 54. 1t is desired
to read the second matrix.

Figure Z demonstrates how these two examples would be written on
a coding form to facilitiate keypunching to cards.
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Subroutine YREADO reads a matrix [A] from octal numbers on cards. Matrix
[A] is then stored on NUTA in FORMA gparse notation. The matrix is printed
side by side in both octal and decimal so that these iaput data are re-
corded with the answers of a run.

The primary purpose of Subroutine YREADO is to read a matrix from punched
cards without round-off error. The cards are punched by Subroutine YPNCHO.
Octal representation of the matrix elements is used because it gives an
exact replica of the binary number used by a digital computer. A decimal
repregentation will not give an exact replica. The matrix on punched cards
is to be used only as an emergency backup for the matrix written on a stor-
age tape.

Because of the emergency backup nature of input data to this Subroutine
YREADO, only cards are read. No tape reading or writing options are
available.

The information entered on the data cards is given below. Required en-
-tries are denoted by an * symbol. Any other entry is optional.

Card Format
Columns Type (1) Entry
First Card 1-6 A *Matrix Name. (Will appear inm
printout.)
7-10 1 *Matrix Row Size.
11-15 I *Matrix Column Size.
16-21 A *Matrix Shape.
22-69 A Any remarks to further identify
the input matrix.
Middle Cards 1-5 I *Row Number of matrix elements
on card.
6-10 I *Column Number of matrix element
in first data field.
14-25 0 *First data field with matrix
elements. (2)
29-40 0 *Second data field with matrix
elements. (2)
44-55 0 *Third data field with matrix
elements. (2)
Last Card 1-10 I *Ten Zerces.

Note (1) Format Type A allows any keypunch symbol.
Format Type I allows only integer numbers right justified in
the field. Format Type O allows only octal numbcrs.

Note (2) Only non-zero elements need be entered.
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No examples of input are given because data would not be keypunched for
input tc Subroutine YREADO but rather obtained from Subroutine YPNCHO.
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Subroutine YREVAD rearranges (revises) the rowe and columns of a matrix
(A) , multiplies [A] by a_scalar alpha, and adds the result to a previously
defined matrix {2 in] . (A} , (2 in) , and (2 out} ar: stored on NUTA and
NUTZ in FORMA sparse notation. The revision of (A} is specified by two
vectors. The first vector {IVEC gives the new row location of each row
of [A] 1n [2) . The second vector {JVEC} gives the new column location

of each column of [A] in [2] . The [Z) matrix must be defined before the
use of this subroutine. For insiance, if [Z) is to be originally defined
as all zeros, Subroutine YZERO could be used. The YREVAD operation can be
thought of in subscript notation as

zkl (out) = zk[ (in) + a aij (; : i: gg:)
where

k = IVEC({),

L = JvEc(3).

NRA is the number of rows of (A] , and NCA is the number of columns

of (A) .

Values in {IVEC} and {JVEC} may be positive, negative or zero. A nega-
tive value changes the sign of the corresponding row or column of [A] in
{2]) . (A)zero va.ue omits the corresponding row or column of (A] from [2].
The values are integer numbers.

This subroutine may be called repeatedly to form [2) from the revision/
addition of several [A) matrices.

An important use of Subroutine YREVAD 18 to revise and add the stiffness

matrix of a structural component to the stiffness matrix of the complete
structure to account for the difference in coordinate systems.

EXAMPLES

The first example to illustrate the YREVAD op vation is as follows.
Matrix (2] has been previously defined as

1. 0. 0. 0. o.
0. 2. 0. 0. 0.

(2,.. =
bx5 0. 0. 3. 4. 5.
0. 0. 0. 6.
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Let [A] be defined as

1. 2.
(), = |3 4
50 6-

The first row of [A) is to be added to the third row of zJ , the second
row of [A) is to be omitted from [(z) , the third row of [A] is to be added
to the first row of [2) , with the sign of each element reversed.

Thus {1vEC} 2yl
-1

The first column of [A] is to be added to the second column of (2] with
the sign of each element reversed, the second column of [A] is to be
added to the fifth column of [Z)

Thus {JVEC}, , = [‘2]

Then, assuming @ * 1.0 and placing JIVEC }and {JVEC} adjacent to [A)
to aid in visualizing tb. revision of (A} , we have

"1, 6. 6. 0. 0.] -2 s

[, - 0. 2. 3. 0. O. +10 |3l 2 2
x 0. 0. 3. 4, 5. oy 13. 4.
0. 0. 0. 0. 6.] -1 Is. .

"1, 0. 0. 0. 0.7

0
- 0- 2: 0- 0. 0. + 1.0 3 . -1- 0 .
0. 0. 30 l‘o -30
-0. 0- 0- 0 -1 "5. 0- Oo
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1. 0. 0. 0. o, 0. 5. 0. 0. -u]
0. 2. (UN Q. 0. + 1.0 0. 0. 0, 0, v.
) 0 0 3 4 5. 0. -1 0, 0 2.
_0 0 0 U b._J _0 U 0 0 u_j

LU. 0. 0. 0. 6.

=

A second example of the use of this subroutine demonstrates
the coordinate transformation concept which is a very important
application of YREVAD. It is desired to transform a stiffness
matrix from an original coordinate system (subscript 1) to a
final coordinate system (subscript 2} as shuwa in the sketch below.

21
y2

Y1,2;

X}
X2

For this example, the stiffness matrix in the original coordinate
system is assumed to be
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From inspection of the coordinate system axes in the above sketch,

Xz ~Z3
yeg= | %1
Zp DA

To obtain the vector on the right hand side of the equation:

x) of the original coordinate system is to be the second
row of the final coordinate system with the sign reversed.

y1 of the original coordinate system is to be the third
row of the final coordinate system.

2); of the original coordinate system is to be the first
row of the final coordinate system with the sign reversed.

The {IVEC} to accomplish this change is
-2
{IVLL}Bxl = 3
-1
Apply this {IVEC} as the {IVEC} and {JVEC} to the original stiff-
ness matrix to obtain the final stiffness matrix. This application

is analogous to the change in coordinates made in the triple matrix
product procedure.

[ 5 ]

-2111 2 4. 6. 4 -3
yAD -

312 3 5 YREV : 4 1. 2

~-1}] 4. 5. 6. -5. =2, 3.

The above YREVAD procedure may be compared with the more conven-
tional triple matrix product procedure below.



YREVAD - 5/6

The equation for the coordinate transformation would he

X ~1. X2
yif= L. vz 1
2} -1. 29

The strain energy expression with the stiffness matrix is

given by U =% {q}T {h {q} or for coordinate system 1,
[ | N
U=12 [x; y1 21002, 3. S5.0Iwn (2)
4. 5. 6.4 2

Substituting Equation (1) into (2) gives

-1. 1. 2. 4. -1. X2
U=1Y% [x2 y2 z2] |-1. 2. 3. 5. L. ]yzl,
.1.. li. 5. 6. -1. Zz

thus the inner triple matrix product gives the stiffress matrix
in coordinate system 2, i.e.,

which is the same result as that obtained from the YREVAD procedure.

The advantages of using the YREVAD procedure over the triple
matrix product prccedure are:
1) Less computer time;
2) Less computer core is used;

3) Usually easier to code the {IVEC} (thus {JVLC‘)
than to code the transformation matrix.
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ESCRI PTION TECHNIQUE

Matrix [A] is read from NUTA and the non-zero element location numbers
are replaced according to the contents of {IVEC} and {JVEC} aign
of the non-zero elements 18 changed accordingly and the revised FK
stored on NUT1l. Matrix (2 in) is read from NUTZ and stored on NUT2.

Subroutine YAABB is then called to sum [X] and [z +n) . The resulting
matrix [Z out] ‘s stored on NUTZ,



YRTAPE

Subroutine YRTAPE reads partitions of a selected FORMA sparse
notation matrix from a FORMA reserve tape (disc) into the ~om-
puter core and stores them sequentiaily on a utility tape to be
operated on by otker FORMA subroutines. The matrix to be selected
is identified by the desired run number and matrix name. This
procedure is accomplished by searching the matrix headings (See
Subroutine YWTAPE explanation.) until a match with the desired

run number zud matrix name is obtained, and then reading the matrix
elements and element locations into core asnd storing them on a
utilicty —ape. This procedure is repeated for each matrix partition.
The search starts from the current position (aoes not rewind) of
the tape (disk) and proceeds to the EU:. (end of tape defined in
subroutine YWTAPE explanation). If the desired matrix was not
found upon reaching the EOT, a rewind is per: ,rmed and one more
search to the EOT is made. If the desired matrix is again not
found, (1) an error message is printed, (2) a listing of the

matrix headings is printed (See Subroutine LTAPE writeup), ai.l

(3) transfer is made to Subroutine ZZBOMB where the program is
terminated.



YRVAD1

Subroutine YRVAD1 performs a special case of th2 function performed by
FORMA Subrcutines REVADD and YREVAD (see subroutine explanations for
these subroutines). Subr utine YRVAD] rearranges (vevises) the rows

and columns of a matrix |'A) , multipiies "A) by a scalar alpha, and adds
the result to a previously defined matrix 2 in] . (A) is a matrix in
FORMA dense stcrage. {(z in) and {Z out] are stored on NUIZ in FORMA
sparse notation. YRVADl may be used only when [A] , (2 in] , and [Z out]
are ail symmetric. Because of this symmetry, only one vector {LJVEC} is
required for the revision of matrix [A] .

DESCRIPTION OF TECHNIQUE

Any non-zero elements in [A] are stored in workspace V. c£lement location
aumbers are formed for the corresponding elements in workspace LV. These
elements of [AJ are then stored on NUT1 in FORMA sparse notation. Matrix
(z in] is read from NUTZ and stored on NUT2. Subroutine YAABB is called
to add sparse matrix [A) to matrix [Z in] and the resulting matrix [Z out)
is stored on NUTZ,

Limitation:

The dimension size of V and .™ must excead or be equal to the number of
non-zero elements in matrix {a] .



YRVAD2

Subroutine V' .AD2 reads small dense matrices and integer vectors
from a utility tape (disk) and uses the vectors to revise the
matrix locations to form large sparse matrices. These sparse
matrices are then summed to form one large matrix in FORMA sparse
notation [Z]. Because the small matrices are assumed to be sym-
metric, [2] is also symmetric and only the lower half is formed.
Only matrix elements having an absolute value greater than 10-23
are summed in [Z]. Subroutine YRVAD2 reads matrices from the
utility tape until a blank record is found.



YRVIS1

Subroutine YRVIS1 rearranges (revises) the columns of a matrix [A) in
FORMA dense storage to form matrix [2) in FORMA sparse notation., The
rows of [A] are not rearranged, thus only one integer vector {JVEC
need be input to this subroutine.

DESCRIPTION OF TECHNIQUE

The non-zero elements of [A] are stored in workspace V. Element location
numbers are formed in workspace LV corresponding to the elements in V.
[2] , composed of these elements and locations, is stored on NUTZ.

Limitation:

The dimension size of V and LV must exceed or be equal to the number of
non-zero elements in {A] .
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Subroutine YSRED2 operates on the stiffness matrix [A] to form a
reduced stiffness matrix [R] and/cr the reducing transfcrmation
[T]. The relation between the stiffness macrix [A], displacements
{X}, and applied forces {B} may be expressed in matrix form as

fa)] (X} = {(B]

The reducticon mecthod assumes Eq [1] to be partitioned as

-
(A1,) [A},] 1 [y

(A

[y 22) 2

where {Xl} are the displacements to be reduced out and {Xz}

are the displacements to be retained. The applied forces acting
on the coordinates to be reduced are assumed to be zero, such that

{Bl} = {0}

Substituting Eq [3] into Eq [2] and expanding the upper partition,
will yield the reduced displacemeants in terms of the retained
displacements as

-1
(X)) = = (4,17 [Ag,) 1xy)

Expanding the lower partitions of Eq [2] and substituting Eq [4]
will yield the reduced stiffness matrix as

{R] (Xz} = {Bz}
where [R] is the reduced stiffness matrix and is expressed as
[R] = [A

-1
YL LSRN LT B DY

The reducing transformation [T] may be expressed using Eq [4] as

{"1}
= [T) {x.}
{Xz} 2

1/6

{t]

(2]

(3]

(4]

{5}

(6]

{7}
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where
-1
a7 A
(1) = 11 12 (8]
(1) :
Also
(k) = [T)T [A] [T] (9]

DESCRIPTION OF TECHNIQUE

This subroutine nuses Gauss reduction partially completed to form
matrix [R] and [T) from stiffness matrix [A]. As an example of
the method, consider three simultaneous equations of the following
form

+ a

{
o

a x X, + a X

11 "1 12 72 1373 7 "1
ay) X) + 8y, X, tayy x3=b, (10}
33) X) ¥ a3y X, + a4y x5 = by

These equations may be written in matrix form as

31 212 %13 X by
;) 322 %23 X3¢ b, (11)
a a a x b
[_31 32 933 3 3
Solve the first Equation for X as
a a b
MR Mt e Xt e (12]
11 11 1i

Substituting Eq [12] into the second and third equations in Eq [11]
and divide the first by a,, results in

11

p— (. T
® * %

1 8, a3, ("1 b

0 a. a v\ ¢ bt $ [13)
22 223 2 2 ‘

0 * * b*
a a X

N 32 33_J 3. \. 3




where

Solve the second equation for x, which will yield

X, = =

2

Substitute Eq [23] into the third equation in Eq ([13] and divide
This results in

w»
273
*

a

22

2 221

13 2

*
b

30
422

the second equation by

p—

1

x

32

0

£

813 X
Xk J

323 X
3.

433 W

-l

X, + &

*
22°

1*
1

YSRED2 - 3/6

_l14l
(15)
(16}
(17]
(18]

(19}

[20]
(2i]

{22}

(23]

[24)
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where
%
w23
323 = a;" {25)
22
X X
k% %23 232
33 % 833 7 TR (26]
222
b*
% 2
bz = * [27]
%22
b* %
a
2.3 _ * _ _g‘-3—2
by = b, y f28]
%22
The reduced stiffness matrix has been formed and is contained as the
Kk
a4, element. This can te shown if in Eq [2] we let
x
. )N
{xlr (29]
X2
{XZ} e (x3} [30]}
a a
e 11 12
[a), ) o (31]
21 22
a
_ 13
[AL,) = , (32)
23
(81 = T3y 25,] (33]
[Ay,) = a4 [34]

3
b

(&) = {1} (35]
b,

(Bz) = b, [30)
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Substituting Eq [31]) through {34]) into Eq [6] results fn a reduced
stiffness matrix of the form

(k] ~ a.. s —20%23 %0 7 %12 P13 %32 T Y1y 2 Ty T a1 a3 P

33 811 %22 T %12 22y
(37]
Equation [37] is identical to the result obtained by expanding
Eq [26]. Thus, Gauss reduction partially completed yields the
reduced stiffness matrix.
The reducing transformation may also be obtained using Gauss re-
duction Lf additional opecrations are performed. From Eq [24],
solve the second equatior. for %y
*k . b**
X3 % "33 X3t b (381
Substitute Eq [38] into the first equation in Eq [24]), which will
yield
B 0 wxx | ) "b**ﬂ
1 33 %) 1
Rk *k
0 1 ay <x2?-<b2 ) (39]
0 0 .24 b**
a3 | ") s J
where
Rk * x Ak
)3 313 7 332 3 [40]
xhk b* % b**
by = b Tapb (41]

Inspection of Eq [39] shows that we have formed a unity matrix

partition where the row-columns were reduced. The afg* and the
*h

3,54 elements contain the necessary information to form the reduc-

ing transformation. To show this, substitute Eq [31) and [32] into
Eg [8] to yield
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31 223 7 213 %22
a a

(r] 12 13 7 %11 23 (42]

it
[y
H X
[
w

The second and third rows of Eq [42] are equal to the negative of
Kk

Ak
elements a13 and 323 in Eq [39]). Thus, Gauss reduction also

yields the reducing transformation.

SCRIPTION OF TECHNIQUE

The stiffness matrix [A) is read from NUTA in FORMA sparse notation,
converted to banded notation, and stored on NUIl. This banded nota-
tion stores groups of columns of the upper half of symmetric matrix
[A] . The reducing procedure is similar to the decomposition proce-
dure of subroutines YDCOM3 and YDCM3A. The reduced stiffness matrix
ER] is stored on NUTR in FORMA sparse notation. If input argument

IFT" is equal to one, the reducing transformation is formed and
stored on NUTIT in «ORMA gparse notation.



YSTOD

Subroutine YDTOS reads a FORMA sparse matrix from the peripheral
device on which the matrix is written and stores it in a dimensional
work space in core. The work space is zeroed before the nonzero
terms of the sparse matrix are inserted into the work space.

DESCRIPTION OF TECHNIQUE

Dense matrix [Z] is formed from the nonzero terms of FORMA sparse
matrix [A). After all of [Z] 1s zeroced, each partition of [A] is
sequentially read into work vectors {V} and {LV}. For each non-
zero element location, LV(k), 1 and ] are found:

i = LV(k)/100000

j = LV(k)-100000 * i
then

zij = V(k) for all elements of [A].



YSYMUH

Subroutine YSYMUH symmetrizes a square FORMA sparse matrix [A].
Existing elements above the diagonal are set to zero and new ele-
ments are added above the diagonal to reflect elements below the
diagonal. The matrix is then searched and any zero elements are
removed. Finally, the elements and their locations are ordered.
This result 1is [Z] where:

zij = ai_1 i>]
and
z = g i<3.



YTRANS

Subroutine YTRANS calculates the transpose (interchange of rows
and columns) of a matrix in FORMA sparse notation. If [A]NRAXNCA

is the matrix to be transposed, then the result is

(Zlycanma = 141"

where

; =a i=1, NRA)
SRS & (j = 1, NCA

NRA is the number oI rows of [A), and NCA is the number of columns
of [A].

DESCRIPTION OF TECHNIQUE

The location of each a,j (100000 * 1 + j) is transposed to
100000 * § + 1 and the matrix is reordered.



YUNITY

Subroutine YUNITY generates a square matrix (27 with diagonal elements
equal to one and all off-diagonal elements equal to zero. That is,

zy " 1. i =13

zij-o. L+

In matrix notation,

[z]uxu' 1. oO.

vhere N is the size of [Z] (square) . A synonym for the unity matrix
is the identity matrix, thus the usual designation as [1}.

A matrix is unaltered when multiplied by the unity matrix ané the pro-
cess i8s commtative. In matrix notation,

1] ~(] [ ~[2.

DESCRIFTION OF TECHNIQUE

N ones are stored in workspace V ani N diagonal element lucation numbers
are stored in workspace LV, (z) , composed of these ones and location
numbers is stored on NUTA,



YWRITE

Subroutine YWRITE writes a FORMA sparse notation matrix of real
numbers (a FORTRAN term for numbers with a decimal point) on paper.
A group of up to ten consecutive elements from a row of the matrix
is printed on each line. If all of the elements of a group are
zero, printing of this line Is suppressed.

Each matrix printed *egius on a new page. On each page of print-
out is the page heading given by Subroutine PAGEHD, the name

of the matrix, the row size and column size of the matrix, the
number on nonzero elements in the miatrix, and the number of parti-
tions in the matrix.

This is followed by the matrix data. On any line of matrix data
the first integer number is the row number of the matrix elements
on that line. The second integer number is the column number of
the matrix element in the first data field. The next group of
real numbers (up to ten; ire the values of the matri» elements.
This group of matrix elements is given in consecutive column
order.
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Subroutine YWTAPE writes FORMA sparse matrix data at the end of
existiug written matrix data on a FORMA tape (disk is preferred,
see below). Each set of matrix data coneists of two logical
records. The first record contains the matrix heading (tape
identification, locetion number, run number of rows of macrix,
number of columns of matrix, date, the acronym "spart," the
number of nonzeroes in t' : partition, the number of the partition,
and the number of partitions in the matrix. The second record
congists of the matrix elements of the partition and the element
locations. Subroutine YWTAPE is compatible with FORMA subroutine
WTAPE and dense and sparse matrices may be stored on the same
FORMA reserve tape.

A schematic representation of the tar: (disk} is given by the fol-
lowing sketch.

Beginning
of
tape (disk)
Hl El H2 l‘:2 .o Hn En EOT X
where
Hi = Matrix h-.ading of the 1th written matrix partition,

E, = Matrix elements of the ith written matrix partition,

[52]

=

"
I}

End of Tape. Data written by Subroutine WTAPE YWTAPE, or
INTAPE that all FORMA tape subroutines recognize as being
the end of written data.

Each verticai line is 3u end of loglical record pu. on by computer
system'’s routincs. The tape 18 written in binary form as ~pposed
to binary coded decimal (BCD) form.

Te find the end of written matrix data, a search is made of the
matrix headings until the EOT is found. For this reascn, a
"new" tape (disk) must be initialized with Subroutine INTAPE so
that the tape (dfsk) contains an EOT. A 'new'" tape (disk) is
defin.zJ to be a tuape (disk) for which it is desired to start
writing matrix data at the front of the tape (disk). Thus, a
"new" tape (disk) could be on( Jith obsolete FORMA matrix data
on it as well as one that hz- -:ver been written on by .ha
FORMA system. When the EOT {s found, a backspace operation is
done over tha EOT, and then the current matrix heading, current
m-trix elemnents. and 2 nev ROT is writteu.
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A disk is preferred to a tape because the physical separation of
the read and write heads on most tape drives may cause tape
tolerance problems; thus back-spacing over the EOT 1is usually not
successful. Instead of ending up positioned in front of the EOT,
the write head is often positioned in front of the previous matrix
elements (En is the ai .ve sketch). The current matrix heading

will be written over previous matrix elements. This causes
problems later when trying to read th~ records written on the tape.
To alleviate this problem, it is strongly recommended that all
FORMA tape subroutines use an intermediate device such as a disk.
d¢ the start of a computer run, the existing tape should be copied
on the disk by using computer control cards. Likewise, at the

end of the run, the disk should be copied back cn tape by using
computer control cards.



YZERLH

Subroutine YZERLH eliminates the non-zero elements below the diagonal
of a matrix [A) stored on NUTA in FURMA sparse notation. That is,

aij =0, >

EXAMPLE

1f [A) 1s input to Subroutine YZERLH as

1. 2. 3.
[A]3x3 = {4, 5. 6.
7. 8. 9.

the matrix output from this subroutine will be

1. 2. 3.
[A]3x3 = lo. 5. 6.
0. 0. 9.

Matrix [A) is read into workspaces V and LV. The non-zero element
locations are searched for element locations below the diagonal. These
locations and the corresponding elem2nts are eliminated.



YZERUH

Subroutine YZERUH eliminates the non-zero elements above the diagonal of
a matrix (A) stored on NUTA in Forma sparse notztion. That is,

ay, =0, 1L<3)

EXAMPLE

If [A] 18 input to Subroutine YZERUH as

1. 2. 3.
[A]3x3 = 14, 5. 6.
7. 8. 9.

the matrix output from this subroutine will be

1. 0. oO.
[A]3x3 = 4. 5. o0,
7. &. 9.

Matrix [A) is read into workspaces V and LV. The non-z.ro element
locations are searched for element locations above the diagonal. These
locations and the corresponding elements are eliminated.



YZERO

Subrout ine YZERO generates a matrix with each element equal to
zero. That is,

z,., = 0. it =1, NR
1) . .
i o= 1, NC

{n matrix notation,

Z =20. 0. ... 0.
[/]NRXNU 0.0 0
0. 0
0. . . .0.

where NR is the aumber of rows of [Z], and NC is the aumber of
columns of ([Z].

This subruutine is useful in setting a matrix array to zero
before perfonuing subsequent operations such as matrix assembly
(.ASSEM) or revision/addition of one matrix inte anothe- (YREVAD).

Matrix [Z] is stored on NUTA in FORMA sparse notation. Because
matrix elements equal to zero are not stored in thi. notation, only
matrix headers are stored on NUIA,



