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APPLICATIONS OF FEATURE SELECTION

1. INTRODUCTION

Alpractica1 application of.remote éensing which is of cbnsiderab]e
interest is the ﬁse of satellite-acquired (LANDSAT) ﬁu]tispectra] scanner
(MSS) data to conducf an inventory of some crop of economic interest
such as wheat over a large geographical area. Any such inventory
requires the development of accuraté'and efficient algorithms for data
classification. The use of'multitemporairméaSurements (several
registered passes during the growing season) incfeasés the dimension of
the measurement space -and thereby increases the computatibna] load for
a classification algorithm. When statistical pattern recognition
techniques are used in classification algorithms, one method for reducing
the dimensionality of the problem is by the use of feature selection/
combination techniques.

Theoretical results pertaining to minimizing the probability of
misclassification for linear featufe selection were initially obtained
by Guseman and Walker [1], [2]. A computational procedure was developed
(see [11, {3]), for the case of two n-dimensional muitivariate normal
populations with equal a priori probabilities and a one-dimensional
feature space. Theoretical results for the general case of m
n-dimensional multivariate ndrma1 populations with arbitrary a priori
probabilities and. a k-dimensional feature space - (k < n) appear in
[6]..iDévelopmént of a compdtational.préceduré‘for the special Caée

k = 1, based on the results obtained in [6],'was_initiated in December
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of 1973, and completed January 1975 under a previous contract (see [4]).
During'this same period, a pre]iminary-investigatjoanas_1nitiated which
involved the application of feature selection to estimation of proportions
(see [5]).

Additional feature selection algorithms based on other criteria

(e.g. divergence, Bhattacharyya, etc.) allowing transformation from n
to k dimensions (k > 1) have been developed at the University of Houston.

Investigations carried out under this contract were concerned with

Extending the feature se]éction procedure of [4] to the
case where the density function for each population is a
convex combination of multivariate normals.

Application of the extended feature selection procedure to -
the problem of estimating the proportions of "WHEAT" and
"NON-WHEAT" in a given sample segment.

Application of feature selection to color display of multi-
channel images.

Each of these_investigations is discussed in turn in the sequel.

2. EXTENDING FEATURE SELECTION PROCEDURE

The feature selection program (LFSPMC) was extended to treat the case
where the density function for each population is a convex combination of
multivariate nofma]s. Additional modifications were made to the program
to allow for simp]ef data set-up and progkam operation. The feature
selection method formulation, éssociated computational technique, and

users guide for the program are contained in

L.F. Guseman, Jr., and Bruce P. Marion, LFSPMC (Version 2):
Linear Feature Selection Program Using the Probability of
Misclassification, NASA Contract NAS-9-14689-4S, Texas A&M
University, Department of Mathematics, Report #6, March 1976.



The new version of LFSPMC is cépab]e'of working with sévera]l
populations, each of whose density functions is a convex combination of
multivariate normals.

Additions to the program include internal computation of the program
parameters which set 1imits on the number of iterations through the
optimization algorithm and provide the initial guess for the minimum
of the obje;tive function,

The computational procedure for providing the starting vectors to the
optimization algorithm does not appear to work well when several component
classes are combined into one single convex combination. This situation

is still being investigated.




3. ESTIMATION OF PROPQRTIONS

Investigations were carried out which Ted to the formulation and
implementation of computatioha1 procedures which treat the following

problem:

Given LANDSAT data (multitemporal) over a LACIE sample segment,
and representative samples of the classes present in the
segment, estimate what proportion of the sample segment. is

in WHEAT.

The approach to the above problem taken in the investigations can be

summarized as follows:

(a) The density function for each of the classes WHEAT
and NON-WHEAT is expressed as an appropriate convex
combination of multivariate normal densities with
known means and covariance matrices (ueually obtained
from a training sample).

(b) Feature selection is performed (using LFSPMC (Version 2))
to produce a corresponﬂing optimaT one-dimensional
Bayes cfassifier for WHEAT VS. NON-WHEAT whose associated
confusion matrix is computeb]e.

(c) Using the one-dimensional classifer and associated
confusion matrix, an estimaie of the true proportion

of WHEAT in the sample segment is made.



The mathematical formulation of the estimation of proportions

procedures, along with_numerita]ﬁ'results appear in

L.F. Guseman, Jr. and Jay R. Walton, Methods for estimating
proportions of convex combinations of normals, NASA Contract
. NAS-9-14689-4S, Texas A&M University, Department of Mathematics,
" .“Report #7, Apr11 1976.

The methods presented in the above report have'the advantage that
classification of multitemporal data over a sample segment is performed
optimally in~one-dimensiona1 space'thereby reducing significantly the
computer tine spent in classification. Another advantage is that the
confusion matrix, used 1n obtaining unbiased est1mates of the WHEAT
proportions, can be readlly computed w1thoutfthe costly requirement of
obtaining a labeled samp]e 1ndependent of the training sample.

The estimation of proportions procedures were‘jmplemented (Program
ESTPRO), and tested using MSS measurements_(four:registered passes) from
Hill County Montana. The preliminary resu]ts appear to be quite good.
In one case (ESTIMATOR 4), two unbiased estimates are available depending

on the choice of sign. At present, there is no automatic rule which

dictates the choice of sign. Instructions for use of ESTPRO appear in

L.F. Guseman, Jr., Bruce P. Marion and Manot Swasdee, Users Guide -

ESTPRO: Estimation of proportions program using feature selection,

NASA Contract NAS-9-14689-4S, Texas A&M University, Department of

Mathematics, Report #8, May, 1976.

An additional investigation into the problem of formulating
minimum variance unbiased'estimators was performed;. Preliminary results

were obtained for the special case of two multivariate normal populations.



Results of this investigation appear in

Jay.R. Walton, Observations on minimum variance proportion

estimation, NASA Contract NAS-9-14689-1S, Texas A&M

University, Department of Mathematics, Report #5, February, 1976.
Preliminary numerical results based on results in this report indicate
a sensitivity to the choice of variance-like function being,minimized,
as well as a dependence on the sample being used in the proportion
estimation portion. In addition, no results are yet available which

indicate how one might extend the above work to the "WHEAT" vs

"NON-WHEAT" problem.



4. COLOR DISPLAY OF MULTICHANNEL IMAGES

A common prbblem for anlimaée analyéf;photebinterbreter (AI) is
the analyeis of mulfiehannel jmaées ef high dimensioﬁalfty. - For example,
satellite acquired,multispectre] scanner date‘frpm several temporal passes
may be twelve or more dimehsioha] Current color'diSbTay techniques allow
split-screen displays of up to twelve channels (for up to 16- d1mens1ona1
four pass LANDSAT data). However most Al work is restr1cted to one
pass data owing to interpretat1on, display and data management problems.

For many app]ieations, one'pase'is enough. However, recognition of
crops (for example, for the u1timate purpose‘of a large area crop inventory)
by statistical pattern recogn1t1on techn1ques requ1res more than one pass
data to achieve acceptable performance. If these techn1ques are applied
in the original space (of, say, twelre dimensions), computat1ona1 problems
become severe. Feature selection fechniques furﬁish methods of reducing
the dimensionelity of feature space which'preserve (fh some sense) data
separation, making computationally feasib]e‘refined>pattern recognition
techniques; '

Of course, an AI is not a computer. The Al can

(i) make use of subtle spatial relationships to recognize
fields which a computer would "see" as all boundary
(for instance, the long narrow fields of crops
alternating with fallow in dry areas)

(ii) pass over large areas (urban, forest) at a glance

(iii) adjust subjectively for differing soil types,
agricultural practices, sun angle (signature extension)

A11 these tasks are difficult for the computer; ‘By making use of his

special abilities, an Al using one pass data will compete favorably with



the best automatic pattern recognition techniques.v-Even so, it seems that if
multitemporal data can be reduced in size and displayed 1ike one pass

data in a predictable form; then the accuracy_bf‘the_AI product must
increase. | o |

The reports

Jack D. Bryant, David Nobles and Manot Swasdee, Computer

Program Documentation: Program NONLN1 and NONLN2 - Nonlinear

Color Display Program, NASA Contract NAS-9-14689-4S, Texas

A&M University, Department of Mathematics, Report #9, May, 1976

Jack D. Bryant, David Nobles and Ménot‘SWésdee, Computer Program

Documentation: Program ROTAT1 and ROTAT2 - Rotation To

Produce Color Displays, NASA Contract NAS-9-14689-4S, Texas

A&M University, Department of Mathematics, Report # 10, May, 1976
discuss first efforts to accomplish a reduction -of 12 dimensional data
to 4 dimensional data in a form which can be displayed in the same
manner as one pass data»is currently being displayed. The detailed
description Qf our methods appear there. Here we discuss in a general
way the idea of generating one pass LANDSAT-1ike data from the output
of a linear feature selection program mapping mu]fitempora] LANDSAT
data feature selection program to 4 dimensions.

Several problems exist which make transformed (by a linear feature

selection procedure) data unlike one pass LANDSAT data.

1. The transformed data consists of a four vector of real
-numbers.' How can the transformed détavbe displayed at
all on a device which expects input'dafa to be 6 or 7
bit (unsigned) integers (that is, fixed point numbers

in the rénge 0-63 or 0-127)?



2. The transformed data has a much larger range than
.agricultural information occupies. How can the data

be quantized without losing agricultural informatfon?

3. After transformation, the data has no intrinsic meaning.
That is, feature selection programs produce a transformation
which optimizes some measure of separation. " Obviously the
transformation is not unique. If problems 1. and 2. are
solved somehow, how can colors be assigned to the scaled
data so that comparable colors result when different

feature selection transformations are applied?

Problems 1. and 2. are easily solved. The idea is to find what happens
to the mean vectors of the classes the feature selection program was trained
on. We allow some variation, and define two 4-hyperrectangles: one, which
is used to define a map into a unit 4-cube, has its corners defined by the
maximum over all classes of means plus standard deviation sigma (square
root of diagonal element in covariance matrix for that class and transformed
channel) and minimum of means minus sigma; and another, which is used to
test for data with brobab]y no agricultural significance by corners maximum
over all classes of mean plus 3 sigmé and minimum of mean minus 3 sigma.
Figure 1 (see following page) plots the image in a unit 3-cube of transformed
means we found in test data generated from Hill County North data using
the UH Feature Selection Progham. (Of course, there are four dimensions

in actual transformed data.)
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Figure 1 Six transformed means “in channels 1, 2, 4
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This data could now be scaled and displayed. However,_it would be
1ittle help to an AI unless there weré some way to predict thch color
represented which class. (In the current example; 1 is GRASS and 5 is
WHEAT.) This is the point of problem 3:  how.can cblor; be assigned

consistently? We motivate our choices as follows:

a. In all scenes which we have viewed,‘at least one class
~ which we have viewed is GRASS.
b. There will usually be one class in which there ié more

interest than in others: for instance, WHEAT.

c. The colors red and green seem to carry more subjective
information than blue. Hence we want to make the class
we have most interest in (WHEAT) red and another class

which is nearly always present (GRASS) green.

(The statement in c. is misleading. We are not trying to produce a
cfassification map; we only produce an enhanced display.)

The two methods we investigate (and which are described in detail in
the above reports) are quite different but accomplish somewhat the same
thing. One starts out béing a composition of rotations which ends up
with WHEAT along the "red" axis and GRASS in the "red~green" plane;
some nonlinear scaling is then app]ied'to 1mbrove this result. The other
starts out being highly nonlinear (and'somewhat‘noise-succeptable), but
is much more efficient'infcomputer time USagé._'BOth do we]l making

WHEAT red; we think ROTAT1-2 (the rotation-based method) is best.
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1.0 INTRODUCTION

The problem of classification arises when an observer must
determine the class of an object by investigating a set of measure-
ments or features taken from the object. It is assumed that the object
belongs to one of a finite number of classes (e.g. crops) and‘that
each class is described by a probability distribution of its measure- .
ment vectors. It is also assumed that combinations of classes can be
defined as convex combinations of the associated density functions.

When the dimension of the measurement vector is high and a large number
of objects are to be classified the computational load increases signifi-
cantly. As a result, one employs feature selection techniques which
allow classification in spaces of lower dimension while preserving as
much as possible the discriminatory power inherently available in the
original measurements.

In the sequel we discuss the computational procedure and associated
computer program for a linear feature selection technique. The technique
assumes: |

1. A finite number, m, of convex combinations of classes

2. Each class is described by an n-dimensional multivariate

normal density function of its measurement vectors.

3. The mean vector and covariance matrix for each density

function are known (or can be estimated).

4. The a priori probability for each class and for

“each convex combination of classes is known.



.. The technique produces a single linear combination of the original
measurements which minimizes the one-dimensional probability of mis-
classification defined by the transformed densities. The procedure for
two classes with equal a priori probabi]ities was developed in [3].
Subsequent theoretical results from [4] and the original version of
LFSPMC discussed in [6] form the basis for the procedure described
herein. The computational procedure and a description of the associated
computer program appear in Section 3.0. Procedures for using the pro-
gram appear in Section 4.0. Section 5.0 contains example input and

output.



2.0 MATHEMATICAL PRELIMINARIES

Let Hl, Hz""’HL be distinct classes (e.q. crops of interest)
with known a priori probabilities I respectively. Let
X = (xl,xz,...,xn)T ¢ E" denote a vector of measurements (e.g. LANDSAT

multispectral scanner data from either a single pass or Eevera]

registered passes) taken from an arbitrary element of LJHi . Suppose
i=1
that the measurement vectors for class I, are distributed according to

the n-dimensional multivariate normal density function
- -1 - .
p;(x) = (2m) 215,17 Zexo [ Fx-) T, ](X-ui)} SRR

We assume that the nx1 mean vector M. and the nxn covariance
matrix P for each class M, are known with L positive definite,

1 <i<L. The symbol |A| ds used to denote the determinant of the
matrix A.

Given the partition®
{],2,...,k1,k1+1,...,kz,k2+1,...,ki,ki+1,...,km}
of {1,2,...,L} dinto m subsets, let

i=1,2,...,m,

where ko =0, k =L, and let mi = ki - ki-]

Then Fi has a priori probability

*The program allows an arbitrary partition of the L classes into
convex combinations.. We assume the ordered partition defined herein
only for purposes of simplifying notation in the discussion. See Example 2,
Section 5.0.



Y: T z o: , 1=1,...,m.
1 .o |
I=kiq "]
Letting
k‘l Ocj
h, = =p. , l<i<m
! J‘Zki_]ﬂ i -

we see that each hi is a convex combination of multivariate normals.

L
The mixture density for LJHj in terms of the combinations of classes
3=1
ri , 1= 1,2,...,m 1is easily seen to be
)
h = v.h
i=1 1

Since, in general, the aj's are unknown (and consequently so are the
v.'s), we allow for the specification of the a priori probabilities
B ”"’Bm for Fl,...,rm, respectively; that is, we assume the

1

expression for h given by

. ]Bihi

1

=
[T}
nes13

The n-dimensional probability of misclassification, denoted by PMC,
m

of objects from U T, is given (see [1]) by
=1

PMC = 1 - [ max  B.h.(x)dx

"
-—
1
nes-13



where the sets Ri » 1 <i<m, called the Bayes' decision regions,

are defined by

R. = {xe E" | B, h, (x) = max B, h. (x)} ,1<i<m
i i 1<jem 33 - -

The resulting classification procedure, called the Bayes' optimal

classifier, is defined as follows:

Assign an element to Fi if its vector X of
measurements belongs to Ri .
If B= (b ,...,bn) is a nonzero 1xn vector and x¢e E" ,

then y = Bxe E! and the transformed measurement vectors y = Bx

for class Hi are distributed according to the univariate normal

density function (see [1]) given by

2
- - (y - Buy)
p;(y,B) = (2m) ]/Z(BziBT) Veexp - —— L lcic<lL
ZBZiB
The transformed density for Fi is given by
k.
i oy o
hi(y,B) = ) T Pj(y,B) , i<i<m
j=k, 41
i-1
- m
The probability of misclassification g of an object from U I
: i=1

in terms of the transformed measurements y = Bxe E! , as a function

of nonzero B, is given by



g(B) =1 - [ max B, h.(y,B) dy

£l T<i<m

]
—
)
ne~13

R

where the transformed Bayes' decision regions are given by

Ri(B) = Jlye E' | B, hi(y,B) = max Bj hj(y,B) ,» 1<i<m.,
T<y<m
We use G(B) to denote the probability of correct classification for
B.

The computational procedure and associated computer program
described in the sequel present a method for determining a nonzero 1xn
vector B which minimizes g, or equivalently, which maximizes G.

The method yields a linear feature selection procedure in that classi-
fication is ultimately performed in E! using only a single feature;
namely, an optimal linear combination of the original measurements.

The classification procedure in E! 4s described as follows:

If B 1is a nonzero 1Ixn vector which minimizes g,
then assign an object to Fi if, for its measurement

vector x, Bxe Ri(B) .

Following arguments similar to those presented in [4]1, we obtain
the expression for the Gateaux differential (see [71, [4]) of G
(when it exists) given by
i o, cz,B'

K
m
86(B;C) = - J 8, ¥+ Lop.(y,B) | —= (y-Bu) + Cu,
=1 =SS B AN BL.B' i !

R;(8)



where the notation denotes the sum of the values of the
R (8)

function at the right endpoints of the intervals comprising Ri(B)

minus the sum of its values at the left endpoint.
If B 1is a nonzero 1 n vector which minimizes gq(B) =1 - G(B),

then B must satisfy the vector equation

8g(B;C ) 0

@l
S
tt
1

89(8B;C,) 0

where Cj’ ] < J <n, is a 1Ixn vector with a one in the jth slot
and zeros elsewhere. Using the formula for gg— resulting from the

above expression, and using the fact that",%§-= - gg—, we obtain a

numerically tractable expression for the Variation in the probability
of misclassification g with respect to B. The use of this ex-
pression in a computational procedure for obtaining a nonzero B

which minimizes g is discussed in subsequent sections.



3.0 COMPUTATIONAL PROCEDURE

The computational procedure for determining the nonzero 1xn
vector B which minimizes the probability of misclassification g with
respect to.the one-diménsioha] transfbrmed density functions is embodied
in the FORTRAN program LFSPMC_(VERSION 2).

Apart'from the various program parameters and command éards
(discussed in the sequel), the basic input data to the program consists

of the class names, mean vectors and covariance matrices which comprise

the class Statistics deck. A]1 input data to the program is from unit
reference 5 (usually punched cards). A1l output from the program is
printed on unit reference 6. Several additional options are built
into the brogrém which provide the user with the capability of making
successfve runs using designated subsets of the original classes or
features already provided by the class statisfics deck.
The programlis divided’into thé fo116wing'fdur éubsections which

are discussed in turn in the seque1:. |

Parameter Initialization

Initial Vector Determination

Optimization A]gofithm

Computation of g¢(B) and %%

3.1 Parameter Initialization
A11 input variables to the progkam are of a fixed format and must
be entered as shown in Section 4.0 and as illustrated in the examples

in Section 5.0. These variables are:



MC . . . . : Number of convex combinations of classes, <MTOT.

N . ... Dimensionrof feature‘space, fNFPC..

CLS . . . : Class names, 12 characters,.double subscripted
array. | |

MTOT . . . : Number of classes in the .class statisticé deck.

NFPC . . . : Number of features per‘class in the class

statistics deck.

KCLS . . . : Numericilabels of the designated classes from
the MTOT classes in the class statistics deck,
single subscfiptéd array.

IFEA . . . : Numeric labels of the N 'designated features
from the NFPC features in the class statistics

deck, single subscripted array.

COVARB . . : Input covariance matrices, triple subscripted
array.
XMEANB . . : Input mean vectors, double subscripted array.

APROB. . . : A priori probabilities for the component classes,
single subscripted array.
BETA . . . : A priori probabilities for the MC convex
combinations, single subscripted array.
ICMB . . . : Numeric labels of component classes as defined
| | in vector KCLS used in defining convex combinations
(Need not be in ascending order, see Example 2,

Section 5), double subscripted array.
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Four command codes select program options as follows:

STAT - definition and entry of a given statistics deck,

FEAT - definition of a desired subset of features from the
current statistics deck,‘

COMB - definition of convex combinations of a subset of class

of the current statistics deck, along with associated
a priori probabilities for the convex combinations and

component classes.

"~ FSEL ‘computétion of the 1Txn transformation vector which
minimizes the PMC expression.

When the STAT. command is used, values of MTOT and NFPC for the
new statistics deck are entered. The names for the respective classes
in the statistics deck are defined on succeeding cards. The class
statistics deck, comprised of the MTOT mean vectors in the order of
ascending class numbers followed by the MTOT covariance matrices in the
order of ascending class numbers, is entered. The entries of each
mean vector in the order of ascending feature number are entered
according to the format (5X, 5D15.8). The NFPC(NFPC + 1)/2 elements
on and above the diagonal of each covariance matrix are entered by
.column in the format (5X, 5D15.8). It is assumed that the diagonal
elements of each covariance matrix are in order of ascending feature
number. The first entry of each new mean vector or covariance matrix
starts on a new card. The entire statistics deck with appropriate
class names is printed.

If the FEAT command is selected, a new value for N and the

numeric labels of the desired features (IFEA) are entered and printed.
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The COMB command requires entry of the numeric labels and a priori
probabilities of the desired component classes defining each convex com-
bination. After each combination is defined, the a priori probability

. for the combination is entered. The names of the c]asses defining the
combinations and the a priori probabilities are output. Parameters
initialized using the STAT, FEAT, and COMB commands remain in effect

| “:until the respective command is again used.

The FSEL command requires the input of

1IZ . ...: initial B-vector flag
= 0.compute the initial vectdr-'BE for the
- optimization algorithm. -

= 1 jnput the initial vector B. .
. 0

The FSEL command must be preceeded by the STAT and COMB commands.

3.2 Initial Vector Determination

A nonzero ‘1xn vector Bo which minimizes g cannot, in general,
be obtained in closed form, and a numerical optimization (minimization)
procedure is required. Any such optimization algorithm must be given
an initial vector B0 . ‘

When the initial yector Bo is to be computed, SUBROUTINE BCOMP
is called. For the special case of two multivariate normal classes
with equal a priori probabilities, Bo is computed in SUBROUTINE

BC2CP using the formula (see [3], [4])

B = (u-p)T (z4x)
0 1 2 1 2
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In all other cases the initial vector is computed using the procedure

described below (see [51,. [91).

LA

Given a., Mss and Zis T<ic<lL, let

1

and determine (using SUBROUTINE EIGEN see [10]) an nxn matrix A such that

Az AT = I. Letting n; = A“i’ 1 <i <L, the problem can then be

reduced to finding a fixed point of the function H defined as f6110w§:

For a given 1xn vector C, choose indices ij s, 1<j<L, for

the ni's and ai's such that (< indicates ordering of intervals)
R; (C) <R, (C) <... <R, (C),
j i i
1 2
where
Ry (C) =y [ a; p; (¥,€) = max a. p. (y,C)
. . P K

j iV 1<k<L Tk
k#J

To determine the régions Ri (C) , the roots between transformed
j ,
densities considered pairwise are computed as
In(a./a.) C(n:+n.)
a. (C) = 1.J 4 J 1

. =T 2
i C(nJ n;)

s T #J ,0.3=1,...5L.




Once all the roots ai.(C) have been found, the regions R, (c) ,

J
j=1,2,...,L are defined by the following ordering:
a) Choose il such that

Cn. = mwin Cn.
L P 2 A

b) Choose 12 such that.

a. . = min a..
j .
[P 1<j<L R

c) Given 1'1 and 12 , choose 13 such that

a; 5 T min {a
3 2 1<i<b

oo lass > a; ;
J12 J12 1211
d) In general choose i 47 such that

a = min {a > a

Tl Tk 1<d<L ikik-1€

T
NLIPN A

provided

a.: la.. > a, . s £P
; I I Tk

If the above set is empty, the procedure is terminated.

For

i

p. (a;,C) (n; =-n; ) .
LR S N L AN

J

13
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Then

.
Hie) = —HE__
FQ)TTT

To find a fixed point of H (C = H(C)), welet C =n, - n. ,
. . 0

where

Hng = gl = max Hnp =g 11

and compute successive vectors Ck using the mean iteration formula

(see [81)

_ k 1 ) |
Ck‘l"] —m- Ck+T(¢TH(Ck) 9'k = 09 ]9 29 .

The number of iterations is specified by the internal parameter ITER
(25 is a reasonable value). Updn completion of the iterations, the

final Ck , say C , is used to compute an initial vector B0 from

- the formula

3.3 Optimization Algorithm

The numerical hinimization algorithm used to find a local minimum
of g is SUBROUTINE DFMFP from the IBM Scientific Subroutine Package
[10]1. The procedure is based on the method of Fletcher and Powell [2].
Computation of the minimizing B 1is controlled by SUBROUTINE BVECT

which initializes the following parameters used by DFMFP:



EST . . . . : An estimate of the minimum value of g(B).

EPS . . . . : Tolerance for the expected absolute error
of the optimization algorithm. Experience
has shown 10”" to be a reasonable value.

LIMIT . . . : Maximum number of iterations for the

optimization algorithm.

Values for the parameters are computed using empirically determined

formulae. On return from SUBROUTINE DFMFP, the error parameter IER is
checked and a message is prihted if convergence is not achieved in
LIMIT iteration, if the gradient calculations are in error, or if no
minimum is found. Calculation of g(B) and %& is discussed

below.

3.4 Computation of g(B) and %%
The computation of g(B) and %g— using the expressions given in

Section 2.0 is performed fn SUBROUTINE FUNCT. The function subprogram

DPHIX computes

1 1 a-u
¢(aa Uaoz) = t 5 ERF( )
22 B2

used in the computation of g(B) , where ERF 1is a library function

subprogram given by

ERF(a) = 2(2w)" %f aexp [— %tZJ dt_.
_ 0

The transformed density functions pi(y,B) s 1 <1<l are evaluated

_in the function subprogram XNDF. The function subprogram FUNVAL

15



computes

In order to evaluate g¢(B) and gg-, it is necessary to determine
the regions Ri(B)','l < i <m, defined in Section 2.0.

To determine the regions R.(B) , 1 < i <m, the roots,

yij(B) , of the equations
FigB) =By hy =By hy =0, 073 ,1,3=1.2...m

are determined.' If m. = mj =1 (i.e. fhi and hj each consist of

a single normal class),then the roots of Fij(B) are determined in

SUBROUTINE ROOTSS by evaluating the quadratic equation

F'ij(B) nij(B)‘y + ?pij(B)‘y + \).ij(B) ’
where
_ T T
n;;(8) = B, B - BE, B
1 J
o..(8) = (8%, BB - (BZ, BT)Bu
ij K - k. K. k.
. J 1 1 J
and
T 2 T 2
v..(B) = (BZ, B')(By, ) - (B, B')(Bu, )
ij k. k. k. k.
i j j i
BizBZk.BT
+ J

T T
(Bz, B')(Bz, B )In :
k- kj B-ZBZ T

1
| J kg

B
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For the case where ”ij(B) = 0, a single root
2 2 By T
(Buy ) -(Buy ) +20n 2 (82, 8T)
J i J i
2(Bu, _ Bu, )
kj k,i

‘yij(B) =

is obtained.

When either m. 1 or mj # 1 , the roots of the equation

Fij(B) = 0 are determined using Newton's method in SUBROUTINE ROOTSM.

A maximum of 2(mi+mj) roots are searched for in the interval

(x sx ) , where
1’72

x = min {Buk - 3ak(szBT)”2}
1 keK

_ f T 1/2}
X2 ?2; lBuk + 3ak(BukB )
with
K = 3ki_]+1,...,k1§LJ ;kj-1+1""’kj€"
The starting values

' 1
x = Bu + ;—szBT)f-

and

—r

X 2

T
0

1
are needed for each component class, k , in each of the two convex

combinations considered. Updating of the argument, x , the function

value, y , and the derivative, d , are continued until one of the
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following conditions is met:

(a) ly| <107,

(b) |d] <A

X =X
2 1

(c) The number of iterations of Newton's method exceeds 10

(d) x ¢ (x, x).
1 2

Only when condition (a) is met is a root, yij(B) , of Fij(B) =0
defined. |

After 2(mi+mj) starting values are used, the roots thus determined

are arranged in ascending order. Roots having approximately equal values
are combined into a single root. |

Once the roots, yij(B) , of all the equations Fij(B) = 0 have
been found, the regions Ri(B) , 1 <i<m, are determined by the

following ordering defined on a (possibly proper) subset of the roots:

(a) Choose il, such that

ks K,
Pk oy ) s max e T Kpy . B)
B. P pk . s s = . . , v kVYii.0 ’
11 k=k _1+] Y11 1211 1<j<m J Kok 4] Yj 121
1 j-1
where
y, ; = min [y;r(B)-BZ B! ]
12 1 1fjfm J 1

T<r<m
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considering only the subset of roots at which at least one of the convex
combinations of densities has a value other than machine zero.

(b) Choose iz such that

i, ‘-"k o k. @
B: ) —— ply ,B) = max 8, } = p(y ,B) ,
T2 k=ky _*1 iy K™ 1<j<m J k=k; 141 Y 0

2
where
v = mi : V.
= min . > Y.

Yy 1'fjfm{yar|y3r Yigif

T<r<m

(c) Let

. min ‘s N .
Yigiy ]<j<m<;y312 | yJ‘z y1211 }

q

3 )
q o J o .
B; L ;k—pk(yO,B) = max By ) ;'?pk(yo,B)
o g 1dam Y kekg g4

(d) In general, choose i_ such that

where

y = min ,y. | ¥iro > Y5 s .
0 Y<jm { jr jr 1q1q-1}

T<r<m

If {ya’r | Y5p > yiqiq_]} =P, let
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Yo T Vi + BZIBT .
(e) Choose
Yi §_ = min {in | Y55 > 95 4 }'
q+l g T<jm q q q g-1
if
{yjiq | yj{q > yiqiq_k} PO

When the above set is.empty the procedure is terminated. The regions
Rj(B) are given for 1 <j<m, by

R (B) =U {'y ly: o+ <yzvy: } ,
0 I 'glg-k T T gHl

where

Iy = {iq f Tq = j}

The above procedure for‘determining the,fegions may detect
unnecessary rbotsfand assign the intervals to the Teft and right of
such a rootftd_the same region Ri(B) . The lack of machine precision
may prohibit the evaluation of densities sufficiently accurate so
that the same combination is defined to dominate at and -« .

For both the initial B vector and the final normalized B

vector, SUBROUTINE FUNCT outputs Ri(B) s BZiBT s B“i » 9(B) ,

%g—, and B . In ouputting the transformed means and covariances, the

classes are numbered in the order entered under the COMB command. For
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the final normalized B, the entries q of the confusion matrix

iJ

are computed using the formulas

a;; = [ hy(y,B)dy
Ri(B)

and output. '

The parameter IOUT is an internal output control flag provided
to SUBROUTINE FUNCT.

IOUT . . . . : Control flag
- -1 first pass (Bo) printed.
= 0 intermediate iterations of DFMFP printed.

= 1 last pass (final B) printed.



4.0 OPERATING PROCEDURE

In order to simulate object time dimensioning, the user must

provide a calling routine of the following form:

DIMENSION ALRGE(IDIM)

DOUBLE PRECISION BLRGE(IDIM2)

COMMON MX,NX

MX =

NX = , ,

CALL PRDIM(ALRGE ,BLRGE)

STOP

END

The values of MX, NX, IDIM and IDIM2 are determined as
follows:

MX = maximum value of MTOT for the program run.

NX = maximum value of NFPC for the program run.

NX+1

IDIM = MX(23+4Mxenx (5 )+NX(%NX+%)+]2

2
IDINZ = MX(7+3Mx+"2— +3nxe2Nx2 )X (NS + Ly47

.If available étorage is not a problem, the user can incorporate
maximum fixed dimensions into the program.

The program is suitable for interactive operation with the
inclusion of parameter request messages. The program was written
in IBM Fortran G with development on the Texas A&M University

IBM 360-65.



Input parameters are of a fixed format and must be in a specified
order. Shown below are the variable names as described in Sections

3.1 - 3.4 and the card formats for the command code sequences.

Statistice Definition:
"STAT",I0,NFPC
class names (one per card) [FORMAT(3A4)]
mean vectors 4[F0RMAT(5X,5015.8)]
covariance matrices ‘ [FORMAT(5X,5D15.8) ]

Feature Definition:
"FEAT",N - [FORMAT(A4,12)]
IFEA [FORMAT(24(12,1X))]

Several cards may be used to define IFEA if N > 24.

Combination Definition:
"COMB" ,MC | [FORMAT (A4,12) ]
KCLS(1)-APROB(1), . . . . . » KCLS(M,)-APROB(M, ) ,99-BETA(1)
| [FORMAT(7(12,1X,F7.6,1X),2X,A1) ]

Each card defines the component class numbers (from the current
statistics deck) along with associated a priori probabilities for each
convex combination.

After all classes of a combination are defined, 99 is'entered as

a class number followed by the a priori probabi]ify for the combination.

If the a priori probability for the combination is to be the sum of the

a prioris of its component classes, the class number 99 and associated

23
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a priori value can be omitted. If more than seven classes compose a
combination, a slash (/) in column 80 of the current card indicates

continued definition of the combination on succeeding cards.

Feature Selection:
"FSEL",1Z » [FORMAT(A4,1Z)]
BVECT* [FORMAT(5X,5D15.8)1

*BVECT is entered only if IZ = 1.
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5.0 EXAMPLE INPUT AND OUTPUT

Example 1.

A 5 class, 12 dimensional statistics deck from MSS measurements
of Hill County, Montana, is entered. A subset of 8 features (5-12)
is considered. Combination 1 is defined as class 1 and combination 2

is the combination of classes 2-5. Feature selection is performed.

Col. 1
STAT0512
WHEAT
FALLOW
BARLEY
GRASS
STUBBLE

statistics deck

FEATOS8
05,06,07,08,09,10,11,12
COMBO2
01-.347000,99-.5
02-.243000,03-.121000,04-.056000,05—.233000,99-;5
FSEL

Example 2.

A 6 class, 12 dimensional statistics deck from MSS measurements of
Hill County, Montana, is entered. Each class is defined as a separate
combination. Feature selection is performed. Next, combinations of

classes 4 and 5, 1, and 2, 3, and 6 are defined and feature selection



performed.

Col.

1
STAT0612
BARLEY
STUBBLE
GRASS
WINTER WHEAT
SPRING WHEAT
FALLOW
statistics deck
COMBO6
01-.166666

02-.166666

03-.166666

04-.166666

05-.166666

[

06-.166666

FSEL

COMBO3

04-.166666,05~.166666,99-.333333
01-.166666,99-.333333
02-.166666,03-.166666,06-.166666,99-.333333

FSEL

26
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METHODS FOR ESTIMATING PROPORTIONS OF
CONVEX COMBINATIONS OF NORMALS

L. F. Guseman, Jr. and Jay R. Walton

1. INTRODUCTION
The techniques in this report were developed to treat the following
pfob]em:
Given LANDSAT data (multitemporal) over a LACIE sample segment,
and representative samples of the classes present in the
segment, estimate what proportion of the sample segment is in
WHEAT .
The approach to the above problem taken in this report can be summarized
as follows:
(a) The density function for each of the classes
WHEAT and NON-WHEAT is expressed as an appropriate
convex combination of multivariate normal densities
with known means and covariance matrices (usually
obtained from a training sample).
(b) Feature selection is performed to produce a corresponding
optimal one-dimensional Bayes classifier for
WHEAT VS. NON-WHEAT whose associated confusion
matrix is known.
(c) Using the one-dimensional classifer and associated

confusion matrix, an estimate of the true proportion



of WHEAT in the sample segment is made. In some

cases, the resulting estimate is unbiased.

The methods presented herein have the advantage that classification
of multitemporal data over the sample segment is performed optimally in
one-dimensional space thereby réducing significantly the computer time
spent in classification. Another advantage is that the confusion matrfx,
used in obtaining unbiased estimates of the wheat proportions, can be
reaily computed without the costly requirement of obtaining a labe]ed
sample independent of the training sample.

The general mathematical framework of proportion estimation
procedures is discussed in Sections 2 and 3. 1In Section 4 we define
four particular estimators based on the previous mathematical discussion.
Section 5 contains preliminary numerical results of the four estimators

presented in Section 4.



2. PRELIMINARY MATHEMATICAL DISCUSSION

Let Hl""’nm be distinct classes with true (but unknown)

I,
1]

Cs3=

a priori probabilities S IEPRPRL S respectively. Let Q =

.i

and Tet X : @ > R" be a random vector with mixture density

where each class conditional density function fi = fX/H is
i

assumed to be N(ui,zi) with W I known, 1 < i <m.

A method of estimating all m a priori probabilities al,...,am

in the mixture f from a given sample was discussed in [1]. The

estimation problem discussed in [1] resulted in solving the problem:
minimize ||Pa - &]| (Euclidean norm)

subject to a. =1, a.>0,1 < i <m

j

He~13

i=1
where €& 1is the m-dimensional vector of proportions obtained by
classifying a random sample of size N , and P 1is the mxm error

matrix associated with the classifier used to obtain e; that is,

P = (pij) , where



and R ,...,Rm are given classification regions. If P is invertible,
1

then & = P']é is an unbiased estimate of o (which, in general,

may not satisfy the nonneqativity constraints).
The following discussion forms the basis for the estimation pro-

cedures presented in the sequel.

k m
let T = un, ,T" = U H. . Then T and T have a
S 2 j=ks1 ] ! 2

.. Gy ses -+ 4 - +
priori probabilities Y, Ta ey and Y, apgqte-Fo

respectively. Letting

k o
h = § ¢
1 i=1 'Y1 1
and
m o«
h = - f ’
2 1=E+] YZ 1
we have
]
f = o.f
j=1 17
k m
= a.f. + a.f
121 b 1-=E+1 b
k . O
=Y z —lf'l + Y2 E L
=1 1 i=k+1 Yz 1
=y h +7Y h



We note that the density functions h1 and h2 are convex combinations

of normals. Henceforth it will be convenient to denote the above expres-
sion for f as a convex combinations of convex combinations by h ;

that is h = Y, h1 + Y, h2 . Suppose we are given decision regions S1

and S2 and associated decision function C : Q@ - {1,2} defined for

eaéh we by
Clw) =i iff X(w)e Si , 1 =1,2.

Then the probability that we @ 1is classified as belonging to Fi

is given by

Pr(lXe S:1) = Pr(lXe S;1 N (T UT))
1 2

2
Pr( U
j=1

([Xe S;1 N I‘J.))

2
-

3=

Pr([Xe Si] N T.)

1 J

2
v

3 ]ya Pr([X e SiJIFj) )

y, Pr(tXe S;1IT ) + v, PrilXe S.IT)

et 2=(2,1 )T , where Z, =Xc o X and Xg is the characteristic
1 2 1

.i

function of S.C R" . For a fixed i ,



E(Zi)

1t
m
—
&
—
>
~
~

n
&
Py

b
—

x
~
o

x

Rn

=f h(x)dx
S

= [ (h, () + n (x)ex
S

"
<
=
—
b
S
o
x
+
=
>
L)
<
S
Q.
3

v, P(Dte S;10r ) + v, P(ixe S10r)

Let wN = (wl,mz,...,wN) be a random sample of size N from Q. For

each fixed i, 1 = 1,2, 1let

Ny _
Zir(w ) = Zi(wr) s T<r<N

Then for each fixed i, Zi]""’ZiN are independent random variables

and each has the same distribution as Z, (see [41). Thus E(z, ) = E(Z;),

=

L. » e have ai(wN) = Ni" where
1

j—
fl 12

1 <r <N . Letting 81 =N
r
Ni is the number of elements in wN that are classified as being from

. . Letting di = 5(8.) , we have

1
N

d; = E(d) =E( g1z,
r=

E(Z,

1

"1

)=_
1 ir N r

= E(Z;) = v P(iXe ST ) + vy P(Ix e s;1IT.) -



th

where Q@ 1is the 2x2 matrix whose entry qij , in the i row and

jth column, is given by

93 f h(x)ax i,i=1,2.
S

The error matrix Q 1is determined by the classification regions
S1 and S2 and the true class conditional density functions h1
. and h2 for I‘1 and F2 , respectively; that is, h

and h in
1 2

terms of the true a priori probabilities, al,az,...,um . If, in

addition, the regions S1 and S2 are to be determined by h ,

h1 and h2 , as in Bayesian classification, then S1 and S2

are alsa functions of sl



3. GENERAL PROCEDURE FOR DEFINING ESTIMATORS

Each of the estimators presented in Section 4 results from using
the following general procedure to determine appropriate decision regions
and associated error matrices.

Begin by specifying values of B = (81,82)T s B1 >0, 82 >0,

1n1 =1,

nes13

P +B8 =1 ,and n=(n,...,n )T ,n: >0, 1T <i<m,
2 m 7 - - -

2 i

to produce approximating conditional densities

and approximating mixture density

h(B,n:x)=8h(n:x)+ Bzhz(n :x) .

11
Once B and n have been specified, an existing feature selection

technique is used (see [2]) to produce a 1xn vector B* of norm
one which minimizes the transformed probability of misclassification
in one dimension; that is, a B* with ||B*|] =1 is found which

minimizes the function g (of B only) defined by

g(B) = Blf hl(n 1 y,B)dy + B, f hz(” : y,B)dy ,
(B) Sl(B)

where the transformed densities (as a function of nonzero B) are

defined for ye R! by



-9 -

.(y,B) = expfl- 5 ———o s, 1=1,2,...,m,
i (2n)'/2 (Bz,BT)/2 Bz,B'
k n;
t i=1 1
h Y= T it (y.m)
n: .yaB = — f. .yaB
2 i=ksl Yy !

and the associated Byaes decision regions are given by

S (B)
1

. 1 :
{ R : : : .
ye Blhl(“ y,B) > B,h (nty.B)}

S (B) = {ye R! :Bh(n:yB)>8h(n:y,B)}.
2 2 2 11

The resulting associated error matrix Q at B* 1is given by

Q= (qij) , where

= . * i.i =
qu f hJ(n . y9B )d.Y ] 11J ],2 .
Si(B*) :

Having determined the decision regions S (B*) and SZ(B*) , the
1

classification rule
(*) Clw) =i iff B*(X(w))e Si(B*)

is used to classify the random sample wN to produce a 2-dimensional

vector of (classification) proportions.
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4. SPECIFIC ESTIMATORS

We now discuss several methods for estimating <y . The first
(ESTIMATOR 1) is nothing more than an obvious modification of the
m-class estimator discussed in Section 2 and [1]. It is used in the
subsequent discussion to obtain other estimators.

ESTIMATOR 1

The proceddre for estimating o = (o ,...,am)T discussed in
1
Section 2 and [1] produces a vector Q= (&1,...,&m)T minimizing

_ m
||Po. - &|] and satisfying } &1 =1,0,>0,1<i<m. Then
i=1 -

5 o +...+
Yl 1 k

1]
il

Y

"
/-\
o —
o
- o
- o
v

j o
—

]
>
Q

is an estimator for vy . If P s invertible and P"1§ satisfies the
nonnegativity constraints, then a = P']é and ? = AP']E is an

unbiased estimate of vy .

ESTIMATOR 2

Using the m-class estimator & = (&1,...,&m)T ,and y = (?1,§2)T

we obtain the conditional densities



-1 -

A A k A'
h(x)=h(a:x) = ] = f.(x)
i=1 vy
1
~ . m @1-
h(x)=h(a:x)= | =—f.(x)
2 2 i=ks1 ¥ 7
2
and mixture density
h(x) = h(Y.a ¢ x)
=Yh(a:x)+7yh(a:x)

The subsequent feature selection produces (at the minimizing B*) the

decision regions

(Y224
I}

1. o6 * h *
{ye R': yh (y,8*) > v,h (y,8*)}

\'4
<>
>
~—~
<
-
w
*
S
—

S

2

{ye R' : Y h (y,B*)
‘ 2 2

~

and associated error matrix Q-

]
—
L0
~—
-

=
=
1]
3
42

q = /ﬁ- ,B* d Iy ‘, j = s .
G f 5(y>B*)dy i,j=1,2
S,

1

N

Using the classification rule (*) with the decision regions S ,-§ to
1 2

classify the random sample wN = {w ,...,QN) , we obtain the vector
1

of proportions

o> o>
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The resulting problem
minimize Ilag - d||
subject to £ + & =1 , £2>0 , i=1,2

A

is readily solved to produce the estimator ¥ of vy . When 0Q is

invertible and a' d satisfies the nonnegativity constraints, then

ESTIMATOR 3

Letting n = ( %-, , %-)T , B=( %—, %JT we obtain the
conditional densities
- 1 k
hl(x) = hl(n 2 X) = E-1Z]f1(x)
b0 = h(n:x) - < T f(0)
2 2 X gk 07

The subseauent feature selection produces (at the minimizinag B*) the

decision regions
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S = {ye R':h (y,8%) > h (v,8%)
§2 = {ye R': ﬁz(y,B*) > '-‘1 (y,B*)}
and associated error matrix 0 = (aij) where

G..={ h.(y,B¥)dy , i, =1,
a5 f J(y )dy i, 3=1,2
55

Using the classification rule (*) with the decision regions S , S

we obtain the vector of proportions

- ()

The resulting problem

minimize ||QE - d]|

subject to gl + EZ =1, gi >0 , 1=1,2
is readily solved to produce the estimator ~ of vy . Vhen 5 is
invertible and 6'18 satisfies the nonnegativity constraints, then

y=0"d -

ESTIMATOR 4

Using the decision regions S , S and B* determined in
. S 2

ESTIMATOR 3, and conditional densities ﬁl . ﬁz from ESTIMATOR 2,

*
let Q = (q?j) , where
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n
—
-
N

q'i*J =f Gj(y,B*)dy s is j
>
When 6 is invertible let
Ye¥s(v-0 Q).

]

Then Y* is an estimator of y. If vy = 0']d and y= AP~

g , then
*x _ ~ . ==1,- *pn-1
y'=vyzx0 (d-Q°AP '8) ,

and, for either choice of sign, Y* is an unbiased estimator of vy .
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5. PRELIMINARY NUMERICAL RESULTS

The four ESTIMATORS discussed in Section 4 have been implemented

- (FORTRAN PROGRAM ESTPRO) and undergone preliminary testing. Testinag was
accomplished using 16-dimensional data from four registered passes

(May 5, May 23, June 11, June 29, 1973) of LANDSAT 1 MSS measurements
acquired over Hill County (N), Montana. Training data was provided to
the program for the five classes: WHEAT, FALLOW, BARLEY, GRASS,
STUBBLE. A random sample of 16¥d1men§10na1 vectors of size 2417
comprised of the above five classes in the following proportions was

used:

CLASS # OF VECTORS TRUE PROPORTION
WHEAT 784 .3244
FALLOW 244 .3078
BARLEY 300 1241
GRASS 206 .0852
STUBBLE 383 .1585

The results for ESTIMATORS 1-4 in estimating the proportions of
WHEAT VS. NONWHEAT appear in Tables 1-4. The estimated proportions
obtained from ESTIMATOR 4 using both plus and minus signs are included.
Results for estimating the proportions of BARLEY VS. NON-BARLEY appear
in Tables 5-8. The resu]ts.from all four estimators are summarized in
Table 9 for WHEAT VS. NON-WHEAT and Table 10 for BARLEY VS. NON-BARLEY.

The feature selection program used in ESTPRO is LFSPMC(VERSION 2)
discussed in [2]. Solution of the constrained least squareslproblem

(when needed) is accomplished using LSI from [3].




<>
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0.71597 0.00182 0.19020 0.08876 0.01057
0.00463 0.64462 0.00018 0.12748 0.45221
0.12068 0.00000 0.80158 0.00000 0.00002
0.15869 0.17698 0.00805 0.78348 0.16139
0.00002 0.17658 0.00000 0.00028 0.37581
27927

26107

13860 Classification vector

18866

13240

34499 WHEAT

21119 FALLOW

12096 BARLEY

06987 GRASS

25299 STUBBLE

34499 WHEAT

ESTIMATOR 1

65501 NON-WHEAT

<ﬁf
(
<:

Table 1. ESTIMAT

OR 1:

WHEAT. VS. NON-WHEAT

Error_Matrix



<>

P an ]

(=54

=< »

(

(
(

. 34499
.65501

.90271  .07694
.08729  .92306

. 34050 )
.65950

.31918 )
.68082

Table 2.

- 17 -

WHEAT

From ESTIMATOR 1
NON-WHEAT

) Error Matrix
Classification Vector
WHEAT

} ESTIMATOR 2 -
NON-WHEAT

ESTIMATOR 2: WHEAT VS. NON-WHEAT
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.93341 1 058)
Error Matrix
(.06659 .88492

.37319

Classification Vector -
.62681
. 31541 WHEAT

ESTIMATOR 3

.68459 NON-WHEAT

Table 3. ESTIMATOR 3: WHEAT VS. NON-WHEAT
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“ .34499 WHEAT

y = From ESTIMATOR 1
.65501 NON-WHEAT
.31541 WHEAT

y = ( From ESTIMATOR 3
.68459 NON-WHEAT

- .93341 11058

Q= Error Matrix From ESTIMATOR 3
.06659 . 88492

Z .36318
d = ( Classification Vector From ESTIMATOR 3
.62681
* .93341 .10348
Q = (. > ' Error Matrix
.06659  .89652

. .32470 WHEAT
vy (plus sign) = ( } ESTIMATOR 4
.67530 NON-WHEAT
. ( 36529) WHEAT }
v (minus sign) = ESTIMATOR 4
.63471 NON-WHEAT

Table 4. ESTIMATOR 4: WHEAT VS. NON-WHEAT
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0.71597 0.00182 0.19020 0.08876 0;01057
0.00463 0.64462 0.00018 0.12748 0.45221
0.12068 0.00000 0.80158 0.00000 O0.00002
\\\0.15869 0.17698 0.00805 0.78348 0.16139

0.00002 0.17658 0.00000 0.00028 0.37581
27927

26107

13860 Classification vector

18866

13240

34499 WHEAT

21119 FALLOW

12096 BARLEY

06987 GRASS

25299 STUBBLE

12096 BARLEY

. ESTIMATOR 1

87904 NON-BARLEY

<§
:
(

Table 5. ESTIMATOR 1:

BARLEY VS. NON-BARLEY

Error Matrix



-

L

Q>

>

.12096
.87904

.93122
.06878

.12329
.87671

.12484
.87516

- 21 -

BARLEY
From ESTIMATOR 1
NON-BARLEY
.00805
Error Matrix
.99195

Classification Vector

BARLEY
ESTIMATOR 2
NON-BARLEY

Table 6. ESTIMATOR 2: BARLEY VS. NON-BARLEY



al

.98549
.01451

. 14522
.85478

.12817
.87183

- 22 -

.02169
Error Matrix
.97331 '

Classification Vector

BARLEY
ESTIMATOR 3
NON-BARLEY

Table 7. ESTIMATOR 3: BARLEY VS. NON-BARLEY
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.12096 BARLEY
y = From ESTIMATOR 1
.87904 NON-BARLEY
_ .12817 BARLEY
y = From ESTIMATOR 3
.87183 NON-BARLEY
. .98549  .02169
Q = Error Matrix From ESTIMATOR 3
.01451 .97831
- .14522
d = Classification Vector From ESTIMATOR 3
.85478
.98549  .03115
= Error Matrix
.01451 .96885
. .11955 BARLEY
vy (plus sign) = ESTIMATOR 4
.88045 NON-BARLEY

N .12238 BARLEY
vy (minus sign) = : ESTIMATOR 4
.87762 NON-BARLEY

Table 8. ESTIMATOR 4: BARLEY VS. NON-BARLEY
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TRUE EST']"'EST’Z EST 3 EST 4(+) EST 4(-)

WHEAT .3244  .3450 .3192  .3154  .3247 .3653
NON-WHEAT .6756  .6550 .6808 .6846  .6753 .6347

Table 9. ESTIMATORS 1-4: WHEAT VS. NON-WHEAT

TRUE EST 1 EST 2 EST 3  EST 4(+) EST 4(-)

BARLEY L1241 1210 .1248  .1282 .1196 .1224
NON-BARLEY .8759 .8790 .8752 .8718 .8805 .8776

Table 10. ESTIMATORS 1-4: BARLEY VS. NON-BARLEY
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.. 1.0 "INTRODUCTION .

The fo]]owing is intended as a userslduide for the FORTRAN program
ESTPRO Program ESTPRO prov1des the necessary computat1ons “for perform1ng
proportion est1mat1on by the four methods d1scussed in [3]

The estimation a1gor1thms ava11ab1e in ESTPRO were developed to
treat the fol]owing problem:

Give LANDSAT:data (mu1titempore1) over a LACIE sample segment,

and training dafa for the classes in the segment, estimate

what proportion of the sample segment is in.WHEAT.’

The program assumes that a finite number of component classes (e.g.
crdps) are present in the segment, and that each.compohent class is
described by a mu]tivariate normal -density function with known mean vector
and covariance mqtrix-(usua]]y obtained - from a fraining sample).

Under the above assumptions, the estimation algorithms performed by
ESTPRO can be summarized as follows: o

(a) The densicy function for each of the classes WHEAT

and:NON-WHEAT is expressed as an appropriate
convex combination of the component multivariate
normal density functions. V

~(b) One or more feature selections are per?ormed to

produce corresponding optima1 one-dimensional Bayes
‘classifiers for WHEAT VS. NON-WHEAT whose associated
confusion matrices are known.

(c) Using the ode-dimensiona] c1assifiers and associated

confusion matrices, estimates of the true proportion

of WHEAT in the sample segment are made.
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2. SUMMARY OF ESTIMATORS

The following discussion forms the basis for the estimation procedures
in ESTPRO.

Let Hl,...,Hm' be distinct classes with true (but unknown) a priori

m
.LJHi has mixture

probabilities & seeesOp s respectively. We assume that
' ' : i=1

density

' m
f=f = Yaf.

where each class conditional density function fi = fX/H -~ is assumed to

be N(L%,zi) with W I known. and zs positive definite, 1 < i <m.

k m
let T = UN, , ' = U NI, . Then T and T' have a
. 1 1'='| 1 2 .i=k+'l 1 2

priori probabilities Y1 = a1+...+ak and Y, = ak+1+...+am ,» respectively.

Letting
K o,
h = § Lf
1 1=“ Yl 1
and
o
h = —f. ,
2 g=k#1 Y, 7
we have
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where the density functions h1 and h2 are convex combinations of

normals. Henceforth it will be convenient to denote the above expression
for f as a convex combination of convex combinations by h ; that is
h = Ylh1 + y2h2 .

Throughout, X seeesXy will denote a random sample of n-dimensional
vectors from the sample segment. Feature selection is performed using
the algorithm LFSPMC from.[zj. The consf?ained'ieast‘squares prob]em
(Conétraihed quadratic minimization) is solved using LSI from [4].

We now summarize the four algorithms available in ESTPRO for estimating

_ T
Y = (YleZ) .

ESTIMATOR 1

Step 1. Using the mixture density

perform feature selection to obtain a 1xn vectdr B*}xof norm one which

minimizes
L |
g(8) = 1 - '2] 1 ffi(y_,B)dy ,
i=
Ri
where,
R;(B) = ;yeE Tif.(y,B) = max f.(y,B) , l<i<m,
o 1<j<m ¥
and

vfi‘(yA,B) ~ (B BZiBT) :
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Step 2. Compute the mxm error matr1x P = (p ) assoc1ated with
the decision reg1ons R (B ) defined by B . where
pij =Jr f (y, B* Ydy . i, § =1,2,...,m
- R (B ) »
Step 3. Using the decision regions Ri(Bﬁ), 1<i<m, (cJassify
the random sample xl,...,xN tovqbfain the mx1 classification vector
= (& AT A o 1 . . . _
= (el,...,em) ,» wWhere e T W o and Ni is the number of xj in the

sample such that B*xjre Ri(B*) ,1<i<m,

)T

Stég 4. Using P and e , determine & = (&1,...,am

minimizes ||Pa-e|| subject to 1 di =1,0,20,1<i<m.

Step 5. ESTIMATOR 1 is given by

~ ? o +...10
.Y=(A1)= , K
~\Y ~ -
2 Oy tee -ty
k
PR N
(1“.1 0.“0> {°,
0...0 1...1
O mek a
m
= Ag -

If P ‘is invertible and P']E satisfies the nonnegativity constraints,

1~ 1

‘then a =P 'e and y = AP 'e is an unbiased estimate of <.



ESTIMATOR 2

. . A _ A ~ T
Step 1. Perform ESTIMATOR 1 to obtain a = (al,...,am) and.

A A~ ~ T
= d
Y (YI,YZ) an- let

n kK a,
h = Z ':Lf~| H]
1 =
i=1 Yl
~ m A' -
h = 1 —~f
2 =kt ¥

Step 2. Using the mixture density

h=yh +yvyh ,
11 2 2

'pe?form feature selection to obtain a 1xn

minimizes

vector B* of norm one which

a® =1 [ Aumyry [ Ry,

s_(8) s (8)

where

1( ) ={yetE Ylhl(y B) > Yzhz(y,B)}

2

S(B)={yeE :ah(y.B) <ah (y,B)}
_2 11 2 2

Step 3. Compute the 2x2 error matrix a = (aij)' associated with

the resulting decision regions §1 =S (B*) and § =S (B*) defined
. . 1 ‘ 2 2

by B*, where

%, =J/l Bj(y.B*)dy ,» 1d=1,2.
S

1
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oS

Step 4. Using'the decision regions S1 . S2 » classify the random

sample X peeesXy to obtain the 2x1 classification vector

~ ~ sy o) N" ’
d= (dl,dz)T , Where d = Nl , and N; is the number of X5 in

the sample such that B*xj € gi" i=1,2.

'Steg 5. ESTIMATOR 2 is given by that v = ($1,$2)T which minimizes
||Qg-d|| ‘subject to é1+52 =1, .2 0,¢ >0. When Q fis invertible

and Q'id satisfies the nonnegativity constraints, then $ = a d.

ESTIMATOR -3
Step 1. Using conditional densities

and mixture density

h

=N
Nl—'

| —

h =

*
perform feature selection to obtain a 1xn vector B of norm one which

minimizes

g(B) = 2f (B)h (y,B)dy + ‘—f ICRL

where
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S(8) ={yekE': Rl(y,B) > f-lz(y,B)}

. 1.- -
SZ(B) v{y e E! : ﬁ1(y’B)v< hz(y?B)} .

Step 2. Compute the 2x2 error matrix.‘ﬁ‘= (aij) associated with
the resulting decision. regions §1 = §1(B*) and . 52 = §2(B$) defined

by B* , Where

- - * '
o= [ hiy,BT)d
93 _/;.ha(y B)dy

X 1

Step 3. Using the decision regions 51, S2 » classify the random

sample xl,...,xN to obtain the 2x1 classification vector d = (al,a )T
2

- N

where . d, = Nl» > and N, is the number of. X5 ~in the sample such that

* P .
B X5 evSi ,» 1 =1, 2.

Step 4. ESTIMATOR 3 is given by that ¥ = (;1;§2)T which

minimizes’»lla £ -‘all “subject to £ ¥, = 1, £ > 0, g, 2 0 . When

Q is invertible and 6"5 satisfies the nonnegativity constraints, then
y=F'd.
ESTIMATOR 4 _ - . _
e o e R T ) i ~ A ~ T
Step 1. Perform ESTIMATOR 1 to obtain a = (al,...,am) .
; = (? ,; )T and subsequent conditional densities
1 2 :

) * . s
Step 2. Compute B’ and decision regions Sl._and 52 from

ESTIMATOR 3, and obtain Q, d .




>
N
[
xx~13

Step 3. Compute the 2x2 error matrix Q?-gr = (q?j) » Where

* -~ * s .
q'ij -/; hj(.Y9B )d.y ) 1_9J = ]92 .

1

Step 4. When Q 1is invertible, ESTIMATOR 4 is given by
A g- _-1 *A

Y =vy+(y-Q'Qy).

If vy=4§! d and ; = ApP-! ; then

'y £ 0 - QT AP

and, for either choice of sign, Y* is an unbiased estimator'of Y.
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3.0 PROGRAM PARAMETERS

Apart from the various program parameters and command cards
(discussed in the sequel),.the basic input data to ESTPRO consists of
the class names, mean vectors and covariance matrices which comprise the

component class statistics deck. AN input data to the program is from

unit reference 5 (usually punched cards). Al1l output from .the program is
printed on unit reference 6. vSeverai'additional options are built into

the program which»provide the user with the.Capability of making successive
runs using designated subsets of the original features provided by the

component class statistics deck.

3.1 Parameter Initialization
A1l input variables tovthe program are of a fixed format and must
be entered as shown in Section 4.0 and as i]]ustrated in the examples in

Section 5.0. These variables are:

MTOT . . . . . . -+ Number of classes in the component class
: statistics deck. :

NFPC . . . . . . : Number of features per class in the component
class statistics deck.

N ... '+ Dimension of feature space < NFPC.

CLS . ... .. : Class names, 12 characters doub]e subscripted
array. |

KCLS . . . . .. .+ Numeric labels of the designated classes from

the MTOT classes in the component class statwst1cs
deck, single subscripted array.

IFEA . . . . . . : Numeric labels of the N -designated features
from the NFPC features in the component class
statistics deck, single subscripted array.

COVARB . . . . . : Input covariance matrices, tripIe“subscripted
array.
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XMEANB . . ; .. Input mean vectors, double subscripted array.

ICMB ... ... : Numeric labels of component classes as defined
in vector KCLS used in defining convex combina-
-tions (Need not be in ascending order), double
subscripted array.

Command codes select program .opitions as follows:

STAT . . . . .. ~: definition and entry of a given component class
statistics deck.

FEAT . . . . . . : definition of a designated subset of features
from the current component class statistics
deck. T

EST1 - | |

EST2 [ . : choice of estimator to be used with current

EST3( - « -« « « ¢ statistics deck and designated subset of

EST4 ~ features,

When the STAT command is used, values of MTOT and NFPC for the new
sfatisticg'aéék are entered. The names for the respective component
classes in the statistics deck are defined on succeedfng cards. The com-
pdnent class statistics deck, comprised of the MTOT mean vectors in the
order of ascending class numbers followed by the MTOT covariance matrices
in the order of ascending class numbers, is entered. The entries of each
mean -vector in the order of ascending feature number are entered according
to the format (5X, 5D015.8). The NFPC(NFPC + 1)/2 elements on and above the
diagonal of each covariance matrix are entered by column in the format
(5X, 5D015.8). It is assumed that the diagonal elements of.each covariance
| “matrix are in order of ascending feature number. The first entry of each
new mean vector or covariance matrix starts on a new‘card. The entire

statistics deck with appropriate class names is printed.
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If the FEAT command fs se]eéted, a new value for .N and the
numeric labels of the desired features (IFEA) are-entéred and printed.

Chbice of estimators is méde by using one of the command cards EST1,
EST2, EST3 or EST4. u | |

Once a particular estimator is chosen, sﬁcbessive cards
are used to define convex combinations of the component classes. Each _
card consists of the numeric labels of fhe desired component
classes defining that convex combination. If each component class is a
éeparate convex combination (e.g;, as in EST1), thén a single card
with the numeric labels of all cdmponént classes is used. After the con-
vex combinations are defined, the .names of the component classes defining
the convex combinations and their respectfve a priori probabilities are
output. Parameters initialized using the STAT and FEAT commands remain
in effect until the respective command is again used.

The N-dimensional sample pixels to be used in generating classifica-
tion vectors are entered using a variable FORMAT (read in at object
time). If avai]ab]e, the number of sample pixels in each component class
is entered. Otherwise, any positive numbers can be entered for each
cbmponent class with the restriction that their sum equals the total
number of sample pixels.

Use of EST2 or EST4 requires intermediate determination of EST1
and consequentiy definition of two sets of convex combinations and two

classifications (see section 5.0).
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4.0 OPERATING PROCEDURE

In order to simulate object time dimensioning, the user must
provide a calling routine of the following form: .
'DIMENSION ALRGE(IDIM)
DOUBLE PRECISION BLRGE(IDIM2)
COMMON MX,NX
MX

NX

CALL PRDIM(ALRGE,BLRGE)
sToP
END

The values of MX, NX, IDIM and IDIM2 are determined as follows:
‘MX = maximum value of MTOT for the program run. .
NX = maximum value of NFPC for the program run.

101M = mx(23+amxenx (D) )k Gnisd) 2

z ) N
IDIMZ = MX(7+3MK+ 5 +3NKe2NX2J4NK(S + Ly

If avai}ab]e'storage is not a problem, the user can incorporate maximﬁm
fixed ‘dimensions into the program.

Input parameters are of a fixed format and must be in a specified
order. Shown below are the variable names és described in Section 3.0

and the card formats fof the command code sequences.
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Statistics Definition:
"STAT" ,MTOT,NFPC
class names (one per card) [FORMAT(3A4)]
mean véctors | [FORMAT(SX,SD]5;8)]
covariance matrices - [FORMAT(Sx;5015;8)]

Feature Definition:
"FEAT",N [FORMAT(A4,12)]
IFEA [FORMAT(24(12,1X))]
Several cards may be used to define IFEA if N >-24,

Selection of Estimator

"EST1",MTOT,N, 00000001 -

all class labels [FORMAT(26(12,1X),A2)]

number of sample [FORMAT(16( 14,1X))]
pixels/class - E '

variable FORMAT for [FORMAT(20A4)]

sample pixels

sample pixels according to variable FORMAT

"EST2",MTOT,N,00000001

all class labels [FORMAT(26(12,1X),A2))
number of sample [FORMAT(16(14,1X))] |
pixels/class

variable FORMAT for [FORMAT (20A4)1]

sample pixels o

§émpie pixels according to variable FORMAT
class labels, convex [FORMAT(26(12,1X),A2)]
combination 1

class labels, convex [FORMAT(26(12,1X),A1)]

combination 2



number of sample
pixels/class

"EST3",MTOT,N,00000001
class labels, convex
combination 1

class labels, convex
combination 2

number of sample
pixels/class

variable FORMAT for
sample pixels

sample pixels
“EST4" ,MTOT,N,00000001
~all class labels

number of sample
- pixels/class

variable FORMAT for

sample pixels

sample pixels
class labels, convex
combination 1

class labels, convex
combination 2

number of sample
pixels/class

-14-

[FORMAT(16(14,1X))]

[FORMAT(26(12,1X),A2)]
[FORMAT(26(12,1X),A2)1
(FORMAT(16(14,1%)) ]
(FORMAT (20A4)

according to vafiab]e FORMAT

" [FORMAT(26(12,1X),A2)]

[FORMAT(16(14,1X))]

[FORMAT(20A4)1

according to variable FORMAT

[FORMAT(26(12,1X),A2)]
[FORMAT(26(12,1X),A2)]

[FORMAT(16(14,1X))]

If the same statistics deck and sample pixels are beihg used with

different estimators, then the variable FORMAT and sample pixels need not

be re-entered. If more than twenty-six component classes constitute a

single comvex combination, a slash (/) in column 79 of the current card

indicates a continued definition of the convex combination on succeeding

cards.
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5.0 EXAMPLE INPUT

Example 1.

A5 c]aés, 16 dimensional component class statistics deck of MSS
measurements from Hi11 Coﬁnty, Montana, is'entered. ESTIMATOR 1 is then
called to estimate the proportions of all five classes using a random
sample of 2417 pixels. Then ESTIMATOR 2, ESTIMATOR 3 and ESTIMATOR
4 are selected to estimate the proportion of class 1 (WHEAT);Versus
classes 2-5 (FALLOW, BARLEY, GRASS, STUBBLE) using the same statistics
deck and sample pixels.

Col. 1

STAT0516
WHEAT
FALLOW
BARLEY
GRASS
STUBBLE

statistics deck
EST1051600000001
01,02,03,04,05
10784,0744,0300,0206,0383
(8X,1613,24X)

sample pixels
EST2051600000001
01,02,03,04,05
0784,0744,0300,0206,0383
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01
02,03,04,05
0784,0744,0300,0206 ,0383
EST3051600000001

01

02,03,04,05
0784,0744,0300,0206,,0383
EST4051600000001
01,02,03,04,05
0784,0744,0300,0206 0383
01

02,03,04,05
0784,0744,0300,0206 0383

» Example 2..

The component class statistics deck and sample pixels from Example
1 are entered. For this run, ESTIMATOR 1 is called to estimate the pro-
portions of all five classés. Then ESTIMATORS 2-4 are selected to
estimate the proportion of class 3 (BARLEY) versus classes 1, 2, 4, 5
(WHEAT, FALLOW, GRASS, STUBBLE).
Col. 1 R
STAT0516
WHEAT
FALLOW
BARLEY
GRASS
STUBBLE



statistics deck
EST1041500000001
01,02,03,04,05
0784,0744,0300,0206,0383
(8X,1613,24X)

sample pixels
EST2051600000001
01,02,03,04,05
0784,0744,0300,0206,0383
03
01,02,04,05
0784,0744,0300,0206,0383

EST3051600000001

03 |
01,02,04,05
0784,0744,0300,0206,0383

EST4051600000001
01,02,03,04,05
0784,0744,0300,0206,0383
03

01,02,04,05
0784,0744,0300,0206,0383

-17-
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COMPUTER PROGRAM DOCUMENTATION

Program NONLN1 and NONLN2
Nonlinear Color Display Program

Abstract. These programs together perform a transformation of a four
dimensional real row DATA to produce a four dimensional row TDATA.
NONLN1, which is called first (and only once), sets paraméters for ’
NONLN2. NONLN1 uses statistics {means and diagonal of covariance matrix)
on NCLASS c]asses and the class numbers IW and IG of distinguished classes
(called "wheat" and "grass" here). NONLN2 takes input DAfA into numbers
0. to 64. so that input data near wheat will map to TDATA high in channel
4 and low in channel 1 and 2, and input data near grass will become high
in channel 1 and Tow in 2 and 4. MWith standard color assignments used
to display ERTS data, wheat becomes red, grass green.

This method of transforming data is highly nonlinear and is quite

sensitive to noise in the input data; however, the output color spread

is spectacular.

Apglféaéidh; The program was developed for a specific application:

when multispectral multitemporal data is transformed to lower dimensionality
using a feature selection program, the transformed data has no intrinsic
meaning--no "reality." However, the transformed data (if, say, four
dimensional) should be more managable provided it can be displayed at

all., The problem is not just the range of the transformed data, or the
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fact that real data, unlike classes the féature selection program Was

“trained" on, trahsform wildly; the real. problem is the lack of any con-

sistent relationship in the transformed data. Thus it is easy to produce

a color display but hard to analyze what the colors mean. Program NONLN1-2

attempts to allign the selection of colors so that certain classes have

| certain colors, and this assignment will be relatively independent of

which feature selection program produced the reduétion in dimensionality.
The program is applicable to raw single pass data. Although wheat

and grass are probably not separated well enough, other classes are.

The program should greatly enhance color display of single pass data. _'

Source Eanguage. FORTRAN IV 100%

Restrictions. Name NONLN3 is reserved (the name of a COMMON block).

If classes IW and IG are too close the transformed data will be noisy

and lose separation. NCLASS must be at least 3.

1/0 Configuration. Both programs are I/0 free.

Deck Set-up. Job Control Cards
Calling program*
NONLN1
NONLN2
FOLD64
Job Control Cards
Data

“*for comments on the calling program, see Usage.




Usage. Calling sequence; NONLN1:
CALL NONLN1 (NCLASS,BMU,BSBTD,IW,IG), where

NCLASS number of classes for which training statistics
are given
BMU mean vector for each class: NCLASS by 4
BSBTD diagonal elements of covariance matrix: NCLASS by 4
W class to be made red |
IG class to be made green

CALL NONLN2 (DATA,TDATA,LDA), where

DATA input row, type real, LDA by 4
TDATA output row, type real, LDA by 4
LDA number of pixels in a row

Comments on the calling program. The calling program may have a

general flow as follows:
1. Set up data set with data to be transformed and transformed
data (may be the same data set since input is only needed
. once).
Input or otherwise determine parameters for NONLN1.
Call NONLN1.
Itialize a row counter loop.
Input a row of data.

Convert to type REAL if necessary and storé in DATA
Call NONLN2.

QO ~N O o A w

Store a row of data, packing or converting from type REAL
if necessary. :

9. Next row.
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Timing. NONLN2 is fast, probably faster than whatever I/0 and data
conversions are going on. For each pixel, about five floating point
multiplications and ten additions, and ten each integer additions and

multiplications are required.

Storage Requirements. Approximately 5000 8 bit bytes code for both

NONLN1 and NONLN2; array storage (assuming 32 bit real numbers) will be
about 4 * (47 + 8 * (NCLASS + LDA)) 8 bit bytes.

Possible Extension, Suggestions for Improvements.

These comments refer to batch operation only.

1. Suggestion for improving speed: This suggestion is based
on two observations: first, owing to noise, the transformed
data need have no more than (say) - 64 levels. Second, numbers
in channel I between S3MIN(I) and S3MAX(I) are mapped into
numbers 0. to 64. Thus a vector for each channel can be
set up to map DATA into TDATA by simply computing an index
and referencing a vector. The following sketch of a program
shows how this might be done?

SUBROUTINE NONLN4(CH1,CH2,CH3,CH4)

DIMENSION DATA(100,4), TDATA(]OO 4),CH1(100),CH2(100),CH3(100), CH4(100)

COMMON/NONLN3/SIMIN(4) ,S2MAX(4) . SIMIN(4), S3MAX(4)
get data NCLASS,BMU,BSBTD,IW,IG
CALL NONLN1(NCLASS,BMU,BSBTD. IW, IG)
D053 =1,4
x = S3MIN(J)
(S3MAX(J) - S3MIN(J))/100
DO 51 = 1, 100
DATA(I, J) X
5 X=X+ DX
CALL NONLN2(DATA,TDATA,100)
D010 I =1, 100

. CH1(I) = TDATA(I,1)
CH2(1) = TDATA(I,2)
CH3(1) = TDATA(I,3)
CH4(I) = TDATA(I,4)
RETURN

END
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The output of this program could: be épplied as follows:

For each pixel: determine if all fouf values are ih*range‘S3MLN

to S3MAX; if not, set all transformed values 0. If so, set

transformed value in channel 1 equal to CH1(KX) where

KX = 1 + (S3MAX(1) - X) * 100 / (S3MAX(1) - S3MIN(1))

and so on for channel 2, 3 and 4,

In a number of important applications the four dimensional data

will be type INTEGER, perhaps even six or seven bit integers.
(0 to 63 or 0 to 127). For instance, the data may have been

transformed and then scaled and packed; or the data may be one

pass data. In such a case it is clear that no scaling at all

is necessary to produce a transformation of the data--only

larger (perhaps) vectors CH1 through CH4. Further, here the

transformation would most likely be back to integer variables

anyway, so that CH1 through CH4 can be integer vectors.

The last possibility (that the transformation is from integer

to integer) can be improved even more if the computer has

a capability similar to the translate under mask instruction of

the IBM 360/370. Four masks can be set up and a whole row of
packed data can be translated at once (i.e., in just a few

| microseconds). This would obviously be the way to go if

it were possible.

Suggestion for testing "tamer" versions: Most of the wildness

of NONLN1-2 is caused by the size of fudge factor GWGRN and

WGRED (see the mathematical documentation and Table 2 for

definition). For example, with the test data given WGRED
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| is nearly 300 and GWGRN over twice this. (Note, however,

this only corresponds to a noise amplification factor of a
little under 5 in the red channel and about 11 for green. The
b]ﬁe channel is hardly affected at all by amplification of
noise since FFBLU is relatively small.) 1In any casé, one
may be willing to accept less spectacular colors in exchangé
for less noise. One suggestion would be to decrease the number
64. 1in the definition of GWGRN and WGRED to, say 32. It
would probab]y still turn out that wheat was the reddest thing
around and grass the greenest. |

5. A restriction of NONLN1 is that NCLASS > 3. If NCLASS = 2,

use instead program ROTAT1-2.

‘Additional. Information.

Mathematical description: NONLN1 and NONLNZ
Table 1. Local variables : NONLN1

Table 2. Variables in COMMON block : NONLN3
Table 3. Local variables : NONLN2

General flow chart : NONLN1 |

General flow chart : NONLN2

General flow chart : Test program

Listing

Test program and test listing



Mathematical Description: NONLN1 and NONLN2

The idea behind this transformation is to force one usef-se]ected-
class to be red and another user-selected class to be green. In the pro-
gram itself, these classes are referred to as "wheat" and "grass"

, respectively. A third class is selected by the program to be saturated in
blue. Of course, if the user-selected classes are close together this
procedure results in a noisy image; worse, unless considerable care is
‘taken, much of the original separation will be lost in the transformed
data. Most of the complication of the program is concerned with preserving
| as much separation as possible.

Although NONLN1 is called first to set the program parameters in
NONLN2 (which performs the actual transformation), we describe NONLN2
first. Program NONLN1 is easier to understand once the use to which
the parameters are put is known.

On each call to NONLN2, one row DATA of LDA pixels is transformed
and returned in TDATA. There is no assumption made anywhere that DATA
consists of (for example) positive numbers, or numbers in any certain:
range. The first task NONLN2 accomplishes is to examine a pixel and
decide if it is almost certainly not Tike any of classes which NONLN1
used'to define the transformation. This is done by seeing if one of
the pixel's four coordinates lies outside the largest and smallest
expected significant value as defined in NONLN1. In the program this
value is S3MAX(I) and S3MIN(I) respectively, I = 1 to 4, and represents-
maximum of mean + 3 sigma over NCLASS classes and minimum of mean - 3
sigma over NCLASS classes per coordinate. Failure to be acceptab)e in
any coordinate results in a zero value in each output coordinate and

movement to the next pixel.
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Acceptable data is now mapped into numbers (generally) between

0 and 1 linearly in each channel by the map y = (x-m)/{M-m) , where
X is the input coordinate, M is the maximum mean + sigma over
NCLASS classes, m is the minimum mean - sigma over NCLASS classes, and
y is the output value. In the program, x and y are both stored in
DATA, m is SIMIN(I), I =1 to 4, and 1/(M-m) dis SIMAX(I), I =1 to 4.

| The stage is now set for the actual transformation. LlLet w(i) and
g(i) denote the transformed means of class IW and IG, i =1 to 4. (These
parameters are set by NONLN1 of course.) Let f denote the function wfth
f(64.1) = 0, I even, f(64.1) = 64, 1 odd and f 1linear between. Let
ig, ir, ib and io denote the~gréen, red, blue and other channel numbers
§é1ected by NONLN1. The green, red and other channels are straightforward:

with input x ,

x(i) - w(i)

g 9

x(i,.) - g(i,)

red: y(4) = f {64 - Wﬁr) - g(ir)
other: y(3) = f(64 - x(ig))

For the blue channel, things get a little tricky: let

g(i ) +w(i.) (i) - g(i.)
t= max(?,|x(ib) _ 3 > T P -] b > b I)

Let tM denote the maximum of t for x ranging over the means of all

classes. Then



-9.
 ' b]ue:- y(2) ='f(64 . t/tM) .

Now we_describe the selection of channels ir" ig rand i As

b
can be seen immediately, NONLN2 is a violent mapping if classes IW and
IG are not well separated. Thus we select for red and green the index.

ir with w(i) - g(i) maximum and ig the index with maximum remaining
w(i) - g(i) , i # ir .. Blue index ib , on the other hand, is selected .

to be that index with minimum w(i) - g(i) . Once the indices are
set, simple variables are set equal to the various fudge factors; these
variables are passed from NONLN1 to NONLN2 through named COMMON block
NONLN3.
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TABLE 1. Local variables : NONLN1

I DO loop index

J D0 loop index

NCLASS Number of classes for which training statistics
are furnished :

SIG Temporary value of standard deviation

BSBTD(J,1) Diagonal of covariance matrix in channel I, class J

BMU(J,I) Mean, channel I, class J

TEMP Temporary real variable used for getting maximum
or minimum

W(4) ' Transformed (into unit cube) class IW mean vector
w(i) in mathematical description

G(4) Transformed class IG mean vector
g(i) in mathematical description

WMG(T) lw(i) - g(i)|

XTEMP Another temporary real variable

IW Class number of wheat

IG Class number of grass
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TABLE 2. Variables in COMMON block : NONLN3

SIMIN(4) Minimum over classes of mean in channel I minus
sigma in channel I, I = 1,4

S1MAX(4) 1./(SIMAX(I) - SIMIN(I)), where SIMAX(I) is first
' set to be the maximum over classes of mean plus
sigma in channel 1.

S3MIN(4) Minimum (respective]y maximum) of mean - 3 sigma

S3MAX(4) (respectively mean + 3 sigma) over classes for
channel 1.

IRED Index of red channel ir

IBLUE Index of blue channel ib

IGRN Index of green channel i

WGRN w(i

( g)

GWGRN ' 64./(w(i ) - g(i))

GWBLU (g(ip) +w(ip))/2

GRED | g(1r)

WGRED 64./(w(i,) - g(i )

WMGB2 lw(i,) - g(1b)|/2

FFBLU 64/tM (see the mathematical description for definition
of tM)

14TH 10-(ir + ig + in) (Index of other channel)



DATA(LDA,4)
TDATA(LDA,4)
LDA

IPT

ICHNL

TEMP
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TABLE 3. Local variables : NONLN2

One row of four dimensional real data to be transformed
The transformed data

Number of pixels per row

DO Toop index--pixel numbers

DO loop index--channel number

Temporary real variable
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o)

FIND SCALE
FACTORS FOR
MAP INTO
UNIT CUBE
Y

FIND VECTORS TO
TEST FOR OUT OF
RANGE DRTH
Y
TRANSFORM
WHERT BND
GRASS MERANS
AND FIND RMG
Y
FIND RED
CHANNEL NUMBER
(MAXIMIZE HWMG)

Y

- FIND BLUE
CHANNEL NUMBER
(MINIMIZE RMG)

Y

FIND GREEN
CHANNEL NUMBER
(MAXIMIZE WMBG)

Y

FIND FOURTH
CHANNEL AND
ASSIGN CONSTANTS
Y
FIND CLRASS
WITH LARGEST
COMPONENT
FROM MEAN N
A G IN BLUE
Y
ASSIGN BLUE
FRACTOR 50 THAT
THIS CLASS 1S
SATURATED IN BLUE

\/

GENERAL FLON CHART: NONLNI
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COMPRESS DATH
INTO CLUBE

Y

MOVE DRTR TO
TORTR DOING
TRANSFORMAT | ON

\{

GENERAL FLOW CHART: NONLNZ
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READ MERANS
AND D | AGONALS
OF COVARIANCE

MATRI CES

4
READ CLRASS
NUMBERS FOR

WHERT HAND GRASS
' Y
GENERATE DATH

WRITE
RESULT

GENERAL FLOW CHART: TEST NONLNI,NONLNZ
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SUBROUT INE NCALM (NCLASS, BMU, ES ET Cs IWe 1G)

FUNCT ION = TO SET PARAMETERS FOR SUBROUTINE NONLN2

LSAGE = CALL MNCMLMN1(NCL ASS, EMU, ESBTDs W, 1G) -

PARAMETERS = . '
NCL ASS = NUMBER OF C(LASSES FOR WHICH TRAINING STATISTICS EXIST
8MU = NEAN VECTCF FOR EACH CLASS: NCL ASS EBY 4 -
ESBTC = DIAGONAL ELEMINTS OF COVARIANCE MATRI >3 NCLASS BY &
Iw = CLASS NUMBER JD)F CLASS. TO BE MADE RFD :
1G = CLASS NULMBEFR OF CLASS TO BE MADE GFREEN

PRECISION = SINGLE

RECDs RTNS.= NONE (S INGLE PUR FOSE ==C ALLED BEFORE NONLNZ)
RESTRICTION €

NONLN3 = A RESERVED NAME OF A COMMON BLOCK

NCLASS = MUST RE AT LEAST 3
LANGUAGE = FORTRAN IV

SUBROUT INE NCALNMN (NCL ASS, BMU, ESET Cy IWe 1G)

DIMENSION BMUINCLASS 34) BSATDINCLASS+4 ) +W(8 ) +G(4 )W MG(4)

CCMMCAN NONLN3/SIMIN(A ) s SIMAX( 4 )3 SIMIN(4) » SIMAX(A) , IREDIBLUE,
* IGRN, WGR N, GWG FN +GWBLU ¢GREDs W CREDs #MGB2s FFB.Us 18T H

FIND FUDGE F ACTORS FOR CUBE

DO 40 I=1,4
SINVIN(I)=BMU (1, 1)=SQRTI(BSBTD( 1, 1))
- SIMAX (1) =S1 MINC( 1)
SAIMIN(T )=BMU(1,1)=2%SQRT(3SBTD(1 1))
S3IMAX (I)=S3MIN(TI)
DO 4C J=1 4NCLASE
SIG=SART(BSARTD( Js1))
TENF=BMU(J, T)=SIG
IF(TEMP ,5To SIMINI(I))IGO TO 50
SIMIN( I )=TEMP
SO0 TENMP=BMU( ,+1)+S IG
IF(TEMP.L T SIMAX(I))GO TO a1t
S1MAX (T)=TEMP
41 TEMP=8BMU( J.1)=3%S1G
IF( TEMP 3T« S3MIN(TI ))IGO TO 42
S3IMIN(I)I=TEMP
42 TENP=BMU( .+ 1)+3 %xSIG
I FCTEMP LTS MAX{(I))GO TO 40
S3IMAX (I)=TEMP
40 CONTINUT
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FOR EFFICIENCY REPLACE FUDGE DIVI SICN 8Y. MULTIPLICATiCh

DN A€ [ =1 .4
SIMAX(I)=14 /(SIMAX(I)=SIMIN(I))

NORMALI ZE WHFAT AND GFASS MEANS AND FIND WC(I)=G(I)

DL 60 I=1,4
W(I) =(BMUCIW,I)=SI MIN(I))®SIMAX ()
G(I)=(BMU( 1G, 1 )=SIMIN(I ))*SIMAX(I)
WMG (1) =ABS(W(I)=G(I)) '

FIND RED CHANNEL

TEMP=wMG(1)

PH 70 1=1,4

IF(TEMP.GT 4WwMG(I))E® TO 70
TEMP =wWMG( 1)

IREN=I

CONT INUE

FIND BLUT CHANNFL

DO 89 1I=1.,4

IF(1.EQ.IREN)IGO TO 89

TF(WMGl 1) «GT ,TEMP)IGD TO 80
TEMP=WMG( 1)

I3LUE =1

CONT NUE

FIND GREEN CHANNEL

DC 30 I=1,4
IF(I.EQ.IRED)IGO 1710 90

IF( 1.€Q.«IBLYE GO TQ 9Q
IF(TEMP ,GT W NG( I))GC TQ 90
TEMP=WMG(1])

IGRN=1

CCATINUE

ASS TGN FIURTH CHANNEL

14TH= 10=[ RE D=1 BLUE=IGRN
ASSIGN A FEw CCNST ANTS

W CRN=wW( IGRN )

GWBLU= (G(TELUE) *W{ IRLUE) )/ 2.
GRED=G( IRED)

GWCRN=64 o/ ( G(IGRN )=W( IGRN))
WGREN =64 o/ (W(IRED)=G( IRED))
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FIND REMAINING CLASS WITH LARGEST C(MFCNENT Pa AY
FROM THE MEAN OF WHEAT AND GRASS

TEMP=GWBLU

CO 1190 1= 1.NCLASS

IF(IEGeIWNR,T.FQ . ICIGD TI 100

XTEMP =ABS((OMU( T, IBLUE ) =S1 MINC(IBLUE))I*SIMAX (IELJUE)=GWELU)
IF(XTEMP LT .TEMP)GO TO 100

TEMF=XTEMP

CONTI NUE

NCW FIND THE B .UE RJDCE FACTOR

WMGB 2=WMG( 1BLUE ) /2,
FFBLJ=58 47/ (AES (T EMP=M (B2) )
RETURN

eND
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LBRCUTINF NCNULN2 (DATA,TNDATA,LLDSA)

FUNCTINN - TO TRANSFORM FOUR DIMENSICNAL REAL DATA A RCW AT A

TIME TO ANOTHER REAL ROW 0OF FOUR DIMENSIONAL DATA
IN THE RANGE D =64, ATTEMFTING TO MAKE CLASS Iw
RED (HIGH IN CHANNEL 4, LOW IN 1 AND 2) AND CLASS
IG CREEN (HIGH IN CHANNE. 1, LOW IN 2 AND 4).

USA GF = CALL NCNLNZ(DAT A, TCATA,LLDA)

£

e

ARAMET EFS =
DATA =« ONE RCW CF FCUFR DIMENS IONAL JEAL DATA: LDA BY &
THA TA ~ THE TRANSFORMED DATA: LDA BY 4
LCA = THE NUMBER OF PIXELS IN A ROW

RECISICN = SINGLE

RFQDe RTNSe= NONLNY! MUST BE CALLED TC SET FFOGR#M VARTIABLES

FUNCTION FOLD64 IS REFERENCED

RESTRICTIONS

NONLN 3 = A RFSERVFD NAME OF A CCMMON BLCCK

LAMNQACE = FORTRAN |V

136
138

145
146
132

SUBROUTINE NONLNZ2(CAT A, TDATALLDA)

DINENSION CATA(L CAv4)s TDATA(LDA 44)

CCNNCN/NCNLN3 /7S] MIN(4 )9St MAX (4 ) oS3MIN(SG),S3MAX (4)y IREL, IB..UE-

* TGRN s WGRN +sGWGRN+GWBL LGRED s WGRED 4w MGB2, FFBLU, 14 TH

COMPRESS CATA INTC CUBE

CC 130 IPNT=1,L [A

PO 132 ICHNL=I -4

TEMP=DATA(IPNT, ICHNL) )
IF(TEMF«GT oSIMAX (TCHNL ) sOR «TEMP oL T oS2M IN( ICHNL))IGO TO 145
CONTINUE

CO 126 ICHNL=1,4

DATA(IPNT s ICHNL) =(DAT A( IFNT , TCHNL })=S1IM IN( ICHNL ) ) *S1MA X{ ICHNL)
CONTINUE

MOVE DATA TO TR/ANSFORM ARRAYs DCING TRANSFORMATION

TCATA( IPNT, 1)=FOLD €4( (DATA({IPNT,IGRAN)=UWGRN)XGWGRN)
TDATA(IPNT,3)=FOL C64( CATA( IPNT, [4TH ) *64,)
TRDATA(CIPNT.4) =FCLD64{ (DATA(IPNTY JIREC)I=GRECL)*W GRED)
TEMP= ABS( CATA{ IPNT , IRLUE )=GWBL U)=WMGSB 2

IF(TEFMP LT oD «)TENF=0 .

TDATA(IPNT, 2)=FOLD €4a( TEMPxFFBL L)

¢cC 7C 131

DD 145 TI=1 .4

TIATA(IPN T, I )=0e.

CCNTINUE :

RETURN

END
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FUNCTION = TC MAP A REAL NUMBER INTC GNE BETWEEN Os ARD 66, )

-USAGE
FARAMETERS

gy "FOLCING' RATHER THAN CLIPPING
Y=FOLD €A X)

X
Y

ANY REAL NUMBEFR
THE RESU TANT BETWEEN Coe AN) 66+ Y IS CCNGRUENT TO
X (MOC 64) IF X IS IN AN INTERVAL (€4%x1I, €a%x(I+1))
WITH I FVEN: OTHERWISE Y IS CONGRUENT TO 64=x (MOD 64)

RESTR ICTIONS NONE

X SHOUL T NDT BE YOO LARGE DR EF FICI ENCY SUFFERS

PRECISION = SINGLE
L ANGUACE - FORTRAN IV

1

FUNCTION FOLD54 (X)

FL D64=AB S( X )

IF (FOLD64 +LE 54 « JRETURN
FOLD €4=A3 S(FOLD €4=128,.)
IF( FOL D64 «GT H64.0)6G07T0 1
RETURN

" END
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COMPUTER PROGRAM DOCUMENTATION

Program ROTAT1 and ROTAT2
Rotation to Produce Color Displays

Abstract. These programs together perform a transformation of four
dimensioha] real row DATA to produce a four dimensional row TDATA.
ROTAT1, which is called first (and only once), sets parameters for v
ROTAT2. ROTATl_uses statistics (means and diagonals of covariance matrices)
on NCLASS classes and the class numbers IW and IG of distinguished classes °
(called "wheat" and "grass" here). ROTAT2 takes input DATA into numbers 0.
to 64. so that ihpUt data near wheat will map to TDATA high in channel 1
and Tow in channel 2 and 4, and.input data near grass maps to data with
more channel 2 and low in channel 4. With standard color assignments used
to display ERTS data, wheat becomes a saturated red, grass orange or
berhaps yellow. | |

This method of transforming data is nearly linear and is insensitive
to noise in the input data; however, the output color spread is not

spectacular. Only two classes need be trained on.

Application. The program was developed for a specific application: when
multispectrél multitemporal data is transformed to lower dimensionality
using a feature selection program, the transformed data has no intrinsic
meaning--no "reality." However, the transformed data (if, say, four

dimensional) should be more managable provided it can be displayed at all.



-2-

The problem is not just the range of theAtrahsformed data, or the fact

that real data, unlike classes the feature selection program was "trained"

on, transform wildly; the real problem is the lack of any corsistent

relationship in the transformed data. Thus it is easy to produce a color
display but hard to analyze what the colors mean. This program attempts
to allign the selection of colors so that certain classes have certain
colors, and this assignment will be relatively independent of which feature
Se]ectjon program produced the reduction in dimensionality.

This progfam is applicable to raw single pass data. Even confused
classes (as, for example, wheat and grass are likely to be) can be

displayed with some enhancement of their separatidn.

Source Language. FORTRAN IV 100%

Restrictions. Name ROTAT3 is reserved (the name of a common block).

If the wheat vector poihts to the "middle" of four dimensional data some

separation may be lost.

I1/0 Configuration. Both programs are 1/0 free.

Deck Set-up. ~ : Job Control Cards
Calling program*
ROTAT1
ROTAT2
FOLD64
Job Control Cards
Data

*for comments on the calling program, see Usage.



Usage. Calling sequence, ROTAT1
CALL ROTAT1(NCLASS,BMU,BSBTD,IW,IG), where

NCLASS number of classes for which training statistics
are given
BMU mean vector for each class: NCLASS by 4
BSBTD diagonal elements of covariance matrix: NCLASS by 4
IW class to be made red
16 - class to be made yellow

Calling sequence, ROTAT2
CALL ROTAT2( DATA,TDATA,LDA), where

DATA input row, type real, LDA by 4
TDATA ’output row, type real, LDA by 4
LDA number of pixels in a row

Comments on the calling program. The calling program may have a

general flow as follows:

1. Set up data set with data to be transformed and transformed
data (may be the same data set since input is only needed
once).

2. Input or otherwise determine parameters for ROTATI.

Call ROTATI. |

Intialize a row counter loop.

Input a row of data.

(=)} (3, + w
. . ] .

Convert to type REAL if necessary and store in DATA.
7. Call ROTAT2.

8. Store a row of data, packing or converting from type REAL
if necessary. : ‘

9. Next row.
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 Timing. ROTAT2 crunches numbers; for each pixel, about 25 each fixed
point additions and multiplications, 24 floating point additions and

20 floating point multiplications are required.

- Storage Requirements. Approximately 7000 8 bit bytes code for both

ROTAT1 and ROTAT2; array storage (assuming 32 bit real numbers) will be
about 4 * (91 + 8 * (NCLASS + LDA)) 8 bit bytes. Exact storage require-

ments will depend on computer type.

Possible Extensions, Suggestions for Improvements.

1. As can be readily seen from the example, the blue channel
has maximum value less than 0.5 in each of the six classes.
This may be acceptable; however, should the user wish, this

is easily adjusted by the following changes in ROTATI:

-,Change ' to
S €(3,2) = -¢(2,3) €(3,2) = -2.*C(2,3)
€(3,3) = ¢(2,2) C(3,3) = 2.*C(2,2) .

2. A similar change can be made in the red channel so that wheat
will be pure red; this will not be as violent as the map in
NONLN1. The change is

c(i,1) = 1. to C(1,1) = 1./WNORM.
The effect of these two changes is displayed in the mathematical
description of ROTAT1-2. Changes 1 and 2 have been made in
the version of ROTAT1 delivered.
3. ROTAT2 can be speeded up at some cost in complication. This

amounts to writing out the loop which performs the multiplication
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of a vector of data by E. The reason it will be faster

is that the current version uses 16 references to array E and
16 floating point multiplications while actually E is

‘zero in 6 of these p]aces.. This change would probably

speed up ROTAT?2 by 40 percent.

Additional'lnformation.

Mathematical description: ROTAT1 and ROTAT2
Table 1. Local variables: ROTATI

Table 2. Variables in COMMON block: ROTAT3
Table 3. Local variables: ROTAT2

General flow chart: ROTAT1

General f]owvchart: ROTAT2

General flow chart: Test program

Listing |

Test program and test listing

Mathematical description: ROTATI and ROTAT2

The idea behind this transformation is to align the color display in
a reproducible fashion while maintaining the original geometric relation-
ships. Since this is generé]ly not possible, the program introduces mild
~nonlinearities.

Program ROTAT1 defines the transformation; ROTAT2 applies it to one
row of data at a time. There is no'assumption made anywhere that the
' input data has any certain range. ROTAT first examines a pixel and

decides if one of its four coordinates is out of the interval
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(S3MIN(I),S3MAX(I)) » I =1 to4 , the minimum and maximum of mean

+ 3 sigma over NCLASS classes pef coordinate. Failure of any coordinate
to lie in the interval results in a zero output in each coordinate and
movement to the next pixel.

Acceptable data is now mapped into numbers which are generally
between 0 and 1 in each coordinate by the map y = (x-m)/(M-m) ,
where x 1is the input coordinate, M 1is the maximum mean + sigma over
NCLASS classes,_ m 1is the minimum mean - sigma over NCLASS classes,
and y is the output value. Depending on a parameter supplied by
ROTATl; either y or -1 +y is stored. (We will see this has the
effect of complementing data in that coordinate.)

If Y denotes the 4-vector of data at this point, the transfor-
mation X =EY is applied; E is a 4x4 matrix which is a permutation
of 64 times the product of two rotations, described in detail below.
Output X is now folded by the scalar function f with f(64.I) =0,
I an even integer, f(64-1) = 64, I an odd integer and f 1linear
between. ROTAT2 goes to the next pixel and returns when LDA pixels
have been transformed.

We now describe ROTAT1 which supplies all these parameters. ROTAT1
first examines the NCLASS means and variénces in each coordinate to
determine SIMAX,S1MIN,S3MAX and S3MIN--the maximum and minimum of
mean + sigma and mean + 3 sigma over all classes in each coordinate.

The program then transforms means for wheat and grass into the unit

4-cube and selects three of the four indices as follows:
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i_ 1is-selected to maximize the separation of wheat and grass
i is selected to next maximize the separation of wheat and grass
ib is selected to minimize the separation of wheat and
gréss |
io is the other coordinate index.

Thus, if w and g denote the images of wheat and grass in the unit

4-cube, we have
w(ip)-g(ip) |<lwlig)-g(ig) [<lwlig)-g(ig) [<lw(i )-g(i )] .
Thé ﬁrdgram examines w(ir) . w(ig) énd w(ib) as follows:
If w(ir) < 0.5,.c9mp1ement.data'in coordinate 1. ; that is, replace
a transformed value .X(ir) by 1 - x(ir) . Similarly, complement
data in coordinate ig wheh w(ig) > 0.5 and complement data in coordinate
i, when w(ib) > 0.5. If g(ig) < g(ib) , interchange coordinates 1g

and ib.' Fig. 1 depicts the result of performing these transformations to

test program data; 1 is grass and 5 is wheat. Note that 5 is as near

the ir axis as it is possible to make it with this kind of mapping.

Now move the transformed vector 5 (which we again denote by w)

~ to Tie on the ir-axis by first rotating into the ir - ib plane about

the i, axis and then onto the ir axis by rotating about the ig

b

axjs.u If Wy = w(1r) s W = w(ig) and w, = w(1b), ‘then this mapping

g

is given by



Wl wb

| {wll [wll

Wng wY‘wb

A =

vilwll o vlwl]
o

v v/

where  w - /(w4 wl +wp) and v = JKwa + w2). Figure 2 shows the

result of applying A to the six mean vectors and then plotting the absolute

value of each coordinate. For our data,

.828 .394 .399
A= ]-.56] .581 .589
0 -712 .702

Ne*t the data is rotated about the ir axis so that the transformed

- g vector will 1ie in the i - ig plane. This rotation is given by

r
1 0 0
C = 0 g(ig) g(ib)'
n n

_9liy) - glig)

n n

where n = ‘/(g(i-g)2 + g(ib)z) and g denotes the transformed grass vector.
In our test data, g(ib) is very small, so that this transformation does

not do much. We have



1 0 0
C = 0 -.999  -.036
0 .036  -.999

The product of C and A maps mean vectors as shown in Fig. 3 (with

absolute values taken). We have

.828 .394 .399

CA 561  -.556  -.614

-.020 .732 -.681

Before cbntinuing our description of ROTAT1, we comment on suggested
changes (change 1 and 2): Note that the wheat vector is not as large

as grass, even in coordinate i If (this is change 2) C€(1,1) is

v
replaced by 1/||w|| , then we obtain the result shown in Fig. 4. (A1
discussion from now on refers to plots of folded (rather than clipped)
vectors. This is exact]y'what program ROTAT2 does.) Necessarily,

| lw]] > %-; it follows that the noise should not be amplified very much

by this change.

In Fig. 5 we display the affect of change 1 only, and Fig. 6 the
effect of both changes. Since these changes make the transformation
less accurate geometrically, they have the potential to degrade separa-
tion and amplify noise. We therefore generated and plotted random data
with statistics like those used as input to NONLN1 and plotted (for
comparison) the effect of changes 1 and 2. Some of this is presented
here. Fig. 7 shows wheat and grass random vectors as transformed by

the unchanged method; Fig. 8 shows the same data under change 1 and 2.
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(The line segments are drawn from the point in 3-space to the nearest
coordinaté plane.) Ih Fig. 9, the upper plot shows all six classes after
change 1 and 2. The lower plot shows the original method. (Twenty points
in each class may have been too many; the plot is somewhat confusing.)

As a result of these and other studies we have decided to deliver
the version of NONLN1 with change 1 and 2 implemented. Final decision
which version to use will have to be based on actual real data as viewed
in color.

| Returning to the description of NONLN1, a matrix‘ E is defined

which is a'permUtation'of the matrix
0 0 O

CA

o O o -

4x4

to

'so that coordinate ir goes to channel 4, ig to channel 1, ib

channel 2 and ib to channel 3. Also, a multiplication of + 64 s

performed to each row (depending on whether that row is complemented).
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Fig. 1. Coordinates 1r’ ig and ib of scaled

and complemented row mean vectors.
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Fig. 2. Absolute values of transformation of
Fig. 1 by A.
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Fig. 3. Absolute value of transformation of
Fig. 2 by C.
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Fig. 4. Change 2 applied to C to make WHEAT redder.
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Fig. 5. Change 1 applied to C to increase spread in blue channel.
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Fig. 6. Change 1 and 2.
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o i

Fig. 7. Réndom data transformed, original method.
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Fig. 8. Random data, change 1 and 2.



Fig. 9. (Upper) Change 1 and 2, six classes.
(Lower) Original, six classes.
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TABLE 1. Local Variables : NONLN1

I : DO Toop index
J | DO loop index
NCLASS Number of classes for which training statistics are
furnished
SI1G Temporary value of standard deviation
BSBTD(J,1) Diagonal of covariance matrix in channel I, class J |
BMU(J,1) Mean, channel I, class J
TEMP Temporary real variable used for getting maximum or
~minimum
IW Class number of wheat
16 Class number of grass
G(1,1) . Image in unit cube of grass mean vector
G(I,2) 1 - G(1,1)
w(I,1) Image in unit cube of wheat mean vector
W(I,2) 1 - W1,1)
K1 Index ir
L1 A flag : L1 = 1, do not complement in class Kl
L2 = 2, do complement in class Kl
K2 : Index 1g
L2 Complement flag for class K2
K3 Index ib | |
L3 : Complement flag for class K3
K4 70 - (K1+K2+K3)
XL(4)* XL(K1) = 1- L1 ; XL{K2) =1 -1L2 ; XL(K3) =1 - L3 ;

LX(k4) = 0 .



WNORM
W23
A(3,3)
GH(3)
G23
€(3,3)

D(4,4)

E(4,4)*
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TABLE 1. (Continued)

Hwll

v

The first transformation.

The transformed by A of the grass. vector
: 2 : 2

Ag(ig)® + g(i,)*)

The rotation about ir to annihilate the 3 component
of GH.

CA 0
0
0
1

A permutation of D to give standard colors, taking
into account K1-K4 .

* These variables in COMMON block ROTAT3
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TABLE 2. Variables in COMMON block : ROTAT3

SIMIN(4) Minimum over classes of mean in channel I minus
sigma in channel I, I = 1,4

S1IMAX(4) 1./(SIMAX(I) - SIMIN(I)), where SIMAX(I) is first
set to be the maximum over classes of mean plus
sigma in channel I,

S3MIN§43 Minimum (respectively maximum) of mean - 3 sigma

S3MAX(4 (respectively mean + 3 sigma) over classes for
channel I.

XL(4) Vector used in complémenting data

£(4,4) "~ Matrix used to perform transformation



DATA(LDA,4)
TDATA(LDA,4)
LDA

IPT

ICHNL

TEMP

SUM

-23..'

TABLE 3. Local Variables : ROTAT2

One row of four dimensional real data to be transformed

The transformed data

Number of pixels per row

DO loop index--pixel numbers
DO 106p index--channel number
Temporary real variable

Temporary real variable used to generate vector-matrix
product
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FIND SCALE
FACTORS
FOR MRP
INTDVCUBE

FIND OUT OF
RANGE TEST
VECTORS
vy
TRANSFORM .
WHERT HAND
GRASS MEANS
AND SET W/
I~W, G RND I-G

: 4

FIND CHRANNEL KI
WHICH BEST
SEPERRTES W AND B

Y
SET COMPLEMENT
FLAG TO MAKE W
BRERTER JHFIN a.5
FIND CHRNNEL KZ
WHICH NEXT BEST
SEPERHTEg W AND B

SET COMPLEMENT
FLAG TO MRKE W
LESS THRN B.5

Y

FIND CHRNNEL K3
WHICH BEST
CONFUSES N AND B

4

SET COMPLEMENT

FLAG TO MAKE W

LESS THAN @.5
'

MAKE GC(K2)
EREATER THRAN
G(K3) BY
SWITCHING
Y
COMPUTE THE
MATRIX B TO
ROTATE K ABOUT
Kl TO THE KZ-KI
PLANE THEN
ABOUT K3 TO Kl

®

- GENERAL FLOW CHRRT: ROTATI
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?

PERFORM THE
ROTRATION A TO B
. Y
COMPUTE MRATRIX
€ NHICH ROTATES
RAxE RBDOUT K1 TO
KlI-K3 PLANE
Y
FORM D = (R
Y
MOVE D TO
£ (4 BY YY)
SHITCHING
COLUMNS
Y
SNITCH ROWNS OF
E TO STRANDRRD

IMAGE 188 COLDOR
ASS | GNMENTS

RETURN

GENERAL FLOW CHART: ROTATI
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COMPRESS DRTRH
INTO CUBE
Y

MOVE DRTR TO
TOATA DOING
TRANSFORMAT | ON

GENERRL FLON CHART: ROTATZ2
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- RERD MERNS
AND D | RGONALS
OF COVRARIANCE

MATRI CES
Y

( RERD CLASS

NUMBERS FOR
WHERT HAND GRASS

' Y
GENERRTE DATH

v

CALL
ROTATI

CALL
ROTATZ2

\/

WRITE
RESULT

BENERHL FLON CHART: TEST ROYAT!.ROTRTZ
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SUBRCUTINE ROT AT1 (NCLASS.8MJ,BSBTD+IW.I(G)

FUNCT 10N = TO SEY PARAMETERS FOR SUBROUTINE ROTAT2
USAGE = CALL RCTAT 1 (NCLASS, EMU, ESBTDs IWs 1G)
PARAMETERS =
NCLASS « NUMEBER OF QLASSES FOR WHICH TRAINING STATISTICS EXISY
8MU = NMEAN VECTCF FOFR EACH C(LASS: NCL ASS Er 4
ESRTD = DIAGONAL ELEMENTS OF COVARI ANCE MATRI x2 NCLASS EY 4
iw = CLASS NUMBER DF CLASS TO BE MADE RED '
1G = CLASS NUMBER OF CLASS TO BE MACE YELLOW=GREBRN
PRECISION = SINGLE
RECDs FTNSe= NONE (S INCLE PURIFOSE==C ALE) BEFORE ROTAT2)

RESTRICTION <

L

20
12
14

10

15

ROTAT 3 - A RESERVED NAME OF A COMMON BLOCK
ANG LAGE = FORYT RAN 1v

SUBROUT INE ROT AT 1INCLASS+BMU+BSBTD+IGeI W)

DIMENSICN BMI(NCLASS 44 )y BSEBTD(NQ ASSe 4 )eW( 4, 2):G( 84 2) AL 3, V),

$ GH(3)+D(4,4),C(3,3)

CCMMCN 7 FOT AT3/SIMINCA) s SIMAX( Ao SIMIN(E) o SIMAX(A) (XL ( Q) ,E(4,4)

F IND FUDGE FAC TORS FOR CUBE

DO 10 1=1 .4

SIMINCI I=BMU(1,1)=SORT(BSBTD(1 « 1})
SIMAX (T )=SIMINCI)

SIMIN(I) =My (1 , 1) =3%xSCRT(BSETC(1,1))
S3IMAX(I)=S3MIN(I)

DO 10 J=1 ,NCQ ASS
SIG=SQRY(BSBID(J+1))
TEMP=BMU( J, | ¥=SIG

IF(TEMP ,GTSIMIN(I))@ TO 20
SIMINCI)=TEMP
TEMP=BMU( J, 1)4SIG
IF(TEMP.LT.S1MAX(I))GC TO 12
S1MA X(1 )= TEMP
TENF=BMU( J, 1 )=m3 2SIG

IF(TEMP,GT S3IMIN(IIIGC TC 1a
SIMIN(I )= TEMP
TEMF=BMU (J, 1)+3%S 1C
IF(TEMP,LT. SSVAX(I))IGC TO 10
S3MAXC [ )=TEMP

CCNTINUE

PO 15 I=1,4 :
SIMAX(T)= 1 ./(SIMAX( I )=SIMIN(I))
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NCRVAL T ZF WHEAT ANT @RASS MEANS

Ch 3n 1=1,4

G(I+s1)=(8BMU (IGy 1)=SIM IN( 1))#SIMAX( )
W(Te1)=(BMLITIWN,I)=SIMIN(I))®S]1 MAX(1T)
W( 1e2)=1 0=W(T,1)

G(1,4,2)=1 oO'_'G(! +1)

FIND K1 AND L1

TEMP=0.0

) 49 I=1,4

IF ( TEMP .GT. ABS(C(I,1)w(I,1))) GO 7] a0
TEMP = A3S(G(TIs1)mw(l,1))

K1 = 1

CONTINUE

tt = 1

IFL WiK1s 1) oL Te DS ) LY = 2

XL(K1) =1 = LI
FIND K2 AND L2

TEMP = 060

£C 50 I=1,a

IF ( I «EQe KI ) GC TC 50

IF ( TEMP .GV, ABS(G(TI,1)=w(l,1)) ) GO TO SO
TEMF = ABS (G(Is1)=W{ 141 ))

K2 = I

CONTINUE

L2 = 1

iIF { W(Kgol, eGTe 05 )y L2 = 2

XL(K2) = 1 = L2

FIND K3 ARND (3

TEMRP = 2,

N0 60N 1=1 ,4

I[F (1T «EQe K1 «00Re I EQs K2 ) GO TO 50

IF C TEMP oLTs AES(C(I1,1) = w(Isy1)) ) GO TO 60
TEMP = ABS(G(Is1) = w(l,1))

K3 = 1
CCANT INUE
L3 =1

IF (W(IK3s1) GTe 0.5 ) L3 = 2
XL (K3) =1 = L3
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I THE 2 CCMPONENT CF GRASS IS SMALLER THAN T+E 3 COMPON ENT,

THEEN SWITCH TFHE 2 AND 3 TNDICE €

IF(GIK2 312)eGTeG(K3LL3)) GO TC 70
I1=K2 :

. K2=K3

K3 =1

1=L2

t2=L3

L3 =1
TEMP=XL (K 3)
XLIK3)=XL K2

XL{K2) =TEMP

MMPUTE A MATRIX

WNORMZSQRT (WK 1oL 1) 2% 2 4W (K2 L2 ) %%k24+ $(K3 4L.3)%%2)
W23=SQRT (W (K2,L 2) % %2 +W{K 3,L 3)%22)
Al o1) =w( Kl L1 ) /WACKRW
A(1+2)=W({K2,L 2) /7 WNORM

Al 3)=w{ K3 413 )/WINCFM

A(2, 1)==WZ2/WNORM

A(242)=W (KL oL 1) %2W(K2,L2)/{Ww23%NORM)
AU2,3) =W(K]L +L1 )*WIK3,L3)/({ w23 %xWNORM)
A(3,1)=0,

A(3,2)==wW (K3 ,_3)/W23
A(3,3)=W(K2,L2) /%23

DC THE A ROT AT ION ON TH+HE GRASS VECTOR

CO 80 I=1,3
GHOIISG(KY +L1 )P *A( T 1)4C(K2,L2)% (1 2V4G(K3,L3)%A( I, 3)

GET THE C MATRIX FROM THE ROTATED GRASS VEC TOR

G23=SART(GH{ Z) x % Z¢GH ( 2) %% 2)
Cllel)=1,0/7WNDRM

cl1 ’2‘,=Co .

C{1,3)=0.

Cl2+1 =0, ’
C( 2+2Y=GH(2) /523

C{2+,3)=CH( 2 VG23

C(3 ,1)=0.

C(302)="C( 29y )% 2.0

C(3,3)=C (2,2)%2,0
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FCFM THE EIG C MATR IX

03 30 (=1,3

D{a,13=0.

D(I s4)=C,

CN 90 J=1, 3

YEMB=0,

NO 100 L=1,3

TEMP=TFMI 4C{ I,L )W (Le J)
D(I «J)=TEMP

ND(4,4)=1,

MOVE € 7O E SW ITCHING COLUMNS

KAz 10K lwK2 =K 3
XL{Ks )=n,

DO 110 121,14 _
EC 1oK1)=64 4 (1, 1) 2 ( (=), ) %%{ 14 1))
E(] 4K2) =64+ %D( 1,2 )% 0 (=1 )%k (1 +L2))
FUlaKIN=64a%kN(T 43V % ( (=) ,)xx({14L3))
E(l,k4)=D (1, 4) %64, i

SWITCH ROWS YO STANDARb IMAGE 100 CCLORS

PN 12C 1 =1 ,4
TEMP=FE( 1, 1)

DC 130 J=1,3
JI=J+t

E(Js I)=E(JI, 1)
E(4a, 1)=TEMP
RETURN

END
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SUBFCUYTINE FOT /T2 (CATA,TDATA,LDA)
FUNCTION = 10 TRANSFORM FOUR DINMENSICNAL FEA. CAT A A ROW AT A

TIME TO ANQTHER REAL ROW OF FOUR DIMENSI ONAL DATA
IN THF RPANGE 0Oe.=64. ATTEMPTING TO MAKF CLASS 1¥w
RED (HIGH IN CHANNEL 4, LOW IN 1 AND 2) AND CL ASS
IG CREEN (FIGF IN CHANNEL 1, LOW IN 2 AND 4),

USAGE = CALL FCTAT2 (CAT £,TCATA,LLA)

PARAMETERS w= ‘
DAT A = DNE RDW DF FDUR DIMENSIONAL REAL DATA: LDA BY &
“TOATA - THE TRANSFORMED CATA: LDA By 4
LCA = THE NUMBER OF PIXELS IN A ROW

PRECISION = SINCGLE
CREQDe RTNSe = ROTATI MUST BE CALLED YC SEY FFOGRAM V ARTAPRL ES

RF STRI CTIONS

FUNCTION FOLD364 IS REFERENCED

ROTAT3 = A RESERVFD NAME OF A CCMNON BLOCK

LANGUAGE = FNARTRAN IV

172

SUBROUTINF ROTAT2(CATA, TDATA,LDA)

CCMMCN / ROT ATI/SIM IN(4), SIMAX( 4 )sS3MIN(A) 5, SIMAX(4) o XL (4) ,E(4,4)
DIMENSION CATA(LLCAL4) ,TTAT A(LDA,L4)

LOGICAL . TEMP

COMPRESE CATA INTC CUEE

DO 170 IPNT=1,L CA

LTEMP =, TRUE,

DD 172 IC4ANL=1,4

TEMP=DAT 8 (IPNT, I CFNL)

IF (TEMPe GT oS3 MAX( ICHAL) e OFReT EMP o LT oS3MIN( ICHNL ))GO TO 176
CONTI NUF ‘ '

DC 178 ICHNL=1,4

178 DATA(IPNT 4 ICHNL)Y=XL{ ICHNL)Y+ (DATA(IPANT s ICHRNL )=SIMIN(ICHN_ ))

17¢€

185

179

$%xSIMAX( IC HENL )

LTEMP=,FALS F,
CONTINUE

DC TRANSFORM AT ION

00 180 ICHNL=1,4

SUM =0,

IFC(LTEMP)GO 10 180

D) 1R85 I=1.4
SUM=SUM+E(TCHNL . T)*DATA(IFNT, 1)

PUY DATA INTO RANGE 0w=64

182 TDATACIPNT, [CHNL )=FO_ C64(SUM)

CONTINUE
RETURN
END



nnnnnnnnnnnnn-nn

FUNCTION

USAGE

PARAMETE S
X
Y

RESTR ICT IONS

2REC I SION
LANGU AGE
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TO MAP A REAL NUMBER INTC CNE BETWEEN O. AND 64,
BY "FOLDING® RATFER THAN CLIPPING

Y=FOLD64 (X))

ANY REAL NUMBER :
THE RESULTANT BETWEEN O. AND €4¢ Y IS CONGRUENT TO
IF X IS IN AN INTERVAL ( €441, €4%(1+1))
WITH I EVEN; OTHERWISE Y IS CONGRUENT TC 64w=x

X (NCD 64)

NONE

X SHOULD ANCT BE Y00 L ARGE OR EFFIC IENCY SUFFERS

SINGLE
FORTR AN

FUNCTION FOLDEA( X)
F CLD64A= ABS (X))

IF(FOLD6A s LE «64 o ) RETUFN
1 FOLND64=ABS{FOLDEA=128,)
IF(FOLD64 «+GT 464 ,)COTH 1

RETURN
END

v

(MOD

54 )





