@ https://ntrs.nasa.gov/search.jsp?R=19760019341 2020-03-22T13:51:21+00:00Z

General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA TECHNICAL NASA TM X- 73904

NASA TM X- 73904

MEMORANDUM COPY NO.

SOLUTION OF A LARGE HYDRODYNAMIC
PROBLEM USING THE STAR 100 COMPUTER

K. James Weilmuenster }
Lona M. Howser)
i
k1
May 1976
(NLSA-TH—X-7390¢0) SOIUTICN OF A& LARGE N76-26429
HYDRODY RANMIC FRCBLEY CSING THE STAR-100
CONBUTEF (NASR) 30 p HC $4.00 cscL 20D snclas
n

G3/34 44513

This informal documentation medium is used to provide accelerated or
special release of technical information to selected userc. The contents
may not meet NASA formal editing and publication standards, may be re-
vised, or may be incorporated in another publication.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ';f)\‘) A “
LANGLEY RESEARCH CENTER, HAMPTON, VIRGINIA 23665 ‘g‘ JUL 1976
2 RECENELRY
L NASASF
\4;;" w - y
& \"\

1.

Report No. 2. Governmant Accession No.

NASA TM X- 73904

. Title and Subxitie

Solution of a Large Hydrodynamic Problem Using the
STAR 100 Computer

S. Report Dete
May 1976

6. Performing Organization Code
6430

. Author(s)

K. James Weilmuenster
Lona M. Howser

8. Performing Orgenizstion Report No.

NASA Langley Research Center
Hampton, VA 23665

IO.WutaﬁtNm
506-26-10-01

11. Contract or Grant No.

12.

Sponsoring Agency Name and Address
National Aeronautics & Space Admlnistration

Washington, DC 20546

13. Type of Report and Period Covered

Technical Memorandum

14. Spomoring Agency Code

15.

Supplementary Notes

16.

Abstract

The advent of vector processing computer systems has brightened the
prospects for investigating large hydrodynamics problems which are beyond

the computational scope of current computers.

Problem formulation, particularly

in the area of data organization, is crucial to the effective use of vecter

processing machines.

A representative hydrodynamics problem, the shock

initiated flow over a flat plate, was used for exploring data organizations
and program structures needed to exploit the STAR-100 vector processing computex,
A prief description of the problem is followed by a discussion of how each

portion of the computational process was vectorized.

Finally,

timings of

different portions of the program are compared with equivalent operations on

serial machines.

is shown to increase as the problem size increases,

The speed up of the STAR-100 over the CDC 660C program
All computations were

carried out on a CDC 660C and a CDC STAR 100, with code written in FORTRAN

for the 6600 and in STAR FORTRAN for the STAR 100.

i
|

i
¥

P

17.

Koy Words (Suggested by Author(s)) (STAH category underlined)

Fluid Mechanics
Numerical Analysis

18, Distribution Statement

limited.
Computer Programing and Software Unlimite
19, Secunity Ciamif. {of this report) 20, Security Clasui. (of this page) 21. No. of Pages 22, Price’
Unclassified Unclassified 28 _ $3.75

The National Techmical information Service, Springfield, Virginia 22151

*Aviiiatie from

STIF/NASA Scientific and Teznnical taformation Facility, P.O. Box 33, Coltege Park, MD 20740

INTRODUCTION

The advent of vector processing computer systems has brightened the
prospects for investigating large hydrodynamics problems which are beyond
the computational scope of current computers. Problem formulation, particu-
larly in the area of data organization, is crucial to the effective use of
vector processing machines. A representative hydrodynamics problem, the
shock initiated flow over a flat plate, was used for exploring data organiza-
tions and program structures needed to exploit the STAR-100 vector processing
computer. A brief description of the problem is followed by a discussion of
how each portion of the cémputational process was vectorized. Finally, timings
of different portions of the program are compared with equivalent operations
on serial machines. The speed up of the STAR-100 over the CDC 6600 program
is shown to increase as the problem size increases. All computations were
carried out on a CDC 6600 and a CDC STAR 100, with code written in FORTRAN
for the 6600 and in STAR FORTRAN for the STAR 100.

max

LIST OF SYMBOLS

dunmy variable

thermal conductivity

number of grid points in the y direction
number of grid points in the x direction
static pressure

time

Temperature

x component of velocity

y component of velocity

distance parallel to the freestream
distance normal to the freestream
compreséion parameter in equation (1)
spatial increment in x

spatial increment in n

non-dimensionel distance normal to the freestreanm
viscosity

density

dummy variable

maximum length parallel to the freestream

maximum length nc.mal to the freestream in the

transformed coordinate

Problem Description

The establishment of & test gas flow over a body in an impulse facility
such as a shock tube, & shock tunnel or an expansion tube is the result of the
asymptotic relaxation of an initially unsteady flow to a steady state.

Several analytical papers have been written on the establishment of a
shock-induced laminar boundary-layer on a flat plate (refs. 1, 2, 3). Analyses
in these publications were based on large freestream unit Reynolds numbers
which allowed the effects of a boundary-layer induced leading-edge shock and
its interaction with the boundary layer to be neglected. However, when the
freestream unit Reynolds number becomes sufficiently small, these effects
can have an appreciable impact on the development of the shock-induced, as
well as the steady-state, flow over a flat plate. A study of these leading
edge effects led to the flow field code described in this paper.

The effects of shock boundary-layer interaction on the flow over a
flat plate have been extensively investigated. The remarks found in ref. b
provide & good, basic discussion of the subject. Briefly, if the freestream
unit Reynolds number is sufficiently small, the boundary-layer growth at the
leading edge of the plate will be great enough to make the leading edge appear
v¢ the flow as a blunted body thus creating a leading-edge shock whose strength
decreases with distance from the plate and eventually degenerates tc a Mach
wave. At steady state, the flow along the plate can te divided intoc two
regions: (1) a merged region rear the leeding edge where there is no
separation between the shock end boundary-layer end (2) a weak interaction
region in which the shock and boundary layer are distinct.

The dominant features of the unsteady flow field are shown on figure 1,
Here, a normal shock wave is moving from left to right across the plate into
a gas at rest while the leading edge shock is beginning to form due to the
initial boundary layer growth. Thet portion of the flow near the leading
edge will be approaching a steady state while the rest of the flow field

is unsteady.

ORIGINAL PAGE 8
OF POOR QUALITY

Method of Solution

The unsteady flow field for this problem can be generated using a finite
‘difference representation of the unsteady, compressible, two dimensional
" Navier-Stokes equations.

A two-step Lax-Wendroff finite difference scheme as outlined in ref. 5
has been used as the algor.ithm for solving the Navier-Stokes equations. Two
modifications have been made to the method of ref., 5. First, the transport
properties - viscosity and thermal conductivity - have been made a function
of the local temperature. Secondly, a coordinate transformation has been
made in the y direction. The transformation, in the form

n=1n (By + 1) (1)

allows a larger nodal packing at the wall. Also, for unequal y increments,
the differencing can be done in equal increments of n which greatly
simplifies the algorithm. Details of the equations and differencing algo-
rithm mey be found in appendix A,

The computations have been carried out over a rectangular grid system
which represents a sharp leading-edge flat plate 15.2L cm in length and &
vertical height above the plate of L.6T cm. The computationel grid is
illustrated in figure 2. Nodal points upstream of the platé are initialized
with post-shock conditions and those on the plate are initialized with the
unshocked conditions. Symmetry conditions are imposed along the line
Yy = O for nodes in front of the plate throughout the computations.

The upper boundary was considered an out flow boundary with values
along it being determined by extrapolation from the interior points. The
right hand boundary was moved downstream as the normal shock moved to the

rigktt until a maximum grid size of 200 x 28 was reached. Along the plate,

the no-slip conditions u =0 and v = 0 and the adiabatic wall condition 7

%§>= 0 were imposed while the wall density was found from a second order
extrapolation from the interior points.

Code Vectorization

System Characteristics:

The STAR-100 is a large scale, high speed, logical and arthmetic
computer utilizing many advanced design features such as vector processing
and virtual addressing. It also contains vector arithmetic and functional
units designed for pipeline operations on a vector, where a vector is
defined as a set of contiguous elements., The vector instruction performs
operations on ordered scalars which are elements of the vector. The
vector instructions read the scalars from consecutive storage locations
over a specified address range called a field, perform the designated
operation on each set of operands, and stores the results in consecutive
addresses of a resultant field beginning at a specified starting address,
i.e., one vector instruciion operates on two vectors and stores a vector
result. The starting address and vector length are contained in cne 6k
bit word which describes the vector and is called a vector descriptor.

The STAR instruction set includes, in addition to vector add, sub-
tract, multiply and divide, cther vector instructions that are useful
when vectorizing this and similar problems. They will be described at
appropriate points in the text. The equation used to obtain timings of

STAR vector instructions is of the form

T=sg + ol

vhere T 1s the time in clccks (one clock equals 40 nanoseconds), s is the
start up time which is different for each vector instruction, o is a

constant which depends on the particular instruction and word length of the

phcB B
)*{,X(J R Q\}P-LYN

OF 200

'dyérahdrahd ' is the length of the vector. - For example; timing fo.the = o

vector add instruction using 64 bit operands is
» T = (96 + 2/2) clocks,

For a vector computation, it is more efficient to use one long vector than
to repeat the computation several times using shorter length vectors. With
the shorter vector length the vector startup time is multiplied by the num-
ber of times the vector instruction is repeated.

Storage Considerations:

As with serial computer systems, the core storage requirements on a
vector computer must be taken into account. Even with virtual memory it is
r cessary to be aware of the storage needed for solving the problem. More
core storage is needed to effectively use the vector version of the problem
than ic needed if it weré run on a serial computer. When a FORTRAN vector
expression of more than two terms is evalueted, one or more temporery ‘rectors
is used to store the intermediate result. 1In addition, some terms need to
be repeated to form a long vector ¢f the came length as the other computa-
tior to avoid doing many repeated computations with short vecters., As er

exemple, the expression lf: 10 a.b +,i f:lo e b + should be
i=1 ,1 i=1 ii,2
written as

J&J J &0
where _
jgl i);l 25 5%, 81281 ,2 7 82008

ezc. The forming of the longer vector can be done by repeated vectcr transmits

81,1 2,1 %2,27 %"
wnere the short vector is moved into the longer vector at approrriate loca=-
tions.

Important factors in vectorizing the code are recognizing wkere vector
arithmetic exists and creating temporary vectors where possibtle. These

texporary vectors consist of vector expressions which are common to several ’

equations. The temporary vectors are computed only once, then used in

.

-~ -—-subsequent calculations. These temporary vectors cause more storage to be

needed, but avoid repeeting vector calculations. Equivalencinghgirsome'

temporary storage areas is used in the qodé to minimize the total storage

needed. :
The present discussion is limited to & grid size whore all the
variebles necessary for computation will fit in central memory, i.e;
the total storage required must bve less than 500 K words. In this
problem it is desirable to treat all the points in the wrole mesh (grid)
as one vector. This gives vectors of length L = ¥ X N to use in the
vector computation. These are the maximum length vectors that can be ob-
tained and will be more efricient on a vector computer than usingrvector ,
length of M or N. 7

Initially, the manner in which the data is to be stored‘internally in
the computer must be determined. The éption of storing by vhat will be
defined as row or column storage is available. Referfing to fig. 2 row
storage means a vector is defined in the ¥ direction. The first element of
the vector is at the point x = 0, n = O, the second element of the’vector
is at the point x = Ax, n = 0, etc, until x = Xoax? then the next element
in the vector is the point x = 0, n = An and continues in this marner for
the entire grid. Column storage means a vector is défined in the n
direction. The first element of the véctor is at the point x =0, n = 0.
The second element of the vector is at x =0, n = An etc. until n = nmax’
then the next element in the vector is the point x = Ax, n = O and continues
in this manner for the entire grid.

When choosing the direction of storing the vectcr, the following were
considered:

1) how does the storage affect the boundary computation;

2) what length vectors can be used;

3) how does the storage affect increasing the number of grid

peints used during the computation as the right hand boundery

moves downstream,

o,

Row storage means the boundnry'alons nﬂq and along n=0 are vectors

The boundary at n=n is a straightforward extrspolation vhile the boundary

: camputstions at n=0 consist of lengthy equations involving many camputntions.

The»beundary along x=0 is held constant, end the values associated with it
would be destroyed arter each time step if vectors were of length N % M.
Since the elements along x=0 are not stored in contiguous locations, rede~:
fining the elements would require special considerations. Increasing the
number of grid pdints at which calculations are made would not be reasonable
for row storage if the entire grid was treated as one vector. This would be
increasing the length of the vector by inserting elements within the vector.
If vectors of length N-1 were used for all the computations the grid could be
increased in the x direction by simply increasing the length of the vector
'#nd the additional points would be the elements at the end of the vector.
Also the boundary at x=0 would not be disturbed. Therefore, for a ressoneble
vector formuletion using row storage, the vector compﬁtations would use
vectors of length N-1 and would be repeated M-2 times (calculations at the
ﬁpper and lower boundary are considered separately).

Column storage means the boundary along x=0 is a vector. Thes? values
remain constant, so the vector computation can actually start with the
second column x = Ax. The vectors run in the column direction sc the
boundary conditions along x=0 are nc.er destroyed. The elements &re not stored
in contiguous locations along the boundaries n = O and n=nmax’ sc they will
require special consideration., The entire grid can be treated as & vector
of length M x N and when the numbe. of points in the grid is increased
it means only increasing the vector length by M elements. This essertially
added cne column to the grid.

The program was coded using column storage. The deciding factor
here in using the column storage as defined is not the boundary computetion,
vhich would probably be more advantegeous using row storage, but the value
of using the longer vectors for the interior computation and the ease of

adding to the grid size.

‘equations are of the forms

Intefior Point Coméutations =« The basic finite difference equations used

“{n the Prﬁlm*r@mimmize femwuLcommtations for ~ e

the interior points can use vector instructions. The difference

oy (t + At, xS = P(t,x) (2ﬁ i) . (U(t, x + ax) - Plt, x - &)

which consists of a vector subtract, a multiply of a constant, {At/2Ax),
and a vector, and then a second vector subtract.

The computation of the interior points begins with the element at the
point n = An, x = Ax, using the storage defined as column storage and a
vector length of £ = M » (N-1) -2. Using this vector length, all the
points in the grid except the boundary along x=0, the point n=0,

= Ax and the point W Noaxs X = Xpay 87 computed, see figure 2. This
reans that incorrect computations are made at the boundaries along n =
and n=nmax' In order that a vector calculation of length £ could be
used, these calculations were made even though incorrect results were
stored. The STAR has control vectcer cepability which prohitits the
storage of certain elements in a vector. This capability could have
been used to prevent incorrect results from being steored sicng the boundaries;
tut in using this feature, the calculations are still performed even though
the results arenot stored. irce values for these bcundary e_ements are not
used before correct values are computed, it did not seem necesseary to use
the control vector feature. After the calculation of the intericr points have
beer: made, the val.es &t the boundaries are computed and storedé cver the

incorrect results.

Boundary Conditions:

With the method of storage defined as column storage .sed for the
computations along n = 0 and n=nmax, it does not appear trhat vector
computations could be used because the elements are not in contigucus

locations. The boundaries require considerable computaticns and it would

ORIGINAL PAGBE 18
OF POOR QUALITY

10

be desirable to use vector computstions. To compute the values along

‘n= 0, the values at n = An Nn= EAn, and n = 34n are used, -If the éilﬁes f

* o

along n = An, n = 24n, and n = 300 wwre eaéh repr*sé?féﬁ‘UY‘vtrtor83*vector*~*‘*—~A«
o ~computations could be made vhich vould result in & vector vhose elemnnta nre
 the values of the bonndary ‘values along xw0. v TR

In ha evaluaxion of the bounaary . ~ditions axtensive uce is made or
two instructions, transmit indexed 1ist- and tranamit 1ist 1ndexed each using
one- operand where the slements are not vectors. The transmit indexed 1ist
transmits noncontiguous information referenced by an index vector to a vector.
This is essentially a gather technique, whererinfbrmstion is gathered from
noncontiguous locations tc form a vector. The transmit 1ist indexed in-
struction performs the reverse process, vwhere the elements of a vector are
transmitted to noncontigucus locations in memory irdicated by an index vector.
This is essentially a scatter to memory. These two- instructions enable &
user to form vectors if they do not exist, use vectecr arithmetic, then scatter
the vector result to nonvector storege. '

The vector instruction transmit indexad list is used to take elements
along n=An and form a vector. The same instructicn is used to form vectors
from the elements n=24n and other vectors from the elemerts along n=34n.

Once all the vectors needed in the computation ere furmed, they are used in
expressions to compute a vector result of the boundary condition. This vector
is then scattered back to the reguler grid where the boundery salong n=C is

not a vector. This is sccomplished by the transmit list tc indexed vector
which scatters a vector to noncontiguous locations., Alcng the n=nmax

boundary a similar technique is used where the rnoncortiguous elements are

made into a vector. These vectors are used in vectcr computations to compute
a vector result which is then scattered bhack to the noncontiguous locations

alorg the boundary.

Calculations Requiring Other Vector Instructions:

Cunditions where two different paths may be followed after e comparison
has been made on vector elements might be referred tc as a vector IF

statement. Such a situation is ercountered when computations involiving

11

real gas flows are mede. Here, some parameterc, such as transport

properties, are prescribed by curve fits over different temperature

,,,,, « . . ranges rather than en all inelusive gnalytie functivon., The vector I¥ -
statement does ﬁ;gw;iist in BTAR ¥ RTRAN. Hawever, the esquivalent logie -

can be construc ed tram the vector instructions compare, con;ress and merge.

:The elments or a Vector are tirst cwpa::%d with the elements of -another

vector or & eonstant and a bdt vector 13 the result. 1%@ element: of the

bit vector are 1 or 0 depending upon whether the compar: condition was
true or false. This bit vector is then used with the uriginal vector .
vith two compress instructions to form two vectors. Seperste computations
are .her performed, each using the appropriate vector. The bit vector can
then be used to merge the two rgsultant vectors to form a single resultant
vector of the original length.

Results

The shock induced flow over a flat rlate is representative of a class
of flow field problems for which no soluticns have been obtained due to the
lack of computational resources. .

. This program was chosen foir coding beceuse: 1) the solution requires
iuterrating the full two-dimensionel .avier-Stokes equaticns; 2) the solution
aliowed a variasble computational field size to be used; and 3) the solution
required the determination of reelistic bcocundery conditions.

Three v.rsions of the code were written: 1) a scalar version to be
run on the CDC 6600 serial machine; 2) a fully vectcrized version to he
rur. on the STAR 1.00; and 3) a vector versicrn which used scalar caiculations
to determine the boundary values.

The fully vectorized version of the code accommodeted e meximum flow
field size of 100 x 28 which allcwed adequatz resolution of the flow. This
version of the code required a total of LL dimensioned va:risbles and a core
storage size of 260 K as opposed to the serial version of the code which
required only 25 dimensicned varisbles and a core stcrage ¢f 65 K, but used
disks for storawe of nost of the data,

On the STAR 100, two magnetic core storage page sizes are available

for virtual eddress references. They are referred to as e large page size,

i2

containirn’; 65,536 64 bit words, and a small page size, containing 512

€L bit words. The selection of the page size to be used is an option under
program control. Initially, small pages were used in the program. However,
when using large pages there are fewer pages involved; therefore, fewer
searches need to be made to relate a central memory address to a virtual
memory address on a particular page. When the program was executed using
large instead of small pages, an improved efficiency of about one-third was
gained in the CPU time. Thus, large pages have been used in obtaining the
following results.

A comparison of the running time for the scalar and fully vectorized
versions cf the code are summarized in table 1. Results for both the
RUN and FIN compilers are given. Computations made with the FIN compiler
utilized the highest optimization level. Since the computaticnel field
size is dynamic, the tabulated times shown represent the total CPU tirme
required for the field to reach the given size. The computaticral speed
advantage of the vector system over the serisl system is obtvious, with
the increase in speed directly proporticnel to the size of the computaticn
field, i.e. vector length.

A comparisor of the time toc do identicel werx for the vector and
scalar versions of the boundary velue computaticns is tebulated ir teble 2.
A ten fold. ircrease in the bocundary vector lengtlh increeses the required CFU
time by 50% for the vector calculation whereas the identical scalar work

requires approximately a ten fold increase in the CPU time,

-y

Table 3 tabulates a breakdown of the total CPU time for the fully vector
and scalar boundary celculation versions of the cocde. For the vector version
of the code, the total CPU time spent doing the btcundery celculaticns &s
a percentage of the totel CPU time decreeses dramaticelly as the number of
grid peints in the computaticnel field becomes large when compered tc the
numbcr of elements in the boundary vector. On the other hand, the total
CPU time required to do the scalar boundary calculaticns remeins st ap-

proximately 50% of the total CPU time.

13

As previously stated, the computation times quoted for the vector machine
are for a program which resided entirely in control memory. To analyze the
effect on computational speed of a program which required storage in excess
of the centrel memory size, the grid size in the present code was increased
so the program code and datse would not fit in core. Thus, the virtual memory
cupability of the operating system was used to access, as needed, data or
code which resided ocutside of central memory. The computational times
were compared to the time required to do egquivalent work using the in-core
program. Equivalent CPU times were obtained, but the total wall clock time
for the out-of-~core run increassed initially even though short vector
computations were used. The increase was & factor of over 35 after only 200
time steps. Data were stored and used in such a random manner that the major
portion of the computaticn time was used for getting the needed variables
into core, The increased wall clock time proved this progrem to be
imprectical for obteining solutions if the grid size is such thet the code
and date cannot fit in central memory.

The program hes been modified in an attempt to minimize the use of wall
clock time. The computaticnal grid was broken up into blecks and the compu-
taticn of the grid within each block was computed for e time step, The block
gize was determined and the storage was arrenged so that all the variables
necessary for the cormputetion of the block would fit in memory. At the
teginning of each blcck computation, the data for that vleck would have to
be accessed initially, but during the computation of the tlock, no data out-
side of central memcry would have to be accessed., Prelimirnary runs shew thet
executing the modified program in this manner resulted in equivalent CPU
times, but only a fector of five increase in the wall clcck time required for
identical work using the unmedified in-core program,

Figures 3 and LI show some typical results generated by the code, Figure
3 is a plot of isotherms in the flow-field at a given instant of time., The
leading edge of the plate is loccated at the left hand side of the figure.

Here, the leading edge shock is located at the isotherm concentration at

1k

the right hand side of the figure. The time dependency of the flow is
illustrated by transverse velocity profiles for increasing times at a given x

locaticn.,

15

CONCLUDING REMARKS

It has been shown that a flow field prcblem of such size as to be
impractical for routine running on a serial processing machine can be coded
and run in an efficient manner on a vector processing machine.

To extract this high performance from a vector processing machine such
as the STAR-100, careful consideration must be given to the formulation and
flow of the code being written to avoid such obvious inefficiencies as
repeating identical vector calculations to the more subtle relationship
between data storage and boundary calculations. Even when the vector lengths
used are relatively short, the vectorized version of the code is clearly
superior to serial code.

The vectorized code has demonstrated that branch operations
encountered in imperfect gas calculations can be efficiently vectorized. I
has also been shown that the calculation of bcundary conditions reguire
careful consideretion, but can be done efficiently using the vector processcr.

When the number of boundary points is small, there is no apparent
advantage to vectorizing the boundary velue calculations. However, when
the number of boundary pcints tecomes large, scaler calculations can require
more than 200 percent of the time reguired to do the identical work
(ircluding time required to construct the vecters) using vector instructions.

It has been demonstrated thet a complex, twe-dimensional, fluid flow
problem can be run quickly on & vector processing machine without exceedirg
the core storage requirements of the system. Larger two-dimensionel and
exisymmetric flows as well as three-dimernsicrel flows will certainly require

core mass data storage than cen be handled by the system core size.

vectorized code to handle an out of core size problem and still maintain

efficient use of a vector computer.

16

APPENDIX A

The Navier-Stokes equations for two-dimensional, unsteady,

compressible flow can be written in the following form:

Here,

1 2
X Y

| B i, Al ¢ Sy e
t X Yy

pu pv
2 pu2+P puv
F = - . G = - >
puv pv +P
u(E+P) v{E+P)
T
XX
Txy s
-G+ ut + vT
L ¥ XX Xy
0
T
¥X
T
h A8
-qy * T + UT
Y yx

17

where

=3
]

P (e +1/2 (u® + va)).

~
n

-
n

T = -
Xy A - 1%

= - ka, qy = - k.Ty .

N

Introduction of the transformation

n =12 (By +1)

leads to
8 ~ _~po=N 9
oy ke an
and
2 5
2—5 = g% %ﬁ [% 4
9y

-Nn]

= R

w Fx + Be GF + S1 + Be

X
Tne stresc *erns are redefired as

T =u (4/3u -2/3 B "v)

XX X n
= L/3 —n'-

DN (L/3 e e 2/3 ux)
- m 2 =N

Txy T u (Be u, + vx) .

= v = R =1}
% = - ﬂ-xq qw' = - phe Tn .

p (4/3 s = 2/3 vy). B

u(k/3 Y% 2/3 ux)

18

The equation (2) is differenced in the following manner:

1/2 0 0 {

0
= v +
W qyn, o= 12 Wy g gt Mg o) +.A Fx>_+_ 1/2,0

0
Be—n <G> +€l 0 +
Vs 1/2,0 +1/2,0
0
D
<2y 11/2,0}
Ax

for the value of Wat t + At/2, x = S and n=n .
Permuting the indexes gives the value of W at t + At/2, x=x and n=n % An.
For any function { the first order differences are given by

) . N 0
by = LR
<x +1/2,0 & 41,0 0,0
s
0 et o 0 0 0
<‘4'Jn> ot L +y + v +y
11/29 0 0, i 119 el O0y=1 t_l’ =]

0 0
and similarly for <¢x> and <1J. p>
0, * 1/2 g & Ll
0 ‘ 0 0
Also, <Sl> =1/2 <Sl> + Slx
* */ + 1,0 0,0

+1/2,0

0 0 0
and similerly for <SE> > <Sl and S,
n + 1/2, 0 X 0 + 1/2 2 0, + 1/2

19

The second order differences are expressed in the following way for any

function Y
0 1 0 [¥) 0 0 0 0
48-%():‘ N T (‘1’ - ¥) -a (\P -y
0,0 Ax +1/2, 0 +1,0 0,0 - 1/2,0 0,0 -1,0
0 1 0 0 0 0 0 0
(ay,) = TR |8 (w + Y -y -y) -
< = AT e | 042/2 V41,0 1,4 -1,0 -1,4 0,-1/2
0 0 0 0
(\P + Y -y -y
AT Ca e pil
0 0
and similarly for <awn)n and <(a.¢n)x> vhere
0,0 0,0
0 0 0
a =1/2 (a +a)
+1/2,0 c,0 +-130
and
0 (0] 0
a =1/2 (a +a)
0,+ 1/2 0,0 0,+1

The value of W determined at the intermediate points are then used to
define new W's in the t + At time plane at x =

the equation

x end N = n according to

)

20

il 1/2

1 0 /2 !
W =W +At <<% :> + Be " <<? T>
7,0 0,0 Xh—pn N/ 0,0
0 = 0
+ Slx + Be <82 >
0,0 N/ 0,0

where

1/2 3 1/2 1/2
OMREE S Sl
X/ 0,0 +1/2,0 -1/-,0

and

5.

21

REFERENCES

W. J. Cook and G. T. Chapman, The Physics of Fluids, 15, 12 (1972).

R. N. Gupta and R, L. Trimpi, 9th International Shock Tube Symposium
(Stenford Univ., U.S.A., 1973), p. 4k9.

D. E. Abbott, J. D. A. Walker and H. T. Liu, 9th International Shock
Tube Symposium (Stanford Univ., U.S.A., 1973), p. 462,

W. D. Hayes and R. F. Probstein, Hypersonic Flow Theory (Academic
Press, New York, 1959).

H. U. Thommen, ZAMP, 17, p. 369 (1966).

Number of Total CPU Time, Sec.
Grid Points 6600 STAR
In Computational Compiler
Field Run FTN
#_- s e g S -?;, S T’— e s --*:::—-—-31
168 | 3.002 | 1.707 | 0.2218
280 | 19.009 | 10.830 1.5450
|
336 | 44.819 | 24.640 = 2.2060
504 { 151.88 | 87.640 6.2220 |
| i
2800 | 21600. | ¥ 321.60

e e T — e —_—

“Data not available.

Taole 1.- Comparison of CPU Times Nequired for
Solutions on the 6€00 &nd Star
lachines.

PRECEDING PAGE BLANK NOT FILMED

BouRdave CPU Time In Seconds !
X::;:; Vector Scalar
7 .009326 .0075
9 .009550 .0101
10 .009612 .0113
11 .009899 .0126
13 .010037 ; .0151
15 .010246 .0176
19 .010575 | .0226
32 .011705 .0388 !
50 | .013208 .0613
71 ; 014366 .0875
82 | .015997 .1012
A A PRI T ML R L
Table 2.- A Comparisen of Identical Work for Scalar vs.

Vector Boundary

de
v

ondition Computations.

VECTOR BOUNDAKY CONDITIONS SCALAR BOUNDARY CONDITIONS

(B.C)
| Boundary Total | Total CPU | % of total || Total | Total CPU % of total |
| Vector CPU | spent doing time doing CPU spent ‘oing time doing
| Length B. G B.C. B.C. B.C.
r- _‘~' e e e e e e e S —— : - ——— - - -
|
| e3748 | 1.9023 | 43.5 4.3278 1.8537 42.8
; | |
26 | 29.601 10,387 1 35.1 39.315 20.096 51.1
50 96.917 27.407 | 28.3 154.01 84.47n 54.8
b !
75 197.55 | 47.372 | 24.0 342.01 191.85 56.1
S e L e — } . S— - -1 - . - —— |

Table 3.- CPU ucilization, Scalar vs. Vector Boundary Calculations.

di l.dge Shock .. _ - —
L el s Traverse —

et ilormal Shock

Boundary Layer Edge - \

Figure 1.- Schematic diagram of flat plate flow-

Lot 4
!

T ®
o
¥ &
L
0=X

M = Number of points in n direction
N = Number of points in X direction

% ° ® o ®

[® ® ° °

(N,M)

e * * ° °

(] ® ° ° [

® ° ® % @

Figure 2.- Computational grid.

. aXx

|

ref

et gt

X/2

ref

Fiqure 3.- Flow ficld isotherms at an instant in time.

Y/g‘ref

u/u .,

Figure 4.- Time-dependent velocity profiles, t1<t2<t3.

