General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

(NASA-CE-14782:) ON THE COMFOTATION AND
N76-27901
UPDATING OF THE MODIFIED CHOIESKY
DECOMPOSITICN OF 1 CUVARIANCE MATEIX (Rice
Univ.) $27 \mathrm{PHC} \$ 4 . \mathrm{CO}$ CSCL OBE
G3/61
Onclas
44563

JUL 1976
RECEIVED
NASA STI FACIUTY
INPUT BRANCH

INSTITUTE FOR COMPUTER SERVICES AND APPLICATIONS
RICE UNIVERSITY

On the Computation and Updating of the Modified Cholesky Decomposition of a Covariance Matrix
by
D. L. Van Rooy
I C S A Rice University

Abstract

: In this paper we discuss three known methods for obtaining and updating the modified Cholesky decomposition (MCD) for the particular case of a covariance matrix when one is given only the original data. These methods are the standard method of forming the covariance matrix K then solving for the $M C D, L \& D$ (where $K=L D L^{T}$); a method based on Householder reflections; and lastly, a method employing the composite-t algorithm developed by Fletcher and Powell (Math Comp., 28, 1974, pp. 1067-1087). For many cases in the analysis of remotely sensed data, the composite-t method is the superior method despite the fact that it is the slowest one, since (1) the relative amount of time computing MCD's is often quite small, (2) the stability properties of it are the best of the three, and (3) it affords an efficient and numerically stable procedure for updating the MCD. The properties of these methods are discussed and FORTRAN programs implementing these algorithms are listed in an appendix.


```
Institute for Computer Services and Applications
                        Rice University
    Houston, TX 77001
    May, }197
```


I. Introduction

In digital processing of remotely sensed data, as well as many other areas employing multivariate analysis, solutions to many of the problems are formulated in terms of covariance matrices. Often these solutions are expressed in terms of linear transformations involving a covariance matrix or its inverse. In these and other cases, it is often more sound computationally for one to employ the Cholesky or modified Cholesky decomposition of the covariance matrix rather than the original matrix itself ${ }^{(1)}$. Even in cases where the original covariance matrix is to be modified by the addition or deletion of data, it still may be computationally prudent to utilize these decompositions.

The purpose of this paper is to discuss methods for computing and updat the modified Cholesky decomposition (MCD) of a covariance matrix. These methods will be examined from the point of view of their ability to update the MCD when data is to be added or deleted, as well as computational efficiency and numerical stability. In particular, three methods for accomplishing the above will be discussed:

1) Standard--one computes the covariance matrix from the defining equations and then calculates the MCD of it.
2) Householder--here one directly computes the MCD of the covariance matrix from the data using Householder reflections ${ }^{(2)}$.
3) Composite-t--this method was devel,ped by Fletcher and puwell ${ }^{(3)}$ from work previously done by Bennett ${ }^{(4)}$ and Gentleman ${ }^{(5)}$. The method essentially uses Givens rotations ${ }^{(2)}$ of
the data one point at a time to directly compute the MCD of the covariance matrix. Updating is straightforward and efficient.

Table 1 summarizes the properties of each of these methods. Here n is the dimension of the data and m is the total number of data vectors. Though numerical stability may not play much of a role in most cases, the times when it does, may occur without the user being aware of any difficulties. Thus this situation may lead to erroneous interpretations of the results. A method for computing the MCD should be chosen with this in mind. Also, in many areas of digital processing of remotely sensed data, the actual computation time for computing the MCD is inconsequential, so that the composite-t method with its superior stability, may be optimal despite its relatively slow performance. The added benefit of an efficient and stable updating capability may al so be of value.

	Number of Multiplies* to Compute the MCD	Data Storage Requirements* (Words)	Stability	Remarks on Updating
Standard Method	$\frac{m n^{2}}{2}+\frac{n^{3}}{3}$	n	Poor	$\text { Require } \sim \frac{2 n^{3}}{3}$ multiplies and is unstable
Householder	$m n^{2}-\frac{n^{3}}{6}$	mn	Good	Jpdating is stable but slower than Composite-t
Composite-t	$\mathrm{mn}(\mathrm{n}+7)$	n	Excellent	$\text { Requires } \sim \frac{3 n^{2}}{2}$ to n^{2} multiplies and is stable

Table 1
Comparison of the Three Methods for Computing and Modifying the MCD
*These values are approximate; we have assumed $m \gg n>1$

II. Methods for Computing and Updating the MCD of the Covariance Matrix

Given X the $n x m$ data matrix containing m multivariate n-dimensional vectors, the mean vector u is defined by

$$
\mu_{j}=\frac{1}{m} \sum_{i=1}^{m} x_{j i}
$$

$$
\mathrm{j}=1,2, \ldots, \mathrm{n}
$$

and the covariance matrix K , by

$$
\begin{equation*}
K=\frac{1}{m}-1 \sum_{i=1}^{m}\left(x_{* i}-\mu\right)\left(x_{* i}-\mu\right)^{T} \tag{2}
\end{equation*}
$$

where $\mathrm{X}_{*_{i}}$ is the $i^{\text {th }}$ data vector and T denotes transpose. K is symmetric and positive semi-definite. (It should also be noted that K is singular if $m<n+1$). The MCD of K given by $K=L D L^{T}$ where D is diagonal with positive diagonal entries and L is unit lower triangular.
A. Standard Method:

The usual method for computing K comes from
rewriting (2) using (1) to yield

$$
k_{i j}=\frac{1}{m-1}\left[\sum_{\ell=1}^{m} x_{i \ell} x_{j \ell}-\frac{1}{m}\left(\sum_{\ell=1}^{m} x_{i \ell}\right)\left(\sum_{\ell=1}^{m} x_{j \ell}\right)\right]
$$

The MCD of this is then computed (see e.g. ref. 6). This method requires (we consider cases where $\mathrm{m} \gg \mathrm{n}>1$) approximately $\frac{\mathrm{m} \mathrm{n}^{2}}{2}$ multiplies to compute K and another $n^{3} / 6$ multiplies to compute the elements of L and D. Though K itself may be computed with acceptable precision, functions involving K amy be evaluated quite inaccurately since
matrix products of the form Y^{T} may be quite ill-conditioned ${ }^{(5)}$. Updating L and D in this manner is time consuming since one must first update K and then recompute L and D. Another method for updating L and D directly will be discussed in section C.
B. Householder :

One way to avoid roblem of the possible ill conditioning of K is to compute L and D directly from the data. This may be done by using Householder reflections on the data matrix as follows.

Let M be the $n \times m$ matrix

$$
M=\left(\begin{array}{ccccc}
u_{1} & u_{1} & u_{1} & \ldots & u_{1} \\
u_{2} & u_{2} & & & \\
\vdots & & & & \\
u_{n} & \ldots & \cdots & \cdots & u_{n}
\end{array}\right)
$$

Then eq. (1) can be written

$$
K=\frac{1}{m-1}(X-M)(X-M)^{T}
$$

If we then let

$$
X-M=R^{T} Q
$$

where R is $m \times n$ urper triangular and Q is $m \times m$ and orthogonal, we may write

$$
\begin{aligned}
K & =\frac{1}{m-1} R^{T} Q Q^{T} R=\frac{1}{m-1} R^{T} R \\
& \equiv L D L^{T}
\end{aligned}
$$

where L and D are the MCD of K as before with

$$
L D^{\frac{1}{2}}=\frac{1}{\sqrt{m-1}} R^{T}
$$

Rewriting (3), we have

$$
Q^{T}(X-M)^{T}=R
$$

We may then write Q^{T} as a product of n Householder refleclions (see eng ref. 2)

$$
Q^{T}=P_{n} P_{n-1} \ldots P_{1}
$$

where P_{i} annihilates all elements from $i+1$ to n of the $i^{\text {th }}$ column, changes the $i^{\text {th }}$ element and does not change elements 1 to $\mathrm{i}-1$.

The algorithm, then for computing L and D in this fashion is:

Householder MCD Algorithm

1. Compute $u_{i}=\frac{1}{m} \sum_{\ell=1}^{m} x_{i \ell} \quad i=1,2, \ldots, n$
2. Form $\mathrm{t}_{\mathrm{ji}}=\mathrm{x}_{\mathrm{ij}}-\mathrm{u}_{\mathrm{i}}$

$$
\begin{aligned}
& i=1,2, \ldots, n \\
& j=1,2, \ldots, m
\end{aligned}
$$

3. For $i=1,2, \ldots, n$, compute
a) $\alpha=\operatorname{sgn}\left(t_{i i}\right) *\left(\sum_{j=1}^{m} t_{j i}^{2}\right)^{\frac{1}{2}}$
b) $u=\left(0,0, \ldots, t_{i i}+\alpha_{i}, t_{i+1, i}\right.$,

$$
\left., \ldots, t_{m, i}\right)
$$

c) $B=\alpha u$
d) $t_{j \ell}-t_{j \ell}-\frac{1}{8} u_{j} \sum_{k=1}^{m} u_{k} t_{k \ell}$

$$
\text { for } j=i, \quad i+1, \ldots, m
$$

and for $\boldsymbol{\ell}=\mathrm{i}+1, \quad \mathrm{i}+2, \ldots, \mathrm{n}$
(N.B. ".-" denotes the replacement operation)
e) $t_{i i}--\alpha$
4. For $i=1,2, \ldots, n$, compute
a) $d_{i}=t_{i i}^{2} /(m-1)$
b) For $\mathrm{j}=1,2, \ldots, \mathrm{i}-1$, compute

$$
\ell_{i j}=t_{j i} / t_{j j}
$$

It should be noted that the elements of T, X, L, and D can occupy the same storage locations (though X will then be lost) and that steps 3 and 4 can be combined.

This algorithm requires approximately $m n^{2}-\frac{n^{3}}{3}$ multiplications, which may be (for m much larger than n) up to a factor of two times slower than the standard method. However, here the stability problems have been alleviated due to the use of orthogonal transformations. Storage considerations may be a problem with this algorith' \urcorner, since it functions most efficiently only if the entire data matrix is in core. A sequential version of this algorithm may bs used (see Chapter 27 of ref. 7) which alleviates the storage requirements and provides for an updating capability, but at a cost of increased computation time. The next method (composite-t), however, yields a more efficient and stable algorithm.

C. Composite-t:

This method is based on an algorithm developed by Fletcher and Powell ${ }^{(3)}$ as a more numerical accurate extension of algorithms developed independently by Bennett ${ }^{(4)}$ and Gentleman ${ }^{(5)}$. Essentially, Givens rotations ${ }^{(2)}$ are used to directly compute the MCD from the data as in the previous method. Instead of working with all of the original data at once as in the Householder method, this algorithm updates the MCD as each data vector is processed. In this section, we will present two algorithms which employ the composite-t method to calculate the MCD and update it.

The generalized composite-t algorithm for a rank one update of L and D of the form

$$
\mathrm{LDL}^{\mathrm{T}} \leftarrow \mathrm{LDL}^{\mathrm{T}}+\frac{1}{\mathrm{t}_{1}} \mathrm{zz}^{\mathrm{T}}
$$

for a positive semi-definite matrix where we assume $t_{1} \neq 0$, that the rank of the matri: never decreases, and that $t_{1}<0$ only if D has full rank (i.e. Y has full rank), is:

> Rank-one Composite-t Algorithm

1. If $t_{1}>0$ go to 5
2. Solve $L v=z$ for v

$$
\text { (i.e. } v_{1}=z_{1}, v_{i}=z_{i}-\sum_{j=1} \ell_{i j} v_{j} \text {, }
$$

$$
\mathrm{i}=2,3, \ldots, n)
$$

3. For $i=1,2, \ldots, n$, compute

$$
t_{i+1}=t_{i}+v_{i}^{2} / d_{i}
$$

4. If any $t_{i+1} \geq 0$, then
a) set ${ }^{t_{\mathrm{n}+1}}=e \mathrm{t}_{1}$, where e is the machine precision
b) for $i=n, n-1, \ldots, 1$

$$
t_{i}=t_{i+1}-v_{i}^{2} / d_{i}
$$

5. For $i=1,2, \ldots, n$
a) $v_{i}=z_{i}$
b) If $d_{i} \neq 0$ go to substep c)
(1) if $v_{i} \neq 0$ to to sub-subste p (4)
(2) $t_{i+1}=t_{i}$
(3) go to substep k)
(4) $d_{i}=v_{i}^{2} / t_{i}, \quad \ell_{*_{i}}=z_{*} / v_{i}$
(5) calculation complete
c) If $t_{1}>0$ then $t_{i+1}=t_{i}+v_{i}^{2} / d_{i}$
d) $\alpha_{i}=t_{i+1} / t_{i}$
e) $d_{i}-d_{i} \alpha_{i}$
f) If $\mathrm{i}=\mathrm{n}$ then calculation is complete
g) $\beta_{i}=\left(\alpha_{i} v_{i} / d_{i}\right) / t_{i+1}$
h) If $\alpha_{i}>4$ then
1) $\gamma_{i}=t_{i} / t_{i+1}$
2) for $\mathrm{j}=\mathrm{i}+1, \mathrm{i}+2, \ldots, \mathrm{n}$ $x x=\gamma_{i} \ell_{j i}+\beta_{i} z_{j}$
$z_{j}-z_{j}-v_{i} \ell_{j i}$
$\ell_{j i}-x x$
3) go to substep k)
i) $z_{*}-z_{*}-v_{i} \ell_{*_{i}}$
j) $\quad \ell_{*_{i}}-\ell_{*_{i}}+\beta_{i} z_{*}$
k) Return to substep a)

Note that only the last $\mathrm{n}-\mathrm{i}$ components of $\ell_{*_{i}}\left(\ell_{\mathrm{ii}}=1\right)$ and $\mathrm{n}-\mathrm{i}+1$ components of z_{*} need be involved in these conmutations. Note also that the number of multiplications performed in this algorithm is data dependent. A detailed error analysis of this algorithm is given in ref. 3 showing this algorithm to be quite stable.

To employ this algorithm, we must first rewrite eq. 2 expressing the covariance matrix, $K^{(r+1)}$ associated with the first $r+1$ data vectors to that, $K^{(r)}$, associated with the first r data vectors :

$$
\tilde{K}^{(r+1)}=\tilde{K}^{(r)}+\frac{1}{r+1} z^{(r)} z^{(r)^{T}}
$$

where

$$
K^{(r+1)}=\frac{1}{r} \tilde{K}^{(r+1)}
$$

and

$$
\begin{aligned}
z_{*}^{(r)} & =\frac{1}{\sqrt{r}} \sum_{j=1}^{r} x_{* j}-\sqrt{r} x_{* r+1} \\
& \equiv \frac{1}{\sqrt{r}} s^{(r)}-\sqrt{r} x_{* r+1}
\end{aligned}
$$

Given m data points, then the algorithm for computing the MCD of $K^{(r+1)}$ is :

Composite-t MCD Algorithm

$$
\begin{aligned}
& \text { 1. Set } \mathrm{L}=\mathrm{I}_{\mathrm{n}}, \mathrm{D}=0 \text {, and } \mathrm{s}_{*}=\mathrm{x}_{*} \text {, } \\
& \text { 2. For } r=2,3, \ldots, m \\
& \text { a) set } t_{1}=r \\
& \text { b) for } i=1,2, \ldots, n \text {, compute } \\
& z_{i}=s_{i} / \sqrt{r-1}-\sqrt{r-1} x_{i r} \\
& s_{i}-s_{i}+x_{i r} \\
& \text { (N.B. For } r=m \quad s_{i}=m u_{i} \text {) } \\
& \text { c) use Rank-one Composite-t Algorithm to } \\
& \text { update } \mathrm{L} \text { and } \mathrm{D} \text { (note that } \mathrm{t}_{1}>0 \text {) } \\
& \text { 3. For } i=1,2, \ldots, n \\
& d_{i}-d_{i} /(m-1)
\end{aligned}
$$

The number of multiplications involved in this algorithm when $m \gg n$ is approximately $m n^{2}+7 m n$. m square roots are also necessary.

After L and D have been computed, data vectors may be added or deleted yielding a modified L and D by using the following algorithm

Composite-t Update Algorithm

1. Compute $\mathrm{d}_{*}-\mathrm{d}_{*} *(\tilde{\mathrm{~m}}-1)$ where $\tilde{\mathrm{m}}$ is the net number of points used to compute L and D. If s is unavailable, it may be computed from $\mathrm{s}_{*}=\tilde{\mathrm{m}} \mathrm{u}_{*}$
2. If a point is being added, set $t_{1}=\tilde{m}+1$,

$$
y=\sqrt{\tilde{m}}, \text { and } q=\tilde{m}+1
$$

3. If a point is being deleted,
a) set $\mathrm{t}_{1}=-\tilde{\mathrm{m}}, \mathrm{y}=\sqrt{\tilde{\mathrm{m}}-1}$, and $\mathrm{q}=\tilde{\mathrm{m}}-1$
b) $s_{*}-s_{*}-\alpha_{*}$
where α_{*} is the data vector to be added $r r$ deleted
4. Compute $z_{*}=s_{*} / y-y \alpha_{*}$ If a point is to be added, set $s_{*}-s_{*}+\alpha_{*}$
5. Use Rank-one Composite-t Algorithm
6. Compute $\mathrm{d}_{*}-\mathrm{d}_{*} /(\mathrm{q}-1)$ and $\operatorname{sez} \tilde{m}=q$

This algorithm requires approximately $3 n^{2} / 2$ multiplications to delete a data point and n^{2} te add a data point.

III. Numerical Examples

In this section, we present some numerical examples illustrating the properties of the algorithms discussed in the previous section. Listings of the programs used to implement these algorithms are given in the appendix.

Using some 12 dimensional pseudo-random data of 100 points, we tested all three methods on an IBM $370 / 155$. All algorithms yielded the same results to ~ 5 decimal places. The times for computing the MCD's by each method are: standard method-
$.59 \mathrm{sec} .$, Householder-. $78 \mathrm{sec} .$, and composite-t-1.02 sec. Note that the order of these timings is as predicted, but due to differences in bookkueping and other operations involved in each method, these timings do not follow the ratios of the number of multiplications in Table I.

To test the stability of the three methods for computing the MCD, we used the data matrix

$$
X=\left(\begin{array}{llll}
1 & -.999 & -.001 & 0 . \\
1 & -.99 & -.01 & 0 . \\
1 & -1 . & .001 & -.001
\end{array}\right)
$$

which generates an ill-conditioned covariance matrix. The resultant L's and D's for each method and the exact L and D are given below (to six digits): (We use the subscripts E, S, HR, and CT for exact, standard, Householder, and composite-t methods, respectively. Also only the below diagonal elements of L are given, in the order $\left.\ell_{21}, \ell_{31}, \ell_{32}\right)$

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{E}}=(.995505, \quad 1.00050,-.185148) \\
& \mathrm{L}_{\mathrm{S}}=(.995504,1.00050,-.180695) \\
& \mathrm{L}_{\mathrm{HR}}=(.995505,1.00050,-. .185112) \\
& \mathrm{L}_{\mathrm{CT}}=(.995505,1.00050,-.185147) \\
& \mathrm{D}_{\mathrm{E}}=\operatorname{diag} .\left(.666001, .405405 \times 10^{-4}, .444444 \times 10^{-6}\right) \\
& \mathrm{D}_{\mathrm{S}}=\text { diag. }\left(.666001, .405539 \times 10^{-4}, .823690 \times 10^{-6}\right) \\
& \mathrm{D}_{\mathrm{HR}}=\text { diag. }\left(.666000, .405427 \times 10^{-4}, .444646 \times 10^{-6}\right) \\
& \mathrm{D}_{\mathrm{CT}}=\text { diag. }\left(.666000, .405405 \times 10^{-4}, .444447 \times 10^{-6}\right)
\end{aligned}
$$

To illustrate the effect of these rounding errors, we then solved the system

$$
K b=L D L^{T} b=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

The computed b's (accurate to six digits), are given below

$$
\begin{array}{llll}
{ }^{\mathrm{b}} \mathrm{E} & =(3182965 ., & -518130 ., & -2665833 .)^{\mathrm{T}} \\
\mathrm{~b}_{\mathrm{S}} & =(1715970 ., & -283491 ., & -1433039 .)^{\mathrm{T}} \\
\mathrm{~b}_{\mathrm{HR}} & =(3181339 ., & -517794 ., & -2664543 .)^{\mathrm{T}} \\
{ }_{\mathrm{b}}^{\mathrm{CT}} & =(3182936 ., & -518124 ., & -2665813 .)^{\mathrm{T}}
\end{array}
$$

Note that ${ }^{b_{S}}$ is off by a factor of ~ 2 (mostly attributable to the computed value of d_{3}), whereas b_{HR} is accurate to 3 digits and ${ }^{\mathrm{b}}{ }_{\mathrm{CT}}$ to 5 digits.

We next tested the updating capability of the composite-t update algorithm. When data points are added, the algorithm yields the same results as if one started with all of the data points since, except for a few multiplications, the computations are equivalent. When data is deleted, however, the answers may differ, since the process of data deletion is intrinsically less stable ${ }^{(5)}$. The following example illustrates this:

Let

$$
X=\left(\begin{array}{lllll}
1 & -.999 & -.001 & 0 . & 1 \\
1 & -.99 & -.01 & 0 . & 2 \\
1 & -1 . & .001 & .001 & 1
\end{array}\right)
$$

(This is the same data as used above with the addition of the data vector $(1,2,1)^{\mathrm{T}}$.) Using $\alpha=(1,2,1)^{\mathrm{T}}$ and specifying deletion to the composite-t update algorithm yielded

$$
\begin{aligned}
& \mathrm{L}=(.995504, \quad 1.00050,-.186673) \\
& \mathrm{D}=\text { diag. }\left(.665999, .402583 \times 10^{-4}, .431288 \times 10^{-6}\right)
\end{aligned}
$$

which is to be compared to L_{CT} and D_{CT} as computed above :

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{CT}}=\left(.995505,1.00050,-.185_{1} 47\right) \\
& \mathrm{D}_{\mathrm{CT}}=\text { diag. }\left(.666000, .405405 \times 10^{-4}, .444447 \times 10^{-6}\right)
\end{aligned}
$$

The differences are in the second and third digits of some of the computed quantities. It should be pointed out, however, that this is a particularly ill-conditioned example, and other examples yielded satisfactory results.

IV. Conclusions

Though efficient, the standard method suffers from an inability to update accurately and efficiently the MCD , as well as stability problems associated with having to work with matrices of the form YY^{T}. The Householder method obviates these problems at the cost of storage requirements and efficiency. Though slower still, the composite-t method drastically reduces the storage requirements, readily provides for updating of the MCD and improves computational performance from a stability standpoint. Which method one should use depends on the problem at hand and the weights one assigns to the various trade-offs between speed, stability, and updating capability.

In many of the computations for the analysis of remotely sensed data, the actual calculation of the covariance matrices and their MCD's takes relatively little time, so speed may not
be an important factor. In this case, the optimal choice would appear to be the composite-t metrod, due to its superior numerical stability, relatively small storage requirements, and its updating capability. In areas such as signature extension, the updating capability of this method could be especially valuable.

APPENDIX

Listings of the program used to test the three methods are given below. KBYSM computes the MCD by the standard method (subroutine MCHLSK is used to actually compute the MCD from the computed covariance matrix). KBYHR computes the MCD by the Householder method. KBYCT computes the MCD by the Composite-t method, usirg subroutine COMPT which computes a rank one update of the MCD (Note that all of the data is in KBYCT, though the algorithm only requires that one data vector at a time be available. This was done for timing purposes only.) CTUPDT updates the MCD using subroutine COMPT.

SUERGUTINE KBYSM（X，M，N，MXN，LD）
THIS ROUTINE COMPUTES THE MCD OF A COVARIANCE MATRIX BY THE STANDAKD METHUD

REAL＊4 $\times(M \times N, 1), L D(1)$
REAL＊8 Si（12）．S2（78）
X－THE N EY M DATA MATRIX WHOSE FIRST DIMFNSION IN THE CALLING PROGHAM IS MXN
M－ThE NUMGEK OF DATA VECYGRS
N－THE UIMENSION OF THE DATA
LD－THE KESULTING MCD CONTAINGG THE ELLMENTS UF L E DG THIS MATRIX IS STURED IN SYMMETRIC STGKAGL MOOE（I•E．LONER TRIANGULAR PORTIGN SIGRED GY RUWS）WITH THE ELFMENTS OF D OCCUPYING THE DIAGCAAL ENTRIES．

INITIALIZE

DO $20 \quad I=1 .: 2$

$20 \mathrm{SI}(1)=0.00$
DO $30 \quad 1=1,78$
30 S2（1）$=0.00$
COMPUTE THE SUM UF THL LATA VECTOHS AND IHFIR CROSSOPRODUCTS．
$D O \quad 10 \quad L=1, M$
$k=C$
00：O $\quad i=1, N$
SI（I）＝SI（I）＋X（I，L）
OO $10 \mathrm{~J}=1$ ．I
$K=K+1$
$10 \mathrm{~S} 2(\mathrm{~K})=\mathrm{S} 2(\mathrm{~K})+x(I, L) * \times(J, L)$
CONPUTE THE CUVARIANCF MATFIX \＆STUKL IT IN LO．
$K=0$
DO $40 \quad \mathrm{I}=1 . \mathrm{N}$
00 $40 \quad J=1$ ． 1
$k=k+1$
LU（K）$=(S 2(K)=S 1(1) * S 1(J) / M) /(M=1)$
40 CUNIINUE
MCHLSK CCMFUTES THE MCE GT THE COVARIANCF MATHIX E UVFRWKITES THE RESULT UN IT．

CALL MCHLSK（LD．N．S1．S2）
RE TUKN
ENU

SUEKDUTINE MCHLSK (KK.NV ODUN,DET)
$K K=L D$ L*

KK = THE COVARIANCE MATPIX STCFED IN SYMMFTRIC STGHAGF MCCE. NV - THE NUMBER OF CHANAELS USED
DUM - A DGUBLE PRECISIUN WORK AREA UF SIZF NV=1 DET - THE DETERMINANT OF THE COVAKIANCE NATRIX.

KEAL KK(1)
REAL*\& DUM(1)
HE AL * \& R, K1, T1, TF
LOGICAL* JEI
JE $I=$-TFIJE.
$J 1=0$
JO =0
DE $T=1$.

LOOP OVER ALL CHANNELS

DU $10 \mathrm{~J}=1$, NV
$K L=J=1$
$L=J+1$
$J 0=J 1$
$J 1=j 1+J$
$T F=0.00$
IF (JE:) GOTO 12
$K 1=0$
CCMFUTE THE OIAGONAL ELEMENTS LF 1) AND STGRE IN KK
TEMFURAKILY STGRE THF PEQDUCT KK(I,I)\&KK(J.I) IN DUA(I)
DO $15 \mathrm{I}=1, \mathrm{KL}$
$R=K K(J C+I)$
$K I=K 1+I$
$K 1=K k(K 1) * K$
TH $=$ TF $=$ R1*R
DUM(I) = RI
15 CONTINUE
12 CUATINUE
$T F=T F+K K(J I)$
$K K(J) \quad$) TF
DE $\mathbf{T}=\mathrm{DET}$ *TF
IF (L.GT.NV) GU TO 10
$I R C=J I-L+1$
COMPUTE THE R,J=TH ELEMENT GF L USING TI
DO 20 IR=L,NV
$I R C=I F D+I R=1$
$T_{1}=0.00$
IF (JE1) GU TO 16
DU $25 \quad I=1, K L$
$T 1=T 1=0 U M(I) * K K(I R D+I)$
25 CONTINLE
$16 K K(I R D+J)=(T I+K K(I R D+J)) / T F$
20 CONTINLE
JE $1=$ •FALSE.
10 CUNTINUE
RETUKN
cND
$R E A L * 8$ S
GIVEN THE MATRIX OF UGSERVATICNS X. COMPUTE THE MEAN AVD MCD OF THE KE SULTING CUVAKIANCE MATRIX E SIURE IT IN THE LOWER TRI ANGULAK PART OF X. HUUSEHOLDLF KEFLECTIUNS AKE USC* TO COMPUTE THL NCD.
X - DATA MATRIX WHICH IS DESTRCYEC
$M U$ - CN DUTFUT, THE MEAN VECTGR
N - THE DINENSIUN
M - THE NUMEEK UF UHSERVATICNS TU BL USED
MXN = THE UIMENSIGN (* OF HUWS) OF X IN THE CALLING PRUG. U - WOFKING STURAGE OF DINENSICN AT IEAST M
LD - DESIREL MCD STURED IN SYM STCRAGE MLUE
$N P I=M=1$
SSET LP NATKIX TQ BE TRIANGULARIZED
DC
$\mathrm{S}=\mathrm{C} . \mathrm{DO} \mathrm{O}$
CONPUTE MEANS
$200020 \mathrm{~J}=1, \mathrm{M}$
$20 \begin{aligned} & S=S+x(1, j) \\ & \text { MU(I) }=\leq / H\end{aligned}$
CLNPUT THE MATKIX X MMEANS
DO $30, j=1, M$
$30 \times(I, J)=x(i, j)=M U(I)$
10 CUNTINUE
PERFCFM HOLSEHOLDEH TRANSFLRMATIUNS
$K K=0$
DO $40 \quad I=1, N$
CONPUTE NECESSAKY GUANTITIES TL ANNIHILATL EUTTGM PAKT UF IOTH CCL
$\mathrm{S}=\mathrm{C} \cdot \mathrm{DO}$
CNLY LAST $M=I+1$ ELEMENTS OF U ARE USED
DU $45 \mathrm{~J}=\mathrm{I}, \mathrm{M}$
$x \times=x(1, J)$
$j=s+\times \times \times \times$
$45 \cup(J)=x \times$
$A L F=S I G N(S N G L(U S G F T(S)), U(1))$
IF (I.EGeiv) GO TO 44
$U(I)=U(I)+A L P$
BETA = ALF*U(I)
$\mathbf{I} \mathbf{I}=\mathbf{I}+\mathbf{I}$
APFLY TRANSFORMATICN TC RUWS I +1 TU M ECGLS I+1 TO N \& SET
I.I=TH ELEMENT TO = ALP

DU SO L=II N N
$S=0 . D O$
UU S5 $K=1, M$
$55 S=S+U(K) * X(L, K)$
$x \times=S / H E T A$
Du bo J=1.M
$x(L, J)=x(L, J)=U(J) * x x$
50 CCNTINUE
$44 \times(I \cdot I)=A$ ALP
IF (I.EQ.1) GU TO 42
CONPUTE L E D ~ LUM L*SGRI (D) =R * TRANS/SGFT (M-1). STORE L IN
LOWKR TRIANFULAK HART LF $X E D$ ALUNG DIAG.
$11=1-1$
UO $00 J=1,11$
$K K=K K+1$
OCLD $(K K)=x(1, J) / x(J, J)$
$42 K K=K K+1$
$L O(K K)=A L P * A L P / N H 1$
40
COETURNUE
KE TURN

```
```

SUERLUTINE COMFT (LO.T.L.H., V,TMH)

```
```

SUERLUTINE COMFT (LO.T.L.H., V,TMH)
REAL*4 LD(1)
REAL*4 LD(1)
NEAL*日 I(1),L(N),V(N)
NEAL*日 I(1),L(N),V(N)
REAL*8 TMP(N)
REAL*8 TMP(N)
RREAL*E S
RREAL*E S
LUGICAL*I TFCS.HNDERRR.LALP

```
LUGICAL*I TFCS.HNDERRR.LALP
```

```
    THIS ROUTINE IS AN IMPLFMENTATION OF THE CONPOSITE - I ALGCFITHM
```

 THIS ROUTINE IS AN IMPLFMENTATION OF THE CONPOSITE - I ALGCFITHM
 TU PRRFUKN A KANK I UPDAIE UF THE. MCO STGNEO IN ARKAY LD(I - E.
 TU PRRFUKN A KANK I UPDAIE UF THE. MCO STGNEO IN ARKAY LD(I - E.
 K=L.D*L=TKANS & WL WISH TU CONPUTE L'ED'S.ST.K*#K&Z*7=TPANE/T(I)
 K=L.D*L=TKANS & WL WISH TU CONPUTE L'ED'S.ST.K*#K&Z*7=TPANE/T(I)
 E K* = L***U**L* - TKANS).
 E K* = L***U**L* - TKANS).
 LD - AFRAY CONTAINING L & C STURED IN SYMOSTURAGE MODE
 LD - AFRAY CONTAINING L & C STURED IN SYMOSTURAGE MODE
 T - AN N+I VECTOK WHOSE FIFST ELEMENT IS AS AGOVF
 T - AN N+I VECTOK WHOSE FIFST ELEMENT IS AS AGOVF
 L VECTUR CF THE LPDAEE AS AHCVE
 L VECTUR CF THE LPDAEE AS AHCVE
 N - THE LIMENSILN
 N - THE LIMENSILN
 V - WURKING STORAGE OF LLNGTH •GE.N
 V - WURKING STORAGE OF LLNGTH •GE.N
 TMF = DOUHLE PRECISIOIV AORKING STQRAGF UF LFNGTH .GE. N
 TMF = DOUHLE PRECISIOIV AORKING STQRAGF UF LFNGTH .GE. N
 TPCS=T(1).GT.O.
 TPCS=T(1).GT.O.
 IF (TPCS) GO IO 35
 IF (TPCS) GO IO 35
 A PUINT IS TO BE DELETFD
 A PUINT IS TO BE DELETFD
 EPS=5 STE-8
 EPS=5 STE-8
 SULVE L*V=2 FOKV
 SULVE L*V=2 FOKV
 K=1
 K=1
 V(1)=2(1)
 V(1)=2(1)
 DO 10 I=2.N
 DO 10 I=2.N
 I J=|-1
 I J=|-1
 S=C.DO
 S=C.DO
 DU is J=1.IJ
 DU is J=1.IJ
 K=r,+1
 K=r,+1
 15 S=S+LD(K)*V(J)
 15 S=S+LD(K)*V(J)
 K=K+1
 K=K+1
 V(I)=Z(I)=S
 V(I)=Z(I)=S
 10 CONTINUE
10 CONTINUE
CUNPUTE THE T(I'S)
CUNPUTE THE T(I'S)
K=0
K=0
RNLEKK=.FALSE.
RNLEKK=.FALSE.
OU 2O I=1.N
OU 2O I=1.N
K=K+1
K=K+1
TMP(I)=V(I)*V(I)/LD(K)
TMP(I)=V(I)*V(I)/LD(K)
T(I+1)=T(I)+TMG(I)
T(I+1)=T(I)+TMG(I)
IF (T(I+1).GE.O.) KNDEKK=. TFUE.
IF (T(I+1).GE.O.) KNDEKK=. TFUE.
2O CUNTINUE
2O CUNTINUE
IF (.NCT.KNDERR) GO TU 3!
IF (.NCT.KNDERR) GO TU 3!
KUUNDING EFHOK HAS MAUL A T(I+1).GL.O. SO CGFRECT IOR IHIS
KUUNDING EFHOK HAS MAUL A T(I+1).GL.O. SO CGFRECT IOR IHIS
T(N+1)=EPS*T(1)
T(N+1)=EPS*T(1)
DU 30 J=1.N
DU 30 J=1.N
t = N = J + 1
t = N = J + 1
T(I)=T(I+1)=TMP(I)
T(I)=T(I+1)=TMP(I)
30 CUNTINLE
30 CUNTINLE
36 CONTINLE
36 CONTINLE
I J =0
I J =0
DO 40 I=1.N
DO 40 I=1.N
I = I + I
I = I + I
IJ=iJ+I
IJ=iJ+I
V(I)=2(I)
V(I)=2(I)
OI=LD(IJ)
OI=LD(IJ)
IF (DI.GT.O.) GU TC 44
IF (DI.GT.O.) GU TC 44
D(I) =O. SO HANK CF D NILL EITHER INCREASE OR GFMAIN UNCHANCFO.
D(I) =O. SO HANK CF D NILL EITHER INCREASE OR GFMAIN UNCHANCFO.
IF (UAES(V(I)).GT.1•E-3C) GU TC 42
IF (UAES(V(I)).GT.1•E-3C) GU TC 42
RANK OF C WILL RFNAIN UNCHANGLE
RANK OF C WILL RFNAIN UNCHANGLE
T(I+1)=T(I)
T(I+1)=T(I)
GO TC 40

```
    GO TC 40
```

```
C RANK CF O WILL INCFEASE EY I
    42LD(IJ)=V(I)*V(I)'Y(I)
    IF (I .EQ.N) HETURN
    k=1J
    OU 45 J=11,N
    K=K+J=I
    LO(K)=\angle(J)/V(I)
    45 CUNTINLE
    RETURN
    44 CUNTINUE
    UPCATE D
    IF (TFCS) I(i+1)=T(I)+V(I)*V(I)/DI
    ALP=T(1+1)/I(I)
    LO(1J)=DI*ALF
    IF (I.EG.N) HETURN
    UPLATE L E MOOIFY & ACCCIRDINGLY
    HETA=(V(I)/LI)/T(I+1)
    LALP=&FALSE .
    If (ALP.LE.4.) GO TC 52
    THIS METHOL LSEO TL INSUIRE STAGILITY IF ALPHA GT. &
    LALP=. TRUL.
    GAN=T(I)/T(I+1)
    K=1J
    OU 5O J=11.N
    K=K+J=1
    xx=GAM*LD(K) +BETA*Z(J)
    Z(J)=L(J)=V(I)*LD(K)
    LU(K)=\x
SC CONIINLE
    GU TU 40
52K=1J
    DO 00 J=11.N
    KNKiJ=1
    <(J)=L(J)=v(I)*LD(K)
    LD(K)=LC(K)+UETA*7(J)
60 CUNTINUE
4O CONTINLE
    RE TUKN
    ENC
```

```
    SUURUUTINE KGYCT (LD,N,MXN,S,X,N,T)
    HLAL*4 LD(1),S(N), X(NXN,M)
    HEM&E T(1)
    INTLGEF*4 F
    IHIS RGUTINE CUMPLIES THL MCD OF THE G.VVARIANCL MATRIX G MEANS
    -GIVEN THE NOUIMENSIUNAL M DATA VECTLNS STGKEO IN X. LED AFE
    STCKLO IN LL & THE MEANS IN VECTOK S
    LO - ON OUTHUT. THE MCD UF THE CCVAR. MAKNIX STCRED IN SYM.
        STORAGL NODE WITH D ALONG THF DIAGUNAL.
    N - THE DIMLNSIUN
    MXA - THE NUHBLR GF ROWS OF X AS DIMFNSIONFE IN THF CALLING FFOG.
    S - LN UUTPLT. THE VLCTCR CF MEANS
    X - THE DATA MATKIX
    - tre numuER uF data cectokS Tu de uSFD.
    T - WOKKING STGKAGE UF DIMENSICN .GL. 4*N+I
    INITIALIZE L & D MATHICES & VECTUF S
    IJ=0
    DO 10 I=1,N
    IJ=IJ+I
    LU(iJ)=0
    S(1)=x(1,1)
    It (I.EQ.i) GU TO 10
    1: = - - |
    DC 15 J=1.11
15 LU(IJ=ItJ)=0.
IO CUNTINLE
    LUCH OVEH ALL PGINTS TO CUNPLTE L E O FOK (N=1)*K
    DO 20 R=2.N
    T(1)=F
    SRI=SUKI(FLUAT(K=1))
    CQNPUTE Z FLIS THIS }\times\mathrm{ & UPDATE S
    DG 25 i=1,N
    T(N+1+1)=S(1)/SN1-SK1**(I,K)
25S(I)=S(I)+X(I,R)
    UPCATE L E D
    CALL CCNPT(LU.T,T(N+C),N,T(で*N+己),T(J*N+2))
2O CONTINLE
    MGDIFY D S.T. K=L.D*L=TRANS E SIURE MEAN IN S
    SR I=M=1
    IJ=0
    DO 3C 1=1.N
    IJ=1J+I
    LU(1J)=LD(1J)/SR1
    S(1)=S(1)/N
3O CLNTINUE
    RETUKN
    END
```


REFERENCES

[1] D. L. Van Rooy, M. S. Lynn, and C. H. Snyder, "The Use of the Modifs 2d Cholesky Decomposition in Divergence and Classification Algorithms," Conf. Proc. Machine Processing of Remotely Sensed Data, LARS, Purdue, Oct. 16-18, 1973, pp. 3B-35 - 3B-47.
[2] G. W. Stewart, Introduction to Matrix Computations, Academic Press, New York, 1973.
[3] R. Fletcher and J. D. Powell, "On the Modification of LDL ${ }^{\text {T }}$ Factorizations, " Math. Comp., 28, No. 128, 1974, pp. 1067-1087.
[4] J. M. Bennett, "Triangular Factors of Modified Matrices," Numer. Math., 7, 1965, pp. 217-221.
[5] W. M. Gentleman, "Least Squares Computations by Givens Trainsformations Without Square Roots, " J. Inst. Maths. Applics, 12, 1973, pp. 329-336.
[6] J. H. Wilkinson, " The Solution of Ill-Conditioned Linear Equations," in Mathematica! Methods for Digital Computers, Vol. 2, A. Ralston and H. Wilf, Eds., John Wiley and Sons, Inc., New York, 1967.
[7] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, Prentice Hall, New Jersey, 1974.

