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1.0

SUMMARY

A new exoatmospheric, powered explicit guidance (PEG) thrust integrai
forriulation and a simple method of implementation is presented in
this note. The new thrust integral formulation is significantly
simpler than that currently used in PEG. Preliminary estimates
indicate a computer storage savings of 220 words, which is approxi-
mately 10 percent of the current PEG ascent program. Alternate
methods of implementation that could produce even more savings are

noted.

The method of implementing the thrust integrals derived herein does
not represent a departure from the current PEG implementation approach.
Consequently, required simulation verification of the new equations is
minimum. Essentially, one equation replaces the higher order thrust
integrals of the current PEG equations, and this one equation can be
verified analytically. The current PEG higher order integrals (higher
than first order) formulation results from approximating the sine and
cosine functions as series expansions. These approximations are
eliminated in the formulation presented in this note.' Therefore, the
thrust integral formulation proposed herein is more accurate than the
currvent formulation, when large steering angles are involved. A
simple function or factor (f]) is developed such that the higher order
integrals are a product of the first order integrals and the quantity
(l—f]). The equation for the factor f] is.verified analytically. The
first order integrals of the current PEG equations are simplified and

maintained, and therefore, require no verification.
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The proposed equations and method of implementation offer the flexi-
bi]ify of applying a different guidance law by changing the value of
one scalar parameter. This additional flexibility, producing more
accuracy and optimality, is gained at significantly less cost, and
is implemented in such a manner as to have no impact on other GN&C

programs, e.g., the G&C steering interface routine

The new thrust integral formulation was tested and verified in simu-
lations of Baseline Reference Missions 1 and 3A. Each simulation of

the new integrals yielded virtually the same trajectr+y and performance
as the current integrals, assuming the same guidance law (e.g., linear
angle steering). However, the method of implementation proposed in this
note allows high performance missions such as Mission 3A, to fly linear
tangent steerirg. The new thrust integral formulation coupled with the
proposed implementation method yielded slightly better performance

than the current PEG equations for Mission 3A (i.e., +70 pounds MECO

weight).

The new thrust integral formulation presented in this note reduces
flight computer memory and processing loads for PEG guidance and is
readily implemented within existing PEG. It is recommended that this

thrust iintegral formulation be incorporated into the Shuttle powered

flight guidance software requirements.



2.0

INTRODUCTION

The Mission Planning and Analysis Division, supported by MDTSCO,
is engaged in the development and verification of guidance soft-
ware requirements for implementation in the Shuttle onboard GN&C
computers. This activity is being conducted as established in
Track Task Agreements between Rockwell International and the

Shuttle Program Office.

Development of the new powered explicit guidance thrust integrals,
described herein, was initiated by request of the Shuttle Powered
Flight Guidance Working Group, chaired by Aldo Bordano, FM7, in

suppor*t of the guidance scrub activities started in April 1976.



3.0 DISCUSSION AND ANALYSIS
This section is divided into six subsections preceded by a discus-
sion of the exoatmopsheric powered explicit guidance problem and
the relationship of thrust integrals to the solution of this
problem. The new thrust integral formulation is developed in the
six subsections. Subsection 3.1 provides a slightly simplified
development of the basic first order thrust integrals currently
used to solve the powered explicit guidance problem. Since the
total thrust integrals are integrals of the thrust acceleration
vector, the equation defining the optimum unit thrust vector is
derived in Subsection 3.2. The approach used in generating a new
thrust integral formulation is explained in Subsection 3.3. Partial
integrals, i.e., assuming that the time about which the guidance
solution is expanded is one half of the time-to-go (K = TGO/Z), are
developed in Subsection 3.4. Total thrust integrals, where K = TGO/Z +
AK (AK is a small perturbation term), are developed in Subsection 3.5.
The proposed method of implementing the new thrust integrals, including

flow charts, is presented in Subsection 3.6.

The basic rocket vehicle vacuum flight equation of motion is of the

form

, where (1)

|=<
1t
=7 haal
[
+
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Total acceleration vector,

F = Engine Thrust,

m = Vehicle mass,

F/m = Thrust acceleration,

1 = Unit vector in desired thrust direction, and

Gravitational acceleration vector.

)
"

The typical powered flight guidance problem is to determine real
time values of jf (the unit thrust vector) and the rate of change
of jf that steer the vehicle to desired targe: conditions while
expending minimum fuel, i.e., the fuel optimum path is determined

between current state and target state.

Explicit guidance provides a closed-form predictor/corrector solu-
tion to the two point boundary-value problem discussed above.
Closed-form integrals of the thrust acceler:tion vector, (F/m)if,
are involved. The thrust integrals are not exact, in general.
However, thrust integrals are developed in the subsequent sections
that produce more accuracy than is necessary in practice, since the
integrals converge to exactness as the remaining burn time, TGO’
approaches the value of zero. The thrust integrals developed in this
note are exact for a constant acceleration burn and virtually exact
for a low thrust burn. The integrals are simple and provide a
qualitative understanding of the exoatmospheric trajectory optimiza-
tion and powered flight guidance problem. No rigorous mathematical

proof is attempted in this note, i.e., a simple and practical

-5-
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enginéeriﬁg approach is taken for constructing a practical solution.

In Section 3.1 it is shown that by making small angle assumptions,

the unit thrust vector can be approximated in the form j_f = a + bt,
where t is time and a and b are constant vectors, and the thrust
acceleration vector (ﬁT) assumes the form ﬁT = %-(g.+ bt).

Integration of the above equation involves integrals of the quantities

% and %t. These are conventional first order thrust integrals.

Multi-stage equations for these basic thrust integrals are developed

in Section 3.1.

In Section 3.2 it is shown that the fuel optimum acceleration vector
is approximated in the form

v

Vy = %-[g_cos wt + (b/w) sin wt],

where a and b are constant vectors and w is a constant angular rate.
In practice, the independent variable time, t, in the above equations
is redefined as z = t - K, where K is the time about which the
solution is expanded and the value of t ranges from zero to time-
to-go, TGO' i.e., the integration 1imits are from zero to TGO' The
value of K is a function of the thrust integrals. Assuming constan%
acceleration, K = TGO/Z and in any case K ==TGO/2. The explicit
guidance problem reduces to determnining values of K, a, and b that
satisfy the desired target ronditions (in the following sections, a

and b are redefined as A and ;).' When dealing with the sine and

cosine functions, it is convenient to define K as K = TGO/Z + AK ang

-6-




solve for a value of AK, i.e., the following expansionc are employed:

cos (x - §) = cosx cosé + sinx sind and

sin (x - §) = sinx cosé - cosr sin§, where

x= w(t - TGO/Z) and § = wAK

Integration of the above equation for ﬁq involves integrals of the

quantities %-cos wt and %.Ei{}&ﬂi_ Assuming constant thrust and mass
flow rate, closed form integrals of these quaﬁtities do not exist.

In the current PEG formulation, it is assumed that cos wt = 1 - wth/?
and that (sin wt)/w = t. Therefore, the first order integrals, as
developed in Section 3.1, as well as second order integrals of %tz
are utilized in the current PEG equatinns. The approach taken in this

note eliminates these second order integrals.

Clused ftorm integrals of %‘if exist if g-is expanded as a polynomial.
The integrals involve integraiion of quantities of the form x" cos x and
x" sin xy which have closed-form solutions. It is seen that the solution
is exact assuming constant acceleration or linear acceleration, as is
nearly the case for low thrust OMS burns. And in any case, the solution

converges to exactness as TGO approaches zero.

Using mean value considerations, it will be shown in Section 3.5 that
the integrals cf % cos wt can be adequately represented by assuming a

constant, mean acceleration. However, this is not the case when dealing

F sin ut

with the quantity o It is shown that the first integral of this

quantity is adequately expressed by assuming linear accel: ~ation. It

*Where n is the order of the polynomial,

-7-

- I ™ Coanadogit e bl 2aaniert e s de b o Ll it o Dt g Fian SETL L o o0 1Y



F 513—95 requires an

is 11lustrated that the second integral of o
order greater than first*. However, this integral can be

adequately expressed in terms of the first order integrals developed
in Section 3.1. Consequently the inteyrals developed in the follow-
ing sections assume a constant, mean acceleration or a linear
acceleration profile. A second order acceleration profile is dis-

cussed for illustrative purposes.

*j.e., if }—;- is expanded as a polynomial.

-§-
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3.1 Basic Thrust Integrals

The basic first order integrals used for solving the powered explicit
guidance problem are developed below. The integrals are the same as

in the current PEG equations except that they are somewhat sinplified.

For the shuttle vehicle, either constant thrust (and mass flow rate)
or constant acceleration is assumed. If constant thrust is assumed,

the acceleration magnitude as a function of time is
a(t) = F/(mo - mt), where

t = time,
F = constant thrust,
m_ = initial mass,

m = constant mass flow rate.

The above equation can be written in thé form
a(t) = (F/m)/[(m /m) - ] or
a(t) = Vex/(r - t), where
F/& = Vex (constant exhaust velocity), and
molm—zr.

It is convenient to define the parameter 71 as

mo/ﬁ - (F/&)/(F/mo) or

-
n

-
n
-
~
o

-
—h
o
-3
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Vex is one of the most constant parameters in the propulsion system

(it is considered constant in the guidance problem) and the current

acceleration, a_, is measured by the navigation system, whereas my

()
and m are not so easily determined.

The basic, constant thrust integrals are presented here for the ith

stage of an n stage vehicle.

T T

Bi Bi t
L, =f a;dt, and S, =ff a;dsdt, where
0 o “
a; = vexi/(ri - t) and
T.. = Burn time of it"
gi - Burn time of i~ stage.

Employing integration by parts, the integrals are easily determined

as
L = Voxi 1n[ri/(~ci - TBi)]E Voyi In (1 - TBi/Ti) and
Si = Lyl = Tyd + VoyiTps

During the SSME constant acceleration burn
a; = a (constant acceleration 1imit),

and the thrust integrals are simply
L; = 3 Tg; and (2-a)
S; = SLiTgs. : (3-a)

-10-
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In equation 1, it can be assumed that i =~ A + i_(t - K)*, where

/2 (to be determined).

=T,
A

-

0
6o~ '

ime-to-go, or remaining burn time.

A = constant unit vector when t = K.
A = constant rate vector normal to A, i.e.,

._i_:o’

| >

= 1.

1>
»
|>

It is assumed that iﬁ is small compared to unity (small angle
approximation). Further assume that burn times (TBi) of all stages
are known, and that K, A and i_have known values. Now, the thrust
component of ﬁ) in equation 1, can be integrated to produce velocity

and position changes due to thrust (y_T and BT), i.e.,

L] _ E L _
_V_T'm[l'*_);(t K)]a
Ten -
- GO
Yp = f Y, dt, and
o
T .
. GO .t
Ry = fo -fo _\LTdsdt.

The integrals of % (t - K) are presented in this section, in addition

to the integrals of %; These are conventional first order integrals
used in the current PEG equations, and will be employed in the

simplified thrust integrals presented in this note.

*This is known as linear tangent guidance (LTG).

-12-
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Performing the above integration yields equations of the form

Wp= L+ 2 (3 - LK), and (6)

R

Ry = SA + A (Q - SK), where (7)

L and S are as defined by equations 2, 3, 4, and 5 and J and Q are

developed in the following paragraph.

Using the same nomenclature as for Li and Si’

T

_ , Bi
Jy =/ a; (t + toi) dt and
0
0 0
where toi is the initia]_time of each stage (called tgoa. in the

i
current PEG equation) i.e.,

i1
toi =2 Tgse
J=k

e.g.,

t0]= 0, TO =T T .= TB] + TBZ’.etc'

2 B1° 03

Employinc integration by parts, the constant thrust integrals are

easily determined as

Ji =Ly 15~ Vexi Tgi * Ly toy and

- - 2 .
Qi = S5 75 - V2 V5 Tigi * 55 Yoy

-13-



From inspection of equation 3, it follows that

Ji = Ly Tgi = S5 Ly b or

J

"

=t .+ T

i Li tgoi - S5 where tgo1‘ oi Bi®

The equation for Qi is written as

- 2
Q; = S5 (5 + ty5) - V2 Vg, Tgy .

For a constant acceleration phase, a; = 3 (constant accelera-

tion limit), and the thrust integrals are

Ji = Si + Litoi and
Q; = 1/3 S;Tg, + S;t . = S5 (TBi/3 + toi)’ where
Li = aLTBi and Si = .5 LiTBi‘

Equation 10 can be written as

Ji = L1TBi - .5 LiTBi + Litoi or
Ji = Litgoi - Si >

where Tgoi is defined by equation 8.

-14-
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Inspection of equations 8 and 12 shows that the expression for Ji
is the samne for constant acceleration as for constant thrust.

Summing over all stages (i = k, n), the multi-stage integrals are

J= 3 J; and (13)
i=k
n i-1

Q= 3 Q; * Jy;Tgys where J .= ;gi U (14)
i=k =

It is easily verified that

n
J= D (Litgoi - §5) = LTgg - S, where
i=k
n - -
TGo =y TBi (Time-to-go), and L and S are multi-stage
i=k

integrals as defined in equations 4 and 5, i.e.,

J = LTy - S. (15)

In practice, K, A, and i_are not known until after the thrust
integrals are formed. It will be seen later that K is chosen such

that the coefficient of i_in equation 6 vanishes, i.e.,
J-LK=0or
K=J/L.

Using this equation and equation 15

K= Tgq - S/L. | (16)

-15-




The first order integrals are summarized as follows:

CONSTANT THRUST

Ly = “Voyi In (1 - TBi/Ti)

S = Ly (t5 - Tgq) * Veyi Tp

2

Tg;

- 1
Q; = S5 (15 + to;) - 7 Vey

CONSTANT ACCELERATION

I

i~ 'y

1
i © 2L Tpi

- 1
Q; = S (3 T4 * ty5)

CONSTANT THRUST OR ACCELERATION

J L S

i = Litgoi 7 54
The respective multi-stage equations for L, S, J, and Q are

equations 4, 5, 13 and 14. The above equations are somewhat
more simple than the current PEG thrust integral equations in

that one equation for J,i applies to constant thrust or constant

acceleration.

-16-
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3.2 Fuel Optimum Unit Thrust Vector*

In this subsection, a well known method of the calculus of variations
(the Euler-Lagrange method of multipliers) is employed to derive an

equation defining the optimum unit thrust vector time history.

Assuming a spherical earth, it can be shown by employing the Euler-
Lagrange method of multipliers that the fuel optimum thrust vector

time history is defined by the differential equation

X =-02 + 3w (A-up) up , where (17)
igF Unit () (unit thrust vector), and

w? = p/R? (w is circular orbit rate at radius R = |R])

U = gravitational constant

R = Radius vector

u, = unit (R)

&

The following definitions are made:

A (t) i.e., X as a function of time.

=
]

= t-K, where K is the constant reference time.

~N
|

(K) = A, constant reference unit vector at t = K, or z = 0.

1=

(K) = A, constant reference value at t = K.

e

*This is sometimes called the primer vector.

-17-




The following simplifying assumptions and definitions are made:
At A=0 (i.e., i_is normal to A).

w? is constant.

up = unit (R + 30) a constant mean value of Up-

gﬁ = Desired, terminal radius vector.
6 = sin™! (X - up), constant mean value of the angle between
the thrust vector and the horizontal. (It will be seen later
that ) is approximately the mean value of u = A(t).)
With the above definition and assumntions, equation 17 can be
written as
U = -wlu + 3 w? sind cos wz up, where 3u® sind up (18)
has a constant, mean value. The cos wz term i§ added to
compensate for the changinyg direction of that term when it
is not assumed constant. Also, A cos wz is the dominant part
of the homogeneous solution to equation 18.

The solution to equation 18 is

u=)cos wz+ (Mw)sin wz%—%{sine)wz sin wz up (19)
and

Q_= -w\ sin wz + A cOS wz (20)
+%-sin 8 (w sin wz + w?z cos wz) up .

Differentiation of equation 20 verifies the solution. u is
sometimes called the primer vector and u the primer rate

vector.

-18-
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The term involving sin @ is usually small compared to the other
terms, and is ignored in the following sections. For the shuttle,
second stage boost to orbit, this term would increase the initial
pitch angle by about 2 degrees, which would have very little

effect on the burnout weight.

Considering the integral

Te0 .
AV = f77 F unit (u) dt, it is seen that
0 m

av (fuel expended) is minimum if sin = 0,
This implies that a maneuver involving no position constraints is’
optimum if the primer vector is normal to the radius vector
at the midpoint of the maneuver, since Yp is the unit radius vector
at the midpoint of the maneuver, and it will be seen later that

the reference time, K, has the value of approximately TGO/Z, there-

fore, )\ is approximately the value of the primer vector at the midpoint.

Inspection of equation 20 shows that the optimum primer rate can not
have a constant value unless sin 6 = 0. Assuming that the final
optimum magnitude of u, df, is known, equation 2C can be used to

produce a value of A = |i| to satisfy this final value, i.e.,

gf . gf = ﬁzf (Substituting z = TGO - K in equation 20).
This produces a quadratic equation from which A s determired.
The equation can be made very simple by replacing Up with
unit (i) [gR . unit (i)], i.e., only considering the component of this

term along the A vector, and the solution is of the form

A= VF (ug, w) - D.

£ Y




This could be implenented in an approximate manner by assuming a

constant, average primer rate of

x = Vi, w) - 0/2,
and recomputing this parameter each guidance pass.

If &f = w¥ then f (&f, w) = o and A = w (1 - D/w), where the
term D contains w. The term D has the sign of i_~ Up- The term
is time varying and vanishes when TGO = 0. Also, if sine =20,
D = 0. The above equation can be implemented in an approximate

manner as i =w (1 - D/2w), where w = u/VDRDZ.

If the term involving sin 6 is neglected, equations 19 and 20

become
U= ACOs wz+ (i/@) sin wZ and - (21)
U = -\ sinwz + X cos wz, where (22)
z = t-K
w= u/R?,
A+A=1, and *
A-i=0

*j.e., w =\’u/R3 ~ u/VDRDz, where V and Ry are desired velocity and
radius magnitudes. :

«20~
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Inspection of equation 21 yields interesting qualitative
information:
a) Ifws= A, then u-u=1, i.e., u is a unit vector and th: _
steering angle is linear with time. '
b) For a flat earth assumption (i.e., w approaches zero in equation
21), equation 21 becomes
u=2+A(tK),
which is the well known linear tangent steering law. If A is
large compared to w, the above conclusion is approximately
true.
c) If there is a position constraint and A is not related to w,
then the optimum steering is not necessarily linear angle or

linear tangent.

In the following analysis, for simplicity in understanding the
concept, it will be assumed that w = A. Llater, it will be seen
that for Shuttle second stage burn this is not necessary unless

throttling is involved (i.e., Return to Launch Site abort (RTLS) and

PRy FC P

Baseline Reference Mission 3B). For example, experience has shown
that linear tangent steering is somewhat more optimum than linear $
angle steering in cases where A >w and throttling is not involved.

This is especially true in Baseline Reference Mission 3A where the
guidance assumes that an 'ngine is going out at the abort mode
boundary. Linear tangent steering does not loft the trajectory as much
as linear angle, and this is more optimum (if an engine does not

go out). However, in Mission 1 where there is no pseudo engine out

-21-
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the performance difference between linear steering and linear
tangent steering is much less (=30 lbs. difference in weight
at MECO). Saturn guidance used linear steering, which produced
an orbital “-sertion weight loss of 100 pounds out of 250,000

pounds compared to the theoretically optimum solution.

If it is assumed that w = A (where A

Iil), equation 21 be

comes
i =) cos A (t - K) + (L/i) sin A (t - K)» (23)
and jf . 1f =1, 1d.e., jf is a unit vector.

Equation 23 is the assumed form of the optimum unit thrust vector

that will be used in developing the total thrust integrals.

Since equation 23 produces a very nearly constant value of i
throughout the flight, it can be assumed in developing the total
thrust integrals (in the following analysis), that the converged
value of i from the last guidance pass is used in defining the
total integrals for the current pass. This is an important assump-
tion since i for the current pass is not known, if a position
constraint is involved, until the value of the vector, i, is
determined, and the value of i_is a function of the total

integrals.

-22-



3.3 Approach to Development of Total Thrust Integrals

The approach used in generating a new thrust integral formulation

is explained in this subsection.

Assuming that values of TGO and i are available, and that the total
thrust integrals (here defined as LT’ JT’ ST' and QT) are known,

the thrust « .locity and position assume the form,

LT
Y=L+ drh = T0a(t) icdt, and
0
: Teo
Rp=SpA+Qd =17 1 als)igdsdt.
0 0

The total equation of motion is
V=V, +6 (where Yy = a(t)if and G is the gravity vector).

The following integrals are now considered:

Teo . Teo |

/o Vdt=; (Vp+§)dt and

0 0

T.. t . Too t |

18 ;7 Ydsat = %0 5 (i + 6) dsat.
(o) 0 0 0

The final conditions are; when t = TGO’ R = BD (desired radius)

and V = V, (desired velocity), and when t = 0, Ry = R and V, = V.

Performing the above integration results in

LA . !grav’ and
Ry - (R+ ¥T¢) ® Rp * Ry/yye where
T 1 t
_ /GO _ GO
_V_grav =f gdt and Bgrav = S/ gdet.
0 0

0

-23-
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For the dgvelopment in this note, it is only necessary to assume that
these gravity integrals exist. It is currently pianned to make use
of the numerical (average G) integration package (already in the
navigatiqn system) in order to extrapolate to the final state and

obtain gravity effects over the trajectory, i.e., !grav and Bgrav'

Rearranging the above equations and using equations 24 and 25 for

V; and Ry results in

L+ Jpd = Vo and (26)
TA + QT —GN’ where (27)
Voy =Yg - (VY —gr ) (ve]ocity-po-go) and

J) (distance-to-go).

Ran -R+V TGO —gr

It can be shown that, from the standpoint of optimality, it is desir-

able to expand about the yGN vector and have no turning rate control

in that direction (i.e., i_- Von © 0). Therefore, it is desirable

to determine a value of K such that JT =0, .

Referring to equation 26, it is seen that if JT = 0, then

A = Unit (Ygy) and A - ¥gu = 0, since A - A = 0.

-24- .
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Performing the vector dot product of ) and equation 27 it follows
that Sp = X « Ry and equation 27 is used to solve for i as
i= E_T_(BGN - g‘_), which implies that —RGN in equation 27 is

O \ ARy
replaced with ST BGN . Assuming that all necessary values are
A-Rey

known {including K), this completes the guidance solution for A

and 2\_

The reference time K can be defined as K = TGO/2+ AK. The thrust
acceleration vector is written as

91 = a[A cos Az + (i_/i) sin Az] or

QJ = (a cos iZ) A+ [(a/i) sin iz] i) where z = t-T../2 -AK,

from which it follows (referring to equations 24 and 25)

that

Tso : Teop t :

Ly =S acos xzdt, Sy =/ S a cos Azdsdt

T T
0 0 ()
Teo . : oo t . :

Jy = S (a/)) sin Azdt, Qr = i) I (a/)\) sin Azdsdt.

) 0

0

If small angle approximations are made in the above equation

for ﬁT, then
Yy =a(d+22)
and the thrust integrals are the first order inteyrals of Section

3'1! i'e" LT = L’ ST = S’ JT = J’LK’ and QT = Q-SK.

~25-
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The purpose of the next two subsections (3.4 and 3.5) is to determine

K (or AK) such that Jy = 0, and davelop functions (F], FZ’ and F3)

such that
Teo X Tso
Ly= [ acosizdt =F, J adt=F,L
T o 1 o 1%
T t . T t
ST = f GO J . a cos \zdsdt = F3 JGO [ adsdt = F3S, and
) ) 0 0
T t . . T t
Q. = S %0 1 (a/n) sin xzdsdi = F, 89 s azdsdt = F, (Q-SK),
T 0 0 24 0 2.

where L, S, and Q are the first order integrals of Section 3.1.
F], F2, and F3 are simple function of A, TGO’ and AK.
Therefore, the higher order thrust integrals of the current PEG

equations are eliminated by introducticn of the factors F], FZ’ and F3.

In Section 3.4, partial thrust integra]é*are developed assuming
AK = 0, and in Section 3.5, total thrust integrals are readily

derived from the partial integrals where

x =X (t- TGO/Z), § = AAK, and
cos (x-8) = cos x cos & + sin x sin &, and

sin {x-8) = sin x cos & - cos x sin 6.

It is important to remember when reading Section 3.4 that, for conven-
jence, K is defined as K = TGO/Z. In Section 3.5, K is defined
as K = TGO/Z + AK and AK is chosen such that

T

Iy =S GO (a/i)(sin X €os &~ cos-x siﬁé)dt = 0,
0

*Partial thrust integrals are here arbitrarially defined for convenience
as integrals resulting from the assumption that AK = 0, or K = TGO/Z.
These integrals are partial in that, in general, AK # 0, and
additional terms are involved. Total integrals include the additional
terms when it is assumed that AK # 0. It will be seen that total

integrals are simple functions of the partial integrals and AK.
~26-



3.4 Partial Thrust Integrals

Partial integrals are developed in this subsection, assuming that

K= TGO/Z-(i.e., AK = 0).

The thrust acceleration vector now assumes the form

Vp= aft)i , where (28)
ig = A cos i(t-K) + (i/i) sin i(t-K), and

a(t) = Vexk/(Tk-t) or a(t) = a,

K= TGOIZ, and

k

Number of current thrusting phase.

For constant thrust phases, integration of equation 28 involves
sine and cosine integrals, which are series expansions, i.e.,
exact closed form integrals do not exist. However, employing

mean value considerations, thrust integrals are developed that are
exact for constant acceleration and virtug]]y exact for constant

thrust.

Assume that acceleration can be represented as a linear functicn

of time, 1.e.,

a(t) = A + B (t-K), where A and B are chosen such that

;
£ a(t) dt =L and  (29)

Ton t
/80 r7 a{s)dsdt = S, where L and S are defined by (30)
0 0

equations 4 and 5.

27~
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‘Performing the integration in equations 29 and 30 and solving for
A and B results in

A= L/TGo and

B = 120/T3, = 30/2K°, where

D

LK-S.

Referring to the above equations for yT, ies ard a(t), the resulting

thrust acceleration is represented as

Vo = [A+(B/A) A (t-K)I[A cos A (t-K) + (A/A) sin A (t-K)I*.

Making a change in the independent variable:

X = i(t-K),
8 =K, or X=8/K, and

dt = dx/A = (K/6)dx.
The integration 1imits are as follows:
when t=0, x=-68, and
when t=TGO, X = 6.
From the above, it follows that
(k/0)[A+(BK/0)x][A cos x + (ix/e) sin x] dx, and
(K/e)gfxdy_]dx.

dv;

dR;

Integration of the above equations results in

it

8
/ dV, and BT = fedgx, where
0 -9 '

V; is velocity change due to thrust and Ry is position

!Ti

change due to thrust.

This results in tv linear equations of the form:

'The term in this equation involving the constant, B, is multiplied by
» and divided by A such that this equation involves terms of the form
x cos x and x sin x, where x is defined as A(t - K).

-28-
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T = sewoy o

Y=L+ dpd  and (31)
Ry = Sph + Qpi, where (32)

LP' JP’ SP, and QP are thrust integrals developed below.

The following definitions are made:

A, = AK/6 = L/20
A, = A(K/8)% = LK/202
Ay = A(K/0)? = LK?/26°
B, = B(K/6)* = 3D/2Ko®
B, = B(K/8)’ = 30/26°
By = B(K/6)* = 3DK/20"

It follows that

dv; = [(A; cos x + By x cos X)X + (A, sin x + B, x sin x)Aldx,
x -
dR; = f‘[(A2 cos s + B,s cos s) A+ (A3 sin s + Bys sin s) A] dsdx, and
-9
v 0 0
Y=o and Rp= /Ry

Comparing the above equations with equations 31 and 32, it follows

that
6 6
L, = A, J cos x dx + B, J x cos x dx
N T 1y
8 0 _
JP = Az—é sin x dx + Bz-é X sin x dx
6 x 6 x
SP = A2 [ [ cos s dsdx + B2 S [ s cos sds dx
-0-0 -6-0 .
0 x 6 X
QP = A3 S [ sin s dsdx + By J /s sin s dsdx.
~0-0 -0-6

-29-
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Employing integration by parts,

S x cos xdx = cos X + x sin x and

J X sin xdx = sin x - x €0S X.

The following integrals are readily determined as

0 0
Scos xdx =2 sin 8, J sinxdx =0
-0 -9

e e
J x cos xdx = 0, f x sin xdx = -2 (6cos® - sing)
-8 -0

6 x
J J cos s dsdx
-6 -6

20 sin ©

0 Xx
J [ s cos sdsdx
-6 -0

-4 (6 cose - sing) - 262 sin®

8 x ‘
I J sin sdsdx = 2 (6 cos 6 - sing)
-6 -6

8 X
S [ s sin sdsdx
-6 -6

1

-26 (6 cos 6 - sin @)

From which it follows that
L
L

p = (L/26) (2 sing), or

p =L (1/8) sin 0.

Defining fy = (1/0) sin 9, then

L, = f,L.

P 1

The expression for JP is

J
J

p (30,/26%)[-2(6 cos & - sin 8)] or

n

P

-30-
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Defining f2 = 3(f] - €O0S 6)/62, then

Jp = fZD‘

If it is assumed that sin 6 = 9 - 93/6 and cos 6 = 1 - 62/2, then
£1=1 ~6%/6 and f, = 1, therefore, it is seen that f, and f,

approach the value of unity as © approaches zero.

The expression for SP becomes

S

p f]LK + D(Zf2 - 3f]) or
S

p = [LK - D(3-2f,/f,)]f,, and
Qp = (-LK*/3 + DK)f,.

If it is assumed that sz/f] =1 in the equation for SP’ then

SP = f]S, since D = LK-S.

This same result is obtained by assuming that a = ZS/Té0 (constant, mean
value of acceleration for distance) and
Toq t .
s, =a /50 £ cos A(s-K) dsdt = f.5.
P o o ]

This equation for SP will be used in the following analysis.

In summary:

0 = ATg,/2 Jp = D

fy = (1/8) sin o Sp = 1S

fz = 3(f] - COS 3)/02 Qp = ("LTéo/]z + DTGo/Z)fzs

LP = f]L since K = TGO/Z.

D= LTGO/2 )

-31-
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3.5 Total Thrust Integrals

Total integrals are developed below, where K = Too/2 + AK(i.e., AK ¥ 0).
The total thrust integrals are now readily obtained, making the

following definitfons:

§ = AK, x = A(t - TGO/Z)

cos (x-8) = cos x cos § + sin x sin &

sin (x-8) = sin x cos § - cos x sin §
a(x) = A + (BK/8)x

)
Jr = (v/8)2 s a(x) sin (x-8) dx = 0
-9

6 X
Q; = (K/8)® [ a(s) sin (s-8) dsdx
-6 -0
0 x
S = (K/0)2 s J afs) cos (s-8) dsdx
T -6 -0

)
Ly = (k/6) s a(x) cos (x-8)dx
. -8

From inspection of the above equations, it follows that:
cos § -(Lp/i) sin § = 0 (since K/® = 1/&) or

Jr = 4J

T p
tan § = }\JP/LP = tan (AAK) = X(D/L)(lef]).

If it is assumed that tan (AAK) = AAK* and that fz/f] = 1 in the above

equation, then

M = D/L = (LTGOIZ - S)/L, or

*It can be shown that for a single-stage, constant thrust burn, AK
is closely approximated as
oK = (TGO/G)(1-e-VGO/vex)/(l+e'VGO/Vex), i.e., the upper
limit for AK is TGO/G, and when VGO is small compared to Vex’ AKz 0,

So, § = AAK has an upper limit of 6/3. For a constant acceleration burn,
AK=0. For a low thrust OMS burn AK ~ 0, and AK converges to the value of

zero in all cases. So, tan§ = & is a valid approximation in all cases.

-32-
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AK = TGO/2 - S/L, and (33)
K z‘TGOIZ + AK = TGO - S/L,

which is identical to the current computation of equation 16.

The expression for QT becomes

QT = Qp cos § - (1/») Sp siné.

From the above equation for JT’ it is seen that sin § = (iJP/LP) cos §, or
sin &= (inZ/f]L) cos &, from which
= 2
2
QT (-LTGO/12 + DTGO/Z - DS/L) f2 cos §. (34)

The above equation can be written as

Q = L[-Té0/12 + (AK)Z]f2 cos §.

It follows that
S = Sp cos § + AQ, sin &, where sin § = (AJP/LP) cos 8.
The second term in the above equation is small compared to the first

term. If it is assumed that

QP ® « S,T.4/6, and

P GO
sin 8§ = 5 cos &, the above equation becomes
S; = (SP - iGSPTGO/6) cos § or N
St = S(1-06/3)f1 cos & (since ATGO = 20). (35)

The same result is obtained by assuming a constant, mean acceleration of
=~ 2
a(s) = 28/1%

and the above approximation for QP is not necessary.

-33-
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The integral LT is simply
Ly LP cos & or
LT = Lf] cos §.
The same equation for Ly is obtained by assuming a constant,

mean acceleration of a(x) = L/TGO'

Equation 34 car He written as

QT = QlFZ’ where

Q E-LT&0/12 + DTgo/2 - DS/L, and F, = f, cos 6.
No approximations were made in deriving the above equation other
than the original assumption of linear acceleration. Similarly,
if a constant, mean acceleration of ZS/Té0 is assumed, it can be
shown that Qp = Qpf,, where Qy = -ST.o/6 - DS/L. The significance
of the above equations for QT is that Q0 and Q] are independent
of the value of i, and the function F, factors out of Q0 and Q.
Simulations have shown that, in general, QO is a fairly crude
approximation for the first order integral, Q-SK. Q] is a sig-
nifant improvement over QO’ however, an error of approximately 5%
can exist, e.g., during the first PEG phase of Baseline Reference
Mission 3A.* This reflects an error of approximately 5% in i
and 6, since, from equation 27, it is seen that N

i = (BGN - STL)/QT, i.e., i_is inversely proportional to 01.

*In these simulations, Q, was formed as a multi-stage integral,
analogous to the mu1ti-1tage value of Q-SK.
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Similar to the above considerations, a second order acceleration
profile can be assumed, i.e.,

alt) = A+ (B/AA(E-K) + (C/A2)R2(-K)?
and the expression for QT can be expressed as QT = QZFZ’ where
Q2 is independent of the value of i, and is a very good approximation
for Q-SK. Closed form integrals exist for any order of a(t),
however, the expression Qn becomes comp]icated and the integral
Q-SK is simpler to implement. By the process of induction, the
integral QT can be expressed as

Q = (Q-SK)FZ, where F, = f, cos §.

The above equations are summarized as:

8= A Tgy/2

f, = (1/6) sin 6

f, = 3(f, - cos 8)/6?
K=Tgy - S/L

§ = MK-Tgo/2)

F] = f] cos &

F2 = f2 cos &

Fy = Fy (1 -88/3) (From equation 35)
LT = F]L

ST = F3S

Q; = F,(Q-SK)

where L, S, and Q are the first order, multi-stage integrals

defined in Section 3.1.

-35-
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The results of the above analysis can be summarized as follows:

a) Defining 4K = K-TGOIZ. where K is the ct ..unt, reference
time aout which the solution is expanded, it was shown
that the resulting value of AK is the same whether a mean,
linear acceleration profile is assumed or the actua)l
acceleration profile is assumed. Itcan alsobe shown that
(assuming linear acceleration or actual acceleration) the
multi-stage expression for AK is the same as the single-
stage expression, It can be concluded that the value of AK.
is directly proportional to the mean slope of the acceleration
profile (multi-stage or single-stage), since AK = D/L and
the expression for the mean slope is B = IZD/TéO.

b) The total integrals Ly and ST are obtained by assuming
a constant, mean acceleration (a=L/Té0 for deriving LT,
and a = ZS/Téo for deriving S;).

¢) The integral QT is a higher order i tegral and approaches
the value of (Q-SK)F2 as the order of the assumed acceleration
profile increases.

d) Since a constant acceleration can be assumed in deriving
the integrals Ly and ST, it can be concluded that the
factors F] and F3, as defined above, apply to an entire
maneuver, i.e., do not have to be derived in a multi-stage
manner, Since Fo =1, it will be assumed that the above

conclusion also applies to this factor.
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e) It was shown in Section 3.1 that the expression for the
integral Ji’ assuming constant acceleration, is the same
as that‘when assuming constant thrust. This simplifies
implementation of the thrust integrals, since two different
expressions are unnecesssary.

f) The higher order thrust integrals in the current PEG
program can be elimitated by introduction of the factors

F], FZ’ and F3.
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3.6 Implementation of Thrust Integrals

The proposed thrust integrals are presented in the flow chart of

Figure 3.6-1. For purposeé of comparison, the current thru-t

integrals are presented in Figure 3.6-2. The proposed integrals

require about one half the code required by the current integrals

and approximately 30 data words (assuming double precision) are saved by
eliminating the variables S,, Ji’ Qi’ Pi‘ and Hi (i =1, 3).

Rationale for implementing the integrals as in Figure 3.6-1 was
discussed in Section 3.1 and additional discussion is included

in this section. The overall method of implementing the thrust

integrals is presented in this section.

Currently the desired unit thrust vector is computed in the

Guidance and Control (G&C) steering interface routine, not in the

PEG rcutine. The parameters 2, i, and T, = TG + K are sent to the G&C
steering interface from PEG (where TG is the guidance time when K was

computed). The unit thrust vector is then computed as

ie = unit [a+ (t-TA)z.\_], (36)
which is identical to
ig=unit [ - Ki + (t-TG)iJ, where the (37)

value of t—TG ranges from near zero to the value of the guidance

cycle time (e.g., 2 seconds). Equation 21 of Section 3.2 can be

written in an identical form to equation 37 by redefining the parameter

Tk’ which is currently the last computétion'in the thrust integrals;
Equation 21 can be used to define i as ic = unit [A cos wz + (i/w) sin wz]¥*

where z = t-TG-K. The above equation can be written as

* At this point, the parameter X is replaced by w, since in general
w ¥ A

-38-



if = unit [A + i_(%~tan wz)] SIGN (cos wz).
If the angle wz is limited to be less than m/2, SIGN (cos wz) = +1,
and since w(t-TG) is a small angle, the above equation can be closely
approximated as

ip = unit [d - K(1/uwk)(tan wk)r + (t-Tg)Al.

The above equation can be written as

ie = unit [A - Kpd + (£-T)AJ, where

KP = F4K, and F4 = (1/wK) tan wK).
Defining TA as TA = TG + KP’ the above equation becomes

ie = unit [a + (¢-T))Al,
which is identical to equation 36. Impiementation of the thrust
integrals in the above manner has no impact on the current G&C
steering intérface equations, and only one scalar equation is

modified in the PEG thrust integrals.

As discussed in Section 3.2, using linear angle steering (i.e.,

w= i) produces a MECO weight loss for Baseline Reference Mission

3A. Experience has shown that linear tangent steering is more
optimum for Mission 3A. The steering is linear tangént if

w =0, e.g., w = .00001. This capability is implemented by initial-
izing w = .00001 (in the PEG initialization block) and making the
following test in the PEG turning rate block.

If w < .00001 or n=3, w = ,00001, where n is tihe number of phases, and
Mission 3A is the only Shuttle maneuver with as many as 3 phases. The

above test without "or n = 3" is equivalent to: If w =0, w?>0.
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This. test is recommended because the parameter f] is defined as

f]= %sine, where 6 = mTGO/Z, i.e., division by zero is avoided.

This results in linear tangent steering and linear tangent prediction.
Simulations have shown that this is more optimum for Mission 3A

(+70 pounds MECO weight) than the current linear tangent steering

and linear sine prediction.

Experience has shown that when the thrust integrals are computed in
single precision, they become unstable during the last 40 seconds of
an OMS burn. This is probably due to instability in the J and Q
integrals. These integrals can be written as

J = t(L-a TGO) and

Q

acceleration. The coefficients of t, in the above equations, approach

T(S-E-a0 GO)’ where a, is the value of current
the value of zero as TGO approaches zero. Single precision
probably produces randomness in these coefficients. If acceleration

is expanded as a quadratic, the above equations are approximated as

_ 1 2 2 GO
J = 7 a T 0(1 T o —=) and
6 o0 GO 2a° T '

The value of TGO/T approaches zero as TGO approaches zero, and the )
expressions for J and Q approach J = ; a TGO and Q = 6 aOTé0

If an average acceleration of VGO/TGO is assumed the values of J and
Q can be approximated in a virtually exact manner during the last

40 seconds of an OMS burn, i.e.,-

-40-
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2
J = E'VGOTGO and

- % VeoTdo (at this time ak = 0).

~
b

Single precision is adequate if the equations for J and Q are expressed
as above, and this result is accomplished if the constant acceleration
thrust integrals are used when TGO is less than 40 seconds (for an

OMS burn). This capability is implemented in‘the thrust integrals

of Figure 3.6-1.

The equations for the total thrust integrals, as summarized in
Section 3.5, produce more accuracy than is necessary in practice.
For example, assumptions used for Saturn V/Apollo guidance were
F, = F

F3 = 1. However, in cases where accurate prediction is

1 2~
desirable (e.g., throttling is involved or deorbit targeting) the
F] term is important. The angle § is at most about 4 degrees
during shuttle second stage burn, therefore it can be assumed
that cos 8§ = 1. The quantity 66/3 is at most about .01, and can
be neglected*. As observed in Section 3.4, f2 = 1 for third order
assumptions on sine and cosine expansions. Also, this term has

no direct effect on velocity prediction, therefore, it can be

assumed that f2 =],

Experience has shown that the most stable manner of implementing the
f] term is to feed back information from the previous guidance
cycle. Currently the quantity BBIAS is fed back. The BBIAS term

can be eliminated by initializing f] = 1 and defining S = f]S.

*However, if throttle control is used, it may be desirable not to
neglect this term. '
-41-



BGO is formed without the BBIAS term as BGO = BGN' where BGN is
defined 'as in Section 3.3. The above form is somewhat more
accurate than current implementation of the BBIAS term. S is

computed in the range-to-go block and f], in the predictor block.

The VoousT computation and variable name is eliminated in the predictor
block by replacing this quantity with f]yeo, and BIHRUST is replaced

with RGO’ where f] has the value of the current guidance pass.

Currently, the thrust integral Q-SK is used at six places in the
PEG equations, and recomputed each time. This is avoided by

replacing Q-SK with Q = Q-SK.

The test, if Q-SK # 0, can be eliminated in the turning rate block
since Q-SK can not be zero unless Teo = Veo © 0, and if this is the

case the guidance routine has already been aborted.

The ¢MAX equations are simplified by elimination of the equations for
recomputing i_and BGO’ since the main purpose for this is for the
computation of BBIAS’ and this computation is eliminated. However,
it is desirable to limit the value of f], and this is accomplished

by maintaining the PMAX test.
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The above discussion is summarized below and detailed implementation
is discussed. Modifications required in each PEG block are presented.
An estimation of code saved in each block is included.

Initialization Block

Eliminate: BBIAS =0

Add: f] =1 and w = .00001

(code saved: =0 words)

Integrals Block

Replace the equations of Figure 3.6-2 with *he equations
of Figure 3.6-1.
(code saved: 100 words)

Turniqg Rate and Range-To-Go-Blocks

Replace Q-SK with Q.
(code saved: 30 words)

Turning Rate Block

Eliminate the following equations:
(Rgg - SA)/(Q-SK)
0

If Q-SK # 0, Then A

» Else i
v=
If Khogyays A = dyay/K

, i_= X unit (i)

s Ry = SL+ (Q-5K) A
Replace the above equations with:
A= (Rgy - SM)/Q

w= (Al
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1f U)K>¢MAxs w = ¢MAx/K
If w < .0000) or n = 3, w = .00001
(code saved: 50 words)

Range-To-Go Block

Define: BGN Ry - (R+V Teo ¥ —grav)
Replace BGO = BGN + BBIAS with
BGO = BGN and S = f.5S.

(code saved: -10 words)

Predictor Block

Eliminate:
- 1
ViurusT © (L - 5 A2 (H-JK) 1A
_re 132 \
Roynusy = LS - ¥ A2(P-20K + SK2)Ix + (Q-SK)A
R - R

—BIAS —GO "~ THRUST
Replace with:

‘I"-l = (Z/wTGO) sin (wTGO/Z)

Replace RrkrusT with BGO and Vepoust with f, yGO.

(code saved: 50 words)

The total estimated code saved from the above PEG modifications
is 220 words. This amounts to 10 percent of the current PEG

program,
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For OMS maneuvers, involving no position constraints, the thrust
inteéra]é could be eliminated completely by sending the total
acceleration (thrust and gravity) to the average G routine, returning
with predicted velecity and position. An OMS (one stage) version of
PEG would be extremely simple implemented in this manner. In
general, analytical thrust integrals could be eliminated by use of
numerical integration, however, implementation is more difficult if

position constraints are involved.

The most accurate and optimum and possibly the simplest manner to
implement PEG is to update BGO in the PEG update biock as

Reo = BGO - Ay_S[TGo - AtGIZ] and recompute the parameter in the PEG
correction block as BGO = BGO + BD - EP‘ Then, the thrust acceleration
vector, (F/m)ic, where i. is a unit vector, is sent to the average G
routinef along with the gravity vector, and values of predicted
velocity and position are obtained. This eliminates the requirement
for gravity integrals and higher order thrust integrals, since

these quantities are implicit in the resulting values of yGO and

BGO' The entire PEG predictor block would consist of defining a

value of the thrust acceleration vector and the integration time step
and calling the average G routine: This would entail multi-stage ° -
logic and logic for defining the integration time step. If PEG

were implemented in this manner, the term involving sin 6 defined

in Subsection 3.2, could be incorporated into the thrust acceleration
vector, and the PEG program would be equivalent to an accurate

onboard calculus of variations trajectory optimization program.

*or some other numerical integration routine.
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An alternate consideration is to compute BGO as defined above and
maintain the current PEG predictor method. However, the variable

names and equations for !grav and Bgrav can be eliminated and the

equations for predicted velocity (yp) and position (gp) can be

written as

LA

R =Raot Ry

In addition, the variable names ycz

replacement with yp and Bp. This method of implementation would

result in a savings of approximately 50 words, in addition to the

and Bcz can be eliminated by

220 words discussed earlier in this section,

o
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ENTER
L=0
J=0
S=0 Jy
Q=0 Teoa = Teoi = T
K=0
l men | Sp T halm - Tgyd Yex,TBi
IfF n = Q= Q+ JTgs + Sply + Tgoa) - Vex T2
| AND T, ,>40 !
00 FOR e Sp = LyTg,/2
FI3E
l Q= Q+ JTp; + SplTgs/3 + Tgg,)
S =SS, + LTy,
L=L+L,
=J+ LiTgoi - Sp
Il
K= /L
IF L# 0 - ook

TA = TG + (tanwK)/w

T

LEAVE

FIGURE 3.6-1 PROPOSED PEG THRUST INTEGRALS
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ENTER
"

L= o Q -

»
o
-
—
u
o o o o
%

s =0 -
K =
THEN -
oo * 0
ii=1 >-—
t “t
ELSE goa go.i
S; = cLilry -ty ¥ Ve i th, g
, = =S, + L.t .
THEN I i " go,i . ,
Q * Si(rtton) "3 Vex.i fbut
‘ 1:‘i s Qi(fi"tgoa)
If n=1
1 2 1
or i< n "2 Vex.itb.i (3tb,i * tgod
‘ S, = & L. t
Do for i 271 b &‘,
i=Xton Ji : Si+L1 tgoa '
5 . 1
ELSE | Q = S;(§ ty + tgo)
Y 2 2
Pi= %5 (0,1 " 20,1 %00 T 3 tgoa
|
H; = Jith.i'Qi
S = SytLity
Q = @Ity
Py = PitH &,
L = L+L,
Jos 3y
S = §+8,
1 “ -
Q : Q+q
H o= H+H
P - P+P
] v
fL#oO K=a/L
§2
T)" = TG+K
EE'BE FIGURE 3.6-2 CURRENT PEG THRUST INTEGRALS
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4.0

CONCLUSIONS

The new PEG thrust integral formulation and method of implementation

derived and presented in this note have the following advantages:

a) Economy - Preliminary estimates- indicate a computer storage
savings of 220 words, approximately 10 percent of the current
PEG program.

b) Ease of implementation - The implementation method proposed in
this note does not represent a departure from the current PEG
implementation approach, rather a simplification of current
equations. The new equations are implemented with very minimum
effort.

c) Ease of verification - The implementation approach (logic,
sequence of computations, etc.) requires no verification, since it
is analogous to current implementation, i.e., stability and con-
vergence are not affected. The first order integrals of the
current PEG equations are maintained, therefore, require no verifi-
cation. The simplified higher order integrals are verified
analytically. The primary motive for verification is to demonstrate
the additional flexibility.

d) Flexibility - The proposed equations represent a generalized
guidance law, i.e., different guidance laws are applied by
changing the value of one scalar parcmeter. This offers opti-
mality and accuracy of prediction for various types of maneuvers.

e) Accuracy - The new equations produce mdre accuracy than current

equations if large central turning angles are involved (e.g.,
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greater than 90 degrees), since sine and cosine approximations
are ‘eliminated.

f) There are no known disadvantages to the proposed equations.

Alternate implementation methods, which could result in even more
computer storage savings, are noted for possible consideration.
However, the alternate methods represent a larger deviation from the

current PEG equations than the primary method presented.

The proposed equations were verified in simulations of Baseline
Reference Missions 1 and 3A. Slightly improved performance was
demonstrated for high performance missions such as Mission 2A

(i.e., +70 pounds weight at MECO).

It is recommended that these equations be incorporated into the

Shuttle powered explicit guidance software.
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