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ABSTRACT:

In this paper we discuss three known methods for obtaining and

updating the modified Cholesky decomposition (MCl )) for the particular
case of a covariance matrix when one is given only the original data.
"These methods are the standard method of forming the covariance matrix
K then solving for the MCD, L & D (where K =L DL T ): a method
based on Householder reflections; and lastly, a method employing the
composite-t algorithm developed by Pletcher and Powell ( Math COnip.

28, 1974, pp. 1067-1087). For many cases in the analysis of
remotely sensed data, the composite-t method is the superior method
despite the fact that it is the slowest one, since (1) the relative
amount of time computing MCD's is often quite small, (2) the
stability properties of it are the best of the three, and (3) it affords
an efficient and numerically stable procedure for updating the MCI).
The properties of these methods are discussed and FORTRAN programs
implementing these algorithms are listed in ar. appendix.
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1. Introduction

In digital processing of remotely sensed data, as well as many

other areas employing multivariate analysis, solutions to ninn y of the

problems are formulated in terms of covariance matrices. Often

these solutions are expressed in terms of linear transformations

involving a covariance matrix or its inverse. 	 In these and other

cases, it is often more sound cmulmutat ionally for one to employ the

Cholesky or modified Choleskv decomposition of the covariance matrix

rather than the original matrix itself" ) .	 Even in cases where the

original covariance matrix is to be modified by the addition or dele-

tion of data, it still may be computation,illy prudent to utilize these

decompositions.

The purpose of this paper is to discuss methods for computing

and updat' the modified Cholesky decomposition (M(:D) -)f a covari-

ance rnatrix. These methods will be examined from the point of

view of their ability to update thc	 MCI)	 when data is to be added

or deleted,	 as well as computational efficiency and nu ►Tterical

stability.	 In particular, three methods for accomplishing the ,11)ove

will be discussed:

1) Standard--one computes the covariance matrix from

the defining equations and then calculates the MCI) of it.

2) householder--here one directly computes the MCD

of the covariance matrix from the data using HouselitAder reflec-

tions('

3) Composite-t--this method was develtiped by Fletcher

an y' pt,,401 (3) from work previously done by Bennett l4) and

Gentleman (5) . 3'he method essentially uses Givens rotations (2) of

k



z

the data one point at a time to directly compute the MCI) of the

covariance matrix. Updating is straightforward and efficient.

Table 1 summt^ rites the properties of each of these methods.

Here n is the dimension of the data and m i^ the total number of

data vectors. Though numerical stability may not Flay much of a

role in most cases, the times when it sloes, Wray occur without the

user being; aware of any difficulties. 	 Ilius this situation may lead to

erroneous interpretations of the results. A method for computing the

MCI) she uld he chosen with this in mi-id. 	 Also; in many areas of

digital processing of remotely sensed data, the actwil computation

time for computing; the MCC is inconsequential, so that the composite-t

method with its superior stability, may be optimal despite its relatively

slow performance. The added benefit of an efficient and stable updating

capability may al ;o be of value.

i
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1	 1

Methods for Comnutint and llndatin g the MCD of the Covariance

Niat rix

Given X the n x m data matrix containing m multi-

variate n-dimensional vectors, the mean vector u is defined by
m

i=1

and the covariance matrix K, by

m

K - m r- i	 (x	 -u) (x *i -^) I	 (2)

i=1

where x 
*i 

is 1 he i th d ita v

K is symmetric and positive

noted that K is singular if

liven by K = L DL 1 where

entries and L is unit lower

ector and	 1 denotes transpose.

semi-definite.	 (It should also be

m < n + 1). The MCI) of K s

1) is diagonal with positive diagonal

t ri n ngula r.

A. Standard Method:

The usual method for computing K comes from

rewriting (2) using (1) to yield

m
I	 ('

k ij	 m- 1 L	 Xi
,t = 1

The MCI) of this is then computed

method requires (we consider cases
2

approximately r?' 
2

1'	 multiplies to compute K and another

n 3 /6 multiplies to compute the elements of L and D.

Though K itself ma_v be computed with acceptable precision,

functions involving K amy be evaluated quite inaccurately since

m	 l r i>>

x j Q	 m l Xi f /\	 Xjk

see e.g. ref. 6). This

where m>>n> I)
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matrix products of the form Y Y T may be quite ill-conditioned(5)

Updating L and 1) in this manner is time consuming since one

must first update K and then recompute I, and 1). Another

method for updating 1, and 1) directly will be discussed in

section C.

B. Householder:

One way to avoid	 )roblem of the possible ill

conditioning of K is to compute L and 1) directly from the

data. '11iis may be done by using Householder reflections on the

data matrix as follows.

Let M be the n x m matrix

U	 u l	1. I	...., u1

M - u2 uZ

U	 u

"Then eq. (l) caii be written

k = ml 1 (X-M)(X-M).1

If we then let

X - M = IZ I O

where R is m x n u>>per triangular and (1 is m x m and

orthogonal, we may write

K- m l- I	 R 1 (^(^ R- m l_ l It	 R

= L 1) I 1

where 1, and 1) ii re the MCI) of K as before with

L 1)
V - 1
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Rew ri t i n;, (3), we have

Q (X - M) 1 = R

We may then write QT as a product of n Householder reflec-

tions (see e. g ref. 2)

1.Q	 = P11 P n _ 1 ... Pi

where 1 1 i 	 annihilates all elements from	 i + 1 to

n of the ith column, changes the iith element and does not

change elements 1 to i- I .

The algorithm, then for computing; I, and 1) in this

fashion is:

Householder MCI) Algorithm
m

1. Compute u . = 1	 x	 i= 1 2	 n
i m	 i,	 ....,

k=- 1

2. Form	 t ji = x i j - u i	 i=1	 2 1 ... , n

j= 1	 2, ... , m

3. For	 i= 1, 2,	 n, coMlntte

	

m	 ^

a) a = sgn (t 	 ti J^
j=i

h) u= (0 0	 , t i i+	
t

	

.	 tm, i)

C) 8 = o- u



d) t j ^ .. t	

m

 -	 uj 	 I	 "k t	

7

k^
k= i

for	 j=i,	 i+1 , . . . , rn

and for ,t = 1+1 , 1+2,  ... , n

( N. 13. "«." denotes the replacement operation)

e) t ii	 -a

4. For i = I , 2 , . . . , .l , compute

h)	 For j = 1 , 2 , . . . , i - I , compute

i	 = t	 / t
i J	 1i	 j.l

It	 should be noted that the element., of T, X,	 I., in(] 1) can occupy

the same storage locations (though X will then he lost) and that steps

3 and 4 can be combined.

This algorithm requires nliproxinlatel_v m n 2 - n 3
3

multiplications, which may be (for m much larger than n ) up to

a factor of two times slower than the standard method. however, here

the stability problems have been alleviated due to the use of orthogonal

transformations. Storage considerations may be a problem with this

algoritb- i, since it functions most efficiently only if the entire data

matrix is in core. A sequential version of this algorithm ma y b° used

(see Chapter 27 of ref. 7) which alleviates the storage requirements

and provides for an updating capability, but at a cost of increased

computation time. The next method (composite-t), however, yields a

more efficient and stable algorithm.

4
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C. Composite-t:

This method is based on an algorithm developed by Pletcher

and Powell (:i) as a more numerical t accurate extension of algorithms

developed independently by Bennett O and Gentleman (5) . L'ssent011y,

Givens rotations (2) are used to direcriv compute the MCI) from the

data as in the previous method. Instead of working with all of the

original data at once as in the householder method, this algorithm

updates the MCD as each data vector is processed. In this section,

we will present two algorithms which employ the composite-t method

to calculate the MCC and update it.

The generalized composite-t algorithms for a rank one update of

1, and D of the form

Ll)L^	 LDLT + I z z T
t 

for a nositive semi-definite matrix where we assume t i ^ 0 , that

the rank of the matrix: never decreases, and that t I	 0 only if

1) has full rank (i.e. Av	 has full rank), is:

Rank-one Composite-t Algorithm

d

1. If t I > 0	 go to 5

2. Solve L v = z for v

(i.e.	
v 
	 = z l ,	 v i = z i -

i=2,3,...,n)

3. For i = ! , 2 , .. , n , compute
2

t i+1 = ti + v i / di

i-1

fit, v j

j=1

'1
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4.	 If any t i + 1 >	 0 ,	 then

n) set
t n+ I	 =	 c t I ,	 where	 is the machine

precision

b) for 1=n, n-	 I	 ,	 ...	 ,	 I

t i 	=
_

t	
2

1-41	 vi	 /	 di

S.	 For i = 1	 ,	 2 , ...	 ,	 n

a) v i =	 zi

b) If d 
i

0	 go to substep c)

(1) if	 v 1 '	 0	 to to sub-subst, -p (4)

(2) t 141 ti

(3) go to substep k)

(4) d i	 = v2	 /	 t i ,	 1 * 1 	=	 z *	 /	 v
(5) Cnlcul.Ition complete

C) If t l ()	 then	 t i+1	 =	 t i 	+	 v?	 /	 d

LI) a I =	 t i+I	 /	
ti

e) d di ai

f) If i=n 	 then calculation is complete

g) P i =	 ( a i vi	 /	 `I )	 /	 ti +I

11) If or i	 > 4	 then

1) Y 	 = t i	 /	
ti

+I

2) for	 j =	 i + I ,	 i +2

XX	 = yi	 iji	
+	 P 	 7j

z z 
	 -	 v i 	ji

k ji xx

3; go to substep k)
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i)	 z * 	/* - vi f0i

J)	 a *;	 1*1 + 0 1 Z*

k) Return to substep a)

Nate that only the last n - i components of t * i (I i i _ 1 ) and

n - i + 1 components of z * need be involved in these cororutations.

Nate also that the number ()f multiplications perfo ► rmed in this algo-

rithm is data dependent. A detailed error analysis of this algorithm

is given in ref. 3 showing this algorithm to be quite stable.

To employ this algorithm, we must first rewrite eq. 2

expressing the covariance matrix, K ( r+ I ) associated with the

first r + l da!a vectors to that, K ( r ) 	 associated with the first

r data vectors:

K(r +1) = 
K (r) + —1	 x (r) i(r)Tr+l

where

K(r+f) = I K(r +I )
r

and

_	 r
z*r)	 _ ^	 x	 r x- y

	

v--r 	
^	 * j	 * r +I
j=1

I
s ( r) - tr r x

	

ur	 * r+l

Given m data points, then the algorithm for computing the MCU of
K ( r+1 ) is:



Composite-t MCD Algorithm

I.	 Set 1,-I 0 D=0, and st=x*I

2.	 For r=2,a,... 0m

a) set t 1 = r

b) for i = 1 , 2, .	 , ^i , compute

z  - s i / vr=T	
i r

s i	 s 	 + xir

N. B.	 For r=m s i = III ui)

c) use Rank - one Composite - t Algorithm to

update L and 1) (n,)te that t I > 0)

For	 i=I 	2,...,n
d i	di / (m- I )

The number of multiplications involved in this algorithin when m > > n

is approximately m n 2 + 7m n. m square roots are also necessary.

After L and 1) have been computed, Plata vectors ma y be

added or deleted yielding; a modified L and 1) by using the following;

algot ithm

Composite-t Update Algorithm

I

1. Compute d *	 d * * (m - I ) where m

is the net number of points used to compute

L and 1).	 If s is unavailable, it may

be computCCl from s * -- ni u *



12

2.	 if a point is being added, set	 t i	 -	 m + 1

y	 = ,	 and q	 = m+i

3. if a point is being deleted,

a) set t I - - m, v = vm i,

and q= m-]

s * 	 ^* - a*

where d * is the data vector to be

added	 deleted

4. Compute z * = s * / y - y a

If a point is to be added,

set s * ^ s * + n*

5. Use hank-one Composite-t Algorithm

6. Compute d *	 d * / (q - i ) and
N

phis algerithm requires approximately 3n 2 /2  multiplications to

delete a data paint and n 2 to add a data paint.

Numerical Examples

In this section, we present some numerical examples illustrating

lII .

the properties of the algorithms discussed in the previous section.

Listings of the programs used to implement these algorithms are

given in the appendix.

Using some 12 dimensional pseudo-random data of 1('0 points,

we te ,-ted all three methods on an IBM :370/155. All algorithms

yielded the same results to –5 decinial places. '11ie times for

computing the MCU's by each method are: standard method-

'IN.
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. 59 sec., Ilouseholder — .7R sec., and composite-t-1.02 sec. Nate

that the order of these timings is as predicted, but clue to diff"rences

in hoc)kk.:eping and other operations involved in each method, these

timings do not follow the ratios of the number of multiplications in

"Table I.

Fo test the stability of the three methods for c • (mmputing the

MCD, we used the data matrix

I	 -

	

.999	 - . OM	 0.

	

.99	 O1	 0.

I	 - l .	 00 1 	 - . (K)1

which generates an ill-conditioned covariance matrix. The resultant

1,'s and D's for each method and the exact 1, and 1) are given

below (to six digits) : (We use the subscripts G, S, I I K, and CT

for exact, standard, Householder, and composite-t methods,

respectively. Also only the below diagonal elements of L are

given, i n the order t 21 ' l 31 	 32 )

L E = (. 9955()5 1	l . U(lU5O,	 185148 )

I 'S	 = (. 995504,	 1.00050,	 -. 180695)

iJ I IR = (. 995505,	 1.00050,	 -. 1851 12 )

L C1• = (.995.505,	 1.00050 0 	- . 185147)

1) E	= dial;.	 (. 660001, .405405 x 10- 4 ,	 . 444444 x 10

D S 	= diag.	 (. 660(o l , .4 105539 x 10 -4 ,	 823690 x I1 ► -f' )

1)- diag.	 ( . 66601)(1, . 405427 x M -4 ,	 . 444'46 x 10 -6 )

D C-l.= diag.	 (. 666(11)0, . 405405 x 10 -4 ,	 444447 x M -f' )
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To illustrate the effect of these ro unding errors, we then solved the

system

Kb = LDi- I b	 0
01

Fhe computed b's (accurate to six digits), are given below

b E	 = ( 3182965. , -51813(). , -2665833.) T

b S	 = ( 1715070. , -283491. 0 • 14TY).39.) T

b I I I j	 = ( 3181339. , -517794., - 2664 54 3.) 1

b CT = (3182936. 1 -518124., -266581-1.) -266581.1.) 1

Note that h S is off by a factor of — 2 (mostly attributable to the

computed value of d 3 ), whereas b 11 
It 

is accurate to 3 digits and

b CT to 5 digits.

We next tested the updating capability of the composite-t update

algorithm. When data points are added, the algorithm yields the same

results as it one started with all of the data paints since, except for a

few multiplications, the computations are equivalent. When data is

deleted, however, the answers may differ, since the process of data

deletion is intrinsicall y less stable(5) .	 The following example Hills-

.rates this

Let

X =	 I	 - .999	 -.001
	

0.	 1

I	 - .99	 -.01
	

0.	 2

I	 -1.	 .001	 .001	 1

(This is the same data as used above with the addition o° the data

vector (1 , 2, 1) 1 . ) Using a = ( , 2 P I) 1	 and specify ing deletion

to the composite-t update alg orithm v ielded
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1. = (. 995504,	 1 .00050,	 -. 186673)

D = diag. (. 665999, .402583 x 10 -4 , . 431288 x 10 -6 )

which is to be compared to L CT and DCT as computed above:

L. C .I =
	

99)5505,	 1. 000,50,	 -. I W), 47 )

1) C,.1 = diag. (. 666000, . 405405 x 10 -4 , 444447 x 10 -6 )

The differences are in the second and third digits of some of the

computed quantities. 	 It should be pointed out, however, that this is a

particularl y ill-conditioned example, and other examples yielded satis-

factory results.

IV. Conclusions

"Though efficient, the standard method suffers from .mi

inability to update accurately and efficiently the MCI) , as

well as stability problems associated with having to work with

matrices of the form Y Y r . The llouseholder method obviates

these problems at the cost of storage requirements and efficiency.

Though slower still, the composite-t method drastically reduces

the storage requirements, readily provides for updating of the

MCI) and improves computational performance from a stability

standpoint. Which method one should use depends on the problem

at hand and the weights one assigns to the various trade-offs

between speed, stability, and updating capability.

In many of the computations for the analysis of remotely

sensed data, the actual calculation of the covariance matrices

and their MCD's takes relatively little time, so speed may not

IN
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be an important factor. 	 In this case, the ()primal cho ice would appear

to be the composite-t met)—.0, clue to its superior numerical stnhility,

relatively small storage requirements, and its updating capability.

In areas such as signature extension, the Updating capnhility cif this

method could be especially valuable.

i

^f
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APPENDIX

Listings of the program used to test the three methods are given

below. KBYSNI Computes the MCD by the standard method (subroutine

MCHLSK is used to actually compute the MCD from the computed

covariance matrix). KBYIIR computes the MCD by the Householder

method. KBYCT computes the MCI) by the Composite-t method,

usirg subroutine COMPT which computes a rank one update of the

MCD (Note that all of the data is in KBYC'1, though the algorithm

only requires that one data vector at a time be available. This was

done for timing purposes only.) C TUPDT updates the MCD using

subroutine C(IAAP'I'



I s
aL+ERUUT INL	 KHV'jM( As As N o MAN * 1 01

C
C THIS	 RUUTINF	 COMPUTE i	 THL	 MCD	 Of- 	 LUVAPIANCF	 MAT(-1X	 CiV	 THt-
C ST ANDAND Mt THUD
C

RLAL*4	 X(MXN.I).LD(I)
HEAL*M	 S1 ( 12).' 2( 711>

C
C X	 • THE N	 hY	 M DATA MATRIX WHOSE FI;45T UIMFr4SION	 IN	 T-1t	 CALLING
C PHUGkAM	 15 MXN
C M	 THL	 NUMISLH	 Ur	 DATA	 VLCT(,Wb
C N	 -	 THE	 CIMENSIUN	 OF	 T(II	 DATA
C LU	 THL	 kEbULTING MCD	 LONTAIN(,G THE	 FLLMLNT!; OF	 L	 6	 09	 THI`_
C MATRIX	 Ia	 STORED	 IN	 ILYMMLTRIC	 STUWAGL	 MOUt	 (lot *	L 'EWER
C TkIANGULAk	 NUI J FIUN	 bl(WLL:	 b y	 RUW;,)	 1AITI1	 THL	 E1_FMfNTS	 'IF	 C
C OCCUPYINU	 THE	 DIAC.LNAL	 FNTI.IFS.
C
IL /N IIIALIIL
C

DU	 20	 1=19:e
20 b 	 (l )=0.00

UU	 30	 1=1976
JO bl(1)=U.0C

C
C COMPUTL	 THL	 SUM	 OF	 THL.	 L:ATA	 VLCT g NS	 AND	 111r1i;	 CPOSS•PR1I0(IrTS.
C

DO	 1C	 L=1.M
K= C
UQ	 _0	 1=1 .N
5I(I)=Sl(I)*X(19L!
UO	 I 	 J =1.I
K=K+1

10 b2(K1=S2(K) ♦ X(1.L1*X(J.L)
C
C COMPUTE	 THE	 COVARIANCE	 MATRIX	 6	 STUtit	 IT	 IN Lf).
C

K=C
DO	 4U	 1=1.N
UU	 40	 ,=1.1
K = K + I
L.0(K)=( Se( K) — SI(I ) *5I(J) /M)/(M -1 )

4U CU^IINUE
C
C MLHLaK	 C1.MFUTL;a	 THE	 Mc.l	 ;r	 THL	 COVARIANCF	 MATRIX	 6	 UVr,twklTLS
C THL	 kESULT	 L,N	 I T .
C

CALL	 MCHLSK(LI)9N9SIsS2)
ICI TURN
LNU

t
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SUUkGUT INE MCHL:iK(KK.NV •i)UN.O( I)
C
C	 v• ♦•• vv ♦ ii*iiiiifi ♦ iff i*it*^iiii ♦♦ * ♦ ii**ii ♦^** ♦ trfftiiri^fi•a ♦♦ ti• ♦ *••
C	 Thl:) I4UUIINE CUMPUTE''a TIL MUDIFILI) LHULI So , Y W-CL.M1 4 [)3-11ION I.F
C	 THE COVARIANCL MATT-IX. 	 TML CF(t MPIISIT I(Nb i_VFPLAY 1H ► FLtI-*,"KT!+
C	 Or THt LuVAt< I ANCE MA T t) x e
C	 KK=L O L*
C	 iiift*ii ♦ iir ♦ iiiivv ♦ v ♦ v ♦ itff•a ♦ f*Mifttff**fiiif**ii^iiriftififi ♦ ***iit
C
C	 KK - THL LUVAk 1 ANCI MAT V IX STLI•LU IN SIIMMF Ta IC STOWAGF '.ICI
C	 NV - THL NU14ilEk OF LtiANKkLJ U_ F.D
C	 UUM — A UUOULL PRECISION %(J ,4K ARIA OF ti 17F NV — I
C	 OLT - ih[ W TFIHMINAP1 OF T1-F COVAHItiNC^ - NAtPIA.
C

ME AL KK( 1 I
RE AL *8 OUM( 1 )
kEAL*d 49kl911.TF
LLICICAL$l JLI
JL 1 = . T6;M .
J1=0
JU=O
of=T=l.

C
C	 L UUP UVE K ALL CHANNL L 5
C

OU IU J=1.NV
KL =J — I
L=J+I.
J  =J 1
J1 =J1+J
T  =C *0(;
IF (JEL) L.0 TO I^
K I =U

C
C	 CCMFUTF THL [)1 AGANAI r_L1 MI N15 (.I' 1) n' ,4[j 'ill, •	 IN Kh
C	 IEM FUR A1, 1LY aTUkt 1	 N(UnUCI KK( I .1 1#KK ( J. 11 IN ()U A l F 1
C

DO 15 I =I.KL
k=KK( JI.+I )
K  =KI+I
HI=KK(KI )ik
Tf =TF - k I *P
UUM( l )=R1

15 CUNT I N UL:
11 CUNTINUE

iF=TF+KK( Jl 1
KA(J1	 )=TF
DE T=UE- T*TF
IF (L.GT.NV) GO TO 10
IkC= JI -L+l

C
L	 CGMPUTL THL R9J-111 ELLMENT IMF L WANG T1
C

Ull 20 [R=L.NV
IkC=160#10+-1
T 1 =O.LU
1F	 ( J L I ) (.0 TU I 
Di 25 1=19KL
Tl=T1-UUM(I) ♦ KK(Ikn+))

15 CU Ni I NLL
16 KK(II+U+J)=(TI+KK(IRD+J))/TF
10 LON1 I NLF

JE 1=.FALSE•
10 LUNTINUc

kL TUkN
r- NC

OF p^R PA Gh; L.S
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T	 14

Sk,1. 14 ULi) INt KUVHIt( X• IO Us 1% ?4, ,.MXN•LU)
Wt AL 44 L V ( I 1	 20
kLAL * 4 A(MXN • MI,AtU ( N).(1(AI
kt AL w Ci 5

C
C	 L•1 VLN TI-L MAT141X GF UVSL04VAT ILNS X• CL'MPUTt Tilt MEAN A 4D mco ( -,r To-t
C	 kt buLT Ihu LJVAkI ANCE MA 1,41 x G boIUkf IT 1114 Ttil L(il► LI. 7.41 AN(0)L Ak
C	 PART OF As	 HUU y LHULJLk 1 1LI Lt'( , TItJN !p A , t USt • It, CGIAPUTt T"t N( I).
C
L	 X • UATA MATRIX wHILH 15 UL STI•GYFC
L	 Mu	 LK Vutb-Ul . fl-L MI AN VfLTUR
C	 w • THc 010OLKIAUN
C	 M • TVL NUMUFk OF UH;•ERVAI IL.N5 TO HL USl U
C	 MXN • THC UIMLNSIL,N	 (A uF Ro sa ) fl( X IN THL CALLIN(, 11RM,.
C	 U	 WUkr,1NC, STUKA(,L Of O1MENSICK AT 1 FAST M
C	 LU	 VESlkt L MCU 5TU ►stD IN SYM STLHAGL fAL L)L
C

NPIzm-I
C
C	 Sy tT 4P AATNIX Tt; bE TRIANGULAt-'I7tn
C

Du 10 1=1..
S=C.uo

C
L	 COMPUTE M;_ A N',
C

UO 20 J=1.M
20=S^X(1•J)

C
C	 C L, MPU T I tit M A T ti I X X+MEA IBS
C

UU Jo J=1.M
30 X( I•J)=x( 1,J) •MU( I)
10 CU K T I NUL

C
L	 PEkFLAM HULbLHULUEN T1tANIJ-URMATICNS

KK =O
C

DU 40 1=1.N
C
C	 COMPUTE NtCtS`, AkY (.UANTITIE - 5 T(_ ANNItilLATL t'utltP PAIN LIF I-Tt , CUL
C

=C.UO
C
C	 ONLY LAST M-1+1 LLLMLNT_, )F U A1:1 USLU
C

DU 4`a J- I .M
KX= x(i•J)
,i _ 5+XX*XX

4b U( J)=XX
ALF=,,IGNI^NL.L(USGRT(11 ).U( 11 )
it ( I .EC.iv) GU TO 44
U( I ) z-U( 1 )+ALI'
tit TA=ALL% *U( I )
l l =1+1

C
C	 APFLY TkAN5FCJRMAT ICN TL, i?UMS l • 1 TO M G CGLS 1 1 TG N F, SF T
C	 I . I-TH EI.t.MtNT Ti; -ALP

UG 50 L=II.N
S=().UU
UL, 55 K= 1 . M

55 b=S+U(K)*X(L•K)
XX=S/BETA
UU 5U J = 1 . n+

50 LL N1 I Nut
44 X( I .I It 	 1'

It 1 1 .tU.I ) GU TG 42
C
L	 COWPUTF L b I;	 LoOSCi+1 ( p )=14-• T 1 ^ANS/;UNT(F. -I	 t	 I N
C	 LU%WN T641ANFULAW NAkT L,F X G U ALUM; UTA(,.
C

Uu tic J- 1. 1 1
KK =KK + It

b  L0(KK)=X(I.J)/X(J.JI	 ^rl rl^k^'Q
4 G KK =&K + 1

LiJ (KK )=ALP+ALP /Nt' 1
40 CUNT INUk-

kk TUkN
r ND
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SvEHUUTINI	 C(JMIJ T	 (LU. Isis Pit	 V.Two)
14L AL 44	 LL'( I )
HL AL•M	 1( 1 1.1( N).V(v%)
14 LAL*8	 IMP (N
kL AL*I+ 	S
LUCICAL41	 Tl- L b%HNULN k oLALP

C
C	 TH IS	 NUUT 1N(	 1:>	 AN	 I MPL t• ML PTA T ION	 I)F	 THt CfIM('	 1 1 t	 -	 I	 ALGC 1• I TWM
C	 TU	 PRRFt,HM	 A	 HANK	 1	 UPUAIF	 OF	 11'-f	 161LU :aTlokf (`	 IN	 APO AY	 LD41 •f.
C	 K=L+Ii*L-TkAN:;	 G	 Wt	 NIiH	 lU	 COMNUTt	 L • LG I 	5.T9K•=K+1*1-TRAM!/T(1)
C	 G	 91=L4•U4*L•-TkANS).
C	 LO • AARAV	 CGNTAININu L	 t.	 C	 SIURFO	 IN SYM.,TUWA(it	 F-4001:
C	 I	 -	 AN N+I	 VtCTU1r	 NHUSt	 V I r-ST	 ELLPLKT 15	 A^	 AU(:VF
C	 L	 • VECTuk	 GF	 THt	 (,PUAtt	 AS	 AULVt
C	 N	 Is	 11-L	 L 1 MLN:jo IL N
C	 V	 - WORKING	 STUnAGL	 (if	 LLNUTH	 * (,Lo	 N
C	 IMF	 -	 VOLHLL	 0kLCI51Uf4	 AOkKIN(,	 151G 1414GF OF	 LFNGTII	 .(st.	 V
C

TPCS=fO).GT.J.
IF	 (TNCS)	 CU	 10	 35

C
C	 A POINT	 I5 TU OF DLO I  O
C

EP5-5.L?L-b
C
C	 SULVE L*V=Z FUk V
C

K=I
V( 1)=1( 11
UU 10 1-26N
IJ=1 - 1
y=C.u0
UU 15 J=1.1J
K=r.+l

15 S=S +LU(K)*V(J)
K=K+1
V( 1)=Z(1 )°- S

10 CUNTINUL
C
C	 COWIJIL,IL THE T( I • S)
C

K=G
RNLE/.H=.FALSt.
Ou 20 1=1.N
K=K+ 1
TMN(1)=V (l)*V(1)/LG(n)
T( 1+1 )=T( I ) +1M{ l ( I )
IF ( 1 ( 1 4 1 ).(.t .U. ) knuEkk=. TkUt .

kO CUNT INUL
IF (.NCT.HKULHR) GU TO i')

C
C	 HUUNUING EFWUR HAS MA(,t A T( 1+1	 GL * 09 jO C(. ►-ti'LCT IOR fH l1,
C

T(N+1)=EP^*I(I)
UU JU J =19N
I=N—J+1
T( l)=T( l+1 )-T161k , t )

30 LUNT INLE
J^ CCiNI INLt

IJ=U
DU 40 I=1.N
11=1+1

IF	 Gu TL 44

1J=1J+1
V(11=1(I)

C
C	 O( I l =09 SU irANK CF U N ILL L I THER INCI-FASC ON 41 MAIN IJNC1,AKCF!l.
C

IF	 GU TL 42
C
C	 RANK 01- C h ILL Hf MAIN UNOIANl,LC

^	 C

f	 T(1+l)=Tll)

(iL TL 40
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4.
C	 NARK LF G M ILL t NCAE A'4L t- 1
c

41 LU(IJ)=V(I)*V(II')(I)
IF	 HF IUHN
K= IJ
iUU 45 J =II.N
K=K+J•1
LU (K ) = 1(  J ) o, V ( I)

4t CUNT INLk
• r- Tu"N

44 CUKTINUL
L
c	 UPLATL U
C

If	 IiFG:+) T(1 ♦11 -T(1 )+V(I)*V(I)/f► 1
AtP=T( 1.1)/1(11
LJ( IJ)=UI*ALP
I 	 (1 .t GO  ) I+L Tu" N

c
UPLATE L G MODIFY 1 ALLIL r) IKGLV

c
di TA= (V(tI/t.I)/T( I ♦1)
LALV=•I- ALSt •
Ir ( ALP oLL.4.) GU TL `^[

C
T HItx MLTh'UL Vat_O TL INSuut :oTAHILI/V IF AL 1 1 11A <,T. 4
LALN= • FHUL •
GAM=T(II/1(i•1)
K= IJ
UU .,0 J2 11.N
K = K # J 1
XX=UA 0 L C Ihl+f► FTA*IlJ)
1( J)=L(J) — Vl 1 )*LUIKI
LU (K ) =XX

^c iUNIIKLt
GJ TU 40

51 r. =1J
UU b0 J =!I.N
K-- K.J - 1,I J)=1(JI - V( I)*L1;(KI
LU(K)=LI.,	 +LIE TA*7(JI

GO CUNTINU1-
40 LGKI l NLF

►2 L T U k P%

r NL
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1 7"'	
1

1

SkdiJkLjtrIINt P,UYCI tLO*N. MAN •S•X.M.T)
HLAL*4 LL( I)•SIN!•X( IV. XNem
kt AL+N I1 1
lNtr.UEl.sv f-

C
C
	

Iff 1b RLUT l KL CUMPU IEj 1 rAL MCD CF Tfit ( ,,V^— l AN(	 MAT ► . 1 X f, Mf AP.L^
C
	

•t,1Vth l ►.1 N•01W-NSIUNAL M UA1A VLCTk v-b ;,Toi itl• IN X• LGU V-t
C
	

5I LRL u IN LL. L 1 HF M F AN-) IN VLCTI)N S
C
C
	

LU - UN UUTWUT. THE MCU Uf THE CLVA14o MA•0NIX ;aTU(1f:0 IN SYM.
C
	

;T0kA(,L ML,UL W ITH  U Oki tQKG TI-F Ul At,I,NAL •
C
	

h	 1F-L I.IMLN51uN
C
	

MAN - 111L NUNHLN Lf 1411%b lJf x AS 0 l Mf NS 1UNt to 1 N 1 11f l ALL 1 N(, f=F CG •
C
	

S • LN u1rTfJ LT• TNt V1.(.TL:4 if MFAN2,
C
	

X - IHL DATA MATkIX
L
	

M • ThE NUMuE ►Z 11F OATA (,tCTOFS TU dC U51-0•
C
	

T • MUkKIN(. L) T(JkAvF .IF f)IMEhSIC K * GL * 4*IY+1
C
C
C
	

I N I I IALIIt L t, U MATkICL:a G VLCTOk S
C

IJ =U
uki 10 1 = l .N
IJ =IJ#I
LU( I J)= 0
S( 1)=X(1.1 1
1V (1 .Lt)•I ) IrU TU 10
11 =I•l
UL l`., J=1.11

l5 LU(IJ+14J1=C.
10 CUNIINLL

C
C
	

LULN 0 V I i, ALL Pt, INTS T 	 CUWVUII L 6 1) f (0 • ( M+i ) •K
C

UU 20 k—.'.b
1 ( 1 )=F
SkI=SJtiI(I- LGAT (k + l )!

C
C
	

LLWPUTL t fit. THIS A 1. UP()A1
Du ':5 1-10N

T(NtI+1)=tt Il /Sk1	 14X(1.1.1

C
C
	

UPLATE L f, L

C
CALL LLMFI(LU.T.I(N +r_1•N• 	 1{,•f^1.:1.1(.>4N ♦ i'))

.20 ('Uhl INLL
L
L
	

MUC(1 Y U ;x.I . K=L.4U4L • 1tiANS b SW 64 M l^ AN IN :,
C

;,k I= MOO

IJ =O
uu 3C 1=1.^
1J=1J+1
Lu( IJ)=LUI IJ)/tAkI
5t 11=^( 11/N

30 LLnI INUE
kL TUkN
t N L:
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JuUNL.UI INt	 ( IUPDT	 (LO•h•'A.ACU•y•ALI' * I ►
WE AL * 4	 LL:l 1 19AL1'4K	 S(h)
04L AL0M	 T(1 )
LULICAL*1	 AGO

G
G TH14	 RLLTIho	 UPGAIt l	 T HL	 MLL,	 tsTLdLU	 IN LU	 j+Y	 I I	 Ito ► •-	 AlYlIN(,
C UQ	 ULLCIIh(,	 A	 UATA	 V ► LT(.It	 AS	 txPtCIt iLj,	 iV	 THt LLGICAL	 VA1.IA " • Lf 	 AoC
c

Lu	 THL	 MLL	 STtINLG	 IN	 5YM..,TUNA(.l•	M(if)f	 N 11 ► 1	 1) AL iJN(;	 THL	 f)I A(	 K4L
C N	 •	 TFL	 LIMtALbIUN	 uV	 TH1.	 (BATA	 VtCTI,W
c M	 + Tt-L	 NLT	 NUMuLk	 Lit-	 OAIA	 (t.C1LW3	 US[.0	 TU CUMPUlt Llj•	 16,	 v ILl	 dL
C UPLATL:U	 its	 (JUIPUI
C AUC	 •	 -1	 IF	 LAIA	 T(,	 lit	 AUu1L.	 =t	 it	 U'ATA	 it	 W UtLt TI-0.
C S	 -	 VtC TLk	 LGNT A I N IN(,	 h •,NL AN:,
c  L)	 MILL	 LL	 UPUAIL0 UPON	 NI IUkh
C AL N -	 LA TA	 VLC Ti11.	 tO	 Of	 ADLL U / L , LLL TI I)
L T	 GO	 OUHKIhU	 SYU-+At,,	 Uf	 01 Mth;^l(K	 .UL.4•N+1
G
c MUOIF V	 V	 t .,	 .	 tM + l I ♦ K -L+U•1 -1kAW,
c

AM=M
I .J x 0
U()	 10	 1=1.N
IJ - (J+I
LU(IJ)=LU(IJ)O(M-I)

10 L^NT1hUt
IF	 (.NLI.AL,L)	 tt.	 Tu	 l^

C
c AUC A	 VC1NT
C

T( 1)=M#1
V= SuN T ( xM 1
J= M+ I
W,	 T L	 1 4

C
L ULLLT[	 A	 NLINT
c

12 T ( 1) =-t,
Y	 S u k T	 1

G
C CUMPUT:	 !	 ANU	 LJNUATt-	 5
c

1	 4 ou	 20	 I = l . N
IF	 (.NLT.A[ (.)	 S( 1	 )=5( I) — ALP(I	 1
It l+Nfl)_:,( 1)/Y — YVALP( 1 1
It	 (ACL)	 v(I)-S(	 1)+AL ► '( 1)

20 LUNIINU!
C
C UPL:ATt	 L	 1,	 1:
c

LA LL	 C(NI-T(LL.I.I (N+e).N.	 1	 2	 N+d	 Tl.ith+.	 11
c
C MUUII	 Y	 L'	 :,.T•K=L+I;+I —li%,%Ni
C

1J-0
0 1)	 3U	 1-1 ON
IJ=1J+l
LU(LJ) = Lii(	 IJ)/(,J•I.)

JU LJNT I NUE
C
c WL:XLT	 N

c
M= C
HL IUkN
thL
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Factorizations, " Math. Comp. , 2ti,	 No. 128,	 1974, 	 pp. 1067-1087.

141	 J. M. 13unnett, "Triangularr Factors ()f Modified Matrices," Numer.

Math., 7, 1965, pp. 217-221.

15]	 1h'. M. Gentleman, "I,cast Squares Computations b y Givens

Transformations Without Square Roots," 	 Dist. Maths. Applies,

12, 1973,  pp. 329-336.

101 1. 11. Wilkinson, " Iltc Solution i)f M-C;ontlition'-'d Linear Equations,
in Mathematical Methods for Digital Computers, Vol. 2, A. Ralston
rind 11. bVilf, lsds. , JOhn Wiley and Sons, Inc., New York, 1967.

17]	 C. L. Lawson and 11. J. Manse>n, Solving Least Squares Problems,

Prentice I bill, New Je rsey, 1974.


	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf

