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UNCERTAIN DYNAMICAL SYSTEMS — A DIFFERENTIAL GAME APPROACH
Shaul Gutman

Ames Research Center

SUMMARY

A class of dynamical systems in a conflict situaticn is formulated and
discussed, and the formulation is applied to the study of an important eclass
of systems in the presence of uncertainty. The uncertainty is deterministic
and the only assumption is that its value belongs to a known compact set.
Asymptotic stability is fully discussed with application to variable structure
and model reference control systems,

1, TINTRODUCTION

In the past two decades an extensive effort has been made, mainly in the
U.5.5.R., to improve dynamic performances of linear systems, using the concept
of variable structure sysgtems (VSS) (ref., 1). Roughly speaking, given a
linear dynamical system, it is possible to use a "linear" feedback whose gain
values vary with the state. In the case of linear systems, V5SS 1s related to
bilinear control (ref. 2); the reader can consult reference 3 for this subject.
Furthermore, under some conditions, such nonlinear controllers can operate
against parameter uncertainty and input disturbances (refs. 4 and 5). In
references 4 and 5, the approach is to find an attractive hyperplane in the
state space such that the motion there is independent of the disturbance
(invariance property). Then, it is possible to study the asymptotic behavior
of the system in this hyperplane using the usual linear technique. Since
attractivity is a local property, one has to add conditions that guarantee
either reaching the attractive hyperplane or approaching the origin outside
it (in ref. 4 such conditions are called '"fall conditions")., However, for
gome multivariable syatems this procedure may be too complicated. In addition,
references 4 and 5 lack a priori conditions for stability. It should be men-
tioned that in some non-trivial cases it is possible to stabilize a linear
system 1in the presence of parameter uncertainty using a linear feedback
(ref. 6) by modifying the Riccati equation. Although the feedback control is
gimple, there are no a priori conditions for stability. 1In the case of linear
time invariant systems with some unknown parameters, 1t is useful to use an
adaptive model reference scheme (refs. 7 and 8) which assumes some "matching
conditions" (ref, 9).

In this article, we develop stabilizing controllers for a class of non-
- linear systems homogeneous in the input, in the presence of uncertainty. We
consider the uncertain system from the viewpoint of a conflict between uncer-
tainty and controller. We associate with the dynamics a cost function and
find a saddle point for finite transfer time. In checking asymptotic



properties of the system we note that the saddle point controller may be dis-
continuous. Thus, we use "generalized dynamical systems' theory to define a
solution of the resulting discontinuous dynamical system {(refs. 11-12; see
also 13). Some results with respect to nominal linear systems (i.e., the
system without uncertainty is linear) are reported in reference 14, Stability
and optimal control for the nonlinear case without uncertainty are studied in
reference 15, It is interesting to note that our condiiions on the system's
structure and the "invariance condition" of references 4 and 5 are both
equivalent to the "matching conditions” (refs. 7-9). The main drawback of
the present method (as in optimal contrcl) is the necessity to measure the
complete state vector.

In section 2 we formulate and solve a simple differential game for finite
terminal time. Motivated by the saddle point strategy, we study in sections 3
and 4 the asymptotic behavior of uncertain systems. In section 5 we apply
the results to nominal linear systems with special attention to V8S. Appli-
cations to model reference control in the presence of uncertainty are discussed
in section 6,

T am grateful to Prof. G. Leitmann for his critical reading and encourage-
ment, and to Prof. E. Polak for drawing my attention to reference 3.

2. A SIMPLE DIFFERENTIAL GAME

Consider the dynamics
x = f(x,t) + B(x,t)(u +n) , x(to) = X, (1)

wel = {u:u'R"tu < p2(x,t)}
(2)

neV = {n:n'R"In < p2(x,t)}
where XEﬂp,lhﬂEﬁm, BEﬁnxm, B(+) is continuous on ﬂn*l, f£(+) will be speci-
fied later, R = M'M 1is a constant positiveng?finite symmetric matrix, and

p(*) i1s a continuvous scalar function on & '. With (1}-(2) we associate
the cost

T
J =f g(x,t)dt (3)
o
where T 1s fixed and g(+) will be specified later. For system (1)-(2)
e seek a saddle point strategy pair {p*(+),e*(+}} 1in the class of strategy

pairs {p(*),e(*)} satisfying the hypotheses of reference 16, such that
u(t) = p(x(t),t), n(t) = e(x(t),t); and V(xo,to)EH“x(-w,T]

I st op () ,e(+)) S I(x .t 0¥ e () S I(x b ,p(),ex() (&)



In order to find {p*(+),e*(+)}, we restrict €(+), g(*) as follows:
Assumption 1: The functions €£(+), g(+) are ¢! on an+l

Since U and V are identical sets, we expect (4) to be satisfied at
p*(*) = -e*(+). Then, equation (1) becomes x* = f(x#,t) and the cast (3) is
evaluated along x%*(+); namely J = J(Xg,tq,p*(*),e*(s )) B uk(xg,tg). Since
£(+), g(+) are C!, the above cost is el %ien respect to (%g,te).

Using Isaacs' equation (ref. 17),

Min Max [g(x.t) + grad vk (x,t) - (f(x,t) + B(x,t)(u + n))] =0,
usl nevV
we find

MB' (x,t)grad! uvh(x,t)
IMB' (x,t)grad’ uvr(x,t)ll

pr{x,t) = -e¥(x,t} = -p(x,t)M' Vix,t)g N

{p*(+),e®(+)} is any admissible pair y(x,t)eN (5)

AL ((x,£):B" (x,t)grad’ uvk(x,t) = 0}

Remark 1: 1f (2) is replaced by

U= {uEﬂm:luiI < pi(x,t)}

m (2')
= {T]Etﬂ :|T\i' < pi(x’t)} ’
then {p*(+),e*(+)} becomes
pi*(xft) = -ei*(x.t) = -pi(X.t)sgn[bi'<X.t)grad' U*(X.t)] V(x,t)eé./‘r’i
{pi*('),ei*(')} 1s any admissible pair V(x, )€, (5")

JV {(x,t):b '(x t)grad' v¥(x,t) = 0} , B A [bl . e bm] .

We conclude with

Theorem 1: Consider the differential games (1), (2), (3) and (1), (2"}, (3).
The strategy pairs {p (+),e*(+)} given by (5) and (5'), respectively, are
saddle points on @%x{-o, T]

Now that theorem 1 is established, the application te the control of
uncertain systems is straightforward. If a system of the form % = F(x,t,u)
has an uncertainty (in the parameters, input or bLoth) that can be transformed
into a system of the form =% = £(x,t) + B(x,t)(u + n) and if the controller



u  uses p*(-) given by (5) vr (5'), he is guaranteed the cost (3) evaluated
along solution of & = f(x,t). Note that the identity of sets U and V is
essential for establishing the saddle point. Practically speaking, after
verifying the above form, we bound the uncertainty by V as in (2) or (2'),
even if we have to be conservative. Then we define U to be identical to V
as in (2) or (2%).

3.  STABILITY OF A CLASS OF UNCERTAIN SYSTEMS

We now Lurn our attention to the asymptotic behavior of (1), We first
relax assumption 1 by making the following assumption.
Agsumption 2: The function f(+) ULs continuous on d{"“ and f(o,t) = o Vtetﬂjr.
We also nead
Asaumption 8! The origin = {0} 1s uniformly asymptotically stable in the
large for x = F(x,t), quch that there exists a C! function wu(+):@0"1 + g!
gatisfying (ref, 18)

1. w(x,t) is positlve definite (p.d.): d a continuous, nondecreasing
scalar function o(+) with o(0) = 0, such tnat Vteﬁi and Ve, x # 0

0 < nllxll) < ux,t)

2. vu(x,t) has an "infinitely small upper bound": ¥ a continuous non-
decreasing scalar function R{(+) with A(0) = 0, such that Vteﬁi

u(x,t) < B(lxl}

3. a(llxh) » w as tll + w
4. Wo(x,t) %R + grad v «+ [ 1s negative definite (n.d.).

Asgumption 4: Admissible strategy e(+): (xRl >V is continuous on @ and
piecewise continuous on any compact subinterval of ﬂ

Motivated by (5) and_(5') we assoicate with (2) and (27), respectively,
the feedback strategies p(‘):ﬁnxﬁi + U given, respectively, by

v MB'(x,t)grad' u(x,t) ,
- - =0 (%, £)M IMB' (x,t)grad’ v(x,t)l vx, )¢, 4
Bx,e) = ®)

uel = {ve®™:u'R™1u < p2(x,t)} V(x,t)e f

A {(x,t):B"{x,t)grad' v(x,t) = 0} (6a)



and . -pi(x.t)sgn[bi'(x,t)grad' U(x,ta V(x|t)¢.di
Pi(x:t) i (7)

u,eU

- 1, .
€Y, {uieﬁ "ui| < pi(x.t)} V(x.t)E.Ai

Ay & {Ge) b (xyt)grad' v(x,t) = 0}, 4€(L,2, . . ., m}, (7a)

where the bi's are the columns of B,

We now have
Theorem 2: Consider the dynamical systems (1)-(2) and (1)-(2')., If we sup~
pose that assumptions 2-4 are met, then there exists a feedback contrpl p(-)
satisfying (6) and (7), respectively, such that the origin x = {0} is
uniformly asymptotically stable in the larpe for all admissible disturbances
ef+).

Proof: Since $(+) is discontinuous and hence considered not unique,
equation (1) becomes a generalized dynamical system (refs. 1l and 12),

x&E(x,t) (8)
where the set valued function E{(*) is given by

E(x,t) = {f(x,t) + B(x,t)u + B(x,t)e(x,t)tu = p{x,t)} (8a)

It can be shown (see appendix) that

1. E(x,t) is convex V(x,t)Eﬂnxﬂi

2. E(x,t) is compact V(x,t)Eﬁnxﬁi

3. E(*) is upper semicontinuous on ﬂnxﬂi
Thus, given any (xo,to)eﬁ“xal there exists at least one solution of (8),
That any such solutilen can be continued! on ®! is one of the consequences
of the properties of the following Lyapunov function., Let u(+):8%&} - @}

of assumptien 3 be a Lyapunov function candidate. We now show that Uox(t)
decreases along a solution x(+) of (1) generated by {(+),e(+)}.

1at points of discontinuity of e(x,*), solutions can be joined in the
usual way.



For (x(t),t)Z4 in system (1)-(2),2

W(t) L grad v *» %X
at
=2y grad v - [f+Bfi+Be]
o QU . grad uBM'MB' prad' v
ac T BrAd vt £ -0 T rad’ Wl

wo(x(t),ﬁ) - plIMB' grad' ull + grad v Be

< wo(x(t),t) - plIMB' grad' ull + pliMB' grad' ul

wo(x(t).t) <0

For (x(t).t)edf but x(t) # 0,

W(e) = W _(x(t),t) <0 . Q.E.D.
Similar results are obtained for system (1)~(2').
Remark 2: 1If in equation (2)

U= {u;u'R lu < puz(x,t)}

V= {nm'R7In < pvz(x.t)}

then we use pu(x,t) in (6), where pu(x,t) 2 pv(x,t). A similar statement
holds for (2'), (7).

Integrating W(t), we find

Corollary 1: The average measure of deviation from the origin along a solu-
tion x(+):[tg,] + @, x(ty) = X, generated by {p(+),e(*)} is

fm- Wo(x(t:),::)dt < U(xo,to) .

t
0

4. APPLICATION TO PARAMETER AND INPUT UNCERTAINTY

Consider the uncertain dynamical system

k= £f(x,t) + 8£(x,t,v) + B(x,t)u + C(x,t)w (9)

2For simplicity we drop function's arguments.
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where f, Sfef™, Beﬁnxm' CEﬂ“xr. ueﬂm. §£(+) 1is continuous, The uncertainty
vector functions v('):ﬁ“xﬂl - ]9, w(-):ﬂ“xﬂl + & are continuous and satisfy
(v,w)ER, where

né [veﬁq,wétﬂr:|vi| «1, 41i=1,2,...,9; Ilwil< pwl (10)

We now require

Asgumption 5: TFor all (x,t)ER"xR! there exists a continuous vector function
h{x,t,v)et™ and a continuous matrik function D(x,t)Eﬂmxr, such that

(1) &f(x,t,v) = B(x,t)h(x,t,v)
(11)
(41} C{x,t) = B(x,t)D(x,t)
We refer to (1)=-(11i;) as "matching conditions",
Remark 3: The matching conditions are properties only of the system's struc-
ture, They guarantee that the controller u influences the dynamics in
equation (10) as "well" as the disturbance §&f + Cw does.
If (11) is satisfied, (10) becomes
= fx,t) + B(x,t)(u + hix,t,v) + D(x,t)w) (12)
Denoting h + Dw by n, equation (12) reduces to the form of (1).
Remark 4: 1f % = f(x,t) is not asymptotically étable, we have to stabilize
it via B(x,t)u. The subject of stabilizing a system of the form
X = £(x,t) + B(x,t)u is considered in reference 15.
Applying theorem 2 to equation (12), we find
Theorem 3: Consider the uncertain system (9)-(10) and suppose assumptions 2--5
are satisfied. If ﬁ(-):ﬁ“xﬂl + U 418 given by (6) with

pla,t) 2 py + ¥aﬂ|h(x,t,v)”, u = p(x,t), then the origin x = {0} is uniformly
asymptotically stable in the large for all admissible (v,w).

5, APPLICATIONS TO NOMINALLY3 LINEAR SYSTEMS

5.1 Parameter Uncertainty
Consider the uncertain system (9) with £(x,t) & Ax; that is

%= (A+ 8A(V))x + Bu

3That is, without uncertainty the system ia linear.
7



where AEﬂ“xn, BEﬂnxm are constant matrices, A is asymptotically stable:
all its eigenvalues have negative real parts, A & [aij}; AA(v) § [aijvij];

gy = constant, i,je{l1,2, . . ., n}. The uncertainty vector function
v(-):aﬂxﬁi + &1 18 continuous and satisfies veER, where

na vf:'ﬂq:lvij(')l %1, 1,3e{1,2, . . .,n}

Let matching conditions (l1) be satisfied:
There exists a continuous F(-):ﬁk + &7 guch that WveR
AA(v) = BF(v)
The state equation becomes
% = Ax + B(u + F(v)x)

4 Ax + Bu + n)
Applying the results of section 3 (eq. (6) with R = I, u(x,t) = x'Px), we
find a stabilizing feedback control p(+):a"&} + &", u(t) = p(x(t),t),
satisfying

B'Px
-Msxll F(v)xl TB Bl (x,t)e AN

p(x,t) = m '
- Wy = fuetlul < MaxiF(xI}  (x,e)eur
where

PA+A'P+Q=0, Q=Q'>0, and & {(x,t):B'PX = 0}

Remark §: Here the origin is an equilibrium point in the usual sense, since

lig p(x,t) = 0. This holds in the following two examples as well,
P

5.2 System of Section 5.1 in Companion Form with Single Input
Let

k
k= (A+2A(0)x +bu; AA(v) = 2 AV, (x,t)
i=]



where'

a, » constant, § = 1,2, . . «., N

]
%y
|vi(x,t)| <1

= constant, 1 = 1,2, . . ., k; k<n

Here, F(v) = ¢'(v)x where c'(v) = [avy . . . unvn] .
Equation (13) becomes

~Max [e'(v)x]sgn 7'x  V(x,t)gN
Blx,t) = |"ilé1
welue®!:Ju] € Max [c'(V)x]} V(x,t)eN
[vi|<l

where 1t 1s the n-th column of the symmetric matrix P satisfying
PA+ A'P+Q=0, Q=20Q" >0, and A= {(x,t):7'x = 0},

‘ k

1/2

Remark 6: Note that Max [c'(v)x] < o, 2 %Il
|Vif<1 =] 1

Equation (l4a) subject to remark 6 yields one possible solution for
A second one 18 found by noting that

|3If|’-‘:1{°'(v)x] " ; 4 |313|’&1("1"1) = l::“il"il

“In the terminology of section 5.1, vy & Vi i=1,2, ..., n

9

0 1 0o ... 0]
0 0 1 L] * O [~ O
A - L[] L] L] [ ] L] L] . Ai -
0 0 0 L] . [ l 0 L) L4 » 0 ui 0 » . L]
~a] =42 ~83 + » -nn B

(l4a)

pCe).




Thus, (x,v)EM
~ Y om - 'y = - S '
pix,t) 21: ai|xi|sgn n'x % a %y Bgn X T'x
éa|E1 " s 2 ﬁnzn]x

where

‘1
We conclude that

= - ggn xiﬂ'x
p{x,t) = K(E)x
K(E) = [og8y + o v @ £ )

-Bgn xiﬂ'x V(x,t)g ¥ (14b)

£
i Yie{'rieal:lyi|<l} Vix, £)EN

N {{x,t)in'x = 0},

m is the n-th column of P, PA+ A'P+Q =0, Q = Q' 1is any positive
definite matrix,

Example 1: Let xef? with
0 1 0

k= X + u
-ay+ha] =-ap 1

where A4a; = avy, |v1] < 1, a; = constant., We assume that
0 1

A=
~a] ~ajz

has all its elgenvalues in the left half plane {(otherwise it must be stabilized
by linear feedback). Equation (14b) becomes

x)
ﬁ(xat) = K(E)x “[0.151 i 0] [._-]

Xz

where £;{x,t) = -sgn(x;n'x).

10



If nié P, 'up,", then

i
X1

XeD1 5 (¢, ) = =[-ay10] []
X2
X1

¥EDy i (x,c) = '[0320] [—--]

X2

where {D;,D;} 48 defined in figure 1.

Example 2: Let x€@/? with
0 1 0

ko= X + u
-aijt+ha) =-azthaz 1

where daq = aqvy, |vi] <1, ay = constant, i = 1,2, As in example 1, let A
have all its eigenvalues in the left half plane. Equation (14b) becomes

' X1
PO6 L) = R(E)x = [(1151:“252]
X2

where £ . {¢,/) = - sgn(xiﬂ'x). 1=1,2,

If D, 4 b, 'uD " then

i
X€Dy 5 (x,t) = -[-al:laz] [f‘.l.]

X2
XD, 1 f(x,t) = -[aliaz] l:xl]

X2
¥EDg:p(x,t) = -[u,li..az] [3(‘1_]

X2

where {Dy,D;,D3} 1s defined in figure 2.

5.3 Variable Structure Systems

An alternative way to stabilize the systems of sections 5.1 and 5.2 is
as follows:

Let

k= (A+ 0A(V))x + Bu (15)

11



where A and B are constant metrices. As before, let
AA(v) = BF(v) (15a)

where vERl 1s the parameter uncertainty vector with

i é {\Eﬁk:iviﬂ <1 } i, = 1.2g v . -'n} .
We wish to use a stabilizing control of the form
u = K(E)x

where £€f 1s the control parameter vector, and E(-):ﬂnxﬂl -+ ﬂk. That is,
we use a '"linear" feedback whose '"coefficients" vary with the state and time.

Using (15a) and (15b) in (15), we find
% = Ax + B(K(E) + F(v))x (16)
Equation (16) can always be written in the form
k= Ax + M(x)(E + v) (17)
where M(x) has the proper dimension,

Since equation (17) has the form of (1), we can use our previous results.
In particular, consider the system of section 5.2. Here,

F(v) = :alvl . o anv;l] 7a)
a

K(E) = -0'.151 A e e anEjn]

—

M(x) = <:::> (17b)

B I R

B1X] . o
R

A stabilizing control §(+):@ xR+ &, £(t) = p(x(t),t) is found from (7)

-sgn(xiﬂ'x) vix,t)é. N
p(x,t) = . ) (18}
FEEN= :'gil <1} V(x,t)EN

where 7 is as in section 5.2, As expected, this result agrees with (14b).

12



5.4 A Simple Input Disturbance

Let % = Ax + Bu + Bv, V = {villvll < py = constant}, A,B are constant
matrices, and A 1is asymptotically stable. Choose U = {uillull <p, , p, >0n,},
Equation (6) becomes

B, = =0, rhrpar V0L EEN = ((x,£):B'Px = 0)

where PA+ A'P+Q =0, Q=q' > 0,

Remark 7: Here the origin is not an equilibrium state in the usual sense.
Compare with remark 5.

Remark 8: 1If a system has both input and parameter uncertainty, we sum the
corresponding "p s."
5.5 An Extension
In the previous sections we assumed that the nominal matrix A 1is
asymptotically stable (i.e., all its eigenvalues have negative real parts).
Here we show a way to stabilize A° and simultaneously to overcome the
uncertainty., Consider the nominally time-invariant linear dynamical system
(9)-(12) with £(x,t) = Ax, v & h + Dw; that is,
X = Ax + B(u + v)
x(to) =X te[to,m] (19)
lall < » (x,t) , vl < p_(x,t) ,

where A and B are constant matrices. Now consider a constrol strategy
5(‘)=ﬁnxﬂi +~ & such that

B'Px )
-L7I1B'P4 - p (X,t) ema V(x, ) ¥
B(x,t) = u IB' Pxll (20)
vefue®™:ull < p (0E)}  V(x,t)EN
where
Sd= {{x,t):B'"Px = 0}
(20a)

PA + A'P ~ PBL™IB'P + Q = 0 ,

L 1s a constant mxm p.d. matrix, and Q is a constant nxn positive semi-
definite matrix,

e keep in mind that other methods to stabilize A are available, for
example pole placement.

13



Assumption 6: {(F,A,B}, Q = F'F, 1s completely controllable and observable,
Agsumption ?: F 1is an {xn matrix and £ + m > n.
Assumption 8: The matrix [F'!PB] has full rank.

Note: If Q 1is p.d., assumptions 7 and 8 can be dropped.

Theorem 4: Consider the dynamical system (19). Suppose that assumptions 4
and 6-8 are met. Then there exists a control function B(+):8" xﬂ+ + f"
gatisfying (20) with p,(x,t) » py(x,t) V(x,t), where u(t) = p(x(t) t), such
that the origin x = {0$ is uniformly asymptotically stable in the large for
all admissible disturbances,

Proof: 1t is similar to the proof of theorem 2 with u(x,t) = x'Px as a
Lyapunov function. See also section 5 of reference 19,

Exgmple 3: Consider the system of section 5.2. Using (20) and (l4b) we have
B(x,t) = [_L-1,,- + K(ﬁ)]x (21)
where

R = [arfiy « . . oagf ]

-sgn(xiﬂ'X) V(x,t)¢ N
ﬁi = ' . (21a)
n,Elny |n1| <1} y(x,t)eN

N = {(x,t)in'x = 0}, 7 4is the n-th column of P, PA + A'P -~ PBL™I!B'P + Q = 0;
Q=Q'", L=1L" are p.d.

Example 4: Let x€Q% with
0 1 0
% e x + u
Aay Aay 1

where fa; = a.v,; Iilfil i =1,2. Here

01
A = L]
0 0

Choose



Then, by (21a),

. Veavw /g~
a Yediq|
thus
9 Vq
(F'iPB] = .
0 2vq

It 18 evident that assumptions 6-8 are met.

We further choose q = 4, Using (21) we find

- —xl-

*xED) :P(x,t) = -[2 - ayf2 + o] ]---}
4 | x,

b -

- %17
xGD;;:ii(x.t) = —[24'0.1{24-(12 waw

[ X2
} , ~ %]
¥ED3:p(x,t) = -[? +api2 - o] f---

41 x,

where {D,,D;,D3} 1is defined in figure 2, and the slope of (x:n'x = 0}
is 1. '

6, MODEL REFERENCE CONTROL IN THE PRESENCE OF UNCERTAINTY

In man&.applications it 1s convenient to have a given system follow an
ideal model from an input-output point of view. Suppose a nonlinear system
has parameter uncertainty and we wish it to follow its nominal response.
Following the usual scheme of 'model reference control,” we write the equa-
tions of the system (plant) and the model, respectively, as

xp = f(xp,t) + 6f(xp,t,v) + B(u + r)

(22)
%X =06x_ + f(x_,t) - Gx_+ Br
m m P P
where r 18 a reference signal, @™ 1g constant, and cea™ ™ 1is any
constant matrix with all its eigenvalues in the left half plane. Let
e=x_-x%x., Then
o] m
e = Ge + 8£(x ,t,v) + Bu (23)

15



If "matching conditions" (11) are satisfied, equation (23) reduces to the form
of (12), and theorem 2 is applicable. The block diagram for this situation
is given in figure 3, with the choice G = -al and Q = £I,

Remark 8: Note that as e + 0, the model description approaches the desired
nominal system

k = f(x ,t) + Br (24)

Remark 10: Since, in general, x, does not approach zero, the origin e = {0}
in (23) with the feedback controg shown in figure 3 is not an equilibrium
state in the usual sense, (Compare with remarks 5 and 7.)

Remark 11: In the light of (24), it is possible to design the model using
any convenient method, and then to use an additional feedback to ovarcome the
uncertainty,

Remark 12: Finally note that the "Variable Structure Model" in (22) permits
us to drop the necessity to know the Lyapunov function u(+) in assumption 3.

CONCLUSIONS

In this paper some results from the theory of differential games and
Lyapunov stability of generalized dynamical aystems are combined to produce
simple results concerning a class of uncertain dynamical systems. The basic
assumption on the system's structure is the "matching condition" which is
common in adoptive schemes as well, The basic feature of the present appreach
18 the possibility to steer a system asymptotically to its nominal behavior
against any bounded uncertainty. The extension of thila theory to systems with
incomplete state measurement is left for a future investigation,

16
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APPENDIX
DIFFERENTIAL EQUATIONS WITH DISCONTINUOUS R.H.S.

A.l1 Some Results from the Theory of "Generalized Dynamical
Systems," (Ref. 11)

Definition 1: The distance between a point xc@" and a set ASR" 1is defined
by

d(x,A) = inf{llx ~ all :acA}

Definition 2: The geparation of set A from set B is defined by

d*(A,B) = sup{d(a,B):a€A)

Definition 3: The variable set E{a)cf”, oef" xR}, 1s said to be upper agemi-
gpntinuoua at oy, 1f for every & > 0 there exists some neighborhood
N{ay) of a5 such that VoaeN{og)

d*(E(a),E(uo)) <6

In other words, E(*) 18 upper semicontinuous at a point, if its sgeparation is
continuous there.

Definition 4: Let c = {x(t):x:[t',t"] + A"} be a curve defined on [t',t"].
Let
x(ti) - x(to)

t

= 1 "
y(e) v ttElt, "]

i~ to
The set of all yoea“ such that there exists a sequence {ti}'
i=1,2,3. .., ty * to, tiy # to, and 1&2 y(ty) = yo 1is cHlled the con-

tingent derivative of ¢ at x(t,); at x(t) it will be designated by
D x(t).

Definition 5: An expression D™xCE(x,t), where the set E(x,t) depends on
(x,t) and is defined on ﬂ“xﬁi is called a contingent equation.

Definition 6: A solution of D¥*xCE(x,t) 1s any curve
c = {x(t):x(+):[t',t"] + &%} such that

1. x(+) is absolutely continuous

2. Xk(t)eE(x(t),t) for almost all te[t',e"].

Theorem A.1: Let E(x,t)c® defined on some compact neighborhood N(xg,ty)
be compact, convex and upper semicontinuous. Then there exists at least one

20



solution to the above contingent equation, passing through a given point
(Xgsto) and this solution can be continued until reaching the boundary of
N(Konto)'

A.2 Existence of a Solution to Equation (8)

1. Clearly, at a point (x,t)E.¥, the set E(x,t) is a point in &", and
E(*) is continuous there; thus, the usual existence theorem holds.

2, At a point (x,t)e, (see fig. A-1), convexity and compactness are
trivial by construction. To prove upper semicontinuity, let ¢(-):ﬂ“xﬁi + "
be given by

¢(X,t) = f(x,t) + B(x:t)e(xpt)
(1)  (x1,t1)¢N  (fig. A-1).

Since E(x,,t;) is a point in &",

d*(E(x;,t),E(X,E)) = a(E(x1,t1),E(x,T))
= %2§!|¢(§,E) - ¢(x1,ty) + B(x,t)u
= B(x;,t1)B(xy,t)
< llop(x,t) - ¢plx;,t ) + lipB(x,E) ~ pB(xy,t1)l

& ragyll + lipaByl
(11) (xp,t2)ef (fig. A-1).
a* (R xp,£2) ,E(R,©)) =u52tépu_§25 e (X, E) ~ ¢(xa,tp) + B(X,E)u - B(xy,tz)u,l

< llAgoll + Sup Inf IB(x,E)u - B(x,,tz)usll
uzel %=U

= [[A¢pll + Sup Inf IB(X,E)(u - up) + AByul
up€U Gel

< aggh + sup 1ot [IBGLEN 1T - wll + 148, 1 ul ]
ucl U

= 1 a¢oll + Sup{li ABoll Hugl
+ B, EM Inf{la - ugll: GeU} suzeu}
= lFapall + IABoll Sup{li uyll 1usU}

= |l Adall + IlpaBsll

21



. (111) since p(*), ¢(+) and B(*) are continuous, given any
81, 6 > 0, dey, &; » 0 such that

h(x,t) = (xy,e000 < ey = [1agyll < &,

(X, &) = (x1,e10l < &) = lpaByll < &, .

Thus, given any & > 0 chooae any &, §, > 0 such that &) + & = 6,
Then Hde = Min{e;,&;} such that

I (x,t) - (xj3,t)l < e = d*(E(xI,tI),E(ﬁ,E)) S lagyll + llpaByll < &) + 31 m §,

A similar result holds for (x;,tz), We conclude that the separation d*(+) is
continuous, which implies that E{(+) is upper semicontinvous.
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