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PERFORMANCE OF 75 MILLIMETER-BORE
ARCHED OUTER-RACE BALL BEARINGS
by Harold H. Coe and Bernard J. Hamrock
Lewis Research Center
ABSTRACT

An investigation was performed to determine the operating character-
istics of 75-mm bore, arched outer-race bearings, and to compare the
data with those for a similar, but conventional, deep groove ball bearing.
Further, results of an analytical study, made using a computer program
developed previously, were compared with the experimental data. Bearings
were tested up to 28 000 rpm shaft speed with a load of 2200 N (500 1b).
The amount of arching was 0.13, 0.25, and 0.51 mm (. 005, .010, and
.020 in.). All bearings operated satisfactorily. The outer-race tempera-
tures and the t;rques, however, were consistently higher for the arched
bearings than for the conventional bearing.

INTRODUCTION

Bearings in current commercial aircraft tlirbine engines operate in
a speed range up to 2 million dN (bearing bore in mm multiplied by shaft
speed in rpm). However, trends in gas turbine design indicate that future
engines may require bearings that can operate at dN values of 3 million or
higher [1]. 1 But, when bearings operate at high dN values, analyses
show that a significant reduction in fatigue life can occur due to the high
centrifugal forces developed by the balls at the outer race contact [2],

One proposed solution to the high-speed bearing problem was to re-
duce the mass of the ball by making it hollow, and thereby re;duce the cen-

trifugal force. Theory indicated that a significant improvement in bearing

1Numbers in brackets refer to references at the end of the paper.
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fatigue life coﬁld be obtained at the higher dN values if the mass of the
balls were reduced 50 percent below that of a comparable solid ball

[3]. Therefore, both spherically hollow [ 4 and 5] and cylin-
drically hollow drilled [6 to 8] balls have been fabricated and tested.
However, both the hollow and the drilled balls experienced early flexure
fatigue failures during testing. Subsequent analyses showed that during
these tests relatively high stresses existed at the inner surface of the
hollow balls [9] at the bore of the drilled balis [10].

Other approaches to the problem of high-speed bearings have also been
investigated. A parallel-hybrid bearing [11] in which a ball bearing and
a fluid film bearing share the system load could be used. However, the effec-
tiveness of the parallel hybrid bearing diminishes at high speeds because it
does not attenuate the centrifugal force in the ball bearing. A series hybrid
bearing [12 and 13]in which a ball bearing and a fluid film bearing
share the system rotational speed has been suggested. A large (150-mm
bore) series hybrid thrust bearing has been designed and successfully tested
at high speeds [14 and 15]. A problem with the hybrid bearings, how-
ever, is the mechanical complexity of the system.

There is, though, at least one other approach that requires further
evaluation. Initial tests with a concept called an arched-outer-race bearing
[16] showed this design operating with a lower torque than a conventional
angular contact bearing. Theoretically, an arched bearing operates like a
conventional bearing at very low speeds, with each ball having two ball-race
contacts. However, abové some transition speed, this arched bearing
operates with three ball-race contact points per ball. Therefore, when the

arched bearing has two contact points per ball at the outer race, the




centrifugal loading can be shared, and thereby reduce the load of each
contact and increase the bearing fatigue life. A first-order thrust load
analysis of an arched bearirig design [17] indicated the possibility of
significant fatigue life improvement. In particular, the results of [ 17]
show that for a dN value of 3 million and an applied axial load of 4400 N
(1000 1b) 2 150-mm bore arched bearing shows an improvement in fatigue
life of 306 percent over that of a similar conventional bearing. A more
complete analysis [18] also found that the arched outer-race bearing
showed a significant improvement in fatigue life over that of a conventional
bearing for high-speed, light load applications. However, the analysis of
[18] also showed that a considerable amount of spinning occurs at the
outer -face contacts for the arched bearing.

Therefore, it was the object of this investigation to: (1) determine
experimentally the operating temperature and torque of arched-outer-race
bearings with different amounts of arching, (2) compare these arched
bearing experimental results with data from a similar conventional bearing
having the same diametral play, and (3) compare' some of the experimental
results with trends predicted by the theoretical analysis [17].

The tests were conducted with 215-series, 75-mm bore, deep groove,

arched outer-race ball bearings. The amount of arching was up to 0. 51 mm |

(0.020 in. )e‘ The bearings were operated at 2200 N (500-1b) thrust load at
shaft speeds up to 28 000 rpm (2. 1x108 dN) using oil-jet lubrication. A

 detailed account of the experimental portion of this paper can be found in

[19].




APPARATUS AND INSTRUMENTATION
Bearing Test Rig

A cutaway view of the bearing test apparatus is shown in Fig. 1. A
variable -speed, direct-current motor drives the test bearing shaft through
a gear speed increaser. The ratio of the test shaft speed to the motor
shaft speed was 14. The limiting speed of the test shaft was 28 000 rpm.

The test shaft was supported by two oil-jet lubricated ball bearings
and was cantilevered at the driven end. The test bearing was thrust loaded
by a pneumatic cylinder through an externally pressurized gas thrust
bearing. A gas bearing was used so that test bearing torque could be
measured.

Bearing torque was measured with an unbonded strain-gage force
transducer connected to the periphery of the test bearing housing, as shown
in Fig. 1. This torque was recorded continuously by a millivolt potenti-
ometer. Estimated accuracy of the data recording system was +0.006 N-m
(£0. 05 lb~in).

Bearing outer-race temperature was measui'ed with two iron-constantan
thermocouples positioned as shown in Fig. 1. The estimated accuracy of
the temperature measuring system was about +1 K (+2° F).

The bearing cage speed was measured utilizing a semi-conductor
strain gage attached to the outer race. This technique is the same as that
noted in [ 7].

The 1ubricant used for this investigation was a superrefined naphthenic
mineral oil with a viscosity of 75%10~0 mz/sec at 311 K (75 cs at 100° F).

 Test Bearings |

Test bearing specifications are listed in table I. The bearings were




75-mm bore, deep groove arched-outer-race ball bearings, with 17.5-mm
(0. 68"75-in. ) diameter balls. The inner races and balls were made from
AISI M-2 CVM steel. The outer races were SAE 52100. The two-piece
machined cages were outer-race riding and were made from annealed
AISI M-2 steel. One shoulder of the inner race was removed to make two
of the bearings separable. A photograph of a separable bearing is shown
in Fig. 2.

The geometry of the arched outer race is shown in Fig. 3 along with
a sketch of a conventional outer race. Here r o is the groove radius and
g the distance between the two outer-race groove radius centers. Note
that g is equal to the portion of the conventional outer race that is removed
in forming an arched outer race. For the bearings used in this investiga-
tion, the arched profile was form ground and the outer race was made in
one piece. The diametral play of these bearings was nominally 0.051 mm
(0.0020 in.). The diametral play is defined as the total amount of radial
movement allowed in the bearing. This should be distinguished from the
diametral clearance, which is the diametral play plus twice the distance
from the bottom of the ball to the tip of the arch when the bearing is in a
radial contact position. The relationship of the diametral play Sy with
the diametral clearance Pd’ ball diameter D, and raceway diameters di
and d, is shown in Fig. 4. Further definitions can be found in [17].

Measured values of diametral play along with the amounts of arching
g are identified for each test bearing in table H. Also noted in table II is
the theoretical transition speed for each bearing.

| PROCEDURE
Each bearing was started under a 2200-N (500-1b) thrust load with an
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oil flow rate of 8x10~3 kg/sec (11b/min). After 5 minutes at idle (700 rpm)
the shaft speed was increased to 7000 rpm. After an additional 15 minutes
the oil flow rate was increased to 15%10"3 kg/sec (2 Ib/min) and the speed
increased to a minimum cf 16 000 rpm. Each bearing was operated at this
initial test condition until temperature equilibrium was achieved. Equilib-
rium was assumed to have been achieved for each data point when the
bearing outer-race temperature had not changed more than 1 K (20 F) in
10 minutes. The oil inlet temperature was maintained at 316 K (1100 F).
After the initial data point was taken, the shaft speed was increased in
increments of 2000 rpm while the load was held constant. The maximum
Hertz stress of the conventional ball bearing at 28 000 rpm was approxi-

mately 1. ‘7><109

Pa (250 000 psi) at the outer-race-ball contact.

Two types of bearing tests were conducted: In the first, the previously
described procedure was used with the oil flow rate held constant while
the shaft speed was varied; in the second, the same procedure was used
until the shaft speed reached 20 000 rpm, at which point the shaft speed was
held constant and the oil flow rate was varied. Oil flow rate was first in-
creased to about 4x1072 kg/sec (5 1b/min) and then decreased to about
8x. 10-3 kg/sec (1 Ib/min) in about eight increments. Data at equilibrium
conditions were taken at each flow rate. As a final check point, data were
then taken again at a flow rate of 15%10~3 kg/sec (2 Ib/min) to make cer-
tain the bearing operating éharacteristics had not changed.

Additionally, one bearing was tested holding the shaft speed constant
at 26 000 rpm while the thrust load was varied. This was essentially a

skidding test. The load was decreased from 4400 N (1000 1b) to 44 N

(100 1b) in about eight increments. Since only cage speed data were taken,




conditions were not maintained until full thermal equilibrium was achieved,
because earlier testing had shown that the cage speed changed very little
after the initial setting of the test conditions.
RESULTS AND DISCUSSION
Variable Speed Tests

The results of the variable speed tests are shown in Fig. 5. The
outer-race temperature for each arched bearing tested (fig. 5(a)) was
higher than that of the conventional (g = 0) bearing (8-S) over the speed
range tested. With the exception of bearing 1-ARCH, the trend seems to
be that as the arching is increased the outer -race temperature decreases
at a given shaft speed. Unfortunately, the variation in diametral play
among the bearings makes the analysis of the data more difficult. How-
ever, it is probable that the slightly higher temperature of bearing 1-ARCH
was due to the very low value of diametral play (see table II). For all
bearings, the outer race temperature increases quickly as the shaft speed
is increased.

The measured torque of all the arched bearin.gs was 15 to 25 percent
higher in every case than that of the conventional bearing (fig. 5(b)). No
definite trend with the amount of arching is apparent, although the two
arched bearings with the most arching (g = 0.51 mm (0. 020 in.)) had
slightly less torque than the other three arched bearings. The torque
changed very little for any of the bearings over the speed range shown.

| The bearing cage to shaft speed ratio (fig. 5(c)) generally decreased
with increasing shaft speed. Cage speed data were not available for the
conventional bearing. ‘Again no definite trend with arching is apparent,

aithough once more the two bearings with the most arching have slightly



lower cage speed ratios. The change in speed ratios was very slight over
the speed range for all bearings.

Theoretical values of cage-to-shaft speed ratios were calculated,
using the computer program developed in [17], and the results are
shown in table III. This analysis indicates that the cage speed ratio should
increase slightly with increasing speed and/or with decreased arching.
However, the cage speed ratio is also shown to increase with increased
diametral play. Therefore, in an attempt to eliminate the effect of the
differences in diametral play, and to make the observed values of cage-
to-shaft speed ratio more meaningful, theoretical values were calculated,
using the measured unmounted values of diametral play noted in table II.
These calculated values were then used to determine the amount of cage

slip in the bearings. Cage slip (in percent) is defined here as

Percent cage slip = Ncalc . Nmeas 100
Ncalc
where
Ncalc theoretical cage rotational speed, rpm
N, eas measured value of cage rotational speed, rpm

The results are shown in Fig. 6 where the cage slip is plotted as a
function of shaft speed for each arched bearing. The slip is relatively

small for all bearings and increases with increasing shaft speed. The

- slip also appears to diminish as the amount of arching increases. Since

the analysis [17] does not correct for change of diametral play due to
bearing operating conditions, the values of cage slip should be considered

approximate. Nevertheless, the values seem reasonable.

N i ¢ et



Variable Oil Flow Tests

The results of the variable oil flow tests are shown in Fig. 7. The
outer race temperatures for the arched bearings were generally higher
than those for the conventional bearing over the flow range (fig. 7(a)).
Due to a test rig vibrational problem, bearings 2-ARCH and 4-ARCH
could not be operated safely at 20 000 rpm; therefore, variable oil-flow
type tests were not run on these bearings.

The measured bearing torques (fig. 7(b)) increased with increasing
oil flow rate for all bearings tested. The arched bearings all showed a
higher torque, for any given flow rate, than that of the conventional
bearing. Also, the torque seems to be lower as the arching increases.
The torque values for all bearings increased 75 to 100 percent with a
fivefold increase in oil flow rate.

The bearing cage-to shaft-speed ratio (fig. 7(c)) changed only slightly
(less than 1 percent) over the flow range for the three bearings tested. As
‘before, the bearing with the most arching (1-ARCH) has the lowest cage
speed ratio. This bearing also has the smallest diametral play, which is
a contributing factor. These results are consistent with the trends of
cage speed ratio for arched bearings shown in table III.

Variable Load Tests

The additional tests with varying thrust load, mentioned in the
PROCEDURE section, were performed using bearing 4-ARCH, and the
results are presented in Fig. 8. Shown are the cage-to-shaft speed ratio
(fig. 8(a)) and percent cage slip (fig. 8(b)) plotted as functions of bearing
thrust load. The slip was determined the same way as for Fig. 6. The

change in speed ratio, while very small, was nonetheless very pronounced.
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Noise could be heard from the rig as the load was lowered from 1300 to
890 N (300 to 200 1b). The noise changed as the load was changed to 560 N
(125 1b) and was loudest at 440 N (100 Ib). This was about the smallest
load that could be practically applied, and at this point the cage speed be-
came somewhat unsteady. It is interesting to note that while complete
thermal equilibrium was not attained in these tests the outer-race tempera-
ture did tend to decrease with decreasing load, even though the slip in-
creased. This is consistent with the results of [20].
Bearing Transition Speed

Theoretically, these arched bearings operate as a two-point contact
bearing at low speeds. At some higher speed a three point contact opera-
tion is achieved. The speed at which the three point contact first occurs
is called the transition speed. The transition speed depends on the amount
of arching, the internal clearance, and the applied load for a given size
bearing. Values of transition speed for the bearings as specified in table I
were determined, again using the computer program developed in [17].
This transition speed is shown in Fig. 9 as a function of the amount of
arching, for three values of diametral play, at a 2200 N (500 1b) thrust
load. The transition to three-point contact occurs at lower speeds as the
amount of arching is increased, or the diametral play is decreased, for
the constant load. To show the effect of bearing load, the transition speed
is plotted in Fig. 10 as a function of thrust loads, for three values of
arching g, with a diametral play S, of .076 mm (.0030 in.). The transi-
tion speed increases as the thrust load is increased, for a given diametral
play. When the arching was 0.51 mm (. 020 in.) the transition speed was

less than 1000 rpm for all three loads, and for all three values of diametral
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play. Unfortunately, experimental data could not be taken at speeds
close to the transition point, because most of these speeds were in the
range where the rig vibrational problem, mentioned previously, was
prevalent, and quiet, stable rig operation was not possible.

It may be concluded however, from the foregoing that the arched
outer race bearing will operate over a range of shaft speeds and thrust
loads and that, in géneral, the arched bearing will exhibit a higher torque
and a higher' outer-race temperature than a conventional ball bearing with
the same diametral play operating under the same conditions.

CONCLUDING REMARKS

The results of this investigation differ somewhat from those noted in
Ref. 16 in that the arched bearings in the present work indicated higher
power losses than the conventional bearing. In [16] the three-point
contact bearing indicated less power loss than did the two-point contact,
However, it would appear that in[16] the diametral play of the two-
point contact bearing was considerably greater than that of the three-pojmt
contact bearing. In the present work, the average diametral play of the
three-point contact bearings tested was approximately the same as that of
the two-point contact bearing. It is interesting to note that in the closure
to the discussions in [16] results are presented for a three-point con-
tact bearing operating at slightly higher temperatures than a conventional
bearing during starvation tests. Also, the author of [16],  in a discus-
sion to [17], noted there were certain conditions where the three-point
contact bearing did not show an advantage in power loss., Perhaps the
bearings in the present work, operating at a high speed with a light load,

meet those certain conditions.

e .




12

However, it seems logical that the outer-race temperature for the
arched bearings should be higher than for conventional bearings with the
same play since, as mentioned in the INTRODUCTION, a considerable
amount of spinning occurs at the outer-race contacts for the arched bearing.

Nevertheless, the arched bearings did operate and thus could be useful to

‘increase fatigue life at very high speeds and relatively light thrust loads.

It should be noted here that the present results are for a 75-mm bore
bearing whereas the fatigue life comparisons in [17]  were for 150-mm
bore bearings. The use of different bearing sizes for comparison can
yield somewhat different results, but the comparisons should still be
qualitatively similar. ’ The relative importance of centrifugal effects in
bearings of different sizes can be determined by comparing the ratio of
D3N2 (D is ball diameter and N is shaft speed) to the dynamic capacity.
The factor D3N2 is proportional to centrifugal force, and the dynamic
capacity is a measure of the load capacity of the bearing. This ratio is
shown in table IV for extra-light series angular contact ball bearings
operating at 3 million dN. The ratio shows that the centrifugal effects
are relatively more severe in small bearings when dN is kept constant,
Thus the life improvement for the arched bearing will be greater for the
smaller diameter bearings than for the larger ones,

SUMMARY OF RESULTS

An experimental and a theoretical investigation was conducted to
determine the operating characteristics of full-scale, arched outer-
race bearings and to compare the results with those of a similar con-
ventional deep-groove bearing. The 75-mm bore bearings were oper -

ated up to 28 000 rpm with a 2200-N (500-1b) thrust load.
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The following results were obtained:

(1) The arched outer-race bearing operated successfully over a range
of shaft speeds. The bearing outer-race temperature and torque were
consistently higher for the arched bearing than for a similar conventional
bearing. |

(2) As the shaft speed was increased, the outer-race temperature and
cage slip also increased, the cage- to shaft-speed ratio decreased, and
the bearing torque changed very little.

(3) As the flow rate was increased, the outer-race temperature de-
creased and the torque increased, The torque increased 75 to 100 percent
for a fivefold increase in oil flow,

(4) It was observed that as the amount of arching increased, the
outer-race temperature and percent slip decreased. No other trends with
arching were established.

(5) The test results showed good agreement with the theoretical
analysis.

(6) For a given size bearing, the speed at which three-point
contact first occurs (transition speed) was found analytically to
increase with either decreased arching, increased diametral play or
increased thrust load.
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TABLE I, - BEARING

2 SPECIFICATIONS

Bearing outside diameter, mm
Bearing inside diameter, mm
Bearing width, mm

Bearing internal radial clearance, mm (in.)
Outer-race curvature
Inner-race curvature

Number of balls

Ball diameter, mm (in.)
Retainer design

Retainer material

Inner-race and ball material
Arched outer-race material
Amount of arching, mm (in. )

130

75

25

0. 051 (0.0020)

0.53

0.53

11

17.5 (0. 6875)

Two-piece machined, riveted
Annealed AISI M-2

AISI M-2°

SAE 52100

0.13, 0.25, 0.51 (0.005, 0.010, 0.020)

ATolerance grade, ABEC-5.
bConsumable-electrode vacuum-melted.

TABLE II. - TEST BEARING IDENTIFICATION

Bearing | Amount of arching, | Measured unmounted | Theoretical transition

g, diametral play, speed,

mm (in. ) mm (in.) N,

rpm

1-ARCH 0.51 (0.020) 0.028 (0.0011) <1 000
2-ARCH .51 (. 020) .056 (.0022) <1 000
3-ARCH .13 (.005) .043 (. 0017) 14 000
4-ARCH .25 (.010) .069 (. 0027) 10 000
5-ARCH .25 (.010) .043 (. 0017) 9 000
8-8 .00 (.000) .051 (,0020) | @ meee=e

TABLE HI. - CAGE-TO-SHAFT SPEED RATIO

[Calculated using computer program from ref. 17. Bearing specifications per

table I. Thrust load, 2200 N (500 1b).]

Diametral Amount of Cage-to-shaft speed ratio, percent
play, arching, -
Sd , g, Shaft speeds, rpm
mm (in.) mm (in.) 18 000 | 20 000 | 22 000 | 24 000 | 26 000 | 28 000

0. 025 (0.0010) | 0. 13 (0.005) |42.62 | 42.
.25 (.010))42.31 | 42.
.38 (.015)41.55 | 41.
.51 (,020)]40.33 | 40.

69 | 42.75 | 42.81 | 42.87 | 42.93
35 | 42.40 | 42.45 | 42.50 | 42.55
60 | 41.64 | 41.69 | 41.74 | 41.79
38 | 40.43 | 40.48 | 40.54 | 40.59

0.051 (0.0020) | 0.13(0.005) | 43,28 | 43.
.25 (.010)142.98 | 43.
.38 (.015))42.23 | 42,
.51 (.020)|41.00 | 41.

36 | 43.43 | 43.50 | 43.57 | 43.63
04 | 43.09 | 43.14 | 43.20 | 43.25
27 | 42.33 | 42.38 | 42.43 | 42.49
05 | 41.11 | 41.17 | 41.23 | 41.29

0.0%6 (0.0030) | 0.13 (0.005) | 43.99. | 44.
.25 (.010)|43.70 | 43.
.38 (.015)142.94 | 43.
.51 (.020){41.71 | 41.

07 | 44.15 | 44.23 | 44.30 | 44.37
76 | 43.82 | 43.87 | 43.93 | 43.99
00 | 43.05-| 43.11 § 43:17 | 43.23

77 | 41.83 | 41.89 | 41.96 | 42.03

PRECEDING PAGE BLANK NOT FILMED)




TABLE IV. - EFFECT OF BEARING SIZE

[Calculated for extra-light series angular contact ball bearings
operating at a constant value of 3 million dN, |

Bore Shaft Ball Factor, | Dynamic Ratio,
diameter, | speed, diameter, D3N2 capacity, D:’N2 /C
d, N, D, C
mm rpm mm (in.)
50 60000 | 8.73 (0.344) |2.39x10"2| 5010 | 4.8¢10°
100 30 000 | 14.29 (.562) |2.63 14 400 1.8
150 20 000 |22.23 (.875) |4.39 31210 1.4
200 15 000 | 31.75 (1.250)|7.20 54 790 1.3

rTest shaft ~—~Lubricating oil
/

7 ,—Gas thrust
v:i(fce transducer \‘ J/ ,/ bearing air
N { d Pa supply
\\ \ //
vlorquewire >4 : J .~ Test bearing
A o 5 1 . ¢
P { | 7/
\\ J \ 7
\ | ¢
\ |
\ =3
N P \
\ B
\
\
\
\
\
\
QOuter-race

ther mocouple
location———_

- ™
Heating coils—

N
Thrust load

/’/ f- = ) .
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Figure 1. - Bearing test apparatus.
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Transition speed, rpm
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Figure 9. - Arched bearing transition speed as a function of the
amount of arching, for three values of diametral play. Thrust
load, 2200 N (500 Ib).
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Figure 10. - Arched bearing transition speed as a function of
bearing thrust load for three values of arching. Diametral
play, 0.076 mm (0.0030 in. ).
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