General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA CONTRACTOR REPORT

NASA CR-144348

(NASA-CE-144348) HIGE TORQUE DC MOTOR N76-27476 FABRICATION AND TEST FROGRAM Final Report (Bendix Corp.) 140 p HC \$6.00 CSCL 09A Unclas

G3/33 44612

HIGH TORQUE DC MOTOR FABRICATION AND TEST PROGRAM

By Paul Makus

The Gyroscopic Devices Laboratory Bendix Corporation Guidance Systems Division Teterboro, New Jersey 07608

Final Report

May 24, 1976

Prepared for

2

NASA - GEORGE C. MARSHALL SPACE FLIGHT CENTER Marshall Space Flight Center, Alabama 35812

	TEC	HNICAL REPORT STANDARD TITLE PAGE
1. REPORT NO.	2. GOVERNMENT ACCESSION NO.	3. RECIPIENT'S CATALOG NO.
NASA CR-144348		
4 TITLE AND SUBTITLE		5. REPORT DATE
		<u>24 May 1976</u>
High Torque DC Motor Fabricat	tion and Test Program	6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)		8. PERFORMING ORGANIZATION REPORT #
Paul Makus		
9. PERFORMING ORGANIZATION NAME AND A	DDRESS	10. WORK UNIT NO.
The Guroscopic Devices Labora	towy	
Bendin Germanstien Cuidenes F	-tong Division	11. CONTRACT OR GRANT NO.
Bendix Corporation Guidance by	stems Division	NAS8-30970
Teterboro, New Jersey 07608		13. TYPE OF REPORT & PERIOD COVERED
12 SPONSORING AGENCY NAME AND ADDRES	5	CONTRACTOR
Notional Agronouting and Spage	A durinistruction	CONTRACTOR
Mational Aeronautics and space	Administration	Final Summary Report
Washington, D. C. 20546		14. SPONSORING AGENCY CODE
AC CUDELEMENTADY NOTES		<u></u>
ID, JUPPLEMENTARI NUTED		
16. ABSTRACT		
The testing of a standard in	on and standard alnico norm	anont magnet two-phage houghlose
	on and standard anneo perma	anent magnet two-phase, prushess
DC spin motor for potential app	lication to the Space Telesco	pe (ST) has been concluded. The
nurpose of this study was to det	armina spin motor nowon lag	
I barbope es turp pare's ump to det	ermme shm moror hower ros	ses, magnetic drag, efficiency
and torque speed characteristic	s of a High Torque DC Motor	Ses, magnetic drag, efficiency The motor was designed and
and torque speed characteristic	s of a High Torque DC Motor	Ses, magnetic drag, efficiency The motor was designed and
and torque speed characteristic built to fit an existing reaction	s of a High Torque DC Motor wheel as a test vehicle and to	ses, magnetic drag, efficiency The motor was designed and use existing brass-board commuta-
and torque speed characteristic built to fit an existing reaction tion and torque command electr	s of a High Torque DC Motor wheel as a test vehicle and to onics. The results of the tes	ses, magnetic drag, efficiency The motor was designed and use existing brass-board commuta- ts are included in this report.
and torque speed characteristic built to fit an existing reaction tion and torque command electr	s of a High Torque DC Motor wheel as a test vehicle and to onics. The results of the tes	ses, magnetic drag, efficiency The motor was designed and use existing brass-board commuta- ts are included in this report.
and torque speed characteristic built to fit an existing reaction v tion and torque command electr	s of a High Torque DC Motor wheel as a test vehicle and to onics. The results of the tes	ses, magnetic drag, efficiency The motor was designed and use existing brass-board commuta- ts are included in this report.
and torque speed characteristic built to fit an existing reaction v tion and torque command electr	s of a High Torque DC Motor wheel as a test vehicle and to onics. The results of the tes	ses, magnetic drag, efficiency The motor was designed and use existing brass-board commuta- ts are included in this report.
and torque speed characteristic built to fit an existing reaction v tion and torque command electr	s of a High Torque DC Motor wheel as a test vehicle and to onics. The results of the tes	ses, magnetic drag, efficiency The motor was designed and use existing brass-board commuta- ts are included in this report.
and torque speed characteristic built to fit an existing reaction v tion and torque command electr	s of a High Torque DC Motor wheel as a test vehicle and to onics. The results of the tes	ses, magnetic drag, efficiency The motor was designed and use existing brass-board commuta- ts are included in this report.
and torque speed characteristic built to fit an existing reaction v tion and torque command electr	s of a High Torque DC Motor wheel as a test vehicle and to onics. The results of the tes	ses, magnetic drag, efficiency . The motor was designed and use existing brass-board commuta- ts are included in this report.
and torque speed characteristic built to fit an existing reaction v tion and torque command electr	s of a High Torque DC Motor wheel as a test vehicle and to onics. The results of the tes	ses, magnetic drag, efficiency The motor was designed and use existing brass-board commuta- ts are included in this report.
and torque speed characteristic built to fit an existing reaction v tion and torque command electr	s of a High Torque DC Motor wheel as a test vehicle and to onics. The results of the tes	ses, magnetic drag, efficiency . The motor was designed and use existing brass-board commuta- ts are included in this report.
and torque speed characteristic built to fit an existing reaction v tion and torque command electr	s of a High Torque DC Motor wheel as a test vehicle and to onics. The results of the tes	ses, magnetic drag, efficiency The motor was designed and use existing brass-board commuta- ts are included in this report.
and torque speed characteristic built to fit an existing reaction v tion and torque command electr	s of a High Torque DC Motor wheel as a test vehicle and to onics. The results of the tes	ses, magnetic drag, efficiency The motor was designed and use existing brass-board commuta- ts are included in this report.
and torque speed characteristic built to fit an existing reaction tion and torque command electr	s of a High Torque DC Motor wheel as a test vehicle and to onics. The results of the tes	ses, magnetic drag, efficiency The motor was designed and use existing brass-board commuta- ts are included in this report.
and torque speed characteristic built to fit an existing reaction tion and torque command electr	s of a High Torque DC Motor wheel as a test vehicle and to onics. The results of the tes	ses, magnetic drag, efficiency The motor was designed and use existing brass-board commuta- ts are included in this report.
and torque speed characteristic built to fit an existing reaction tion and torque command electr	s of a High Torque DC Motor wheel as a test vehicle and to onics. The results of the tes	ses, magnetic drag, efficiency The motor was designed and use existing brass-board commuta- ts are included in this report.
and torque speed characteristic built to fit an existing reaction v tion and torque command electr	s of a High Torque DC Motor wheel as a test vehicle and to onics. The results of the tes	ses, magnetic drag, efficiency The motor was designed and use existing brass-board commuta- ts are included in this report.
and torque speed characteristic built to fit an existing reaction v tion and torque command electr	s of a High Torque DC Motor wheel as a test vehicle and to onics. The results of the tes	ses, magnetic drag, efficiency The motor was designed and use existing brass-board commuta- ts are included in this report.
and torque speed characteristic built to fit an existing reaction v tion and torque command electr	s of a High Torque DC Motor wheel as a test vehicle and to onics. The results of the tes	ses, magnetic drag, efficiency The motor was designed and use existing brass-board commuta- ts are included in this report.
and torque speed characteristic built to fit an existing reaction v tion and torque command electr	s of a High Torque DC Motor wheel as a test vehicle and to onics. The results of the tes	Ses, magnetic drag, efficiency The motor was designed and use existing brass-board commuta- ts are included in this report.
and torque speed characteristic built to fit an existing reaction w tion and torque command electr 17. KEY WORDS	s of a High Torque DC Motor wheel as a test vehicle and to onics. The results of the tes	Ses, magnetic drag, efficiency The motor was designed and use existing brass-board commuta- ts are included in this report.
and torque speed characteristic built to fit an existing reaction w tion and torque command electr	18. DISTRIBUT	Ses, magnetic drag, efficiency The motor was designed and use existing brass-board commuta- ts are included in this report. TON STATEMENT Unclass/Unlimited Half C
and torque speed characteristic built to fit an existing reaction w tion and torque command electr	18. DISTRIBUT	Ses, magnetic drag, efficiency The motor was designed and use existing brass-board commuta- ts are included in this report. TON STATEMENT Unclass/Unlimited Here Jalle
and torque speed characteristic built to fit an existing reaction w tion and torque command electr	18. DISTRIBUT	TON STATEMENT Unclass/Unlimited
and torque speed characteristic built to fit an existing reaction w tion and torque command electr	18. DISTRIBUT	TON STATEMENT Unglass/Unlimited
and torque speed characteristic built to fit an existing reaction w tion and torque command electr	18. DISTRIBUT COR:	TON STATEMENT Unglass/Unlimited
and torque speed characteristic built to fit an existing reaction w tion and torque command electr	18. DISTRIBUT COR: F. BRO <t< td=""><td>TON STATEMENT Unglass/Unlimited Lock SMOORE OKS MOORE or, Electronics & Control Lab.</td></t<>	TON STATEMENT Unglass/Unlimited Lock SMOORE OKS MOORE or, Electronics & Control Lab.
and torque speed characteristic built to fit an existing reaction w tion and torque command electr	IB. DISTRIBUT COR: / F. BRO Directa	Ses, magnetic drag, efficiency The motor was designed and use existing brass-board commuta- ts are included in this report. TON STATEMENT Unclass/Unlimited Call Julian DOKS MOORE or, Electronics & Control Lab.
and torque speed characteristic built to fit an existing reaction of tion and torque command electr 17. KEY WORDS	18. DISTRIBUT COR: / F. BRO Directa 20. SECURITY CLASSIF. (of this page)	 Ses, magnetic drag, efficiency The motor was designed and use existing brass-board commutats are included in this report. Area included in this report.
 and torque speed characteristic built to fit an existing reaction of tion and torque command electr 17. KEY WORDS 19. SECURITY CLASSIF. (of this report) Uncl 	18. DISTRIBUT COR: / 20. SECURITY CLASSIF. (of this page)	Ses, magnetic drag, efficiency . The motor was designed and use existing brass-board commuta- ts are included in this report. Image: State inclose included included in this report.
 and torque speed characteristic built to fit an existing reaction of tion and torque command electr 17. KEY WORDS 19. SECURITY CLASSIF. (of this report) Uncl 	18. DISTRIBUT COR: / F. BRO Directa 20. SECURITY CLASSIF. (of this page) Uncl	Ses, magnetic drag, efficiency . The motor was designed and use existing brass-board commuta- ts are included in this report. TON STATEMENT Unclass/Unlimited full fulll

ee att

i

when the first on the product of the

; -.

autorius de la composition de

a da sa ka

φ

å

PREFACE

This report is submitted in fulfillment of the requirements of Phase II of the Statement of Work for NASA Contract NAS-8-30970. The work performed herein is in accordance with the instructions of Supplemental Agreement Modification 4 dated 2 December 1975.

TABLE OF CONTENTS

SECTION	TITLE	PAGE
1.0	INTRODUCTION	1-1
2.0	SUMMARY	2-1
3.0	CONCLUSIONS AND RECOMMENDATIONS	3-1
4.0	TEST RESULTS	4-1
4.1	TORQUE CHARACTERISTICS	4-3
4.2	POWER CHARACTERISTICS	4-10
4.3	EFFICIENCES	4-13
4.4	TORQUE TRANSIENTS	4-19
4.5	CURRENT WAVEFORMS	4-20
5.0	BRUSHLESS DC MOTOR	5-1
5.1	DESCRIPTION AND HISTORY	5-1
5.2	DESIGN FEATURES	5-1
5.3	MOTOR TEST RESULTS	5-2
5.4	REACTION WHEEL TEST RESULTS	5-5
5.5	ANALYSIS	5-9
6.0	DRIVE ELECTRONICS ANALYSIS	6-1
7.0	TEST EQUIPMENT	7-1
8.0	TEST DATA	8-1
8.1	PERFORMANCE DATA	8-1
82	CONDUTTER DATA ANALYSIS	8-2

LIST OF ILLUSTRATIONS

1

	•	
FIGURE	TITLE	PAGE
1-1	BRUSHLESS DC MOTOR	1-2
1-2	50 FT-1B-SEC MWA AND WHEEL ASSEMBLY	1-4
1-3	BRUSHLESS DC MOTOR PWM DRIVE ELECTRONICS	1-5
1-4	PWM DRIVE ELECTRONICS H-BRIDGES	1-7
4-1	REACTION TORQUE VS SPEED AND TORQUE COMMAND	4-4
4-2	TORQUE SCALE FACTOR VS SPEED	4-6
4-3	COMPUTED BIAS TORQUE VS SPEED	4-8
4-4	DRAG TORQUE VS SPEED	4-9
4-5	MOTOR EFFICIENCY VS SPEED	4-15
4-6	SUBSYSTEM EFFICIENCY VS SPEED	4-16
4-7	ELECTRONICS EFFICIENCY VS SPEED	4-17
4-8	H BRIDGE EFFICIENCY VS SPEED	4-18
4-9 TO	MOTOR CURRENT WAVEFORMS	4-23 TO
4-17	MOTOR CURRENT WAVEFORMS	4-31
5-1	HIGH TORQUE BRUSHLESS DC MOTOR PARAMETERS	5-1
5-2 TO 5-3	HALL LOCATION TESTS 5-3	14 - 5-15
5-4	POWER FLOW DIAGRAMS AT 1250 RPM CW AND MAXIMUM TORQUE	5-16
5-5	BRUSHLESS DC MOTOR - NO ARMATURE REACTION	5-17
5-6	BRUSHLESS DC MOTOR - WITH ARMATURE REACTION	5-18
5-7	BRUSHLESS DC MOTOR - WITH ARMATURE REACTION AND HALL PLACEMENT ERROR	5-19
6-1	SPIN MOTOR DRIVE ELECTRONICS - BLOCK DIAGRAM	6-2
6-2	SPIN MOTOR DRIVE ELECTRONICS - SCALING DIAGRAM	64
63	FREQUENCY RESPONSE	6-6

iv

LIST OF ILLUSTRATIONS - (CONT.)

Q

58

	•	
FIGURE	TITLE	PAGE
8-1	STABLE POWER	8-10
8-2	REACTION TORQUE VS SPEED .	8-11
8-3	CW DRAG TORQUE	8-12
8-4	CCW DRAG TORQUE	8-13
8-5	CW LOW SPEED DRAG TORQUE	8-14
8-6	CCW LOW SPEED DRAG TORQUE	8-15
8-7	ZERO CROSSING TORQUE	8-16
8-8	CW AC MOTOR DRAG TORQUE	8-17
8-9	CCW AC MOTOR DRAG TORQUE	8-18
8-10	SUBSYSTEM POWER VS SPEED	8-1 9
8-11	COS MOTOR POWER VS SPEED	8-20
8-12	SIN MOTOR POWER VS SPEED	8-21
8-13	SUBSYSTEM POWER FOR 24 AND 32 VDC BUSS	8-22
8-14	COS MOTOR POWER FOR 24 AND 32 VDC BUSS	8-23
8-15	SIN MOTOR POWER FOR 24 AND 32 VDC BUSS	8-24
8-16 to	CW TORQUE TRANSIENTS FOR 0.5, 1.0, 2.5 AND	8 - 25 to
8-19	5.0 VOLT TORQUE COMMANDS	8-28
8-20 to	CCW TORQUE TRANSIENTS for 0.5, 1.0, 2.5 AND	8-29 to
8-23	5.0 VOLT TORQUE COMMANDS	8-32
8-24 to	ZERO SPEED TORQUE TRANSIENTS FOR 0.5, 1.0,	8-33 to
8-27	2.5 AND 5.0 VOLT TORQUE COMMANDS	8-38
8-28 to	CW DIGITAL TORQUE TRANSIENTS FOR 0.5, 1.0	8-39 to
8-35	2.5 AND 5.0 VOLT TORQUE COMMANDS	8-46
8-36 to	CCW DIGITAL TORQUE TRANSIENTS FOR 0.5, 1.0,	8-47 to
8-42	2.5 AND 5.0 VOLT TORQUE COMMANDS	8-52

ŝ

LIST OF	ILLUSTRATIONS		(CONT.)	ļ
---------	---------------	--	---------	---

TABLE NO.	TITLE	PAGE
2-1	HIGH TORQUE DC MOTOR CHARACTERISTICS	22
4-1	CURRENT HARMONIC ANALYSIS	4-22
5-1	HIGH TORQUE BRUSHLESS DC MOTOR PARAMETERS	5-13
8-1	PERFORMANCE DATA	8-5
8-2	HIGH TORQUE DC MOTOR EFFICIENCY TABULATIONS	8–6
8-3	HIGH TORQUE DC MOTOR EFFICIENCY TABULATIONS	8-7
8-4	SCALE FACTOR	88
8-5	POWER DATA	8-9
8-6 to	HIGH TORQUE DC MOTOR COMPUTER DATA	8-53 to
8-16		8-63

1.0 INTRODUCTION

The Bendix Corporation, Guidance Systems Division (GSD) has concluded testing of a standard iron and standard alnico permanent magnet two phase, brushless DC spin motor for potential application to the Space Telescope (ST). The purpose of this study was to determine spin motor power losses, magnetic drag, efficiency and torque speed characteristics of a High Torque DC Motor. GSD designed and built this motor to fit an existing reaction wheel as a test vehicle and to use existing brassboard commutation and torque command electronics.

The spin motor was designed for a nominal torque output of 50 ounce inch (.35 NM) over a speed range of ± 3000 RPM. The motor rotor consists of 10 poles of alnico permanent magnets. The stator, located inside the rotor, consists of two phases of windings in quadrature. Hall elements are located on the outer periphery of the stator laminations so as to sense the rotor flux in the air gap and provide rotor position information for electronic commutation. A picture of the spin motor is shown in Figure 1-1.

The reaction wheel used as a test vehicle for the spin motor is a new 50 ft-lb-sec (68 N-M-sec) Momentum Wheel. This unit has been designed so that it can be used as a normal reaction wheel, a biased momentum wheel, or as the wheeled section of a low output torque, control moment gyro, either single or dual gimbal. The unit has an angular momentum potential between 50 and 150 ftlb-sec.

BRUSHLESS DC MOTOR

FIGURE 1-1

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR The reaction wheel consists of a spoked 16 inch (.406M) diameter wheel in a magnesium housing. A picture is shown in Figure 1-2. The assembly is about 16.5 inches (.42M) in diameter by 7.25 inches (.184M) high. It utilizes a three point mount and weighs 32 pounds (14.5KG). Single 104H angular contact ball bearings, with a 10 pound (.453KG) axial preload provided by a belleville spring are used in the reaction wheel configuration. The bearings used during test were lubricated with a fixed amount of SRG-40 mineral oil.

The reaction wheel has been previously tested with an AC induction motor installed to determine the units drag torque characteristics. The unit has been designed to operate in a low pressure or vacuum environment. All of the tests results presented were performed with the units internal pressure between 100 and 150 micros (0.1-0.15 Torr).

The spin motor drive electronics used for this study is a brassboard set similar to the one which was to be used on the Earth Limb Measurement Satellite (ELMS) program. A picture is shown in Figure 1-3. The electronics consists of an EMI filter, power supply, pu'se width modulator (PWM) and H-bridge drive circuits. The input to the electronics consists of a nominal 28 volt DC buss and DC torque command signal of 0 to ±5 volts. The output is a PWM current drive, modulated by the Hall commutators, to the spin motor windings. The current feedback stability circuitry was modified for higher speed operation (3000 RPM vs 880 RPM for ELMS).

50 FT-LB-SEC MWA AND WHEEL ASSEMBLY

FIGURE 1-2

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

BRUSHLESS DC MOTOR PWM DRIVE ELECTRONICS

FIGURE 1-3

The power H-bridges, see Figure 1-4, were rebuilt to accommodate the approximately three times higher power levels required.

PWM DRIVE ELECTRONICS H-BRIDGES

FIGURE 1-4

2.0 SUMMARY

A two phase, brushless high torque DC motor was designed and built to fit within the physical constraints of an existing 50 ft-lb-sec reaction wheel. The motor was sized to fit existing hardware and was therefore limited to a maximum torque of 50 ounce inches. The motor was also designed to operate with existing PWM drive electronics without modification. Unfortunately, during the course of integration of the motor and electronics, it was discovered that the existing H-bridge power transistors could not adequately handle the higher motor current and so new H-bridges had to be built.

The electronics were also modified with a double feedback circuit to extend the amplifier bandwidth from its former 73 Hertz bandwidth to a 250 Hertz bandwidth. The subsystem, consisting of motor, reaction wheel and drive electronics was then tested for its performance characteristics. Although the motor performed according to its design, an unexpected amount of sensitivity to armature fields was experienced. This "armature reaction" did tend to cause dissymetry in the data but did not seriously affect the test effort. The wheel speed was limited to a maximum of 2500 RPM rather than the desired 3000 RPM because the motor back EMF constant was erroneously calculated for square wave excitation rather than the actual sinusoidal current.

The results of this effort have been summarized in Tables 2-1 and 2-2. The functional test results, are shown and discussed in Section 4. The motor itself is discussed in Section 5. Section 6 contains a discussion of the frequency response of the drive electronics.

HIGH TORQUE DC MOTOR CHARACTERISTICS

Motor Type Rotor outside stator, brushless DC Commutation Hall elements on stator No. Poles 12 No. Phases 2 Size 3.99" OD x 1.63" ID x 1.25" Length Weight 21 ounces (.595 Kg)Magnet Mat'l Alnico 9 54 Maximum Torque oz-in 10.25 oz-in/pKamp (.072 NM/pkamp) Torque Scale Factor (Max) (Apparent) 9.6 oz-in/pKamp (.068NM/pKamp) Maximum Speed (at 32V) 3000 RPM Peak power at 2500 RPM and 103 watts max torque Motor constant (Max) 16 oz-in//watt Back EMF Constant 0.00758 volts pk/RPM Motor Time Constant 2 milliseconds DC Resistance (each phase) 0.41 ohmsTotal AC Impedance (each phase) 0.65 ohms Inductance (each phase) 0.8 millihenries Drag Torque near zero speed (Bearing and windage) 0.6 oz-in (Magnetic) 0.15 oz-in Drag Torque at 3000 RPM (Bearing and windage) 1.5 oz-in(Magnetic) 0.9 oz-inEfficiency at 2500 RPM (Max Torque) 76% (20% Torque) 87%

TABLE 2-1

SUBSYSTEM CHARACTERISTICS

Input Power	28 <u>+</u> 4 VDC
Torque Command Signal	0 to <u>+</u> 5 VDC
Torque Command Scale Factor	10.8 oz-in/volt
	0.076 NM/volt
	9.6 oz-in/pk amp
Peak Power at 2500 RPM and	
max torque	187 watts
Quiescent power at zero speed	8.5 watts
at constant 3000 RPM	13.5 watts
Efficiency at 2500 RPM (Max)	59%
(Min)	52%
PWM Frequency	4.8 KHz
Туре	Brassboard

3.0

CONCLUSIONS AND RECOMMENDATIONS

The High Torque DC Motor tested for this report showed a definite advantage over an AC motor for meeting ST satellite requirements. The DC motor inherently has much higher torque and is much more efficient for use in a reaction wheel. The DC motor also tends to be much more efficient at low torque levels than high torque levels indicating even higher efficiency when operated at low duty cycles. The biggest disadvantage of this motor is the drag torque of the rotor magnets on the stator iron. The magnetic drag amounts to 50% of the bearing and windage drag at maximum speed and 20% near zero speed.

The magnetic drag of the brushless DC motor can be eliminated by using an ironless stator. This type of motor construction would also run more efficient since the stator core losses would be reduced. The stator core losses of the standard motor are significant at high torque levels since they are proportional to the square of motor current. The ironless stator brushless DC motor would be the next logical step of investigation if it is desired to have increased performance over the standard brushless DC motor.

There were several areas of the motor design which requires improvement. The first is the stator iron. The stator core losses, although negligible at low torque levels, proved to be significant at high torque levels. These may be reduced by increasing the amount of iron in the stator. The Hall sensors were located on the stator laminations. Although this location is satisfactory at low torque levels, the amount of stator flux pickup became significant at high torque levels leading to current waveform distortion.

For future designs, the Hall sensors should be moved out of the stator field. An obvious solution is an external (to the motor) position resolver. This would require additional cost however and a better method would be to place the Hall sensors at the sides of the rotor magnets. This would require that axial wheel motion be limited so as not to affect the scale factor. Perhaps the best method would be to extend the rotor magnets axialy so as to overlap the stator winding end turns and place the Hall sensors in this location. No matter which method is chosen it is desirable to have the position sensors mounted so as to allow peaking and balancing of the motor torque under dynamic test conditions.

The armature reaction effect will be small for an ironless stator motor due to the large air gap. Therefore, this type of motor would be able to operate satisfactorily with Hall elements located on the stator.

4.0 TEST RESULTS

The High Torque DC Motor was tested as part of a subsystem which included a Pulse Width Modulated (PWM) Drive Electronics and a 50 foot-pound-second Reaction Wheel Assembly (RWA). The primary parameters of interest were reaction torque and power. The motors reaction torque was measured by suspending the RWA from a strain gage torque cell with the spin axis vertical. The natural resonance of the suspended spring mass system was 4.14 Hertz. This necessitating filtering of the torque indicators output with a 0.1 Hertz low pass filter. Since the RWA takes six minutes to change direction of maximum speed at maximum torque, this filtering was not considered detrimental.

Power measurements were made with a wattmeter which obtains a wattage reading by electronically multiplying the current signal by the voltage signal. Subsystem power measurements are easily measured since they are basically DC levels. The motor power measurements, however, posed a problem in that the voltage across the motor is pulse width modulated at a frequency of 4.8 kilohertz. Although the rated frequency response of the wattmeter is 2 kilohertz, it is believed that the wattmeter was responding with reasonable accuracy for these tests.

The RWA Drive Electronics was controlled by a speed controller modified to use the RWAs spare set of Hall résolvers as a tachometer. The speed controller put out a torque command voltage adjustable

from 0 to ± 5 volts. The 5 volt torque command corresponds to maximum motor torque.

The RWA could not be operated above 2600 RPM at full torque and 28 volts DC buss voltage because of the motor back emf being higher than planned (see motor discussion). Although the motor could be run at 3000 RPM with either an increased DC buss voltage or lower torque command, it was decided not to run the motor past 2600 RPM for these tests.

The peak motor current was limited to 6 amperes thus limiting the maximum torque level to 50 ounce inches. Although the motor and drive electronics were capable of being operated at a higher current (torque) level, the "armature reaction effect" on the Hall position resolvers was too great at higher levels for satisfactory operation (see motor discussion).

The reaction wheel was operated in vacuum with a wheel cavity pressure of 100 to 150 microns maintained throughout all tests to keep windage losses constant.

In addition, a repeatable bearing preload from unit build to unit build was accomplished using Belleville washers (springs) which were captured in special adjusting nuts, threaded into the Beryllium bearing support housings. These preload nut assemblies (two per unit), are adjusted so that the spring is approximately .005 inches from flat bottom. Once this deflection is achieved, a

> REPRODUCEBILITY OF THE ORIGENAL PAGE IS FORK

thrust load of approximately 9.0 pounds, based on the spring's spring rate, is applied to each bearing outer race in the spin axis horizontal position.

Since each preload washer still has .005 inch before the flat bottom position is reached, the flywheel has a total axial end share of .010 inch. Therefore, a repeatable preload of approximately 9 pounds is achieved by always adjusting the preload nut assemblies to yield an axial end shape of .010 inches.

4.1 TORQUE CHARACTERISTICS

The reaction torque characteristics of the subsystem are shown in Figure 4-1. The subsystem was operated at nominal buss voltage (28 VDC) and with five different torque command levels through four quadrants (modes of operation) arbitrarily designated.

I - Counterclockwise Acceleration

II - Clockwise Deceleration

III - Clockwise Acceleration

IV - Counterclockwise Deceleration

Quadrants I and II correspond to positive reaction torque output whereas quadrants III and IV correspond to negative reaction torque output.

The reaction torque values for the five torque commands in each quadrant were read from the curves every 250 RPM. A least squares straight line was then fitted to each set of data at each speed to determine the torque command scale factor. The coefficient of correlation was deter-

.

mined for each regression line with the lowest correlation being 0.995. The results of these computations are shown graphically in Figure 4-2 and are tabulated in Section 8.0. Immediately apparent is the different scale factors between positive and negative torque commands of about 7%. This is due primarily to the armature reaction effect of the Hall resolvers. Also apparent in the graph is the primarily positive slope during speed acceleration and the primarily negative slope during de-This effect is due to the change of the celeration. motor from acting as a motor during acceleration to a generator during deceleration. The total torque scale factor for all conditions is 10.7 ounce inch per volt +13% (3σ). The scale factors for positive and negative torques, respectively, are

(+) 10.34 ounce inch/volt ±8% (3σ)
(-) 11.08 ounce inch/volt ±8% (3σ)

The above scale factors were determined from the reaction torque curves of Figure 4-1.. The torque scale factors were also computed from the motor power curves (see Section 4.2) and are listed here to show concurrence of data.

(+) 10.71 ounce inch/volt
(-) 11.47 ounce inch/volt

It can be seen that there is less than 4% discrepancy between the two methods.

15M

The drag torque of the RWA with the AC motor installed was measured and approximated by a straight line of

$$T_{AC} = 0.34 \times S + 0.45$$
 ounce inch

where
$$T_{AC}$$
 = drag torque with AC motor
S = motor speed in KRPM

Using the same method (measuring rundown reaction torque with motor windings open) and with the same bearing preload and wheel cavity pressure, the drag torque for the High Torque DC Motor was determined to be

$T_{\rm DC} = 0.60 \times S + 0.60$

Thus, the DC motor, assuming no error in setting bearing preload, has about 0.15 ounce inch additional zero crossing torque. The magnetic drag of the rotor magnets on the stator iron amounts to 0.26 ounce inch per 1000 RPM or an additional 0.78 ounce inch of torque at 3000 RPM.

The torque scale factor was computed by fitting a least squares straight line to five points of torque command voltage vs reaction torque at given speeds. The slope of this line is the torque scale factor and the intercept or bias should be the drag torque given a linear system. These biases were plotted and are shown in Figure 4-3. These torque curves represent what may be called "dynamic" drag torques and when averaged together yield a dynamic drag torque of

 $T_{DYN} = 0.99 \times S + 0.74$

This dynamic drag torque may represent additional drag due to hysteresis and eddy current losses, electronics losses or simply non-linearity in computation. There is still speculation at this time about the nature of this curve. Data presented in the next section supports the open motor drag torque curve and therefore is the one purported to be the true motor drag torque. All three curves are presented graphically in Figure 4-4.

POWER CHARACTERISTICS

4.2

The sine and cosine motor phase powers were plotted against speed in the same manner as the reaction torque of section 4.1. The data was also summarized in a similar fashion for computer analysis. (See section 8 for curves and tabulations.) Least squares straight lines were fitted to the total motor power vs speed curve at each torque command level and for positive and negative reaction torques. The slopes of these lines were assumed to be directly proportional to the torque scale factor and another least squares straight line was fitted to the slope vs torque command data. The line was forced through the origin and the resultant slope represented the torque scale factor. Following are the scale factors for positive and negative torques, respectively:

(+) 10.71 ounce inch/volt
(-) 11.47 ounce inch/volt

Since the torque command voltage is proportional to motor current (this is not entirely true because the

armature reaction effect on the Hall position sensors causes not only distortion of the current waveform proportional to current, but also some positive feedback effects), the intercepts of power vs speed curves are proportional to the I²R losses of the motor and Thus by setting the intercepts proportional wiring. to the torque command voltage squared and fitting a straight line through these points and the origin, the I²R constant can be computed. The RMS current as shown in the pictures of section 4.5 is approximately 0.8 amps RMS per volt of torque command. Using the average I²R constant of 1.2 watts/volt² and 0.8 amps/volt. the effective resistance of the motor is computed to be 1.88 ohns or 0.94 ohms per phase. The measured DC resistance was 0.62 ohms. The measured DC resistance was 0.41 ohms plus 0.2 ohms wiring and an additional 0.24 ohms of AC losses at 100 Hz.

The steady state power of the subsystem was measured at zero speed and ± 3000 RPM. The speed control circuit was used to keep the speed constant while the measurements were made. The buss supply voltage was then varied +4 volts DC.

	Subsys	tem Power			
Speed	<u>24V</u>	<u>28v</u>	<u>32v</u>		
0	6.0	8.5	10.8		
CW 3000	11.6	13.7	15.4		
CCW 3000	11.4	13.2	15.1		
0	5.8	7.4	9.4	(motor	open)

	<u>Spin Mo</u>	tor Power	
Speed	<u>24v</u>	<u>28v</u>	<u>32v</u>
0	0,3	0.6	0 . 9
CW 3000	6.5	6.5	6.8
CCW 3000	5,3	5.4	5.5

For the subsystem power at zero speed, the quiescent power is clearly proportional to the voltage squared thus representing I^2R losses in the electronics. The difference between zero speed and maximum speed subsystem powers should represent the spin motor power required at maximum speed. The measured spin motor powers, however, are higher by an amount partially accounted for by the I^2R losses of the 4.8 KHz PWM ripple current in the motor circuit. This is evident by comparing the subsystem power at zero speed with the motor in and out of the circuit.

The stable spin motor power is also representative of drag torque at constant speed. Using the spin motor powers at ±3000 RPM and the motor torque constant developed earlier, the drag torque at 3000 RPM is computed to be 2.2 ounce inch which agrees closely with the measured drag torque.

The effect of the supply voltage buss change from 24 volts to 32 volts was generally less than 10% throughout the speed range. Interestingly, the subsystem required less power at 32V during motor acceleration. The effect on the motor power was negligible and small differences observed were attributed to the electronics operation.

4.3 EFFICIENCIES

The reaction torque vs speed, drag torque, motor power and subsystem power curves mentioned in the previous sections were also used to compute various efficiencies. The motor efficiency was computed from the ratio of Required Power over Measured Power. The required motor power is computed from

$$P_{R} = \frac{T_{M}S}{1352}$$

where T_{M} = Motor Torque = Reaction Torque <u>+</u> Drag Torque S = Speed IN RPM

The motor efficiency is

$$\mathbf{E}_{\mathbf{M}} = 100 \frac{\mathbf{P}_{\mathbf{R}}}{\mathbf{P}_{\mathbf{M}}} \%$$

The efficiencies were computed for each Torque Command Voltage from 1 to 5 volts every 250 RPM. The range of efficiencies was then plotted vs speed as shown in Figure 4-5. The motor efficiency is obviously zero at zero speed and is a function of speed. It is also a function of torque with the highest efficiency occurring at the lowest torque level. Thus, it can be seen that the motor is approaching 90% efficiency at maximum speed and low torque levels and 75% efficiency at maximum torque.

The subsystem efficiency was computed from $E_{S} = 100 \frac{P_{R}}{P_{T}} \%$ where P_{T} = Total Subsystem Power

As above, the subsystem efficiency was plotted vs speed and is shown in Figure 4-6. The efficiency is again zero at zero speed and is about 55% at 2500 RPM. The tendency is for maximum efficiency at about 1/2 torque. The range of efficiencies with torque command is lower than the motor being generally less than $\pm 4\%$.

The electronics efficiency was computed from

$$E_{E} = 100 \frac{P_{M}}{P_{T}} \%$$

and is shown in Figure 4-7. The efficiency tends to dip down to about 36% at zero speed and rises to about $65\% \pm 5\%$ at 2500 RPM. It should be noted, however, that the electronics are breadboard and were not designed to permit highest efficiency.

The quiescent power (P_Q) of the subsystem at zero speed was measured as 8.5 watts and this power was used to compute the effective efficiency of the H-Bridge or

Ĭ.

$$E_{\rm H} = 100 \frac{P_{\rm M}}{(P_{\rm T} - P_{\rm Q})}\%$$

The results at i shown in Figure 4-8. The H-Bridge efficiency appears to be generally about 70% over most of the range and rising to 75% \pm 5% at 2500 RPM. As with the motor, the H-Bridge efficiency tends to be higher at low torque levels and lower at high torque levels.

N.E KEUFFEL & ESSER CO MAN NUT

4-16

(and the set

4-17

40 U707

No E KEUFFEL & ESSER CO. MKH.

and I

The efficiencies of the electronics must not be taken too strongly since no attempt was made during circuit modifications at reducing power consumption. This was because the main object of this study was the motor characteristics. Future circuits would naturally employ optimization techniques for increasing electronics power efficiency.

4.4 **TORQUE TRANSIENTS**

The RWA was tested for torque transients with step torque commands of $\pm 10\%$, $\pm 20\%$, $\pm 50\%$ and $\pm 100\%$ of maximum at CW 2600, CCW 2600 and zero RPM. The filter across the output of the torque indicator was removed for these tests. The resultant torque graphs are shown in Section 8, Figures 8-16 to 8-27. The 4 Hertz oscillation frequency of the spring mass system is apparent in these graphs. Also the slew rate

(15 inches/second) of the plotter is evident. However, an observable time constant of about 1/2 second can be seen in the graphs with maximum torque command. This time constant did not seem reasonable so a preset counter and digital printer were used to time wheel revolutions during the transient. The digital measurement system was able to time every third revolution or about 70 milliseconds between prints at 2600 RPM. These readings were converted to speeds and plotted by computer as shown in section 8, Figures .8-28 to 8-42. It appears from these graphs that the step torque commands resulted in constant speed-time slopes or constant torque levels with no time constants in the 500 millisecond range. The apparent time constant in the reaction torque graphs are therefore attributed to limitations of the test equipment and not to the RWA subsystem.

4.5 CURRENT WAVEFORMS

Pictures were taken of the High Torque DC Motor currents to show the effect of armature reaction on the Hall resolvers. The RWA was operated at CW 1250 RPM with torque commands of +20%, +50% and +100% of full torque. The RWA was also run at CCW 1250 RPM and +100% of full torque. Figures 4-9 and 4-10 show the effect of armature reaction or the sensitivity of the Hall rotor position resolvers to the stator electromagnetic field. The clipping (flat topping) of the current w.veforms is due to electronic current limiting but the remainder of the distortion is due to armature reaction. This is evident by comparing Figures 4-11 through 4-16 where conditions were the same except for motor current. The low current pictures show much less distortion than those at high current.

The motor currents of Figures 4-11 and 4-12 were subjected to a Fouier harmonic analysis t, determine the amount of distortion in the waveform. The results shown in Table 4-1 indicate that for accelerating torque at 1250 RPM, the harmonic power loss was 3.5% and 8.9%for decelerating. The average torque producing currents were 4.14 amps RMS accelerating and 3.77 amps RMS decelerating, a difference of 9%. These differences are attributed to armature reaction effects on the Hall resolvers.

The effect of the back EMF of the motor on the current at maximum speed can be seen in Figure 4-17. The peaking of the current at maximum is a result of insufficient buss voltage to supply the demanded current. At higher buss voltage this effect disappears and likewise at lower back EMF's.

CURRENT HARMONIC ANALYSIS 1250 RPM CW ACCELERATING

	CURRENT-AMPS-PEAK		RATIO I C SEQUEI	RATIO TO POSITIVE SEQUENCE CURRENT		POWER COMPONENT	
	S IN PHASE	COS PHASE	SIN PHASE	COS PHASE	SIN PHASE	COS PHASE	
FUNDAMENTAL	6.2477	5.4694	1.06642	.93357			
+1	5,8586	5,8586	1.00000	1.00000	.500000	.500000	
-1	.3891	.3891	.06642	.06642	.002206	.002206	
2	.7024	.0644	.11990	.01099	.007188	.000060	
3	.3950	.8269	.0674	.14115	.002273	.009962	
5	.6144	.0578	.10488	.00986	.005500	.000049	
7	.1677	_0742	.02863	.01267	.000410	.000080	
9		.0709		.01211		.000073	
4.8KHz	.4000	.4000	.06828	.06828	.002331	.002331	
	TOTA L	HARMON IC	POWER PER	PHASE	.019907	.014761	
	TOTAL	HARMONIC	POWER		.0340	668	
	TOTAL	POSITIVE	SEQUENCE	POWER	1.0000	000	

1250 RPM CW DECELERATING

F UN DA MENTA L	4.1567	6.5080	.77953	1.22047		
+1	5.3323	5.3323	1.00000	1,00000	.500000	.500000
-1	1.1756	1.1756	.22047	.22047	.024304	.029304
2	.2012	.5952	.03774	.11163	.000712	.006231
3	.9154	.6905	.17168	.12949	.014739	.008384
5	.1993	.2790,	.03737	.05232	.000698	.001369
7	.1529	.1955	.02867	.03667	.000411	.000672
9	.2454	.0735	.04603	.01379	.001059	.000095
4.8 KHz	.4000	.4000	.07501	.07501	.002814	.002814
	TOTAL	HARMON IC	POWER PER	PHASE	.044735	.043868
	TOTA L	HARMON IC	POWER		.088	3603
	TOTAL	POSITIVE	SEQUENCE I	POWER	1.000	0000

TABLE 4-1

2 MS/CM 4 AMP/CM

COS PHASE

CCW ROTATION ACCELERATING 5V TORQUE COMMAND

SIN PHASE

2 MS/CM

4 AMP/CM

COS

PHASE

CCW ROTATION DECELERATING 5V TORQUE COMMAND

2 MS/CM

4 AMP/CM

COS PHASE

CW ROTATION ACCELERATING 5V TORQUE COMMAND

MOTOR CURRENT WAVEFORMS

FIGURE 4-11

2 MS/CM 4 AMP/CM

COS PHASE

CW ROTATION DECELERATING 5V TORQUE COMMAND

2 MS/CM

2 AMP/CM

COS PHASE

CW ROTATION ACCELERATING 2.5V TORQUE COMMAND

2 MS/CM 2 AMP/CM

COS PHASE

CW ROTATION DECELERATING 2.5V TORQUE COMMAND

2 MS/CM

1 AMP/CM

COS PHASE

CW ROTATION ACCELERATING IV TORQUE COMMAND

2 MS/CM

1 AMP/CM

COS PHASE

CW ROTATION DECELERATING 1V TORQUE COMMAND

2 MS/CM 4 AMP/CM

CW ROTATION ACCELERATING 5V TORQUE COMMAND

5.0 BRUSHLESS DC MOTOR

5.1 DESCRIPTION AND HISTORY

The high torque DC motor consists of a permanent magnet rotor located outside of a two phase wound stator. This type of construction employs a rotor comprised of ten alnico 9 permanent magnet segments positioned and embedded circumferentially in a soft iron pole structure. A photograph of this type of motor is shown in Figure 1-1. The multipolar design insures a high torque and minimizes space and weight. This machine is designed to develop up to 50 oz-in of torque. The stator is wound for two phase operation with two pairs (for redundancy) of Hall elements located in the motor air gap for rotor position sensing.

This type of motor has been built successfully and tested for the Roll Reaction Wheel which was to be used on the Earth Limbs Measurements Satellite before the program was cancelled.

5.2 DESIGN FEATURES

5.2.1 Winding Placement

After tests were performed on the ELMS motor it was discovered that the Hall devices which were assembled in grooves placed into the stator at the motor air gap were not properly located. After much analysis the conclusion was reached that the cause for the shift must be due to the fact that the coils were lap wound into the stator. The lap winding places one half of

the coil in the bottom of a slot and the other half at the top of a slot. Since the slots are long and narrow, the axis of the coil is considerably shifted off the radial direction. The theory is that the stator flux pattern does not faithfully follow the teeth but tends to flow perpendicular to the coils.

In order to avoid this undesirable error, the winding for the high torque motor was modified to insure that the coils are all perpendicular to the teeth. This was accomplished by placing the individual coils either totally in the bottom of slots or totally in the top of slots.

5.2.2 Winding Determination

The windings were designed to give full torque of 50 oz-in at 3000 rpm when operated from a 20 volt zero to peak square wave. This is equivalent to $(4/\pi)(20) = 25.5$ volts peak sinusoidal excitation. The back EMF was calculated to be 0.00744 volts peak/rpm and actually tested 0.00758 volts peak/rpm. The correlation was good but, unfortunately, the excitation differed from the square wave assumed. The actual excitation is a pulse width modulated wave of 0 to 20 volts which makes it a 20.0 volt peak sinusoidal wave. For this reason the back EMF was high and the high speeds were not attained.

5.3 MOTOR TEST RESULTS Refer to Figure 5-1 for a listing of pertinent motor parameters discussed in the following paragraphs.

5.3.1 Back EMF Constant

The motor was placed in a test fixture and the shaft driven by an external motor. The voltages generated by the windings at various speeds were recorded. The back EMF was then calculated to be 0.00758 volts peak/rpm. The maximum torque constant is calculated to be 1352 times the back EMF constant. For this machine it is 10.25 oz-in/amp peak. This torque constant is attainable if the commutation angle is exactly at 90 degrees.

5.3.2 Hall Location Tests

After the reaction wheel was assembled some simple tests were run to determine the accuracy of the Hall placements. These tests are described pictorially in Figures 5-2 and 5-3. The tests were run in numerical sequence. One set of Hall elements were series input connected and set to 40 milliamps and the millivolt outputs were recorded for different rotor positions. Test 1 indicated that with 2.5 amps flowing through the A winding a field was established attracting a S pole (assumed polarity) of the rotor. With this set of conditions the A Hall element generated 23 mv and the B Hall elements generated 72 mv. After the excitation to winding A was removed Test 2 gave the Hall outputs for the same rotor position. Note that the diagrams show only two poles when in reality the machine has 10 poles and the rotor had a possibility of five distinct positions where it could line up.

Test 3 was run with the B winding excited and the rotor turned 90 degrees electrically from Tests 1 & 2. Test 5 was run with both windings excited giving the:rotor a 45 degree electrical position. Similar tests were run with reversed stator currents as shown in Figure 5-3.

The question arises if the Hall locations are accurate. Tests 2, 4 and 8 indicate that they are fairly well located, where one element reads at a high level and the other at a null. But test 10 indicates considerable error.

Comparison of test 6 to Tests 2 and 4 indicate that the wave shape is not sinusoidal. One would expect that the R&11 outputs of test 6 to be sin 45° or 70.7% of the "maximum" outputs of tests 2 & 4. They are instead:

Hall A
$$\frac{64}{76} = 84.2\%$$

Hall B $\frac{60}{63} = 95.2\%$

Comparison of test 12 to test 8 indicates similar distortion.

The odd numbered tests give an indication of distortion of the air gap flux field due to stator flux. These tests do not represent actual running conditions of the motor since the rotor should never be line up with the stator field but should be in electrical quadrature. Regardless of that fact, one would expect Hall A of test 1 to be at a low null value. It measured 23 mv indicating distortion of air gap flux.

REPRODUCIBILITY OF THE

5.4 REACTION WHEEL TEST RESULTS

5.4.1 Current Wave Analysis

In order to verify the motor design and try to explain its losses it proved necessary to analyze the current wave shapes of the motor windings. The currents for clockwise rotation both accelerating and decelerating at 1250 rpm and 5 volts command are given in Figures 4-11 & 4-12. These photographs were analyzed by Fourier series and the results are given in Table 4-1.

The useful current into the brushless DC machine is the balanced two phase current that will produce a constant magnitude 10 pole magneto-motive force wave in the air gap of the machine. This is called the positive sequence Since the fundamental currents of (+1) current system. the two phases are not equal, there will be a negative sequence (-1) current system which will not produce any useful torque but will consume power. Similarly, all the harmonics of current will not produce useful torques but will consume power. Table 4-1 shows the magnitudes of the harmonics, the relative magnitude to the positive sequence, and the heating value of these components. For the clockwise accelerating mode at 1250 rpm the useful current is 5.86 amps peak per phase and the total harmonic power into the motor plus leads is 3.47% of the conventional copper losses. For the decelerating mode the useful current is -5.33 amps peak per phase and the harmonic power adds 8.86% to the conventional copper losses.

5.4.2 Power Flow Diagrams

Using the current wave analyses, reaction wheel measurements, and motor measurements a power flow diagram can be constructed to explain the power flow to the motor and reaction wheel. ! •

Figure 5-4 shows the power flow diagrams for 1250 rpm cw accelerating and decelerating at maximum torque. In each case, it can be explained from right to left. For the accelerating case the reaction wheel torque was taken from the plotted curves (Figure 8-2) at full command voltage of 5 volts accelerating in the clockwise direction. The power output is simply the reaction torque times the speed divided by 1352 (or 53.25 x 1250/1325 = 49.23 watts). The friction and windage is given by the rundown test of the AC motor shown in Figure 4-4. The AC motor curve gives the required information because the friction and windage conditions are identical to the High Torque DC Motor case with the additional feature that no magnetic field is present in the motor.

The input to the reaction wheel or output of the idealized brushless DC motor, 50.04 watts, is the reaction wheel output power plus the friction and windage power.

The motor rotor experiences a magnetic drag with rotation due to the varying magnetic flux that it produces in the stator. This is also given in Figure 4-4 and is the friction and windage portion (AC motor curve) subtracted from the DC motor open winding curve.

The copper loss of the stator, 14.08 watts, of the idealized machine is the positive sequence peak current squared times the winding resistance of 0.41 ohms.

The stator core loss was determined by making impedance measurements of the motor. The effective resistance at 104.2 Hertz which corresponds to 1250 rpm was measured and the DC resistance subtracted to give the portion of resistance attributable to core loss. This has a value of 0.24 ohms per phase. The stator core loss then is simply $(5.86 \text{ amps})^2 \times 0.24$ ohms or 8.24 watts.

Summing the motor output power and the three types of motor losses gives the idealized motor input of 72.80 watts.

The wiring external to the motor was measured at 0.20 ohms. This dissipates 6.87 watts at 5.86 amps peak positive sequence current.

The harmonic analysis of the current resulted in 3.47% additional copper losses due to the wave shape distortions and imbalance. This amounts to 0.73 watts additional to the motor and wiring copper losses and is shown as harmonic losses.

The toal accountable power input to the motor and reaction wheel is 80.40 watts leaving 0.60 watt of miscellaneous power or error to account for making the total measured value of 81.0 watts. The decelerating case is calculated in a similar fashion except that the power flow is running from the reaction wheel through the motor and into the supply lines. In reality, the brushless DC machine is acting as a generator.

For this case the current is -5.33 amps peak for the positive sequence and the harmonics account for 8.86% additional copper loss due to wave shape distortions and imbalance.

Assuming the measured value of 23.0 watts of generated electrical power as being accurate, there results an error of 1.96 watts of unexplained additional power generation.

5.4.3 Torque Constant and Power Angle Referring to the power flow diagrams of Figure 5-4 one can derive the apparent torque constant for the motor in the two modes of operation. The torque constant is defined as the air gap torque divided by the positive sequence current. The air gap torque is the output torque of the motor plus the magnetic drag torque. For the generator, the air gap torque is minus the output torque plus the magnetic drag torque. For this case the current is also negative resulting in a positive torque constant.

Figure 5-1 lists the apparent torque constants 9.317 oz-in/amp peak for accelerating and 9.483 oz-in/amp peak for decelerating. The maximum torque constant is

5-8

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR 10.25 oz-in/amp peak as determined from the back EMF constant.

The torque angle is the electrical displacement of the rotor flux wave and the stator flux wave. This is ideally set for 90° but, shifts due to armature reaction affecting the Hall outputs. The angle is calculated as the sine of the ratio of the apparent torque constant to the maximum torque constant and is given in Figure 5-1 as 114.64 and 112.31 electrical degrees.

5.5 ANALYSIS

At this point it would be helpful to study briefly the operation of the brushless DC machine with Hall devices in the air gap.

5.5.1 Brushless DC Motor - No Armature Reaction Figure 5-5 gives a simplified representation of a two pole brushless DC machine. The rotor is represented by a bar magnet and the stator is represented by two Hall elements and their corresponding windings. Hall element A senses the vertical flux that passes through it and Hall element B senses the horizontal flux that passes through it. Winding A produces a flux along its axis which is horizontal and winding B produces a vertical flux.

> This diagram shows the ideal operation of the machine where the Hall devices sense only the rotor flux and produce currents in the windings which in turn produce stator flux in quadrature to rotor flux. At the rotor

position shown Hall A is at a maximum and winding A is drawing maximum current. The B circuit is at zero. As the rotor turns clockwise (upper diagram) the flux vector system follows synchronously so that a uniform torque is developed for all positions. The torque is proportional to the product of rotor flux, ϕ_R , stator flux, ϕ_S , and the sine of the angle between them. The convention for the torque direction is that the rotor flux vector tries to align with the stator flux vector.

The lower diagram shows the motor operation for counter clockwise torque.

5.5.2 Brushless DC Motor - with armature reaction Figure 5-6 represents the more realistic vector diagram for the flux vectors of the brushless DC machine with Hall devices in the air gap. The actual flux that passes through the Hall resolvers is not just the rotor component as assumed in the previous paragraph but the total flux, or, which is the vectorial sum of on and ds in the air gap of the machine. This flux is sensed and a stator field is produced in quadrature to it. This effect is called armature reaction. The torque is proportional to the product of ϕ_R , ϕ_S , and the sine of the angle between them (torque angle) as stated before. Figure 5-1 gives the torque angle that was determined under a set of conditions, 114.64° accelerating and 112.31° decelerating. These can be considered close enough to be the same.

By comparing the clockwise torque (upper) to the counter clockwise torque (lower) vector diagrams of Figure 5-6 one notices that there is the symmetry of torque magnitude and angle with direction of rotation. The conclusion one reaches at this point in the analysis is that the Hall devices are properly located.

5.5.3 Brushless DC Motor - with armature reaction and Hall placement error

Suppose the Hall elements are both displaced relative to the windings by an angle, θ , instead of 90[°] as they should be. Then the machine will appear as shown in Figure 5-7. Now the Hall devices sense the total flux, $\phi_{\rm T}$, and the stator field is located at 180[°]- θ or θ depending on the torque direction. Also, the magnitudes of the stator fields, $\tau_{\rm S}$, are not the same since the magnitudes of $\phi_{\rm T}$ sensed in each direction are not equal.

Note the dissimilar vector diagrams for the two torque directions. The winding currents and the torque for the lower diagram are higher than the corresponding values for the upper diagram.

From the data on the High Torque Motor it appears that this type of misplacement of Hall elements does not exist, but this is not positively proven. For instance, the Hall placement tests of Par. 5.3.2 left some doubt as to the accuracy of placement. Another source of information that may produce some doubt as to the accuracy of the Hall placement are the current waveforms of Figures 4-11 and 4-12. The distortions of the wave shapes plus the fact that the waves were electronically clipped could be hiding the fact that the Hall elements are not ideally located but are being compensated by circuitry.

5.5.4

1 Distortion at Air Gap and Skew

One undisputable source of error for this type of machine is the flux wave distortion that takes place in the air gap of the machine. Since the Hall devices sense the total air gap flux which is not necessarily sinusoidal and these in turn are amplified and fed to the windings, there is a compounding of distortions. If the machine has a large air gap, the distortions will be reduced and the stator flux portion will be minimized.

Another source of flux distortion is caused by the stator skew. The flux in the air gap tends to concentrate axially as well as circumferentially in the areas of rotor to stator attraction. The flux takes the least reluctance paths available by following the skew of the stator.

GENERAL

Number of Phases	2
Number of Poles	10
Outside Diameter	3.990 In.
Inside Diameter	1.627 In.
Overall Length	1.25 In.
Weight	21 Oz.

MOTOR MEASUREMENTS

and the second second

Back emf constant	0.00758 Volts Peak/RPM		
Maximum torque constant	10.25 Oz-in/amp peak		
DC Resistance per phase	0.41 Ohm		
AC component of resistance			
per phase at 104.2 Hz	0.24 Ohms		
Inductance per phase	0.80 Millihenry		

ļ

.

A. .

REACTION WHEEL MEASUREMENTS AT 1250 RPM & MAX. TORQUE

	Accelerating	Decelerating
Apparent torque constant (oz-in/amp peak)	9.317	9,483
Torque angle (degrees electrical)	114.64	112.31
Torque angle (degrees mechanical)	22.92	22.46

FIGURE 5-1

ماند المحمد معمد من المان المانية المانية المانية (المانية (من معمد معالية المانية) (المانية الم

FIGURE 5-2 HALL LOCATION TESTS 1 THROUGH 6

5 - 14

REPRODUCIBILITY OF THE WIGINAL PAGE IS POOR

La ser.

FIGURE 5-3 HALL LOCATION TESTS 7 THROUGH 12

.

ACCELERATING

FIGURE 5-5 BRUSHLESS DC MOTOR - NO ARMATURE REACTION 5-17

FIGURE 5-3 BRUSHLESS DC MOTOR - WITH ARMATURE REACTION 5-18

FIGURE 5.7 BRUSHLESS DC MOTOR - WITH ARMATURE REACTION AND HALL PLACEMENT ERROR 5-19

6.0 DRIVE ELECTRONICS ANALYSIS

To obtain proper motor torque at all speeds, the motor current must follow the Hall voltage, in both amplitude and phase, at all frequencies up to maximum speed. A block diagram of the spin motor drive system is shown in Figure 6-1 where:

- L = Motor inductance + Hall current sensor inductance = 0.82mH
- R = Motor resistance + PWM power stage resistance +
 Hall current sensor resistance = 1.0 ohm
 K_m = Motor torque constant = 10.3 oz-in/amp

 $K_{b} = Motor back emf constant = .00758 volts/rpm$

Note that the Hall output voltage is assumed to be in phase with the motor back emf. Since it is required that the motor current (I_M) follow the Hall voltage (V_b) at all frequencies up to maximum speed, the drive electronics must be designed to minimize the motor current generated by the back emf $(V_{\rm b})$. This problem is the conventional servo problem of minimizing an unwanted disturbance, which means maximizing the values of G_2, G_4 and G_6 at all frequencies of interest. As the values of G_2 , G_4 and G_6 increase, however, the amplifier bandwidth increases. From a stability viewpoint, the maximum allowable bandwidth is set by the PWM power stage, which contributes a sampleddata-type phase lag. The PWM design used in the present system has a 9.6KHz effective sampling frequency. and the electronics are designed to produce a loop crossover frequency of 2500Hz, or about { of the pulsewidth-modulation sampling rate.

SPIN MOTOR DRIVE ELECTRONICS - BLOCK DIAGRAM FIGURE 6-1
As a result, referring to Figure 6-1,

$$G_{1} = 10 \text{ V/V}$$

$$G_{2}(S) = 40 \frac{1 + \frac{S}{2\pi 1625}}{1 + \frac{S}{2\pi 12.7}} \text{ V/V}$$

$$G_{3} = 0.5$$

$$G_{4} = 5.23 \text{ V/V}$$

$$G_{5} = .178$$

$$G_{6} = 26 \text{ V/V (for B^{+} = 28\text{VDC})}$$

$$G_{7} = 10 \text{ V/V}$$

$$G_{8}(S) = \frac{1 \text{ A/V}}{1 + \frac{S}{2\pi 194}}$$

$$G_{9} = .03 \text{ V/A}$$

Using these values, the scaled block diagram of Figure 6-2 may be drawn. The open-loop transfer function, A(S), of the loop (for stability verification only) is

 $A(S) = (G_e + G_f G_b) G_c G_{de} - \frac{ST}{2}$, T = 1/9600 sec

where the transport lag approximates the dynamics of the pulse-width modulator.

Numerically,

$$A(S) = 823 \frac{1 + \frac{S}{2\pi 767}}{(1 + \frac{S}{2\pi 12.7})(1 + \frac{S}{2\pi 194})} e^{-\frac{S}{19,200}}$$

SPIN MOTOR DRIVE ELECTRONICS - SCALING DIAGRAM FIGURE 6-2

.

An asymptotic sketch of A(S) is shown in Figure 6-3. The crossover frequency is 2500 Hz and the phase margin is 30 degrees.

The transfer function relating motor current to Hall voltage and motor back emf is

$$I_{m} = \frac{G_{a}G_{b}G_{c}G_{d}V_{h} - G_{d}V_{p}}{1 + G_{c}G_{d}G_{e} + G_{b}G_{c}G_{d}G_{f}}$$

=
$$\frac{66.0 V_{h} (1 + \frac{S}{2\pi 1625}) - 1.21 \times 10^{-3} V_{b} (1 + \frac{S}{2\pi 12.7})}{(1 + \frac{S}{2\pi 1369}) (1 + \frac{S}{2\pi 1483})}$$

Since the developed motor torque is proportional to the magnitude of the component of I_m in phase with V_h and V_b (i.e. the real part of I_m), this last equation may be used for calculating torque roll off as a function of frequency at 250 Hz (which corresponds to 3000 rpm) the motor back emf equals 22.75 volts. With a Hall voltage of .0736V (corresponding to the maximum torque output of 50 oz/in)

 $R_{e}I_{m} = 4.690$ amps

At zero frequency, with $V_{\rm h}$ = .0736V,

 $R_{e}I_{m} = 4.858$ amps.

Thus, the torque reduction due to frequency effects is 3.4% (-.3 dB) at 250 Hz, and the amplifier frequency response is adequate.

A(S) in dB

6-6

÷

Up to this point it has been assumed that sufficient battery voltage is available to both overcome motor back emf and supply the current required to produce the commanded torque. The required battery voltage is given by the expression:

$$\mathbf{v}_{\mathbf{B}} = \mathbf{v}_{\mathbf{A}} + \mathbf{I}_{\mathbf{R}} + \mathbf{K}_{\mathbf{b}} W$$

where: V_B = required battery voltage V_A = constant voltage drop in drive amplifier = 2V max I = peak value of commanded drive current = 5.13 amp max R = motor resistance + drive amplifier resistance + Hall current sensor resistance = 1.0 ohm K_b = motor back emf coefficient = .00758 volts pk/rpm W = motor speed = 3000 rpm max

Į.

Thus, for the condition of maximum current (i.e. maximum torque) and maximum speed, the required battery voltage = 29.9V. For $V_B = 28V$, the maximum speed at which maximum torque can be achieved is 2750 rpm. For $V_B = 24V$, the maximum speed at which the maximum torque can be achieved is 2230 rpm.

If system requirements dictate that maximum torque be achieveable at 3000 rpm, with the present motor design, a battery voltage of 30 volts must be provided. If this is not practical, the impedance of the motor can be lowered (by a winding change) permitting operation at higher current and lower operation.

7.0 TEST EQUIPMENT

The following equipment was used for testing the High Torque DC Motor and RWA.

Description	Manufacturer	Model No.	Accuracy
Torque Cell	Lebow	2105-100	0.1% Linearity
Torque Indicator	Lebow	7521	0.1%, 0-400 Hz
X-Y Plotter	Hewlett Packard	7046A	0.2%
Wattmeter	Industrial Test Eq.	, 51.25	2%, 0 to 2 KHz
Current Probe	Tektronix	P6042	3%
Oscilloscope	Tektronix	545A	3%
Multimeter	Fluke	8375A	0.02% DC, 0.7% AC
			0.01% Ohms
Preset Counter	Hewlett Packard	5330B	5 PPM
Digital Recorder	Hewlett Packard	5050B	Absolute
Power Supply	Power Designs	36250A	
Speed Control	Bendix		

8.0 TEST DATA

This section contains all of the performance test data taken during subsystem tests of the High Torque DC Motor in the 50 ft-lb-sec Reaction Wheel Assembly.

8.1 PERFORMANCE DATA

The performance data consists almost entirely of X-Y plotter curves with the exception of stable power measurements at constant speeds and digital torque transient data. All the curves consist of either torque vs speed, torque vs time, power vs speed or speed vs time (digital) data. A list of this data is found in Table 8-1 and the data itself follows Table 8-5.

The digital transient torque data consists of single wheel revolution times for every third wheel revolution. The revolution time period was converted to speed by

$$s_i = \frac{60}{P_i}$$
 (RPM)

where $P_i = Time$ period for ith revolution

The data points were converted to a time vs speed curve by the following

 $T_{o} = 0$ $T_{i} = T_{i-1} + 3 P_{i}$ $S_{o} = 60/P_{o}$ $S_{i} = 60/P_{i} - So$

A least squares straight line was fitted to the points

indicated on the computer sheet and the torque computed from this is

TRQ = I K m (oz-in)

where

507

I = 30.24 = Rotor Inertia in (oz-in-sec²) m = slope of least squares line in (RPM/sec) K = $\frac{2\pi}{60}$ (<u>RAD/SEC</u>) <u>RPM</u>

The sign of the torque in the result represents only accelerating or decelerating torque and is not in relation to reaction torque.

8.2 COMPUTER DATA ANALYSIS
A computer was employed for the purpose of determining the High Torque DC Motor characteristics from the data curves. Four of the curves were used in this analysis:
Figure 8-2 Reaction Torque vs Speed
Figure 8-10 Subsystem Power vs Speed
Figure 8-11 Motor Cos Phase Power vs Speed
Figure 8-12 Motor Sin Phase Power vs Speed

Vertical lines were drawn through the curves every 250 RPM and the values of intercepts with each curve coded for computer analysis.

The first data reduction consisted of fitting regression lines to the Reaction Torque vs Torque Command Voltage at each speed and each quadrant of operation (positive and negative torques and positive and negative wheel rotation). The motor torque was computed for each reaction torque with the equation:

> REPRODUCIENTITY OF THE ORIGINAL PAGE IS POUL

$$T_{M} = T_{R} + T_{D}$$

where

 $T_D = Drag Torque = 0.0006S + 0.6$ S = Speed in RPM

The required motor power was computed for each reaction torque from

$$P_{R} = \frac{T_{M}S}{1352} \text{ (watts)}$$

The resultant efficiencies for each point were computed from the following

$$E_{M} = 100 \frac{P_{R}}{(P_{SIN} + P_{COS})} \% = Motor Eff.$$

$$E_{E} = 100 \frac{(P_{SIN} + P_{COS})}{P_{TOTAL}} \% = Elec. Eff.$$

$$E_{H} = 100 \frac{(P_{SIN} + P_{COS})}{(P_{TOTAL} - P_{Q})} \% = H-Bridge Eff.$$

$$E_{S} = 100 \frac{P_{R}}{P_{TOTAL}} \% = Subsystem Eff.$$

where

P_{SIN} = Sin Motor Phase Power P_{COS} = Cos Motor Phase Power P_{TOTAL} = Subsystem Power P_Q = Quiescent Power = 8.5 watts

The efficiency data was then summarized in Tables 8-2 and 8-3. The data computed from the regression lines of Reaction Torque vs Torque Command Voltage at constant speed was summarized in Table 8-4. In addition, a regression line was fitted to the intercepts of these regression lines. Also, an average and standard deviation were taken of the slopes.

The total motor power was summarized in Table 8-5. Regression lines were fitted to the Power vs Speed data points for each Torque Command Voltage and both positive and negative torques. The slopes of the regression lines vs torque command voltage were fitted to a least squares straight line through the origin. The intercepts of the straight lines vs torque command voltage squared were also fitted to a least squares straight line through the origin.

The computer printout containing the original data follows the analog data after Figure 8-42.

PERFORMANCE DATA

TITLE

FIGURE	TITLE
8-1	STABLE POWERS
8-2	REACTION TORQUE VS SPEED
8-3	CW DRAG TORQUE
8-4	CCW DRAG TORQUE
8-5	CW LOW SPEED DRAG TORQUE
8-6	CCW LOW SPEED DRAG TORQU
8-7	ZERO CROSSING TORQUE
8-8	CW AC MOTOR DRAG TORQUE

8-9 CCW AC MOTOR DRAG TORQUE 8-10 SUBSYSTEM POWER VS SPEED 8-11 COS MOTOR POWER VS SPEED 8-12 SIN MOTOR POWER VS SPEED SUBSYSTEM POWER FOR 24 AND 32 VDC BUSS 8-13 8-14 COS MOTOR POWER FOR 24 AND 32 VDC BUSS SIN MOTOR POWER FOR 24 AND 32 VDC BUSS 8-15 8-16 to CW TORQUE TRANSIENTS FOR 0.5, 1.0, 2.5 AND 8-19 5.0 VOLT TORQUE COMMANDS

CCW TORQUE TRANSIENTS FOR 0.5, 1.0, 2.5 AND 8-20 to 8-23 5.0 VOLT TORQUE COMMANDS

8-24 to ZERO SPEED TORQUE TRANSIENTS FOR 0.5, 1.0,

8-27 2.5 AND 5.0 VOLT TORQUE COMMANDS

8-28 to CW DIGITAL TORQUE TRANSIENTS FOR 0.5, 1.0, 8-35 2.5 AND 5.0 VOLT TORQUE COMMANDS

8.36 to CCW DIGITAL TORQUE TRANSIENTS FOR 0.5, 1.0, 2.5 AND 5.0 VOLT TORQUE COMMANDS 8-42

TABLE 8-1

8.5

HIGH TORQUE DC MOTOR EFFICIENCY

	SPEED	0.	250.	500.	750.	1000.	1250.	1500.	1750.	2000.	2250 .	2500.
TC					AUTOR							
					<u>UTON</u>	•		•••••••••				
1		0.00	47.38	56.61	64.61	16.15	82.00	83.25	85.67	35.64	86.72	87.29
3		0.00	37.73	34.43	58.31	65.20	10.19	72.23	75.40	83.51	80.17	82.34
4	······································	0.00	27.28	41.84	51.88	58.58	64.03	67.97	70.71	73.39	75.86	78.13
5		0.00	25.14	39.22	49.15	55.20	61.87	65.95	68.91	71.11	70.65	76.15
	• • • • • • •			E	LECTR	ONICS						
1		22.91	32.14	39.43	45.97	44.31	46.87	50.95	54.46	56.65	57.81	59.69
2		20.75	38.54	48.24	52.27	55.99	58.22	61.81	63.71	64.85	68.20	68.89
3		38.39	48.57	55.07	59.12	60.37	03.39	65.30	60.06	68.90	07.14	70.93
4		44.33	52.20	55.55	58.33	60.52	52.08	63.45	65.34	67.39	68.70	69.99
2			52.45	51.55	20.11	020.03	60.04	02.24	03.04	07044	39.99	6/09/
				+	BRID	GE					Corto di Santo	
1		78.57	81.81	91.56	85.21	72.22	72.58	75.71	78.20	79.06	78.72	79,99
2		50.00	59.67	68.76	70.40	72.40	72.77	75.64	76.45	76.58	79.68	79.54
3		55.12	63.53	69.26	69.50	71.3	72.62	73.67	74.35	76.14	15.83	77.35
44 E		54 6 30	61.55	04.51	65.19	00.05	67.60	68.55	70.11	/1.93	13.02	74.17
- ?		24603	24022	93.30	03:52	01.04	04:91	00.15	0/.31	08.91	13.50	11061
	معادي الم				SUPSYS	TEM						
1		0.00	13.14	22.37	29.75	33.78	38.52	42.45	46.69	48.57	50.18	52.12
2		0.00	15.33	26.26	33.95	40.12	44.14	48.77	51.75	54.22	56.80	58.79
3		0.00	15.39	26.45	33.49	39.69	44.27	47011	50.27	53.19	22.42	57.52
4		0.00	14.24	23.66	30.75	35.45	39.75	43.03	46.20	49.46	52.11	54.67
~~~~~			13019	22.32	28.39	24.1	31.52	41.05	43.55	46.52	40.16	21. (6
										•		
							tranic i en					
					TABL	E 8-2						
		•••••••							राज छ	RODUCT	DIT UTT	
			<b>.</b> . <b></b>			8-6			ORH	MNAL 1	AGE IS	POOR

HIGH TOPOUE DC MOTOR REFICILICY

-11

Ì

	-		SPEED	<u>ن</u> .	25i).	500.	75().	1000.	1250.	1500.	1750.	2000.	2250.	2500.
	۲C					۰. ۸	ATOR							
•				•••	·		<b>U</b> T OK					·	· · · · · · · · · · · · · · · · · · ·	···
•	. 1	- 50	ACC	_0•00	38.42	52.34	61.J2	73.96	77.74	86.22	82.40	83.37	83.67	84.39
	3 3		. ACC .	- 3•30 3•30	39.34	52.97	63.46	70.71	74-54	77.26	80.74	81.99	52.14	94.40
		- 22	ACC	10000 10000	27.50	4/091	<u>25079</u>	59.75	64.03	12.30	$\frac{75 + 34}{70 - 61}$	73.44	26-67	81.52
	- 5	c	ACC	ປະວິບ	25.24	39.34	49.23	58.05	61.37	66.17	03.79	71.03	67.69	76.21
	. •_	•		•										
	<b>.</b> .	<u> </u>	ACC	3 <b>.</b>	43.35	63.87	68.19	78.40	86.42	86.29	88:93	87.91	89.17	90.20
•	2	C 11	ACC ACC	0.00	40+19	56+UU 40-14	66.40	72.58	77.04	30+43	81.71	85.15	24+41	86.29
• • • • • •	4		ACC	0.00	27.06	41.91	52.05	58.41	64.03	67.57	70.81	73.34	75-04	77-10
	5	Ċ%	ACC	0.00	25.04	39.10	49.06	52.35	62.37	65.72	69.05	71.18	73.61	76.09
• • •				****										
	- • • •					<u>۽</u>	LECTR	DNICS						
	1	cc	ACC	20.33	32.14	38.23	44.73	43.18	45.80	5 <b>0.</b> 00	53.57	55.00	56.25	59.09
	2	C(	ACC	27.50	37.50	48.71	51.51	55.40	57.14	60.86	63.00	63.63	07.24	68.54
. <b></b> .	3	<u></u> C(	ACC	37.50	47.14	53.48	57:00	59.54	62.50	64.78	65.66	07.05	68.47	69.89
	4			44041	50.90	56.06	58.44	60.22	62-24	63.30	65.54	67.18	67.88	69.09
		· · · · · · · ·		42051	72011	20.02	284/4	60.00	61+29	62.40	64.09	65.43	12.96	58.23
	1	¢.	. ACC	25 a û J	32.14	40.62	47.22	45.45	47.91	51.92	55.35	58.33	59.37	60.29
******	2	ς,	ACC	30.00	30.58	48.27	53.03	56.57	59.30	62.75	64.42	66.07	69.16	69.23
	3	<u> </u>	ACC	39.28	50.00	56.66	59.25	62.09	64.25	65.82	66+66	73.74	69-50	71.96
	્ <del>ધ</del> ં દ	C.	ACC	44.31	53.50	57.04	55.23	60.82	61.92	63+63	65.15	67.60	69.53	70.88
•. •		1999 (* 19 19 - 19 - 19 - 19 - 19 - 19 - 19 - 1		4/630	26012	2/425	20+04	04+10	50+00	62.08	93.10	55.42	0/02	67.70
				•			( BRID	GE.						
	ו	c	hee	71.42	81.91	76.47	86.95	70-27	20.06	74 - 29	76.82	74 74	74 . 6 0	70 60
<b>-</b> , ·	·· į	55		47.82	59.06	59-23	69.33	71.92	71.64	14.66	75.90	75.26	18+39	19+39
	7	C	ACC	53.84	62.26	66.66	68.67	79.10	72.07	73.60	14.32	14.50	75.44	76.03
• /	- 4	С?	33A	54.75	60.71	54034	65+69	66+55	68.15	68.65	70.53	71.96	12.37	73.43
	ې 	<u></u>	<u> </u>	53.60	59.59	53.09	53.84	65.02	65.80	66.53	67.97	69.05	76.15	71.59
	1	<b>c</b> :	ALC	55.71	81.91	86.66	89.47	14	74.19	77.14	79-41	NT_ 30		0.0 20
-	- 3	C	TACC"	-52-17	61.29	69.29	71.42	72.09	73 91	76.62	77.01	77.99	20.52	79.64
	3	C :	. A <b>C</b> C	56+41	64.71	69+85	70.32	71.96	72+17	73.75	73.88	77.77	76+21	73.17
	Z	्र	TACC	54.72	62.35	54.80	64.70	06.56	57.16	63.44	69.63	71.91	73.68	74.91
	<del>ا</del> م احمد مع	<u> </u>	: ACC	55=67	59+68	63.52	(3.21	59.05	4.03	65.93	ပ်ပံစပ်င်	58.76	10.25	70.84
						9	SURSYS	теи						
•	. 1	~	. Acc	.1	12.34	30 11	27 30	91 A.A						
			ACC'	00000 55.57	14.75	25.40	4/•27 132.69	- 22年72 112日1日	22.55	40011 77787	44.14	45.45 TKOT 17	47.36	49.667
•	1	c	400	0.00	15.66	25+62	33.22	39.05	43.69	46.87	50.00	52.73	- 20+29 - 50+08	2/1852 56.48
			ACC	0.00	14.00	23.42	30.22	35.34	39.85	43.15	46.24	49.34	52.05	54.70
	9	्ट	ACC	<b>3</b> *00	13.17	22.27	28.68	34.33	37.61	41.3.	44.08	46.47	49.39	51.99
	۱	r.	ACC	1	13.43	24.7%	32-20	16	41-41	16.00	1.4. 22	61.70	6.9.9/	51. 0h
	2	с.	Acr.	0.00	15.91	27.03	35.21	41.06	45.69	50161	57.64	11479 1161981	Desce NR_RC	59.76
	3	C)	ACC	JUUU	16+11	27.28	34.56	40-32	4-064	47.45	50.51	53.66	55.77	58.06
		٣.	ACC	0.00	14048	23.00	30-31	35.53	37.65	43.00	46.13	49.53	52+18	54.65
	. 5	C C	ACC	0.00	13.20	22.44	29.50	93.59	3/042	(40)。月尚 (1	43.63	46.57	49-34	51.52

TABLE 8-3

		8-8		на на Стория Спорти и Прила и Прила Прила и Прила и Прила и Прила и	• • • • • • • • • • • • • • • • • • •
:, -••.		TABLE 8	3-4	REPRODUC ORIGINAL	BILITY OF THE PAGE IS POOR
- 			<u></u>		
		алан ал так	i ana ang ing ing ing ing ing ing ing ing ing i		
	* . •••••	······································		<u></u>	
·					
					······
)94K	0.983		CORR	-0.935	
LOPE	0.001008	SD 0.334	SLOPE .	0.000884	50 0.202
TERCEPT	0.70	AVG =11+212	INTERCEPT	-0.74	AVG -10-945
5ານສ	2:95	-11.27	250ü•	-2.96	~10.59
253.	3.13	-11.55	2250.	-2.88	<u>-1</u> 0.69
000.	2881	=11.57		-2.22	
24Je 750≖	2025	━↓↓₀4↓ ━1↓₋∠⊆	15000	-1.82	-11.07
250.	1.87	-11.33	1250.	-1.85	-11,07
000.	1.87	<u>₩11.33</u>	1000.	-2.04	
750.	1.71	-11.25	750.	-1254 -1268	-11021 -11_10
670. 500.	<u>0486</u> 1-05		250.	-1:09	-11.04
00 · · · · · · · · · · · · · · · · · ·	U⊕65 0,94	-10.45	0. 	-0.21	-10.68
	·····	····		SIA3	30F 0
p=E0	5145	5.F-	SPEED	INTAC	c e
	CA ACC	·	· · · · · · · · · · · · · · · · · · ·	CC DEC	······
	· · · · · · · · · · · · · · · · · · ·				
(22)	-0.970		CORR	0.944	G() U€299
LOPE	-0.000963	SD 0=233		0.001090	AVG 10+187
STERCEPT	=1.40	AVG 10.400	TO THREED	0 - 1 -	
5000	-3.R6	10.72	2500.	2.97	9.73
250	-3.70	10.76	2250.	2.73	9.80
1000e.	-3.23	1005	1/200 2660.0	∠oU5 2∡27	10.01
750-	<u>#2e85</u>	10.60	1500.	0.95	10.36
2500	-2.63	10.53	1250.	1•34	10.33
000.	-2071	10.71	1000.	1.22	10.39
750.	-2.11	<u>10+41</u> 10-41	<u> </u>	0.98	10.45
250.		10-21	250.	0+48	10.39
C •	=1.19	9895	Ú•	-0.17	10.13
9759 	DIAS	SeF#	SPEEU	BIAS	<u> </u>
		······································	······	CW DEC	
	CC ACC		· .	CH DEC	
	•	HIGH TORQUE D	<u>C MOTUK</u>		
					•

i

•

				(3)	ו האט	CC A	cc		_		
505		367	E	71	• • • • • • •	•					
TC	icu Ve	2004	• 000	750.	1000.	1250.	1500.	1750.	23-00	2250.	2500.
1	2.5	4.5	6.5	8.5	9.5	1 [ ]	13.0	15-0	16.5	1.0.1	to r
2	2.5	1.0		-4.7		-8.5	-10.5	-11.5	TO 0	- 10+U 	1700
3	3 <b>e</b> 0	4.5	6.5	8.5	10.0	11.5	13.5	15.5	17.5	19-0	20.5
4	3.0	1.0	-2.0	**4 . 0	-6+0	-9.Ú	-11.0	-12.)	-13.5	-15-5	-17.5
<b>ر</b>	5.5	9.0	13.5	17.0	20.5	24.0	28.0	31.5	35.0	39+0	42.5
				ល	JAP 2	CH DE	EC				
Sag	ED 0.	- 250.	500.	750.	1000.	1250.	1805	1760	2000		······································
<u>те : :</u>	114 48 1						1,5000	11900	2000.8	22004	22000
1	5.5	9+0	13.5	17±0	20+5	24•J	28+0	31.5	35.0	39.0	42.5
2	5.5	1.0	<b>₩2</b> ∎Č	-5.5	-10-5	-14.5	-18.0	-21.5	-25.0	-29.5	-33.0
3 1 2 2	5.0	9.5	14•0	17•5	21.5	25.5	29=5	33.5	37•0	41.5	45.0
4	0.eU 1	14.0	=1.5	-7.0	-11-5	-15.J	-18-5	-22.0	-26.0	-30.J	-24eU
	100.	1005	23.0	28•5	34•0	40.0	46.0	52.0	57.0	63.0	68.5
•	·			01	JAN 3	<u>C∀ A</u>	<u>.</u>				
SPE	ED C.	250.	500.	750.	1000.	1250.	15000	175, -	2.100.	2260	26.10
TC ''	• • • • • • •	· · · ···							20001	27.7.00	20000
1	10.5	16.5	23.0	28.5	34.0	40.0	46.0	52.0	57.0	63.0	68.5
2	10.5	5+0	-1+5	-7.5	~13.0	-19.0	-24.5	~30.0	-36.5	-41.5	-47.0
	Jall	18.5	25.5	32.0	34.5	4500	52.)	58.0	66.5	70.5	77.0
ц Б	1140	0 e ()	- ₩1+0 - 27 - 0	-7.0	-13∎0	-2J.U	-26.5	-32.0	-38+0	-43.5	-49.5
,	-	2000		49.013 7 7	5 5 • C	61.0	0.40	78.)	<u>56.</u> 0	ن. 93	<u>- 79+5</u>
	·····		•••••	()) 	JAN 4	CC DE	EC				
SPE	ED 0.	250.	500.	750.	1006.	1250.	1500.	1750.	2000.	2250	25
TC -	-		•	••••••••							23000
1	20.0	28.0	37.0	45.0	53.0	61.9	69 <b>.</b> J	78.∎€	86.0	93.0	99.5
2	20.00	11.5	2+5	-6.0	-14.5	-22.0	-49+5	-37 .C	-45.1	-53.0	-00.0
<u></u>	10.5	- <u>50</u> +5	40.5	49.5	59.0	67.5	77.0	96.0	96+0	105.0	112.0
5	26.0	36+0	410		=11+D 66-0	-22+5 74 n			-48-11		-64.0
	8 - 10 - 17 - 10 	······································		70.00	904J	( <b>n</b> • U	02.5	45.5	106.0	175.5	123.5
	• • • • • • • • • • • • • • • • • • • •	ן) ממופר ייי	UAN 14	+2	»	QUAD	3+4	- <u> </u>			
			<b>.</b> .	01A5	51	JOPIE	814	5	-		
1	<del></del>	7.4	9	1.19		•77	2.0	2			
	• • • • • • • • • • • • • • • • • • •	1291	<del>7</del>	5006	15	2089	5.5	6			
- 4		32.6	ei M	10.04	25	206/ 77	12.7	2			
5		39.5	1	27.22		• 46	2241	6	·	······································	
<b></b>			<u></u>		, - <u></u>					,	
TORU	UE CONS	TANT		7.92	·		8.4	BHATTS	VOLT/	KRPM	
a grideinadiradir				10.71			11.4	7 02#1	NZVOLT		
1 52	UARED R	CONST	ANT	1.14			1 5	6		0	

TABLE 8-5 8-9

## HIGH TORQUE DC MOTOR STEADY STATE POWER

SUPPLY BUSS	24V	28V	32V	SPEED (RPM)
SYSTEM POWER	6.0	8.5	10.8	0
MOTOR OPEN	5.8	7.4	9.4	0
MOTOR POWER	0.3	0.6	0.9	0
SIN	0.1	0.2	0.3	0
COS	0.2	0.4	0.6	0
SYSTEM POWER	11.6	13.7	15.4	3000 CW
NOTOR POWER	6.5	6.5	6.8	Tİ
SIN	3.1	3.1	3.2	**
COS	3.4	3.4	3.6	**
SYSTEM POWER	11.4	13.2	15.1	3000 CCW
NOTOR POWER	5.3	5.4	5.5	11
SIN	2.4	2 " 4	2.4	F7
COS	2.9	3.0	3.1	**

POWER IN WATTS

FIGURE 8-1

REPRODUCIONALI CON LILE ORIGINALI PAGE IS ROOR





REPRODUCIBILITY OF THE ORIGINAL PAGE IS FOOR







/0/0 . 1



47 0/07

1	· )	1.1.1	1 1	12.00
---	-----	-------	-----	-------

										5				-	5		CP of Decis			0			5. 1				-											
•••														24		3				Ð																		
																	-			ř					2					-								
																				Ð																		
			-															 		3																		
4																-				- 5																		
A	-										÷															Ţ												
3	11	1														1			-	D.				+											•••••			
12.02			9				 ;									1				13				 		   .		+										
220		1	1					0							 		-	1 [		0	••••			-						-								
L. H.	-	P.	2	G				LI-11	1								1	ļ		6		 		+				-										
N. A. K.	.,	-	-	1		1.12		1111			-				+					EN N	- · · ·	 			-												÷,	
City a			424	14	-	20%	1		-					 			 					•		10		4 - [:		1.			-		-					
5			3	-1		R		- uer			-		+-	<b>†</b>		-		4		1		·†···		14	1-	+		4-++ 1		•	+	+	+					
1		1	-	Ø		5			>		+			+	I							41 		4	3	411. 1				+		1					-	
		+	E	4		. 10		9	NA N				-	+	1		1	1 		162.	1			V	2					+•				1		-		
1			10	1	-	1		f	1		-				1				-							-				-				1		 		
4	-		erd v	1	1	100		Q	Ě		+-	+-	+		ł			-	+	101					1.	+.		÷.	-			+	-	2				
1	1		34					4		-					-	•	-	*		 1.			-		-	-					-					-	+	
4 4 1	1				-				-				-							E.	2		-		+				-		-	4	-	4				
2	I						-		+											-			-						-			2		29.9				
	-					-	-			-	+		-	4				.i						-	+-	-			-		-	3		+	1		-	
					-	+		-			+		-	1													-					ſ	1	4				
					-	-	-		-	-		· .		1	-				+							-		+				t	J	6	1	-		
-	-						-		-		_			-		-									-		-				1		+	3				
	-	-+												1				•						-+- +						1	5		20		1	-	+	
-						-	-											+ -			-	-								+	2	5	2		1 1 1 1		+	
	-															-			+		ad a									÷	1		Are		NC.			1. 1.
1	1	•											-			+			1		1 		-													-		
	-+		1				100				1		1			1					- 1				1			1	-	1	1	1	1.		1		1	





EZEL ZV PARTITION AN 1953



t.

In

1



.

.






















line and some





10/0 /1 - Star 1.411 BOH







10/0 .t

	HIGH TURQUE DC MOTOR Ch. DECEL T/C=+5V	
		10.
-10.		I I I I I
1 232-6. 2555.51		
\$ 232.5. 2585.51		
3 23205. 2585.64	*	
4 23206. 2535.53		
5 23239. 2585.20		
7 23210 2565-09	/• :	
P 23215. 25:4.53		
9 23215. 25:4.53	1.	
19 23216. 25:4.47	······································	
11 23217. 25:4.31	/* •	
17 73220+ 25:3+97		
13 /3220+ 25:3+97		
15 23226. 25:3.31		
15 23228. 2503.JP	/ .	
17 73229. 25:2.97	1 .	
1* 23229. 2552.97	· ·	
19 23231. 2582.75		
21 23236 2543-31		
22 23237. 25626		
23 23239 2531.57		
24 23239. 25:1.:56	/• •	
25 23243. 25:1.42	· · · · · · · · · · · · · · · · · · ·	
26 23244. 25-1.31		
27 23244. 25:1.31	for	
20 23240- 26s1-76		
31 23252. 25:2.64		
31 23254. 2540.20	*/	
32 23252 + 2583 + 42	•	
33 23255. 25-3.09	- · · · / · · · · · · · · · · · · · · ·	
14 23256 · 2579 · 97		
15 23259+ 2579+64	·	
37 23261. 2579.47		
38 23263. 2579.20	•	
34 23267. 2579.75	. 1	
47 73267. 2575.75	1	
41 23269 2578 53	J	
42 23271 257 31		
44 23273, 2578, O		
45 23277. 2577.65		
46 23779. 2577.43 */		
47 23279. 2577.43		
48 23250. 2577.31 A		
	TOUCHE PEASE WHILE IFY'L & To an I	
	1144110011 AF-11 11 1 - 10 TO 1	

អ]ប់រា	TURQUE DC VOTOR CW ACCEL T/C=+\$V
-10.	19:
1 73196. 2546-97	sterreleresTevesTevesTevesTevesTevesTevesTevesT
2 731940 25:6427	
3 23154. 2566.87	
• /:tv: 5 23193. 2506.9#	
6 73171. 2567.21	a (*
7 731>7, 2557.09	
9 23191- 2567-21	
19 25139. 2587.49	
11 23169. 2537.43	
17 231-4 2557.43	
14 231=7. 2567.65	
15 23107. 2507.65	
17 23186. 2587.76	
12 23105. 2557.87	•
14 73195+ 7567+76	
21 T3183e 2566e10	
22 231:4. 7597.59	
73 23152+ 2935+21 24 23152+ 2935+21	
25 231=2+ 2568+21	
26 23121. 2598.32	P
27 23190 2528-49	
29 23179. 2558.54	
39 23150, 2528,43	• • • • • • • • • • • • • • • • • • •
32 23179. 2548.66	
33 23177. 2586.77	
34 23177• 25b3•77 35 23174- 2549-14	
36 23176. 2528.24	
37 23174. 2549.10	
38 231/5+ 2598+99 39 23173+ 2589+22	
47 25174. 2589.10	, , , , , , , , , , , , , , , , , , ,
41 23172. 2539.33	
42 231736 2009622 43 231716 2549644	
44 25172. 2589.31	
45 23171. 2569.44	
47 23169. 2509.66	
	······································
10KG96=	2016 62-1 (1985% 5-16 07 )
······································	
	· 
	•

ing B

à

ĥi

	HIGH TORQUE DC MOTOR	CA DECEL T/C=1V
-10.	······	1R.
9ERIJU SPEED Issaalsees 1 23138s 2593a13	***********************************	****!**********************************
2 23138. 2593.13		
3 23138. 2593.12	<b></b>	
5 23143. 2592.57		
6 23149. 2591.90		
<u>7 23157. 7591.56</u> 8 23152. 2591.56	·	
9 73159. 2590.74	·/	
19 2316C= 2590=67 11 23140= 2590=67	· · · · · · · · · · · · · · · · · · ·	
17 23163+ 2590+33		
13 23167 2549+87		
15 23171. 2589.44		·
16 23174, 2539-10		
16 23179- 2585-54	¥	
19 23140. 25+8.43	/4	
24 23106# 2527#76 21 23189# 2527#43		
22 23148. 2557.54	· · ·	
24 23192+ 2587+09 24 23197+ 2556+54	*/	
g 25 23198. 25±6.42	<u>*/</u>	
25 73772+ 2585+99 27 23204+ 2595+76	./ :	
a 29 73204. 25-5.76		
<u>0 29 23206+ 2585+53</u>	/**	······································
. 31 73212. 2584.86	*	
32 23219. 2584.09 *	•	
34 73222+ 2583+75		
<u>35 23226. 2583.51 */</u>	e	
37 23231. 2562.75	•	
39 232346 25%2.42#	•	
40 23238+ 2541+97*	. وي المحمد من محمد المحمد br>المحمد المحمد	· · · · · · · · · · · · · · · · · · ·
41 23239 2501 66*		
47 23247. 25×1+53* 43 23244. 2531+31*	•	
44 2324H. 2523.86#		
45 23757. 2590.47*	• • • • • • • • • • • • • • • • • • •	
	TOPOUE= -13-37 07-1'. (FR: 4 TU 45	1
i i i i i i i i i i i i i i i i i i i		
in the second		
	·	
· · · · · · · · · · · · · · · · · · ·		
••••		
• •		
		a second a s

____;

_ .

		HIGH TUPQUE DC MOTOR CW ACCEL TZCHIV
	-10.	10.
	PERIOD SPEED I	. !
C	23144, 2591,94	
	3 23150. 2591.79	*
<b>(</b>	4 23139+ 2593+02 5 23147+ 2592+12	
	h 73146. 2572.24	
<	7 73145. 2592.35	
	9 23141+ 2592+83	
( ·	11 23139. 2593.02	· · · · · · · · · · · · · · · ·
	12 23137. 2593.24	
(	13 73136. 2553.36	*
	15 23131 2593.92	
1	16 231300 2594-03 17 23128- 2594-25	
<u> </u>	14 23125 2594.59	•
(	19 25126+ 2594+44	
	71 23122+ 2594+93	
(	22 23119. 2595.26	· /
	24 23119+ 2595+26	
C	25 23116. 2595.60	<u>}</u>
	C 25145+ 2595+71 C 27 23113+ 2595+94	· · · · · · · · · · · · · · · · · · ·
(	25 23110. 2595.27	
	24 23134 2396+34 30 23107= 2596+61	·····
۲	31 23105- 2596-84	
	39 23102. 2547.17	
ζ	34 23131. 2597.29	· · · · · · · · · · · · · · · · · · ·
	35 23100+ 2597+49	*
(	37 23096+ 2597+85	
	34 23094+ 2598+07	
( ⁻	4 23093. 2598.1P	
. ——	41 23090+ 2598+52	
C	43 73057a 2598.66	
	45 23364+ 2599+29	
C	44 23080. 2599.65	•
	44 23052+ 2599+47	
<b>C</b> .	· · · · · · · · ·	TOB2017# 18-10 07#10 (FPC) 5 70 44 1
C		
C		
C		
		n an
	· · · ·	
	· · · · ·	

	HIGH TOROUF DC MOTOR	<u>Cir INFCEL T/Co2+5V</u>
-25+		25.
PERICO SPEED Interland		leensingesinensingenleensignesigeesigeesi
1 23115. 2595.71		
2 23115+ 2595+71	I	· · · · · · · · · · · · · · · · · · ·
4 23120+ 2595+15		
5 23123+ 2594+91	<i>k</i> .	4
4 23130. 2594.03	/·	
7 23136+ 2593+36		
* 231494 2392439 # 23141, 2592,39	7	
17 25152. 2591.55		
11 23161. 2590.55	·	
17 23163. 2590.33		
13 23105+ 2373+11		
15 231:34 2548+14		
16 231c5. 2587.84	· · ·	
17 23173. 2536.98	/*·	
14 73200+ 2556+20		
27 23207. 2565.42		
21 23221. 2583.86	•/	
22 23224. 2563.53	· · ·	
23 23223. 2593.64		
24 23239+ 2354+31 25 23239+ 2551+26		
24 73242 2511 53	/	
77 73247. 2533.97		
29 23260+ 2579+53		
29 73202 2579.00	-/	
31 73273. 2578.09	h	
37 73207. 2577.09	· · ·	
37 232c3. 2576.9P	•	
74 23289• 2576•32	•	
35 213.3. 2574.77	······································	
37 23306+ 2574+44		
39 23315. 2573.45	•	
39 23321 2572 7A	*	
41 23335. 2571.24	•	
47 23343. 2570.36*/		
43 73344. 7570.25*		
44 23350. 2509.590	•	
47 733750 2007000F	<b>.....</b>	
47 23366+ 2567+839		
4- 23571+ 2567+2**	· · · · · · · · · · · · · · · · · · ·	
	TODAUGA	1.
	TOURDER ARABEN FRAT FLUCT H IN HE	e
	· · · · · · · · · · · · · · · · ·	

.

	HIGH TURUUE OC MOTOR	CA ACCEL T/C=2.5V	
=25.	•		25.
PERICO SPEED Lassalassias			11
1 73108. 2596.50		<u>}</u>	····
2 23107. 2596.61			
3 23108+ 2596+50			<del></del>
4 23195# 2596#04 5 23099# 2597#53		· · · · · · · · · · · · · · · · · · ·	
5 23097. 2597.73		• *\	
7 23049. 2598.64		·	
3 23022. 2599.42		• X	
7 23000e 2007e00	· · · · · · · · · · · · · · · · · · ·	·····	
11 23067. 2601.11		<u> </u>	
12 23:61. 2601.70		• •	
13 73:61. 2601.79		<u> </u>	· · · · · · · · · · · · · · · · · · ·
14 23054. 2602.58 15 23047. 2603.37		: ``	
16 23044. 2603.71		•	
17 23337. 2604.50	·	· · · · · · · · · · · · · · · · · · ·	<u></u>
17 23037 2605 07	•	• *	
14 2002/+ 2005+03		- <u></u>	
21 23015+ 2666+99		•	
77 73010. 2607.56		• *	
23 2300A. 2607.7R		······································	<u> </u>
24 2JUZe 2DUBe45 7月 25 2200ム。2600-37		: \.	
			<u></u>
27 22937. 2610.05		<u>·                                     </u>	
24 22979 2611-07		• *	
w <u>29 22974+ 2011+64</u> ta 30 22972+ 2611+87		· · · · · · · · · · · · · · · · · · ·	
31 22965. 2612.67		<u> </u>	
32 22961. 2613.12		•	······································
33 22955. 2613.80 27 23953 2414 16		<u> </u>	
35 22943a 2615a17		· · · · · · · · · · · · · · · · · · ·	
36 22939. 2615.63		• • •	
37 22937. 2615.86		·	
39 22928+ 2016+89 30 22921- 2617-60	•	: X.	
47 22920+ 2617+80			· <u>·</u> ······
41 22914. 2618.4R		· · · · · · · · · · · · · · · · · · ·	<u>د</u>
42 22908 2619 17		•	Ľ –
63 22937. 2619.28 66 22907. 2620-08			<u> </u>
45 22891. 2621.11		• •	*
44 22890. 2621.23		•	1
47 22884. 2621.91		••••••••••••••••••••••••••••••••••••••	¥
+- 360/94 206/40V		• , ·	-
	THEODER SEAVE CONTRINCT A TO	43 1	
ana ay ah a sa ang ang ang ang ang ang ang ang ang an		·	······································
		······································	
<u> </u>	·	·	
	······································	· · · · · · · · · · · · · · · · · · ·	
•			
	• •	• • • •	

•

.....

REPRODUCIELLITY OF THE

.

4

nin (jedi), neme se her far se ener rechter i se soe far

	HIGH TURUUE DC MOTOR	C. DECEL T/C=5Y
-50.		50.
PERIOD SPEED Isseelesse 1 23063, 2599-31	<u> </u>	
2 730+1. 2599.54		
\$ 73082. 2599.47	and the second	· · · · · · · · · · · · · · · · · · ·
6 23083. 2599.11 6 23083.		
5 23096. 2597.25	/·	
7 23104, 2895,95	· · · · · · · · · · · · · · · · · · ·	
4 29174. 2594.77		
10 23136. 2593.24		
12 23195. 2591.23	//////	
12 23139+ 2539+66		
14 73168. 2529.77 16 73192, 7549.71		
14 23199. 2586.31		
17 23211. 2584.44	/	
19 23213, 2544,75	f i	· · · · ·
20 23243. 2541.42		
21 33247. 2523.97	/*	· · · · · · · · · · · · · · · · · · ·
27 232574 2579+84		
24 23213. 2576.99	· · · ·	
<u>     75 23291, 2576,19</u> 74 243     75 2575,10	<u>/*</u>	
⁶⁶ 27 23311 2573 40	/*	
CH 24 23321. 2572.74	· · ·	
00 29 25334. 2571.35		
31 23357. 2569.82	<u> </u>	
32 23365. 2567.94		
34 23392. 2564.97		
35 23395. 2564.65		<u> </u>
35 23417+ 2302+14 37 23626- 2561+25		
3P 23431. 2566.71	1 .	
39 23441+ 2559+61	<u></u>	
41 23466. 2556.89		·
42 23474. 2556.01	•	
43 734#7: 7554+67 7 44 735-24 7552+86 4	•	
45 23567. 2552.47		
45 23519. 2551.12	-	· · ·
4 23542. 2548.63*		
		······································
	- JANUGA -JEANA JE-11 BEANA D IN 48 1	
· ·	·	
	· · · · · · · · · · · · · · · · · · ·	
•		
and the second		[10] A. M. Martin, M. M. Martin, M. M. Martin, Phys. Rev. Lett. 61, 1000 (1996).

	HIGH T	ORQUE DC MOTOR CA	ACCEL T/C=5Y	<del>,,</del>
	=50.	1		50.
	PERIOE SPEED International Action of the second sec	!		leeest
·	23094 2595 07			
	3 23097- 2598-30		• •	
<b>(</b>	4 23094- 2598-07	1.	•	
	6 23064• 2599•20			
C	7 23075. 2640.21	· · · · · · · · · · · · · · · · · · ·		
	9 23050 2601090			
(	17 23043. 26.3.92	• 1		
	11 23038+ 2634+39 12 23023+ 2606+08	*		
C ·	13 73307. 2607.93		<u>k</u>	
	14 73002e 2608e46 15 22098e 2608e92	:	*	
<b>c</b> .	16 22976. 2611.42	· · · · · · · · · · · · · · · · · · ·	<u> </u>	
	<u>17 22970, 2612,10</u> 18 22965, 2612,67		<u></u>	
<b>C</b> .	19 22950. 2614.37		<u> </u>	
-	27 72933- 2616-51		Υ,	
( — ···	22 22920 2617.80	· ····································	<u>X</u>	
	23 22905. 2619.51			<u></u>
( ¹	AN 24 22893. 2620.88	•	<b>X</b>	
	26 22274. 2622.60			
· · · · · *	27 22653+ 2624+32 28 22859+ 2624+32			
·	29 22848. 2626.05		<u>A</u>	·
6	30 22H31+ 2628+00 31 22822+ 2629+04		$\mathbf{x}_{\mathbf{x}}$ $\mathbf{x}_{\mathbf{x}}$	
<b>`</b>	32 22819, 2629.34		*	
<i>(</i>	33 22503• 2631•23	······	\	<del>_</del>
`	25 22786. 2633.19		<u> </u>	
1	36 22779 2634 30	•	*\	
و سيدور کې	34 22751. 2637.24			
, <u> </u>	39 72745. 2637.94		<u> </u>	
<b>U</b> .	41 22719, 2640.96	•	<u>k</u>	<u> </u>
,			· · · · · · · · · · · · · · · · · · ·	<b>.</b> .
V	42 72590. 2644.33			X.
, <u>.</u>	45 22682+ 2645+26			<u> </u>
C	47 22657. 2648.1R	•		<u> </u>
· .	4* 22548 2649 24	• •		- <b>X</b>
C		46,0Z-11 (FR03 5 TO 45 )		
(				
-		•	•	
(	······			
(	· ·			
		· · · · · · · · · · · · · · · · · · ·		
		•		
			• •	

	· · · · · · · · · · · · · · · · · · ·	HIGH TORQUE DC NOTOR CCW DECEL T/CHASY	
		10.	<u></u>
	PERIOD 5ºEE0		
• •••••••••••••••	2 23190. 2547.32		
	3 23192. 2537-09	*	
	4 23186. 2587.76		
······	6 23193 · 2566 · 99		
	7 23187. 2587.65		
· · ·	# 23186. 2587.76 0 73180 2587.73		
· · ·	10 23191 2567 21		· ·
	11 23187 2587 65		
· · · · · · · · · · · · · · · · · · ·	12 23146, 2587.74		
	14 23200 2586.20	* / •	
	15 23197. 2546.54	<u>t .</u>	
	14 73200. 25-5.21	*/ _ •	
	17 23195. 2556.76		
	19 73205. 2505.64	*/	
· • · ·	20 23204+ 2585+74	•	
	21 23207 2545 42		
	23 23205. 2545.64		
	24 23212. 2584.85	*/ •	
10	25 23214. 2504.64		
¢۳ S	74 73215+ 2554+54		
5 H .	28 23217. 2584.31	· · · · · · · · · · · · · · · · · · ·	
	29 23220. 2563.57	·	
: 3	31 23220+ 2553+97		
· ·	32 73222 2593 75	* •	
	33 23225 2553.47	<u>F</u>	······································
· .	34 23226. 25d3.31		
	36 23231 2582 75		
	37 23231. 2582.75	/*	
	34 23233. 2542.53	/*	
<u></u>	37 23235+ 2382+33 40 23235+ 2582+31	/*	· · · · · · · · · · · · · · · · · · ·
	41 23234. 2501.97	· · · ·	, <u> </u>
	47 73239. 2561.66		
	43 73747 2001+33	/*	
	45 23246 2581		
	46 73247. 2540.97	· ·	
	47 23246. 2581.0P		·····
	THE EVENE EVENELS		
·		TORGUE= -c.06 02-1: (FAC: 13 To 4:)	
	······································		
	• • •	المراجع العام العام العام العام العام العام المراجع المراجع المراجع العام العام العام العام العام العام العام ا المراجع	• • •
	11 A.		

T I

a da ana ang kana ang

• •

-

1. .  ${\cal K}^{*}$ 

	•	HIGH TORQUE DC MOTOR	CCH ACCEL T/CHISY	
	······································			÷ 1n.
	PERIOD SPEED Innelines		!	sig-aslagesi
٢	1 23154. 2591.34			
	2 23154+ 2591+34 3 23154+ 2591+34			
C	4 23153. 2591.45 E 23163. 2561.45			•
·	6 23151. 2551.6A			
(	7 23151. 2591.6P 9 23154. 2591.34			
-	4 23151. 2591.64			
C	10 23149+ 2591+90 11 23150+ 2591+79			
	12 23150, 2571.79			
	14 23147. 2592.12		***	
· ······	15 23146+ 2592+24		* [*	
•	17 23145+ 2592+35		* *	
( ·	19 23144+ 2592+46 19 23144+ 2592+46	·		· · · · · · · · · · · · · · · · · · ·
······································	20 23147. 2592.6R			1
(	22 23143. 2592.57	······································		
	23 23144+ 2592+46			
	25 23144+ 2592+46			
- 12	76 23141. 2592.80 27 23144. 2592.46	· · · · · · · · · · · · · · · · · · ·	· · · ·	•
(	24 23142. 2592.68		• •	
· · · · · · · · · · · · · · · · · · ·	29 23142• 2592•68			
<	31 23136+ 2593+36			
	33 23139- 2593-02			
(	34 23137. 2593.24 35 23135. 2593.47			. •
	36 23139. 2573.02		*	
C	37 23138, 2593-13 38 23134, 2593-58			
·	39 23136. 2593.36			
Ĺ	41 23136+ 2593+36		* * *	
	42 23134+ 2593+58	······································		
• • • • • • • • • •	44 23133. 2553.60			
	45 23131+ 2593+92 66 23131+ 2594+03			<u></u>
· .			TO 45 1	
(		HANNER KORK ULTIN (FRUM 4		
·				
( ·····	an a	· ····································		
د				
		•	• • • • • • • • • • • • • • • • • • •	· .
(		· · · · · · · · · · · · · · · · · · ·		· · · ·
*	· · · · · · · · · · · · ·	,	· · · · · · · · · · · · · · · · · · ·	
		ан санана страна стр	<b>-</b>	
	1			

1. So that is a second of a sum and an an array of the second se second sec

	HIGH TURNUE OC YOTOR	CCS ACCEL T/C=1V
-10.		10
PERIOD SPEED [****]**		•••••••••••••••••••••••••••••••••••••••
2 230428 2603894	<u></u>	
3 23043. 2603.87		<u> </u>
- 230424 2003494 5 23040e 2604e16		<u></u>
6 23037. 2604.50		
9 23037+ 2604+30		· · · · · · · · · · · · · · · · · · ·
9 23336. 2634.61		· · · · · · · · · · · · · · · · · · ·
11 23031. 2645.18		· · · · · · · · · · · · · · · · · · ·
12 23030. 2605.29		• *\
14 23028 · 2605 · 52 14 23326 · 2605 · 75	•	*****
15 73020. 2606.47		·
16 23024. 2605.97 17 23021. 2606-31		: *
19 23021. 2606.31		• *\
19 73019. 2606.54		····
21 23015, 2606,99		<u>.                                    </u>
22 23016• 2605•88		* \
24 23009. 2607.67	<u></u>	· · · ·
25 23011 2607 44		*
27 23033 2609.35		<u>: \.</u>
24 23306, 2628.01		
30 23033. 2608.35		*
31 23000+ 2608+69		
32 229974 2609403		
34 72489. 2609.44		•
35 22995+ 2509+26 35 22986+ 2610+28		*
37 22985. 2610.29		·
38 22983. 2610.62 39 22987. 2610.17		
47 22965. 2610.39		•
41 72979. 2611.07		**
43 22984. 2610.51		• • • •
44 22987 2610 73 45 22976 2611 42		· · · · · · · · · · · · · · · · · · ·
46 22979. 2611.07		• *
47 22974. 2611.64 4* 22973. 2611.76		
	المراجع والمراجع والم	
	- INNGULT DELY LAMES INNOS 4 FU	<b>*0</b> <i>I</i>
<u></u>		<u></u>
· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·		

.

		HEGH TOROUE DC MOTOR	CCS DECEL T/C=2+SV	
	-25.			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	PERIOD SPEED Ineelevelevel	* ] * * * * * * * * * * * * * * * * * *	***!****!****!****!****!****!****!****!****	
	2 23009 2607 7			<b>(</b>
	3 73008. 2607.74	<u> </u>		
	4 23007. 2607.90 5 23012. 2607.33	-1	•	۲.
	6 23014. 2607.10	<i>1</i> .		
	4 23019 2606 54			<u>``</u>
	9 23026. 2605.75	/*	······	
	17 23035. 2604.74 11 23041. 2604.05		· · · · · · · · · · · · · · · · · · ·	
	12 23045. 2603.60	·		· .
	14 23057. 2602.24			
	15 23072. 2600.55		· · · · · · · · · · · · · · · · · · ·	,
	17 23078. 2599.87			
	14 23J77. 2599.99 19 230H7. 2598-46			
	20 23097. 2597.73		· · · · · · · · · · · · · · · · · · ·	
	21 23101. 2597.29 22 23104. 2596.05	<u>*</u>		
	23 23112. 2596.05			`
	24 23121 2595 04 H 25 23123 2584 H	7 :		·
	· 26 23125 . 2594 . 59			
	27 23115, 2595,71 28 23115, 2595,71	/		
	29 23136. 2593.36			<u> </u>
. –	30 23156. 2591.12 31 23174. 2589.10	. / :		C
	32 23156. 2591.12	/* •		
	34 23184. 2587.99	<u> </u>		(
	35 23188. 2587.54	•	······	
	37 23199 2586 31 *	· •		
	38 23145. 2587.89			· · · · · · · · · · · · · · · · · · ·
<u> </u>	40 23187. 2597.65	••••••••••••••••••••••••••••••••••••••		(
	41 23215. 2584.53		······································	
	43 23238. 2581.97*	•	· · · · ·	(
	44 73230 7562 86 4 45 23242 2541 535	• • • • • • • • • • • • • • • • • • •		
<del>.</del>	46 73254. 2580.70*			(
	47 23249 2550+75P 47 23266+ 2578+87P	······		
	···		• •	(
		1.344000# HTAPA4.417-14 (LAOA 9 10 40		
•	· · · · · · · · · · · · · · · · · · ·			
		······································		<u> </u>
				(
		•	· · · · · · · · · · · · · · · · · · ·	
			···· <u>·································</u>	
	• • • • • • • • • •			
			•	•
	•			·· · -

.

-23.         -24.           1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 </th <th></th> <th>HIGH TURQUE DC MOTOR CC&amp; ACCEL</th> <th>T/C=2+3Y</th>		HIGH TURQUE DC MOTOR CC& ACCEL	T/C=2+3Y
PERIGO       SPEEC       Sector	-25+		
1 2000. 26.1.20 2 2005. 26.1.20 3 2001. 26.1.20 4 2001. 26.1.20 7 2001. 20 7 2001. 20	PERIOD SPEED Interland	• Lassalaasalaasalasaslassalassa jeese lassalassals	» [ ] ] ]
- 2000	1 23030+ 26-5-29		· · · · · · · · · · · · · · · · · · ·
	7 230306 2003679		
4       23332.       24-58-20         7       23022.       26-66-20         7       23022.       26-78-20         9       230.34.       26-79-20         1       2010.5.       26.01-20         1       2010.5.       26.01-20         1       2010.5.       26.01-20         1       2010.5.       26.01-20         1       2010.5.       26.01-20         1       2010.5.       26.01-20         1       2010.5.       26.01-20         1       2010.7.       2010.7.         1       2010.7.       2010.7.         1       2010.7.       2010.7.         1       2010.7.       2010.7.         1       2020.6.       2010.7.         1       2020.7.       2010.7.         1       2020.7.       2010.7.         1       2020.7.       2010.4.         2020.7.       2010.4.       2010.7.         2020.7.       2010.4.       2010.7.         2020.7.       2010.4.       2010.7.         2020.7.       2010.4.       2010.7.         2020.7.       2010.7.       2010.7.         2020.7. </td <td>4 23033. 2034.95</td> <td>*</td> <td></td>	4 23033. 2034.95	*	
5     23019, 26:64:54       7     23012, 26:05:20       7     23012, 26:05:20       1     230:5, 26:05:20       1     230:5, 26:05:20       1     230:5, 26:05:20       1     230:5, 26:05:20       1     230:5, 26:05:20       1     230:5, 26:05:20       1     230:5, 26:05:20       1     230:5, 26:05:20       1     230:5, 26:05:20       1     230:5, 26:05:20       1     230:5, 26:05:20       1     230:5, 26:05:20       1     230:5, 26:05:20       1     230:5, 26:05:20       1     230:5, 26:05:20       1     220:5, 26:05:20       1     220:5, 26:05:20       1     220:5, 26:05:20       1     220:5, 26:05:20       1     220:5, 26:05:20       1     220:5, 26:05:20       1     220:5, 26:05:20       2     220:12, 20:05:20       2     220:12, 20:05:20       2     220:12, 20:05:20       1     220:12, 20:05:20       1     220:12, 20:05:20       1     220:12, 20:05:20       1     220:12, 20:05:20       1     220:12, 20:05:20       1     220:12, 20:05:20       1 <td< td=""><td>5 2303C+ 2505+29</td><td><u>_</u></td><td></td></td<>	5 2303C+ 2505+29	<u>_</u>	
• 20012       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       20015       <	5 23019 26°6 54 7 23022 26°6 20	:X	
9       23,034, 260+224	9 23012. 2607.33	• *	
1* 230/05       26.9.4/7         12 230/95       26.9.4/6         15 22993       26.9.4/6         16 22994       26.10.24         17 22993       26.9.4/6         16 729942       26.10.24         17 22957       26.10.24         18 729795       26.10.24         19 72957       26.10.23         19 72957       26.10.24         19 72957       26.10.24         19 72957       26.10.25         19 72957       26.10.24         19 72957       26.10.24         19 72957       26.10.24         10 72957       26.10.24         10 72957       26.10.24         10 72957       26.10.40         10 72957       26.10.40         10 72957       26.10.40         10 72957       26.10.40         10 72957       26.10.40         10 72957       26.10.40         10 72957       26.10.40         10 72957       26.10.40         10 72957       26.10.40         10 72957       26.10.40         10 72957       26.10.40         10 72957       26.10.40         10 72957       26.10.40         1	9 23034. 2635424	<u> </u>	
11       2013       2013       2609-48         13       22030       2609-48       1         14       22020       2613-73       1         15       22075       2613-83       1         16       22020       2613-73       1         17       22057       2613-60       1         18       22040       1       1         19       22040       2613-60       1         19       22040       2613-60       1         19       22040       2613-60       1         19       22041       2613-60       1         21       22041       2614-60       1         22041       2614-60       1       1         22041       2614-60       1       1         22041       2614-60       1       1         22041       2614-60       1       1         22041       2614-60       1       1         22041       2614-60       1       1         22021       2614-61       1       1         22020       2621-60       1       1         22020       2621-60       1       1	1" 23005. 26.9.17		
13       22952.       26.95.473         14       22962.       2613.73         15       22757.       261.1.633         17       22962.       2613.74         18       22757.       261.1.633         17       22956.       261.1.633         18       2275.       261.1.633         19       22946.       261.2.79         19       22946.       261.2.79         12       22951.       261.4.49         22       22951.       261.4.26         22       22951.       261.4.26         22       22951.       261.4.26         22       22951.       261.4.26         22       22951.       261.4.26         22       22951.       261.4.26         22       22951.       261.4.26         22.22451.       261.4.26       24.22         22.2252.       261.4.26       24.22         22.2252.       261.4.27       24.22         22.2252.       261.4.27       24.22         22.2250.261.21.70       24.22       24.22         22.2250.262.21.20       24.22       24.22         22.2250.262.21.20       24.22       24.22 </td <td>12 22993. 2639.49</td> <td></td> <td></td>	12 22993. 2639.49		
14       22966. 2612.2A         15       22922. 2612.173         17       22975. 2612.464         17       22975. 2612.464         17       22975. 2612.464         17       22975. 2612.464         17       22975. 2612.464         17       22975. 2612.464         17       22979. 2614.469         17       22979. 2614.469         17       22979. 2614.469         17       22974. 2615.461         17       22974. 2615.461         17       22974. 2615.461         17       22974. 2616.473         17       22974. 2616.473         17       22974. 2617.111         17       22974. 2617.111         17       22975. 2617.111         17       22975. 2617.111         17       22975. 2617.111         17       22975. 2617.111         17       22975. 2617.111         17       22975. 2617.111         17       22975. 2617.111         17       22975. 2617.111         17       22975. 2617.111         17       22975. 2617.111         17       22975. 2617.111         17       22975. 2617.111     <	13 22990. 2609.83		
15       727262       262424 7         17       722957       2612544         18       727255       2612544         19       729404       261257         17       722956       2612544         19       729404       261257         19       72956       2612544         19       72956       2614540         19       72956       2614540         19       72956       2614540         19       72957       2614540         10       72957       2614540         10       72957       2614540         10       72957       2614540         10       10       10         12       261540       10         12       261647       10         12       27068       261741         12       27068       261741         12       27068       261741         12       27068       2617447         12       27068       261747         12       27068       261747         12       27068       261747         12       27078       261748         12	14 22986+ 2613+28	• *	
17     22974     2612.72       17     22964     2612.72       17     22975     2613.24       17     22975     2613.24       17     22975     2614.44       17     22975     2614.44       17     22975     2614.44       17     22975     2614.44       17     22975     2614.94       17     22975     2614.94       17     22975     2614.94       17     22975     2614.94       17     22972     2616.43       17     22972     2616.43       17     22972     2616.43       17     22972     2616.43       17     22972     2614.94       18     22908     2619.17       19     22974     2613.48       19     22972     2621.40       19     22974     2614.60       19     22974     2621.40       19     22974     2621.40       19     22974     2621.40       19     22974     2621.40       10     22992     2621.40       11     22992     2621.40       19     22477     2622.95       19     22477     2622.9	17 /2982+ 2013+/4		
1*       22964.       2612.76         1*       72956.       7613.69         2*       22450.       2613.24         21       72497.       2614.49         2*       22951.       7614.226         2*       22952.       2614.426         2*       22952.       2614.426         2*       22952.       2614.426         2*       22952.       2614.426         2*       22952.       2614.426         2*       22952.       2614.426         2*       22952.       2614.426         2*       22952.       2614.426         2*       22952.       2619.426         2*       22952.       2619.426         2*       22952.       2619.426         2*       22952.       2619.426         3*       22952.       2621.426         3*       22952.       2621.426         3*       22952.       2621.426         3*       22952.       2621.426         3*       22952.       2621.426         3*       22952.       2621.426         3*       22952.       2625.46         4*       22014.7262	17 22957. 2612.44		
1       7.2956	1# 22964+ 2612+7P	· · · ·	_
c)       247204       2613444         22       22951       7614426         24       22945       2614426         24       22945       2614426         24       22945       2614426         24       22945       261643         27       22945       261643         27       22914       261643         27       22914       2617411         27       22914       261740         27       22914       261848         27       22914       261848         27       22914       261848         27       22914       261848         28       27002       262309         292       2621400	19 22956+ 2613+69		P
32       22951.       2614.26         73       22941. 2615.40	21 22949. 2614.49	· · · · · · · · · · · · · · · · ·	<u>}</u>
27       22941       2615.40         24       2245.2616.43       •         25       22932.2616.43       •         26       2617.11       •         27       2224.617.34       •         27       2224.617.34       •         27       2224.617.34       •         27       2224.617.34       •         27       2291.4.2613.44       •         30       2291.4.2613.44       •         31       2290.2620.2620.40       •         32       2290.200.2662.04       •         33       22892.2621.00       •         34       22892.2621.00       •         35       22844.2612.46       •         36       22892.2621.00       •         36       22892.2621.40       •         36       22892.2621.40       •         37       22847.2622.93       •         37       22847.2622.43       •         38       22892.2621.46       •         40       22847.2622.95       •         38       22847.2622.95       •         39       2285.2622.95       •         41       22804.2622.95<	72 22951. 2614.26	¢	*
74     22493     261643       76     22924     2617411       77     22924     261741       77     22914     2618427       30     22914     2618487       31     22908     2619417       32     22908     2619417       33     22892     262140       34     22892     262140       35     22892     262140       36     22892     262140       37     22892     262140       36     22892     262140       37     22892     262140       36     22892     262140       37     22892     262140       36     22892     2621400       37     22892     2621400       36     22892     2621400       37     22892     2621400       36     22892     2621400       37     22877     262443       39     22877     262443       40     22401     2624455       41     228002     2624457       42     22802     262744       43     22451     262744       44     22434     2627443       45     22849     2627443	23 22941. 2615.40		
27       22926       261713         27       22917       261713         27       22917       261713         27       22917	24 22945• 2614•94 25 22933. 2616•43		
27       22924+       2617.324         2	24 22925. 2617.11	e	
?* 2291+       2616.8.27         ?? 22915.       2618.47         31       22908.         ?? 22915.       2623.004         31       22908.         ?? 22917.       2623.004         32       22902.         ?? 22917.       2621.00         34       22892.         ?? 22917.       2621.00         ?? 22917.       2621.00         ?? 22917.       2621.00         ?? 22917.       2621.00         ?? 22917.       2622.37         ?? 22917.       2622.37         ?? 22917.       2622.93         ?? 22917.       2622.93         ?? 22917.       2622.95         ?? 22917.       2622.95         ?? 22917.       2622.95         ?? 22917.       2622.95         ?? 22917.       2624.95         ?? 22915.       2624.95         ?? 22915.       2625.274         ?? 22915.       2627.97         ?? 2421.       2627.97         ?? 2425.27.267.97	27 22924 + 2617 + 34	······································	<b>\</b>
27       2214.2       2613.4R         31       22908.2619.17	7 74 22918 2618 C7		<b>A</b>
31 22908. 2619.17	30 22914+ 2613+48		*
32       22902.       2621.00         34       22892.       2621.00         35       22892.       2621.00         35       22892.       2621.46         35       22892.       2622.37         37       2647.2       2622.93         37       22875.2622.93	31 22908. 2619.17		
34       22892       2621.00         35       22424.26       2622.37         36       22890.2622.437	32 22963. 2623.04 33 33843 7-31.00	•	<b>V</b>
35       22 # # #. 2621.466         36       22890. 2622.97         37       22677. 2622.72         38       22875. 2622.95         39       22867. 2623.866         40       22851. 2624.67         41       22850. 2625.24         42       22855. 2625.24         43       22451. 2627.0P         44       22849. 2627.0P         45       22835. 2627.43         46       22834. 2627.66         47       22827.2628.46         48       22827.2628.46         45       22827.66         45       22827.662.76         45       22827.662.76         45       22827.662.76         45       22827.662.76         45       22827.662.76         45       22827.662.76         45       22827.662.76         46       22827.662.76         47       22827.762.86.46         48       22827.762.86.46         48       22827.762.86.46         48       22827.77.762.86.46	34 228924 2621400	•	*
36       22890. 2622.37         37       22677. 2622.72         34       22875. 2622.95         39       22867. 2523.56         40       22851. 2624.55         41       22860. 2624.67         42       22855. 2625.24         43       22451. 2627.0P         44       22839. 2627.0P         45       22836. 2627.66         47       22837. 2628.46         48       22827. 2628.46         47       22827. 2628.46         48       22827. 2628.46         48       228232. 2627.66	35 22448. 2621.46		*
37       22875. 2622.95         34       22857. 2523.56         40       22851. 2624.55         41       22850. 2625.24         42       22855. 2625.24         43       22451. 26.65.70         44       22839. 2627.0P         45       22835. 2627.43         47       22827.2628.46         47       22827.2628.46	35 22850. 2522.37	. *	×.
39 22867. 2523.66	37 22077+ 2622+72		*
4^ 22851. 2624.55       .         41 22860. 2624.67       .         42 22855. 2625.24       .         43 22451. 2625.70       .         44 22849. 2627.0P       .         45 22836. 2627.43       .         45 22834. 2627.66       .         47 22827. 2628.46       .	34 22867. 2623.66		
41 22800, 2624.67       •         42 72855, 2625.24       •         43 72451, 2627.0P       •         44 22839, 2627.0P       •         45 72836, 2627.43       •         45 72837, 2628.46       •         47 22827, 2628.46       •         47 22823, 2628.97       •	47 22861. 2624.55	•	<u>\</u> *
43 22451. 2627. JP 44 22839. 2627. JP 45 22835. 2627.43 45 22834. 2627.66 47 22427. 2628.46 47 22427. 2628.46 48 22834. 2628.97	41 22860+ 2624+67		<u>}</u>
44 22839. 2627. UP 45 22836. 2627.43 45 22834. 2627.66 47 22427. 2628.46 47 22427. 2628.46 48 22832. 2628.97	43 72-151. 2625.70	· · · · · · · · · · · · · · · · · · ·	<u> </u>
45 22#35. 2627.43 45 22#34. 2627.66 47 22#27. 2628.46 47 22#27. 2628.46 48 22#23. 2628.97	44 22819. 2627. UP	•	*
47 22427. 2628.46 47 22427. 2628.46 48 22427. 2628.47	45 22836. 2627.43	ee	
** 27523. 2528.97	40 240340 CDC(000 47 22427. 2628x46		\
	4* 22523. 2528.97		¥
	1.000	APH EARLS APAR ILLAS 3 10 42 1	
[101002# 24675 02mL [FPRUM 5 10 45 7			
	·	· · · · · · · · · · · · · · · · · · ·	



REPRODUCIBILITY OF THE ORIGINAL PAGE IS FOOR

<ul> <li>• 11</li> </ul>	
·	HIGH TERUBE DE MOTOR CEN ACCEL TICHAN
· · · ·	
	50.
PERIOD SPLED Inseriessies	,
1 23910+ 2647+36	
2 23141+ 2007+44 2 20110 27.2 20	
3 234120 2067077 6 37466, 3617,79	
5 72112 - 26 5.50	
7 22974. 2611.19	• •
# 22917. 2612.44	• *
9 22955. 2613.44	•
In 22954. 2613.97	• *
11 72937. 2615.44	
17 7777DE 2917411 19 93033 5417 AE	
10 77910, 9610,961	
15 22995. 2623.65	<b>V</b>
16 22ru5+ 2521+n"	• • • • • • • • • • • • • • • • • • • •
17 72467. 2623.46	<u> </u>
19 22460. 2624.67	· · · · · · · · · · · · · · · · · · ·
19 22452. 2625.59	•
43 72840a 2626a97	• * * •
21 223633 2063973 33 33633 26.0.03	
24 22799. 2631.69	• •
25 22792. 2632.50	·
2 24 2782. 2633.65	•
門 記 27 22771。2634。93	· · · · · · · · · · · · · · · · · · ·
W ~ 2º 22754. 2635.43	• *
<u>7 79 72757, 2636, 55</u>	
5 71 /2/4/+ 20054/4 31 20731 - 2436 54	· · · · · ·
37 27724. 2640-39	The second secon
33 22717. 2641.10	
14 22721. 2642.#2	•
35 72672. 2644.13	• • •
36 72635. 2644.87	· · · · · · · · · · · · · · · · · · ·
17 2267 ** 2645+73	· · · · · · · · · · · · · · · · · · ·
34 22555+ 2647+25	• ¥.
37 77033+ 2097+47 40 33657 3663 37	
41 22536. 2653.64	
42 72627. 2051.69	•
43 22520. 2652.:1	
44 22510. 2553.57	
45 7259+. 7655.1"	· · · · · · · · · · · · · · · · · · ·
44 72592. 2655.AM	•
47 223534 2033449 AB 33555- 3654.46	
AL CRANNE CALEDA	•
• • •	The JUNE 53.24 07-14 (FV- 51-4-1
<b>-</b> · · <b>-</b> ··	
	-
	•

o sang di sekin si di di akon toto se busi bada. A

.

.

د المحمد المراجع المراجع المحمد ا معالمة محمد المحمد ا معالمة محمد المحمد ا

1-1

1 .

and a second 
and a second 
	<u>ر</u>		HIGH	TORQL	JE DC Y	OTOK	<u> </u>			<u>, , , , , , , , , , , , , , , , , , , </u>	<b></b>
SPEED* .	C.RPM	DRA	G TOR	UUE= (	0006	) * kPM	+ 06	QUIES	CENT PU	WER= 8-	5WATT
	PAR	MOTOR	POW	ER	REAC	MOTOR	REQ	MOTOR	ELEC	HBRDG	SYSTM
C QUAD	TOT	SIN	COS	SUM	TRQ	TRui	POWER	EFF	EFF	EFF	£FF
1 CC ACC	12•	0.5	2.0	2.5	8+6	9.1	0.0	0.0	20.8	71•4	0.0
2 CC ACC	20+	2.5	4.0	2.5	28-5	1900	0.0	0+0	27.5	47+8	
4 CC ACC	20. 45.	5.0	15.0	20.0	40.5	2901 4101	JaG	0.0 0.0	44.4	54.7	0.40 0.60
5 CC ACC	57.	N=0	18.0	26.0	47.3	47.9	0+0	0.0	45+6	53.6	UeU
PIAS	*		· · · · · ·	<u>.</u>	-1.19						
S.F.				·······	9.95			·	····		-
CURR					0.997			<u>.</u>			
1 CV DEC	12.	0.5	2.0	2.5	10.1	9.5	6.0				
2 CH DEC	20.	1.5	4•C	5.5	19.5	18.9	0.0			· · · · · · · · · · · · · · · · · · ·	
3 CN DEC	28.	2.5	8.0	10.5	30.0	29.4	0.0				
4 C# DEC 5 C# DEC	45. 57.	5⊕0 8±0	15.0 18.0	26.0	42.0 49.5	41•4 48∗9	0.e0 0.e0				
		.,			-0.17					<u></u>	<u></u>
S-F-	1 <u>1</u> 17 18				10+13				·····	<u></u>	
CORR					0.998		•				}
					•						
1 CATAC	12.	1.0	2.0	3.0	-9.8	-10.3	0.0	0.0	25.0	85.7	
2 CW ACC	20.	2.0	4.0()	6.0	-19.9	-20.5	0.0	<u>0 • 0</u>	30.0	52.1	<u>0</u> .0
3 CN ACC	28.	5.0	6.0	11.0	-30.4	-31.C	0. ')	0.0	39.2	56.4	Cau
4 CH ACC	<u>44 •</u> 57 •	13.0	<u>9.0</u> 14.0	27-0	-42+8	-43.4	<u>ປະປ</u>	0.0	44.03	54.9	<u>0.</u> U
	≠ 		4 T B W				- • • \/		······································		
PIAS					0.65 -10 45						
CORR					0-998						
	·····	-			······				······································		
1 CC DEG	12.	1.0	2.0	3.0	-10.9	د.10-	0.0				
5 CC. DEG	200	2.0		6.0	-21.0	-20.4	0+0				
3 CC DEG	28.	5.0	6.0	11.0	-323	-31.7	0.0				
B CC DEC	- 440 57.	13.0	9∎0 14∎0	17+9 27+0		-44.U -51.9					
н талтар ШУДаў 19. цантары славання 19. т. —	αν φ ² ιτα Ναταίας τους τι φια				ل پ ، ، ، عر 	~ 2 6 4			<u>ىرىنانى كۈرىمە</u>		- <del></del>
BIA5		•			-0•21	- <b>11</b> · · · · · · · · · · · · · · · · · ·				heller i	
20212 20212					-10+098						
Gold.		<b></b>	•								
· · · · · · · · · · · · · ·	-									ويتعارفه والمتعالي والمتعاد	
								•			
• ·	• •	uga ana t	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-					,		· · · · · · · · · · · · · · · · · · ·	
- 	میں دیورہ در		9 Mariana - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1					REPRO ORIGIN	<u>DUCIBILI</u> IAL PAG	<u>ity of T</u> E IS Poo	HE B
<b></b>						<u> </u>			;		
	· · · · · · · · · · · · · · · · · · ·		<b>.</b>		140			-•··			
					~					· · •	

è

ł

		·	нісн	TOROL	IE DC A	OTOR					•
SPEED =	250•RP	M DR	AG TOR	QÚE× C	•00060	) * RPM	+ 0.6	QUIES	CENT PO	wER= 8.	<u>5WATT</u>
	PWK	NOTO	R POW	ER	<b>KEAC</b>	MUTUR	REQ	MOTOR	ELEC	HERDG	SYSTM
CAUP	TOT	SIN	COS	SUM	TRQ	TRU	POWER	EFF	EFF	ÈFF	EFF
CC ACC	140	1.5	3.0	4.5	8.6	9.3	1.7	38+4	32.1	81+8	12.3
CC ACC	24.	3.0	6.0	9.0	18:4	19.1	3.5	39.3	37.5	58.0	14.
- EC ACC	356	5+0	11.5	1005	28.9	29.6	2+4 7 7	· 33•2	47#1 60.0	62•2	15+6
CC ACC	69.	12.5	23.5	36.0	43.4	49.1	900	25+2	52.1	59.5	1301
BIAS				······	-1.59	·					
SeFe					10.21					•	<b>.</b>
COIRTR					0.998						
	· .	<u> </u>	1 0	1.0	10.0	1.3 1	1 0	-			
CW DEC	17.	010	1.0	1.0	20.6	10.8	2.6				
CA DEC	23.	0.5	4.5	5.0	31.9	31.1	5.7				-
CW DEC	37.	2.0	9.5	11.5	43.5	47.7	7.9	···		<del>و واست بر بالنقوز بالنور .</del>	<u></u>
CW DEC	47.	4.5	12.5	17.0	51.4	50.6	9.3		<u>-</u>		·······
RIAS					0.48						
S.F.					10.39						
CURR	<del>,</del>				0.998						
CW ACC	14.	1.5	3.0	4.5	-9.8	-10.5.	1.9	43.3	32.1	81+8	13.
CH ACC	240	4.0	5.5	9.5	-19.9	-20.6	3•B	40.1	39.5	61.2	15.
EW ACC	37.	0 ₊ 5	9.0	18.5	-31.5	-32.2	509	32.02	50.0	64.9	16-
CW ACC	570	17.0	13.5	30.5	-43.9		8.2	27.0	<u>53.5</u>	62.8	
	. 130	2000	7.9.2	2082	-9164	-2291	700	2310	7241	27+0	130
RIAS					0 • 86						
5+F+	· • •			·	-10.77			·····	<u></u>	• •	
					-0.991						
CC DEC	10.	0.0	1.0	1.0	-12+0	-11.2	2.0			•	
CC DEC	17.	0.0	1.0	1.0	-22.5	-21.7	4.0			4	
CC DEC	23.	2.5	<u>2.,5</u> .	5.0	-34.5	-33.7	6.2			•	
CC DEC	. 3/e . 40.	/#0 P.0	5°2	18.0	-4/83	≈46e5	. 8≝6 0.0			•	
	474	710	7817	1080		-9440	784				
PIAS					-1:09						
S.F.				•	-11.04						
CORR		•	.•		-0.997	1			······································		
a	<b>.</b>	<b></b>						······			
							م مورو م محمد محمد محمد محمد محمد محمد محمد م	·,	au		
			•··· •••		· · ·•	an (					
**		·	مە ئە ئوردىرەتىرە - « ^ر ايىسى ر								
					TABLE	8-7					
							· · · · · · · · · · · · · · · · · · ·				
					8-5	4.	<b>.</b>		••••		

Ĺ,					HIGH	TOKQL	JE DC	MOTUR		· · · · · · · · · · · · · · · · · · ·			
	26 E :	18-1	500-RP	M DR	AG TOR	QUE= (	0.0006	) * RPM	+ 0.6	QUIES	CENT PU	#ER= 80	5WATT
			Distri	MOTO	R DOM	50	NEAC	MLT. Int	650	NOTON		un un è	CVCT.
'nć.	- <del>.</del>	JAD -	TOT	SIN	COS	SUM	TRU	TRO		REE		FEE	<u>81518</u> 111
									I GALIN	<u>.</u> ,	<u> </u>	<b>.</b>	<b>L</b> ( )
. 1	CC	ĂĈĊ	17.	2.5	4.0	6.5	8.3	9.2	3.4	52+3	· 38•2	76.4	20.0
<u></u>	<u> </u>	ACC	28.	5.0	8.5	13.5	18.4	19.2	7.1	52.8	48.2	69.2	25.4
n ₽. ∵∞4	20	- ACC - ACC	430	12.0	15.0 28.0	23.0	28.9	29+7	1100	· 47•9	53+4	66•6	25=6
3	22	ACC	83.	17.5	29.5	47.0	40.49		12+4	41+1	56.6	63+0	2304
6				- · ,						57-5	2004	0-20	
	41/	IS :					-2.11	······································				· · · · · · · · · · · · · · · · · · ·	
	5.1	• 55	·				10.41		·· ·····				
		sis j					08990			,			
				••••••••••••••••••••••••••••••••••••••					· · · · · · · · · · · · · · · · · · ·		·····		
1	Cri	DEC	9.	-1.5	-0.5	-2.0	11.3	10.4	3.8				,
. 7	CW	DFC	14.	-1.5	-0.5	-2.,0	21.4	20.5	7.5				
3	$\frac{CZ}{CZ}$		1/0	-1.5	<u>C • O</u>	-1•5 5 E	32.6	31.7	11.7	·			
5	CW	DEC	38.	0.5	4 • 0 6 • 0	6.5	52.1	4244 51 <b>.2</b>	18.9				
			·····										····
	81/	AS					0•98						
	Sel	รือ วยว					10.45						1
	0	<:< 					0.998		•				
		•											!
- <u>1</u> -	C٣	ACC	16+	2.5	400	6.5	-9.8	-10.7	3:9	60.8	40.06	86+6	2407
: <u>?</u>	<u> </u>	ACC	29.	615	7.5	14.0	-20.3	-21+2	7.8	56•0	48.2	68+2	27.0
3	C in	ACC	450	13.5	12+0	25.5	-32.3	-33+2	12.2	48+1	56+6	69+8	27•2
	- <u>C A</u>	ACC	83.	27.0	23.5	40+5 50+5		-43.4	1009	41+9	57.2	54+8	23+9
			•	1 1 4 0	12 20 4		19 9 W. 19		2241	3741	2162	0349	
• • • • •		<u> </u>					1.05						
	5.	- 				•	-11.01						
:	CO	<i>c</i> .c.			•	•	<b>=</b> Q <b>≜</b> 997						
<del>44-4-</del>	-				····	••••••••••••							
1	cc	DEC	់ ខ.	-1.5	<b>-</b> 0∙5	-2.0	-12.4	-11.5	4.2	-			•
2	CC	DEC	13.	1.0	-0.5	-1.5	-22.9	-22.0	8•1				
۲. 	22	DEC	17.		-0.5	1+0	~35.6	-34.7	12.8				•
4		- 176.C - 176.C	30e	4.5	1	4.0	-™48±0 	-4/el	1/#4				
<b>4</b>	••••••				** • ( *			-55.0	2003		,		
•	41	A 5					-1.32						
•	Sei	F.	•	···· ···			-11.21						
	ÇU	, <b>-,  ≺</b> 				····	-0.997						
••• •••									<del></del>				
													÷
								0 0					
		÷.,			•••••	· • · · · · · ·	TABLE	8-8				· · · · · · · · · · · · · · · · · · ·	
							8-5	5					
										·····		<del></del>	
_			• ••			<b>-</b> .			<b>.</b>				
	-					·							·····

		. +	нісн	TORON	UE DC Y	OTOR				·	-r -
SPFED=	750-RPA	DRA	G TOR	00E= (	0+00060	) * <u>Ř</u> PM	+ 0.5	QUIES	CENT PC	WLR= 8.	5WATT
• ·	Par	VOTOR	PUW	EK	REAC	MUTUR	REQ	MOTOR	ELEC	HBRDG	SYST
C QUAD	TOT	SIN	COS	SUM	TRU	TRQ	POWER	EFF	EFF	EFF	EF
I CC ACC	19.	3.5	5.0	8.5	8.3	9.3	5.1	61.0	44.7	80.9	27.
2 CC ACC	33.	6.5	10.5	17.0	18.4	19.4	10.7	63.4	51.5	69.3	32.
.3 CC ACC	50. 77.	10.0	18=5	28.5	28.9	29.9	16+6	58+2	57.0	68×6 65×6	33.
5 CC ACC	97.	21.5	35.0	56.5	49.1	50.1	27.8	49•2	58.2	63.8	286
PIAS		<u>·</u>	<u></u>		-2.11						
S.F.					10.41			-			
CORR					0.998						
· · • • • • • · · · · ·	n ranar R					······			¥	<u> </u>	·
1 CW DEC	7.	-2.0	-2.0	-4.0	11.6	10.5	5.8				
3 CH DEC	13-		≠3±0 =3±5		∠⊥•4 32-6	20.3	11+2 17-6				
4 CN DEC	71.	-4.5	-1.5	-6.Q	44.3	43.2	23.9				
5 CV DEC	28.	-3.5	0.0	-3.5	52+1	51.0	28.3	· .			
BIAS				4	1.22	<u> </u>					
SoF.	, <b></b>				10.39	•					
					0.998			•	•		
1 CH ACC	18.	3.5	5-0				6.7	69.1	<b>/ 7</b> 3	Q :1 A	
2 CW ACC	33.	9.5	9.0	17.5	-19:9	-20.9	11.6	65+4	47•2 53×0	37+4	32.
3 CA ACC	54.	17.5	14.5	32.0	=32+6	-33.0	18+6	58+3	59.2	70.3	34 •
4 CN ACC	85.	28.5	$\frac{21.0}{20.0}$	49.5	-45.4	-46.4	25.7	52.0	58.2	64.7	30.
J CA ACC	1024	9.3 e V	20.01	010D	-2409	-23.9	29.9	490()	58eQ	63.2	28.
RIAS					1.71				······································		
COXH											
						····					
1 CC DEC	6.	-2.0	-2.0	-4.0	=12+8	-11.7	6.5			٤	
2 CC DEC	10.	-4:0	-3+0	-7.0	-23.3	-22.2	12.3			•	· · · · · · · · · · · · · · · · · · ·
3 CC DEC	13.	-430	-3.0	-7.0	-35.6	-34-5	19•1	<u></u>		-	
S CC DEC	22• 30•		-2-0 -2-0			-4/•3 -55,1	20.5			•	
	<u>_</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<b></b>	<u> </u>			- 1744	
SaFa					-11.10	, <u></u>					
CORR					-0.997						
		<u></u>	<del>.</del>								
								••• <b>••</b> •••••			
<b></b>	··· · ···-	·									······
				<u> </u>				<u> </u>			
					8-50	5	•				

. ... •.

1

÷

<del>di sin</del>

<b>ie antie</b> t-ei							0 7 4 6						
tc	Ğ	UAD	TOT	5IN	COS	SUM	TRQ	TRQ	POWER	EFF	ELEC	EFF	SYSTA EFF
1	cc	ACC	22.	4.0	5.5	9.5	8.3	9.5	7.0	73.9	43.1	79+3	31.9
2	<u> </u>	ACC	37.	0.8	12.5	20.5	18.4	19+6	14.4	70•7	55+4	71.9	<u>39 • I</u>
с: Э А		ACC	27. 88.	18.5	21+5	34•0 53∗0	28.9	30.1 42.0	22•2 31•1	65•4 58•7	59.16 60.2	70.1	39+0
5	c	ACC	110.	25.5	40.5	66.0	50.6	51.8	36.3	58.0	60.0	65.0	3408
• • •	"ĦĮ	AS	•••••	····		<u></u>	=2+71					<u></u>	
6a (8a, yang yar -	 	F• :					10+71						
	····		•				0	<u></u>	•				
3	C۷	DEC	5.	-3.0	-3.0	-6.0	11.6	10.4	7.6				
2	Ĉ	DEC	6.	+5.0	-5.5	-10.5	21.4	20.2	14.9				
	<u>C'</u>	DEC	<u> </u>	<u>=6e5</u>	-6.5	-13.0	<u>· 32•6</u>	31.4	23•2				in spinor najúškimu
5	Ci	DEC	19.	-8.0	-6.5	-14.5	52.1	50.9	37.6				·
	R j	AS					1.22				•		
	Ŝ	F	********				10.39						
<b>.</b>	<u> </u>					<b>-</b>	0.998		•			<del></del>	
···· 1		ACC	22.	4.5	5.5	10+0	<b>-9.4</b>	-10-6	7.8	78.4	45.4	74.0	35.6
2	С,	ACC	38.	10.5	11.0	21.5	-19.9	-21.1	15.6	72+5	56.5	72.8	41.0
3	С.	ACC	62.	21.0	17.5	38.5	<b>-32</b> •6	-33.8	25.0	64•9	62.0	71.9	40.3
- 4 - 5	<u> </u>	ACC	120.	44.0	33.0	77.0		= 54.5	40.3	52+3	<u> </u>	69.0	<u>- 33.2</u> 33.5
	- 11 -		•				1 . 97			·····			
i,	S	iria iFe					-11.33						
:	C	DRR	<b>*</b> .**				<b>-0</b> .997			<b>i</b>			
			<u>с</u>								<u> </u>	<b></b>	
			13.	-5.0	-5.0	-11+0	-23.3	-22.1	<u>. 5+8</u> 16+3			• • · · · · · · · · · · · · · · · · · ·	
3	Č.	DEC	18.	-7.0	-6+0	-13.0	-35.6	-34.4	25.4				•
74 E	C		30.	-7.0	-6e5	-13.5	-48.4	-47.2	.34.9				
		_ UEV			-083	-1303	-2244		4044				
	н 	IAS					-2.04						
	5 C	0.5.5 0.5.5					-0.906						
<b></b>	-	~_ <u></u>							- · ·	••••••••••••••••••••••••••••••••••••••			
·······			·····				TABLE	8-10		······································			••••••••••••••••••••••••••••••••••••••
ada 1. 1. apr													
••••							8-1	57			-		

<u>sp</u>	EED	= 17	250•RP	M DR	AG TOP	RQUE= (	00060	* <u>R</u> PM	+ 0.6	QUIES	CENT PO	wER <b>≈ 8</b> •	<u>5%ATT</u>
;			PWR	νοτο	R PO	'ER	REAC	моток	REQ	MOTOR	ELEC_	HBRDG	SYSTM
	QU	ĂĎ Ű	TOT	SIN	COS	SUM	TRQ	TRG	POWER	EFF	EFF	EFF	EFF
	ζĊ	AĈC	24e	4.5	6.5	11.0	7.9	9.2	8.5	77.7	45.8	70.9	35.6
<u>.</u>	<u>cc</u>	<u> </u>	42.	9.5	14.5	24.0	18.0	19.3	17-8	74.5	<u>57.1</u>	_71.6_	42.5
}		ACC	64•	15.0	25+0	40.0	28.9	30.2	27.9	69•9 64 0	62.5	72+0	43=6
• •	ce-	ACC	124.	30.0	46.0	76.0	49.1	<u>42•2</u> 50•4	<u> </u>	61#3	61.2	<u>65+8</u>	<u>. 29•5</u> 37•6
				· · · · · · · · ·									
<u>.</u>	RIA	5					-2.63.			•			
	5.0° 7000						10.008			<u></u>			
							( <b>) 6 3 3</b> 11			۰.			
						• • ••		• -	ar dene ti				
]	Car.	PEC	Z.	-4.0	m45	-8.5	11.6	10.2	. 9+4			• • • •	
2	€.₩ •	DEC	2 • 2 -	±2.5 200	一日 _年 () 4月11-6		21e4 22.4	20.0	18.5				
4	č	250	7.	+10.5	=11.5	-22.0	44-3	47.9	39.7				مچمند مانوس الباغلان
ţ.	Cla	DEC	12.	-11.5	-11.5	-73.0	51.8	50.4	46.6				<i></i>
						. ~							
• •	- 1 I I - C _ E	5	· · · · · · · · · · · · ·				10.22	····			<u> </u>		
	.a≠r €0i	2					0.997			•			
											······································		<u>معمدان التيباطي</u> دوار
•		i c'c			6 E	· • • • •	-0.4	7	0.0	<b>B</b> ( )	(7.0	7/ 1	
5 2	C al	ACC	240 43a	12.5	-13.3	25.5	=19+4 =19+9	-21.2	9e9 1945	77+0	4/eV 59.4	7461 73.9	41 e4 45 ef
2	Č.	ACC	70.	25.0	20.0	45.0	-32.6	-33.9	31.3	69.7	64.2	73.1	44 = 2
4	<u>C</u> #	ACC	109.	39.5	29.0	67.5	-45.4	-46+7	43.2	64.0	61.9	67.1	32.6
5	C.s	ACC	135.	44.0	37.0	81+0	-53.3	-54.6	50 <b>.</b> 5	62+3	60 • J	64 <b>.</b> Û	37.4
	HI	IS					1.87						
	Sef		- بوسد بن و مرود				-11.33						<u> </u>
	CO!	AIS .					-0.997						
ì	cc	DEC	1.	-4.0		-8.0	-13.1	-11.7	10.9				
2	cc	DFC	1.*	-8.0	-7.0	-15.0	-22.7	-21.5	19.9				
3	<u>. cc</u>	<u>2.10</u>	2.	-11.0	-9:0	-20.0	-35.6	-34.2	31.6	····			
49 5		DEC	12.	-12+0	-10+5	-22-5	-55.9		42el 50=4				
										· <u> </u>		·	
	R10	<u>\s</u>					<u>-1.88</u>						
	- 241 - COI	212 212					⇔11±07 =0±997						
-							01771						
			·····					• , <u></u>					
				•									
	• <del></del>		,			····-				<u></u>			
-	<b>.</b>						TABLE	8-11		· · · · · ·			
~												TT OF TH	10
	- <u> </u>			<del>ار از </del>						REPROT		TS ROOR	
										RIGIN	AL FROM	4-4-4 F. 4-4	
						/			4	,			

ц,

X

÷

5P	= ED	)= 1	500.RF	M DR	AG TOR	QUE=	0.0006	) * RPA	+ 0.6	QUIES	CENT PU	WER= 8.	• 5 <u>%ATI</u>
			PWR	MOTO		FR	REAC	MOTUK	REQ	MOTOR	ELEC	nBRDG	SYSTA
• •	ិដូប	AD [	TOT	SIN	COS	SUM	TRU	TRG	POWER	EFF	EFF	EFF	EFI
	ĈC "	ACC	26.	5.5	7.5	13.0	7.9	9•3	10.4	80•2	50+0	74.2	400
2	<u>cc</u>	ACC	46.	11.0	17.0	28.0	18.0	19.5	21.6	77.2	60+8	74=6	470
9. 	CC CC	ACC	109-	25.0	- 28+5	46.0 69.0	28+5	30.0 42.3	33+2 47+0	72+3	6407 63-3	73+6	4 <b>6</b> e -
5	22	ACC	137.	34.0	51.5	85.5	49.5	51.0	56.5	66=1	62+4	66+5	420
	A LA	5		······	· · · ·		#2:86	•	<u> </u>				
	Sof		• [•]			· .=···	10.60		····	······································			
		(n 	<u>.</u>				04998						
1	Civ	DEC	0.	-5.0	-5.5	-10.5	12.0	10.5	11+6				
2	CH:	DEC	0.	-5.5	-9.5	-18.0	19.9	18•4	20.4				
3 4		DEC	<u> </u>	•11.0 •13.5	-13-5	-24+5 -29-5	43.0	<u>31.1</u> 42.4	<u>34.5</u>				·····
5	Çw	DEC	3,	-15.5	-16.5	-32.0	51.8	50.3	55.8	¢ • •			
	P14	S				-1	095						
	SeF CUP	र सर					10+36		•			•	
			······	<del></del>									
1	15	ACC	26.	6.0	7.5	13.5	-9.0	-10.5	11.6	86+2	51.9	77.1	64.0
2	Cir. P:J	ACC	4/0	14.5	15.0	29+5	-19.9	-21.3	23.7	<u> </u>	62.7	76.6	<u> </u>
4	Cw.	ACC	121.	44.0	33.0	77.0	-45.4	-46.8	52+0	67.5	63.6	68.4	
5	<u>C</u> %	ACC	149.	50.0	42.5	92.5	-53.3	-54.7	50.7	65•7	62.0	62.08	40 •
<b>.</b> .	R1)	15	• • • • • • • •				2.25			<u></u> ;			
•	Sel CO	ि 🖷 सारा 😳					-11e41	······					
		<u> </u>											
1	сс	DEC	U.	~5e5	-5.5	-11+0	-13.1	-11.6	<u>12.</u> R				
2 a	CC	DEC	0. 0.		-12-0	≈18.5	-22.9	-21.4	23.7				
- G	75	DEC	0.	-17.0	=14.0	-31.0	=48.0	-46.5	51+5				
5	cc	DEC	4.	=18.0	<b>~15.5</b>	-33.5	-55.9	-5404	60.3				-
	¤1/	AS					-1.82						
	Sel	Fe Die					-11.07						
					· · · · · · · · · · · · · · · · · · ·								
						 1	ABLE 8	-12					
									· · · · · · · · · · · · · · · · · · ·				
							859	1					

i

я

ì

-

. -

•

•		•	ţ	· .	HIGH	TOROL	IE DC *	10102	• .				
SF	≠÷	)= 1	750.RH	N. DR	AG TOP	QUE= (	0006:	) * RPM	+ 0.6	QUIES	CENT PO		5WATT
			0.00	YOTO	<u>u nou</u>	15.0	- EAC	MATCH	950	NOTOR	EL C.C.		CVCT
	.4		TOT	SIN	COS	5UM	TRQ	TRQ	POWER	EFF	EFF	EFF	LFF
1	ĊĊ	ACC	25.	6+5	8.5	15.0	7.9	9.5	12.3	52+4	53.5	76+9	44.1
2	<u> </u>	ACC	<u>50.</u>	12.5	19.0	31.5	<u>18.J</u>	19.6	25.4	80.7	63.0	75.9	<u> </u>
÷.	rc rc	ACC	119.	28.5	49=5	78.0	40+9	2J●1 42∎5	59∎0 55∡0	70.6	0000 65.5	74+5	20.0
5	ĊĊ	ACC	149.	38.5	57.0	95.5	49.1	50.7	65.6	68.7	64.0	67.9	44+6
• ••• •	<u>म</u> ा7	15					-2.70						
	Ser	10					10±52	<u></u>	·····			<u> </u>	·
		• • • • •								••		·	
1	с.	i E C	<u>ù e</u>	-5.5	-6.0	-11.5	12.0	10.3	13.3				
2	C'A C'A	DEC	0.	-10.0	-11.5	-21.5	21.4	15.7	25+5				·
	<u> </u>	DEC	 	-15.5	-20+5	=37.0	43.5	41.5	<u>40.0</u> 54.1			<u></u>	
4	<u>¢</u>	DFC	0.	-19.5	-22.0	-41.5	51•0	49+3	63.8				
	41	NS.		· · • •			2.06				· •,,, ,		
· ·	ີ້	ີຍ ເ	_	_			10.001						
<b>-</b> •		1		, ,,			V8770	- <u> </u>	<u> </u>				•
1	¢.,	ACC	28.	7.0	8.5	15.5	-9.0	-10.6	13.7	89.9	55.3	79=4	49=2
2	Ç¥.	ACC	52.	16.5	17.0	33.5	-19.5	-21.1	27.3	81.7	64+4	77.0	52.6
4	07	ACC	132.	49.5	36.5	95±0	-45.4	-47.0 -47.0	42.9 60.9	70+8	65+1	13=8 69=/b	2002 46-1
Ξġ	Ĉ.	ACC	163.	55.0	47.0	103.0	-53.3	-54.9	71.1	69.0	63.1	66.6	43.6
	RI,	45					2.45					•	
	<b>C</b> 0'	₹R				· · · · ·	-11•45 -0•997						<u></u>
 			······································				- 1 4 1					•	
- 2	CC	DEC	<u> </u>	=12.0	+10.0	-22.0	-23.3	- <u>11+4</u> 21-6	28.0				
3	cc	DEC	э.	-18.0	-14-1	-32.0	-35.3	+33.6	43.5				
4	CC	DÊC	0.	-22.0	-17.5	-39.5	-47.5	-45.9	59.4				
<u>د</u>	<u> </u>		<u>U</u> .		-19+5	-43.5		-53.8	<u>. 69+7</u>	<u></u>	· · · · · · · · · · · · · · · · · · ·		
	I H S	AS					-2.22			•			
	C0	r.e. R					-10891 -08997				•	·····	·.
						<u> </u>			•				
											·		
	. <u></u>						TABLE	8-13					
					·						· · · · · · · · · · · · · · · · · · ·		
							8.	-60					·· .
-													

i. F

j.

ŧ,

1

.

ŜP	EED	= 7;	000+RP	M DR/	AG TOR	QUE=	0.00060	* RPM	+ 0.6	QUIES	CENT PÙ	*ER= 8.	5WATT
••			Pick	MOTO	R PON	ER	REAC	HUTUK	REQ	MOTOR	ELEC	нвкрс	SYST
7	<u>u</u>	iad	TOT	SIN	COS	SUM	TRU	TRU	POWER	EFF	FFF	EFF	EF
T	ĊĊ	ACC	30.	7.0	9.5	16.5	7.5	9.3	13.7	83.3	55.0	76.7	45.
ž	¢Č.	ACC	55.	14.0	21.0	35.0	17+6	19.4	28.6	81.9	63.6	75.2	52.
ż	CC	ACC	85.	22.5	34.5	57.0	28+5	30.3	44.9	78.6	67.00	74.5	52.
4	22	ACC	167.	31.5	54+5	86+0	40.9	42.7	<u>63+1</u> 75+2	73•4	67.1	<u>71,9</u> 69=0	49
	#14 #14	15			-		-3.23	,		•			
	COP	en l		•			0.998			. <u></u> .	· · · · · · · · · · · · · · · · · · ·		
		····	•									· <u>_ · · · · · · · · · · · · · · · · · ·</u>	· · · · · · · · · · · · · · · · · · ·
1	C.#	DEC	: 0,	-6.5	-6.5	-13.0	12.0	10.2	15.0	•			
2	Çñ	DEC	· J.	~11.5	-13.5	-25+0	21.8	20.0	29.5	·		_,,	
3	C	DEC	<u> </u>	-16.0	-20+5	+36+5	32.6	30.8	45.5				فكاريب والتزمودوات
4	C.I	SEC.	Qe	-21 e O -	-25.0	-45.0	43.5	41.7	61+6	•		4	
	Cw	DFC	<u></u>	-2365	-27+5		21=0	490 <u>2</u> •	12+1			<u> </u>	
	NI/	NS					2.27	<u> </u>					
	- 5 e! - 6 Di	* 0 - 11					7#97 0±998		•			-4	
<b></b>								<u> </u>					
1	Č.	ACC	30.	8.0	5.5	17.5	-8.6	-1.J.3	15.3	87.9	58.3	81•3	51
2	Ç.,	ACC	56.	19.5	18.5	37.0	-19.5	-21:3	31+5	85+1	66.0	77 . H	54
3	Cu	ACC	94.	37.5	29.0	56.5	=323	-34.0	50+4	75.8	70.7	77•7	53
4	- <b>C</b> à - 20	ACC 、 えきさ	142.	55.0	41.0	96+0	-45.8	=47.5	73.4	73.3	67.0	71.9	49
3	ц».	14 kg. 4.	2124	C≰#J	22.00	21			0482	1701			
	41	AS		•	-		2.81						
۰.	5.	Fø	• • • •	· • •			-11.57						
•							-06770	- <u></u>					
	cr	DEC	t) a	#7.5	<del>-</del> 60	m13_F		-11-3	16.7				
2	icc	DEC	Ċ.	-14-0	-12.0	-26.0	-23.3	-21.5	31.8				
3	cc	DEC	Ú.	-21.0	+17.0	-38.0	-34.9	-33.1	48 • 9				
4	CC	DFĈ	ំបំ🖕	-26+5	-21.5	-48.0	-47.3	-45.5	67.3				
_5	cc	DEC	0.	-29.0	-24+0	-53.0	) -55.5	-53.7	79+4				
	PI	AS					-2.17						
	Se	F.					-10.88						
	<u>.</u>	77 FT											
~		<u></u>					`````````````````````````````````	<u></u> .	<u> </u>	·			<b></b>
						1 mga	TABLE	8-14					
		·		****	· • •	_ 1			a dagana (1999) a ga a sa dila - 1999 kana k	•			
							8-	.61					, <b></b>
										-			

......

....

.

--

:

_

____

5

٦.

\$P	EED	<b>* 2</b> 2	250.aRP	M DR	G TOR	QUE= (	).00060	* RPM	+ 0.6	QUIES	CENT PO	<u> "ĽR≭ 8.</u>	5WATT
•			P7:K	NOTO	R POW	FR -	REAC	MUTUR	REQ	MOTOR	ELEC	HBRDG	SYSTM
ſ	GU	AD	TOT	SIN	COS	SUM	TRu	TRQ	POWER	EFF	EFF	EFF	EFF
1	CC	ACC	32.	8.0	10.0	18.0	7.1	9ªÚ	15.0	83.6	56.2	76.5	47±0
2	<u> </u>	ACL	<u>. 58</u> .	24.5	23.0	63.0	28.5	20.4	50.6	80.4	68.4	75.4	<u></u>
4	cc.	ACC	137.	34.5	58.5	93.0	40.9	42.8	71.3	76.6	67.8	72-3	52.9
5	ĊĊ	ACC	172.	57.5	68.0	125.5	49+1	51.0	8409	67+6	72.9	76.7	49+3
	RIA	S					-3.70						
 -	S+F	•					<u>10.76</u>						
••	COR	(K					08998		·			·····	
1	сx	DEC	0.	-7.5	-7.5	-15.0	12•4	10.4	17.3	•	· · ·	····	
2	Cvl	DEC	0.	-13.5	₩16±0	-29.5	22.1	20.1	33.5				
3	¢₩	DEC	0.	-18.0	-23.5	-41.5	32.6	30.6	51.0				فكفاديا فالمسمود والإستقدم
4	CW	DEC	0.	-23.0	-30.0	-53.0	43.5	41.5	69.1	.• •	i ·		•
5	<u>C.</u> ;	DEC	0.	<u>-27∎0</u>	-32.5		2140	<u>49+0</u>	81.0		<u></u>	<u>.                                    </u>	
	AI/	AS					2.73				•		
	5.	- •					9.66			•			1
·	CUI	<u></u>				<u></u>	04998		·				
:	- <del>6</del> 5	ACC	32.	8.5	10.5	19.0	-8.3	-10.2	17.0	89.7	59.3	60.8	53.3
2	Čz.	ACC	60.	20.5	21.0	41.5	=19•1	-21.0	35.0	84•4	69.1	80.5	58+3
3	Cw	ACC	101.	38.5	32.0	70.5	-31.9	-33.8	56.3	79.9	69.8	76.2	55.7
4	C 🕴	ACC	151.	59.5	45.5	105.0	) =45.4	-47.3	78.7	75.0	67+5	73.6	<u>52.02</u>
5	CW	ACC	185.	67.0	57.0	124.0	) <b>-</b> 52•9	-54 + 8	91•2	(3•6	67	/ 9 e 2	49•3
	ĨĦŢ	AST					3.13				•		
	- <b>5</b> -	ក្ត ឯដ					-()=996						
		<u> </u>									<u>_`</u>		وموريا الشاريب ومروع
1	cc	DLC	U.		<del>_</del> 7∎0	-15.5	5 -13.5	-11.5	19.2				
7	• <b>c</b> c	DEC	. · Je	-16.0	-14+.1	-30.(	) -23.6	-21.6	36+0			•	
3		DEC	<u> </u>	<u>-24.0</u>	=19+5	-43.	5 -35e3		22.2				
4		DEC DEC	. Ue . Ue	<u>-34.0</u>	-24.7	-62.0	<u> </u>	-49.5	<u>88 e 4</u>			-	·····
	R I	AS					-2.88	5		• •		•	
	S.	F.					-10.69	· ·· <b>-</b> ··· <del></del>					
	C	રતે.					-0.997	· · · · · · · · · · · · · · · · · · ·		····· · · · · · · · · · · · · · · · ·			·····
						_ · _ · _ ·			•	•			
							TAI	NE 8-15	· .				
		. <b></b>											
		• •	• • • • • • • • • • • • • • • • • • •					8_62		· · ·	<u></u>		
									·····			· · · · · · · · · · · · · · · · · · ·	
											· · · · · · · · · · · · · · · · · · ·		

...... Siza

s٢	FED	a 21	500.RF	Pin DR	AG TUR	QUE≡ (	0006	) * RP./	+ 0.6	QUIFS	CENT PU	WERE A-	5WA 77
			D1. 1)	<u></u>		:0		1443 T 4313			<u> </u>		20111
2	ី ឆ្នាំរ	N.	TOT	SIN	COS	SUM	TRU	TRW	POWER	EFF	ELEC	EFF	EF
1	<u> </u>	ACC	33.	8.5	11.0	19+5	6.8	8.8	16•4	84.3	59.0	79.5	49.
2	<u></u>	ACC	62.	17.5	25.0	42.5	17.3	19•4	35+8	84.4	68.5	79.4	57.
3	CC CC	ACC	98. 144.	2710	41.5	68.5	28.1	30.2	55•8 78•7	81.5 79.1	69•B	76.5 73.4	56+
5	cc	ACC	181.	52.5	71.0	123.5	48.8	50.9	94.1	76+2	68.2	71.5	51.
	HIA	5		,			-3.86						
	S + F		************			••••••••••••••••••	10:72						
			•				04995						
1	Cw	DEC	· 0.	<b>≈</b> 8₀5	-8.5	+17.0	12.4	10.3	19.0				
2	Čis.	DEC	Ŷ.	-15.0	-18.0	-33.0	22+1	20.0	36.9				
3 4	<u>C</u> #	DEC	<u> </u>	-26.0	=34.0	=60.0	43.5	41.4	<u> </u>				
<b>9</b>	CW	DEC	0.	-31.0	-38.0	-69.0	50.6	48.5	89.6				
	н I ч	S					2.97						
	S+F	•					9.78		·····				<u></u>
	CUR	88					0.997		<u></u>				
1	<b>C</b> 4.	ACC	34.	9.5	11.0	20.5	-7.9	-10.0	18.4	90.2	60.2	89.3	54 .
2	<u>C / </u>	ACC	65.	22.5	22.5	45.0	-18.9	-21.0	38.8	86.2	69.2	79.6	<u> </u>
3	CW	ACC	107.	42.0	35.0 50.0	77.0	-31.5	-33.6	62.1	80•6	71.9	78-1	58.
5	Cw	ACC	192.	70.0	60.0	130.0	-51.4	-53.5	98.9	76+0	67.7	70.8	51.
	817	5			• • • •		2.95		······································				
	Sef	•					-11.27						
	COF	<</td <td></td> <td></td> <td></td> <td></td> <td>-0.995</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					-0.995						
1	cc	ĐEC	0.	-9.5	<del>-</del> 8.0	-17.5	-13.5	-11.4	21.0		*		
2	25	DEC	<u>.</u> 0.	-18-0	-16-0	-34.0	-73.6	-21.5	39.7				
- 4		DEC		-3510	-28.0	-49.9	- 34 . 9	-44.8	82+8		····		
5	cc	DEC	0.	-39.5	-31.5	-71.0	-54.8	-52.7	97.4				-
	81 <i>4</i>	15					-2.96						
• •	5.1	•			****		-10.59						••••
	CU	<<br					<u>⊷0</u> .998						<u></u>
<b>.</b>		بې د د د ما مېزمې	··						<u>کی دو مربعہ مراحد ال</u>			<u></u>	
			<u> </u>	<b>.</b>	···	• • · · · · · ·	TABLE	8-16		• • • • • • • • • • • • • • • • • • •			
				•••									
							<u> </u>	-63					

•

> ; ;

.

• • **•** 

÷,¢