NASATECHNICAL MEMORANDUM

NASA TM X-3388

COMPUTER SUBROUTINES FOR THE ESTIMATION OF NUCLEAR REACTION EFFECTS IN PROTON-TISSUE-DOSE CALCULATIONS

Jobn W. Wilson and G. S. Kbandelu'al
Langley Research Center.
Hampton, Va. 23665

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • JUNE 1976

[^0]
COMPUTER SUBROUTINES FOR THE ESTIMATION OF NUCLEAR REACTION EFFECTS IN PROTON-TISSUE-DOSE CALCULATIONS

John W. Wilson and G. S. Khandelwal*
Langley Research Center

SUMMARY

Calculational methods for estimation of dose from external proton exposure of arbitrary convex bodies are briefly reviewed and all the necessary information for the estimation of dose in soft tissue is presented. Special emphasis is placed on retaining the effects of nuclear reaction, especially in relation to the dose equivalent. Computer subroutines to evaluate all of the relevant functions are discussed. Nuclear reaction contributions for standard space radiations are in most cases found to be significant. Many of the existing computer programs for estimating dose in which nuclear reaction effects are neglected can be readily converted to include nuclear reaction effects by use of the subroutines described herein.

INTRODUCTION

When an object is exposed to external radiation, the dose field within the object is a complicated function of the character of the external radiation, the shape of the object (including orientation), and the object's material composition. Calculation of dose within an object involves solution of the appropriate Boltzmann transport equation in which the external radiation source imposes boundary conditions on the solution. Although general purpose computer programs exist for making such estimates (ref. 1), they are seldom used in practice when the object is bounded by a complicated surface, as is the human body, for example. Instead, calculations are usually made for simple geometric shapes from which inferences are then made for more general geometries, and the resultant errors are uncertain.

In the case of external proton radiation, such as that encountered near high-energy accelerators, in space, and in high-altitude aircraft, it is the inclusion of nuclear reaction effects which presents the major hurdles in an accurate calculation. It was found in ref erence 2 that dose estimation could be greatly simplified and still include the effects of nuclear reaction. Furthermore, it was shown that the method of reference 2, when in error, was always conservative. Required for such calculations is a knowledge of the

[^1]transition of protons in semi-infinite slab geometry, which is the simplest geometry for existing transport computer programs. Indeed, almost everything that is known about the dose in humans from external proton radiation is inferred from calculations with slab geometry (ref. 3).

In the present report, a general method for estimation of dose in arbitrary convex geometry/in terms of dose conversion factors in slab geometry is briefly discussed.
These dose conversion factors for protons in tissue are then represented using buildup factors. A parametric form for the buildup factors is presented. The values for the parameters are derived from Monte Carlo calculations of various authors. All the information necessary to estimate dose and dose equivalent for proton irradiation of convex objects of arbitrary shape is contained herein. The advantage of the method is that existing proton dose calculations in which nuclear reactions are neglected can be directly converted by substitution of the dose conversion factors presented herein.

SYMBOLS

a_{i}	buildup-factor parameter, $\mathrm{i}=1,2,3,4$
$D(\vec{x})$	dose at point \vec{x}, rad or rem
E	proton energy, MeV
E_{0}	proton energy parameter, MeV
E_{r}	reduced proton energy, MeV
F(z,E)	proton dose buildup factor, dimensionless
$P(E)$	nuclear survival probability in tissue
$\mathrm{p}(\mathrm{E})$	particle rigidity, MV/c
p_{o}	particle rigidity parameter, MV/c
$\mathrm{Q}_{\mathrm{F}}(\mathrm{S})$	quality factor, dimensionless
r(E)	proton range in tissue

$R_{n}(z, E) \quad$ dose conversion factor for normal incident protons, $\frac{\text { rad (or rem) } \mathrm{cm}^{2}}{\text { proton }}$
$R_{p}(z, E) \quad$ primary proton contribution to $\quad R_{n}(z, E), \frac{\text { rad (or rem) } \mathrm{cm}^{2}}{\text { proton }}$
$R_{S}(z, E) \quad$ secondary particle contribution to $R_{n}(z, E)$, $\frac{\text { rad (or rem) } \mathrm{cm}^{2}}{\text { proton }}$
$\mathrm{S}(\mathrm{E}) \quad$ proton energy loss rate in tissue, $\mathrm{MeV} / \mathrm{cm}$
$\vec{x} \quad$ dose point position vector, cm
z depth of penetration into a tissue slab, cm
$\mathrm{z}_{\mathrm{X}}(\vec{\Omega}) \quad$ distance from surface to dose point $\overrightarrow{\mathrm{x}}$ along direction $\vec{\Omega}$, cm
$\epsilon(z) \quad$ energy of proton with range z in tissue, MeV
$\sigma(E) \quad$ proton macroscopic cross section in tissue, cm^{-1}
$\tau(E) \quad$ proton total optical thickness, dimensionless
$\phi(\vec{\Omega}, \mathrm{E}) \quad$ proton differential fluence spectrum, protons $/ \mathrm{cm}^{2}-\mathrm{MeV}-\mathrm{sr}$
$\phi_{0} \quad$ proton differential fluence spectrum parameter, protons $/ \mathrm{cm}^{2}-\mathrm{MeV}-\mathrm{sr}$
$\vec{\Omega} \quad$ unit vector in direction of proton motion, dimensionless

Abbreviations:

GCR galactic cosmic radiation

SCR solar cosmic radiation

A prime indicates a variable of integration.

THEORY

In passing through tissue, energetic protons interact mostly through ionization of atomic constituents by the transfer of small amounts of momentum to orbital electrons. Although the nuclear reactions are far less numerous, their effects are magnified because of the large momentum transferred to the nuclear particles and to the struck nucleus it self. Unlike the secondary electrons formed through atomic ionization by interaction with the primary protons, the resulting radiations of nuclear reaction are nearly all heavily ionizing and generally have large biological effectiveness. Many of the secondary particles of nuclear reactions are sufficiently energetic to promote similar nuclear reactions and thus cause a buildup of secondary radiations. The description of such processes requires solution of the transport equation. The approximate solution for the transition of protons in $30-\mathrm{cm}$-thick slabs of soft tissue for fixed incident energies are presented in references 4 to 11 . The results of such calculations are dose conversion factors for relating the primary monoenergetic proton fluence to dose or dose equivalent as a function of position in a tissue slab.

Whenever the radiation is spatially uniform, the dose at any point \vec{x} in a convex object may be calculated according to reference 2 by

$$
\begin{equation*}
\mathrm{D}(\overrightarrow{\mathrm{x}})=\int_{0}^{\infty} \int_{\Omega} \mathrm{R}_{\mathrm{n}}\left[\mathrm{z}_{\mathrm{x}}(\vec{\Omega}), \mathrm{E}\right] \phi(\vec{\Omega}, \mathrm{E}) \mathrm{d} \vec{\Omega} \mathrm{dE} \tag{1}
\end{equation*}
$$

where $R_{n}(z, E)$ is the dose at depth z for normal incident protons of energy E on a tissue slab, $\phi(\vec{\Omega}, \mathrm{E})$ is a differential proton fluence along direction $\vec{\Omega}$, and $\mathrm{z}_{\mathrm{X}}(\vec{\Omega})$ is the distance from the boundary along $\vec{\Omega}$ to the point $\overrightarrow{\mathrm{x}}$. It has been shown that equation (1) always overestimates the dose but gives an accurate estimate when the ratio of the proton beam divergence due to nuclear reaction to the body radius of curvature is small. Equation (1) is a practical prescription for introducing nuclear reaction effects into calculations of dose in geometrically complex objects such as the human body. The main requirement is that the dose conversion factors for a tissue slab be adequately known for a broad range of energies and depths.

Available information on conversion factors is for discrete energies from 100 MeV to 1 TeV in rather broad energy steps and for depths from 0 to 30 cm in semi-infinite slabs of tissue (refs. 4, 5, 8, and 9). The nuclear reaction data used for high-energy nucleons are usually based on Monte Carlo estimates (refs. 12 to 14) with low -energy neutron reaction data taken from experimental observation. The quality factor defined by the International Commission on Radiobiological Protection (ref. 15) is used for protons. The quality factor for heavier fragments and the recoiling nuclei is arbitrarily set to 20 , which
is considered conservative, although the average quality factor obtained by calculation is comparable to estimates obtained through observations made in nuclear emulsion (ref. 16).

To fully utilize equation (1), the fluence-to-dose conversion factors for normal incident protons on a tissue slab must be known for all energies and depths. A parametriza tion of the conversion factors was introduced by Wilson and Khandelwal (ref. 2) which allowed reliable interpolation and extrapolation from known values. In the following section, a refinement and extension of that work will be discussed.

Fluence-to-Dose Conversion Factors

The conversion factor $R_{n}(z, E)$ is composed of two terms representing dose due to the primary beam protons and the dose due to secondary particles produced in nuclear reaction. Thus,

$$
\begin{equation*}
R_{n}(z, E)=R_{p}(z, E)+R_{S}(z, E) \tag{2}
\end{equation*}
$$

where the primary dose equivalent conversion factor is given by

$$
\begin{equation*}
R_{p}(z, E)=P(E) Q_{F}\left[S\left(E_{r}\right)\right] \frac{S\left(E_{r}\right)}{P\left(E_{r}\right)} \tag{3}
\end{equation*}
$$

The linear energy transfer (LET) denoted by Bethe's formula above 243.8 keV as given by

$$
\begin{equation*}
S(E)=\frac{4 \pi N_{A} e^{4} z}{m_{e} v^{2} A}\left\{\ln \left[\frac{2 m_{e^{v^{2}}}}{I\left(1-\frac{v^{2}}{c^{2}}\right)}\right]-\frac{v^{2}}{c^{2}}\right\} \tag{4a}
\end{equation*}
$$

where
z average tissue atomic number
A average tissue atomic weight
I adjusted ionization potential
$\mathrm{m}_{\mathrm{e}} \quad$ electron mass
e electron charge, C
v
proton velocity, $\mathrm{cm} / \mathrm{sec}$
c
velocity of light, $\mathrm{cm} / \mathrm{sec}$
$\mathrm{N}_{\mathrm{A}} \quad$ Avogadro's number

At proton energies below 243.8 keV , the LET is calculated by the empirical expression

$$
\begin{equation*}
S(E)=E^{0.303}(2517-6283 E) \tag{4b}
\end{equation*}
$$

which approximately accounts for electron capture and the inner shell corrections in soft tissue. The proton range in soft tissue is given by

$$
\begin{equation*}
r(E)=\int_{0}^{E} \frac{d E^{\prime}}{S\left(E^{\prime}\right)} \tag{5}
\end{equation*}
$$

with the reduced energy in equation (3) given by

$$
\begin{equation*}
\mathrm{E}_{\mathrm{r}}=\epsilon[\mathrm{r}(\mathrm{E})-\mathrm{z}] \tag{6}
\end{equation*}
$$

where $\epsilon(z)$ is the inverse function of $r(E)$. The total nuclear survival probability for a proton of energy E is given by

$$
\begin{equation*}
P(E)=\exp \left[-\int_{0}^{E} \sigma\left(E^{\prime}\right) \frac{d E^{\prime}}{S\left(E^{\prime}\right)}\right] \tag{7}
\end{equation*}
$$

where the macroscopic cross section $\sigma(\mathrm{E})$ for tissue as calculated by Bertini is given in reference 17. The proton total optical thickness given by

$$
\begin{equation*}
\tau(\mathrm{E})=\int_{0}^{\mathrm{E}} \sigma\left(\mathrm{E}^{\prime}\right) \frac{\mathrm{dE}^{\prime}}{\mathrm{S}\left(\mathrm{E}^{\prime}\right)} \tag{8}
\end{equation*}
$$

is tabulated in table 1 for purposes of numerical interpolation. In the case of conversion factors for absorbed dose, $R_{p}(z, E)$ is taken as

$$
\begin{equation*}
R_{p}(z, E)=P(E) \frac{S\left(E_{r}\right)}{P\left(E_{r}\right)} \tag{9}
\end{equation*}
$$

Buildup Factors

The representation of the conversion factors is simplified (see ref. 2) by rewriting equation (2) as

$$
\mathrm{R}_{\mathrm{n}}(\mathrm{z}, \mathrm{E})=\left[1+\frac{\mathrm{R}_{\mathrm{S}}(\mathrm{z}, \mathrm{E})}{\mathrm{R}_{\mathrm{p}}(\mathrm{z}, \mathrm{E})}\right] \mathrm{R}_{\mathrm{p}}(\mathrm{z}, \mathrm{E})
$$

or

$$
\begin{equation*}
R_{n}(z, E) \equiv F(z, E) R_{p}(z, E) \tag{10}
\end{equation*}
$$

where $F(z, E)$ is recognized as the proton dose buildup factor. The main advantage for introducing the buildup factor into equation (10) is that unlike $R_{n}(z, E)$, the buildup factor is a smoothly varying function of energy at all depths in the slab and can be approximated by the simple function

$$
\begin{equation*}
F(z, E)=\left(a_{1}+a_{2} z+a_{3} z^{2}\right) \exp \left(-a_{4} z\right) \tag{11}
\end{equation*}
$$

where the parameters a_{i} are energy dependent. The a_{i} coefficients are found by fitting equation (11) to the values of the buildup factors as estimated from the Monte Carlo calculations of proton conversion factors. The resulting coefficients are shown in table 2. The coefficients for 100,200 , and 300 MeV protons were obtained by using the Monte Carlo data of reference 4 . The values at $400,730,1500$, and 3000 MeV were obtained from the results of Alsmiller, Armstrong, and Coleman (ref. 8). The 10 GeV entry was obtained from the calculations of Armstrong and Chandler (ref. 9). The values that are footnoted in table 2 were obtained by interpolating between data points or smoothly extrapolating to unit buildup factors at proton energies near the Coulomb barrier for tissue nuclei ($\approx 12 \mathrm{MeV}$). The resulting buildup factors are shown in figures 1 and 2 and are compared with the Monte Carlo results; the error bars were determined by drawing smooth limiting curves to bracket the Monte Carlo values following the general functional dependence. These uncertainty limits should, therefore, be interpreted as limits of approximately two standard deviations, rather than the one standard deviation usually used in expressing uncertainty limits.

CONVERSION FACTOR COMPUTER CODE

To utilize equation (1) in a specific problem requires values for the conversion factor $R_{n}(z, E)$ over the range of interest. Formulas for these factors were presented in
the previous section. A computer code has been generated to return values of $R_{n}(z, E)$ for arbitrary depth z and energy E. This code is listed in the appendix and is described briefly here. There are six main functions to be generated relating to LET, range-energy relations, quality factor, and the functions relating to nuclear reaction effects given as nuclear survival probability and buildup factor.

The functions relating to ionization by the primary beam are generated by the function subroutine RTIS. Tables for $r(E)$ and $S(E)$ are generated on the first call to RTIS. Subsequent intermediate values are found by numerical interpolation above 10 KeV . A simplified approximation based on equation (4b) is used at lower energies. The function $\epsilon(z)$ is found by numerical inversion of $r(E)$.

The quality factor is approximated by

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{F}}(\mathrm{~S}) \approx 0.06 \mathrm{~S}^{0.8} \tag{12}
\end{equation*}
$$

for S greater than $35 \mathrm{MeV} / \mathrm{cm}$ and set to unity for smaller LET.
The values shown in table 1 for the optical thickness are generated in the function subroutine PN and stored in an array for numerical interpolation; the nuclear survival probability is calculated using equation (7).

The coefficients for calculating the buildup factors are generated by subroutine ANTER as a function of energy by interpolating between the values shown in table 2 .

The conversion factors are generated by subroutine RESP by supplying parameters z and E, which represent distance in centimeters of tissue and proton energy in megaelectron volts; respectively. The returned values of the conversion factors have units of rads (or rems) per proton per centimeter squared.

SAMPLE CALCULATIONS

To illustrate the usage of the buildup factors described here, calculations of the dose in slab geometry for normal incident protons with spectra typical of the space environment have been made; calculations were also made neglecting nuclear reaction effects. The percentage contribution to the absorbed dose and dose equivalent due to nuclear reactions are shown in figures 3 and 4, respectively. The spectra indicated by GCR in the figures represent galactic cosmic radiation with the spectrum given by

$$
\begin{equation*}
\phi_{\mathrm{GCR}}(\mathrm{E})=\phi_{\mathrm{o}}\left(1+\frac{\mathrm{E}}{\mathrm{~m}_{\mathrm{p}}}\right)^{-2.5} \tag{13}
\end{equation*}
$$

The spectra denoted by the parameter p_{0} represent solar cosmic ray spectra given as

$$
\begin{equation*}
\phi_{S C R}(\mathrm{E})=\phi_{\mathrm{O}} \exp \left[\frac{-\mathrm{p}(\mathrm{E})}{\mathrm{p}_{\mathrm{o}}}\right] \tag{14}
\end{equation*}
$$

with the rigidity given as

$$
\begin{equation*}
\mathrm{p}(\mathrm{E})=\frac{1}{\mathrm{q}}\left[\mathrm{E}^{\prime}\left(\mathrm{E}+2 \mathrm{~m}_{\mathrm{p}}\right)\right]^{1 / 2} \tag{15}
\end{equation*}
$$

where q is the proton charge and m_{p} is the proton mass. The value $p_{0}=100 \mathrm{MV} / \mathrm{c}$ corresponds to an intermediate-energy solar event and $p_{o}=400 \mathrm{MV} / \mathrm{c}$ corresponds to a high-energy solar event. The curve denoted by $E_{O}=100 \mathrm{MeV}$ represents the energetic inner belt protons with a spectrum

$$
\begin{equation*}
\phi(E)=\phi_{O} \exp \left(\frac{-E}{E_{O}}\right) \tag{16}
\end{equation*}
$$

It is clear from the figures that dose estimates for galactic cosmic rays and highenergy solar cosmic rays cannot be accurately calculated without proper account for nuclear reactions. This is especially true for estimates of the dose equivalent. Although reasonable estimates (± 10 percent) of low and intermediate solar cosmic ray absorbed doses are expected, the dose equivalent estimates must include nuclear reaction effects. Marginally good estimates of absorbed dose for inner belt protons can be made by neglecting nuclear reactions, but dose equivalent estimates require inclusion of nuclear reaction effects.

CONCLUDING REMARKS

A set of computer subroutines have been developed to estimate dose and dose equivalent in tissue for incident protons, and the use of these subroutines in dose calculations in complex geometry has been discussed. It was found that numerically the effects of nuclear reactions generally cannot be neglected in the calculation of doses due to space proton irradiation.

Langley Research Center
National Aeronautics and Space Administration
Hampton, Va. 23665
May 3, 1976

APPENDIX

PROGRAM LISTING FOR CONVERSION FACTOR CALCULATION

The computer subroutines given in this appendix were developed for the present calculations, except for MGAUSS and IUNI which were taken from the mathematical subroutine library of the Langley Computer Complex.

APPENDIX

SURROUTINE RESP(EN,X.RAD,REM)

This SÜhoutine generates valufs for fhe slaj conversion factors FOR VALUES OF PRCTON ENERGY EN (MEV) AND DEPTH IN THE SLAH X (CM)

REAL C(b)
ENER=EN
FX=X
CALL ANTER(ENER.C.R)
RRES = R-EX
ENFRP=ETIS(RRES)
IF (ENERP) $34 \cdot 33 \cdot 34$
CONTINUE
$R A D=0$ -
REM $=0$ 。
RETURN
CONTINUE
CALL APROB(EX•FENEK, PROB)
CALL ATOPP (ENFRP,STOPD)
2 CALL AF (STOPD, QALF)
22 PES=PROB*STOPP*QALF
PRINT l.C
COREQ $=(C(1)+x *(C(2)+x * C(3))) * E X P(-x * C(4))$
COREC $=(C(5)+x *(C(6)+x * C(7))) * E X P(-x * C(d))$
IF (COREQ.LT•1•) COREO=1.
IF (COREC.LT.1.) COREC=1.
DRINT 1 , EN, X, ENERP, DROB, STOPP, OALF, CORF:O, COREG
1 FORMAT $(2 x, 8 F 12.3)$
REM=PES*COREQ *1.6E-8
PES $=P R O B * S T O P P$
RAD=PES*COREC*1.6E-B
RETURN
END

SUBROUTINE ANTER (ENER,C,R)
this subroutinf generates the values of the. parameters
OF THE ANALYTIC FITS OF THE MONTE GARLO RESULTS
REAL $C(8), A(12,8), E(12)$
LOGICAL FALS
DATA E/30..60.. 100..150..200..300..400..730..1200..1500., 300n..
110000.

DATA A/1.0.1.2.1.4.1.5.1.6.1.70.1.90.3.4 4.4.32.4.60.5.35.6.20.
$20.0 .0 .0 .02, .07, .09 . .11 . .13 . .156$. .167..170..100..280

40.0..013:.030..0385,.04i,.033,.0と28..0150..013..012..010..010.
51.0.1.0.1.1.1.12.1.15.1.2.1.24.1.4.1.67.1.8.2..2.3.
60.0..01..040..05..us2..065,.071..29..094..095..10..11.

80.0..01..026..031..032..026..0228..015,.0122..012,.01.01/

DATA FALS/.T./
DATA IPT/-1/
$R=R T I S(E N E R)$
IF (FALS) GO TO 10
1 continue
ELOG=ALOG(ENER)
CALL IUNI (12.12.E.8.A. $2 \cdot$ ELOG,C.IPT. (ERR)
RETURN
10 continue
no $11 \quad 1=1 \cdot 12$
E(I)=ALOG(E(!))
11 continue
FALS =.F.
GO TO 1
ENT

APPENDIX

```
            SURROUTINE AF(STOPP,QALF)
C THIS SUBROUTINE COMPUTES THE OUALITY FACTOD AS A FUNCTION OF
C LINEAR ENERGY TRANSFER
        IF(STOPP-35.)11.11.12
    11 OAI==1.
        RETURN
    12 QALF=.0G*STOPP**.8
        RETIJRN
        END
        SUBROUTINE APROG(EX,E,PROB)
C THIS SUBROUTINE GENERATES VALUES FOR THE NUCLEAR SURVIVAL PROBABILITY
C PN GivES PROBABILITY THAT PROTON tRAVELS FIJLL RANGE WIthOUT
C
    EXTERNAL FOX
    LOGICAL TRU
    REAL R(30).ET(30)
    DATA ET/U..1J..25..50..100..150.,200..250..300..350..400.,500..
    1700..900..11UU..1300..1500..17CD..2000..2200..2400.,2600..2800..
    23000..4000..500U.,6000.,7000.,8500..10000.1
        Data TRU/.T./
        DATA IPT/-1/
        IF!TRU) GO TO IO
    111 ER=F
    CALL IUNI(30.30.ET,1.R.2.FR.BYRD,IPT,IERR)
    PN=EXP(-BYRD)
    RETURN
    1O TRU=.F.
    R(1)=0.
    DO 1 1=2.30
    EU=ET(1)
    G=ET(1-l)
    CALL MGAUSS(G.EU,O4,ANS.FOX,F,1)
    R(1)=R(I-1)+\DeltaNS
        l CONTINUE
        PRINT 19
        19 FORMAT(///.25x.*PN GRID*///
        PRINT 119
    119 FORMAT (1OX.*F VALUES FOR GRID*//)
    PRINT 226. ET
    226 FORMAT (2X.REI5.6)
    PRINT 227
227 FORMAT (//.1JX.*R VALUES FOR GRID*)
    PRINT 226.R
    GO TO 111
    ENn
```


APPENDIX

```
SURROUTINE FOX(X,F)
ENER=X
3 CALL ASIGMIENER,SIGMA,
CALL ATGPP(FNER.STOPP)
F=SIGMA/STOPD
2 RETURN
END
SUBROUTINE ASIGM(ENER.SIGMA)
this subroutine generates values of total ncnelastic macroscopic
    CROSS SECTION (CM**Z/G) IN TISSUE AS A FUNCTION OF PROTON ENEKGY ENER(MEV)
    REAL EN(43).CROS(43)
    DATA EN/25.32.24.06.34.16.39.06.44.65.50.01.60.19.70.24.79.4.7.89.9
    11.100.8.117.9.139.3.156.3.175.3.186.6.202.7.266.1.304.7.375.2.407.
    27.471.6.507.1.574.5.611.4.678.3.714.5.776.4.809.3.870.4.916.5.1007
    -2.,1129..1406..1786..2024..2318., 2071..3428..3943..5000..8000..
    410000.1
    OATA CROS/2.614.2.36n.2.153.1.985.1.987.1.757.1.621.1.526.1.451.1.
    1379.1.327.1.261.1.211.1.187.1.154.1.152.1.141.1.097.1.c87.1.1n0.1.
    2136.1.199.1.212,1.26t.1.297.1.350,1.379,1.424,1.440.1.471.1.478.1.
    3504.1.477.1.480.1.483.1.485.1.487.1.475.1.461.1.453.1.45.1.458.
    41.452/
    DATA [DT/-1/
    11E=FNER
    IF(ENER.LT.25.32) ENER=25.32
    CALL IUNI(43.43.EN.1.CROS.2.ENER.CPOSS.IPT.IERR)
    SIGMA=(CROSS/IOU.)
    ENER=E
    RETURN
    END
FUNCTION RTIS(E)
C this subroutine generates the range-energy relations and let for PROTONS IN TISSUE
EXTERNAL ATOF
REAL ET(57).RT(57).ST(57)
LOGICAL FALSE
DATA FALSE/.T./
DATA NP/57/
DATA ET/.01..02..U3,.04..0S..06..07..08..00..1..2..3..4..5,
1.6..7..8..9.1..2..3.4...5..6..7..3..7..10..20..30..40..50..
```



```
\(47000 \cdot .8500 \cdot 10000 . /\)
\(\mathrm{N}=1\)
1F(FALSE) GO TO 1 U
12 CONTINUE
RTIS=E**.697/(2517.*.697)
IF(F.LT..O1) RETURN
\(A=A L O G(E)\)
DO 1 1F=2.ND
IF(A.LT•ET(IE)) GOTO 己
1 continue
2 I=1F
SLOPE \(=(\) RT ( 1\()-R T(1-1)) /(E T(1)-E T(1-1))\)
HAL=RT(1-1)+SLOPI-*(A-ET(I-1))
RTIS \(=\) EXP(RAL)
RETURN
ENTRY STIS
```


APPENDIX

```
    N=?
    IF(FALSE)GO TO 10
13 CONTINUE
    RTIS=E***303*(2S17.-6283.*E)
    lF(E.LT..O1) RETUUN
    A=ALOG(E)
    DO 3 lE=2.NP
    IF(A.LT•ET(IE)) GO TO 4
    3 CONTINUE
    4 I=IE
    SLOPE=(ST(I)-ST(I-1))/(ET(I)-ET(I-1))
    SAL =ST(I-1)+SLOPE*(A-ET(I-1))
    RTIS=EXP(SAL)
    RETURN
    ENTRY ETIS
    N=3
    IF(FALSE)GO TO 10
    14 CONTINUE
    RTIS=(2517.*.697*E)**1.43472
    IF(E.LT..O!) RETURN
    R=ALOG(E)
    DO Э IR=2.NP
    IF(R.LT.RT(IF)) GOTO 6
    5 CONTINUE
    & I=lR
    SLOPE=(ET(!)-ET(1-1))/(RT(1)-RT(1-1))
    EAL =ET(I-1)+SLOPE*(R-RT(l-1))
    RTIS=EXP(EAL)
    RETURN
    10 CONTINUE
    RT(1)=0.
    ST(1)=0.
    M=06
    OO ح1 I=2.NP
    CALL ATOPP(ET(I),ST(:))
    CALL MGAUSS(ET(I-1),FT(I),M,ANS,ATOE,F,1)
    21RT(1)=RT(1-1)+ANS
    RIRST=RT(2)
    EIRST=ET(2)
    DO 11 x=2,NP
    ET(IX)=ALOG(ET(IX))
    RT(IX)=ALOG(RT(IX))
    11 ST(:X)=ALOG(ST(IX))
    FALSF=.F.
    GO TO (12.13.14)N
    END
        SUEROUTINE ATOE(E,F)
    CALL ATOPP(E,S)
        F=1./S
        LE TURN
    END
```

 SURROUTINE ATOPP(ENER.STOPP)
 1F (ENER.GT.. 2438) GO TO 2
 STOPP = (2517.-6283.*ENER)*ENER**.303
 RE TURN
 2 ZETA=ENER/938.211
 BETAS = ((ZETA* (ZETA + 2.)) ((ZETA + . .) ** 2))
 WBE=1.022201E6*EETASノ(1.-EETAS)
 FBET = ALOG (WEE)-BETAS
 STOPP \(=.30726148 *(-2 \cdot 2378.342+.529726 * F B E T) / R E T A S\)
 RETIIRN
 END

APPENDIX

SUAROUT INE MGAUSS(A•R.N.SUM.FUNC,F OFX,NUMRFR)

DIMENSION U(5). P(5), SIJM(1),FOFX(1)
DO 1 LL=1. NUMPFR
Sum(LL) $=0.0$
IF (A.EQ.F) RETURN
U(1) =.425562850509184
$U(2)=.283302302935376$
U(3) $=.1602952158504 \mathrm{ds}$
$U(4)=.067468316655508$
$U(5)=.013046736741414$
R(1) $=.147752112357376$
$R(2)=.13463335955499$
$R(3)=.109543181257991$
R(4) $=.074725674575290$
$R(5)=.033335672154344$
FINE=N
DELTA=F(NE/(B-A)
กn ? $K=1 \cdot N$
x $1=k-1$
FINE =A+XI/DELTA
DO 2 II =1.5
UU=U(1:)/DELTA+FINE
CALL FUNC (UU.FOFX)
DO 2 JOYBOY=1,NUMBER
$2 \operatorname{SUM}(J O Y B O Y)=R(11) * F O F X(J O Y B O Y)+$ Sum(Jorgor)
$003 \mathrm{JJ=1.5}$
$U U=$ (1.O-U(JJ) / NDELTA+FINE
CALL FUNC (UU,FOEX)
DO 3 NN=1. NUMEER
3 SUM (NN) $=R(J J) * F O F X(N N)+\operatorname{SUM}(N N)$
DO 7 I $J K=1$ NUMAER
7 SUM (IJK) =SUM (IJK)/DELTA
RETURN
END
SUBROUT INE IUNI(NMAX,N,X,NTAE•Y•IORDER,XU,YO,IPY•IERR) IUNIOO1O

C*

* IUNI0030

C* PURPOSE9 *IUNICO40
SUBROUTINE IUNI USES FIRST OR SECOND ORDER *IUNIOOSO LAGRANGIAN INTERPOLATION TO ESTIMATE THE VALUES *IUNIOOGO OF A SET OF FUNCTIONS AT A DOINT XO. IUNII *IUNIOO7O USES ONE INDEPENDENT VARIABLE TABLF AND A DEPENDENT *IUNIOO8O VARIABLE TABLE FOR EACH FUNCTION TO BE EVALUATED. *IUNIOO90 the routine accerts the independent variables spaced *iunioloo AT EQUAL OR UNEQUAL INTERVALS. EACH UEPENDENT *IUNIOIIO VARIABLE TAZLE mUST CONTAIN FUNCTION VALUES CORRES- *IUNIOI20 PONDING TO EACH $\times(I)$ IN THE INDEPENDENT VARIAELE *IUNIOI30 table. the estimateo values are returned in the yo *iunioiao ARRAY WITH THE N-TH VALUE OF THE ARRAY HOLDING THE *IUNIOISO VAl-UE OF THE N-TH FUNCTION VALUE EVALUATED AT XO. *IUNIOIG0
*IUNIOI70
*IUN10180
CALL IUNI (NMAX.N.X,NTAR.Y.IORDER,XO.YO.IPT.IERR) *IUNIOI OO
*IUNT0200
*IUNiopio
*IUNIO220
C* THE MAXIMUM NUMBER OF DOINTS IN THE INDEPENDENT VARIABLE ARRAY.
C*
the actual number of points in the independent

* I UN 10250
N ARRAY.WHERE N •LE. NMAX.
-IUNIO260
* I UN 10270
* IUNiOzBo
x A ONE-DIMENSIONAL ARRAY. DIMENSIONED (NMAX) IN THE *IUNIO290 CALLING PROGRAM. W'TICH CONTAINS THE INDEPENDENT *IUNIOBOO VARIABLES. THFSE VALUFS MUST RE STRICTLY MONOTONIC. *IUNIO3IO *lUNI0320 *IUNIO330 *IUNi0340 * IUNI 0350 $\begin{array}{ll}\text { THE CALLING PROGRAM. EACH COLUMN OF THE ARRAY } & \text { *IUNIO360 } \\ \text { CONTAINS A DEPENDENT VARIABLE TABLE } & \end{array}$ * IUNIC380

APPENDIX
INTERPOLATION PARAMETFR SUPPLIFD GY THE USER. *IUNIO390

* IUNIO400
*IUNIO410
* I UNi0420
*IUNIO430
* IIJNI 0440
* 1 UN I 0450
*IUN10460
* I UNIO470
*IUNIO480
*IUN10490
*IUNI 0500
*IUNI0510
CALLING PEOGRAM. UPON RETURN THE ARRAY CONTAINS THE *IUNIOS20
CALLING PEORAM. OF ONCHETACTION AT XO. CONTAINS THE
*IUNI0530
*IUNIOS40
*1UN10550
* I UNI 0560
* IUNI 0570
* IUNI 0580
* IUNI 0590

RETURNED AS9
$=U$ DENOTES XO .LT. X(1) IF THE X ARRAY IS IN *IOGOO *IUNIOG1O $\begin{aligned}=U & \text { DENOTES XO •LT. X(1) IF THE X ARRAY IS IN } \\ & \text { INCREASING ORDEH AND } \times(1) \text {.GT. XO IF THE } \times \text { ARRAY *IUNIOGIO }\end{aligned}$ IS IN DECREASING ORDER. \quad *IUNIOS30
$=N$ UENOTES XO •GT• X(N) JF THE X ARRAY.IS IN *IUNIO64O INCREASING ORDER AND $\times 0 . L T$. $X(N)$ IF THE \times ARRAY *IUNIOS50.
IS IN DECREASING ORDER.

* IUNIOG60
* IUNIOg70

ON SUBSEQUENT CALLJ, IPT IS USED AS A POINTER TO *IUNIOG8O
begin the search for xo.

* IUN 10690

ERROR PARAMETER GENERATEU BY THE ROUTINE *IUN10700
$=0$ NORMAL RETURN
$=J$ THE J-TH ELEMENT OF THE X ARRAY IS OUT OF ORDER *IUNIOT30
=-1 ZERO ORDER INTERPOLATION PERFORMED BECAUSE *IUNIO740 IORDER $=0$. *IUNIOT50
$=-2$ ZERO ORDER INTERPOLATION PERFORMED BECAUSE ONLY *IUNIO760
ONE POINT WAS IN \times ARRAY.

* IUN 10770
=-3. NO INTERPOLATION WAS PERFORMED BECAUSE *IUNIO780 INSUFFICIENT POINTS WERE SUPPLIED FOR SECOND *IUNI0790 ORDER INTERPOLATION.
$=-4$ EXTRAPOLATION WAS PERFORMED *IUNIOB1O
* IUNIO820

RET THE PARAMETER IERR SHOULD BE TESTED IN THE CALLING PROGRAM.

* I UNI 0830
* I UN 10840
* IUNI 0850

REQUIRED ROUTINES NONE *IUNIO860
SOURCE CMPB ROUTINE MTLUP MODIFIED *IUNIO880
2ang *IUNIO900
LANGUAGE FORTRAN *IUN10910
*IUNI0920

* I UNI 0930

DATE RELEASED AUGUST 1.1973 *IUN 10940
LATEST REVISION JUNE 9, 1975 *IUNIO960

* I UNI 0970

范*******************************IUNIO980
OIMENSION X(1),Y(NMAX•1).YO(1)
1 UN I 0990
NM1 $=\mathrm{N}^{-1}$ IUNI1000
$I E R R=0$
$J=1$
IUNIIT10
IUNIIO20
IUNI1030
IUNI1040 IUNIIOSO
DELX=X(2)-X(1)
IF (IORDER •EQ. O) GO TO 10
IF IN.LT. 2) GO TO 20
GO Tn 50

APPENDIX

10	$1 E N R=-1$	IUNIT100
	GOTO 30	IUNIII10
20	$1 E R R=-2$	IUN:1120
30	DO 40 NT=1.NTAB	IUNI 1130
	YO(NT) $=Y(1, N T)$	IUNI1140
40	CONTINUE	IUN11150
	RETURN	IUNI1160
50	IF (IPT .GT. -1) GO TO 65	IUNI1170
c		IUNI 1180
c	CHECK for table of node points being strictly monotonic	IUNI1190
c	THE SIGN OF DELX SIGNIFIES WHETHER TAGLE IS IN	IUNI 1200
c	INCREASING OR DECREASING OROER.	IUN:1210
C		IUNI 1220
	IF (DELX .EO. O) GO TO 190	IUNI 1230
	IF (N EEO. 2) GO TO 65	IUNI 1240
c		IUNI1250
C	CHECK FOR SIGN CONSISTENCY IN THE DIFFERENCES OF	IUNI 1260
C	SUBSEQUENT PAIRS	IUNI1270
C		IUNII280
	DO $50 \mathrm{~J}=2 \cdot \mathrm{NM} 1$	IUNII290
	IF (DELX * (X (J+1)-X(J)) 190.190 .60	IUNI 1300
60	continue	IUNII310
c		IUNII320
c	IPT IS INITIALIZEO TO DE WITHIN THE INTERVAL	IUN11330
C.		IUN11340
65	IF (IPT •LT I) IPT=1	IUNI1.350
	IF (IPT -GT. NMI) [PT=NMI	IUNI1360
	IN= SIGN (I.U.OELX * (XU-X (IPT))	IUNI1370
70	$P=\times(I P T)-\times 0$	IUNI1380
	IF (P* (X(1PT + 1)- X0)) 90.180.80	IUNI 1390
80	$1 P T=I P T+I N$	IUNI1400
c		IUNI1410
C	test to see if it is neccesary to extrapolate	IUNI1420
c		IUNI1430
	IF (IPT:GT.O .AND. IPT •LT. N) GO TO 70	IUNI1440
	$1 E R R=-4$	IUNI1450
	$I P T=I P T-I N$	IUNI1460
c		IUN11470
\bigcirc	TEST FOR ORDER OF INTERPOLATION	IUNI1480
c		IUNI 1490
C		IUNI1500
90	IF (IORDER .GT. 1) GO TO 120	IUNI1510
c		IUNI 1520
c	FIRST ORDER INTERPOLATION	1 UNI 1530
c		IUNI1540
	$\mid P T 1=1 P T+1$	JUN11550
	\times TMP $1=\times 0-\times(I P T)$	IUNI 1560
	XTMPE=X(IPTI)-X(IPT)	IUN11570
	XTMP1 $=$ XTMP1/XTMP2	1 UNI1580
	DO 100 NT=1. NTAS	IUNI1590
	$Y T M P=Y(!P T 1 . N T)-Y(I P T, N T)$	IUNI 1600
	YO(NT) $=Y(I P T$. $N T)+Y T M P * X T M P 1$	IUNI1610
100	CONTINUE	1 UNI 1620
	IF (IERR -EO. -4) $1 P T=I P T+I N$	IUN 11630
	RETURN	IUNI1640
c		IUNI1650
c.	SECOND ORDER INTERYOLATION	IUN11660
c		IUNI1670
120	IF (N EEO. 21 GO TO 200	IUNI 1680
c		IUNI1690
C	CHOOSING A TMIRD POINT SO AS TO MINIMIZE the Distance	IUNI1700
c	between the three points useo to interpolate	IUNI1710
c		IUNI1720
	IF (IPT EQ. NM1) GO TO 140	IUN 11730
	IF I!PT .EO. 1) GO TO 130	IUNI1740
	$A 1=A B S(\times 0-\times(1 P T-1)$)	IUN1:750
	$\Delta 2=\Delta 35(x(1 P T+2)-\times 0)$	JUNII760
	IF (A1-A2)14U,13U,130	IUNI1770
130	$L=I P T$	IUN11780
	GOTO 150	IUNI1790
140	$L=I P T-1$	IUNIIE00
150	V1 $=\times(L)-\times 0$	IUNII810

APPENDIX

```
            V2=x(L+1)-x0 IUNI1820
            V3=x(L+2)-x0
            CO 1.6O NT=1.NTAB
            YY1=(Y(L,NT) *V2 - Y(L+1,NT) * VI)/(X(L+1) - X(L))
            YYZ=(Y(L+1,NT)*V3-Y(L+2.NT) *VZ)/(X(L+2)-X(L+1))
            YO(NT)=(YY!*V3-YYZ*V1)/(X(L+2)-X(L))
    160 CONTINUE
    IF (IERR .EQ. -4) IPT=IPT + IN
            RETURN
180, 1F(P .NE. O) IPT=IPT +1
DO 185 NT=1,NTAE
            YO(NT)=Y(IPT,NT)
            CONTINUE
            RETURN
C
C IERR IS SET TO THE SUBSCRIPT OF THE MEMBER OF THE TABLE
C IERR IS SET TO THE SUBSCRIPT OF THE MEMEER OF THF TABLE IGICH IS OUT OF ORDER IUNII970
190 IERR=J +1 IUNI20OO
    RETURN
200 IERR=-3
    RETURN
    ENO
IUNI1830
IUNIIR4O
IUNI1850
IUNI1860
IUN11870
IUNI1880
IUN11890
IUNI1900
IUNI1910
IUNI1920
IUNI1930
IUNI1940
185 CONTINUE
IINNI1950
c
IUNI1970
IUN11980
IUNII990
IUNI2000
IUNI2010
IUNI2020
IUNI2030
IUNI2040
```


REFERENCES

1. Alsmiller, R. G., Jr.: High-Energy Nucleon Transport and Space Vehicle Shielding. Nucl. Sci. \& Eng., vol. 27, no. 2, Feb. 1967, pp. 158-189.
2. Wilson, John W.; and Khandelwal, G. S.: Proton Dose Approximation in Arbitrary Convex Geometry. Nucl. Technol., vol. 23, no. 3, Sept. 1974, pp. 298-305.
3. Neufeld, Jacob; and Wright, Harvel: Radiation Levels and Fluence Conversion Factors. Health Phys., vol. 23, no. 2, Aug. 1972, pp. 183-186.
4. Turner, J. E.; Zerby, C. D.; Woodyard, R. L.; Wright, H. A.; Kinney, W. E.; Snyder, W. S.; and Neufeld, J.: Calculation of Radiation Dose From Protons to 400 MeV . Health Phys., vol. 10, no. 11, Nov. 1974, pp. 783-808.
5. Zerby, C. D.; and Kinney, W. E.: Calculated Tissue Current-to-Dose Conversion Factors for Nucleons Below 400 MeV . Nucl. Instrum. \& Methods, vol. 36, no. 1, Sept. 1965, pp. 125-140.
6. Snyder, W. S.; Wright, H. A.; Turner, J. E.; and Neufeld, Jacob: Calculations of Depth-Dose Curves for High-Energy Neutrons and Protons and Their Interpretation for Radiation Protection. Nucl. Appl., vol. 6, no. 4, Apr. 1969, pp. 336-343.
7. Wright, Harvel A.; Anderson, V. E.; Turner, J. E.; Neufeld, Jacob; and Snyder, W. S.: Calculation of Radiation Dose Due to Protons and Neutrons With Energies From 0.4 to 2.4 GeV . Health Phys., vol. 16, no. 1, Jan. 1969, pp. 13-31.
8. Alsmiller, R. G., Jr.; Armstrong, T. W.; and Coleman, W. A.: The Absorbed Dose and Dose Equivalent From Neutrons in the Energy Range 60 to 3000 MeV and Protons in the Energy Range 400 to 3000 MeV . Nucl. Sci. \& Eng., vol. 42, no. 3, Dec. 1970, pp. 367-381.
9. Armstrong, T. W.; and Chandler, K. C.: Calculation of the Absorbed Dose and Dose Equivalent From Neutrons and Protons in the Energy Range From 3.5 GeV to 1.0 TeV . ORNL-TM-3758, U.S. At. Energy Comm., May 1970.
10. Armstrong, T. W.; and Bishop, B. L.: Calculation of the Absorbed Dose and Dose Equivalent Induced by Medium-Energy Neutrons and Protons and Comparison With Experiment. Radiat. Res., vol. 47, no. 3, Sept. 1971, pp. 581-588.
11. Wright, H. A.; Hamm, R. N.; and Turner, J. E.: Effect of Lateral Scattering on Absorbed Dose From 400 MeV Neutrons and Protons. International Congress on Protection Against Accelerator and Space Radiation, J. Baarli and J. Dutrannois, eds., CERN 71-16, Vol. 1, European Organ. Nucl. Res., July 1, 1971, pp. 207-219.
12. Bertini, Hugo W.: Low-Energy Intranuclear Cascade Calculation. Phys. Rev., Second ser., vol. 131, no. 4, Aug. 15, 1963, pp. 1801-1821.
13. Bertini, Hugo W.: Intranuclear-Cascade Calculation of the Secondary Nucleon Spectra From Nucleon-Nucleus Interactions in the Energy Range 340 to 2900 MeV and Comparisons With Experiment. Phys. Rev., Second ser., vol. 188, no. 4, Dec. 20, 1969, pp. 1711-1930.
14. Bertini, Hugo W.; and Guthrie, Miriam P.: News Items - Results From MediumEnergy Intranuclear-Cascade Calculations. Nucl. Phys., vol. A169, no. 3, July 1971, pp. 670-672.
15. Report of Committee IV on Protection Against Electromagnetic Radiation Above 3 MeV and Electrons, Neutrons and Protons. ICRP Publ. 4, The Macmillan Co., 1964.
16. Schaefer, Hermanin J.; and Sullivan, Jeremiah J.: Nuclear Emulsion Recordings of the Astronauts' Radiation Exposure on the First Lunar Landing Mission Apollo XI. NAMRL-1112, U.S. Navy, June 29, 1970. (Available as NASA CR-115804.)
17. Alsmiller, R. G., Jr.; Santoro, R. T.; Barish, J.; and Claiborne, H. C.: Shielding of Manned Space Vehicles Against Protons and Alpha Particles. ORNL-RSIC -35, U.S. At. Energy Comm., Nov. 1972.

TABLE 1.- TOTAL TISSUE OPTICAL THICKNESS FOR PROTONS

E, GeV	$\tau(\mathrm{E})$	E, GeV	$\tau(\mathrm{E})$
0	0	1.3	6.57
.01	.0033	1.5	8.03
$\therefore .025$.0171	1.7	9.52
.05	.0510	2.0	11.76
.1	.135	2.2	13.27
.15	.239	2.4	14.78
.2	.362	2.6	16.29
.25	.501	2.8	17.79
.3	.655	3.0	19.29
.35	1.004	5.0	26.62
.4	1.429	6.0	33.81
.5	2.471	7.0	40.84
.7	3.743	8.5	57.91
.9	10.0	67.85	
1.1			

TABLE 2.- BUILDUP-FACTOR PARAMETERS

E, GeV	Buildup-factor parameters for dose equivalent				Buildup-factor parameters for absorbed dose			
	${ }^{\mathrm{a}} 1$	a_{2}	a_{3}	a_{4}	a_{1}	a_{2}	a_{3}	a_{4}
0.03	* 1.00	*0	*0	*0	*1.00	*0	*0	*0
. 06	*1.20	*0	*0	*. 0130	*1.07	*. 010	*0	*. 010
. 10	1.40	. 020	0	. 0300	1.10	. 040	0	. 026
. 15	*1.50	*. 070	*0	*. 0385	*1.12	*. 060	*0	*. 031
. 20	1.60	. 090	0	. 0400	1.15	. 062	0	. 032
. 30	1.70	. 110	0	. 0330	1.20	. 068	0	. 026
. 40	1.90	. 130	0	. 0228	1.24	. 071	0	. 0228
. 73	3.40	. 156	. 00035	. 0150	1.40	. 090	. 0001	. 0150
1.2	*4.32	*. 167	*. 00145	*. 0130	*1.67	*. 094	*. 0008	*. 0122
1.5	4.60	. 170	. 00250	. 0120	1.80	. 095	. 0015	. 0120
3.0	5.35	. 190	. 00300	. 0100	2.00	. 100	. 0020	. 0100
10.0	6.20	. 280	. 00350	. 0100	2.30	. 111	. 00205	. 0100

*Values obtained by interpolation.

Figure 1.- Buildup factors for absorbed dose for several depths in tissue as a function of incident proton energy.

Figure 2.- Buildup factors for dose equivalent for several depths in tissue as a function of incident proton energy.

> "The aeronautical and space activities of the United States shall be conducted so as to contribute . . to the expansion of buman knowledge of phenomena in the atmosphere and space. The Administration sball provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."
> -National Aeronautics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.
TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.
CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION

 PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.Defails on the availability of these publications may be obtained from:
SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

[^0]: *For sale by the National Technical Information Service, Springfield, Virginia 22161

[^1]: *Professor of Physics, Old Dominion University, Norfolk, Va.

