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1.0 INTRODUCTION

A persistent problem faced by pr-actitioners of thermal vacuum testing of

satellites and space vehicles arises from the appearance of electrical corona

phenomena during the course of a test run. When powered electrical equipment is

part of the test configuration, corona discharges are likely to occur as the

pressure is varied or when voltages are altered in the test article. Frequently,

corona processes will be activated during pumpdownwhen favorable conditions of

pressure and voltage are established. The corona "turn on" at one pressure only

to cease as the pressure falls in the chamber. Usually, it is possible to identify

a potential seurce of corona discharge on a test article prior to actual thermal

vacuum testing. For _xample, a microwave antenna, a vidicon-type television

camera, a photomultiplier detecte_ or a high voltage (several kV) power supply

are obvious potential sources of corona if they are operated during a pump

down procedure. Such equipment usually is specifically tested for corona prior

to incorporation into satellite systems and appropriate measures devised (e.g.

potting, heremetic enclosing) to prevent the occurrence of corona.

The corona problem arises when unexpected corona processes are revealed duri,_g

a thermal vacuum test. The first indication of possible corona problems usually

arises from observations of unexpected fluctuations in the normal electrical

operating parameters of a specific satellite subsystem. Careful trouble-shooting

procedures applied to the electrical systems often can successfully isolate the

source of the corona and thus reveal design faults in a specific satellite

subsystem.

Other instances of corona are extremely difficult to identify. For instance,

a common problem arises when breaks occur in the insulation of wires and coaxial

cables. Corona processes due to these faults are difficult to isolate, especially

when large runs of cable are involved. In such cases, it is prudent to inquire

as to the possibility of using some property of the corona process itself as a

means of isolating the source of the corona. Attempts in this direction have

included methods based on electromagnetic (radio and microwave) emissions,

acoustic emissions and visible light emissions. The thrust of this proqram is

to extend this inquiry to include methods of corona detection based on the emission

of ultraviolet (UV) light.

I-I
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It is well known that electrical discharge phenomena, of which corona is

only one of numerous types of discharge, emit UV light. The common fluorescent

lamp and the high power mercury and xenon arc lights are common examples of

light sources which produce UV emission via electrical discharges. It is appro-

priate, at this point to consider the rich variety of emission modes exhibited

by electrical discharges in a gas. Figure I-I shows the voltage-current characteristics

of an electrical discharge for a parallel-plate electrode configuration togetl,er

with an identification of the numerous regimes of electrical discharge phenomena.

This type of curve is typical of discharges in a uniform electric field, such as

that provided by the parallel plate electrode geometry. The corona is characterized

by currents in the range 10-6 to 10-3 amps and is a self-sustained-type of dis-

charge, i.e., it is independent of an external ionizing source. This is in

contrast to regions A, B and C in which the current falls to zero as soon as

the external ionizing source is removed. If the series resistance is sufficiently

low, corona processes may not be observed at all. Rather, the discharge becomes

an abnormal l_Zow_if the power supply can produce currents on the order of 10-2

to I0 -I amps. The current increases with increasing voltage in the abnormal

glow region until a transition to an arc discharge occurs. This high energy

discharge process shows a strong negative resistance characteristic (current

increases with decreasing voltage).

The parallel plate electrode geometry, while useful for elucidating the

various types of gaseous discharge phenomena, is not a particularly good model

for typical corona processes, which are characterized by extremely non-uniform

electrical fields. In fact, many corona phenomena arise in the vicinity of

pointed electrodes, for instance, on sharp edges or points where high localized

electric fields occur. The first task in this study, therefore, is to simulate

actual corona discharge phenomena (nonuniform electric field) and to measure the

UV emission spectra characteristic of such corona. Section 2 contains background

material leading to the design of the corona simulator used in this study.

The equipment employed to measure the UV corona emission spectra in an NBS-

traceable manner is described in Section 3. Presentation of tne spectral

data and of data analysis is contained in Section 4.

The second task in this study involves an analysis of candidate optical

designs which conceiveably can function as in-situ corona detection systems.

I-2
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The spectral UV emission data are used as representative inputs to such a system

typical of real-life corona processes. Several breadboard UV detection systems

were evaluated in the course of the spectral data acqutstion phase of this study.

The performance of these systems is detailed in Section 5. Other candidate

detection systems were evaluated on paper, since it was not possible, within

the time and budgetary constraints of this study, to assemb]e these systems into

breadboards for evaluation during the spectral emisslon testing phase. Details

of this system analysts are contained in Section 5.

The results of this study are presented in the form of conc]usions and

recommendationsin Section 6. The most promlstng candidate UV corona section

systems, in terms of both technical feasibility and cost, are Identified.

The RFP-SONrequires that McDonnell Aircraft {HCAIR) quot_ a prtc = for

six (6) copies of one of the candidate UV corona detection system types identified

in this study. This quotation has been forwarded tc the NASA-JSCContracting

Officer under separate cover (HCAIRReport HDCA4176, 17 Hay 1976).

1-3
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This study was managed and conducted by personnel of the HCAIR Applied

Optics Laboratory (AOL), located in St. Louis, Missouri. The study commenced

in July 1975 and was completed in December 1975.
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2.0 BACKGROUND

An impetus for this study arose due to the lack of data on the UV emisvisn

spectrum of corona processes in the literature. In spite of an enormous literature

on almost every conceiveable aspect of electrical discharge phenomena, it a_pears

that little work has been devoted exclusively to the study of the absolute UV

spectral intensity characteristicsof corona processes. Loeb, in his encyclopedic

work on electrical coronas£I),"" summerizes the spectra studies of corona phenomena

performed up to 1965. A number of photographic studies have been reported for

pulsed corona processes, but without yielding much spectral resolution or absolute

intensity data. Loeb describes a study of time-resolved pulsed corona and spark

spectra obtained by byer and Davis in 1962. Photographic plates were used to

obtain spectral data from 200 nm to 550 nm. The band spectra characteristicof
+

the second positive group of N2 were observed, but no absolute intensity data

were obtained. The spark spectra showed lines characteristic of nitrogen and

oxygen

Gr_m and Costa(2) studied high resolution spectra of corona discharges in

air, nitrogen and helium. The corona were generated via a test coil operating

at 20kV at _ pressure of l Ib/in2 (O.062kgm/cm2 - 52 torr). The wavelenqths and

the relative intensities of the main lines in the corona emission spectra were

reported in the 200 nm to 900 nm waveband. Absolute spectra intensity data were

not obtained.

The literature search revealed no spectral intensity informationwhich could

be applied to the present study. Consequently, a series of tasks were accon_plished

to supply the necessary dat= upon which to base an assessment of candidate corona

detection systems operating via the UV corona emissions.

2.1 1ASK l - DESIGN OF THE CORONA SIMULATOR. A means f.,'obtaining reproducible

corona discharges is the first requirement. In addition, the =imulator is required

to produce corona which are representative of actual corona discharges likely

to be encountered in thermal vacuum testing. The literature search revealed many

electrode configurationswhich have been used in the study of corona emission

phenomena. These include parallel plates, coaxial cylinders, spherical electrodes,

and point-to-plane electrodes. The parallel plate geometry produces a uniforln

electric field for which both analytical and experimental approaches have been

2-I
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successful in establishing a model of the corona discharge processes in this

geometry. In general, actual corona processes are most likely to occur tot

geometries in which the electric field is highly non-uniform. The uniform field

is characterizedby a rapid transition to a high energy plasma channel (arc)

once detectable ionization has occurred. Conversely, in the nonuniform electric

field, numerous manifestations of locally confinLJ ionization and excitation

processes (coronas, glass) can be observed and measured long before an arc

breakdown occurs.

The fa_t that coronas are most frequently observed in nununiform electric

fields weighs heavily on the choice of electrode geometry. The coaxial cylinder,

double spherical and point-to-plane geometrics all yield nonuniform electric

fields. However, in the first two geometries, both electrodes play important

roles in determining the characteristicsof the corona discharge process. The

complexity introduced by two participatingelectrodes quickly led investigators

to the point-to-plane geometry, because in this instance, only the pointed

electrode has decisive influence on the corona processes. The plane electrode,

if sufficiently large, functions as an effective infinite plane conductor (an

infinite "ground" plane) and is essentially passive. A great number of studies

have been conducted with a quasi-pointedelectrode consisting of a cylindrical

rod with a hemicpherical tip. Thus, the hemispherical "point"-to-planegeometry

has become an effectively "standard" electrode geometry for studying corona processes.

Loeb(1) and Nasser(3) present detailed discussions of the vast literature which

',_saccumulated from studies of corona processes in the standard geometry.

An important paper on the point-to-planecorona in dry air by H. W. Bandel

appea_d in 1951(4) Although spectral emission data were not obtained by Bandel,

he did provide comprehensive data on the uC current-voltage (I-V) characteristics

of the point-to-planecorona. These results are useful in the present study since

Bandel related the various electrical discharge phenomena of the standard geometry t

to the DC current drawn by the corona processes. Figure 2-I is a reproductionof

Bandel's data for a 0.5 mm dia hemisphericalelectrode separated from the plane

electrode by a 4 cm gap. The constant current region at -IJ =_p represents

the Geiger plateau, this current due to the ions generated r_v_ _rnal ionizing

sources (radio-activity,cosmic rays, etc). As the voltage _s increased, the

fre_ electrons start to acquire enough kinetic energy (due to the applied electric

2-2
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FIGURE 2-1 CURRENT-VOLTAGE CHARACTERISTICS - POSITIVE
POINT CORONA - AFTER BANDEL (REF. 4) GP'661FJ320

field) to ionize the gas. In this region the "burst pulse" phenomenonis observed.

Bande] and others have conducted detailed studies of the burst pulses in order to

gain insight into the physical processes occurring between the electrodes. Using

oscilloscopes with increasing sweep Pates, it has been found that the frequency

or duration of the burst pulses increases as the applied voltage is raised.

Bande] noted that a threshold for continuous discharge was somewhat difficult

to define. He defined a "steady" corona as a discharge with a duration greater

than 0.] sec. It should be noted that the burst pulses emitted little, if any,

visible radiation. Bande] _n6icated by the words "steady corona achieved" the

point on the I-V curve at ,_hich the discharge is truly continuous and shows no

pulse pattern on the oscilloscope. This threshold was observed to coincide

roughly with the onset of visible light emission from the corona.

Further increase: In the applied voltage causes a glow discharge to arise

neaP the pointed electrode. The glow grows brlghteP and speead$ over the pointed

electrode as the voltage increases. As the threshold for arc (spark) breakdown

is approached, low frequency oscillations ace observed in the current. Increasing

voltages causes both the amplitude and frequency of these current oscillations

2-3
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to increase. Simultaneously,the glow becomes brighter and begins to move towards

the plane electrode. The glow begins to show a streamer structure, the so-called

"prebreakdown"streamers. These streamers start at random spots on the pointed

electrode and appear to end at random locations in the electrode gap. EvEntually,

a voltage is reached at which one of the streamers terminates on the plane electrode.

This causes the gap to breakdown into a spark discharge.

In spite of the seeming complexity of these discharge processes, Nasser has

pointed out that in reality there are only two fundamental modes of positive

DC corona, the llltetlnli;terttscreamer and the steady glow. There are two types

of streamers, the intermittent streamers,which are called "burst pulses" by

Bandel, and the "prebreakdown"streamers. Visible light emission is observed

for the glows, the prebreakdownstreamers and the sparks (at currents _>lO_a).

Investigators,relying on visual observations, report that the onset streamers

do not emit visible light. Using sei_sitivedetectors, such as photomultiplier

tubes, the visual threshold for light emission undoubtedly can be extended to

currents lower than lOua. Thus, there should be a more or less precisely

defined light emission threshold for each type of detector. This discussion is

continued below in the section on Task 3.

Bandel(4) has described the I-V characteristicsof negative DC corona in

his 1951 paper. Figure 2-2 shows Bandel's data for the 0.5 mm dia point with the

4 cm gap, this time with the point negative with respect to the plate electrode.

Bandel studied a combination of gamma ray and ultraviolet triggering in order to

supply a quantity of free electrons to initiate the burst pulses. Without

triggering, the discharge processes in both the Geiger and the burst pulse

regions are very difficult to control and observe. With the negative point,

a Geiger plateau is observed similar to that seen for the positive point. However,

the negative point produces burst pulses with a regular frequency and amplitude,

whereas these pulses for the positive point are random both in frequency and

amplitude. These regular pulses, called Irichel pulses, continue to be observed

as the voltage is increased until a new mode of corona, a steady glow on the

cathode (point), is initiated. The glow corona persists until spark breakdown

occurs.

The comments on light emission for the positive point apply, in general,

to the negative point-to-plane geometry. The Trichel pulses, like the pointed

2-4
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FIGURE 2-2 CURRENT-VOLTAGE CHARACTERISTICS -
NEGATIVE POINT CORONA - AFTER BANDEL (REF. 4) _o7_o18___

anode burst pulses, emit visible light which can be measured by sensitive detectors.

The negative glow discharge can be observed visually and appears blt_sh to the eye.

The principal differences between the two cases, arising from the r_ llarityof

the Trichel pulses, has stimulated much research in an attempt to gain understanding

of the fundamental processes of the negative point discharge.

The work of Loeb, Nasser, Bandel, and others, while devoid of specific spectral

intensity data required for this program, is valuable in selecting a design

for the corona simulator. The extensive data already available on the I-V character-

istics of the point-to-planeelectrode geometry makes the selection of this geometry

particularly attractive, since it eliminates the need for an extensive study of

these characteristicsin this program. Likewise, the experience gained from these

studies in the operation of such corona simulators was found to be an invaluable

guide in this program.

2.2 TASK 2 - DESIGn;OF A CALIBRATED SPECTRORADIOMETER. The principal purpose of

this study, to determine the performance of candidate UV corona detection systems,

can be achieved only by measuring the absolute spectral ultraviulet intensity of

2-5
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corona processes. The term "absolute" means NBS-traceable measurements; that is,

measurements obtained by means of a spectroradiometerwhich has been calibrated

using NBS secondary standards of spectral radiance and/or spectral irradiance.

The design of the spectroradiometerused in this study, and the procedures for

obtaining an NBS-traceable calibration, are detailed in Section 3.

One important aspect of the spectroradiometerdesign is the range of wave-

lengths over which the instrument has to function. The ultraviolet spectral

region is divided into two parts, the near ultraviolet extending from 190 nm to

400 nm wavelength and the vacuum ultraviolet (VUV) ranging from approximately

lO0 nm to 190 nm wavelength. The ambient atmosphere is transparent to the near

UV; however, the vacuum ultravioletwavelengths are strongly absorDed by atmospheric

oxygen (hence, VUV spectrometers must be evacuated to pressures below l x IO-3 torr).

The key issue, vis-a-vis the vacuum UV measurements, is the partial pressure

of oxygen in the pressure-voltageregime in which the corona processes are expected

to occur in actual thermal vacuum tests. Oxygen strongly absorbs vacuum UV radiation,

a fact evident from Figure 2-3, which shows the spectral absorption coefficient

for oxygen at room temperature and pressure (NTP). The transmission of a gas at

pressure p (tort) and for a path length x (cm) is

Tx,p = exp(-_ppX) (2-I)

where :p = absorption coefficient (torr-lcm-l).
and px = optical thickness (torr-cm).

To assess the effects of oxygen absorption at vacuum UV wavelengths, a path

length of 300 cm was used *o typify the distance between corona source and UV

detection in space chamber corona detection applications. As corona processes

occur over a wide range of pressures, the data of Loeb(1) presented in Figure 2-4

was used to establish a reasonable range of pressures over which corona processes

are most likely to occur in space chamber situations. In Figure 2-4 the onset of

corona in a point-to-plane electrode geometry is presented in terms of pressure-

electrode separation (torr-cm) versus the electrode potential threshold. For

space chamber work_potentials in the 0.5 to 5kv range are typical, implying that

corona onset can be expected for the 20 to 400 torr-cm region. For a O.Imm gap,

the pressure range for corona onset will be 0.2<_p_2torr.
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FIGURE 2-5 SPECTRAL TRANSMISSION OF OXYGEN
FOR 300 cm PATH c.........

Figure 2-5 shows the spectral transmission, Tx, of a 3 meter thickness of

oxygen at 0.2 torr, 2 tort, and 760 torr. T_ falls below I% at 165 nm at 0.2

torr and at 175 nm at 2 torr. At 760 torr TX is singificant at wavelenghths

longer than 190 nm, which represents the practical lower wavelength limit for spectro-

scopy at atmospheric pressure. For wavelengths less than 190 nm the optical

path of the spectrometermust be maintained at vacuum in order to conduct spectro-

scopic measurements.

These results show that only a s_all part of the vacuum UV spectral region

(165-190 nm) is expected to be sufficiently transparent for possible use in corona

detection.

Therefore, in this study the spectral intensity measurements were concentrated

in the spectral range 190 to 400 nm by employing conventional, atmospheric pressure

spectroscopy rather than vacuum UV spectroscopy. Considerable savings in time and

effort were realized since the atmospheric measurements are relatively easy to

perform.
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2.3 TASK 3 - UV SPECTRALINTENSITY MEASUREMENTS.The next task in this study,

viz. UV spectral intensity measurements of corona discharges, is detailed in

Section 4. Included in these measurements are both spectral intensity data

produced by the spectroradiometer and the outputs of various type_ of candidate

UV corona detection systems. The latter measurements were combined with the

spectroradiometer scans in the interest of economy in this program. Two considera-

tions were addressed in the course of these measurements: First, to provide

the required data on UV spectral intensity for corona processes, the corona simulator

was operated over wide ranges of current and pressure in order to obtain data for a

variety of corona discharge types (burst pulses, steady glow, prebreakdown streamers,

etc.). Second, to study the threshold sensitivity of the bre_dboarded UV corona

detection systems, the corona simulator was operated at conditions near the

burst pulses-to-steady glow transition.

2.4 TASK 4 - ANALYSIS OF UV CORONADETECTIONSYSTEMPERFORMANCE.Section 5 contains

the system performance analysis of candidate UV corona detection systems. The

UV spectral intensity data provides the basic input to this analysis, which

encompasses both the breadboard systems tested in the previous task and conceptual

systems not tested in this program. The latter analysis relies on

manufacturer's data for the various components which comprise the conceptual

systems. The principal result of this analysis was the determination of a range-

intensity relationship for each candidate system, i.e. the minimum corona intensity

which could be detected at a given separation between the corona discharge and the

UV corona detection system. An additional extremely important consideration

addressed in the analysis confirmed the effects of background light on the corona

detection system. A practical system will be required to operate in the presence

of light from tungsten filament lamps, quartz heater lamps, fluorescent lights

and, possibly, a high fidelity solar simulator. These background light sources

will impose a quasi-steady input to the UV corona detector system which possibly

could completely obliterate the signal due to a weakly emitting corona discharge.

These potentially serious effects are amenable to analysis, once the

range-intensity relationship has been determined, since sufficient data are

available on the spectral intensity characteristics of these background light

sources.
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3.0 EXPERIMENTALAPPROACH

This section contains a description of the spectroradiometer system,

the procedures required to obtain an NBS-traceable calibration and the data

acquisition system used in this program.

3.1 UV SPECTRORADIOMETERSYSTEM. The UV spectroradiometer is shown schemetically

in Figure 3-I. This system was built around a Jarrell-Ash 0.5 meter grating

spectrometer optimized for the 190-400 nm waveband. The 1180 line/mm gratingo

provided 1.6 nm (=I6A) per mmdispersion at the spectrometer exit slit. The

entrance slit and the exits slit both were set at maximum (2 mm) during this

program to maximize the throughput (light gathering capacity) of the spectrometer.

Spectral resolution was traded for maximum throughput since the main purpose of

the spectroradiometricmeasurements was to obtain spectral intensity data from

extremely weak corona emissions.

The detector, an EMI Model 9558QC photomultipliertube (PMT) with an S-20

photocathode,was positoned at the spectrometer exit slit. The PMT operating

voltages were provided by a Fluke Model 408B DC power supply (cf. Figure 3-2a).

The 9558QC PMT was selected for its good quantum efficiency in the 190 nm to

400 nm range, and for its high intrinsic overall gain due to the ll-stage

internal amplification.

A plane flip mirror permitted light from either the standard lamp or the

corona to be directed through the spectrometer entrance slit. Focussing optics

were not used to image the lamp or the corona onto the entrance slit since it

was required that the PMT detector view the entire corona discharge. Thu_ the

corona, confined to the gap region between the electrodes, only partially filled

the spectrometer field of v_ew. The spectrometer viewed the corona through a

Suprasil window (synthetic fused silica) mounted on the corona simulator

vacuum chamber.

A similar Suprasil window was positioned between the flip mirror and the

standard lamp system to compensate for the effects of the vacuum chamber window.

The standard lamp was a General Electric Model E-25 30A/3.5V tungsten strip

lamp issued by the NBS as a secondary spectral radiance standard. A permanent

optical transfer system, consisting of two 4 inch dia by 36 in.F.L, off-axis

parabloidal mirrors, was used to form an image of the tungsten strip filament
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FIGURE 3-1 UV SPECTRORADIOMETER SYSTEM -
OPTICAL LAYOUT _.,_ .....

on a precision circular aperture. The standard lamp was powered by a NJE 36V/50A

DC power supply and the lamp current was set at 39.00 amps by use of a precision

I millivolt current shunt and a Data Technology Corp. Model 350 4-I/2 digit

voltmeter.

The two-mirror imaging system formed a convenient image of the strip lamp

which permitted easy adjustment of the effective spectral radiance of the standard

lamp by varying the size of the precision aperture. However, to use the lamp/

mirror system as a spectral radiance standard, a cross calibration with another

NBS standard lamp is required to account for the effects of the two parabloidal

mirrors. This calibration procedure is discussed in Section 3.2.

Schematics of the data acquisition circuit and the corona simulator

circuit are shown in Figures 3-2a and 3-2b, respectively. DC power to the 9558QC

PMT was provided by a Fluke Model 408A DC Power Supply. The PMT anode current

was measured by a Kin-Tel Model 203 Microvolt-Ammeter, operated on the current
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ranges. The Kin-Tel produced an amplified voltage at the RECORDER output

proportional to the PMT anode current. This signal was monitored by a Honeywell

Electronik 19 strio chart recorder and was directed into the Applied Optics

Laboratory Experimental Data Gathering and Reduction (EDGAR) System. Details

of the EDGAR System are presented in Section 3.3. A computer interrupt switch

allowed the oeprator to cue EDGAR at the start of a spectroradiometer scan.

Another Kin-Tel Model 203 Microvolt-Ammeterwas used to measure the current

in the corona simulator circuit (Figure 3-2b). The power for the corona simulator

was provided by a Fluke Model 408B DC Power Supply (O-6kV, O-20ma). A l Meg

load resistor was used in series with the corona simulator to limit the current

drawn by the corona discharge. The load resistor reduced the sensitivity of

the corona to changes in applied voltage and permitted stable operation of the

corona simulator from the pre-onset burst pulse region to the spark breakdown

threshold. The voltage drop across the load resistor (iLRL) was subtracted

from the DC power RL'_plyvoltage (Vs) to yield the voltage drop across the

electrode gap (Vg).

The corona simulator vacuum chamber is shown in Figure 3.3. The chamber

was pumped via a 15 cfm rotary pump through a series molecular sieve trap and

a LN2 cold finger. Chamber pressure above 5 torr was monitored by a Wallace

and Tiernan dial gauge (0-800 torr full scale, ±l torr accuracy). Below 5

torr, pressure was measured via a NRC Alphatron Gauge (±5% full scale accuracy).

The pressure level in the corona simulator was established dynamically by

balancing the flow of bleed gas through a Granville-Phillipsmicrometer valve

and the pumping speed via a throttle valve in the line to the rotary pump.

A view of the corona simulator through the glass top plate is shown in

Figure 3-4. The plane electrode was a 6 in. diameter stainless steel plate with

rods which, in turn, are carried by two linear motion vacuum passthrus. The

pointed electrodes were also fabricated from stainless steel. The electrodes

are supported by plexiglas rods. The electrode gap can be adjusted to

±0.2 mm accuracy by means of a micrometer feed screw attached to the hemispherical

electrode holder. The electrodes are electrically isolated from the vacuum

chamber via the plexiglas supports and via high voltage vacuum feedthrus.

Suprasil window #2 (cf. Figure 3-1) is visible in Figure 3-3 along with a
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Honeywell UV ge._tube detector. The Honeywell detecto_ ._s used to monitor _he

UV corona emis_or;s For most of the spectral data rl_n-.'.inceit is a candidate

'_ensorfor a pos,,!_leUV corona detection system. ,, _'_candidate detectors

were breadboarded an_::positioned at various d_st_" _, _rom window _,'2during

several spectroradio{_eterruts to determine _,,. .,._se to different corona

simulator operating condit1_.ps. _y ad3u.;ti_':",_,_eparation between the corona

simulator and the detector breadboard:,,th_ i_.er_sity-distancerelationship

for the detector systems could be determined.

3.2 SPECTRORADIOMETERCALIBRATION. Due to the presence of the two paraboloidal

transfer mirrors in the standard lamp system, it was necessary to establish the

calibration of the complete lamp-mirror system by comparisonwith other NBS

secondary lamp standards. Two cross-checkswere used: a) comparison to another

NBS secondary spectral radiance standard lamp without interferrinq transfer

optics; and b) comparison to an NBS secondary standard of spectral irradiance.

Method (a) was accemplished via the McDonnell Douglas Bureau of Standards using

a Cary 14 spectrometer, and a 9558QC PMT to effect the transfer of calibration.

The solid line of Figure 3-5 shows the calibration curve for the spectroradio-

meter standard lamp system obtained by method (a). To check method (a) the UV

spectroradiometersystem itself was used to compare the spectral radiance lamp-

mirror system to an NBS spectral irradiance standard (Serial No. 1325).

The spcctral irradiance at the UV spectroradiometerentrance slit due to the

spectral irradiance standard lamp is given by

H (1)=H(s) (3-I)
= spectral irradiance at the entrance slit (Wcm"2 nm"l)

where Hx(1)
H (s) = spectral irradiance at 50 cm for the spectral irradiance standard
I

(#1325) (Wcm-2nm"l)

Ds = standard distance = 50 cm

Dl = lamp-to-entranceslit distance (cm).

Similarly the spectral irradiance at the entrance slit due to the standard

spectral radiance system with the paraboloidal mirrors is given by

Hx(R) = HX(1) • R (3-2)
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where H (R) = spectral irradiance at the entrance slit due to the standard^
spectral radiance system

R = ratio of the PMT anode current for Hx(1) and H_(R)

(J,[Hx(1)]/_[Hx(R)]

The spectral radiance of the lamp-mirror system can be calculated from

Nx(R) = Hx(R)I_

= Hx(R)I(A21D22) (3-3)

where Nx(R) = spectral radiance of the lamp-mirror system
(W cm'2sr-lnm'l),

= solid angle subtended by the precision aperture of the lamp-mirror

system viewed from the spectrometer entrance slit,

A2 = area of the precision aperture (cf. Figure 3-I) (cm2),

D2 = distance from the entrance slit to the precision aperture (cm).

The dashed curve in Figure 3-5 represents the resJltS of applying Eq. _3-3)
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FIGURE 3-6 EDGAR SYSTEM BLOCK DIAGRAM

to the intercomparisondata. Agreement between the two lamps is approximately

±I0% over the 250 to 400 nm waveband. Periodic checks were made during the

course of the spectral data scans to detect any deviations between the two

lamps. No significant out of tolerance (±I0%) conditions were noted.

3.3 DATA ACQUISITIONAND ANALYSIS. The spectral intensity (Wcm-2nm-l) of the

corona simulator discharQes under a variety of operating conditions (voltage,

gap length, pressure, gas species) comprises the principal output of the data

acquisitionand analysis procedures. The methods used for these procedures

are detailed in this section.

The EDGAR system enabled large quantities of spectral data to be accumulated

and analyzed with minimum operator intervention. Figure 3-6 shows the key elements

in the EDGAR system and the functional interrelations. The anode current signal

from the PMT was connected to an equivalent voltage by the Kin-Tel ammeter and

input to one of the 16 cha,_nelsof the AR-ll scanning digital voltmeter (lO bit

resolution). A computer interrupt switch allowed the operator to synchronize

the EDGAR hardware and data acquisition software with the start of the spectrometer

scan. The UV corona spectra were .tored on the magnetic disks in labeled files
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which were subsequently recalled by the operator during the data analysis

sessions at the teleprinter terminal, Both raw spectral data and processed

spectra were displayed on the graphics terminal during the data reduction

procedure. Hardcopy of the UV corona emission spectra were produced via the

electrostatic printer/plotter (c,f. Figure 3-7).

The UV corona emission spectra were scanned in two wavebands, 200 nm to

265 nm and 265 nm to 400 nm, In each of these intervals, 220 spectral data

points were obtained, i.e. there were 220.I.6 : 5.4 samples per 1.6 nm resolution
63

element in the lower interval and 220.I,6 = 2.6 samples per 1.6 nm resolution
*13_

element in the upper interval. The spectrometer scanning speed was 12.5 nm/min

in the lower interval and 25 nm/min in the upper interval, This subdivision

of the waveband was necessitated since the PMT DC voltage had to be changed at

= 265 nm to increase the overall system gain in the 200 nm to 265 nm region.

The first step in the data analysis procedure involved the development of

an equation describing the spectral radiance of the standard lamp-mirror system.

3-9
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TABLE 3-I - CALIBRATION DATAFOR SPECTRALRADIANCESTANDARDLAMP

Radiance Equivalent
Wavelength Spectra! Radiance Blackbody Temperature
(microns) _W-CM-J - SR-I) Kelvins (IPTS-68)

0.300 1.292 x lO2 2428

0.325 3.675 x lO2 2418

0.360 1.182 x lO3 2403

i 0.400 3.282 x 103 2385

0.450 8.222 x I0 _ 2356

0.500 1.634 x 104 2328

0.550 2.671 x 104 2296

0.600 3.853 x 104 2264

0,650 5.096 x 104 2234

0.700 6.234 x 104 2201

0.750 6.968 x 104 2160

0.800 7.608 x 104 2123

1.00 1.059 x 105 2048

1.20 1.036 x 105 1954

1.50 7.690 x 104 1802

1.75 5.617 x 104 1687

2.00 3.941 x 104 1578

2,35 2.481 x 104 1451

2.50 2.040 x 104 1401

The calibration data of Table 3-I were approximated by a polynominal relating

blackbody temperature T to wavelength X,

T = Al + A2x + A3_2 + A4Z3 (°K) (3-4)

where Al = 2747.36

A2 = -2217.31

A3 = 5540.93

A4 = -5658.01
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TABLE 3-2 - EXTRAPOLATEDRADIANCESTANDARDCALIBRATIONDATA

Wavelength RadianceEquivalent
(nm) BlackbodyTemperatureI°K) (lPTS-68)

200 2480.27

225 2464.53

250 2450.93

275 2438.96

300 2428.08

325 2417.77

350 2407.48

375 2396.69

400 2384.87

425 2371.49

The dataof Table 3-I,extrapolateddown to x = 200 nm usingequation(3-4),

are shownin Table 3-2. The validityof thisextrapolationwas established

usingthe NBS secondaryspectralirradiancestandard. Equation(3-4)and Planck's

Equationwere used to obtainvaluesof the spectralradianceof the standard

lamp-mirrorsystem,

Nx(R)= 1.1909x lO"12 l (3-5)
X5 exp(l.4380/xT)-I

where Nx(R)= standardlamp systemspectrclradiance(Wcm'3sr"l)
= wavelength(cm)

T = temperature(°K)

The next step in the calibrationprocedureis to determinethe overall

sensitivityof the UV spectroradiometerby measuringthe transferfunction,

S,

OUTPUT iA (3-6)

S = INPUT =

where iA = PMTanode current (_a)

,_ 3-11
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S = transfer function of the UV spectroradiometer

(_a/Wcm-3sr-])

The transfer function, S. depends on the DC operating voltage of the PMT, which
i

was set at -1200 volts for the calibration runs. At times during the cornna

test runs it was necessary to vary the PMT voltages to obtain optimum system

gain for a given set of corona simulator operating conditions. The dependency

of system gain on PMT voltage was determined in a separate set of data runs,

the results of which are shown in Figure 3-8. The relative PMT anode current

irel=ipMT/i(-1200), plotted as a function of overall PMT voltage, VpMT in

Figure 3-8, is independent of wavelength in the 200 nm to 400 nm waveband.

Using the PMT factor irel, an effective transfer function for the UV spectro-
radiometer can be defined as,

S' = S (ua/Wcm-3sr"l) (3-7)T
rel

Thus, S' represents the transfer function for PMT voltage VpMT not necessarily

equal to -1200V.

{
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TABLE 3-3 - IDENTIFICATIONOF FORTRAN VARIABLES

FORTRAN Corresponding Variable
Variable Of Section 3-3 Meaning

STD(1) N_(R) Radiance of the standard lamp-mirror
system (Wcm-3sr-l)

PMTI VpMT Overall PMT voltage used for the corona
scan in the 265 to 400 nm waveband (V)

PMT2 VpMT Overall PMT voltage used for the corona
scan in the 200 to 265 nm waveband (V)

FACTI D Scaling factor for the spectroradiometer
transfer function due to PMTI

FACT2 D Scaling factor for the spectroradiometer
transfer function due to PMT2

FSI N/A Full-scale microamp range of the Kin-Tel
microammeter in the 265 to 4C0 nm waveband
(iJa)

FS2 N/A Full-scale microamp range of the Kin-Tel
microammeter in the 200 to 265_m waveband

DAT(1) N/A Digital output of the AR-ll due to the
PMT anode current, ic, ranges from-2048
to +2048. The currents FSI _nd FS2 produce
a value DAT(1) = +2048.

AREA A Area of _he precision aperture (cf. Figure
3-I) (cm

CAL(1) L(1200) PMT anode current due to the standard lamp-

mirror system for VpMT=-I2OOV(_a).

The spectral intensity of the corona discharge was calculated according

to

= " • S' • A • F (3-3)
J_ IQorona

where J_ = spectral intensity (Wsr'Inm"I)
A = area of the precision aperture (cf. Figure 3-I) (cm2)

F = lO"7 _ conversion factor from centimeters to nanometers.

The FORTRAN computer code CORDAR (CORona DA__taR_eduction)used in this program
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: to generate the corona spectral intensity data is listed in Appendix A. To

facilitate cross-referencebetween the analysis of this section and the FORTRAN

variables used in the code, the identificationsof Table 3-3 are used.

The FORTRAN equivalent to Eq. (3-8) in the computer program for the 265 to 400 nm

waveband is
__STD(1)

INTENS(1)=DAT(1)*FSI)*CAL(1)*FACTI*AREA (3-9)

The correspondingequation for the 200 to 265 nm is obtained by replacing FSI by FS2

and FACTI by FACT2 in Eq (3-9).

A complete tabulation of the raw data and processed results for a single spectro-

radiometer scan is presented in Table 3-4. The data entitled "Calibration Data-Averaged"

is the PMT anode current for the standard lamp-mirror system at VPMT=-12OOV (called

CAL(1) in the FORTRAN program). Similarly the data entitled "Sensitivity"is the

reciprocal of the spectroradiometertransfer function defined by Eq (3-7). Finally

the "Corrected Corona Data" are the quantities calculated from the relations

DAT(1)*FSI and DAT(1)*FS2
FACTI FACT2

The sheer volume of similar data operated for the several hundred spectroradiometer

scans obtained in this study makes it impossible to include all of it in this

report. For the purposes of the system analyses p,resentedin the following sections,

computer-generatedplots of the spectral intensity of the corona discharge

versus wavelength are presented in Section 4.1 as appropriate. However, tabular

data such as that shown in Table 3-4 remain stored in magnetic disk files of

the EDGAR system.
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4.0 UVCORONAEMISSIONMEASUREMENTS.

In thissectionthe spectralintensitydata are presentedfor corona

dischargeprocessesoperatingover a wide rangeof pressure,electrodegaps

and voltage. Data are presentedfor coronadischargesprincipallyin air,

sincemost coronasencounteredin thermalvacuumtestingare air corunas.

Dataobtainedfroma limitednumberof runsin heliumare included,mainlyto

pointout significantdifferencesbetweenthese coronaspectraand thoseobtained

in air. The overwhelr.mingmajorityof the coronaspectrawere measuredfor

a positivepoint and negativeplaneelectrodewith appliedDC voltages. No

AC coronadatawere obtaineddue to schedulinqconstraints.A few spectral

runswere made with reversedDC polarity,to uncoverany differencesin these

intensityspectrawhen comparedto the positive-pointcoronadata. The 304

stainlesssteelelectrodeswere used for all spectralscansobtainedin this

study. The surfaceconditionof the steelelectrodeswas monitoredvisually

in the courseof thisstudyto insurethat obvioussurfacedamagedid not occur.

Similarly,operationof the coronasimulatorin the sparkbreakdownregimewas avoided

to minimizeheatingof the electrodes.The effectsof electrodesurfacecondi-

tioningand of coronatriggeringvia externalsourcessuchas UV photonsor

gammaradiationwere not partof thisstudy.

In the next two sections,the data obtainedfromapproximatelyfifty

spectroradiometerscansare presentedin a condensedformat. Section4.2

concentrateson the spectralcharacteristicsof coronadischargesoperating

at the extremesof current,voltage,pressure,gap lengthand anoderadius.

Section4.3 presentstabularand graphicalcondensationsof the completerange

of spectralintensitydata.

4.1 UV CORONASPECTRALINTENSITYPLOTS. The spectralfeaturesof the airii

coronaintensityscansshowedllttlesignificantvariationdue to changesin

the operatingparametersof the coronasimulator. The relativelylow spectral

resolutiondue to the 2ramspectrometerentranceslit revealeda combinedband

structuredue to overlappingoxygenand nitrogenemissionspectra. However,

as expected,the spectralintensityshowedpronounceddependenceon the corona

simulatoroperatingconditions.To elimlnateneedlessrepetitionof spectral

scans showing essentially the sameband structure, a selected few corona

il 4-1
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UV CORONA DATA CORFLT

LORD RESISTOR = 1 MEG OHM FOINT POSITI_'E
PRESSURE • R TORR CORONA VOLTAGE = 450 VOLTS
ELECTRODE GAP =.2 CM CORONA CURRENT = 4 MICE(IAMPS

POINT RADIUS - _.5 MM DATE OF TEST: 13_II/75

5.8E-85 ORDINATE SCALE: INTENSITY (WRTTS/NM SR) 1.0E-06

I I ' I I I I i
LEFT SCALE J RIGHT SCALE

4.eE-e5 __ I __ 8.0E-07

I'3.eE-e5 __ 1 _ g.OE-07

'2.8E-89 _ _ 4.0E-07

e.e _ J _-- _.
zee 2zs sse 27s 3ee s_5 3se 3v5 4eo

WAVELENGTH (NANOMETER$)

FIGURE4-1 CORONASPECTRALINTENSITY- CURRENT-4Fa

Intensity spectra are tncluded tn thts sectton. These spectra were chosen

to dtsplay the data obtatned at the extremes of the operating conditions of the

corona simulator used tn thts study. As such, these spectra typtfy those due

both to threshold corona conditions prtoe to onset of the steady glow and to

conditions Immediately prtor to the formation of a spark discharge.

Ftgures 4.1 and 4.2 showdata taken at extremes of corona current, I.e.

4,a and 375,a, respectively. The significant difference 11es tn the approximately
factor of ten tncrease tn spectral Intensity due to the tncrease |n corona

current. Intuitively, spectral Intensity ts expected to be strongly correlated

wtth the current stnce the UV emtsston phenomenonartses matnly due to Ionization

and excitation processes from electron-gas molecule collisions. Similarly,
Increased UV photon emtsston results tn phototontzatton processes tn the gas,

thus Increasing the current (electrons) tn the corona discharge. The photo-

I 4-2
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UV COIRONR DATA CORPLT

.: LORD RESISTOR = I MEG OHM POINT POSITIVE
PIRESSUIRE ffi 2 TOP,IR COIRONA VOLTAGE = 37S I,'OLT$
ELECTRODE GAP - 0._ CM COIRONACURIREt-dT= 375 I'IlC1R,O_MF'_
POINT _ADIUS ,= 2.5 MM DATE OF TEST: _0..I1.-'7S

5,SE-SB ORDINATE SCALE: INTENSITY (NATTS./NM S1R) 5.BE-@G

I LEt.ITII '.! I I I I I

ifRIGHT.SCALE
4,QE-SB __ 4.BE-O_,

.0E-88 3. OE -_

2.dDE-ee F'. _v. -BG

... o.o
zoo azs as8 a:,s 308 3_s 3se _s 488

NRPELENGTH (NANOMETEIR$_

FIGURE4-2 CORONASPECTRALINTENSITY- CURRENT37§#0

ionizationprocessis enchancedby the presenceof readilyphotoionizedspecies,

suchas water vapor (whichis certainlypresentin the bleed air admittedinto

the coronasimulator)•The coronaof Run 28A (4,acurrent)was typicalof an

unsteadyglow and requireda slow spectroradiometerscan to smooththe fluctuations

in the recordedspectrumdue to the unsteadyemissionprocess.

The spectraof Figures4.3 and 4.4 showcharactericsdue to extremesin

electrodegap length,i.e. 2mm and 6ram,respectively.As the otherparameters

were held constant, the intensity in the 200-400nmwavebanddecreased as the gap

length increased. The principal effect of the increased gap length is a reduction

of the average electric field gradient in the space between the electrodes.

Consequently, a slight, but as yet unanalyzed, dependencyof spectral intensity

on electrtc field gradient is indicated by the data of Figures 4.3 and 4.4.

Other data, however, (cf. Runs23C and 250 tn Section 4.2) show almost no dependence

• of spectral intensity on gap length. The conclusion is that gap length has

MO_Sm_L Amlitm,,ili,l" _lmmiln, .,_
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UV CORONA DATA CORPLT

'_' LOAD RESISTOR = 1 MEG OHM FOINT FO$ITIVE

PRESSURE - Z TORR CORONA VOLTAGE = 400 VOLTS

, ELECTRODE GAP = 0.2 CM CORONA CURREtIT = _00 MICROAMP_

. POINT RADIUS - g.5 MM DATE OF TEST: 11/11.'75

S.eE-08 ORDINATE SCALE: IHT£NSITV (WATTS,'NM SR; S.0E-06

I- I ' I I I I I I
LEFT SCALE I _IGHT SCALE

-' , 4.BE-eB __ I 4.0E-OC-..

: ] '
3.eE-eB _ 3.8£-0_-,

, I

2 ,eE-SB I _ 2 • BE-O_, :

""-" " Jl ""-°'
o.e o.0

•, 280 2_5 ;_50 275 300 3E5 350 3?5 400
WAVELENGTH (NRNOMETERS.)

FIGURE ¢3 CORONA SPECTRAL INTENSITY - GAP - 2ram

littleinfluenceon themagnitudeof coronaspectralintensity,at leastforthe i

rangeof gaplengthsemployedin thisstudy.Gapsgreaterthan6ramin length

werenotemployedin thisstudyto insurethatthecoronaglow remainedcompletely
withinthespectrometerfieldof view. Likewise,thesmall rangeof gaplengths ,+

usedin thisstudyeffectivelyconfinedthecoronaglowto theregionbetween

theelectrodes.SuchlocalizedcoronaglowsrepresentUV emittingsourceswhich

likely present severe challenges to all feastble coronadetection systems, l

Similarly, gapsless than 2ramin length gave rise to coronaglows which were

difficult to control due to the tendencyfor the glow to changeunexpectedly

into a spark discharge. Thestrong UVemissionsfrom the spark discharge are
expectedto be relatively easy to detect, and, as such, present no real challenge

to most candidatecoronadetection systems.

4-4
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UV CORONA DETECTION MDC A4054 _

I SENSOR STUDY FINAL REPORT MARCH 1976 _LOAD RESISTOR = 1 MEG OHM POINT POSITIVE
PRESSURE = 2 TOEP. COEON8 VOLTAGE = 4C4L_t'OhT£

i_, ELECTRODE GAP = 0.6 CM CORONA CUP,REHT : 300 MICR('AMI:'_. _

_ POINT RADIUS - 0.5 MM DATE OF TE£T: 5/II,,75 _

ORDINATE SCALE: INTENSITY (WATTS/HM $I_)
5._E-08 5. OE-O_;,

I I ' I i I I I
: LEFT SCALE I RIGHT SCALE

i

- 3._E-08 _ , __ 3.0E-0_
I

; 1.8E-88 _ I.OE-OG

Z88 2_5 258 2?5 300 325 350 375 400 -_
WAVELENGTH (NANOMETERS_ -_

FIGURE4-4 CORONASPECTRALINTENSITY- GAP6ram

Figures4.5 and 4.6 show spectralintensitydata due to extremesin pressure,

2 torrand 20 torr, respectively.For thesescans in which the coronacurrent

was 300_a,no significantdifferencein the intensityspectrawas apparent.

This behaviorwas generallyobservedthroughoutthisprogram,viz,the intensity

spectraat constantcoronacurrentwab effectivelyindependentof pressurein

the 2 to 20 torr range.

The effectsof the anodeelectroderadiusare indicatedin Figures4-7

and 4-8 (radiusequal to O.Smm and 2.Smm,respectively).Again,for nearly

: constantcoronacurrent,the effectof anode radiuson the intensityspectrum
is minimal.

The principalconclusionof this spectroradiometerdata summaryis that the

spectralintensityof the UV coronaemissionsis most nearlycorrelatedwith
coronacurrent.

I 4-5
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LORD RESISTOP, - ! MEG OHM POINT POSITIt.'E
PRESSUI_E = _ TORP, CORONA I/OLTAGE = 420 VOL'r£
_LEC'IRODE CAT = 0.2 CM COROHF_ CUP,_Ett'r --- 180 MICP,',_t._£_
POINT RRDIUS - 0.5 MM DATE OF "rEST: I1-"ll..,TS

_.BE-OB ORDINRTE $C¢1LE: IN'tENSITY (NATTS/NM SR) 5.0E-F_G.
I I ' i I I 1 I

LEFT SCALE I I_IGHT SCALE

1.G£-88 __ I _ 4.0E-._

a I .
1._E-B8 __ I _ 3.0E-OC,

I
8.et-9_ _ _ ,_.oc-oc

I

_i - j.A I
zse _':_5 _50 E75 30_ 32s 350 375 400

klRVELENGTH (NRNOMI=_TEI_S)

FIGURE 4-5 CORONA SPECTRAL INTENSITY - PRESSURE= 2 TORR

4.2 INTEGEaTEDCORONAINTENSITYDATA. Sincethe candidateUV coronadetection

systemsdiscussedin the followingsectionsare designedwith relativelylarge

spectralbandwidths(-50nm to lOOnm),the spectralintensitydatawere integrated

over selectedwavebandsto providethe requiredinputdata for the systemanalyses.

Integratedcoronaintensitydata are presentedin thissectionfor two wavebands,

200 to 280 nm and 280 to 400 nm. The selectionof X=280nm was basedprimarily

on the fact that the backgroundlightdue to ordinaryincandescentand fluorescent

sourceseffectivelyfalls to zero at wavelengthsshorterthan 280 nm. This is

due primarilyto the transmissioncharacteristicsof the commonsoda lime

glass envelopes found in these light sources. Consequently, for a UV corona

detection system to function properly in an ordinarily lighted laboratory

environment,the wavebandshouldbe limitedto 200 to 280 nm by means of an optical

band pass filter.

. Other sources of background light, such as quartz heating lampsand solar

4-6
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UV CO_ON_ DA'T_ CORFLT

LOAD RESI$'TO_ - I MEG OHM FOIN'T POSITIVE

PRESSURE - ;_0 TO_ CORON_ VOLTAGE = e:'_ _'OLT:.

ELECTRODE GRP - O,E CM CORON& CURREtlT = 1_=_ MICPOkM£-. {

POINT RADIUS - _.5 MM DATE OF TEgT: :._,'II-.5

_ _.8E-88 ORDINATE[ SCALE: i'INTEHSITY__ (WATTS/HM[ £R_ 1 I i I.OE-OL:. :'_:

LEFT _CALE [ RIGHT SCALE

i 4.er-es_ I _ 8.o_-,_,:-

b

' !" i

I ./'/ _

Z00 _5 ' _SB _75 300 325 _50 375 400WAFELENG'TH (NANOMETER_,

FIGURE 4-6 CORONA SPECTRAL INTENSITY - PRESSURE = 20 TORR _.

simulator 11ghts, will qenerate backgroundl_ght in the 200 to 280nmwaveband.
Theeffects of this backgroundon UVcoronadetection systems are discussed in
Sectton 5-2,

Tables 4-1, 4-Z, and4-3 summarizethe Integrated Intensity of corona glo_s

for three anoderadii, O.5mm,1.0ramandZ.Smm,res_cttvely. Integrated Intensity
rangesfrom 5 x lO'8gnm"1 to lO'5gnm"1 in the 200 to 28Ohmrange or wavebandfor a

spanof coronacurrentsfrom4ua to approximately8nO_a. Overthiscurrentrange

the coronaphenomenarange frum nonsteadyburst pulse, to steady glowsto tnctpent

sparkbreakdownconditions. Similarly, the range of coronavoltage, 370 to 11589,

encompassedby these data correspondsroughly to the ordinary rangeof voltages
: foundon mosttest articles commonlysulxattted for thermal vacuumtesting.
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UV CORONR DRTA CORPLT

! LORD I_ESISTOR = I MI:G OHM FOINT FOSITIi,'E

PRESSURE - _ TORR CORONA VOLTAGE = 395 t_OLT5" ELECTRODE GRP - 0.2 CM CORONR CURP.ErlT = 405 MICI_O_MPZ.

POINT PADIU$ • 9.5 MM I)RT£ OF 'TEST: 11, 11/75

1.eE-e? ORDINRTE SCRLE: INTEH_ITY (klATTS/HH SR) 1.0E-05

I ! ' I I I I I
LEFT SCALE I RIGHT SCALE

I

O.OE-O8 , 8.0[-0_
I

i, '-"-'° ii -
4.OE-B8 __ 4.0E-OG

ese _es 250 2?5 300 3z5 350 3;'5 400
klRIIELENGI'H (HANOI'IETER$)

FIGURE &7 CORONA SPECTRAL INTENSITY - ELECTRODE RADIUS- 0.1ram

The Integrated Intensity tn the 280 to 400 nmwaveband ts tncluded tn these

_ tab]es for comparison to corresponding values tn the ]ower waveband. The

former va]ues range from ]-]/2 to 2 orders of magnitude greater than the Carter

va] ues.

Ftgures 4-9, 4-10 and 4-11 summarize the data of Tables 4-1 thru 4-3 for

selected spectroradtometer runs. The soltd curves are tsobartc current-voltage

(l-V) data for p-2 tort and 20 tort. The bracketed date are Integrated Intensity data

for the 200 to 280 nm waveband. Included tn these ftgures are two dashed curves

at constant electrtc power (IV) levels of 10rowand 1001_.

In terns of the present study, these ftgures principally serve to establish

a workable threshold for UV corona detection. For corona currents less than 50ua,

the Integrated UV Intensity falls below 10"Twsr "1. Thts Intensity level was _

used as an effective threshold value for the detection system evaluations tn

4-8
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UV COROllA DATA COI_PL'I'

LOAD ]RESISTOR - I MEG OHM POINT POSI?zvr
PRESSU_I; • Z TOi_l_ COROHF_VOLTM,IE -. _70 VOLTS

_i'_ ELECTRODE GAP • @.4 CM COEONFt CUEI_EHT - 380 MIr. E,:,_r'IF".

_ POINT i_ADIU$ - _.5 MM DATE OF TE_T: 1_ 11 75
,_ma

s.er-oe omDx.AT,"SEAL...I.TE.SITY_.ATT_.,_. sp.,

_'" I I _I/_' I I I I I s.o_-o_:

_ Lr-PT RlGHTSC_,LE

£ee z_s _50 ::'75 300 3,"5 350 3?5 400 -_

klI=IVELEHGTH ¢H_HOME'rrJ_$,

FIGURE4-8 CORONASPECTRALINTENSITY- ELECTRODERADIUS= 2.Emm

the following section, i

4.3 ANALYSISOF BREADBOARDSYSTEMS.Two t_pes of systems ev#luatton procedures were

applied to candidate UV corona detection systems. Several UV detectors were

breadboarded and evaluated in the course of the spectroradtometer scans•

Other systems were analyzed from manufacturer's specifications due to unavailability

of detectors, mostly of the video type, for breadboard evaluation. The latter

analyses are discussed in Section 5-1.

Table 4-4 summarizesthe perfomence of a Hone_ll UV gas discharge
detector _osttioned 30 an from the corona simulator pointed electrode. The

detector viewed the corona glow through Suprastl window #Z (cf. Figure 3-1).

Using the inverse square relation, the response of this detector for a 3 meter

separation was computed. This dtstance is roughly typical of corona-detector

2_ :_eparattons expected in therml vacuumtests c_0ucted in large space simulation

4o9
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g a_

o: ¢]

T_L_ 4-Z- POZN_ELECTROVE- t.o_ _t_u_tus _

PolkaS, Oorona Co¢o_ U_d_, i:"

: _" 17A _ 2 1.0 i00 L°C _-N x iO"7 2.5_x !0"5 :_

_*_ 17S 2 2 t.o 3_O 160 5.76x 10-7 3._5x 10"5

_ 17C 2 2 1.0 380 220 8._2x 10-7 _.g_x i0"5

171) 2 2 1.0 380 _20 2.99x 10"_ 1.2_x 10"_

18. 20 2 1.0 580 270 1.08x _0"6 _.52x !0"5

18B 20 2 i.o 560 3ko 1.63x lO-6 7.03x IO-5

18C 20 2 1.0 5_0 I_0 2.91x 10-6 I.]3x i0"_

18D 20 o 1.0 _lO 650 _.50x 10-6 1.63x 10"k

15C 20 _ 1.0 590 610 6._6x 10-6 1.88x I0"_ !_

16A 2 6 1.0 _0 160 7.72x 10"7 3.k8x i0"_

z6_ 2 6 _.0 _t_ _ t.3ox zo4 :;.78x to'_ _

16C 2 6 1.0 390 _o _.2ox to_ 1.69x to"_

oV }
!
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TA_L_.;'3 " _T _L_Cntoul - _U)l_. 2.5 m

Point Cor.o_ Corona WdX
_un /'rnm'e 0 _.u= )200_A_ _

28x 2 2 2.5 i_ _ 3.7'2x Io'7 1.51 x 1o.5

25s 2 2 2.5 380 120 8.32 x 10"7 3.32 x 1o-5

28c 2 2 2.5 375 225 1.81 x lo .6 6.39 x 10"5

28D 2 2 2.5 375 375 2.35x lo.6 9.19x zo"5

31A 20 2 2.5 680 80 6.93x 10-8 2.78x 10"6

3m 20 2 2.5 575 f25 7.ttb x 10-7 2.89 x 1o"5

310 20 2 2.5 510 ItgO 3.60 x 10.6 1.1_t x 1o"_

31D 20 2 2.5 t@O 830 1.28 x 10-5 3.57 x 10_

27A 2 It 2.5 k18 6.2 6.11 x 10"7 2.06 x 10"5

: 27S 2 It 2.5 375 17_ 9,06 x 10-7 b,.eOx 10"5

270 2 It 2.5 370 380 3.27 x 10.6 1.01 x 10-5

_* 20 _ 2.5 9"rJ, 26 2.61 x 10-7 7.0ox 1o"6

263 20 it 2.5 885 135 1.12 x 10.6 _,.20 x 10.5

260 20 It 2.5 730 370 2.91x 10.6 1.3_x lo "_

26D 20 k 2.5 650 6oo 5.z9 x 10.6 2.36x 10"k

29A 2 6 2.5 5_ lo ;._ z lO"7 2.19z io'5

, 293 2 6 2.5 J_ 125 7.75 x m.7 3.58 x 1o"5

290 2 6 2.5 395 255 1.15 x 10.6 6.22 x 10.5

2_ 2 6 2.5 _0o 5oo 5.73x 10"6 1.9o x lO"_

30A 20 6 2.5 1J_8 17 2.26 x 10.8 1.11 x 10.6

3OB 20 6 2.5 1080 150 1,76x 10.7 "I.11x 10.6

3O0 20 6 2.5 960 3hO 1.76 x 10_ 6.8_x 1o-5

30o 20 6 2._ 80o 7oo 7._ x lo.6 2.2_ x 1o"_

_ 32A 10 6 2.5 800 100 k.08 x 10.7 1.19 x 10"5 ,

3_ xo 6 2.5 716 2oo 3.77x lo.6 1.3_x 1o_'

3sc lo 6 2.5 5_6 60o 1._ x 10"5 3.1o x 1o"k i

320 10 6 2.5 5_ 800 1._ x 10-5 3._7 x 1o"_ 1

33A _ 6 _.5 671 50 It._7x 1o"7 6.50x lO.6

333 5 6 _.5 530 SO0 1._ x lO"6 k.37x 10"_

4-12
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_, 1000 _

!

280 nm _
I I -( )=: WIXldX :_
I I 200nm !_,
I I

•- 8001 I ;_,

" II Ii 24D I (5.86 x 106 w srl)" ,_:/
I I !k

i 600 4 I 20 Torr

; e_. _ _ 24C 12.79 x 10"6 W sr"1) :_.

U_ _ \ • Point Electrode 1+)

: o I • Radius 0.5 mm i_o 400 (2.74 x 10"6Wsr 1) 25D_-_ _ • Gap 2.0 mm

I P= 2 Torr--x_

-I (1.95x10"6Wsr "1) 25C 24E 11.66x106Wsr "1)

I

; 200 -
17.82x10"7Wsr "1 25B_ 24A 17.83x10"7Wsr "11

\ "-._ /--IV = 100 mW

x 10"7 W sr'l)_e25A _'_'--,-,e
- _ (7.82

_, _ -- fly = 10mW
o 1

0 500 1000 1500

Corona Voltage IV)

FIGURE4-9DATA SUMMARYFOR0.5 mm RADIUSELECTRODE
0P76-6183 19
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: I 280 nm
I .( ):/w(_)d_
I 200 nm

I
800

I
I
I

"_ I 18Di 4.50x10"6Wsr'1) *

I
600 1" _ = 20 Torr

I

" I 2.91 xr.j \ 18C 10.6 W sr"1)

o I (2.99 x 10"6Wsr "1) 17D • Point Electrode (+)

8 400"1 • Radius 1,0 mm

I P = 2 Torr_,. • Gap 2.0 mm
I _ "_ 18B (1.63x 106Wsr "1)

I \
-I

_ (1,08x 10"6Wsr 1)

I \
i(8.42x107Wsr'll17c\\

200- I \
(5.76 x 10"7W sr"1 17B

_ /--IV = 100 mW

(4.50x 10"7wsr "1) 17A _,,,_____
- \

_ X % .,. ... ..,. ,.,. __ ._ __ ... _. flY = 10 mW
,, I ..... "I

0 0 500 1000 1500

Corona Voltage (V)
GP;'6 _1B3 18

FIGURE4-10 DATASUMMARYFOR 1.0 mmRADIUSELECTRODE
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I000.,

: I I 280 nm "_

J J 31D .28x lO'5Wsr-1) * *( )=fW(X)dX ,_: I(1 200 nm ',I

_ 800-1 I _

I I

_ I I _,j--P=2Otorr

; 600-I l

u j _ 31C (3.60xlO'6Wsr "1)

400- I \

_(2.35 x 10.6 W sr'l)_ ,28 D

I "_ • Point Electrode (+)• Radius 2.5mm

I _ • Gap 2.0 mm

- II _:
P=2 ?

I \
(1.81 x lO'6Wsr "1) (7.44 x lO'7Wsr "!)

!

200-- J \

I \

,,L_ = lOO mw
(8.32x10"7Wsr "1) 28B _ ',

- _ (6.93 x 10.2 W sr"1) oi
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0 500 1000 15OO
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FIGURE 4-11 DATA SUMMARY FOR 2.5 mm RADIUS ELECTRODe.
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chambers. The gas discharge detector is "solar-blind", i.e. it has no measureable

responseto light at wavelengthsgreaterthan 280 nm. Consequently,this detector

can be operatedwithoutfilteringin the presenceof normalincandescentand

fluorescentbackgroundlighting.

Sincedetectorresponsevariesdirectlywith coronasourceintegrated

intensity,the gas dischargedetectorwill produceabout0.3 count/secondat a

rangeof 300 cm for lo'Twsr"l integratedintensity,the designthresholdintensity.

The noiselevel,approximatelyone count/sec,entirelyobscuresthis signal

TABLE 4-4 - PERFORMANCESUMMARY-
HONEYWELLTYPE EP431-O-ZAGAS DISCHARGE'INDETECTOR

IntegratedIntensity Counts/secat 30 cm Counts/secat 300 cm
Run {200_X6280nm) . (measured) (calculated)

• 19A 3.59 x lO'7W/sr llO l.l
/

19B 6.32 x 10-7 235 2.4

19C 2.46x lO"6 450 4.5

19D 1.03x lO-5 653 6.5

due to the thresholdcorona. Consequently,to use thisdetectorat 300 cm,

auxiliaryopticsare requiredto increasethe amountof UV light concentrated

on the photocathodeof the gas dischargedetector. If a 7.5 cm dia.quartzlens is

employed,the fractionalincreasein photocathodeirradianceis approximately

equalto (AL/Apc= 45) whereAL = areaof the lens and Apc = photocathode
area (Icm2). At lO'7W/srintensitylevel,the detectoroutputfor 300 cm range

with this lens is approximately(45)(0.3)= 13.5counts/sec,which iswell above

the detectornoise level.

Siliconphotodiodedetectorsare attractivecandidatesfor UV coronadetecto_

systemssincethey are compactand requirevery low bias voltages(-30V). A

UDI-500ohotodiodewith enhancedUV spectralresponsewas breadboardedand

, installednear Suprasilwindow#2 at 50 cm fromthe coronasimulatorelectrodes.

Sincethe responseof this detectoris appreciableoverthe 200 to llO0nm range,

a blockingfilteris requiredto reducethe sensitivityto backgroundlightat

wavelengthslongerthan 280 nm. Table 4-5 shows typicaldata obtainedfor the

UDT-500detectorfor the 200 to 280 nm waveband.

4-16
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L TABLE4-5 _,

_: UDT-500SILICONPHOTODIODEDATA :_

IntegratedIntensity OutputVolrage PhotodiodeCurrent

:i Run (Wsr-1 ) (mY) {amps)
30A 2.26 x 10"8 0.15 1.5 x 10-11

_ 30B 1.76 x I0"7 0.7 7.0 x I0"II _

30C 1.76 x 10-6 1.6 1.6 x IO-lO

i0-6 lo-lO !_30D 7.56 x 3.5 3.5 x

The outputvoltagerefersto the signalmeasuredat the outputof a current- i

to-voltageconvertingpreamplifier(UDTModel 505)with transferfunction

1071eVout = (4-I)

where i = coronacurrent(amp)
e
Vout = outputvoltage(volts)

Figure4-12,showingthe outputvoltageproducedby the UDT-500UV detectorduring

Run 30, indicatesthat a linearrelationexistsbetweencoronacurrentand

detectoroutputvoltage. Sincethe responseof this detectoris a linearfunction i

of coronaintensity,coronaintensityis proportionalto coronacurrentfor the

conditionsof this run.

The noise levelof this detectoris composedof two principalcomponents.

A DC component,called"darkcurrent",amountingto approximatelylO"g amps,

is presentdue to variouschargeleakageprocessesin the silicorwafer. The

current-to-volrageconvertingpreampllflerof the UDT-50Oproducesapproximately 1

0.SmV outputdue to dark current. Thisnoise componentchangeswith detector 1

temperatureand biasvoltagelevel in a predictablemannerand can be compensated
to zero voltsby usingoffsethullingtechniques. Suchmethodsare more or less

successfuldependingon the precisionobtainablein controlof detectoroperating

temperatureand bias voltagefluctuations.In a laboratoryenvironment,dark

currentcompensationpresentsno real problem. However,in a space chamber,

controlof detectortemperaturecan be a problemrequiringspecialprecautionsto

minimizefluctuations.

The stltcon photodiode detector also exhibits a randomnoise componentdue

4-17
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5.0

ElectrodeGap= 6 mm
P= 20 torr

4.0 - PointElectrodeRadius= 2.5 mm Run30D
A Range= 50 cm

_ 2.0-
,--Run 30A

_ 10 / _ _---Run30C

o1__ I I I I 1 I I
0 100 200 300 400 500 600 700 800

CoronaCurrent(ua)

FIGURE4-12 UDT 500 UV SILICONPHOTODIODE
OUTPUTvsCORONACURRENT _,,6_,83,_

mainly to the Johnsonnoise typical of the detector internal resistance. The

ms noise voltage due to photodiode resistance is dependenton the electrical

bandwidth, Af, of the UDT-500preamplifier. For a ]0KHz bandwidth, Vrms = 0.lSmV

at the preampoutput, indicating a noise current ims-(0.15mV) (10-7 ) = 1.5 x l0 -]l
ampdetector output.

FromFigure 4-12, the output from the UDT-500UV detector/preamp at ]0"7Wsr "l

and 50 cm range is 0.6 inV. Using, the inverse square relation, the expected

output at 300 cm range is 0.6mY =17uV. This result indicates the need for

auxiliary collection optics if detection at 300 cm is to be accomplished. The

use of 3 in. dia. quartz optics provide a factor of 45 increase in the power

incident on the UDT-500UV detector (sensitive area = lcm2), yielding a preamp

output voltage of (17uV) 45 = 765uV.
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_ 5.0 ANALYSISOF CANDIDATEUV CORONADETECTIONSYSTEMS
r"

: The principalresultof the experimentalphaseof this studywas the

measurementof spectralintensityfor representativecoronaglows uponwhich to

t base realisticanalysesof candidateUV coronadetectionsystems. The data
r

obtainedfor thresholdcoronaindicatedthatone criterionrequiredof a successful

systemis the capabilityto detectthresholdcoronaemissionsof IO-7Wsr"l

or lowerfor wavelengthsfrom200 to 280 nm at a minimum300 cm range. The two

breadboardsystemspreviouslydiscussedmet this criterion;howeverbothrequired

: auxiliaryopticsto insuredetectionof the thresholdcorona.

In Section5.1 video coronadetectionsystemsare considered.Due to

programconstraints,breadboardingof thesesystemswas not possible,necessitating

the analysispresentedbelow. The principalreasonfor consideringvideo

systemsis the desireto obtaindirectionalinformation.The simplebreadboard

systemsof Section4 providethresholdcoronadetectioncapability,but are

relativelyuselessfor preciselylocatingthe coronasource. As such,tP-se

systemsrepresentminimalsolutionsto the UV coronadetectionproblem,with

the advantagesof simplicityand relativelylow cost.

Section5.2 containsa discussionof the effectsof backgroundlight

sourceson the performanceof candidateUV coronadetectionsystems. The limitations

due to the presenceof backgroundlightwere alludedto in Section2.4. These

considerationsare extendedin Section5.2 to establish"he magnitudeof the

backgroundlight interferenceexpectedfor operatingconditionstypicalof thermal

; vacuumtestingand to assessthe capabilitiesof candidatesystemsto operate

satisfactorilyin the presenceof thisbackground. Section5.3 containsa selection

of designssuitablefor UV coronadetection.

5.1 VIDEOUV CORONADETECTIONSYSTEMSANALYSIS. The initialstep in this
T

. analysisinvolveda surveyof availablevideosystemswhich operatein the 200 ;

to 280 nm waveband. RecentlyRCA has developeda silicontargetvidicon(Model

C23231)with enhancedresponsein the 200 to 400 nm waveband. Figure5-I shows

data obtainedby RCA and by PrincetonAppliedResearchCorporation(PAR). This

) detectoris developmentaland currentlyis in the processof evaluationpriorto

! production for consumeruse. The spectral response (amp/watt) of this vidicon

i approximatesthat for the UDT-500UV photodlodedetector. The C23231vidicon _i

5-I
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100

A

-, 10.1 --

e-

lO.2 I 1 l
200 400 600 800 1000

Wavelength (nm)

FIGURE5-1 RCA C23231S-TVIDICON SPECTRALSENSITIVITY G,,,,,,_,

is electricallyand mechanicallyidenticalto the RCA Model 4532silicontarget

(S-T)vidicon,a productionmodelwhich operatesin the 300 to ll00nm waveband.

The silicontargetis composedof a rectangulararrayof small individualphotodi_e

detectorslocatedon lO microncenters. The sensitivearea,or target,is

approximately square with sides ll.3mm in length. Consequently, there are about

12,800individualphotodlodedetectorscontainedin the targetarea. Light

photonsincidenton the photodiodearray formchargepairs in the diodes. The

targetmaterial,on which the diodearray is deposited,is a thin siliconwafer.

An electronbeamscans the backsideof the targetarea,much in the usual

mannerfor a normallead oxideor cesiumoxidevidicon. Currentflcws intothe

preamplifierinputin proportionto the photon-generatedchargeon the individual

photodiodes.This currentis transformedintoan equivalentamplifiedvoltage

proportionalto the targetcharge. Conventionalvideo circuitryis utilizedto

producea televisionrasterrepresentationof the targetchargepatternand,

hence,of the opticalimage focussedon the target. S-T vidiconslikethe RCA

4532 familyare pin-for-pinreplacementsfor ordinaryvidicontubes foundIn

T-V equipment. However,sincethe operatingvoltagesare lower for the S-T
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vidicon than for conventional vidtcons, the self-induced corona problem is less .-_

severe. _

To assess the threshold detection capabilities of the UDT-500stngle

silicon photodtode detector, it was sufficient to consider the effects of dark

current and the randomnoise level per the discussion of Section 4.3. The corresponding

analysis for the S-T vtdtcon requires additional considerations of spectral

resolution and contrast since the purpose of the vtdtcon is to provide a usable

two-dimensional representation of the scene focussed on the target of the S-T

vldicon. In addition,the electricalbandwidthof the vldiconsystemnecessarily

is much largerthan thatof the singlephotodiodedetectorsuch as the UDT-500.

This impliesthat the effectsof the photodloderandomnoise levelis signifi-

cantlymore severefor vldlcons.

S-T vidiconstypicallyshowDC dark currentnoise levelsfromlO"g to lO"8

amps, similarto thatof a singlesiliconphotodiodedetector. Electronicmet;;ods

for offsettingthe effectsof S-T vldicondark currentare more or lesssuccessful

dependingon the targetarraydiode-to-diodevariationof darkcurrent. As

the targetis scannedby the electronbeam,the darkcurrentvariationsproduce

noise signalsat videofrequencies.Currentmanufacturingprocessesare capable

of reducingthe effectsof dark currentvariationsto less than±5% of the average 4b
darkcurrentlevel,i.e.,to lessthan lO"g amps.

The RCA 4532 S-T vldlcontypicallyshows an rms randomnoise levelof

approximately5na (5MHzbandwidth)which effectivelyconstitutesthe threshold

limitfor lightdetection. The signal-to-noiseratio(SNR)at the outputof the

S-T vidiconis relatedto the coronaintensity,W, and the distance(range),

, d, betweenthe vidiconand the coronaglow accordingto

3NR = islqnal= RWAc r

I (S-l)inotse noise

where i • vldlconsignalcurrent(amps) !
signal

noise • ms vtdicon noise level - 5na

R - response of the vtdicon (amps/watt) l
W - integrated corona intensity in the 200-280nmwaveband _)

(watts/sr) . i
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Intensity = I(T7W sr"1 (Threshold)
• 5 MHz Electronic Bandwidth

10"11 • 200-280 nm Wavaband
Dia. Optics

¢ 10-2z
(/i

10.3 2i

3in.

10"4

10"5
0 100 2O0 30O

Range (cm)

FIGURE_2 _T VIDICON SIGNAL-TO-NOISERATIO
VERSUSRANGEFORTHE THRESHOLD
CORONAINTENSITY o,,,,.

Ac = area of the vJdlcon collection optics (cmZ)
d = vidtcon-to-corona range (cm).

quantity Q = Ac/d2 ts the solid angle subtended by the vidtcon collection
The

optics at range d.

Figure 5-2 showsvtdtcon SNRversus range for several collection optics

diameters. For unambtgtousdetection of the corona glow, the SNRshould be

at least 1.5 or greater. The effects of the 5 MHzbandwidth of the S-T vtdicon

system are apparent: The threshold corona (10-7Mn"l integrated intensity)

ts Impossible to detect at even 50 cm range using oversized 6 ln. (15 an) dia.
collection optics. This system requires at least three orders of magnitude

i increase tn the corona integrated intensity (-10"4Mn"l) for unambtgiousdetection.

t_' Consequently, S-T vtdtcons such as the RCAC23231are not sufficiently sensitive
for use tn a candidate UV corona detection system.

It should be noted that the noise current ts proportional to Af, where _f i
ts the electrical bandwidth of the corona detection system. Consequently, if

_f ts reduced from 5 HHz to 1Hz, typical of the stngle silicon photodtode detectives

discussed in Section 4-3, the SNRdata of Figure 5-2 will be scaled upwardsby a

factor (Sx106)l/Z-2236. Of course, a video corona detection system requires

the wide 5 MHzbandwidth.

5-4
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10"I " _ /--RCA4804 Plus Scintillatm °
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,
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S-T Vidico_-_
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I I I i 1
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FIGURE5-3 SIT AND tT VIDICONSPECTRALRESPONSE-
PARDATA o,,6,,,_,

RCAhas developed an improvedS-T vtdtcon detector for use in very low light

level TV applications. These tubes, called silicon intensified target (SIT)

vldtcons, have an image-intensifier front end wtth a fiber optic faceplate over

the photocathode. Photoelectrons roleased by the action of light incident on

; the photocathode are accelerated toward the stltcon diode array target. The high

energy photoelectrons produce large accumulations of charge on the individual

target photodtodes, which are scanned by an electron beamin a manner stmtlar to

the S-T vtdtcon. A large increase tn the intrinsic sensitivity of the silicon

vtdlcon is obtatned via the SIT design. Figure 5-3 shows comparative sensitivity

data for S-T and SIT vtdtcons obtained by Or. D. C. Baker of Princeton Applied

Research (PAR) Corporation. Increases by two to three orders of magnitude in

sensitivity are obtained vta the SIT design.

The spectral response of the RCA4804 SIT vidtcon in the 200 to 300nm

wavebandcan be increased by coating the fiber optic faceplate with a semi-

transparent scintillator coating (dashed D-01 curve of Figure 5-3). With the

scintillator, the RCA4804 vtdicon ts approximately 103 times greater in sensitivity
than the RCA23231 S-T vidicon tn the 200 to 280nmwaveband. This translates

into a 103 increase in the SNRdata of Figure 5-2 for the SIT vtd,¢on. Consequently,
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a video UV corona detection system based on the RCA 4804 SIT vldtcon will satisfy

th_ criterion for detecting the threshold corona (10"7Wn"l) at 300 cm range wtth

3 in. dta. collection optics.

The SIT vtdtcon has one significant drawback which militates against its

use in a candidate UV corona detection system. The accelerating voltac.,s required

by the intensifier section of the SIT vtdtcon fall in the -2500 to -9000 volt

range. Thus, self-Induced corona discharges are possible in the SIT vidicon

system during operation in space simulation chan4)ers. The most direct remedy is

to install the SIT vtdicon system in a heremetlc enclosure which is maintained

at atmospheric pressure during chamber pumpdown. This "fix" causes some problems

in panning the vtdtcon detection system due to the bulk of the hermetic enclosure

which must be moved.

The calculations leading to the results of Figure 5-2 rest on several tacit

assumptions concerning the S-T and SIT vidicon system design. Firs:.,the trans-

mission of the vidicon collection optics in the 200-280nm waveband was assumed

to be unity. To approximate this performance, the real vidicon collection optics

should be fabricated from high purity fused quartz rather than from the normal

crown or flint glass typically used in commercial vidicon systems. In addition,

anti-reflection coatings are required to maximize the transmission of the quartz

optics in the 200-280nm waveband.

To limit the spectral response of the silicon vidtcon to wavelengths less

than 280nm, a suitable bandpass filter should be inserted into the optical

system between the quartz collection optics and the silicon vidicon target. The

result; of Figure 5-2 presuppose that t'_,., bandpass filter operates perfectly by

reducing the response of the vtdtcon detection system to z-.'o at wav_.lengths

longer than 280rim. In this way the effects of strong background light at

_>280nm are reduced.

An approach to ideal fil*_- performance is available via interference filter

technology. In the design of bantp_.ss interference filter, two somewhat competing

considerations have to be balance_. First, the in-band transmission of the

filter should be as high as possible to insure that an unacceptable insertion

loss is not introduced into the system. Secondly, the out-of-band transmission

should be suff':tently low to reduce the amount of stray light, which passes

through the filter. These considerations are especially ta,_ortant for a candidate

5-6
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FOUR PERIOO... (15 ,_HBW to 500 A. HBW)

BANDWIDTH
REJECTION or % BANDWIDTH POINT or DENSITY = BANDWIDTH AS SHOWN

10 -1 or 10% or (D1) = 1.1 - 1.25 x 50% B/W
10 -2 1% (D2) = 1.5 - 1.65 x 50% B/W
10 .3 .1% (D3) = 2.0- 2.25 x 50% B/W
10 -4 ,01% (D4) = 3.5- 4.25 x 50% B/W
10 -s .001% (DS) = 9- 12 x 50% 8/W

FIGUI " 5-4 TRANSMISSIONOF FOUR-PERIOD
: INTERFERENCEFILTER _P,6o6,83,

UV coronadetectionsystemsincethe coronaintensityin the filterbandpass

region(nominally200-280nmfor the idealfilter)is significantlylowerthen the

backgroundlightat wavelengthslongerthan280nm.

Interferencefiltersare constructedas layersor stacksof thin vacuum

depositedfilmsof properthicknessesand refractiveindices. Narrowbandpass

filters(<lOnmbandpass)can be simple"singleper'od"filterswhich are made up

of filmstacksdepositedon bothsidesof a suitablyflatand transparent

substrate(e.g.fusedsilicafor UV filters). For broadbandfilters(>lOnmbandpass),

rejectionof out-of-bandstraylightis accomplishedby the use of multi-period

designs. Figure5-4,taken from._roductliteratureof Spectro-Film,Incorporated,

Winchester,Massachusetts,showsthe performanceof a four-periodinterference

filtercurrentlyavailableas custommanufactureditems. The use of thisdata

:_ can be illustratedby consideringa four-periodfiltersuitablefor use in the

_ _i_ UV coronadetectionsystemwith the followingcharacteristics:

5-7
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o Center wavelength: 250nm

o Half-peak bandwidth (HBW): 40rm,

° In-band transmission: 20 percent

From Figure 5-4b, the 40nm HBW specification implies that this transmission of

this filter is I0% (50% x 20%) at _=230nm and X=270nm and that the filter pass-

band is more or less rectangular in shape. The out-of-band transmission for this

filter can be estimated using Figure 5-2b as follows:

Wavelength Transmission

: 290nm I .0%
305nm O.1%

320nm and up <0.01%

It should be emphasized that this filter is typical of the present state-of-the-art

in UV bandpass filter design and that the effectiveness of the filter in reducing

the'effects of background l"ght requires an estimation of the typical background

light levels in space simulation chambers.

5.2 BACKGROUND LIGHT EFFECTS. The effects of background light on the candidate

UV corona detection systems detailed in Section 5-I are considered in the following

paragraphs. The bandpass filters discussed in the previous section provides

out-of-band rejection ratios of lO"4 or more for wavelengths longer than 32Ohm.

Figure 5-5 shows the spectral irradiance levels due to the two principal sources

of background light, quartz heating lamps and high fidelity solar UV simulators

and the irradiance at range 300 cm due to the threshold corona (approximated

by the spectral intensity data obtained for Run 30B, c.f. Figure 5-6). The

irradiance shcwn for the quartz heating lamp was estimated from the NBS calibration

data for a IKW halogen lamp spectral irradiance secondary standard light source

at 300 cm range. Likewise, the solar data was taken from the NASA-Goddard

extra-terrestrial solar spectrum(5).

Both background sources effectively swamp the emission from the threshold

corona in the 230 to 27Ontopassband of the interference filter discussed in :

Section 5-I if the UV corona detection system views these light sources directly.

A more typical situation arises when the background light is reflected into the

UV corona detection system by the test article and the space chamber walls.
\

Each such case has to be evaluated individually. However, due to the relatively

high background light level from the quartz lamps and the solar simulator, it is

5-8
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, _,

1o- ,o-12
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z
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FIGURE 5-5 SPECTRAL IRRADIANCE OF THRESHOLD
CORONA AND BACKGROUND LIGHT SOURCES _'
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UV CORONR DR'rR EUh130B

. LORI) RESISTOR = IMEG OHM POINT POSITIVE

_ PRESSURE = 2B TC)RR COROHR VOLTAGE = I080 [',_,LT:-.

ELECTRODE GAP = O.G CH CO_ONR CUEF:ErI'I' = 150 r-II_:F:,,AP1P:.

" POINT RADIUS - _..5 MR bATE OF TEST: 20"11 V =,

-_ 1.0E-OB OEDINATE SCALE= INTEHSITY (WATT£:'HM SR) __.F_E.-F"-_

1 i I i i I [
" LEFT SCRLE RIGHT SCALE

@,OE-O_ _ __ 4.0E-C7
S

G.OE-O_ _ _ 3.0E--:"'"

200 Z25 250 PT_ 300 3_5 35o 375 4_0
.. WRVELENGTH ,',HANOHETEE$,

, FIGURE 5_ SPECTRAL INTENSITY DATA-RUN 30B

i likely that the UV corona detector systems will be swampedby reflected background

i light as well as by directly incident background light. Consequently, the
operationof the UV coronadetectionsystemwill be limitedto + _ situations

i inwhich there is no background from quartz heating lamps and the ,_lar simulator.

_ This restrictionmay not be intolerablein the caseof the solar simulatorsince

i most such systemscan be "turnedoff" brieflyby meansof a shutterwithoutthe

_ needto actuallypowe_ downthe solarsimulatorarc lamps. The caseof the

quartz heat lamps conceivably is more troublesome since these sources are

usedspecificallyto establishtemperaturelevelson the testarticle. If
i

these lampsare extinguishedeven for briefperiodto allowoperationof the UV

coronadetectionsystem,testarticletemperaturesmight changeby unacceptable

amounts. Here, again,each casehas to be consideredindividuallyin order to i

estimatethe effectsboth on the UV coronadetectionsystemand on the test

article. _
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• There remains one source of background light which might be tolerated by

the UV coronadetectionsystem,viz thatdue to normalfluorescentand incandescent _;i

lightning. The low-gradeglassenvelopestypicallyfoundin these sourceseffectively

reducethe emissionto zero at wavelengthsbelow x=3OOnm. Becauseof the wide

varietyof lightningconditionswhich are possiblein a space simulatorchamber,

an estimationof the effectsof thissourceof backgroundlighton the UV corona

detectionsystemis difficultto generalize.Figure5-4, however,and the data

for the interferencefilterdesigndiscussedin Section5.1 providea basis

; for determiningthe maximumtolerablebackgroundlight irradiancelevelat wave-

lengthsgreaterthan 300nm. The spectralirradianceat 300cmdue to the

thresholdcoronaamountsto approximatelylO-13Wcm-2nm-l in the 230-270nm

bandpassof the filter. The availableout-of-bandrejectionof this filteris

lO"4 for wavelengthsgreaterthan X->320nm.Consequently,the maximumtolerable

backgroundlightirradiancelevelat X>_320nmis roughlylO'13Wcm'2nm'Ix(lO4) =

lO-gwcm-2nm"l. This levelis sufficientlysmall,when comparedto the irradiance

of the IKW halogenlampat 50 cm range (cf.Figure5-5), to causeseriousconcern

thatthe performanceof the UV coronadetectionsystemmightbe compromisedeven

by normalfluorescentand incandescentlighting.

5.3 SELECTIONOF UV CORONADETECTIONSYSTEMS. The considerationsof the

previoussectionsprovidea basis for selectinga numberof conceptsfor a UV

coronadetectionsystem. The performancetrade-offsare summarizedin this section.
c

° "Solar-blind"Systems: Includedare systemsbuiltaroundbcththe

Honeywellgas dischargeUV detectorand varioussolarblindPMT'ssuch as

the EMI G-26H215,which has a cesiumtelluridephotocathode(cf.Figure5-7).

Thesesystemshave the advantageof compactness,relativel_low cost,

and some capabilityfor operatingin the presenceof normali,ncandescent

and fluorescentbackgroundlightwithoutthe needfor UV bandTassfilters.

The disadvantagesinclude_,inimaldirectionalinformationfor locating

the coronadischargeand the necessityfor hermeticallyenclosingthese

detectorsto preventthe generationof self-inducedcoronain the UV ;:
f

coronadetectionsystem. The gas dischargeUV detectorrequiresseveral

hundredvoltsbias,while the PMT requires1 to 2kV for operation, i

One strongfactorfavoringthe gas dischargeUV detectorarisesfrom its

demonstratedusefulnessas a UV fire detectorin the recentNASA Skylab

5-11 <
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FIGURE 5-7 SPECTRAL RESPONSEOF CESIUM TELLURIDE PHOTOCATHODE
BEHIND MAGNESIUM FLUORIDE WINDOW

mission.

o Silicon Photodiode Systems: Suitable UV-enhanced silicon photodiode

detectors are available from United Detector Technology (UTD) and EG&G

Electro-Optics Division. The specifications of the UDT-500 detector and

the EG&G HUV-4OOOB are suitable for the proposed UV corona detection
i

) system. Since these detectors require very low bias voltages (NISv),

i the self-induced corona problem is non-existent and hence, hermetic

enclosures are unnecessary for operation in a space simulation vacuum

chamber. In addition, extremely compact designs can be realized for

UV corona detection systems built around these detectors, The principal

drawbacks include limited directional capability for locating corona

discharges and the necessity to employ high quality UV bandpass interference

filters to reduce system sensitivity to normal incandescent and fluorescent

background lighting. Breadboard models employing the UDT-500 detector

suce;sfully demonstrated in this study the capability to detect UV corona

emissions near the nominal threshold operating conditions of the corona

simulator.
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;_ Silicon Vidicon S_,stems: A suitable SIT vidtcon/scintillator combination

was identified in this study to enable video detection of UV corona

emissions. The principal advantage of such a system derives from the

directional capabilities of video systems, which permits the location of

corona discharges. However, because of the high voltages required for

operation of the SIT vidicon (w,lOkV), hermetic enclosures are required

to eliminate self-induced corona problems. In addition, vidicon systems

tend to be significantly more expensive than the simpler solar blind and

silicon photodiode systems. As in the case of the silicon photodiodes,

a bandpass UV interference filter is required to reduce the effects of

background light. The capabilities of the SIT vidicon system for UV

corona detection have been estimated from vendor specifications. Veri-

fication of the actual performance to date has not been achieved by a

breadboard UV corona detection system based on the SIT vidicon.

This study has been successful in identifying three types of candidate UV

corona detection systems which show high potential feasibility. Each system has

one or more disadvantageswhich reduce its attractiveness. It is possible to

rank these candidate systems in terms of the technological risks involved in each

design. The solar blind gas discharge system presents the least developmental

risk since existing designs have demonstrated the required UV corona detection

capabilities. The silicon photodiode systems have risk factors similar to the

gas discharge designs, due mainly to the fact that both types are extremely

simple concepts, consisting of only a quartz lens and a detector. The SIT vidicon

; system represents a higher order developmental risk because of the increased

complexity (and cost) of video designs.

In terms of unit cost, the silicon photodiode system is least expensive.

The cost of the solar blind designs is higher due principally to the necessity T!
4

for a hermetic enclosure. Likewise, the SIT vidicon design is the most expensive _

_ of the three candidate systems because of the need for a hermetic enclosure and

_ because of the cost of the video electronics and the required TV monitors. _

The cost of developing "from scratch" the optical and electronics designs for a _

SIT vidicon system for UV corona detection is at least one order of magnitude

more than the costs for the other two designs. The RCA Model Trio30 SIT CCTV

camera is a compact unit specifically designed for very low light level appli-
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cations. It appears feasible to adapt this existing SIT camera design for use

as a UV corona detection system rather than starting from scratch on a completely

new design. Specifically, the conventional glass lens in the TCI030 camera has

to be replaced by a suitable quartz lens design. A UV bandpass interference

filter should be incorporated into the optical system to reduce system sensitivity

to background light. Finally, a suitable thin-film scintillator material has to

be deposited on the input end of the fiber optic faceplate attached to the

photocathode of the SIT vidicon. The scintillator is required since the fiber

optic faceplace is fabricated from conventional glass (not quartz) fibers which

have appreciable transmission only for wavelengths greater than 320nm.

The current costs of the principal hardware items required to implement

each of the three candidate systems are summarized in Table 5-I. Not included

in this listing are the costs of display/alarm hardware required for the solar-

blind and the silicon photodiode systems. Since there are numerous conceivable

designs for the display/alarm hardware, the costs are difficult to generalize

Similarly, the costs of assembling a new design, or in the case of the SIT

vidicon system the costs of modifying an existing system, have to be included

in an estimate of the total cost of the UV corona detection system. Cost estimates

for each of the three candidate systems, based on current MCAIR labor rates and

the hardware costs listed in Table 5-I, have been forwarded to NASA-JSC under

separate cover. These estimates included the costs for six complete UV corona

detection systems.

J
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TABLE 5-I - CANDIDATEUV CORONADETECTIONSYSTEMS- HARDWARECOSTS

•' SolarBlind S_,stems

o UV Gas Discharge Detector $ lO0

, o EMI G-26H215PMT $ 950

° Quartz Lens (3" Dia. f/2) $ 250

SiliconPhotodiodeS_stems

° UDT-500Photodiode/UDT-505Preamplifier $ 210

o EG&GHUV-4OOOB $ 125 :

o QuartzLens (3"Dia. f12) $ 250 :

° UV Bandpass Interference Filter $ 400 !
?

SIT Vidicon/ScintlllaterS_stem
i ° RCATCl030 SIT CCTVSystem $4,300 !

o CCTV Monitor(Single9 InchUnit) $ 158; !

o Quartz Lens Assembly $ 800 i
° UV BandpassInterferenceFilter $ 400

• i
J
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6.0 CONCLUSIONS hND RECOMMENDATIONS ._'_

_ The principal aim of this program was identification of _romising methoas
t

i for detecting corona discharge processes by means of the UV emissions produced

_ by the corona glows. A systematic approach was used to measure the intensity

" characteristicsof corona UV emission, to determine the response of several

breadboarded candidate systems, to analyze the performance of other UV corona

detection systems which could not be breadboarded due to programmatical constraints,

! and to estimate the costs for producing six copies of a UV corona detector

system. The spectral intensity measurements accomplished in this study represent

the most comprehensive absolute (NBS-traceable)U4 intensity data accumulated

to date for corona glows. It is anticipated that these data will be useful in

contexts other than the present one.

, Three types of candidate UV corona detection systems designs were successfully _

_ identified in this study: sola- blind types, silicon photodiode types, and :

silicon-intensified-target(SIT) vidicon designs. For each type of system

one or more commercially available designs were found which could be modified to

function as a UV corona detection system. These include: the Honeyw_.lldesign

for the Skylab Solar-Blind Fire Detection System, modified to accerJta quartz

_ collection lens (7.5cm dia.); the EG&G Model 500 Lite-Mike modified to accept

_r a quartz lens, a blocking interference filter and a UV sensitive photodiode

-_ detector; and the RCA Model TCl030 SIT Vidic_n Camera modified to accept a

scintillator plate a quartz collection lens and a blocking interference filter.

These systems constitute the recommended starting points for development of the

UV corona detection system.

F Background light from quartz heating lamps and high fidelity solar simulators

was found to adversely affect the performance of all three designs. Consequently,

_ suitable operational ground rules are recommended to reduce the interaction

between the background light sources and the UV corona detection system. For _'_

I thermal vacuum testing in the O.l to 50 torr pressure range in which corona

_ processes are most likely, these ground rules may be troublesome, since the back-

ground light will have to be controlled from the space simulation chamber if _

the UV corona detect'on system is to function properly.
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APPENDIX

A listingof the datareductionFORTIUkNProgramis containedin this

appendix. The programwas developedin the DigitalEquipmentCorporat',on

(DEC)RT-IIFORTRANIV languagefor usewith a PDP ll/40processor.
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RT-II FOI_TRANIt/ t,_lB-O8 MOIl 16-FEB-76 08:14:38 PAGE 081

C FILE 'CORDAR.FOR" |'
C UV CORONA DATA REDUCTION PROGRAM

IC
C VERSION OlB 30-0CT-'_5 BAB.
C

0091 REAL*4 bAT(440), 51"I)(440), CAL(448)
0002 REAL*4 DATAI(220),DATA2(220)
0003 REAL*4 $EHS(440)
0084 REAL*4 PM3'(15_,PMTF(15)
0005 REAL*4 ?OLW4), CORPLT(2_
000G REAL*4 I_l;E (440), INTENS(440)
080'?' LO_ICAL*I DA'.'( I0_, TIN(9), FILEI (7), FILE2(?), F ILE3(?)
0008 EOUiVALErtCE (DATA1( 1}, DATe1) ), (DATA2(1), DAT(881) )
000,o COM)"YA4F ILE1, F ILE2, F I LE3
0010 DATA CORPLT/GRDK COR,GRPLI3AV/
0011 DATA POLV/-S6SN.Ol,5540.93,-2217.31,2747.36/
0012 DATA CI,C2/I.1909E-12,I.4380/ ICONSTANTS FOR MAX PLANCK
0013 DATA PMTV/800., 850., 900., 950., 1080., 1058., 1l°20., 1150.,

I 1200.. 1250., I_08.. 1750., 1400., 1450., 1500./
0014 DATA PMTP/O. 027, 0. 048, 0.00 I,0.129, 0.204, O. 315, 0.48, 0.70,

I 1.00.1.42, 1.95, 2.64,3.45,4.$0.5.25/
C
C PRINT HEADING, DATE AND TIME
C

8015 CALL DATE(DA"/)
0016 CALL TIME(TIN)
0017 DAY(I0) -.FALSE.
0018 TIH(9_-.FALSK.
0019 T_E 201,DA'I, TIM
0020 201 FORHAT(' 0 IJL/COROHADATA REDUCTION PROGRAM', 2X, IOAI,2X, 9Al//)

C
C GENERATETHE WAI,_LENGTHTABLE
C

0021 WAF_( I ) -400.0
0022 DO 10 I-2,220
0023 IA I._VE¢ I', =HAVE(I=I)-IST.5/220,O
0024 I_VE, _21 ) -2_5.0
0025 DO IS 1-222,440
0026 15 WAVE_ lJ-_l,_(l-l)-GN.75/220,e

¢
C READ IN CALIBRATI_I LAHP CUBI4E
C

8027 CALL OPEHF(CAL,440,'CALl)AT_)
C
C GENERATESTANDARD LAMP CURVE
C

0028 DO 20 I • I, 440
0029 ×LAM-WAVE( I)*1.0E-3
00_8 TEHP-XLAH_POL','_"I )
OO_JI DO 25 J-2,4
8[)32 25 TEt,IP• TEHP*Y.LAH+POLY($)
8r33 Y-.LAr4-L.._VE( I .)* 1. OE-?
9t,34 T1 ,C 1/ ()¢1A_I'5)
8035 20 STD(1)-TI/(EXP(C2/(XLAI_TEHP))-I.O)*I.OE-7'

£
C INPUT DATA FILE NAPES FROM KEYBOARD
C

GRJ0 P,4B B
or
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RT-II FORTRAH IV k'81B-OL' PIOH16-FEB-?6 08:14;30 PAGE 808

0e36 TYPE 282
8837 262 FORt'l:lT('$ EHTEP HAt_ OF FILE COHTAINIHG_8-265 NM DATA:')
0038 CALL GETSTR(5, FILE 1,6, 901 )
0039 CALL OPENF(DATAI, 22e, FILEI)
8848 TYPE 212
8641 212 FORNAT('$ ENTER FULL SCALE MICI_O_OLTS:')
8842 ACCEPT 208. FS1
6643 32 TYPE 267
8844 267 FORI_T('$ ENTER PNT VOLTAGEFOR THIS RUN:')
8045 ACCEPT 288, PNTI
8846 288 FORN_T(F28.8)
804? DO 38 1-I. I5
8848 IF(FHTI .GT.Pffrv( I)+O.5)GO TO 38
8858 IF(PHTI.LT.PI'ITV(1)-O.5)GO TO _O
8852 FACTI-PNTF ( I)
8053 GO TO 35
0054 30 CO_JTIHUE
0855 TYPE 289, PMTI
8056 289 FORI'IAT('8 ***** PNT VOLTS -',618.4,' INI4_LID, TRY AGCI|N.')
0057 GO TO 32
8858 35 T_E 283
0_59 Re3 FORNAT('$ EHTER HAI_E OF FILE COHTAIHIHG 265-R88 HM DATA:')
0060 CALL GETSTR(S, FILE2, 6.901 )
8061 CALL OPEHF(DATA2, 220, FI LE2)
0062 r_E 212
0863 ACCEPT 288,FS2
0864 42 T_E 287
e065 ACCEPT208,PM_I'2
0066 DO 48 I- 1.15
8067 IF(PHT2.GT.PNTv'(1)+e.5)GO TO 48
88_9 IF(P_ff2.LT.PNTV(:)-8.5,_GO TO 48
0071 FACT2-PI'ITF(I)
0072 GO TO 45
0073 48 CONTINUE
0074 "_/PE 289,P_,,.
0875 GO TO 42
8876 45 TY?E _ i t. Fl_, ; -_" :_
0877 211 FORHI:IT_'e IS'_"Prq[ FACTOR -',618.4/' 2NP PHT FRCTOR -',618.4/)
0878 T_v?E213
8879 213 FGP,t$_T('$ENTER_PERTUPE AREA 18 ¢1'1A2:')
COCO ACCEPT 208. AREA
0081 DO 50 I • 1,220
0082 PAT(I) -PAT(1)/FACTI*FS 1
0083 DAT ( I+228) • D_T ( I+228),"FACT2*FS2
0884 58 CONTINUE

C
C COt'IPUTESEN_;ITIVITY, AIII)INTENSITY
C
¢ Utl,t'rs: SEw:,-° w tll4_-I SR"-I MICROI:II'19^-I
C IflTENS-- W flW'-I SR"-I
C

808_ DO 60 1-1,440
8886 SEttS_I) ,STD(I)/CAL( 1),A_EA
0087 I ftTENS(1) -DAT( l ) _:$E|IS(I)
0088 60 COftTINUE

¢
C LIST ALL DATA r_ LINE PRINTER .,.,.ml_
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RT-II FORTRAN IV V818-88 NON i6-FEB-?6 88:14:38 PAGE 883

C

8889 PRINT 286

8898 286 FOR;_T('I',28×,'UV CORONA DATA REDUCTION LISTING'//)
8891 PRINT 284, FILE1,FILE2
8892 284 FORMAT('8',ISX,'DATA FROM FILES: ',?AI,' _ ',?AI//)
8893 PRINT 285
8894 285 FORr_T(SX,'_VELENGTN',9×,'STANDARD LAMP',5X,'CALIBRATION',

1 8X,'SENSIT:VIT/',8)<,'CORRECTED',IS_<.'CORONA'/
2 28X,'RADIAHCE',6X,'DATh-AVERAGED',6X,'(WATTS/NM-SR',
3 5X,'COR_,g DATA',8X,'INTENSITY'/SX,'(NANOMETERS)' ?X,
4 '(b_TTS,'Cfi'3-SR)',4X,'¢MICROAMPS)',8)<,'PER MICROAMP)',5X,
5 '(MICROAHPS)',6X, '(WATTS_M-SR) '/)

0095 PRINT 228,(_VE(1),STD(1),CAL(1),SENS(1),DAT(1),INTENS(1),
1 I=1,448)

8896 228 FOR_T(IX,_GI8.G)
8897 PRINT 218

• 8898 218 FORHAT('I')

C WRITE THE DATA ON DISK FOR PLOTTI_G
C

0899 CALL SENDF, ,AVE,448,'L_VECR' )
8180 TVPE 214

8181 214 FORINT('8 £ /ER AN OUTPUT FILE NAMEFOR THE REDUCEDDATA'/ :I $ _PLFAUL_ HAME- 'CORPLT.DAT") : ')
- 8182 CALL cETSTR(5,FILE3,6)

8183 CALL SCOM_(",FILE3,1FLAG)
8184 IF(IFLAG.NE.8)GO TO 78
818G CALL SCOP¥('CORPLT',FILE3)
OlO? 78 CALL SENDF(INTEHS,448,FILE3)

C
C CHAIN TO PLOTTING PROGRAM'CORPLT'
C

0108 CALL CHAIN(CORPLT, FILEI,II)
0109 END

i

'j
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