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1. INTRODUCTION
 

This report covers analytical work which has been
 

undertaken in connection with the flexible walled self
 

streamlining two dimensional test section. The report period
 

is the first half-year of what may become a two or three year
 

project, and hence the bulk of the work carried out, and the
 

emphasis of this report, is of a theoretical nature. Separate
 

chapters of the report-relate to aspects of the operation of
 

flexible walled test sections and to the design of a proposed
 

transonic test section.
 

The aim of the self streamlining wind tunnel is to
 

reproduce within the limited extent of the test section the
 

flowfield that would have existed around the same model in an
 

infinite flowfield. The methods, as discussed here, are applied
 

to two-dimensional testing. The principal difference between
 

the self streamlining wind tunnel and conventional tunnels for
 

two dimensional testing is that the former has flexible top
 

and bottom walls. The flexible walls are impervious, and are
 

positioned by jacks to the contours of appropriate streamlines
 

which would have existed around the same model in an infinite
 

flowfield. A method for selecting wall cont6urs - a criterion
 

indicating that they are streamlines - is required because of
 

the infinite number of possible contours.
 

The infinite two dimensional flowfield may be imagined to
 

be divided into three portions: two 'imaginary' portions
 

extending from the test section upper and lower walls out to
 

infinity, separated by a real portion of flowfield which is that
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in the test section. The selected streamlining criterion is
 

an adjustment of the wall contours until the measured pressures
 

along the upper and lower boundaries of the test section, that
 

is along the flexible walls, match pressures along the adjacent
 

and identically shaped boundaries of the imaginary flowfields.
 

The imaginary fields have the same free-stream conditions as
 

the real flowfield.
 

In a wind tunnel test an attempt is made to reproduce
 

the real portion as accurately as possible. It then remains to
 

check on the correctness of the wall contours by comparing real
 

and imaginary wall pressure distributions. There are several
 

ways in which the pressure distributions in the imaginary fields
 

may be derived. For example, they may be determined empirically
 

by reproducing each of the two fields in water or in air. The
 

latter approach, which can in principle yield information
 

.
applicable to low speed or to high speed flows, has been tried 1
 

Alternatively, for low speed testing the electrolytic tank can
 

be employed since the flowfield to be reproduced is essentially
 

free from viscous effects. However, the alternate approach of
 

computing the imaginary flowfields has been adopted. Arguments
 

supporting this choice include the fact that inviscid flows
 

can be computed with some certainty, and also the ease with
 

which the computational step may be included in any closed-loop
 

control of the flexible walls.
 

The imaginary flowfields are computed flowing over the
 

effective contours of the walls. The effective contour is
 

composed of the physical shape of the wall modified by the
 

displacement thickness of its boundary layer. The present
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method' requires only an estimation of the differences in
 

displacement thickness between runs with the test section empty
 

and with the model present. The differences are applied as
 

corrections to the geometrical contours to give effective
 

contours. The corrections are applied only to the flexible
 

top and bottom walls. In the present tunnel the sidewall
 

area is one-third of the total area and the effects of possible
 

changes in the state of the sidewall boundary layers have so
 

far been ignored.
 

The application of the above procedures leads the walls
 

via a series of iterations to streamline shapes,, but with
 

possible residual imperfections arising from:
 

i) Resolution of wall pressure measurements
 

ii) 	Resolution of wall position measurements
 
affecting
 

a) the imaginary flowfield computations
 

b) the flow at the model
 

iii) 	Errors in estimations of changes of boundary
 
layer displacement thickness on the flexible
 
walls, or changes in the sidewall boundary
 
layers, affecting
 

a) the imaginary flowfield computations
 

b) the flow at the model
 

iv) Effects of the truncation of test section length
 
and of the constraints imposed by the portions of
 
wind tunnel upstream and downstream of the test
 
section,
 

v) Only a finite number of wall co-ordinates are
 
defined.
 

This report is concerned with theoretical work undertaken
 

in support of the development of this method of interference-free
 

testing. In Chapter 2 of the Report is described the method
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currently in use for computing the imaginary flowfields from
 

the effective wall contours, while in Chapters 3 and 4 are
 

analytical assessments of the effects of two of the possible
 

sources of imperfection in streamlining listed above, namely
 

(ii) (b) and (iv) respectively. Finally, in Chapter 5 there
 

is described a proposed method for accelerating the wall
 

iteration procedure which, if successful, will replace the
 

existing method.
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2. A METHOD FOR COMPUTING THE IMAGINARY FLOWFIELDS
 

2.1 Non-Lifting Models
 

The division of the infinite two-dimensional flowfield
 

into upper and lower imaginary parts, Iu and I., separated by
 

real part R is illustrated on Figure 2.1. The requirement is
 

to computeI u and Iz to yield the pressure distributions given
 

by the imaginary fields at their wall boundaries. As noted in
 

the Introduction the input data to the computation of a field
 

includes the free stream conditions and also the effective contour
 

of the adjacent wind tunnel wall.
 

The particular computational technique which has been
 

adopted regards the tunnel wall as a boundary to an otherwise
 

infinite two-dimensional field. Testing to date has been
 

confined to low speeds, and it has already been noted that the
 

flow in this region of an infinite flowfield surrounding the
 

model under test would behave essentially as though inviscid.
 

Therefore the computations are based on two-dimensional
 

incompressible potential flow theory. The wall is represented
 

in the theoretical model by the envelope of the flow from a set
 

of sources and sinks distributed along a straight line lying
 

parallel to the freestream and positioned fairly close to the
 

wall. This model is illustrated in Figure 2.2, which shows
 

the wall contour, and the upper half of the source envelope.
 

The wall co-ordinates are known at a finite number of points,
 

and the strengths of the source/sink set can be adjusted until
 

co-ordinates of the envelope of the source/sink flow coincide with
 

the wall co-ordinates. It is then an'easy step to compute the
 

- 5 ­



pressure distribution along the contour for comparison with
 

that measured inside the test section. The program is
 

identified as SSl.
 

This notional approach has been tested in the following
 

manner. The shapes of streamlines representative of the desired
 

locations of the flexible test section walls, and also the
 

pressure distributions along the walls, have been computed
 

exactly for inviscid flowfields around several different bodies.
 

The streamline shapes were then taken as input data to a program
 

based on the above source/sink model to compute the wall
 

pressures. One of the bodies is shown on Figure 2.3. It
 

comprises a source.at the origin mid-way between test section
 

walls, followed by a sink having half of the strength of the
 

source. The sink is distance h/2 downstream of the source,
 

where h is the nominal depth of the test section. The body is
 

not lifting. The contour of part of the upper wall is shown.
 

On Figure 2.4 more of the contour is shown, in the form of a
 

measure of the deflection Ay of the streamline by the model.
 

Far upstream the streamline asymtotes to a height h/2 above
 

the axis. Note the magnified deflection scale which has its,
 

origin at height Y/h = 0.5.
 

A set of 15 sources or sinks were positioned along the
 
S/h axis of Figure 2.4 at the indicated locations. The program
 

was arranged to adjust the strengths until the envelope passed
 

through 15 specified wall positions, within some tolerance.
 

Computed values of wall streamline pressure coefficients are
 

shown on the lower part of Figure 2.4. The continuous line
 

is an exact solution for potential flow about the body. Sets
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of pressure coefficients computed from SS1 are also shown for
 

two matching tolerances between source envelope and wall
 

contour. These are ±c/1,800 and ±c/18,000, where c is the
 

wing chord for which the test section was designed, 137.16mm
 
4
 

(5.4 inches), giving tolerance;chord ratios of ±5.6 x 10
­

5
and ±5.6 x 10- . It can be seen that with the use of a tight
 

tolerance in SS1 thepressure predictions are almost exact,
 

whereas with the contour matched by an envelope to within the
 

lower level of accuracy (c/,800) , which happens to correspond
 

approximately to the accuracy experienced1 2 in the setting of
 

walls in some low speed testing, noticeable errors occur in the
 

computations. The average of the modulus of the error in the
 

computed pressure coefficients at fifteen locations along the
 

wall was 0.0035 and 0.0004 with the ±c/1,800 and ±c/18,000
 

tolerances respectively. Until the implications of such errors
 

are properly understood, it is proposed to retain a fairly tight
 

tolerance in the computing, despite a lengthening of the computation
 

time with reduction of tolerance.
 

2.2 Lifting Models
 

When applied to the analysis of wall pressures for lifting
 

models, SSl yielded results which were unsatisfactory in terms
 

of pressure errors. Increasing the number of source/sinks along
 

the wall introduced only a small improvement. On Figure 2.5 is
 

shown one of the mathematical models used in this part of the
 

analysis, a lifting cylinder. The wall contours were matched
 

by the source/sink envelope this time to within a tolerance of
 

.
±c/2,700 Note with lifting bodies the upper and lower wali
 

contours and therefore the two imaginary flowfields differ.
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Examples of the computations are shown on Figure 2.6 for the
 

lower wall. A representative length of test section wall is
 

shown with a magnified y-scale, together with the positions of
 

29 sources/sinks distributed along a horizontal tangent to the
 

crest of the contour. The length of contour is about 7h. The
 

exact pressure distribution is shown on the lower half of
 

Figure 2.6 together with that given by SS1 modified for the
 

use of 29 sources and sinks. It can be seen that the values
 

of Cpi predicted by SS1 in this form are considerably in error,
 

the errors averaging about 0.02 and therefore lying well outside
 

the limits of experimental pressure resolution.
 

For the case of lifting bodies it was found necessary to
 

represent in the analysis a length of wall much longer than the
 

test section to bring the computed values of imaginary flowfield
 

pressure coefficients inside the experimental limits of resolution.
 

The latter is about ±0.011.
 

Satisfactory predictions were obtained with the addition of
 

more sources/sinks, 14 upstream and 14 downstream evenly spaced,
 

allowing the envelope to match the streamline at a total of 57
 

points over a total length of 33h. An example of a computation
 

is shown on Figure 2.6, where the average C error is about 0.004
 

in the region of the test section, and the maximum local error is
 

less than 0.01.
 

While the preceeding types of computation had served to
 

indicate the requirements in terms of the length of streamline
 

matched by the source/sink envelope in the case of lifting models,
 

it was not possible to immediately implement the method since
 

in practice the wall contour is obtained from measurements on
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the test section, and therefore only a portion of the contour
 

required by this version of SSl is known. The shapes of the
 

streamline contours beyond the ends of the test section are
 

estimated in the following manner. The circulation r around
 

the test section boundary is calculated from measurements in
 

the test section, giving the lift on the model. The circulation
 

is assumed centered in a vortex positioned in the model. The
 

shapes of the streamlines extending upstream and downstream from
 

the ends of the test section walls are assumed to be dominated
 

by the combination of the freestream and the vortex. As a
 

further approximation the slopes of the streamlines at distance
 

x downstream from the vortex are taken to be 2xU where U is
 

the free stream velocity and the circulation is anti-clockwise
 

positive. It can be shown3 that for low values of streamline
 

slope, the strength m(x) of an elemental source at x is given
 

by m(x) = -r / x . The disturbance velocity u in the freestream
 

direction, produced at station x along the test section by this
 

source distribution extending to infinity from the end of the
 

test section station x = a is
 

-r dE_
U(X) f 


2w2 a ( - x) 

2w2x
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This method of approximating the effects of the streamlines
 

upstream and downstream of the test section, coupled with the
 

finite source/sink set along the test section, has proved
 

satisfactory in a sufficiently wide range of test cases. These
 

included computations of upper and lower imaginary flowfield
 

wall pressures, for streamlines around models having various
 

amounts of blockage, lift, and wake thickness. The computer
 

program as now developed yielded in all cases an average error
 

in pressure coefficient along the test section of less than 0.01,
 

which is regarded as satisfactory.
 

The method of wall adjustment has been to move the wall
 

locally a distance proportional to the local difference between
 

the real and imaginary pressures at the wall. The movement of
 

the wall is towards the higher of the two pressures. This
 

method resulted in convergences of the walls to streamlines, but
 

in a relatively large number of iterative steps. Chapter 5
 

details a method which should increase the rate of convergence.
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3. INTERFERENCE EFFECTS OF WALL POSITION ERRORS
 

3.1 The Nature of the Problem
 

It is recognised that the flexible-walls can only be
 

positioned by the jacks within some set tolerance, and in this
 

chapter is outlined a method by which -the interference introduced
 

by such errors may be estimated. In any given test section of
 

this type there are likely to be many jacks along each wall. In
 

the existing low speed test section there are 15. Position errors
 

are likely to arise in a random manner, both in location and
 

magnitude, within the tolerance band.
 

While the designer is to a large extent free to choose this
 

tolerance, he must bear in mind that complexity and therefore cost
 

will increase as the tolerance is reduced. Further, since the
 

flexible wall is positioned at a finite number of jacking points
 

there is no control over the shapes of the portions of wall
 

between jacks, which would probably render pointless any endeavour
 

towards levels of precision above some value.
 

In the existing low speed test section the wall setting
 

accuracy is estimated to be approximately ±0.127mm (±..005 inches)
 

giving a dimensionless tolerance:chord ratio of ±9.3 x 10- 4 , and
 

the same tolerance has been adopted in the following analysis.
 

In this analysis the wall setting errors are regarded as
 

producing a bump or series of bumps in an otherwise flat walled
 

two-dimensional test section. Even though the bump height would
 

in practice be random, here only the worst case of a maximum
 

error, which is equal to the tolerance, is considered.
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In practice a single jack in error along a nominally
 

flat wall might produce a local wall shape similar to a portion
 

of a sinusoid, with the peak or trough of the wave located at the
 

jack. In this analysis such a wall contour disturbance is
 

represented by an equal strength source/sink pair lying on the
 

wall line, with a minimum pair spacing equal to the jack spacing.
 

The strenqths of the source and sink were chosen to give an
 

arbitrary bump height equal to O.00093C. It is recognised
 

that this analytical representation of the effect of a jack
 

error is less than ideal, but it is believed the representation
 

gives reasonable results.
 

The effects of the presence of the bumps are assessed in
 

the form of three measures of interference in the empty test
 

section at what would be the location of the wing model, assumed
 

central in the test section. The measures of interference are:
 

a) Angle of attack error at the wing leading edge.
 

b) Induced camber, which is assumed to be the
 
difference between the flow angles at the
 
leading and trailing edges.
 

c) Disturbance to free stream velocity, assessed
 
as a dynamic pressure error at the wing quarter­
chord point.
 

Even though the interference effects are quoted for this single
 

but representative value of bump height, since the bumps are
 

small the interference effects are expected to vary linearly
 

with height, allowing simple scaling for other values of wall
 

setting errors.
 

The interference at the model will depend oh the number
 

of jacks in error, on their location, and on the sign of the
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setting error. With many jacks per wall, any of which can be
 

in error, it is clear that a very large number of different
 

values of interference is possible.
 

The approach used here is to analyse a simple bump
 

configuration which intuitively gives an interference close
 

to the maximum. The probability of occurrence is then considered.
 

3.2 	Analysis of Simple Bump Configuration
 

To find values for the worst effects at the model, investig­

ations were made into the nature of each interference, using an
 

inviscid flow model to determine velocity components and
 

distributions.
 

The flow model for the simple case of a single bump in one
 

flexible wall consists of a source/sink pair combined with a
 

system of images, thereby producing a test section as shown in
 

Figure 3.1. The parameters available in the analysis are test
 

section height h, the approximate bump length d (measured between
 

source and sink) and the bump position xb (determined by the
 

source location). It would appear logical to non-dimensionalise
 

with respect to tunnel height, but the severity of the interference
 

is a function of model size and therefore wing chord c was used
 

instead.
 

Typical magnitudes of each interference and their variations
 

with bump location are shown in Figs.3.2a, b and c, for particular
 

values of h/c and d/c. The graphs clearly show that a maximum
 

effect occurs for each interference, as the bump passes underneath
 

the wing model.
 

- 13 ­

http:Figs.3.2a


The approximate bump positions for the maxima are
 

illustrated in Fig.3.3 for values of h/c in the region of 1.
 

The maximum angle of attack error occurs when the leading edge
 

of the wing is over the nose or tail of the bump. The induced
 

camber is a maximum when the wing leading edge is approximately
 

over the nose of the bump or the trailing edge is over the tail.
 

The maximum velocity increment occurs when the quarter chord
 

point is over the bump mid-point. The forms of Figs.3.2a, b
 

and c also suggest that the interferences are significant in
 

most cases for a total range in X'/c of about 1.
 

It is therefore assumed that jack errors outside of a
 

tunnel length of about 2 chords will not produce any significant
 

interference, and it does not matter whether these jacks are in
 

error or not, within the assumed tolerance.
 

The variations of the three maximum interferences with
 

bump length and model size are shown in Fig.3.4a, b and c. It
 

can be seen that the interferences reach near-maximum values
 

at d/c in the region of unity.
 

It is now possible to consider the probabilities for
 

the occurrence of combinations of jack errors leading to
 

significant interference. It is assumed that each jack error
 

is statistically independent and, in order to obtain a
 

conservative estimate, that the magnitude of each error is
 

equal to the tolerance. In practice, there would be a
 

distribution of errors ranging in magnitude from zero up to
 

the tolerance. Over a tunnel length of two chords near the
 

model, let there be N jacks. The probability of a particular
 

jack being in error (up or down) is 1/N. The probability of
 

- 14 ­

http:Fig.3.4a
http:Figs.3.2a


all the other jacks being in error in the opposite sense is
 

N
1/2 -1. However, it has already been seen that any single
 

bump will produce a significant interference over a range of
 

about 1 chord and could therefore be produced by any one of
 

N/2 jacks. The probability of a significant interference
 

occurring because of a single jack bump is therefore
 

1 1 N 1P1NN-2
 
2N-1 2 2N 

The probability of a second jack adjacent to the first having
 

an error of the same sign is l/(N - 1). The probability of a
 

two jack simple bump is therefore
 

1 1 1 N 1 
N (N- 1) 2N-2 2 2N-I(N 1) 

The probability of an n jack simple bump is
 

S (N - n)!
N ­n 2 n+l(N - 1)! 

and the relative probability is
 

Pn 2n - l (N -n)!
P1 (N -i)! 

15
 



These results are given for various N in Table 1 in the form 

of the inverse of the probability, i.e. in terms of the likely -

number of wall adjustments to produce a maximum error.
 

Table 1
 

N = 6 N = 12
 

I/P1 64 4096
 

I/P2 160 22528
 

1/P3 320 112640
 

3.3 A Summary of Interference Effects
 

Current aims are to use minimum test section depths roughly
 

equal to a wing chord and jack spacings of around k chord. The
 

arguments of the previous section and the results in Table 1
 

suggest that for jack spacings of 3 or 4 per chord, the probability
 

of a multi-jack simple bump is sufficiently high that the maximum
 

error values in Figs.3.4a, b and c should be taken. Therefore
 

it is felt that the interference effects given by such a bump in
 

one wall of a test section with depth of one chord should be
 

adopted in test section design. The interference effects are
 

then
 

angle of attack error 0.025 degrees
 

induced camber 0.05 degrees
 

Cp error 0.0018
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These three effects can be related by converting them
 

into equivalent errors in CL. The conversions have assumed
 

a lift curve slope of 2n for the angle of attack error, thin
 

airfoil theory (similar to that in Section 4.2.1) in converting
 

induced camber, and a uniform C error in forming an equivalent
 
p
 

CL error. Note that the latter approximation will lead to a
 

high estimate for the C3L error. The resultant figures are
 

CL error due to angle of attack error 0.00275
 

CL error due to induced camber 0.00125
 

CL error due to Cp error 0.0018
 

These levels of interference may be considered acceptably
 

small, and therefore it is felt that despite the fact of the
 

analytical model not giving a shape of bump very close to that
 

which might be expected in practice, it is unlikely that a more
 

realistically shaped bump could give a less acceptable level of
 

interference.
 

If on the other hand the interferences are not acceptable,
 

because it is impossible to apply corrections the tunnel must be
 

designed to reduce the errors. The preceeding reasoning indicates
 

that this may be achieved at lowest cost by installing position
 

monitors of enhanced accuracy only at those jack locations close
 

to the model.
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4. INTERFERENCE DUE TO WORKING SECTION END CONDITIONS
 

4.1 Introduction
 

The theoretical bases for the adjustment of the wall
 

contours to produce streamline surfaces are now well established
 

and the remaining problems lie in their practical implementation
 

and in improving the efficiency of associated computational
 

procedures. The.tunnel will comprise a working section with
 

self-streamlining walls in the vicinity of the model with
 

tailoring at each end to meet the fixed portions of the tunnel
 

circuit. In the modification of anexisting tunnel or design
 

of a new one, careful consideration must be given to these end
 

conditions and various configurations are possible. The
 

features to be investigated in this chapter are:­

1) The best type of end structure, e.g. solid
 
wall, open jet or a combination.
 

2) The minimum length of adjustable section to
 
produce an acceptably low level of tunnel
 
interference from the non-streamline contours.
 

3) 	The effect of compressibility on the length
 
requirements.
 

These features will be considered in turn from the viewpoint of
 

model interference corrections only and not from that of detailed
 

mechanical.or constructional advantages. However, the favoured
 

configuration from the aerodynamic standpoint is also relatively
 

easy to implement in practice.
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4.2 Possible Terminal Structures for the Streamline Section
 

Possible configurations are represented diagrammatically­

in Fig.4.1. They comprise (a) solid/open jet ends, (b) solid/
 

solid ends and (c) solid/open jet ends with flow turning. in
 

the case of (a) and (b) short transition sections between the
 

fixed ends and the adjustable walls would be necessary, but in
 

(c) the turning angle could be adjusted so that the wall slopes
 

are tangents to the streamlines at entry to and exit from the
 

adjustable section. These configurations are by no means
 

exhaustive; porous sections will not be considered. However,
 

they are representative of extreme cases and the solid
 

terminators are amenable to analysis.
 

4.2.1 Basic case for analytical solution
 

Approximate and, in some cases, exact estimates of the
 

tunnel interference can be obtained from the basic two-dimensional
 

arrangement shown in Fig.4.2, where distributed velocity is shown
 

imposing constraints of streamwise flow at the test section entry.
 

It is probable that solid and wake blockage can be readily
 

minimised and therefore the lift interference is a more critical
 

case. The nature of this interference is indicated in Fig.4.2,
 

for the solid inlet/free streamline configuration. The net
 

effect of the wall vorticity is to produce (for the sense of
 

model circulation shown)
 

(i) an upwash at the model
 

(ii) 	an effective negative camber at the model due
 
to the upwash gradient.
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Both make contributions to the interference and their magnitudes
 

are assessed using the following analysis.
 

A complex z-plane representation of the two-dimensional 

tunnel section is shown in Fig.4.3(a) with the origin of the 

axes at E. The centre of the model lift is at G, given by 

z = z where zo = a + . The z-plane is transformed into the0 2 

upper half'of the c-plane by:­

z = + in] 4.1 

The point G transforms to c = in where n is given by:­

a = [ 2 ) + inn] 4.2 

The flow resulting from an isolated vortex of strength r at zO 

with solid boundaries at ABC and DEF can be obtained from a 

vortex of strength r at in in the c-plane with its mirror image 

of strength -r at -in. The complex potential is:­

w = 4 + ip = - -{in(c - in) ln(c + in)} 4.3 

The total velocity components in the z-plane are given by:­

dw dw d
 
dz d dz
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The wall interference is obtained from the velocity components
 

at G in the z-plane after subtracting the velocity field of
 

the model vortex. The resultant components are formally:­

- Lim Fdw d +i2 1 4.4 

zdz 2 (z 0] 

The upwash component is v. A measure of the streamline
 

curvature at the model is given by:-


S -IdwLi d + ir 1 4.5 

where I means the imaginary part of. The solution in
 

equation 4.3 and the transformation in equation 4.1 can be
 

used in equations 4.4 and 4.5 to yield:-


u=O
 

2 h (n2 2 4.62
 

(9n4 4 2
 
av = ir7T - i - 1) 4.7 

12h 2 ( 28x + 1)4 
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The self-streamlining tunnel will have a >h and in some cases
 

a>>h. With this condition an approximation to equation 4.2 is:­

2 27ra a2in(
2 = - 1£-- 2 -1)
Th -I-ln(-hr 1 

which may-be further simplified for present purposes to:­

2 2ra
 

Using this result, equations 4.6 and 4.7 become:­

= -4r- 4.8 

4ira 

and
 

a 3r 49
 
ax 16,ra 2
 

Note that these results are independent of tunnel height h. If
 

the model consists of a wing section of chord c and lift
 

coefficient CL in a free stream of velocity U, then the
 

circulation r is given by:­

r = 1 4.10L 


2
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The upwash V can be interpreted as an incidence error :/U at 

the model and the corresponding lift coefficient error due to 

upwash ACLu obtained from equations 4.8 and 4.10 as:-

ACLU 
 1 c a4.11
 
CL 4 a 27
 

where a1 is the section lift curve slope.
 

The streamline curvature 2x in equation 4.9 can be regardec
ax
 

as an equivalent parabolic camber for the aerofoil section, as
 

shown in Fig.4.4. The equation for the camber line is:­

4
Yl= rc c
 

whre rc is the camber ratio. The velocity boundary condition at
 

zero incidence is
 

y1
 
dx
 

1
 

Hence the curvature can be related to the camber ratio by:-.
 

d2yl r 
By - I - U 8 U cax 3x1 dXl2 c
 

Thin aerofoil theory shows that for a parabolic carber ratio rc,
 

the lift coefficient increment due to camber is
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a 

ACLC 
 2a, rc
 

Using equations 4.9, 4.10 and 4.12 this gives the lift
 

coefficient error due to streamline curvature as:-


ACLC 3 2 a
 1 4.13
 

Comparison of the results in equations 4.11 and 4.13 shows
 

that for the normal case of wing chord c much smaller than the
 

test section semi-length a, the upwash error is much the
 

larger term.
 

4.2.2 Application of the interference analysis to choice of
 

end sections
 

The results from the previous section are used with the
 

configurations in Fig.4.1(a).and (b) by combining the
 

contributions from both ends. For the solid/solid terminations
 

the sense of the wall corrections is shown in Fig.4.5(a). When
 

the model is located at mid-tunnel in both height and length,
 

the upwash error ACLU is zero because end contributions are
 

equal in magnitude but of opposite senses. However, the
 

contributions to stream curvature augment each other and the
 

error ACLC is twice that given by equation 4.13.
 

In the case of the solid/open jet ends the application is
 

not as straightforward. It is known that, for lift interference,
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the correction in a full open jet is twice that for a closed
 

tunnel and opposite in sense. This characteristic is assumed
 

to apply also to the case represented in Fig.4.5(b) where the
 

jet interference vorticity is twice that of the solid wall
 

vorticity and opposite in sense. This results in an upwash
 

correction which is not only non-zero but is three times that
 

given by equation 4.11. The curvature correction has the same
 

magnitude as that of equation 4.13 but is of the opposite sign.
 

Unfortunately, it is not clear how to deal with the open jet
 

curvature produced by the model lift; for a full open jet tunnel
 

this produces a downwash at the model which results in a
 

correction of similar magnitude to that in equation 4.11. The
 

situation is therefore unsatisfactory because corrections may
 

be potentially large and it is not possible to predict what
 

adjustable section length is necessary to reduce them to
 

acceptable levels. With the University of Southampton tunnel
 

used to date for interference-free tests, flow turning as in
 

Fig.4.1(c) has been employed to minimise the uncertainty. The
 

principle for determining the requirement of flow turning is
 

illustrated in Fig.4.6. The model will produce an upwash
 

component normal to the walls at A and B. An equivalent free
 

stream flow U is conceived which makes an angle as to the tunnel
 

centreline at entry in such a way that U sina s exactly cancels
 

the model upwash at A and B. The wall vorticity will be weak
 

and tend to zero at A and B; the corresponding interference
 

correction at the model will be small. The open jet vorticity
 

is similarly small because the jet contour is also tangential
 

to the streamlines at C and D. The datum line for the model
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incidence and the streamline flow is the equivalent free stream
 

flow direction at infinity, i.e. the line through the model
 

and making an angle as with the tunnel centreline at inlet.
 

Whilst the interference for the tunnel with flow turning
 

may be expected to be very small, it will not be zero because
 

wall vorticity will develop upstream of A and downstream of C
 

and the magnitude is again not easily assessed. A more
 

promising arrangement would appear to be the solid/solid ends
 

of Fig.4.1(b), with the virtues of:­

(a) zero upwash correction
 

(b) known curvature correction
 

(c) a layout easily realised in practice.
 

This layout is chosen as the basis for a study in the next
 

section of the minimum length of adjustable section to give an
 

acceptable interference level.
 

4.3 Solid/Solid Terminations and Section Length Criteria
 

This configuration lends itself to analysis using the
 

complex z-plane representation in Fig.4.7(a). The plane is
 

transformed to the upper half of the i-plane in Fig.4.7(b) by:­

1n) 2 _1
 
-h 

-z 

(n2 2 + in 
 4.14
 

where the parameter n is related to the tunnel dimensions a and
 

h by:­

a- + in n 4.15 
h 4n2 
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The relationship is illustrated in Fig.4.8. The limit a = 0
 

(n = 1) represents the closed tunnel case.
 

The complex potential in the c-plane for a vortex r
 

at P is exactly the same as that in equation 4.3 and the formal
 

expressions for the velocity components u, v and the curvature
 

-X are as given in equations 4.4 and 4.5.
 

Using zo = a + ih/2 and the transformation in equation 4.14,
 

equations 4.4 and 4.5 give:­

= = 0 

- yw (3nBx 3h2 (n 2 + 1) 6 -lOn 2 + 3)
 

These results confirm that there is no upwash interference at
 

the model and only flow curvature is present. The equivalent
 

parabolic camber concept can be applied as before to the curvature
 

to give the resultant lift coefficient error ACLC as:-


ACLc = 2 2 a1
 
4.16
CL h T f(n) 

where
 

2
2 4 3 - O + 3) 4.17 

( 2+ 1) 
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This result can be used to determine acceptable tunnel
 

lengths for engineering purposes by assuming a1 = 2w and plotting
ACLc h )2
 

in the form of the interference 
or error parameter CL
 

shown in Fig.4.9.
 

For a chord/height ratio of unity, this parameter is a
 

direct measure of lift coefficient error. The closed tunnel case
 

of a = 0 gives an error of 20.6%. This falls rapidly with
 

increasing length of streamline section and for a semi-length/
 

height ratio of about 0.35 there is zero correction. With a
 

length/height ratio of about 2, the error reaches a maximum
 

negative value of about 4.3%. For length/height ratios in excess
 

of 5 the error is less than 1%. The apparent advantage of using
 

a relatively short flexible section is probably illusory for the
 

following reasons:­

1) If the section length 2a is of the same order
 

as the chord c and tunnel height h, the lift
 

representation as a concentrated vortex is not
 

reasonable. Thus, whilst the overall lift
 

correction may still not be large, the pressure
 

distribution may be significantly in error, and
 

pressure gradients and boundary layer development
 

or separation may be unrepresentative.
 

2) The error parameter is very sensitive to a/h for
 

small values of a/h and there is a problem in
 

practice in determining an effective value for a.
 

A possible interpretation is illustrated
 

diagrammatically in Fig.4.10. With the flow
 

and circulation senses shown, the present
 

correction theory would produce stagnation
 

points on the upper faces of the slits although
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only a small fraction of tunnel height away
 

from the ends. There would be local distortions
 

compared with the fully free streamline but
 

allowances could be made for this in determining
 

the correct setting for the first jack. The
 

fairing sections reduce the effective length of
 

correctly streamlined wall but the value of a/h
 

may be taken as that correspoiiding to the distance
 

between first and last jacks.
 

It is therefore felt that if these factors are to be removed
 

and a tunnel correction of less than 1% is reasonable, then a
 

section length/height ratio greater than 5 is required at low
 

(incompressible) tunnel speeds.
 

The upwash error or correction is eliminated because of
 

the symmetric positioning of the model lift centre relative to the
 

solid ends, as indicated in Fig.4.11. Note that the model will
 

not in general be central with respect to the flexible wall
 

section. Errors can therefore result from the following:­

1) Model lift centre may not be known accurately
 
beforehand and there may be an effective model
 
offset.
 

2) The model will have finite size although chord/
 
tunnel length ratios can be kept reasonable.
 

3) The model will in general have a-pitching moment.
 

These factors need more detailed work but preliminary study has
 

shown them to produce effects an order less than the curvature
 

correction derived here.
 

For completeness, consideration must also be given to
 

solid and wake blockage corrections. However, consideration of
 

the fundamental representation of solid blockage by a doublet,
 

- 29 ­

http:Fig.4.11


whose velocity disturbance is varying as the square of the
 

distance, shows that the vortex lift,case is more critical.
 

The symmetric arrangement again helps in minimising the wake
 

blockage error but since this is a source term, the magnitude
 

could be of the same order as (but no larger than) the lift
 

correction. It is therefore anticipated that the criteria
 

for the termination of the tunnel flexible section are adequate
 

for all corrections.
 

4.4 Compressibility Effects at Moderate Tunnel Mach Numbers
 

For tunnel Mach numbers below that for critical flow at
 

the model, some measure of the effect of compressibility may be
 

obtained by applying the subsonic similarity rule to the result
 

in equation 4.16. To simplify the process without losing
 

practical relevance, it is assumed that a/h is significantly
 

greater than 1 and that equations 4.15 and 4.17 can be replaced
 

by the approximate forms:­

2
 
h 44.15a
 

f-(-T 1o 4.17a 

Equation 4.16 then reduces to:-


ACLC 1 ()2 a 1
 
L 16 - 4.6a
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i.e. the correction is independent of tunnel height. Now ACLC
 

and CL vary in the same way with Mach number M, and c and a are
 

both measured in the stream direction. The only variation is
 

therefore through the section lift curve slope which increases
 

2 -k
 
as (1 - M ) Using the subscripts I for incompressible and
 

C for compressible flow, equation 4.16a gives for the same
 

tunnel geometry:-


ACLC ACLc
 

C CLl14 /1-M 2 C I
L
 

Alternatively, for the same lift coefficient ratio and the same
 

model chord, the tunnel semi-length/height ratio have to be
 

increased in the form:­

(a)- 1 - ft) 

C 4Vl-M 2 1 

This is illustrated in Fig.4t 12 for C = h and a 1% value for
 

ACLC/CL. The required tunnel length increases with Mach number
 

but only slowly over the range shown. Even at M = 0.8, a 30%
 

longer tunnel would give the same interference level. Above
 

M = 0.8, the argument is invalid because the similarity rule
 

will break down in this transonic regime and a more sophisticated
 

analysis would be needed.
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5. A PREDICTIVE METHOD FOR RAPID WALL ADJUSTMENT
 

5.1 Basis of the Method
 

in order to improve the rate of convergence of the source
 

2
method used to date with the low speed tunnel 1 , an alternative
 

process has been sought. The basic steps in this process are:­

(1) For a given distribution of measured wall static
 

pressure, the flow velocity internally at the
 

wall can be determined.
 

(2) For a given wall shape, the external imaginary
 

flow field can be calculated theoretically.
 

(3) The velocity jump across the wall obtained from the
 

values in (1) and (2) is a direct measure of a
 

notional vorticity distribution at the wall.
 

Moreover, this vorticity distribution has the
 

characteristic that the velocity component
 

induced normal to the wall just cancels the sum
 

of the normal components of velocity due to the
 

model and the undisturbed free stream.
 

(4) The strategy for wall adjustments is one in which
 

the local wall slope is modified until the
 

freestream component normal to the wall just
 

balances the model component. The wall vorticity
 

is then zero. The wall co-ordinates are determined
 

by integration of the wall slope distribution.
 

An iteration process would still be required because the model
 

flow may be modified by the wall movement but it is anticipated
 

that convergence is rapid. As shown in the subsequent sections,
 

it is unnecessary to perform step (2) explicitly if a suitable
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starting point and iteration process are adopted. In order to
 

afford a simple analytic illustration of the method, the case of
 

a single wall adjustment is taken in the next section.
 

5.2 Illustration of the Adjustment Process
 

A simple formulation can be obtained from the consideration­

of a two-dimensional model near a doubly infinite flat plate
 

representing the upper wall of a two-dimensional tunnel. The
 

flat plate is taken as the starting point because the imaginary
 

external flow field is the simple one of uniform flow at'the
 

undisturbed tunnel speed U. The situation is shown in Fig.5.1.,
 

The subscript 0 indicates the initial arrangement and the origin
 

of the x, y-coordinates is a suitable fixed reference point in
 

the wall structure. The velocity increment u0 (x) is determined
 

from the wall static pressure distribution. The velocity
 

components Umo(x) and Vmo(x) are the increments over free stream
 

produced by the model in an infinite flow field. It can readily
 

be seen that the vorticity yo(x) is given by:­

Yo(x) = Uo(X) 5.1 

that the model velocity component is:-


Umo(x) u(x) 5.2 

and that the horizontal velocity component of the flow without
 

wall interference is given by:­
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5.3 U + Umo(x) = U + uO (x) 

For the infinite wall shown in Fig.5.1, the condition of zero
 

penetration at the solid surface results in the relationship:-


Vmo 2 ( - x) dE 0 5.4 

This result can be used to determine the modified wall shape
 

Y1 (x) as shown in Fig.5.2. The approximate normal velocity
 

condition is:­

fu + Umo(x) Idda+ Vmo 5.5 

Approximations are present because the slope is assumed everywhere
 

to be small and also because the distribution umo (x) is correct
 

only at the original wall location (y = 0). In practice, it is
 

unlikely these will give significant errors. Equations 5.1, 5.3,
 

5.4 and 5.5 can be-combined to give:­

=dy - o _ d 5.6 
'U + u0(x)'Id- d;F 5.) 

The slope can therefore be determined directly from-the measured
 

quantity u0 (x). Care must be taken in the numerical evaluation
 

- 34 ­



of the integral in equation 5.6 particularly in the region of
 

the singularity g = x. A principal value interpretation must be
 

used and this is achieved by a local analytic fit to the data in
 

the form of a polynomial in and piecewise analytic integration.
 

The numerical integration of the slope to give the wall coordinate.
 

is straightforward. It is anticipated that a large proportion of
 

the total wall adjustment will be accomplished through yI.
 

5.3 Starting Point for the Second Wall Adjustment
 

For a second application of the adjustment process, the
 

wall can be moved to yl(x) and the new wall static pressure
 

distribution measured. The external imaginary flow is no longer
 

uniform and must, in principle, be calculated for the given shape
 

yl(x). The normal velocity boundary condition for the flow U
 

over such a shape is:-

Sy1 -
1 f + Ywl() 5.7 

dxlU 21-2 X)(6 -ix) . 

where Ywl(X) is the distribution of surface vorticity. Comparison
 

of equations 5.7 and 5.6 shows that, provided u0 is everywhere
 

small compared with U, the following approximation holds:­

Ywl(X) = u0 (x) 

and the flow over the upper surface of the wall is -given by:-


U - ywl X) = U + uo(x) 5.8
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Equation 5.8 therefore shows that, provided the first wall
 

adjustment is made according to the method in Section 5.2, the
 

external flow for the second adjustment can be obtained directly
 

from the measured internal velocity used for the first adjustment.
 

5.4 General Application of Process
 

The process of Sections 5.2 and 5.3 can be generalised to
 

any order of iteration and it is always possible to relate the
 

external flow field for one adjustment to the measured internal
 

velocity of the previous adjustment. Account of both tunnel
 

walls can be taken by applying the adjustment process to each
 

independently and regarding their mutual interference as part
 

of the model flow change. Alternatively, since the vorticity
 

distributions of both walls are always known, it would be possible
 

to include both in a modified form of equation 5.4. However,
 

computational complexity and run times would increase and
 

iteration would not be avoided, because of model flow adjustment
 

resulting from wall movement.
 

Tunnel length considerations mean that the integrals in
 

equations 5.4, 5.6 and 5.7 have finite limits but, in conjunction
 

with the layout arguments of Chapter 4, it is not anticipated that
 

this will present a significant error. Wall boundary layer growth
 

can be incorporated where necessary as in the present technique
 

and an error measure for termination of the iteration process
 

can be developed from a root mean square change of wall position
 

from one iteration to the next or from an equivalent velocity/
 

pressure parameter.
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6. CONCLUSIONS
 

1. A method has been developed for accurately computing
 

the imaginary flowfields outside a flexible walled test section,
 

applicable to lifting and non-lifting models.
 

2. The tolerances in the setting of the flexible walls
 

introduce only small levels of aerodynamic interference at the
 

model. While it is not possible to apply corrections for the
 

interference effects, they may be reduced by improving the
 

setting accuracy of the portions of wall immediately above and
 

below the model.
 

3. Interference effects of the truncation of the length
 

of the streamlined portion of a test section can be brought to
 

an acceptably small level by the use of a suitably long test
 

section with the model placed centrally, but the required length
 

is not impractical.
 

4. A method for rapidly converging the walls to the
 

desired streamline shapes is proposed. Experimental work is
 

required to confirm predictions.
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SYMBOLS 

a Tunnel working section semi-length 

a, Two-dimensional lift curve slope 

c Wing chord 

CLACLuACLC Lift coefficients 

Cp Pressure coefficient 

d Length of wall bump 

f(n) Function defined by equation 4.17 

h Tunnel working section height 

M Mach number 

m(x) Source strength per unit length of wall 

Nn Indices 

Pn Probability 

rc Camber ratio 

t Wall setting tolerance 

U,u,v,u,v Velocity components 

w Complex potential (w = p + ip) 

x,y;xl,y1 Coordinates 

xb Coordinate of the nose of the wall bump relative 
to the wing quarter chord 

Ay Wall movement relative to the straight 

z,z0 Complex variables (z = x + iy) 

as Flow turning angle 

r Vortex strength 

yo,Ywl' Wall vorticity distributions 

Transformation parameter 

Dummy variable 
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Velocity potential
 

Stream function
 

Suffix
 

I Incompressible
 

C Compressible
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