General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

Raymond Nichols Hall

2291 Irving Hill Drive-Campus West Lawrence, Kansas 6604; E 7. 6-1 0.41.2

NASA CR
147781

METHODS FOR CORRECTING MICROWAVE SCATTERING AND EMISSION MEASUREMENTS FOR ATMOSPHERIC EFFECTS

CRES Technical Memorandum 254-6

> regram inicimation cait whout liadility hi ane ve made thareot."

August, 1975

Supported by:
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Lyndon B. Johnson Space Center Houston, Texas 77058

CONTRACT NAS 9-13642

Methods for Correcting Microwave Scattering and Emission Measurements for Atmospheric Effects
 by Mark Komen

ABSTRACT

Algorithms have been developed to permit correction of scattering coefficient and brightness temperature for the Skylab S-193 Radscat for the effects of cloud attenuation. These algorithms depend upon a measurement of the vertically polarized excess brightness temperature at 50° incidence angle. This excess temperature is converted to an equivalent 50° attenuation, which may then be used to estimate the horizontally polarized excess brightness temperature and reduced scattering coefficient at 50°. ${ }^{\text {ar }}$ angles other than 50° the correction also requires use of the variation of emissivity with salinity and water t inperature. When theoretical values are used for this, the effect may be translated to an equivalent 50° case and the attenuction estimated.

Use of 50° estimates should be quite satisfactory for the in-track modes of the S-193, but the more complex (and less reliable) methods based on using theory to obtain an equivalent 50° number must be used in the cross track modes because the same spot is not viewed at both 50° and another angle in these modes.

1.0 INTRODUCTION

The removal of atmospheric effects from radiometer and scatterometer measurements has been the focus of this part of the technical study on the RADSCAT. Two main areas, correction of scattering coefficient for atmospheric effects and brightness temperature for atmospheric, angle, and surface effects are discussed in this memorandum.

It has been shown (Hollinger, 1971) thai vertically polarized brightness temperature at 50° incidence angle is insensitive to surface roughness and correspondingly to windspeed while still being sensitive to changes in the atmosphere. Brightness temperature at the si:; face is related to apparent temperature at the satellite altitude, the difference beir, ed as excess temperature. If the excess temperature at 50° incidence angle is known, the theory covering the 50° incident angle case can be extended to all incidence angles.

Also to be considered is translating the brightness temperature to a reference brightness temperature at some standard water temperature and standard incidence angle so that the radiometric measurements after the removal of the temperature and incident angle effects reflect only atmospheric and roughness effects. The final result of correcting for atmospheric effects is presented in the form of two user-oriented subroutines, one which removes the atmospheric effects based on the 50° incident angle brightness temperature insensitivities, and the other which performs the reference temperature/ incidence arigle translation.

The purpose of this memorandum is twofold, the first being to remove the effects of the atmosphere from the radiometer and scatterometer measurements.
it has been shown (Hollinger, 1971) that brightness temperature at 50° incident angle is insensitive to surfase roughness and correspondingly to windspeed while still being sensitive io changes in the atmosphere. Brightness temperature at the surface is related to apparent temperature at the satellite altitude, the difference being defined as excess temperature. If the excess temperature at 50° incident angle is known, the theory covering the 50° incident angle case can be extended to all incident angles.

Also to be considered is translating the brightness temperature to a reference brightness temperature at some standard water temperature and standard incident angle so that the radiometric measurements reflect the removal of the temperature and incident angle effects. The final re:ult of correcting for atmospheric effects is presented in the
form of two user-oriented subroutines, one which removes the atmospheric effects based on the 50° incident angle brightness temperature insensitivities, and the other which performs the reference temperature/incident angle translation.
2.0 Removing the Effects of the Atmosphere-Derivation of Excess Temperature and

Attenuation
The estimation of the atmospheric effect begins with the calculation of vertical excess temperature near 50° incidence angle. This excess temperature is calculated by taking the difference in the apparent temperature measured by Skylab and the surface brightness temperature as calculated from Fresnel theory. Although Fresnel theory is only valid for smooth surface conditions at 50° incidence angle and vertical polarization, the result is independent of windspeed. Given the incident angle, salinity, frequency, and the surface water temperature, the reflection coefficients for an electromagnetic wave incident on a smooth sea (zero wind case) can be calculated. The polarized reflection coefficient $R_{p}(\theta, T w)$, where θ is the incident angle, $T w$ is the water temperature, and p represents the polarization, is expressed as:

$$
\begin{aligned}
& R_{v}\left(\theta_{,} T_{w}\right)=\frac{\epsilon_{r}\left(T_{w}\right) \cos \theta-\sqrt{\epsilon_{r}\left(T_{w}\right)-\sin ^{2} \theta}}{\epsilon_{r}\left(T_{w}\right) \cos \theta+\sqrt{\epsilon_{r}\left(T_{w}\right)-\sin ^{2} \theta}} \\
& R_{H}\left(\theta_{1} T_{w}\right)=\frac{\cos \theta-\sqrt{\epsilon_{r}\left(T_{w}\right)-\sin ^{2} \theta}}{\cos \theta+\sqrt{\epsilon_{r}\left(T_{w}\right)-\sin ^{2} \theta}}
\end{aligned}
$$

where $\epsilon_{r}(T w)$ is the complex relative dielectric constant of sea water at temperature T_{w}. Emissivity $\in p(\theta, T w)$ is related to the Fresnel coefficient by

$$
\epsilon_{p}\left(\theta, T_{w}\right)=1-\left|R_{p}\left(\theta_{1}, T_{w}\right)\right|^{2}
$$

The vertical brightness temperature is expressed as:

$$
\begin{equation*}
T_{B V}=\epsilon_{V}\left(50^{\circ}, T_{w}\right) \cdot T_{w} \tag{1}
\end{equation*}
$$

Where T_{w} is the water temperature at the surface. By definition, the excess temperature is the difference between the apparent temperature and the brightness temperature.

$$
\begin{equation*}
T_{e x}=T_{a p p}-T_{B} \tag{2}
\end{equation*}
$$

where $T_{\text {app }}$ is the radiometric temperature at the satellite altitude in the antenna pointing direction and T_{B} is the surface brightness temperature.

An empirical relation between vertical excess temperature and attenuation at 50° incidence angle was derived from soundings taken by a NIMBUS satellite. Further analysis by the ATRAD* atmospheric radiation package yielded a graph of attenuation vs. vertical excess temperature (Figure 1). Regression analysis shows the two quantities related by the equation

$$
\alpha\left(50^{\circ}\right)=0.0179 x-0.0000556 x^{2}+0.00000433 x^{3}
$$

where X represents the vertical excess temperature in degrees Kelvin and s $\left(50^{\circ}\right)$ the attenuation in decibels.

ATRAD also yielded a relation between horizontal and vertical excess temperatures at 50° incidence angle which (Figure 2) by using a regression analysis, is described by

$$
T_{e e_{H}}=1.531 \mathrm{~V}+0.00447 \mathrm{~V}^{2}-0.00008 \mathrm{~V}^{3}
$$

where V is the vertical excess temperature and $T_{\text {ext }}$ is the horizontal excess temperature at 50° incident ar le, all in degrees Kelvin.

Since the at ation by the atmosphere is now known, the scatterometer measurement is correcte

$$
0(d B)=\sigma^{\circ}(d B)+\alpha(d B)
$$

[^0]

Figure 1. Attenuation vs. vertical excess temperature (50° incidence angle).

Figure 2. Horizontal excess temperature vs, vertical excess temperature (50° incidence angle).
where σ° is the scatterometer cross section, \propto the attenuation, and σ_{c}° the corrected scaticrometer measurement, all in decibels.

At this point, all the 50° incidence angle data can be corrected for atmospheric effects. Knowing the horizontal excess temperature, the horizontal brightness temperature at 50° incidence angle can be obtained from equation (2). The horizontal emissivity at 50° can be obtained by solving equation (1) for $\leqslant p\left(\theta, T_{w}\right)$ for horizontal polarization.

The next step is to calculate certain parameters to be used at other incidence angles.

Attenuation and transmittance are related by the expression

$$
r(\theta)=10^{-\alpha / 10}
$$

where ${ }^{\Gamma}(\theta)$ is the transmittance at some incidence angle and γ is the attenuation in decibels. Transmittance is also a function of incidence angle (θ) and atmospheric opacity (τ_{0}).

$$
\Gamma(\theta)=e^{-\bar{\gamma}_{0} \sec \theta}
$$

Solving for 7_{0}, which is independent of incidence angle:

$$
\tau_{0}=\frac{-\ln \Gamma\left(50^{\circ}\right)}{\operatorname{sen} 50^{\circ}}
$$

It is important to examine the actual compon its of the apparent temperature. Figure 3 shows an electromagnetic wave incident on some surface having some brightness temperature T_{B}. $\quad T_{B}$ represents the amount of energy the antenna will see transmitted through the atmosphere. $T_{u p}$ is the atmospheric contribution $T_{\text {sky }}$ (looking up) plus that part of the cosmic background $T_{c}\left(2.7^{\circ} \mathrm{Kelvin}\right)$ trarismitted through the atmosphere. There will be some reflectivity, ${ }_{p}$ at the surface, so $\Gamma_{p} T_{u p}$ represents that part of $T_{u p}$ which is reflected and transmitted. Finally, there is some contribution TATM from just the atmosphere itself. Summing these components, it is seen that

$$
\begin{equation*}
T_{A_{F P}}=T_{A T M}+\Gamma\left(T_{B}+\rho T_{C P P}\right) \tag{6}
\end{equation*}
$$

1

Figure 3. Components of apparent temperature ($T_{\text {app }}$)

Substituting ϵ_{w} for $T_{B^{\prime}}(1-c)$ for p and $\left(T_{s k y}+\Gamma_{c}\right)$ for $T_{u p}$, where $T_{s k y} \cong^{\cong} T_{A T M}$ equation (6) becomes

$$
\begin{gather*}
T_{a p p}(\theta)=\Gamma(\theta)\left\{\epsilon_{p}\left(\theta, T_{w}\right) T_{w}+\left[1-\epsilon_{p}\left(\theta, T_{w}\right)\right]\left[T_{A T M}(\theta)+\Gamma(\theta) T_{C}\right]\right\} \tag{7}\\
+T_{A T M}(\theta)
\end{gather*}
$$

showing the angular dependence, or

$$
\begin{aligned}
T_{e x_{p}}(\theta)=[\Gamma(\theta)-1] \epsilon_{p}\left(\theta, T_{w}\right) T_{w}-\Gamma(\theta) & {\left[1-\epsilon_{p}\left(\theta_{1} T_{w}\right)\right]\left[T_{A T M}(\theta)\right.} \\
& \left.+\Gamma(\theta) T_{C}\right]+T_{A T A}(\theta)
\end{aligned}
$$

Solving for $T_{A T M}\left(50^{\circ}\right)$

$$
T_{\text {ATM }}\left(50^{\circ}\right)=\frac{T_{E x V}\left(50^{\circ}\right)-\left[\Gamma\left(50^{\circ}\right)-1\right] \epsilon_{v}\left(50^{\circ}, T_{W}\right)-2.7\left[\Gamma ^ { 2 } (5 0 ^ { \circ }) \left\{1-\epsilon_{v}\left(50^{\circ}, T_{1}\right.\right.\right.}{\Gamma\left(50^{\circ}\right)\left[1-\epsilon_{V}\left(50^{\circ}, T_{W}\right)\right]+1}
$$

\bar{T}_{A} or the mean atmospheric temperature is a weighted average of the physical temperature of the atmosphere as it varies: with altitude and is related to the atmospheric temperature ($T_{A T M}$) and the transmittance (\boldsymbol{r}) by the following expression (see Appendix A-2 for a detailed development of \bar{T}_{A}):

$$
\bar{T}_{A}=\frac{T_{A T A}\left(50^{\circ}\right)}{1-\Gamma\left(50^{\circ}\right)}
$$

\bar{T}_{A} is independent of incident angle for a given scan.
As was shown in equation (4) and (5), given the opacity at 50° and the incident angle, the transmittance at any angle can be calculated. Hence, the attenuation at any angle is given by

$$
\alpha(0)=-10 \log _{10} \Gamma(0) \quad d B .
$$

Now, the scatterometer can be corrected as per equation (3).
Solving for $T_{\text {ATM }}(A)$ in equation (9) for any incidence angle, and with T_{A} constant for a given scan,

$$
T_{A T M}(\theta)=T_{A}[1-\Gamma(\theta)]
$$

Solving for the emissivity at any angle $\epsilon_{p}\left(\theta, T_{W}\right)$ in equation (7) knowing the transmittance, apparent temperature, water temperature, and the atmospheric termperature at any incidence angle,

$$
\epsilon_{p}\left(\theta, T_{W}\right)=\frac{T_{A P P}(\theta)-T_{A T M}(\theta)[\Gamma-\Gamma(\theta)]-2.7 \Gamma^{2}(\theta)}{\Gamma(\theta)\left[T_{W}-T_{A T M}(\theta)-2.7 \Gamma(\theta)\right]-T_{A T M}(\theta)}
$$

Since equations for the brightness temperature and excess temperature have been defined in equations (1) \& (2), the data for incidence angles other than 50° can be corrected for atmospheric effects.

3.0 Removing the Effects of Water Temperature and Incident Angle Variations

To illustrate variation of brightness temperature with windspeed, and, indeed, to provide a suitable reference for after cation determination, effects of other parameters must be accounted for. Skylab data were taken at many water temperatyres and incidence ungles; variations in these parameters affect the measured radiometric brightness temperature. The incidence angles varied by two or three degrees at each command angle while the sea water temperatures varied by 10 or 15 degrees Kelvin. A nominal sea water temperature of $290^{\circ} \mathrm{K}$ and nominal incidence angles $\left(50.0^{\circ}, 40.0^{\circ}, 30.0^{\circ}, 15.0^{\circ}\right.$, and 0.0°) for each command angle were chosen and the brightness temperature which would have been measured at these nominal conditions was estimated. The estimated brightness temperature for these conditions is referred to as the reference brightness temperature.

Emissivities for rough surfaces are larger than those for smooth surfaces, but Fung and Claassen [1] showed that for a given windspeed and frequency, the emissivities for smooth surfaces and rough surfaces differed by a value which was independent of water temperature. Therefore, the change in emissivity in translating from the surface water temperature to the standard water temperature for a smooth sea will be
identical with that for a roughened sea.
Fresnel th. ry was used to obtain the pol sized emissivities for a mort sea as was done previously, fiven frequency, salinity, incidence angle, and surface water temperature (denoted by the point $\epsilon_{0} T_{w}$ on the $W_{0}=0$ curve in Figure 4). The polarized emissivities are then calculated at the given salinity and frequency but at the standard water temperature of 290° Kelvin (denoted by the point (ϵ of T_{s}) on the $\mathrm{W}_{0}=0$ curve in Figure 4). The polarized emissivities corrected for atmospheric effects (section I) are represented by the point (ϵ_{2}, T_{w}) on the W_{1} curve in Figure 4, where W_{1} is the windspecd at the surface cell. Translating to point ($\epsilon_{1 s}, T_{s}$) is done by noting

$$
\Delta \epsilon_{T_{w}}=\epsilon_{O S}-\epsilon_{0}=\epsilon_{15}-\epsilon_{1}
$$

Figs : 5 shows the amis ivity varying with incidence angle for a given windspeed. It is not known at this time exactly what the incidence angle depend nee is for all windspeeds due to a lack of experimental data. At some points, tine variation in windspeed caused by variations in incidence angle are significant and therefore the W_{0} curve. was used to estimate some first order correction for the data. This correction for incidence angl variation is obtained by translating along the W_{0} curve and assuming the this is comparable to translating along the W_{1} curve. The total change in emissivity is then,

$$
\Delta \epsilon=\Delta \epsilon_{T_{W}}+\Delta \epsilon_{\theta}
$$

Hence,

$$
\epsilon_{1:}=\epsilon_{1}+a \epsilon
$$

Figure 4. Emissivity vs. water teinperatu ta wind roughered (W_{1}) or a dead calm (W_{0}) sea at a ant incidence angle.

Figure 5. Emissivity vs. incidence angle for a wind roughened $\left(W_{1}\right)$ or a dead calm $\left(W_{0}\right)$ sea.

Knowing the emissivity at the standard water temperature and the standard incidence angle, the reference brightness temperature is calculated and the radiometer is corrected for variations in water temperature and incidence le.

$$
T_{B_{R E F}}=\epsilon_{P}\left(\theta_{S}, T_{W S}\right) T_{W S}
$$

where $T_{B R E F}$ is the reference brightness temperature and $\epsilon_{p}\left(\Theta_{s^{\prime}} T_{w s}\right)$ the polarized emissivity at the standard incidence angle (ϵ_{s}) and the standard water temperature ($T_{w S}$).
4.0 Algorithms

This section outlines in flow chart form the algorithms for computing the attenuation and emissivities at 50° incident angle (subroutine ATM50), those at any other i : , dance angle (entry point ATM), and the brightness temperature translations (subrouti:: TRANSREF). These major routines, and others called internally, are described and listed in Appendix A-1.

SUBROUTINE ATM5O

EV = VERTICAL EMISSIVITY EH = HORIZONTAL EMISSIVITY
ATTEN = ATEENUATION
$\theta=$ ACTUAL INCIDENCE ANGLE
TW = SURFACE WATER TEMPERATURE
SAL = SALINITY TAPPV = VERTICAL

APPARENT TEMPERATURE TAPPH = HORIZONTAL

APPARENT TEMPERATURE DEFLT - DEFAULT VALUE

EV = VERTICAL EMISSIVITY
EH = HORIZONTAL EMISSIVITY
ATTEN = ATENUATION
$\theta=$ ACTUAL INC IDENCE ANGLE
TW = SURFACF WATER TEMPERATURE
TAPPV = VEk,iCAL APPARENT TEMPERATURE
TAPPH = HORIZONTAL APPA IENT TEMPERATURE DEFLT = DEFAULT VALUE

REPRODUCIBITITY OF THE original page is poor

APPENDIX A-I

Description and Listing of Subroutines

Fortran IV subroutines and a brief description of how to use them are listed in this appendix. Each routine is documented internally for more detailed user information. The equations and formulas shown in the programs are based on derivations given in the text, with some modifications as to variable names.

MAJOR SUBROUTINES

Subroutine ATM50 A-1.1
This routine computes the polarized emissivities and attenuation for the 50° incidence angle case. Should input variables of incidence angle, water temperature, salinity, or vertical apparent temperature be default, the output variable will likewise be defaulted since all of these input quantities are necessary to compute emissivity and attenuation. Vertical emissivity and attenuation are computed independently of horizontal appc ient temperature, so should horizontal apparent temperature be default, a default value only for horizontal emissivity will be returned along with computed values for vertical emissivity and attenuation.

Entry point ATM A-1.2

This entry point in subroutine ATM computes the polarized emissivities and attenuation for incidence angles other than 50°. The input and out. ut arguments are identical with those in sybroutine ATM50. The mean atmospheric temperature and the opacity, which are constant at all incidence angles, are determined in ATM50 and are used here to determine the polarized emissivities and the attenuation.

Subroutine TRANSREF A-1.3

This routine performs the reference brightness temperature translations discussed in section II. Input quantities of water temperature, salinity, incidence angle, and standard incidence angle are required to calculate the Fresnel reflection coefficients and, likewise the emissivities, for a smooth sea. The values for frequency and salinity arc specified in a DATA statement. The change in emissivity in translating from the surface water temperature at the actual incidence angle to the standard water temperature at the standard incidence angle is computed. Then, by knowing the emissivities for a roughened sea, the standard emissivities and the reference brightness temperature can be computed.

INPUT PARAMETERS

> THETA $=$ INCIDENT ANGLE (DEG)
> TH $=$ WATER TEMPERATURE (DEG C)
> TAP $=$ VERTICAL APPARENT TEMPERATURE (DEG K)
> TAP $=$ HORIZONTAL APPARENT TEMPERATURE (DEG K)
> SAL $=$ SALINITY IN PPM

OUTPUT PARAMETERS

```
EV = VEPTICAL EMISSIVITY
                    EH = HORIZONTAL EMISSIVITY
                    ATTEN = ATTENUATION (DB)
```

INTERNAL PARAMETERS
I = A FLAG WHICH IS SET TO DETERMINE WHETHER OR NOT ALL THE OUTPUT PARAMETERS ARE OEFLULTEJ FOR THE 50 DEGREE CASE. WHEN $I=0$, ALL THE 50 DEGREE CASE PARAMETERS ARE DEFAULTED AND THERE IS NO NEED TO PERFORM THE CALCULATIONS AT THE ENTRY POINT ATM. WHE:I I =1, ALL THE OUTPUT PARAMETER VALUES FGR THE 50 LEGREE CASE ARE NOT DEFAULT. I IS RESET TO 1 FOR EACH NEW SCAN.
RV. RH $=$ POLARIZES FRESNEL COEFFICIENTS
GAMMA $=$ TRAHSMITTAIGCE AT 5 C DEGREES INCIDENT ANGLE
GAMING = TRANSMITTANCE AT OTHER INCIDENCE ANGLES
TABARV,TABLFH = POLARIZE O MEAN ATMOSPHERIC TEMP.
TVAT,THAT $=$ POLARIZED ATMOSFHERIC TEMPERATURES
T = ATMOSPHERIC OPACITY
COMPLEX RV, RH
DATA DEFLT/0377777777777/
DATA FREO,I/13.9,1/
IF (THETA.ËQ. DEFLT.OR.TW.EQ.DEFLT.OR.TAPV.EQ. DEFLT.OR.SAL.ED. DEFT) 1 GO TO 20

ANGRA $=$ THETA /57.3
$T W K=T W+273.18$
CONVERT INCIDENT ANGLE IN DEG 10 RADIANS
CONVERT WATER TEMPERATURE IN DEG C TO DEG K
CALCULATE THE VERTICAL EMISSIVITY FOR
THE ZERO WIND CASE
CALL DIECC(FREQ,TWK,SAL)
CALL FRESNEL (ANGRAD,RV,RH)
RVM2 $=$ RV*CONJG (RV)

1470 EQUALITY OR NON-EQUALITY COMPARISON MAY NOT BE MEANINGFUL IN LOGICAL IF EXPRESSIONS

SUBROUTIAE TKANSREF (TH, SAL, THETA, STJANG, EV, EH, TBVREF, TBHREF)

OATA FREQ,TS/13.9,290.1
OATA DEFLT/O377771777777/
COMPLEX RV,RH
IF (EV.EQ. DEFLT.ANO.EH.EZ. DEFLT) GO TO 100
IFITH.EQ. DEFLT, OR.SAL.EQ. DEFLT.OR.THETA.EQ. OEFLT.OR.STJANG.EQ. DEFL
1F) GO TO 100
C ANGRAD $=$ THETA/E7.3

ANGRAD $=$ THETA/E7.3
C IN DEGRES TO RACIANS
C SAR=STJANG/57.3
$T W K=T W+273.18$
COIIVERT WATER TEMPERGTURE IN DEG C TO DEG K
CALCULATE THE FRESNEL COEFFICIENTS ANO
THE EMISSTVITIES AT THE CELL WATER
THE EMISSIVITIES AT THE CELL WATER
TEMPERATURE AND THE ACTUAL INCIDENT ANGLE
CALL OTECO(FREQ,THK, SAL)
CALL FFESNEL (ANGPAJ, RV,RH)
RVM2 $=F V^{*}$ CONJG(RV)
RHM2 $=6 H^{*}$ CCNJG(RH)
EPSLV $=1,-$ FVM2
EPSLH=1.-RHM2

CALL JIECOIFREO,TS,SALI
CALL FFES:AEL (SAR,RV,RH)
RVMGZ $=$ RV*COHJG(RV)
RHMGZ $=$ FH*CONJG (RH)
EFSLNV $=1 .-$ RVMG2
EPSLNH=1.-RHMG2
C
CONVÉRT INCIJENT ANGLE IN DEG TO RADIAIS
CONVERT STANDARC INCICENT ANGLE

```
こんIDENT ANGL
```

\qquad

- \square

TH = WATER TEMPERATURE (DEG C)
SLL $=$ SALINITY IN PPM
ThETA = INC:JENT ANGLE (DEG)
STJAVG = STAVJIRJ ANGLE (DEG)
EV $=$ VERTICAL EMISSIVITY
EH = HORIZONTAL EMISSIVITY
OUTPUT PARAME IERS
TBVREF = VERTICAL REFERENCE TEMPERATURE (DEG K)
TBHREF = HOR:ZONTAL REFERENGE TEMPERATURE (DEG K)

H)

\qquad
$-$
\qquad
\qquad

EY TRANSLATING THE RRIGHTNESS TEMFERATURE TO A REFEPENCE BRIGHTAESS TEMPERATURE EASEO ON 290 JEGREE KELVIN WATER. TEMPEFATURE AND THE STANJARD ANGLE SPECIFIED.

INPUT FARAMETERS
\qquad
\square \square
4 5

```
-
```

,
\square

\squareEPSLNH=1.-RHMG2CALCULATE THE CHANGE IN EMISSIVITY BETHEEN

THE STANDARD AND CELL WATER TEMPERA TURES

```
54 DELEV=EPSSNV-EPSLV
```

54 DELEV=EPSSNV-EPSLV
DELEH=EPSLNH-EPSLH
IFIEV.EQ.IEFLTI GO TO 50
ESV=EV\&DELEV
TSVREF=TS*ESV
GO TO 60
50 TBVREF=DEFLT
60 IF (EN.EQ.DEFLT) GO TO SO
ESH=EH+DELEH
T3HREF=TS*ESH
GO TO 2CO
8t TSHREF=DEFLT
GO TO 200
100 T3VREF=OEFLT
TGHREF=JEFLT
2VO RETURA
ENO

```
    1470 EQUALITY OR NON-EQUALITY COMPARISON MAY NOT BE MEANINGFUL IN LOGICAL IF EXPRESSIONS

\section*{ROUTINES CALLED BY THE MAJOR ROUTINES}

\section*{Subroutine ATTENV A-1.4}

This routine which is called by ATM50 takes the \(50^{\circ}\) vertical excess temperature ond returns the attenuation and the transmittance. The incidence angle is then used in conjunction with the transmittance to obtain the atmospheric opacity.
Subroutine HEXCESS A-1.5
This routine, which is called at the entry point ATM, takes the \(50^{\circ}\) vertical excess temperature and returns the horizontal excess temperature. Subroutine TATM A-1.6

This routin, which is called at the entry point ATM, takes the input quantities excess temperature, transmittance, water temperature, and apparen: temperature, calculates the emissivity and atmospheric temperature and returns a value for the mean atmospheric temperature for any incidence angle. Subroutine FPS A-1.7

This routine, which is c 'led at the entry point ATM, caiculates the emissivity at any incidence angle given the mean atmospheric temperature, the apparent temperature, the transmittance, and the surface water temperature. Subroutine FRESNEL A-1.8

This routine, called by both ATM50 and TRANSREF, computes the Fresnel reflection coefficients for sea water given the incidence angle. This routine must be initialized by calling entry point DIECO which computes the dielectric constant for sea water, given the frequency, water temperature, and salinity.
```

 labEL
 1.] 7007402 08063-75 16.469
\& SUBROUTINE ATTENV ITVEXSU, THETA,GAMSO,ATTN5J,TI
AND OPACITY AT 5, CEGREES INGIDENT ANGLE.
INPUT PARAMETERS
TVEX50 = VERTICAL EXCESS TEMPERATURE
AT 5O DEGREES INCIDENT ANGLE (DEG K)
THETA = INCIDENT ANGLE (JEGG)
OUTPUT PARAMETERS
GAM50 = TRANSMITTANC:: AT 5C DEGREES
GTTN5O = ATTENUATION 4T 50 DEGREES (00)
T = ATMOSPHEZRIC OPACITY
X=TVEX50

```

```

 GLMSG=1C.**(-ATTNJD/1C.)
 RLD=THETA/57.3
 SEC=1./COS(PAD)
 T=-(ALOG(GAM5C))/SEC
 RETURA
 ENO
    ```
1:
    3
\(x\)
2
2
18
\(\vdots\)
\(\vdots\)
\(x\)
\(x\)
\(\qquad\)
\(\qquad\)


SUBROUTINE TATM（TEX5C，GAMMA，TWK，TAPE，TATM5O，TK）
this routine calculates the polarize atmospheric TEMPERATURE iT 50 DEGREES ANE MEAN ATMOSPHERIC TEMP．

\section*{INPUT PARAMETERS}

TEX5J＝EXCESS TEMPERATURE FOR 50
CEJREES INCIDENT ANGLE（DEG K）
GAMMA＝TRANSMITTANCE AT SC DEGREES INCIDENT ANGLE
TWK＝WATER TEMPERATURE（LEG K）
TAP＝POLARIZED APPARENT TEMPERATURE（DEG K）
OUTPUT PARAMETERS
TATMSE＝POLARIZED ATMOSPHERIC TEMPERATURE（DEG K）
TH＝POLARIZED MEAN ATMOSPHERIC TEMPERATURE

\section*{\(E 50=(T \angle P P-T E X 50) / T W K\)}
\(A=T E \times 5 C\)
\(B=\) GAMMA
\(\mathrm{C}=\mathrm{E} 50\)
\(D=\) TWK
TATMS \(=(A-(E-1) * C *)-.2.7 * B * B *(1,-C)) /\left(S^{*}(1,-C)+1.1\right)\)
TS＝TATM5 O／（1．－GAMMA）
RETURN
END
!

1 1

1


SUBROUTITE EPSITK,TAPP,GAMANG,THK,EI
this routine calculates the polarizej emissivity at a given incident angle other than 50 oegrees.

\section*{INPUT PARLMETERS}

TK = POLARIZED MEAN ATMOSFHERIC TEMPERATLRE
TAPP \(=\) POLARIZEO APOARENT TEMPERATURT (DEG K)
gamang \(=\) trainsmittance
tMK = WATER TEMPERATURE (DEG K)
OUTPUT PARAMETER
\(E=\) POLARIZED EMISSIVITY
TATM=TK*(1.-GAMANG)
\(A=\) TAPP
\(\mathrm{B}=\mathrm{GA}\) AIANG
\(c=\) TATM
D=Twk
\(\mathrm{E}=\left(厶-C^{*}(B+1)-.2.7^{*} B^{* B}\right) /\left(B^{*}\left(0-C-2.7^{* B}\right)-C\right)\)
RETURN
ENO


APPENDIX A-2

Derivation of the Mean Atmospheric Temperature
\(\mathrm{T}_{\text {SKY }}\) is defined as atmospheric contribution to apparent temperature looking up through the atmosphere. \(\mathrm{T}_{\text {SKY }}\) can be represented as the integral if the physical temperatures,
\[
T_{S K Y}=\sec \theta \int_{0}^{\infty} T(z) \alpha(z) e^{-\sec \theta \int_{0}^{z} \alpha\left(z^{\prime}\right) d z^{\prime}}
\]
\(T(z)\) is the physical temperature at altitude \(z\) the attenuation and \(e^{-\sec \theta} \int_{0}^{2} \alpha^{2}\left(z^{\prime}\right) d z^{\prime}\) the transmittance with \(\tau=\int_{0}^{2} \alpha\left(z^{\prime}\right) d z^{\prime} \quad\) being the atmospheric opacity. Then,
\[
d \tau=\alpha(z) d z
\]

Now, \(T_{S K Y}\) is expressed as
\[
\begin{aligned}
& T_{S K Y} \text { is expressed as } \\
& T_{S K Y}=\sec \theta \int_{0}^{\tau_{0}} T(z) e^{-\tau \sec \theta} d \tau
\end{aligned}
\]
\[
\begin{aligned}
& \text { Define } \bar{T}_{A}(\theta) \\
& \bar{T}_{A}(\theta)= \int_{0}^{\sigma_{0}} T(z) e^{-\tau \sec \theta} d \\
& \int_{0}^{\tau_{0}} e^{-\tau \sec \theta} d
\end{aligned}
\]

Using this value with the equation for \(T_{S K Y}\)
\[
T_{S K Y}=\bar{T}_{A}(\theta) \sec \theta \int_{0}^{\tau_{\omega}} e^{-\tau \sec \theta_{0}} d \tau
\]

Integrating,
\[
T_{\text {SKY }}=\bar{T}_{A}(\theta)\left(1-e^{-\tau_{0} \sec \theta}\right)=\vec{T}_{A}(\theta)[1-r(\theta)]
\]

Sample calculations from ATRAD show \(\tilde{\mathrm{T}}_{\mathrm{A}}\) to be virtually independent of \(\theta\).

\section*{REFERENCES}
1. Fung, H. S., and T. P. Claassen, "The Temperature Sensitivity of the Ocean Surface Emissivity at 13.9 GHZ", CRES Technical Report 254-4, University of Kansas Center for Research, Inc., Lawrence, February 1974.
2. Hollinger, J. P., "Passive Microwave Measurements of Sea Surface Roughness", IEEE Transactions, vol. GE-9, no. 3, pp. 165-169, July 1971.
3. Wu, S. T., and A. K. Fung, "A Theory of Microwave Apparent Temperature Over the Ocean", NASA Contractor Report, NASA CR-2359, November, 1973.
4. Computer program prepared by John Claassen, Remote Sensiry Laboratory, University of Kansas.```


[^0]:    * Reference

