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This r epor t  p resents  r e s u l t s  of the expansion and improvement of the 
FORNA system f o r  response and load ana lys i s .  
f o r  FORTRAN Matrix Analysis. The study, performed from 16 Hay 1975 
through 17 May 1976 was conducted by the Analytical  Xechanics Department, 
Martin Marietta Corporation, Denver Division, under the cont rac t  NAS8- 
31376. 
Space Administration, George C. Marshall Space F l i g h t  Center, Euntsville, 
Alabama under the d i r ec t ion  of Dr. John R. Admire, S t ruc tura l  Dynamics 
Division, Systems Dynamics Laboratory. 

The .acronym FORMA stands 

The program was administered by the National Aeronautics and 

This repor t  is  published i n  seven volumes: 

Volume I - Programming Manual, 
Volume IIA - Lis t ings ,  Dense FORMA Subroutines, 
Volume IIB - Lis t ings ,  Sparse FORMA Subroutines, 
Volume I I C  - Lis t ings ,  F i n i t e  Element FORMA Subroutines, 
Volume IIIA - Explanations, Dense FORMA Subroutines, 
Volume IIIB - Explanations, Sparse FORMA Subroutines, and 
Volume IIIC - Explanations, F i n i t e  Elerment FORMA Subroutines. 
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ABSTRACT 

This r epor t  presents  techniques f o r  the so lu t ion  of s t r u c t u r a l  
dynamic systems on an e l ec t ron ic  d i g i t a l  computer using FORM (FORTRAN 
- Matrix Analysis).  

FORMA is  a l i b r a r y  of subroutines coded i n  FORTRAN IV f o r  the e f f i -  
c i e n t  so lu t ion  of s t r u c t u r a l  dynamics problems. These subrout ines  are 
i n  the form of bui lding blocks tha t  can be put together  t o  solve a large 
va r i e ty  of s t r u c t u r a l  dynamics problems. The obvious advantage of  the 
building block approach i s  t h a t  programming and checkout time a r e  l i m i -  
ted to t h a t  required f o r  pu t t ing  the blocks together i n  the proper order .  

The FORMA method has advantageous fea tures  such as: 

1. subroutines i n  the l i b r a r y  have been used ex tens ive ly  for many 
years  and a s  a r e s u l t  are w e l l  checked out  and debugged; 

2 .  method w i l l  work on any computer with a FORTRAN IV compiler; 

3. incorporat ion of new subrout ines  is no problem; 

, 4. basic  FORTRAN statements amy be used t o  give extreme f l ex i -  
b i l i t y  i n  wr i t ing  a program. 

Two programming techniques a r e  used i n  FORMA: dense and sparse .  
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LIST OF SWWL!3 

[ 3 matrix 

vector 
( } column matrix 

{ )l' row matrix 

T transpose (when symbol is a superscript) 

m designates the row size of matrix 
n designates the column size of matrix 

a designates an element of matrix [A] 

i designates the i& row of matrix [A] 

j designates the jfi column of matrix [A]  

t LXl 
aij 
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I . INTRODUCTION 

This volun#! presents an explanation of the function of each f i n i t e  
element subrmtine i n  the FORMA library. Example problems are given i n  
some cases t o  c lar i fy  the operations performed by a subroutine. 
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The subroutines are given in alphabetical order w i t h  mumbeti 
coming before letters. 



Subroutine AXIAL calculates (on option) finite element: (1) mass 
matrices; (2 )  stiffness matrices (same as global load transformation 
inatrices) ; (3)  local load transformation matrices; (4) stress 
transformation matrices; and ( 5 )  vectors to locate the DOF (de- 
grees of freedom) of the above matrices in the global DOF; for 
axial rod elements. The above matrices and vectors are written 
on disk units and constitute the output from this subroutine. 
All matrices are in dense programming logic. 

Each mass and stiffness matrix, size 6x6, is in the global co- 
orinate directions. 
is (U,V,W) joint 1, then joint 2 where U, V, W are translations. 
If the Euler angles are zero at a joint, then U = tSX, V = 

Each global load transformation matrix, size 6x6, relates loads 
at the :od ends in the global coordinate directions to deflections 
in thp_ globd coordinate directions. The row order in this 
matrix is (P 

Each local load transformatfgn matrix, size 2x6, relates loads a t  
the rod ends in the local coordinate system to deflections in the 
global coordinate directions. The row ordergin this matrix is 

The global coordinate order for each element 

6Y* w = 6z ’  

P,,,, Pw) joint 1, then joint 2 where P is force. U’ 

Px2 where P is axial force. pxl X 

Each stress stransformation matrix, : .ze 2x6, relates stresses at 
the rod ends i n  the local coordinate system to deflections in 
the global coordinate directions. 
i s  u u where CJ i s  normal stress. 

Each location vector (IVEC) locates the DOF of each finite element 
in the global D3F. For example, lVEC(6)-834 places element DOF 6 
into global DOF 834. 
DOF. This constrains element DOF 3 to zero motion. 

The row order in this matrix 

xl’ x2 
b 

IVEC(3)=0 omits element DOF 3 from global 

The above matrices are calculated by using joint data and element 
data. The joint data i s  obtained from three matrices input to 
this subroutine which are (1) joint global X, Y, 2 locations; 
(2)joint global DOF numbers; and (3 )  joint Euler angles. 

The element data read in thh subroutine is (1) options for mass, 
stiffness, local load transformations, stress transformations; 
(2)  element material properties; and ( 3 )  element joint numbers, 
cross-sectional area. 

Each mass matrix i s  calculated by transfer to subroutine MASlA. 
Each stiffness matrix, loads, and stress transformation matrix 
is calculated by t-ansfer to subroutine STFLA. 



1 A l  

Subroutine E l A l  calculE tes a buckling (sometimes referred t o  as 
geotnetrical s t i f f n e s s ,  i n i t i a l  stress, o r  s t a b i l i t y )  matrix for  
an a x i a l  rod element with unrestrained boundaries. 
matrix is based on a un i t  a x i a l  load. 
t h e  l oca l  coordinate sys tem of the rod. 

The buckling 
The buckling matrix i s  i n  

--I DESCRIPTION OF TECHNIQUE 

From Theortj L-f ;!at& S f m c t u r c l l  tlmzask by J . S. Przemieniecki, 
NcCraw-Hill 1968, we obtained the  buckling mat?.ix. The s t r a i n  
energy for- buckling is obtained a s  

where the kernel matrix i s  the buckling matrix. 
of F = 1 is assumed here. L i s  the rod length. 

A un i t  a x i a l  load 

The degrees of freedom are shown i n  the following sketch. 

1 2 



BlAZ 

Subroutine BlA2 ca lcu la tes  (L buckling (sometimes ref erred to  as 
geometrical s t i f fnes s ,  i n i t i a l  stress, or s t a b i l i t y )  matrix for 
a beam element with unrestrained boundaries. 
is based on a uni t  axial load. 
local coordinate system of the beam. 

The buckling matrix 
The buckling matrix is in the  

DESCRIPTION OF TECHNIQUE 

From Theoi.3 of Matrix Structzlraz Avuziysi8 by J. 5. Przemieniecki, 
McGraw-Bill 1968, we obtained the buckling matrix. 
energy for buckling i d  obtained 88 

The s t r a i n  

6/5L - 6/5L - 1 / l . O  1/10 

4/51, 1/10 1/10 

2L/15 --L/30 

2L/15 

where the  kernel matrix is the buckling matrix. 
load of F=1 is assumed here. 

The degrees of freedom are Rhown i n  the following sketch. 

A u n i t  ax i a l  
L is the  beam length. 

(y Sa i n t o  paper) i 



BAR - 112 
Subroutine BAR calculates  (on option) f i n i t e  element (1) mass 
matrix; (2) s t i f f n e s s  matrices (same a s  global load transformation 
matrices); (3) buckling matrices f o r  un i t  load; (4) l oca l  load 
transformation matrices; ( 5 )  stress transformation matrices; and 
( 6 )  vectors t o  loca t e  t h e  DOF (dP,,rees of freedom) of the above 
matrices i n  the global DOF, f o r  ~ rnbined axial-torsion-bending 
bar elements. The above matrices and vectors are wr i t ten  on disk 
un i t s  and cons t i t u t e  the output from t h i s  subroutine. A l l  matrices 
a r e  i n  dense programing logic. 

Each mass, s t i f f n e s s ,  an., buckling matrix, s i z e  12x12, is i n  the 
global coordinate direct ions.  The global coordinate order f o r  
each element: is (U,  V ,  W ,  P, Q ,  R) j o i n t  1, then j o i n t  2 where 
U ,  V ,  I' a r c  t ranslat ions and P ,  Q ,  R a r e  r o t a t i o m .  I f  the 
Euler angles a r e  zero a t  a j o i n t ,  then U = 6 x I  V = 6y, W = b Z ,  
P = Ox, Q = By,  Q = BZ. 

Each global load transformation matrix, s i z e  12x12, r e l a t e s  loads 
a t  the b a r  ends i n  the  global coordinate direct ions t o  def lect ions 
i n  the global coordinate direct ions.  The row order i n  t h i s  matrix 
is  (P Pv, Pw, Mp, Mq, s) j o i n t  1, then j o i n t  2 where P is force 
and M is  moment. 

U' 

Each loca l  load traniformation matrix, s i z e  12x12, r e l a t e s  loads a t  
the bar ends i n  the  l o c a l  coordinate system t o  def lect ions i n  the  
global coordinate direct ions.  The row order i n  t h i s  matrix i s  

Each stress transformation matrix, size 12x12, relates stresses 
:?t the  bar ends i n  the  loca l  coordinate system t o  def lect ions i n  the  
Elobal coordinate direct ions.  The row order i n  t h i s  a s t r i x  i s  

-..-*-- px l  px2 Mxl * rl Mx2 * '2 

A1 A2 1 J2 ' J  L -  I 

> M Z 1  * c y l  MZ2 * cy2 ' 
*l ' A2 ' I Z 1  Iz 2 

VI pz2 Myl * cz l  My2 * cz2 

A1 ' *2 

P - -  
Y2 

' I  
Y l  

' I  



These matrices 'are cilculrted by UBI- joint &u od dement 
Qt8. Thc joint dam %s obtah8d fra three Ptrices *t to t h b  
subrouthe uhicb are (1) joint global It, 9 ,  2 toutSons; (2) joint 
global #IF aders;  rpd (3) joint Met angles. 

The element data are (1) optlomi for mass, stiffness, local lord 
traosformntioP1C. stress troasformtianr; (2) el-t materiil 
properties, md (3) tlmt joint mmbers. 

Each 
~ s c b  st'fffrress matrix, loads, and stresm traasforrrtioa v t r i x  is 
calcul8ted by transfer to subroutine STFlB. 
n t r i x  i s  calculated by transfer to subroutbe BUCIB. 

matrix is calculated by transfer to subrouthe 1 U s l B .  

Each d t  load buckling 



BUClB - 113 
Subtouthe BWClE alculrtu a f i n i t e  derarrt  budding (sometimes 
referred to  as geomecriul e t i f f m ,  initla1 stress, o r  ~ t a b i l i t y )  
uuir for a combined udal-torsion-bending bar element with un- 
restraiaad b0undui.s. The buckling mtrix is b a e d  on d t  axid  

- lomi. 

Ibe bucliring matrix, site l2xl2, is in the global mordiarte directions. 
The glob81 eoordhate order fo r  each eleaent is (U,V,W,P,Q,R) j o in t  1, 
then j o in t  2 where U,V,W u e  tramslatbas and P,Q,R are rotaths .  If 
the Ruler 4 l e s  are zero at a joint ,  the UdX,  V-dy, w l b z ,  P d X ,  

This matrix is calculated by f i r s t  coaputiag a buckling matrix i n  
the local coordinate syetea for  either an axial rod (where the 
buckling matrix is somet- referred to  as the s t r ing  s t i f fness)  
or a beam. A direction cosine aa t r ix  is then used t o  transform 
t h e  buckling Patrtt from the local coordinate system to  the global 
coordinate system. 

DESCRIPTION OF TECHNIQUE 

The calculation of the buckling matrix i n  the global coordinate 
directions is accooplished as follows. F i r s t  a buckling matrix 
is calculated in the local coordinate systesa for either OEL axial  
rod (reference Subroutine B U 1 )  or a beam (reference Subroutine 
BW). 

A sketch of the bar is given for reference as 

( loca l  z is out from paper) 21 
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Th. strain anergy for buckl- or gumatric 8tif5bess wing local 
oootdinatos Is 

* 

14 

b24 

b34 

b44- 

where 

and 

0 

0 

0 

bll 

b21 

-b 31 

41 -b 

b12 

b22 

32 
-b 

-b42 

14 -b 

-b24 

b34 

b44 

12 

b22 

32 

b42 

b13 

b23 

b33 

b43 

b 

The deflections In the local system are related to deflections in the 
global system by 

refers to terms from Subroutines BlAl or B l A 2 .  
ij 

(hL) * [ A I  IhG) 121 



BCClB - 3/3 
where [y ]  is a direction cosine matrix (reference Subroutine 
DCOSlB) including Euler angles, sire 12xl2, and 

U, V, W are translations and P, Q, B are rotations. 

Substituting Eq [2] into Eq [l] gives 

T 
where [bG] = [rl [bL] [rl is the buckling matrix in’ global 

‘ coordinate directions. 



Dco!SlA - 1/2 
Subroutine DCOSlA calculates a direction cosiae matrix for an 
axlal rod dement. 
ments to g lobi l  coordinate displacements. 
j o in t  are included. 
at each of the tvo rod ends are needed for this calculation. 

This matrix relates local  coordinate displact 

Global X, Y, 2 coordinates and Euler angles 
Buler angles a t  each 

1 s 
- 

DESCRIPTION OF TECHNIQUB 

A sketch of the rod is given for reference as 

The vectm ‘P between points 1 and 2 is 

A * a -L 

? * I ’  X I + P y J + P Z K  

The unit  vector is then 
d 

= [P T + Py 7 + Pz :]/ap eP X 

where 

Px - x2 - x1 
Py = Y* - Y1 
Pz - z* - z1 

Qp =#-. 



DCOSM - 212 
* + -  

The coefficients of I ,  J ,  K for the unit vector 5 are the 
direction cosines of the l ine  between points 1 and 2. 

The relation between local  and global IC, Y ,  2 JisplacePents is 
then 

0 
, ["I- 6x2 rep] 

where 

A 3x3 Euler angle transformation matrix (reference subroutine EULER) 
relates global X,  Y ,  2 translations to global U ,  V, W translations 
a t  each joint.  

where 

iww) = [!] 
Substituting Eq 

mat is, 

[4] into Eq [ 3 ]  gives the direction cosine matrix. 

t31 



Subroutine DCOSlB ca lcu la tes  a d i rec t ion  cosine matrix fo r  a 
combined axial-torsion-bending bar element. 
local coordinate displacements t o  global coordinate displacements. 
Euler angles at  each j o i n t  a r e  included. 
and Euler angles a t  each of t h e  two bar ends plus coordinates 
of a reference point are needed f o r  t h i s  calculation. 
erence point defines the l o c a l  xy plane. 

This matrix r e l a t e s  

Global X, Y ,  Z coordinates 

The ref- 

DESCRIPTION OF TECHNIQUE: 

A sketch of t h e  bar is given fo r  reference as 

Y 

3(ref erence point)  

2 / ”  

A 
l oca l  z and R a r e  out from paper 

G. 

The vector P between points 1 and 2 is 

4 A L -L 

P - P  I + P y J + P z K  S 

The unit vector is then 



DCOSlB - 2/5 
where 

Pu = Y p  - Y1 

Pz = z2 - z1 
&P = +- X Y  

& & I  A 
The coeff ic ients  of I, J ,  K f o r  t h e  u n i t  vector 5 are the d i rec t ion  

cosines of the line between points 1 and 2. 

The vector cross poduct P x 1, 3 w i l l  give a vector G)L  plane 
. L -  

1, 2, 3. 
-L L A 4  4 A * & & 

R = P 1,3 J [Px I + Py J + Pz K] X [(X3-X1> I + (Y3-Y1) J + (Z3-Z1) K) 

The uni t  vector along R is then 

= [RXT+ I$ 

where 

RX = Py (2 -Z ) - Pz (Y3-Y1) 3 1  
Ry = Pz (X3-X1) - Px (Z  -2 1 3 1  

x 3 1  3 1  RZ * P (Y -Y ) - Py (X -X ) 

- - -  -L 

The coeff ic ients  of I ,  J ,  K f o r  the  u n i t  vector e~ are the  d i r ec t ion  
cosines of a l i r z  I-plane 1, 2 ,  3.  

The vector cross product R x P w i l l  give a vector (5) L l i n e  1, 2 i n  
t h e  plane 1, 2 ,  3, 

- *  

t 31 

14 1 



The unit vector along 8 is then 

where 

Qx - Sr pz - Rz pY 

QY = % px - % pz 
=y - R  P. 

Y Y X  

L I I  A 

The coefficients of I, J, I[ for the unit vector e are the direction Q 
cosines of a-Lline 1, 2 and in the plane 1, 2, 3. 

The relation between local and global X, Y, Z displacements is then 
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and 

A 3x3 Euler angle transformation matrix (reference subroutine EULER) 
relates global X , Y , Z  displacements to global U,V,W translations and 
P,Q,R rotations. That is, 

P ['" 
1 

[ E l ,  

where {UVW) = "I W and EPQR) = "I R .  

Substituting Eq [ S ]  into Eq [7] gives the direction cosine matrix. 
. .  

:< 1 

x2 

s 

exl 

ex2 

Yl 

Y2 

6 

6 

OZ1 

%2 

%1 

6z2 
(3 

8 

Yl 

Y2 - -  





Subroutine DCOSZ calculates a di rec t ion  cosine matrix for a cm- 
bined membrane-bending t r i ang le  p l a t e  element. 
l oca l  coordinate displacements t o  global coordinate displacements. 
Euler angles a t  each j o i n t  are included. 
and Euler angles at each of the  three  corners are needed for t h i s  
calculat ion,  

This matrix relates 

Glob@ X, Y, 2 coordinates 

DESCRIPTION OF TECHNIQUE 

A sketch of the  t r i ang le  p l a t e  is given f o r  reference as 

3 

Y 

i 

The vector P between points 1 and 2 is 
I .L .L .L 

P = Px I + Py J + Pz K 

The uni t  vector ie then 



where 

Px - x2 - x, 
Py - Y 

Pz = z2 - z1 

.b 

2 - 

IlP 
A L L  

The coef f ic ients  of I, J, IC for the unit vector 5 are the 
direction cosines of the l i n e  between points 1 and 2.  

The vector cross product P x 1, 3 w i l l  give a vector (?)Lplane 
* -  

1, a, 3. 

The unit  vector a l o n g 7  i s  then 

where 

5 = Py ( Z  -2 ) - TZ (U -Y ) 3 1  3 1  

I$ = P (Y -Y ) - Py (X,'X1) x 3 1  

--.-a 
The coef f ic ients  of I ,  J, K for the unit vector eR are the direction 

cosines of a I i n e L p l a n e  1, 2,*3. 



The vector cross product 
in  the plane 1, 2 ,  3. 

The unit vtctor along R is then 

- 1  -.L. 

e~ [Qx 1 + QyT+ Q,% 
where 

= R  P Qx y z - Rz pY 
QY * RZ px - RX pz 

The coefficients of I, J ,  K for the unit vector e are the direction 
cosints of a l'ine -L l ine  1 , 2  and i n  the plane 1, 2 ,  3 .  

Q 
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A 3x3 Euler angle ttmsfonaation aaptr5.x (reference subroutine HJLER) 
relates @oh1 X, Y, 2 dlsplacereats to global U, V, W translations 
and P,  Q, B rotations. That is, 

t 

Substituting Eq [e] into Eq [ 7 ]  gives the direction cosine matrix. 
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I 
. 

I 

I 
, !  I I  
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Subroutine EPLEB calcdates the Euler rotation transformation 
matrix such that 

\ 
\ 
\ 
\ 
\ 
\ 
\ 

where 

/r Y’ 
0/ 

0 
/ 

= global X, Y, 2 coordinate system. (51 
= rotated U, V, W coordinate system. (El 

X’ [TI = Euler rotation transformation based on a global 
and 8 permutation. 2 

DESCRIPTION OF TECHNIQUE 

The f i r s t  Euler rotation is 8 
coordinate system. 

about X to form the X’, Y*, 2’ X 

x, X’ 



The relationship between the tuo coordinate systm can be 
written 8s 

The second Euler rotation is  By about Y’ to form the X** ,  Ye*, 2” 
coordiaate system. 

X’ I z 
\ 
\ 
\ 
\ 
\ 

The relationship between the two coordinate system can be written 
as 



EtlLER - 3/4 
where 

COS0 Y o siney 

-sinep 0 c0seu 

0 1 0  

Thc third filer rotation is BZ about 2” to form the U, V, W 
coordinate system. 

t 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

2” 
( 

The relationship between the two coordinate systems can be written 
as 

where .. 
z cos9 

sineZ 

0 .. 



EULBR - 4/11 
The complete Buler roution transformation can be written as 

Perforwing the three multiplications results in  



Subroutine FINEL ca lcu la tes  (on option) using fini . te elements: 
1) an assembled mass matrix; 2) an assemblsd s t i f f n e s s  matrix; 
3) element local load transformation matrices; 4 )  element glo- 
ba l  load transformation matrices; 5 )  elemerlt stress t ransform- 
t iun matrices; 6 )  element uni t  load buckling matrices; and 7) 
vectors (IVEC) t o  locat? the DOF (degree of freedom) of the 
element matrices i n  the global WF. 

The t y p e s  of f i n i t e  element avai lable  (and the related 
subroutine! are a x i a l  rod (AXIAL),  combined axial-  torsion- 
bending bar (BAR), t r iangular  p la te  (TRNGL), quadr i la te ra l  
p la te  (QUAD), rectangular shear panel (RECTSP), tetrahedron 
(TETRA), and pentahedron (PEMTA). 
is specified by reading t h i s  information (e.g., AXI:AL, BAR, 
etc.) from an input data card. 

The aclbroutine t o  be used 

The assembled mass and s t i f f n e s s  matrices a re  output from 
t h i s  subroutine i n  sparse FORMA subroutine fcrmat on d isk  uni ts .  
The DOF order i s  specif ied by a j o i n t  degree-of-freedom matrix, 
LJDOFJ which i s  input t o  t h i s  subroutine. 

The element matrices and vectors  a re  i n  dense programming 
logic and wr i t ten  on disk  un i t s  as output f rom-th is  subroutine 
a l s o .  The sizes of these elenent matrices end vectors are de- 
termined by the spec i f ic  f i n i t e  element used. 
(IVEC) locates  the DOF of each f ini te .e lement  i n  the global 
DOF. 
DOF 834. IVF?2(3)4 omits element DOF 3 from global WF. 
constrains  element DOF 3 t o  zero motion. 

Each vector 

For example, IVEC(6)=834 places element DOF 6 i n t o  global 
This 

The f i n i t e  element matrices a re  calculated by using j o i n t  
data and element data .  The j o i n t  data ,  obtained from three 
matrices input t o  t h i s  subroutine, a r e  1) j o i n t  global X, Y, Z 
locations;  2) j o i n t  global DOF numbers; and 3) j o i n t  E u l e r  
angles. The element data is  read i n  the specif ied f i n i t e  ele- 
ment subroutine. Reference AXIAL,  BAR, etc.  f o r  t h i s  data.  

Assembly of the element mass (or s t i f fnes s )  matrices i n t o  
the assembled mass (or s t i f fnes s )  matLix f o r  the t o t a l  s t ruc ture  
is accomplished by FORMP. subroutine YRVADZ 20 obtain the sparse 
subroutine torma t. 
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Subroutine K l A l  ca lcu la tes  a s t i f f n e s s  matrix and strese trans- 
formation matrix for  an axial rod element with unrestrained 
boundaries. 
tem of the rod. 
the d is t r ibu ted  s t i f f n e s s  propert ies  of the rod. These elements 
are calculated by assuming constant axial force. 
transformation matrix relates stress at  the rod ends i n  the l o c a l  
coordinate system t o  def lect ions in the loca l  coordinate sys tem.  
The rod may be l i nea r ly  tapered o r  uniform. 

The s t i f f n e s s  matrix is i n  the l o c a l  coordinate sys- 
The elements of the  s t i f f n e s s  matrix represent 

The stress 

DESCRIPTION OF TECHNIQUE 

The replacesent of the d is t r ibu ted  a x i a l  s t i f f n e s s  of a rod by 
a s t i f f n e s s  matrix i s  obtained using a s t r a i n  energy approach as 
f ollcws . 
Consider a rod tha t  is loaded with an axial force P1 a t  point 1 
and res t ra ined  a t  point 2 as shown i n  the sketch. 

b d  Element 

The s t r a i n  energy i s  defined by 

dx 

Where 

P is the a x i a l  force,  

A is the  cross-sectional a rea ,  

E 

x i s  the loca l  coordinate system and longitudinal ax is  of the rod. 

is Young's modulus of b l a s t i c i t y  

The or ig in  i 3  a t  point 1, that is, x1 * 0; x2 = L (rod length) .  



K l A l  - 2/4 
To i n t eg ra t e  Eq (11, t he  axial force  is assumed constant and e q u l  
to the  axial force a t  poin t  1, that is, 

Young's modulus of e l a s t i c i t y  is a l so  assumed constant, t ha t  is, 

E(x) = E. (31 

The cross-sectional area is assumed to  vary l i nea r ly ,  t h a t  is, 

A(x) * Al + x (A2-A1)/L. i4 1 

Substi tuting Eq [2] through (41 i n t o  Eq [I] gives the  s t r a i n  
energy as 

U a f  $\I A1 + x (A2-Al)/L 
dx 1 

2 

2 (A2-A1) E Ln (A2/A1) 
1 p1 L = -  

Application of Castigliano ' 8  theorem gives the  axial def lec t ion  
of point 1 r e l a t i v e  t o  point 2 as 

an (A2/A1) au plL A & =  - = 
2P1 (A2-A1) E 

The r e s t r a i n t  a t  point 2 is removed by application of the  traae- 
formation 
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where 61 and 62 arc the displacements along ths rod x-axis at 
rod-ends 1 and 2, respectively. Substitution of Eq [7 ]  and 
Eq [SI into Eq [6] gives the strain energy for a rod with un- 
restrained boundaries as 

=2,2 - =1,1 
The kernel matrix of Eq (91 is the stiffness matrix that re- 
prresents the axial stiffness of a rod with unrestt, ined boundaries. 

For constant cross-sectional area, i.e,, Al - A2 = A, Eq [lo] is of 
indefinite form. For this case integration of Eq [ 5 ]  yields 

2 
1 p, L u 
2 A E  

from which 
AE z = -  1,l L 

as before 

The elements in the stress transformation matrix are easily calculated. 
Tho following sketch shows the sign convention. 

*1’ 61 p2’ 62 
\x 
1 2 
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The rod end forces (PI, P2) can be expressed i n  terme of t he  
rod end displacements (61, 62) a8 

This is obtained from Rq [7) or  applying Castigliano’s theorem t o  
Eq 191. The stress a t  the  rod ends i s  simply 

s1 = Pl/A1 

and 

or  

where 

z / A  [Tsl [z 2,l /A 2 2,2 2 

is the stress transf.,rmation matrix. 

w i l l  be opposite i n  sign. Tension and compression i n  the sl’ 82 
rod is determined as follows: 

Compression: s (+), s2 (-1 1 
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Subroutine K l B l  ca lcu la tes  a s t i f f n e s s  matrix and stress trans- 
formation matrix fo r  a bending (plus d i e m )  beam element with 
unrestrained boundaries. The s t i f f n e s s  matrix is i n  the loca l  co- 
ordinate  system of the  beam. The elements of the  s t i f f n e s s  matrix 
represent the d i s t r i l u t a d  s t i f f n e s s  propert ies  of the beam. These 
elements are calculated by assuming uniform shear and l i nea r  bend- 
ing mment var ia t ion.  
stress a t  the beam ends i n  the loca l  coordinate sys tem t o  deflec- 
t ions  i n  the loca l  coordinate system. The beam may be tapered o r  
unif om. 

The stress transformation matrix relates 

DESCRIPTION OF TECHNIQUE 

The replacement of the  d is t r ibu ted  bending and shear s t i f f n e s s  of 
a beam by a s t i f f n e s s  matrix is obtained using a s t r a i n  energy 
approach as follows: 

Consider a beam tha t  ib loaded with a shear and moment a t  point 1 
and res t ra ined  a t  point 2 as shown i n  the sketch 

1 

The s t r a i n  energy is defined by 
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where 

M(x) is the  bending mment, 
V(x) is the  shear,  

E(x) 
I(x) is t h e  cross-sectional moment cf i n e r t i a  about the  

K 

A(x) is t he  cross-sectional area, 
G(x) is t h e  shear modulus of e l a s t i c i t y  of the  materiel, 

X 

is Youcg's modulus cf e l a s t i c i t y  of the  mater ia l ,  

heam's neu t ra l  ax is ,  

is the shape f ac to r  (e.&., K - 1 for  a s o l i d  c i r cu la r  
cylinder, K = 0.5 for  a t h i n  walled c i r cu la r  cylinder),  

and 
is t he  loca l  coordinate system and undeformed l o  ,gituainal 
ax is  of the  beam. The o r ig in  !a a t  point 1. That is x1 0; 
x2 = L (rod length).  

To integraLe Eq [l], the  fcllowing assumptions a r e  made. F i r s t ,  
the shear is assumed constant and equal to  the shtr.r fgrse a t  point 
1, tha t  is, 

V(x) = vl. 

Second, t he  bending moment is assumed t o  uary tinearl,);, that  is, 

M(x) = M1 + V1 x 

Third, 

I(x) and A(%) a r e  assumed t o  vary l i nea r ly ,  t ha t  is 

I(x) - I1 + x (12-11)/L 

and 

A(x) A1 + x (A2-A1)/L 

Fourth, the moduli of e l a s t i c i t y ,  E and G ,  a r e  assumed constant, 
t ha t  is 

E(x) * E 

G(x)  * c 

Substi tuting Eq [2] through 151 in tu  Eq [l] gives the s t r a i n  energy 
-: 8 
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where 

En R L 
f22 = EX1 (R-1) 

R - 12/11 

For constant bending s t i f fness ,  i . e . ,  EI1 = EX2 = EX, and constant 
shear s t i f fness ,  i . e . ,  KAIG = KA2G = RAG, Eq [7a] [a] [7c] are 
of indefinite form. For t h i s  case, integration of Eq 161 y i e l d s  

€11 = L3/3EI + L/KAG 

f r 2  ' L2/2€t 

f22 = L/EL 

Application of Castigliano's theorem to Eq 171 gives the lateral  
translation and rotation of point 1 re lat ive  to point 2 a s  

r 7cl 

1 7 4  
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Solving Eq 191 for V1 and H1 and substituting into Eq [7 ]  gives 
the strain energy as 

where 
2 D f l l  f22 - f12. 

The restraint a point 2 is removed by application of the transformation 

Using this transformation i n  Eq 1101 gives the f inal  strain energy 
expression as 

u s -  ' [same as co~umn] 
2 
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The kernel matrix of Bq 1121 is the s t i f f n e s s  matrix that repre- 
sents the bending and shear s t i f f n e s s  of a beam with unrestrained 
boundaries. 

The elements i n  the stress transformation matrix are calculated 
as follows. The following sketch shows the s ign  convention, 

Applying Castigliano's theorem t o  Eq [12] gives the forces  a t  the 
beam ends in terms of the displacements a t  the  beam ends, t ha t  is, 

- -  
v1 

v2 

M1 

M2 . -  

= PI 

The shear stress is  calculated as 

f = V I A  

and the bending stress is calculated as 

0 * Me11 

where c is the dis tance from the beam's neut ra l  ax i s  t o  the outer 
fiber. 
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Theref ore, 

is the stress transformation matrix 



Subroutine K l C l  calculate8 a s t i f f n e s s  Y t t i x  and stress trans- 
formation matrix f o r  a tors ion rod element with unrestrained 
boundaries. 
tem of the rod. 
the  d is t r ibu ted  s t i f f n e s s  propert ies  of the  rod. These elements 
are calculated by assrsling constant torque. The stress trans- 
forur t ion  matrix relates stress at  the rod ends ia the local co- 
ordinate  system to  ro ta t ions  in the local coordinate system. 
rod may be tapered or uniform. 

The s t i f f n e s s  a a t r i x  is in the  l o c a l  coordinate sys- 
The elements of the  s t i f f n e s s  matrix represent 

The 

DESCRIPTION OF TECHNIQCZ 

The replacement of the d is t r ibu ted  tors ion s t i f f n e s s  of a rod by 
a s t i f f n e s s  matrix is obtained using a s t r a i n  energy approach as 
follovs.  

Consider a rod t h a t  is loaded with a torque T1 a t  point  1 and 
rest ra ined a t  point  2 as shown i n  the  sketch. 

Rod Element 

The s t r a i n  energy is defined by 

1 J X  

where 

T is t h e  torque 

J is Saint Venant's torsion constant, 
J = nR4/2 for  a so l id  c i rcular  sect ion 
J = 2 n R 3 t  for a thin walled c i rcu lar  sect ion 

G is  the  shear modulus of e l a s t i c i t y  

x is the  l oca l  coordinate system and longitudinal axis of t h e  rod. 
The origin is d point 1, t h a t  is x1 = 0; x = L (rod length).  2 
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To integrate Eq (11, the torque &IS m s d  constant and e g d  
to the torque at piat 1, thut is, 

The shear modulus of e l a s t i c i t y  is also u~supcd constant, t ha t  is, 

G(x) = C 131 

Sain t  Venant's torsion constant is -sued to vary linearly, t h a t  is, 

J(x) = J1 + x (J2-Jl)/L. t41 

Substituting Eq [2] through 141 into [l] gives t h e  strain energy 
as 

Application of Castigliana's  theorem gives the  ro t a t ion  Of poin t  1 
r e l a t i v e  t o  point 2 as 

(J2-J1) G 
from which T1 = ea (J /J ) A0 

2 1  
The r e s t r a i n t  a t  point 2 is removed by application of the  
transformation 

[ 7: 

where 6 

Substi tution of Eq [ 7 ]  and [a]  i n to  (61 gives the  s t r a i n  energy f o r  
a rod with unrestrained boundaries as 

and 0 1 2 are the x-rotations a t  rod ends 1 and 2, respectively.  

1 u s -  2 [ %  e21  [:;:) :;;;] [j 
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where 

=2,2 = *l,l 

The kernel aa t r ix  of Eq [9] is the  s t i f f n e s s  matrix t h a t  repre- 
sen t s  the tors ional  stif fnese of a rod with unrestrained 
boundaries . 
For a constant cross sect ion,  

indef in i te  form. 
i.e., J1 = J2 = J ,  Eq [lo] is of 

For t h i s  case,  integrat ion of Eq 151 yie lds  

from which 

JG 
2 = -  1.1 L 

as before 

The elements in the stress transformation matrix a r e  eas i ly  calculated.  
The following sketch shows the sign convention. 

T1’ $1 2 T2’ e2  

The rod end torques (T 
end ro ta t ions  ( d  e2)  as 

T2) can be expreesed i n  terms of the rod 1’ 
I’ 



This is obtained from Eq [7].or applying C+tigli&'s theorem to 
Eq [9). The maximum stress is in  the outeremst fiberaand is 

r /J sl - T1 1 1 

and 

r /J . s2 - T2 2 2 
or 

where 

1 , l  rl'J1 

2.1 r2/J2 

1 ,2  rl/Jl 

2,2 r2/J2 1 z 

z 

is the stress  transformation matrix. 
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Subroutine K2Al ca lcu la tes  a s t i f f n e s s  matrix and stress trans- 
foxmation matrix fo r  a membrane t r i ang le  p l a t e  element with 
unrestrained boundaries. The s t i f f n e s s  matrix I s  i n  the l o c a l  
coordinaEe system of the  triangle pla te .  me e le sen t s  of the 
s t i f f n e s s  matrix represent the d is t r ibu ted  s t i f f n e s s  proper t ies  
of the  t r i ang le  p la te .  These elements are calculated by assuming 
a quadratic displacement ( l i n e a r  s t r a i n )  f i e ld .  The stress trans- 
formation matrix relates stresses a t  the t r i ang le  ve r t i ce s  i n  the 
loca l  coordinate s y s t e m  to  def lec t ions  in the  loca l  coordinate 
system. 

DESCRIPTION OF TECHNIQUE 

The replacement of the  d i s t r ibu ted  membrane s t i f f n e s s  of a t r i ang le  
p l a t e  by a s t i f f n e s s  matrix is described i n  DM 109 Linear Strain 
hJembrans i?.&zngZe Element by W. A. Benfield and C. S. Bodley. 

The t r i ang le  is i l l u s t r a t e d  i., the sketch with the degrees of 
freedom shown 

The order of the degrees of freedom is 

The row order of the s t r e s s  transformation matrix is 

where 0 is normal s t r e s s  and i is shear s t r e s s .  



Subroutine K2Bl ca lcu la tes  a s t i f f n e s s  matrix and stress trans- 
formation matrix f o r  a bending t r i ang le  p l a t e  element with un- 
rest ra ined boundaries. The s t i f f n e s r  amtrix is i n  the l o c a l  co- 
ordinate  system of the  t r i ang le  plate .  
ness matrix represent  the  d is t r ibu ted  s t i f f n e s s  proper t ies  of t he  
t r i ang le  plate .  
displacement (linear curvature) f i e l d .  The stress transformation 
matrix relates stresses a t  the t r i ang le  ve r t i ce s  i n  the  l o c a l  
coordinate system t o  def lect ions i n  the loca l  coordinate system. 

The elements of the  s t i f f -  

These elements are calculated by assuming a cubic 

DESCRIPTION OF TECHNIQUE 

The replacement of the d is t r ibu ted  bending s t i f f n e s s  of a t r i ang le  
p l a t e  by a s t i f f n e s s  matrix uses the technique (essent ia l ly)  
described i n  Triangular Elements in Plate Bending by C. P. Bazely, 
Y .  K. Cheung, B. M. Irons, and 0. C. Zienkiewicz, AFFDL-TR-66-80, 
November 1966. The t r i ang le  is i l l u s t r a t e d  i n  the sketch with the 
degrees of freedon shown 

4 Y 3  
8 

(z is out from paper) 
l i  

e 
Y2 

-X 

622 
2 1 

6*1 

The order of the degrees of freedom is 



The row order of the stress transformation matrix is 

[[ U U T  x y xy’l fax uy Q 2  f x y q  at z - - t/2, urd 
at t = + t j 2 ,  u o  

where 

u is normal stress 
T is shear stress 
t is plate thickness. 
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Subroutine MlAl ca l cu la t e s  a lumped mass matrix for an axial rod 
elemant with unrestrained boundaries. The mass matrix is i n  the  
l o c a l  coordinate system of the rod. 
matrix represent t he  d i s t r i b u t e d  mass prope r t i e s  of t h e  rod. 
These matrix elements are ca lcu la ted  by tunping t h e  rod's t o t a l  
maas t o  the  rod end po in t s  using s t a t i c  equivalent forces. The 
rod may be l i n e a r l y  tapered o r  uniform. 

The elements of t h e  mass 

DESCRIPTION OF TECHNIQUE 

The replacenlent of t h e  d i s t r ibu ted  IMES of a rod by a mass matrix 
is obtained by lumping t h e  rod's t o t a l  mass t o  t h e  rod end points.  
This lumping is equivalent t o  s t a t i c  beaming. 
t r a t e d  i n  the  sketch i n  which the  rod cross-sectional area va r i e s  
l i nea r ly ,  t h a t  is, A(x) = A1 f x/L (A2-A1). 

The rod is i l l u s -  

The t o t a l  mass of the  rod is 

M = P L (A1+A2)/2 

where 

F is  the  mass density 

A i s  the  cross-sectional a rea  

L i s  the  rod length 

x i s  the l o c a l  coordinate system and longi tudina l  ax i s  of t h e  rod 
with o r ig in  a t  po in t  1, t h a t  is x1 * 0-; x2 = L. 

The equivalent mass a t  rod end 2 is  ca lcu la ted  by tdcing t h e  f i r s t  
moment about rod end 1. 
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L 

51, - 1  PAxdx 

0 

= p (A1 + f (A -A 1) x dx 2 1  

2 PL 
6 - - (A1+2 A2) 

from which 

and MI - M - M2 
PL * 6 (2A1 + A2). 

The kinetic energy of the rod e1ernei.t i s  expressed as 

[a :J [ i:::::] 
"le kernel matrix of Eq (41 is the mass matrix that represents the 
distributed mass of the rod. 



Subroutine MU2 ca lcu la t e s  a consis tent  mass matrix f o r  an a x i a l  
rod element with unrestrained boundaries. The maed matrix is  i n  
the  l o c a l  coordinate system O F  t h e  rod. The elements of t h e  mass 
matrix represent t h e  di,stribu;ed mass prope r t i e s  of t he  rod. 
These matrix elements are calculated by assuming t h e  displacemerit 
between the  rod ends to be a linear function of t he  displacement 
a t  the  rod ends. The rod may be l i n e a r l y  tapered or uniform. 

DESCRIPTION OF TECHNIQUE 

The replacement of t h e  d i s t r i b u t e d  mass of a rod by a mass matrix 
is obtained using a kine+l.c energy approach as follows. 

For small def lect ions (6 )  along the  longi tudina l  ax is  (x) uf t h e  
rod shown i n  the  sketch, t h e  k i n e t i c  energy is defined by 

’ *1 
where 

P is t h e  mass densi ty  

A is t he  cross-sectioqal area 

6 is the  time rate of change of displacemeqt along the  rod x-axis, 
referred t o  a3 longi tudinal  veloci ty  i n  t h e  paper 

t is timc 

x is t he  l o c a l  coordinate system and longi tudinal  axiz  of t he  rt d 
= L (rod length).  x2 

with o r i x i n  at  point 1, tha t  i s , x l  = 0 ;  

1- 

Rod Element 



HlAz - 213 
To i n t eg ra t e  Eq [l] a irnsizr displacement function w i l l  be 
assumed betveen points  1 and 2 i n  terms of the  displacements of 
points  1 and 2, t h a t  is, 

Similarly, t he  longi tudinal  ve loc i ty  is given by 

X Nx,t)  - 61(t) + 'L' U,(t) - a l ( t ) )  

= - L 1 [(L-x) x] p?j 
The cross-sectional are3 of t he  rod is assumed to vary l i n e a r l y ,  t h a t  
is S 

Subst i tut ing Eq (21 and [3] i n t o  [l] gives the  k ine t i c  energy as 

1 

A1 A + "I 3A2 

The kernel matr ix  of E; [4] is  the  mass matrix. 

The t o t a l  mass proper t ies  of t he  rod may be  calculated from the 
following t r i p l e  matrix product. 

A1 + 3A2 

>I PO 3A1 + A2 

[Po Io] a ' [ :] [Al + A2 1 I L  O 1  

where 

?I is t h e  ma9.s of the rod 

? is the  f i r s t  moment about  x = 0 

I is  the niownt of iner t ia  about x = 0. 

0 

0 
1 

1 



x u 2  - 3/3 

Expanding the t r ip le  matrix product gives 

H = P (Al+%) L / 2  

Po = P (Al+A2) L2/6 

Io = P (A1+ 3A2? L /12 3 

The center of gravity i s  calculated from 
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Subroutine H l B l  calculates a lumped maso matrix €or a bending 
beam element with unrestrained boundarles. The mpss matrix is i n  
the local coordinate system o f  the buun. 
matrix represent  the d i s t r ibu ted  aass prope r t i e s  of t he  beam. 
These matrix elements are ca lcu la ted  by lumping the  beam's t o t a l  
mass t o  t he  beam end po in t s  using s ta t ic  equivalent forces .  The 
be- may be l i n e a r l y  tapered OF uniform. 

The elements of t he  mass 

DESCRIPTION OF TECHNIQUE 

The replacement of the  d i s t r ibu ted  mass of a beam by a mass matrix 
is obtained by lumping the  beam's t o t a l  mass t o  the  beam end points .  
This lumping is equivalent to static beaming. The beam is  i l l u s -  
t r a t ed  in the  sketch i n  which the  rod cross-sect ional  area va r i e s  
l inear ly ,  t h a t  Is, A(x) = Al + x/L (A2-A1). 

t o -  
/ % 

f - 2  

C X  1 
In29 I2 

( loca l  y is  i n t o  paper) 

The tocal  mass of the  beam is 

>i = 2 L(A1+A2)/2 

where 

L- is t h e  mass densi ty  

A is the  cross-sectional are3 

L is the  beam length 

x is the local coordinate system and longi tudinal  ax i s  of the  
beam with or ig in  a t  point 1, tha t  is, x = 0; x2 = L .  1 
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The equivalent mass a t  beam ead 2 is calculated by taking the 
f i r s t  moment about beam end 1. 

.L 

M2 = PL (Al+ 2A2)/6 

From 

M + M 2 = M  1 

= F L  (2A +A ) / 6  1 1 2  

An attempt a t  calculating the inert ias  was made by taking the 
second moment about beam end 1. 

2 I +‘I + M 2 L  -- PA x dx * I: 1 2  

2 = I3 

I1 + I 0 (M1-2M2) L 2 / 3  2 

For a uniform beam, ?I - M2 = M/2 

2 1 1 + 1  2 = - % I 6  

which i s  impossible. 
rect inertia values. Therefore, arbitrarily assume 

This says that lumping can never give t h e  cor- 



and 

The kinet ic  energy of the beam element is expressed as 

I 
1 

I2 

The kernel raatrix of [b] is the mass matrix that represents the 
distributed mss of the beam. 
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Subroutine MU32 ca lcu la t e s  a cons is ten t  mss matrix for a bending 
beam element with unrestrained boundaries. The mass matrix is i n  
t he  l o c a l  coordinate system of t he  beam. The el-ts of the  mass 
matrix represent t he  d i s t r ibu ted  mass proper t ies  of t he  beam. 
The matrix elesnents are calculated by assuming t he  displacement 
between the rod ends to  be  a cubic funct ion of t he  displacement a t  
the  beam ende. The beam m y  be l i n e a r l y  tapered o r  uniform. 

DESCRIPTION OF TECHNIQUE 

The replacement of t he  d i s t r ibu ted  mass of a beam by a mass 
matrix is obtained using a k i n e t i c  energy approach as follows. 

For small def lec t ions  (6) normal t o  the  longi tudina l  axis (x) of 
t he  beam shown i n  the  sketch, t he  k i n e t i c  energy is defined by 

' 2  x2 

x1 

T = $ \  P A!x) 6 (x , t )  dx 

where 

p is the  mass density 

A is the  cross-sectional area 
6 is the t € m e  r a t e  of change of displacement normal to  the  body 

x-axis, re fe r red  t o  a s  l a t e r a l  ve loc i ty  i n  t h i s  paper 

t is t i m e  

x is the  l o c a l  coordinate sys t em and longi tudinal  a x i s  of the  
beam with o r ig in  a t  point 1, tha t  is, x1 
length) . 0 ;  x2 = L (beam 

1 + X  
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To integrate Eq [l] a cubic displacement function is assumed 
between points 1 and 2 i n  terms of the displacements of points 1 
and 2, that is ,  

2 6(x) = Ax 3 + B x  + C x + D  

3 2  
= rx x x 11 11 

The angular displacement i s  obtained as the geometric derivative 
of the la tera l  displacement, that is 

= [-3x2 -2x - 1 01 A' 1 
The coe f f i c i ent s  A ,  B ,  C ,  D are determi..=, from Eq [2]  and 131, 
using the displacements a t  the beam ends. 1 - 3L 2 

0 

L2 

0 

- 2L 

From which 

0 

L 

-1 

-1 

0 

0 J - .  
A 

9 

C 

D 
I. 



UB2 - 3/3 
where 

3 -2/L 

3/L2 

0 

0 

2 -1lL 

2/L 

-1 

0 

Using Eq [ba) i n  (21 and taking the tinre derivative gives  the 
lateral  velocity as 

3 2  A(x,t) - Ex x x 11 [$I 

The cross-sectional area of the beam is aesrrmed to vary l inearly ,  
that is, 

x 
A ( x )  * AI + i; (A2-A1). 

Substituting Eq [S] and 161 into  (11 gives the k inet ic  energy as 

ISI 

The kernel matrix of Eq 171 is the mas8 matrix 



Subroutine M l C l  c a l c u l r t a s  a lumped m s  aatr ix  for 8 torsion rod 
element with u n r e s t r d n e d  b o d r i a s .  The 11989 avtrk ie fo tha 
local coordinate system of the rod. The e l r w n t o  of the m a  
matrix represent  t he  d i s t r ibu ted  inertia proper t ies  of the rod. 
These matrix elemants are ca lcu la ted  by Ztcr?ping t h e  rod's to ta l  
inertia t o  the  rod end points using static equivalent  forces .  
The rod may be  l i n e a r l y  tapered or  uniform. 

* 

DESCRIPTION OF TECHNIQUE 

The replacement of t h e  d i s t r i b u t e d  i n e r t i a  of a rod by a mass 
matrix is obtained by lumping t h e  rods total i n e r t i a  to the rod 
end points.  This lumping is equivalent to  static beaming. The 
rod is i l l u s t r a t e d  in t h e  sketch in which the rod cross-sectional 
polar  area moment of i n e r t i a  va r i e s  l i n e a r l y ,  t h a t  is, 
P(x) = P1 + x/L (P2-P1). 

The t o t a l  i n e r t i a  of the rod I s  

I = pL (P1+P2)/2 

where 

P 's the  mass densi ty  

P 
L is the rod length 

x 

-*-F the cross-sect ional  po lar  area moment of i n e r t i a  

I s  the  local. coordinate system and longi tudinal  axis of the  rod 
with o r ig in  a t  point 1, t h a t  is, x1 = 0; x2 = L. 

The equivalent i n e r t i a  a t  rod end 2 is calculated by taking the  
f'rst moment about rod end 1. 



1 2 L * \  P P X d X  

0 

P -  o LL ‘Pl+ 2P2) 
6 

from which 

PL ” I2 = b (P +P ) 1 2  

and 

PL = 6 (2P +P ). 1 2 ;  - 
The kinet ic  energy uf the rod element is expressed as  

The kernel matrix of Eq [4] is  the mass matrix that represents 
the distributed inert ia  of the rod. 



Subroutine MC;. calculates a cons is ten t  mass u t r i x  f o r  a to rs ion  
rod elemeat with unrestrained boundarles. The w e  matrix is i n  
the  local coordinate system a t  the  rod. The elements of the  maem 
matrix represent  t he  d i s t r ibu ted  inertia proper t ies  of the  rod. 
These matrix elements are calculated by asrlrming the  d i s p l a c e n u t  
between the  rod ends t o  be a Zinsar funct ion of the  displacement 
at t he  rod ends. The rod may be l i n e a r l y  tapered o r  t*n.ifom, 

DESCRIPTION OF TECinsXQUE 

The replaceemant of t he  d i s t r ibu ted  i n e r t i a  of a rod by a mess 
ntrht is obtained uoing.”a k i n e t i c  energy approach as fOllW8. 

For small ro ta t ions  (8) along the  longi tudinal  axis ( x )  of the 
rod shown i n  t he  sketch, t he  k i n e t i c  energy is defined by 

where 

o is t he  mass densi ty  

P 

e 
is the cross-sect ional  polar  area moment of i n e r t i a  

is t he  time r a t e  of change of ro t a t ion  along the rod x-axis, 
re fer red  to a s  r o t a t i o n a l  ve loc i ty  i n  t h i s  paper 

t is t i m e  

x is the l o c a l  coordinate system and longi tudinal  axis of the  
rod with o r i g i n  a t  point 1. t h a t  is, x1 = 0 ;  xz * L (rod length).  

Rod Element 

To in t eg ra t e  Eq [ l ]  a Zirtccr displacement function w i l l  be assumed 
between points  1 and 2 i n  terms of the  ro t a t ions  of po in ts  1 aad 2, 
thii t is, 

x c i ( x )  - G + - ( e  -e ). 1 L 2 1  
Similarly the ro t a t iona l  veloci ty  is given by 



me2 - 2/2 

E21 

The cross-sectional polar area moment of inertia of theorem is 
assumed t o  vary l i n e a r l y ,  t h a t  is, 

f31 

S u b s t i t u t i  4 Eq (21 and [3] i n t o  (1) gives the kinet ic  energy a8 

E41 

The kernel matrix of Eq (41 is t h e  mass matrix. 

The t o t a l  inertia of t h e  rod can be ca lcu la ted  by assuming a r i g i d  
body mode of 

1 '2 Subs t i tu t ion  of [SI i p t o  [4] gives T = I 8 e 

where 

PL [;;;2 p1+p2 ] [ :] 
I = [I 11 12 P1+3P2 

= P (Fl+P,)/L2. 
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Subroutine M2Al c.alculotes a lumped mass matrix f o r  a membrane 
t r i a n g l e  p l a t e  el-t with unrestrr ined boundaries. The mass 
matrix is in t he  l o c a l  coordinate eyetrm of the triangle p la t e .  
The elrvlPeats of the m98a matrix represent  the d i s t r t b u t s d  ma00 
proper t ies  of the t r iangle .  

DESCRIPTION OF TECHFiIQUE 

The replacement of the  d i s t r ibu ted  mas of a membrane t r i a n g l e  
p l a t e  by 8 ma88 matrix is obtained by lumping the t r i a n g l e ' s  
totai  MSB t o  the t r i a n g l e  vertwms. 
in the  sketch with t h e  degrees of freedom shown. 

The t r i a n g l e  is i l l u s t r a t e d  

Y 3  
6 

The t o t a l  mass of the  t r i ang le  is 

M * p t  x2 y3/2 

where 

P is t he  mass density 

t is the plate thickness. 

The mass a t  each ver tex for  a t r ans l a t ion  degree of freedom is 
W 3 .  
a r b i t r a r i l y  assume t h i s  value co be M/3 a l so .  

Because any i n e r t i a  at a vertex w i l l  always be "heavy", 
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The kinet ic  energy of the membrane trianglci plate element is 
expressed a s  

1 T 
2 T - - [same as c o l m : ]  

I /  3 

MI3 

MI 3 

M/3 
?I/ 3 

M/ 3 
M!S 

:A/ 3 

MI I 

The kernel matrix of Eq [Z) is  the mass matrix. 



lt2A2 
Subroutine M2&2 calculates a consistent p.gs v t r i x  €or a d r m e  
t r iangle  p h t c  element with unrestrained bodries. “he uss 
n t r i x  is in the  local coordiarte system of the triurgle plate .  
The elements of the llyss n t r i x  represent the dis t r ibuted mmss 
propv t i e s  of the  triangle. 
by aesdng  8 quadratic displacemeat f ie ld .  

lkese matrix elements are cdculrted 

DESCRIPTIOBS OF TEaratIQtrs 

The replacerant of the dis t r ibuted mass of a membrane triangle 
p l a t e  by a mass n t r i x  is described i n  D.H. 169 Linear Stmzin 
M d m  h.iang2e E t 4 m s n t  by U. A. Benfield and C. S. Bodley. 

The triangle is illustrated in the  sketch with the  degrees of 
freedom shown. 

The order of the degrees of freedom is 



a 1  - 1/2 
Subroutine H2B1 calculates a lumped mass matrix f o r  8 bendiag 
t r iangle  p l a t e  element with unrestrained boundaries. The mass 
matrix is in the local coordinate spatem of the  t r iangle  plate .  
The elements of the  mass matrix represent the distributed muss 
properties of the triangle. 

DESCRIPTION OF TECHNIQUE 

The replacement of the  distributed mass of a bending triangle 
p la t e  by a mass matrix is obtained by luaping the triangle's total 
mass to  the t r iangle  vertices. The triangle is i l l u s t r a t e d  i n  the 
sketch with the  degrees of freedom shown. 

Y 3  
8 

e is out from paper t 

The t o t a l  mass of the t r iangle  is 

41 = P t  x2y3/2 

where 

L) is the mass density, and 

t is t h e  p la te  thickness. 

X 

The mass a t  each vertex for  a t ranslat ion degree of freedom is M/3. 
Because any i n e r t ' 3  a t  a vertex w i l l  always be '!heavy", a r b i t r a r i l y  
assume t h i s  v a l u e  to  be M/3 also. 
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The kinet ic  rrtergy of the beinding triangle plate elswnt is 
expressed u 

1 T T = 5 [same as column] 

The kernel matrix of Eq (21 is the mass matrix. 



Subroutine H2B2 dculrtu, 8 consistent mas8 matrix f o r  8 bending 
triangle p la t e  element with u a r u t r d n e d  boundaries. The mass 
matrix I s  in the loca l  coordiaate systam of the trhngle plate.  
The elemeats of the mass matrix represemt the dist r ibuted nss 

- pt3pertSes of the triangle. Tbme u t r i x  elements a n  calculated 
by assuring a cubic displacement f i e ld .  

DESCRIPTION OF IBcawIQUB. 

The replaeercnt of the dis t r ibuted maso of 8 bend- trhngle 
pla te  by 8 o s  vtrh uses the techaique ( e s sen th l ly )  ducr ibed  
in h . i o n g l u h  EZarront8 i n  P l o t a  M n g  by C. P. Buely ,  Y. It. 
Chcung, B. It. Irons, and 0. C. tienkleuicz; ApR1L-llld6-80, 
N o v d e r  1966. 
the degrees of freedom shown. 

The trhngle is i l l u s t r a t ed  In the sketch v i t h  

(s is out f r o m  paper) 

- x  

The order of t he  degrees of freedom is 
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Subroutine WlA calculates a f i n i t e  element 1 ~ s  utth f o r  .II 
axial rod element vith rrmcestralned bourrdrries. 

The mass mmtriXn site 6x6, is in the global coordinate directions. 
The global coodine ta  order fo r  each el-t I8 (U, V, W) joint 1, 
then j o in t  2 where U, V, W are translations. 
are zero a t  a joint, U - 6 

m y  be e i ther  lumped or consistent. 

If the Mer angles 
The Orrs mtrir V - 6 W = 6 x* Y’ 2. 

This mass matrix is c o q u t d  by f i r s t  calculating a mass mmtrlx In 
the local coordinate system f o r  e l ther  a lugd mass mtrir or a 
coasistent mass utrir. Euler angles are then used to transform 
the u s 8  matrix from the loca l  w o r d h a t e  system to the global 
coordinate directions. Direction cosines are not needed. 

The calculation of the  mass matrix I t a  the global coordinate direc- 
t ions is accomplish a8 follows. F i r s t  a mass matrix I s  calculhted 
i n  the loca l  coordinate system and can be given as [%I * 

lunoed mass matrix (reference subroutine MU11 or 
mass matrix (refereice subroutine U S ) .  
are zero for  the lumped mass PPatrix. 

me- off-  
for  e i ther  the 
the consistent 
diagonal terms 

A sketch of the rod I s  given for  reference as 

Y 



The kinetic energy us- local coordinates is 

where [I]  is a uni ty  matrix, site 3x3. 

The def lec t ions  i n  the  local system are r e l a t ed  t o  the  de f l ec t ions  
in the  g loba l  coordinate d i r ec t ions  by 

where 

(y]  is a d i r ec t ion  cosine matrix,  s i z e  3x3, 

[Ei]  is an Euler angle  transformation matrix (reference subroutine 
EULER) a t  j o i r t  1, size 3x3, and 

IhGl = [Ur 'J1 W1 U2 V2 W 2 ] .  U, V ,  W are t rans la t ions .  

Subs t i tu t ing  Eq. [ 2 ]  i n t o  [l] gives the  k i n e t i c  energy using global  
coordinates as 



The kinetic anergy using local c o o r d i m t e s  is 
m 

where [I] is a un i ty  matrix, size 3x3. 

The de f l ec t ions  in the  l o c a l  system are re l a t ed  t o  the de f l ec t ions  
m the  global coordinate d i r e c t i o n s  by 

I 

t Y l  [Ell : 0 

where 

[y ]  i s ' a  d i r e c t i o n  cosine matrix,  s i z e  3x3, 

[Ei] is an Euler angle transformation matrix (reference subroutine 
EULER) at  j o i n t  i, s i z e  3x3, and 

{hGl * [U1 V1 W1 U2 V2 W2]. U, V, W are t r ans l a t ions .  

Subs t i tu t ing  Eq. [ 2 ]  i n t o  [I] give8 the  k i n e t i c  energy using global 
coordinates as 



1 
2 

I- 

1 

4 3  
UASU - 313 

141 

are orthtmoN1. 

For lumped mass, 42-851-0. "be kernel Prtrix Sa E q  [4] is the 
desired Ips8 m8trf.x in  the global cootdbate diractione. 
Euler angle6 ore mro at both joints, [E,] 

If the 
(I]. 
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b 

a x i a l  

bending 

tors ion 

Subroutine M4SlB ca lcu la t e s  a f i n i t e  element mass matrix for  a 
cambined axial-torsion-bending ba r  element with unrestrained 
boundaries. 

lumped consis tent  

MlAl MU2 

M l B l  MlB2 
M l C l  M1C2 

The mass matrix, size 12x12, is i n  the global coordinate direc- 
t ions.  
W, P, Q, R) j o i n t  1, then j o i n t  2 h e r e  U, V, W are t r a n s l a t i o n s  
and P, Q, R are ro ta t ions .  
j o i n t ,  then Ut6 , V=6 W-6 P-6 , Q=e , R=8 

This mass matrix is computed by f i r s t  ca lcu la t ing  a mass matrix 
i n  the l o c a l  coordinate system f o r  e i t h e r  a lumped mass matrix 
or a consisten: mass matrix. A d i rec t ion  cosine matrix is then 
used t o  transform the  mass matrix from the l o c a l  coordinate sys- 
tem t o  the global coordinate direct ions.  

The g loba l  coordinate order f o r  each element is (U, V, 

I f  the Euler mles are zero a t  a 

2' X Y' 2' x Y 

DESCRIPTION OF TECHNIQUE 

The ca l cu la t ion  of the mass matrix i n  the global coordinate d i rec-  
tions is accomplished as follows. 
i n  the  l o c a l  coordinate system f o r  e i t h e r  lumped mass o r  cons i s t en t  
mass using uncoupled a x i a l ,  t o r s ion ,  and bending subroutines 
l i s t e d  . 

F i r s t  a mass matrix i s  ca lcu la ted  

A sketch of the bar  is  given f o r  reference as 

2 

t.'. 

X 
Y 

1 ( l o c a l  z is out  from paper) 
X 

The k ine t i c  energy using l o c a l  coo'dinates i s  



where 

and 

[%I - 

e ' 6 6 e e  ' 6  6 e e l  
* X l  *2 J y l  y2 r l  22 I r l  22 yl y2 

"11 &12 

s21 '22 

51 5 2  

t21 t22 

bll b12 -b13 'b14 

b21 b22 mb23 *24 

31 32 b33 b34 

4 1  42 b43 b44 

-b -b 

-b -b 

'11 b12 b13 bl( 

b21 b22 b23 b 2 ~  

b31 b32 b33 b34 

b41 b42 b43 b44 

aij, ti,, bi, refer to terme i n  the uncoupled axial, to rs ion ,  bending 

mass matrices. For lumped mass, the  off-diegonal terme are zero. 

The above def lec t ions  i n  the  loca l  coordinate d i r ec t ions  are r e l a t ed  
t o  def lec t ione  i n  the  global coordinate d i rec t ions  by 

where [ y ]  is a d i rec t ion  cosine matrix (reference subrout ine Dc5SlB) 
including Eu le r  angles ,  size 12x12, and {hGIT = [U1V1W1P1Q1R, 

U2V2W2P2Q2R2). U, V, W are t r ans l a t ions  and P, Q, R are ro t a t ions .  



HASU - 3/3 
Substituting Eq f2] Into (11 givao tha kinet ic  energy wing 
810b.1 coordinates u) 

global coozdina te riirections . 
Even though the local lumped mas6 matrix has only diagonal terms, 
the triple motrix product using direction cosines is needed becawe 

tll 4 bJ3 &d tZ2 bq4. 

f31 



Subroutine HAS2 calculates a f i n i t e  elemuat mea matrix f o r  a 
combined mdrone-bending t r i a n g l e  p l a t e  elmeat with unrestrained 
boundaries 

lumped 

The mass matrix, size 18x18, is i n  t he  global  coordinate d i rec t ions .  
The global  coordinute order  fo r  each element is (U, v b  W, P, Qb R) 
j o i n t  1, then j o i n t s  2, 3 where U, V, W are translition8 and P, 
Q, R are ro ta t ions .  I f  t he  Euler angles are zero at  a j o i n t ,  then 

consis tent  

M2A2 

This rnass mtrir is computed by f i r s t  ca lcu la t ing  a mass avrtrix 
i n  the  l o c a l  coordinate system f o r  e i t h e r  a lumped mass matrix 
or a consi6tent  mass matrix. A d i rec t ion  cosine matrix is then 
used t o  transform the   mas^ matrix from the  local coordinate sys- 
tem t o  the  g loba l  coordinate direct ions.  

DESCKIPTION OF TECHNIQUE 

M2B2 I 
A ske:ch of the  t r i a n g l e  p l a t e  is given f o r  ri .ference as 

Y 3  
e 

Y 

Y 

t 
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The k i n e t i c  energy using l o c a l  coordinates Is 

6 8  6 8  6 8 '  l 6 X 1  y l  el y2 02 6x3 y3 z3; 

%1 8x1 6 y l  6z2 8 8  x2 y2 6z3  8x3 0 1  y3 

IhLl = 

and 

Tine above def lec t ions  i n  the l o c a l  coordinate d i r ec t ions  are 
re l a t ed  t o  def lec t ions  i n  the global  coordinate d i r ec t ions  by 

where [ y ]  is a d i rec t ion  cosine matrix (reference subroutine 
DCnS2) including Euler angles ,  s i z e  18x18, and IhG}T = 

[U V W P Q R U V W P Q R 1. U, V, W are t r ans l a t ions  1 1 1 1 1 1 2 2 2 2 2 2  
and P, Q, R are ro t a t ions ,  

Subs t i tu t ing  Zq [ 2 ]  i n t o  [l] gives the  k i n e t i c  energy using 
global coordinates as 

T 
where [mG] = [ I ]  

Clobal coordinate d i rec t ions .  

[m,] [ y ]  is  the desired mass matrix i n  the 

Because lhc  lo:al lumped mass matrix is diagonal and because 
t r ans l a t ion  terms are equal f o r  membrane and bending, and ro t a t ion  
terms a r e  equal f o r  membrane and bending, the  t r i p l e  matrix product 
using d i rec t ion  coaines is not needed. 
diagonal terms is s u f f i c i e n t  , 

A s imple  reordericg of 



M9S3 

Subroutine U S 2  ca lcu la t e s  a f i n i t e  element mass matrix fo r  a 
combined membrane-bending q u a d r i l a t e r a l  p l a t e  element with un- 
r e s t r a ined  bounducies. 

The mass matrix, sizrr 24x24 ,  is  i n  the  g loba l  coordinate d i r ec t ions .  
The g loba l  coordinate order f o r  each element is (C, V ,  W, P ,  Q ,  kl 
j o i n t  1, then j o i n t s  2,  3, 4 where U, V, W, are trarislations and 
P ,  Q ,  R are ro t a t ions .  If the  Euler angles a r e  zero a t  a j o i n t ,  
then U=b , V-6 W=6 P=8 , Q=0 , R=8 . 

X Y’ 2’ X Y z 
This mass matrix is ca lcu la ted  by taking the  average overlap of 
four t r i a n g l e s  show., i n  the sketch. 
o r  a consistent mass matrix is calculated.  Subroutin? MAS2 is 
used fo r  the  ca l cu la t ion  of t he  mass matrix f o r  t h e  t r i angu la r  
p l a t e s .  

E i ther  a lumped mass matrix 

3 

Y 
1 

2 



Subroutine ca lcu la tes  (on option) f i n i t e  element: (1) mass 
matrices; (2) s t i f f n e s s  vtrices [same as global  load transformation 
matrices), and (3) vectccs  to locate the DOF (degrees of freedom) 
of the matrices in t he  g loba l  MIF, for combined membrane-bendiag 
quadr i l a t e ra l  p l a t e  elements. The above matrices and ‘vectors are 
w r i t t e a  an disk u n i t s  and cons t i t u t e  the output from this sub- 
routine. A 1 1  matrices are in dense prow-ing logic.  

h c h  mass and s t i f f n e s s  matrix, s i z e  24x24, is i q  t he  g loba l  
coordinate direct ions.  
ment is (U, \t, W, P, Q, R) j o i n t  1, then j o i n t s  2, 3, and 4 
where U, V, Id are t raus la t ionb  
thn Euler angles are zero at a j o i n t ,  then U=6 V=6 U=b P=8 

The global  coordinate order f o r  each ele- 

and P, Q, 1 are ro ta t ions .  If 

XI Y’ 2’ X’ 

Each global  load t i :  
a t  quadr i la te ra l  v * ; . ~ c ~ s  i n  the global  coordinate d i r ec t ions  t o  
def lect ious i n  the  global  coordinate d i rec t ions .  
in t h i s  matrix is (Pu, Pv, Pw, S . ,  If,, P$) joint  A, then j o i n t s  2, 3 
and 4 where P is force  and M is moment. 

.roatloa t a t r ix .  size 24x24, relates loads 

The row order 

L 

Each locat ion vector  (IVEC) l oca t e s  the  DOF of each f i n i t e  eleaent 
i n  the global  DOF. 
i n to  global DOF 834. 
NF. This constrains  element M)F 3 to zero motion. 

For exanrple, IVEC(6)=834 places  elemem DOF 6 
IvEC(3j=O d t s  element DOF 3 from global  

The above matrices are calculated by using j o i n t  data and element 
data. The j o i n t  data is obtained from three  maerices input to 
t h i s  subroutine: (1) j o i n t  global  X, Y ,  2 loca t ions ;  (2) j o i n t  
global DOF numbers; and (3) j o i n t  Euler angles. 

The elemen’: data ,  read i n  t h i s  subrt * t ine ,  is: (1) options f o r  
mass, s t i f fnes s ;  (2) elemen+ mater ia l  propert ies ;  and (3) element 
j o i n t  numbers. 

Each mass mat;ix is calculated by t r ans fe r  t o  subroutine MAS3. 
E?ch s t i f f n e s s  matrix is calculated by t ransfer  t o  subroutine STF3. 
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Subroutine STFU ca lcu la t e s  a f i n i t e  element; (1) s t i f f n e s s  
matrix (same as global  load transformation matrix); (2) l o c a l  
load transformation matrix; and (3) on option, stress transforma- 
t ion  matrix f o r  an axial rod elemeat with unrestrained boundaries. 

The St i f fnes s  matrtx, s i z e  6x6, is i n  the global  coordinate 
dir;ctions. 
(U,V,U) j o i n t  1, then j o i n t  2 where U,V,W are t rans la t ions .  If 
the  Euler  angles are zero a t  a j o i n t ,  then U=6 V 4  W=6 

The global  coordinate order f o r  each element is 

x’ P’ 2- 

The g lcba l  load transformation matrix, s i z e  6x6, relates loads 
a t  the  rod en& in t he  global  coordinate d i r ec t ions  t o  def lec t ions  
i n  the  global  coordinate d i rec t ions .  The row order  i n  t h i s  
matrix is (Pu, PV, Pwil j o i n t  1. then j o i n t  2 where P is force.  

The loca l  load transformation matrix, s i z e  2x6, relates loads 
a t  the  rod ends i n  the  l o c a l  coordinate system to  def lec t ions  i n  
the global  coordinate d i rec t ions .  The rw order  i n  t h i s  matrix 

where P i s  a x i a l  force.  is pxl* px2 X 

The stress traqsformation matrix, s ize  2x6, relates stresses at 
the rod ends i n  the  local coordinate system t o  def lec t ions  i n  the  
global coordinate directiont.. 
J (I where a is normal stress. 

These matrices are computed by f i r s t  ca lcu la t ing  3 s t i f f n e s s  
matrix and stress transformation matrix i n  the loca l  coordinate 
system. A d i rec t ion  cosine matrix is then used to  transform 
the s t i f f n e s s  matrix and, on opt ion,  the  s t r e s s  transformation 
matrix from the  loca l  coordinate system to  t h e  global coordinate 
d i r e c t  ions. 

The row order  i n  t h i s  matrix is 

X I ’  x2 

D€SCRIPTION OF TECHNIQUE --- 

The ca lc - i la t ion  of the  s t i f f n e s s  matrix, load transformation matrix,  
and stress transformation in the  global  coordinate d i r e c t i r  IS is 
accomplished as follows. F i r s t  a s t i f f n e s s  matrix is calculated 
i n  t h e  l oca l  coordinate system and can be given as [%I = [kll k l Z l  

(reference subroutine K l A 1 ) .  

A sketch of the rod is giver1 for  reference as 
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The s r r a i n  energy using local coordinates I s  

1 T 
2 U = - [same P .  column] 

T [same as column] = 2  I 

The def lec t ions  i n  the  l o c a l  system are re la ted  t o  the  def lec t ions  
i n  the  global  coordinate d i r ec t ions  by 

where [ y ]  is a d i r ec t ion  cosine matrix (reference subroutine 
DCOSlA) including Euler angles ,  s i z e  2x6, and 

{hGIT = [U V W U V W 1. U, V, W are t rans la t ions .  Subs t i tu t ing  

Eq [ 2 )  i n t o  [l] gives 
1 1 1 2 2 2  

m 

T where [kC) = [ - , I  
coor d ina t e d i  rec t ions. 

[kL] [ y ]  is the  s t : f fness  matrix i n  global  

The loads in  the g loba l  coordinate d i r ec t ions  can be ca lcu la ted  from 
(31 a s  
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Thus [kG] is also a global load transformation matrix giving loaas  

in the  global  coord i lu te  d i r ec t ions  t o  def lec t ions  i n  the  global  
coordinate d i rec t ions .  

The loads in t he  local coordinate d i rec t ions  can be calculated 
from Eq [l] as 

Subs t i tu t ing  Eq 

= [%I 

[2)  gives 

where [TI.] = [I. 1 [ y ]  is t he  local load transformation matrix 

giving the  loads i n  local coordinate d i rec t ions  to def lec t ions  i n  
the  global  coordinate d i rec t ions .  

t 

A stress transformation matrix r e l a t ing  stresses i n  the  l o c a l  
coordinate d i r e c t i .  ns t o  def lec t ions  in the  loca l  coordinate 
d i r ec t ions  is f i r s t  calculated (reference subroutine KlAl), t h a t  
is, 

On option, the  stress transformation matrix r e l a t ing  s t r e s s e s  i n  
the l o c a l  coordlnate d i r ec t ions  t o  def lec t ions  i n  the global 
coordinate d i r ec t ions  is calculated.  Subs t i tu t ing  Eq [ 2 ]  i n to  
[ 7 ]  gives 

r51  

vhere 



Subroutine STFlB ca l cu la t e s  a f i d t e  element: (1) s t i f f n e s s  
s i t r i x  (same as global load transformation matrix); (2) l o c a l  
load transformation matrix; and (3) on option, stress transformation 
matrix f o r  a combined axial-torsion-bending ba r  eleawnt with un- 
res t ra ined  boundaries. 

The s t i f f n e s s  matrix, s ize  12x12, is in the  g loba l  .coordinate 
direct ions.  
W, P, Q, R) j o i n t  1; then j o i n t  2 where U, V, W are t r a n s l a t i o n s  
and P,  Q ,  R are rotat ions.  
j o i n t ,  then U=6 , V=b W=6 P=B 

The g loba l  load transformation matrix, s i z e  12x12, r e l a t e s  loads 
a t  the bar ends i n  the  glohal coordinate d i r ec t ions  t o  de f l ec t ions  
In the global coordinate direct ions.  The row order i n  t h i s  matrix 

Pw, %, I$, s) j o i n t  1; then j o i n t  2 where P is fo rce  is (P 

and M is moment. 

The global coordinate order f o r  each el-t is (U, V, 

I f  t h e  Euler angles are zero a t  a 

Q=eY, R=Bz’ X Y’ 2’ x’ 

u, pv, 

The l o c a l  load transformation matrix, s i z e  12x12, relates loads 
a t  the bar ends i n  the l o c a l  coordinate system t o  def l ec t ions  i n  
the global coordinate direct ions.  The row order i n  t h i s  matrix 

P is force 

The stress 
a t  the bar 
the  global 

- pxl - px2 

A1 ’ A2 

-yL 52 

- pz 1 - pz2 

P 
A ’ A2 1 

A, 
L 

A ’  1 

where 

and Ei is moment. 

transformation matrix, s i z e  12x12, relates stresses 
ends i n  the l o c a l  coordi a t e  sys t ea  t o  def l ec t ions  i n  
coordinate direct ions.  The row order i n  t h i s  Pnatrix is  

9 Mxr * r1 Mx2 * r2  

J1 ’ J 2  
9 

M Z 2  * 3 2  - M Z 1  * =y L 
9 1  * T  

Zl l 2 2  A 

, M LA, * c  My2 * cz2 
T 

E’ is force, 

N is noment, 

A is cross-sectional area 

r i s  distance from torsion ax is  t o  outer f i b e r  

.1 i.: LLr‘‘-:3-sectiorr Saint Venant ‘ s  torsion constant J G  

c 

I is area moment of i n e r t i a  about l c c a l  axis. 

is distance from bending n t u t r a l  plane to outer  f i b e r  ar-‘ 
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axial 

bending 
torsion 

These matrices are computed by first calculating a stiffness 
matrix and stress transformation matrix in tne local coordinate 
system. A direction cosine matrix is then used to transform the 
stiffness matrix and, on option, the stress transformation matrix 
from the local coordinate systan to the global coordinate directions. 

A 

Subroutine 

KlAl 
KlBl 

K l C l  , 

DESCRIPTION OF TECHNIQUE 

Strain energy using local coordinates is 

U = f thLj [kLl ihL! 

from paper) 

where 



mii 

= 

'11 a12 

'21 a22 

11 t12 

t21 t22 

t 

aij9 til, bij  refer t o  terms i n  uncoLpLed axial ,  tor ison,  bending 

s t t f f n e s s  matrices. 

Deflections i n  the  l o c a l  system are r e l a t e d  t o  de f l ec t ions  i n  the  
global coordinate d i r ec t ions  by 

{hLi = [ v i  ihCj  (2 1 

where [ y ]  is a d i  :ection cosine matrix (reference subroutine DCOSlB) 
including Euler angles ,  size 12x12, and 

{hGIT = [U V W P 0 R U 
t i ons  and P,  Q ,  R are rotat ions.  

W P Q R 1. U ,  V ,  W a r e  t ransla-  
1 1  1 1 ' 1  1 2 ' * 2  2 2 2 2 

i u b s t i t u t i n g  Eq [ 2 ]  i n t o  [ l ]  gives 

I' u 5. -- IhGl  [kG1 {hGl 

T bhere [kG] = [ u ]  
coordinate d i r ec t ions .  

[kL] [y] is the s t i f f n e s s  matrix i n  global  

I 3 1  
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Loads in global coordinate directions CUI be calculated from 
Eq r31 as 

Thus, [k,] is also a global load transformation matrix giving 
loads in the global coordinate directions to deflections in the 
global coordinate directions. 

Loads in local coordinate directions can be calculated from Eq [l] 
as 

Substituting Eq (21 gives 

Where [TL] - [\] [ y ]  is the local load transformation matrix giving 
the loads in local coordinate directions to deflections in the 
g1uba.t coordinate directions. 

A stress transformation matrix rel.ating stresses in local coordinate 
directions to deflections In local coordinate directions is first 
calculated (reference subroutines K111, XlBl, KlC), that is, 

On option, the stress transformation matrix relating stresses in 
local coordinate directions to deflections in global coordinate 
directions is calculated. Substitutfng Eq [2] into 171 Sives 

is,! ;TS]fhG? 

where 

[TS] = [TSt] [ y ] .  



Subroutine STF2 calculates a finite element: (1) stiffness 
matrix (same as global load transformation matrix); (2) local load 
transformation matrix; and (3) on option, stress transformation 
matrix for a combined membrane-bending triangle plate element 
with unrest rained boundaries. 

The stiffness matrix, size 18x18, is in the global coordinate 
directions. The global coordinate order for each element is (U, 
V, k ,  * 0, R) joint 1; then joints 2 and 3 where U, V, W are 
translations and P, Q, R are rotations. If the Euler angles are 
zero at a joint, then U=6 V=b W=6 P 4  *ey, R’9f X’ Y’ X’ 

The global load transformatior: matrix, size 18x18, relates loads 
at the triangle vertices in global coordinate directions to de- 
flections in global coordinate directions. The row order in this 

PIJ, 15, NQ, 15) joint 1; then joints 2 and 3 matrix is (P 
where P is force and 11 is moment. 

U’ pv’ 

The local load transformation matrix, size 18x18, relates loads 
at the triangle vertices in the local coordinate system to deflec- 
tions in global coordinate directions. The row order in this 
matrix is (P P 11 ) joint 1; then joints 2 and 3, next (P 
X ) joint 1; then joints 2 and 3 where P is force and M is moment. 

The stress transformation matrix,.size 18x18, relates stresses at 
the triangle lrertices in the local coordinate system to deflections 
in global coordinate directions. The row order in this matrix is 
(,jx, 3.<, 7 

Then the same data at 2 = - 1/2tben. a is normal stress and T is 
shear stress. 

2’ Mx’ x’ y’ z 

Y 

) at 2 = + 1/2tben for joint 1; then joints 2 and 3. 
XY 

These matrices are computed by first calculating a stiffness matrix 
and stress transfornation ma:rix in the local coordinate system. 
A direction cosint natrix is then used to transform the stiffness 
matrix and, on opt.on, the stress transformation matrix from the 
local coordinate system to the global coordinate directions. 

DESCRIPTION OF TECHNTQUE 

The calculation of the stiffness matrix, load transformation 
natrix, and stress transformation in global coordinate directiuzq 
is acccmylished as follows. Firs: a stifiness matrix is calculated 
in the local coordinate si‘stom w i n g  the uncoupled membrane and 
bending subroutines listed. 

Sub r o u c ine 

membrane 

bendipg K2B1 
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A sketch of the triangle plat ,  is given for reference as 

(plate is i n  local  xy plane) 

The strain energy csing local  coordinates is  

where 
m 

{hL]' = [ 6  6 xl yl 6z1 -x2 $2 822 
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Deflections i n  the  l o c a l  system are refatad to t h e  def lec t ion6  
i n  global  coordinate d i r ec t ions  by 

where [y] is a d i r ec t ion  cosine matrix (reA.'ence subrout ine DCOSZ) 
including Euler angles ,  s ize  18x18, and 

U, V, W are t rans la t ions ;  P, Q ,  R are ro ta t ions .  

Subs t i tu t ing  Eq [2 ]  i n t o  [l] gives 

T 
where [kG] = [ y ]  

coordinate d i re r t iona .  

[5] [y] is the  s t i f f n e s s  matrix i n  global  

Loads i n  the  global  coordinate d i r ec t ions  can be  ca lcu la ted  from 
Eq [3]  as 

Thus, [kG] is 8- so a global  load transfoimracion ieatrix giving loads 

i n  global  coordinate d i r ec t ions  to  de f l ec t ions  i n  global  coordinate 
d i rec t ions .  

Loads i n  the l o c a l  coordinate d i r ec t ions  can be calculated from 
Eq [11 as 

Subst i tut ing Eq [ 2 ]  gives 

where [TLJ = [5] [ y ]  is the l o c a l  load transfGrmatlon matrix gfving 

the loads i n  l oca l  coordinate d i rec t ions  t o  def lec t ions  In global  
coordinate d i rec t ions .  
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A strese transformation matrix relating stresses in the lccal 
coordinate directions to deflections in the local coo riaate 
directions is first calculated (reference subroutines K W ,  K2B1) , 
that is, 

On option, the stress transformation matrix relating stresses in 
local coordinate directions to deflections in global coordinate 
directions is calculated. Substituting Eq [ 21 into 171 gives 

where 



Subroutine STF3 ca lcu la tes  a f i n i t e  element o t i f f n e s s  matrix 
(same as global load transformation matrix).  f o r  8 combined 
membrane-bending quadr i l a t e ra l  p l a t e  element with unrestrained 
boundaries. 

The s t i f f n e s s  matrix, s i z e  24x24, is i n  global  coordinate direc-  
t ions.  The global coordinate order for each element is (U, V ,  W, 
P ,  Q,  R) j o i n t  1; then j o i n t s  2 ,  3 and 4 w3ere U, V, W A r e  t rans la -  
t ions  and P,  Q,  R a r e  ro ta t ions .  If the  Ruler angles are zero a t  
a j o i n t ,  then U=6 V=: W 4  P=9 , q=ey, R I B Z .  

Yf 2' x 
Each global  load tramformation matrix,  s i z e  24x24, relates loads 
a t  the quadr i l a t e ra l  ve r t i ce s  i n  global  coordinate d i r ec t ions  t o  
def lec t ions  i n  global coordinate d i r ec t ions .  The row order  i r .  
t h i s  matrix i s  (P 
3 and 4 where P is force and M is moment. 

Pv, Pw, 5 ,  tlQ, s) j o i n t  1; then j o i n t s  2, U' 

This s t i f f n e s s  matrix i s  calculated by tsking the average overlap 
of four t r i ang le s ,  snown i n  t h e  s k e x h .  subroutine STF2 is used 
f o r  ca lcu la t ion  0 6  the. s t i f f n e s s  m t r i x  f o r  the  t r iangular  p!stes. 

Y 

3 

1 



Subroutine TRNGL ca l cu la t e s  (on option) f i n i t e  element: (1) w b  
matrices,  (2) s t i f f n e s s  n a t r i c e s  dame as global  load transformation 
matrices) ; (3) l o c a l  load transformation matrices;  (4) sti'ess trans- 
formation matrices; and ( 5 )  vector8 t o  l o c a t e  the  DOF (degrees of 
freedom) of these matr ices  i n  the  global DOF, f o r  combined membrane- 
bending t r i ang le  p l a t e  elements. 
wr i t ten  on d i sk  u n i t s  and cons t i t u t e  L ,e output ftom t h i s  st+-- 
routine.  

Thece matrices and vec tors  axe 

A l i  matrices are i n  dense programing logic .  

Each mass and s t i f f n e s s  m A t r i x ,  s i z e  18x18, is i n  global  cocr.'rind+* 
d i rec t ions .  'I'he g loba l  coordinate order f o r  each e1cmer.t is (U, 
V, W, P, Q,  R) j o i n t  1; then j o i n t s  2 and 3 where U ,  V, :: are 
t r ans l a t ions  and P, Q, R are ro ta t ions .  I f  the  E u l e r  F... :es arc 

Z'  
zero a t  a j o i n t ,  then U-6 V-6 W=6 , Pat3 x, Qley,  R=6 

x' Y '  z 
Each global  load t ramformation matrix, s i z e  18x18, r e l a t e s  loads 
a t  t);e t r i a n g l e  v e r t i c e s  i n  global  c o o r d i r x e  direcLions t o  
def lec t ions  i n  e loba l  coordinate d i rec t ions .  The row order  i n  
t h i s  ma:rix is (Pu, Pv, Pw, Mp,  MQ, M ) j o i n t  1; then j o i n t s  2 

and 3 where P is force  and M is moment. 

Each l o c a l  lei:! transformation Eatrix, s i z e  18xlb, r e l a t e s  1oac.s 
3t the  t r i a n g l e  v e r t i c c s  i n  the  l o c a l  coordinate svstem to  deflec- 
t i ons  in global  coordinate d i rec t ions .  The row order i n  t h i s  
matrix is (Px, P 
?II ) j0ir.t 1; then j o i n t s  2 and 3 khere ? is  force and M is moment. 

N ) j o i n t  1; t l , m  j o i n t s  2 aad 3 ne?, (Pz, Mx, 
Y' 2 

Y 

Each s t r e s s  transformation matrix, s f z e  18x18, r e l a t e s  s t r e s s e s  
st the t r i ang le  verticc;s i n  the l o c a l  coorditrate syctem t o  deflec- 
t ions  i n  g l . d ~ a l  coordinate d t r ec t ions .  The rnv order i n  t h i s  
:natrix i s  ( a . ,  

2 and 3; then the same data a t  Z = -l/%tben. 

and T is shear s t r e s s .  

T ) a t  2. = + 1 / 2 t b e n  f o r  j q i n t  1; then j o i n t s  
1 1' xy 

n 1s tu~rmal stress 

Each locat ion rector ( I V l ? )  loca tes  the 30F of each f i n i t e  e le-  
ment i n  the g lcba l  DOF. For example, IVX(6)=834 places element 
DOF 5 iDto global  DOF 834. IVEC(3)=O : ss eltnent. DGF ? from 
global DOF. This constrains  element DOF 2 t o  zero motlor, .  

The a3ove matrices a r e  ca lcu la ted  by u-ing j o i n t  data and el.racr.- 
de.ta. The j o i n t  da t a ,  obtained from thret  matrices input t o  - a i s  
subroutine,  d re  (1) j o i n t  global  X ,  Y ,  Z L . c a t i m s ,  ( 2 )  j o i n t  
globai DOF numbers, aitd (3) j o i n t  Euler angies.  

The element data read i n  t h i s  si' r o u t i r e  i s  (1) options f o r  marl:, 
s t i f f  ness,  I oca1 load t rans  f o rmaiions , s t r e s s  transformation - ; 
(2 )  element matorial proper t fee ;  and (3) element j o i n t  numbers.  




