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INTRODUCTION

The advent of vector processing computer systems has brightened the

prospects for investigating large hydrodynamics problems which are beyond

the computational scope of current computers. Problem formulation, particu-

larly in the area of data organization, is crucial to the effective use of

vector processing machines. A representative hydrodynamics problem, the

shock initiated flow over a flat plate, was used for exploring data organiza-

tions and program structures needed to exploit the STAR-100 vector processing

computer. A brief description of the problem is followed by a discussion of

how each portion of the computational process was vectorized. Finally, timings

of different portions of the program are compared with equivalent operations

on serial machines. The speed up of the STAR-100 over the CDC 6600 program

is shown to increase as the problem size increases. All computations were

I	 carried out on a CDC 6600 and a CDC STAR 100, with code written in FORTRAN

for the 6600 and in STAR FORTRAN for the STAR 100.
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LIST OF SYMBOLS
i
F

a dunmq variable

k thermal conductivity

M number of grid points in the 	 y	 direction

N number of grid points in the	 x	 direction

P static pressure

t time

T Temperature

U x	 component of velocity

v y	 component of velocity

x distance parallel to the freestream

y distance normal to the freestream
•

S compression parameter in equation (1)

ax spatial increment in	 x

An spatial increment in	 n

Ti non-dimensional distance normal to the freestream

U viscosity

G density

W dummy variable

maximam length parallel to the freestream

TI max
maximum length nc:mal to the freestream in the

transformed coordinate
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Problem Description
f

The establishment of a test gas flow over a body in an impulse facility

such as a shock tube, a shock tunnel or an expansion tube is the result of the

asymptotic relaxation of an initially unsteady flow to a steady state.

Several analytical papers have been written on the establishment of a

shock-induced laminar boundary-layer on a flat plate (refs. 1, 2, 3). Analyses

in these publications were based on large freestream unit Reynolds numbers

which allowed the effects of a boundary-layer induced leading-edge shock and

its interaction with the boundary layer to be neglected. However, when the

freestream unit Reynolds number becomes sufficiently small, these effects

can have an appreciable impact on the development of the shock-induced, as

well as the steady-state, flow over a flat plate. A study of these leading

edge effects led to the flow field code described in this paper.

The effects of shock boundary-layer interaction on the flow over a

flat plate have been extensively investigated. The remarks found in ref, u

provide a good, basic discussion of the subject. Briefly, if the freestream

unit Reynolds number is sufficiently small, the boundary-layer growth at the

leading edge of the plate will be great enough to make the leading edge appear

-^c the flow as a blunted body thus creating a leading-edge shock whose strength

Decreases with distance from the plate and eventually degenerates to a Mach

wave. At steady state, the flow along the plate can is divided into two

regions: (1) a merged region near the leading edge where there is no

separation between the shock and boundary-layer and (2) a weak interaction

region in which the shock and boundary layer are distinct.

The dominant features of the unsteady flow field are shown. on figure 1.

Here, a normal shock wave is moving from left to right across the plate into

a gas at rest while the leading edge shock is beginning to form due to the

initial boundary layer growth. That portion of the flow near the leading

edge will be approaching a steady state while the rest of the flow field

is unsteady.

ORIGINAL; PAGE A
OF POOR QUALM
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Method of Solution

4

The unsteady flow field for this problem can be generated using a finite

difference representation of the unsteady, compressible, two dimensional

Navier-Stokes equations.

A two-step Iax-Wendroff finite difference scheme as outlined in ref. 5

has been used as the algorithm for solving the Navier-Stokes equations. Two

modifications have been made to the method of ref. 5. First, the transport

properties - viscosity and thermal conductivity - have been made a function

of the local temperature. Secondly, a coordinate transformation has been

made in the y direction. The transformation, in the form

n = In (sy + 1)	 (1)

allows a larger nodal packing at the wall. Also, for unequal y increments, 	 •

the differencing can be done in equal increments of n which greatly

simplifies the algorithm. Details of the equations and differencing algo-

rithm may be found in appendix A.

The computations have been carried out over a rectangular grid system

which represents a sharp leading-edge flat plate 15.24 cm in length and a

vertical height above the plate of 4.67 cm. The computational grid is

?llustrated in figure 2. Nodal points upstream of the plate are initialized

with post-shock conditions and those on the plate are initialized with the

urshocked conditions. Symmetry conditions are imposed along the line

y = 0 for nodes in front of the plate throughout the computations.

The upper boundary was considered an out flow boundary with values

along it being determined by extrapolation from the interior points. The

right rand boundary was moved downstream as the normal shock moved to the

right until a maximum grid size of 200 x 28 was reached. Along the plate,
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the no-slip conditions u = 0 and v = 0 and the adiabatic wall condition

aT = 0 were imposed while the wall density Ryas found from a second order
ay
extrapolation from the interior points.

Code Vectorization

System Characteristic s_

The STAR-100 is a large scale, high speed, logical and arthmetic

computer utilizing many advanced design features such as vector processing

and virtual addressing. It also contains vector arithmetic and functional

units designed for pipeline operations on a vector, where a vector is

defined as a set of contiguous elements. The vector instruction performs

operations on ordered scalars which are elements of the vector. The

vector instructions read the scalars from consecutive storage locations

over a specified address range called a field, perform the designated

operation on each set of operands, and stores the results in consecutive

addresses of a resultant field beginning at a specified starting address,

i.e., one vector instruction operates on two vectors and stores a vector

result. The starting address and vector length are contained in one 64

bit word which describes the vector and is called a vector descriptor.

The STAR instruction set includes, in addition to vector add, sub-

tract, multiply and divide, other vector instructions that are useful

when vectorizing this and similar problems. They will be described at

appropriate points in the text. The equaV.on used to obtain timings of

STAR vector instructions is of the form

T=s+at

where T is the time in clocks (one clock equals 40 nanoseconds), s is the

start up time which is different for each vector instruction, a is a

constant which depends on the particular instruction and word length of the

ti+
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operand and L is the length of the vector.-- For, ex plea timing fo: • _ the

vector add instruction using 64 bit operands is

T = (96 + R/2) clocks.

For a vector computation, it is more efficient to use one long vector than

to repeat the computation several times using shorter length vectors. With

the shorter vector length the vector startup time is multiplied by the num-

ber of times the vector instruction is repeated.

Storage Considerations:

As with serial computer systems, the core storage requirements on a

vector computer must be taken into account. Even with virtual memory it is

r ,essary to be aware of the storage needed for solving the problem. More

core storage is needed to effectively use the vector version of the problem

than is needed if it were run on a serial computer. When a FORTF.AIT vector

expression of more than two terms is evaluated, one or more temporary "rectors

is used to store the intermediate result. In addition, some terms need to

be repeated to form a long vector of the same length as the other computa-

tion_ to avoid doing many repeated computations with short vectors. As an

example, the expression i = 10
	 +,i	 10	 +	 ,, should be

i - 1 aibi	 a b,l	 i = 1	 ii,2
written as

j J j r- 1C	
where

1 = 1 i 4+1 ai .J bi 1i 	 1,1  = a
l ,a1,2 = a2...a2,1= a2,2=a2...

e:c. The forming of the longer vector can be done by repeated vectcr transmits

where the short vector is moved into the Longer vector at appropriate loca-

.iors.

Important factors in vectorizing the code are recognizing where vector

arithmetic exists and creating temporary vectors where possible. These

temporary vectors consist of vector expressions which are common to several

equations. The temporary vectors are computed only once, then used in
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-	 -	 -	 - - subsequent- calculations. 	These temporary vectors Cause more storage to be

needed, but avoid repeating vector calculations.	 Equivalencing of some

temporary storage areas is used in the code to minimize the total storage

needed.

The present discussion is limited to a grid size whsre all the

variables necessary for computation will fit in central memory, i.e.

the total storage required must be less than 500 K words.	 In this

problem it is desirable to treat all the points in the whole mesh (grid)

as one vector.	 This gives vectors of length	 k = m X N	 to use in the

vector computation.	 These are the maximum length vectors that can be ob-

tained and will be more efficient on a vector computer than using vector

length of	 M	 or	 N.

Initially, the manner in which the data is to be stored internally in

the computer must be determined.	 The option of storing by what will be

defined as row or column storage is available. 	 Refer.ing to fig. 2 row

storage means a vector is defined in the 	 X	 direction. The first element of

the vector is at the point 	 x	 0, n = 0, the second element of tre vector

is at the point x = tax, n = 0., etc. until 	 x = xmax , then the next element

in the vector is the point	 x = 0, n = on	 and continues in this mariner for

the entire grid.	 Column storage means a vector is defined in the	 n

direction.	 The first element of the vector is at the point	 x = 0, n = 0.

The second element of the vector is at	 x = 0, n = on etc. until n = nom,

then the next element in the vector is the point x = 6x, n = 0 and continues

in this manner for the entire grid.

When choosing the direction of storing the vector, the following were

considered:

1)	 how does the storage affect the boundary computation;

2)	 what length vectors can be used;

3)	 how does the storage affect increasing the number of grid

points used during the computation as the right hand boundary

moves downstream.

9- -
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Row storage means the boundary along ri n 	and along n=O are vectors
— ,	 - -	 ---	 -o	 tinr4 rf ac	 _	 bi	 eugth—l^—ate the bo^_a__.._.._.e^u2d be ccm sited using vector computations.

The boundary at	 n-
	

is a straightforward extrapolation while the boundary
k

- 

computations at nw0 consist of lengthy equations involving many computations.

The boundary along x=O is held constant, and the values associated with it

would be destroyed after each time step if vectors were of length N x M.

=	 Since the elements along x=0 are not store d in contiguous locations, cede-

fining the elements would require special considerations. 	 Increasing the

number ofid points at which calculations are made would not be reasonableBx'	 po
for row storage.if the entire grid was treated as one vector. 	 This would be

increasing the length of the vector by inserting elements within the vector.

If vectors of length N-1 were used for all the computations the grid could be

Increased in the x direction by simply increasing the length of the vector s

and the additional points would be the elements at the end of the vector.

Also the boundary at x=0 Would not be disturbed. 	 Therefore, for a reasonable

vector formulation using row storage, the vector computations would use

=	 vectors of length N-1 and would be repeated M-2 times (calculations at the

upper and lower boundary are considered separately).

Column storage means the boundary along x=0 is a vector. 	 Thes^ values -

remain constant, so the vector computation can actually start with the

second column x = Ax.	 The vectors run in the column, direction so he

boundary condit'ons along x=0 are nc.er destroyed.	 The elements are not stored

in contiguous- locations along the boundaries n = 0 and n=%, so they will
ax

s

require special consideration.	 The entire grid can be treated as a vector y

of length M x N and when the numbe. of points in the grid is increased

it means only increasing the vector length by M elements.	 This essentially

added one column to the grid.

The program was coded using column storage.	 The deciding factor

here in using the column storage as defined is not the boundary computation,

which would probably be more advantageous using row storage, but the value

of using the longer vectors for the interior computation and the ease of

adding to the grid size.
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Interiors t Comgutat ons - The basic finite difference equations used

iri the prab7.em 3's3rmuletiv vcxeesd13. 	 _	 ns for _ T_ _-----

the interior points can use vector instructions. The difference

equations are of the farms

(t + At, x)	 *(t' X) 
-k2 	 X + Ax) - *(t, x ax))

g

	

	 which consists of a vector subtract, a multiply of a constant, (dt/2/^x),

and a vector, and then a second vector subtract.

The computation of the interior points begins with the element at the

point n = An, x =11x, using the storage defined as column: storage and a

vector length of k = M e (N-1) -2. Using this vector length, all the

points in the grid except the boundary along x=0, the point n=G,

x = 11x and the point n=r]
m

, x = x are computed, see figure 2. This

v.eans that incorrect computations are made at the boundaries alcrg n = 0

and n-n,.. In order that a vector calculation of length Z could be

_

	

	 used, these calculations were mace even though incorrect results were

stored. she STAR has control vector capability which prohibits the

storage of certain elements in a vector. This capability could have

been used to prevent incorrect results from being stored along the boundaries;

tut in using this feature, the calculations are still performed ever though

the results are not stored. Since values for these boundar e-- ements are not

used before correct values are computed, it did not seem necessary to use

the control vector feature. After the calculation of the interior points have

been made, the val.^es at the boundaries are computed and stored over the

incorrect results.

Boundary Conditions:

With the method of storage defined as column storage -;Sed for the

computations along n - 0 and n=%ax9 it does not appear tha t- rector

computations could be used because the elements are not in contiguous

locations. The boundaries require considerable computations and it would

ORIGINAL PAG IN 18
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be desirable to use vector computations. 	 To compute the values along

n	 0, the values at n - An ii = 2ATt, and n = 3nn are used.	 It the values

along n s An, n	 24n, and n s	 i1 -e eaci repraet t+y vetors=,-veer	 -_ _	 __

computations could be made which would result in a vector whose elements are

the values of the boundary values a3.ong xw. r
In the evaluation of the boundary r—ditions extensive ure is made of

two instructions, transmit indexed list and transmit list indexed, each using

one operand where the elements are not vectors.	 The transmit indexed list
transmits noncontiguous information referenced by an index vector to a vector.
This is essentially a gather technique, where information is gathered from

noncontiguous locations to form a vector,	 The transmit list indexed in-

struction performs the reverse process, where the elements of a vector are

transmitted to noncontiguous locations in memory,irdicated by an index vector.

This is essentially a scatter to memory.	 These two instructions enable a

user to form vectors if they do not exist, use vector arithmetic, then icatter

the vector result to nonvector storage.

The vector instruction transmit indexed list is used to take elements

along n=dn and form a vector.	 The same ins-cructier is used to form vectors

from the elements n=2An and other vectors from the elements along r,=36n.

Once all the vectors needed in the computation are formed, they are used in

expressions to compute a vector result of the boundary condition.	 This vector

is then scattered back to the regular grid where the boundary along n=O is

not a vector.	 This is accomplished by the transmit list to indexed vector -

which scatters a vector to noncontiguous locations.	 along the n=nom

boundary a similar technique is used where the noncontiguous elements are

made into a vector.	 These vectors are used in vector computations to compute

_ a vector result which is then scattered back to the noncontiguous locations

along the boundary.

Calculations Requixing Other Vector Instructions:

Cunditions where two different paths may be followed after a comparison

has been made on vector elements might be referred to as a vector IF

statement. Such a situation is encountered when computations involving 	 ,



- 	 -	 - -	 -	 1---__

1W Pop-

real gas flows are made..	 Here,, some parameters 	 such as transport

properties, are prescribed by curve fit$ over different temperature
ranges rather than an all inclusive analytic function. 	 Thk vector IY

statement does not existin	 equivalent "gie-STAR
can be constructed trom the vector instructions compare. coWess and merge.

A

The elements of a vector are first c6V4&r*_d with the f olesents, of another:.;-.

vector or a constant and-a bit vector is the result.	 The elments of the
bit vector are 1 or 0 depending upon whether the compare condition was
true or false.	 This bit vector is then used with the iriginal vector

with two compress instructions to form two vectors.	 Separate computations

are ;,hen performed, each using the appropriate vector.	 The bit vector can
then be used to merge the two resultant vectors to form a single resultant

vector of the original length.

Results

The shock induced flow over a flat pate is representative of a class

of flow field problems for which no solutions have been obtained due to she

lack of computational resources.

This program was chosen for coding because:	 1) the solution requires

,;,..,f,,rating the full two-dimensional 	 avier-Stokes equations; 2) the solution

allowed a variable computational field size to be used; and 3) the solution

required the determination of realistic boundary conditions.

Three v ,.,rsions of the code were written: 	 1) a scalar version to be

run on the CDC 6600 serial machine; 2) a fully vectorized version to be

run on the STAR 1.00; and 3) a vector version whi ch used scalar calculations

to determine the bound&:y values.

The fully vectorized version of the code accommodated a maximum flow

field size of 100 x 28 which allowed adequat3 resolution of the flow.	 This

version of the code required a total of L4 dimensioned variables and a core

storage size of 260 K as opposed to the serial version of the code which

required only 25 dimensioned variables and a core storage of 65 K, but used

disks for stora6e of most of the data.

On the STAR 100, two magnetic core storage page sizes are available

for virtual address references. 	 They are referred to as a large page size,
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centainin'; 65,53b 64 bit words, and a small page size, conta:nirg 512

64 bit words. The selection of the page size to be used is an option under

program control. Initially, small pages were used in the program. Powever,

when using large pages there are fewer pages involved; therefore, fewer

searches need to be made to relate a central memory address to a virtual

memory address on a particular page. When the program was executed using

large instead of small pages, an improved efficiency of about one-third was

gained in the CPU time. Thus, large pages have been used in obtaining the

following resul^s.

A comparison of the running time for the scalar and fully vectorized

versions cf the cede are summarized in table 1. Results for both the

RUN and KIN compilers are given. Computations made with the FTN compiler

utilized the :eighest optimization level. Since the computational field

size is dynamic, the tabulated times shown represent the total CFU time

required for the field to rFach the given size. The computational speed

advantage of the vector system over the ser i al system is obvious, with

the increase it speed directly proportional to the size of tie computation

field, i.e. vector length.

A cemFarisor_ cf the time tc do identical wort for `.he sector and

scalar vers i ons of the boundary value computations is tabulated it table 2.

A ten fold. ircrease in the boundary vector lengt'r. increases the required CPU
time by 50n for the vector calculation whereas the identical scalar work

requires approximately a ten fold increase in the CP' time.

:able - tabulates a treakdowr cf the total CPU time for t::e fully vector

and scalar boundary cale ,.:;aticn versions of the ecde. For the vector ver=so:

of the code, the total CPU time spent doing the !c::nda_r,: calculations as

a percentage of the total CPU time decreases dramatically as the r.*.'Wber of

grid points in the ,omputaticna.1 field tecomes large %er. compared tc the

number of elements in the toundary vector. On the --tier hard, the total

CPU time required to do the scalar boundary calculations remains at aF-

prcxlmately 500A cf the total CPT: time.
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As previously stated, the computation times quoted for the vector machine

are for a program which resided entirely in control memory. To analyze the

effect on computational speed of a program which required storage in excess

of the central memory size, the grid size in the present code was increased

so the program code and data would not fit in core. Thus, the virtual memory

capability of the operating system was used to access, as needed, data or

code which resided outside of central memory. The computational times

were compared to the time required to do equivalent work using the in-core

program. Equivalent CPU times were obtained, but the total wall clock time

for the out-of-core run increased initially even though short vector

computations were used. The increase was a factor of over 35 after only 200

time steps. Data were stored and used in such a random manner that the mayor

portion of the computation time was used for getting the needed variables

into core. The increased wall clock time proved this program to be

impractical for obtaining solutions if the grid size is such that the code

and data cannot fit in central memory.

The program has been modified in an attempt to minimize the use of wall

clock time. The computational grid was broken up into blocks and the compu-

tation, of the grid within each block was computed for a time step. The block

size was determined and the storage was arranged so that all the variables

necessary for the computation of the block would fit in memory. At the

beginning of each block computation, the data for that block would have to

be accessed initially, but during the computation of the block, no data out-

side of central memory would have to be accessed. Prelimir.ary runs show that

executing the modified program in this manner resulted in equivalent CPU

times, but only a factor of five increase in the wall clock time required for

identical work using the unmodified in-core program.

Figures 3 and 4 show some typical results generated by the code. Figure

3 is a plot of isotherms in the flow-field at a given instant of time. The

leading edge of the plate is located at the left hand side of the figure.

Here, the leading edge shock is located at the isotherm concentration at
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the right hand side of the figure. The time dependency of the flow is

illustrated by transverse velocity profiles for increasing tines at a given x

location.	
s
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CONCLUDING RaIARKS

It has been shown that a flow field problem of such size as to be

impractical for routine running on a serial processing machine can be coed

and run in an efficient manner on a vector processing machine.

To extract this high performance from a vector processing machine such

as the STAR-100, careful consideration must be given to the formulation and

i'!Qw of the code being written to avoid such obvious inefficiencies as

repeating identical vector calculations to the more subtle relationship

between data storage and boundary calculations. Even when the vector lengths

used are relatively short, the vectorized version of the code is clearly

superior to serial code.

The vectorized code has demonstrated that branch operations

encountered in imperfect gas calculations can be efficiently vectorized. _-

ras also been shown that the calculation of bcundary conditions require

careful consideration, but can be done efficiently using the vector processor.

When the number of boundary points is small, there is no apparent

advantage to vectorizing the boundary va_ue calculations. However, when

the number of boundary points becomes large, scalar calculations can require

more than 200 percent of the time required to do the identical work

{	 (including time required to construe_ the vectors) using vector irstructiers.

it has beer. demonstrated that a complex, .wc-dimensieral, fluid flow
f

Yrcblem can be run quickly on a vector _recessing machine without exceeding

the core storage requirements of the syste=. larger twc-dimensional and

axisymmetric flows as well as three-dime:sicn&l flows will certainly require

more mass data storage than cox. be handed by the system core size.

Preliminary results have shown that modifications car. be  made to the current

vectorized code to handle an out of core size .reblem ar. 'd still maintain

efficient use of a vector computer.

i



a • a
1

16

APPEITDIX A

The Navier-Stokes equations for two-dimensional, unsteady,

441 
compressible flow can be written in the following form:

Wt =F
x +Gy +S1 +S2

x	 y

Here,

P Pu Pv

W	 =
pu

F = -
Pu2+P

G	 = -
puv

2
Pv Puv Pv +P

E i u(E+P) v(E+P)

T
XX

Sl	= ',x`

-c + T	 + VT
-r_ xx	 x;

0

T
yX

S2 =	 T
:+y

+vT	 +uT_

`^	 y,	 y xJ

r

(1)

	

i
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where

E	 = F (e + 1/2 (u2 + v2)),

Txx	
= u (4/3 u  - 2/3 vy ), Tyy = u( 4/3 v  - 2/3 ux)

Txy = TYx = u (uy + vx)

qx	 = - kTx , q
y 

_ - kTy

Introduction of the transformation

n = zn ( Sy + 1)

meads to

-n a
ay = ^e	

an

and

a	 r n an

Y	

a
a ^ _ ^ e-
	

ar,
 [e-	 ar,

sc .hat ecue ion (1) tames on the form

r,
wt = rx + :e- 

G r + S  
+ Be- ^2

x	 r1

tress `_ergs are r ede: in ed as

TX.y = U ( 4 /3 ux - 213 6e-r vn ) ,

Tyy = u ( L /3 fe
-n 

vn - 2/3 ux)

T x 
Y	 Y

= : x = 13 ( f: e -nun + vx)

qx = - k , c _ - 
to-nTnx

(2 )

a
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The equation (2) is differenced in the following manner:

1/2	 0	 0	 0
v! 	 - 1/2 (W	 + W	 ) + At I<F.)+	+
+ 1 / 2,  0	 ± 1,0	 0,0 	 1/2,0

	

! 0	

+ /S	

+
Se-Tl <G In + 112,0	 + 1/2,0

S2

y + 1/2,0

for the value of W at t + At/2, x = 	 and n=n .

Permuting the indexes gives the value of W at t + At/2, x=x and n=n, ± on.

For any function ^ the first order differences are giver. by

\ x + 1/2,0	 — Cx
	

±1,0	 0
L

0	 0	 0	 0	 ^

<tin>	 ken 	 + 
	

+ 
y	

+ y	 -:.+ 1/2, 0	 0, +1	 ±1, +1	 0,--± 1,

	

0	 0
and similarl; fort;	 and

x /
) 

0, + 1/2	 ^^71)0,  + 112

\ 0	 0
Al SG, 	 ^	 +

	

<Slx/+ 112,0	 six) + 1,0	
lx 

0,0

	

0	 /	 0	 J

and similarly for S2)	 , `\ S1	 and	 S2
T

+ 112, 0	 \` x 0,± 1/2	 n 0, + 1/2

i

6&_
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The second order differences are expressed in the following wRy for any

function ^

0	 0	 V	 0	 0	 0	 G	 1
(a^x )x 	 = 1̂  a	

1^	
-	 I - a	

(^
	 I

0 0	 Ox`	 + 1/2, 0	 +1 0	 0 0	 - 1/2,0	 0,0	 -1 ,0

00000
( x ) n a+ ^	 -a

)00 ,0	 0,+1/2 ` +1,0	 +1,+1	 -1 ,0	 -1,+1	 0,-1/2

	

/ 0	 0	 0	 0

` +1,0	 +1,-1	 -1,0	 -1,-1)

0	 0
and similarly for (a^ r, ) n	 and	 ( 	 where

0,0	 0,0

0	 0	 0

	

a	 = 1/2 (a	 + a	 )

+1/2,0	 0,0	 + 1,0

and

0	 C	 0

	

a	 = 112 (a	 + a	 )

0,+ 112	 0,0	 0,+ 1

The value of W determined at the intermediate points are ther. used tc

	

define new W's in the 	 t + Lt time plane at x = x and r, = r, according to

the equation



V

I 	 i -ki --

1	 0	 1/2	 112
TI

W	 = YJ	 + ^t <F. 

)0,0	 0,0	
/// 0 , 0	 0,0

0	 0

+	 S	 + ^e-0	
`

S„
1	 nx 0,0	 0,0

20

1

where

CFx)0,0

1/2 _	 1 1/2
F

1/2_ p
Z +1/2,0 -1/	 10

1/2	
1/2	 0

1	 G	 - r,
G n 	 L.n

0,0	 0,+1/2	 C,--/2

i	 I
	 and

I l

i

R	 1

T

a
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I	 Number of Total	 CPU Time, Sec.

Grid Points 6600 STAR

In Computational Compiler

Field Run	 FTN

168 3.002	 1.707 0.2218	 i

280 i	 19.009	 10.830 1.5450

336 + 44.819	 124.640 2.2060

504 151.88	 87.640 6.2220

^--800 21600.*—^ 321.60

7, Data not availatle.
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CPU Time In —^Seconds
Boundary

Vector Vector ScaIar
Length

7 .009326 .0075

9 .005550 , .0101

10 .009612 f .0113

11 .009899 .01?6

13 .010037
i

.0151

15 .010246 .0176

19 .010575 .0226

32 .011705 •0388
}

50 .013209 .0613#
71 .014?E6 .0875

I

I

82 .315997 .1012

L	 ^

^e

rk

1

m

Table 2.- A Comparison of Idertical :.ork for Scalar vs.

'lector aoundary Con-ition Computations.
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