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ABSTRACT :

In this paper we discuss three known methods for obtaining and
updating the modified Cholesky decomposition (MCD) for the particular
case of a covariance matrix when one is given only the original data,
These methods are the standard method of forming the covariance matrix
K then solving for the MCD, L. & D (where K=LDL1): a method
based on Householder reflections; and lastly, a method emploving the
composite-t algorithm developed by Fletcher and Powell (Math Comp.,
28, 1974, pp. 1067-1087). For many cases in the analysis of
remotely sensed data, the composite-t method is the superior method
despite the fact that it is the slowest one, since (1) the relative
amount of time computing MCD's is often quite small, (2) the
stability properties of it are the best of the three, and (3) it affords
an efficient and numerically stable procedure for updating the MCD,
The properties of these methods are discussed and FORTRAN programs
implementing these algorithms are listed in an appendix.
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Introduction

In digital processing of remotely sensed data, as well as many
other areas employing multivariate analysis, solutions to many of the
problems are formulated in terms of covariance matrices, Often
these solutions are expressed in terms of linear transformations
involving a covariance matrix or its inverse, In these and other
cases, it is often more sound computationally for one to employ the
Cholesky or modified Cholesky decomposition of the covariance matrix
rather than the original matrix itself“). Even in cases where the
original covariance matrix is to be modified by the addition or dele-
tion of data, it still may be computationally prudent to utilize these
decompositions,

The purpose of this paper is to discuss methods for computing
and updat’ the modified Cholesky decomposition (MCD) of a covari-
ance matrix, These methods will be examined from the point of
view of their ability to update the MCD when data is to be added
or deleted, as well as computational efficiency and numerical
stability, In particular, three methods for accomplishing the above
will be discussed:

1) Standard--one computes the covariance matrix from
the defining equations and then calculates the MCD of it

2) Householder--here one directly computes the MCD
of the covariance matrix from the data using Householder reflec-
tions(z).

3) Composite-t--this method was develuped by Fletcher

(4)

and puwell(3) from work previously done by Bennett'"’ and

Gentleman(s). The method essentially uses Givens rotations(z) of



the data one point at a time to directly compute the MCD of the
covariance matrix, Updating is straightforward and efficient,

Table 1 summarizes the properties of each of these methods,
Here n is the dimension of the data and m is the total number of
data vectors, Though numerical stability may not play much of a
role in most cases, the times when it does, may occur without the
user being aware of any difficulties, Thus this situation may lead to
erroneous interpretations of the results, A method for computing the
MCD sheculd be chosen with this in mind, Also, in many areas of
digital processing of remotely sensed data, the actual computation
time for computing the MCD is inconsequential, so that the composite-t
method with its superior stability, may be optimal despite its relatively
slow performance, The added benefit of an efficient and stable updating

capability may also be of value,
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II. Methods for Computing and Updating the MCD of the Covariance
Matrix.

Given X the nxm data matrix containing m multi-

variate n-dimensional vectors, the mean vecior u is defined by

Hy = m i J=1,2,...,n (1)

"3

and the covariance matrix K, by
' m

%
K = == (X 4=1) (X, i-u) (2)
i=1

where x . is the ith data vector and T denotes transpose,

K is symmetric and positive semi-definite, (It should also be

noted that K is singular if men + 1), The MCD of K s
T

given by K = L DL where ) is diagonal with positive diagonal

entries and L. is unit lower triangular,

A. Standard Method:
The usual method for computing K comes from

rewriting (2) using (1) to yield

kisy = m-1 [;L:' ie Xy _'ﬁ(zzl m)(zz_lm)]

The MCD of this is then computed (see e,g. ref. 6). This

method requires (we consider cases where m > > n > 1)
m n

approximately multiplies to compute K and another
n3/ 6 multiplies to compute the elements of L and D,
Though K itself may be computed with acceptable precision,

functions irnvolving K amy be evaluated quite inaccurately since
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matrix products of the form yyT! may be quite il1-conditioned(®,
Updating L. and D in this manner is time consuming since one
must first update K and then recompute [. and D, Another
method for updating [, and D directly will be discussed in

section C,

B. Householder:

One way to avoid yroblem of the possible ill
conditioning of K is to compute L. and D directly from the
data. This may be done by using Householder reflections on the
data matrix as follows,

[.et M be the n x m matrix

l IJI Lll ’ ’ Ul
. sing. ¥
u s RSP EEED S u
n n

Then eq. (1) can be written

| y )
K = g (X-M)(X-M)

If we then let

X-M = RTQ (3)

where R is m x n uvper triangular and () is m x m and
orthogonal, we may write

1 j & I
K = Y ; R"QQ R =
LpL "

R™R

Bl_

n

where . and DD are the MCD of K as before with
T

Lpt =« 1 R
Vm-l



Rewriting (3), we have
QT(x-m7T = R

We may then write QT as a product of n Householder reflec-

tions (see e.g ref, 2)

where Pi annihilates all elements from {41 to

n of the ith th

column, changes the i element and does not
change elements 1 to i-1l,

The algorithm, then for computing 1. and D in this
fashion is:

Householder MCD Algorithm

m
1. Compute u; - % z Xi 23 IS PR
L=1
2. Form tji = xij T ouy i=1, 2, , n

i=1,2, '
S For i=1,2,...,n, compute

o 3
a) o = sgn(t;) * () ‘fi)
j=i

- s (0,0, t -+,

)
™
n
Q
=



m
-~}
for j=1i, Lo WP
and for g=i+1, 1+2,...,n

(N.B. "." denotes the replacement operation)

4. For i=1,2,...,n, compute

a) d. = ¢ 2 / (m=1)

b) For j=1,2,...,i-1, compute

S P .,
ity
It should be noted that the elements of T, X, L., and D can occupy
the same storage locations (though X will then be lost) and that steps

3 and 4 can be combined,

2 3

This algorithm requires approximately mn® - n"
multiplications, which may be (for m much larger thd?’l n )up to

a factor of two times slower than the standard method, However, here
the stability problems have been alleviated due to the use of orthogonal
transformations, Storage considerations may be a problem with this
algorith 1, since it functions most efficiently only if the entire data
matrix is in core. A sequential version of this algorithm may b2 used
(see Chapter 27 of ref. 7) which alleviates the storage requirements
and provides for an updating capability, but at a cost of increased
computation time, The next method (composite-t), however, vields a

more efficient and stable algorithm,



C. Composite-t:

This method is based on an algorithm developed by Fletcher
and Powell® as a more numerical' accurate extension of algorithms
developed independently by Bennett“) and Gcntleman(s). Essentially,
Givens rotations(z) are used to directly compute the MCD from the
data as in the previous method, Instead of working with all of the
original data at once as in the Householder method, this algorithm
updates the MCD as each data vector is processed, In this section,
we will present two algorithms which employ the composite-t method
to calculate the MCD and update it,

The generalized composite-t algorithm for a rank one update of
L. and D of the form

LDLTe— LDLT + -t'—zzT

for a nositive semi-definite matrix where we assume t, # 0, that
the rank of the matrix never decreases, and that t, < 0 only if

D has full rank (i.e. ¥ has full rank), is:

Rank-one Composite-t Algorithm

1, K t, > 0 gotoh

2. Solve Lv = z for v i

= - s,
(i.e. v, Zyv Yy Zy }



4.

If any tig1 = 0, then

a) set tn+l = et,, where e
precision
D B fan, 8°);:ie031

-
ty =ty - vy /4

For i=1,2,...,n
a) v, = B,
b) If di 4 0 go to substep c)

is the machine

(1) if v, # 0 to to sub-substup (4)

i
@ty =Y
(3) go to substep k)
2

(4) di = V‘ / ti' “’ = Z, / Vl

(5) calculation complete

c) If t, > 0 then t = t

1

W% Sogy £8
e) d d

i+l i

j: &Py Wy

2
+ v /di

f) If i=n then calculation is complete

g) Bi - (ai Vi / dl) / ti'i"l
h)y If oy > 4 then

vy = % 1 %4

2) for § = {4}, $4+2,.:.;0

XX =y, ‘jl + 8 zJ
zj - zj it z“
lji" XX

3, go to substep k)
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‘) Zg =~ Z 4 - Vl “'
i) ‘tl" "'i+ By Zo
k) Return to substep a)

Note that only the last n - i components of L (l“ = |) and
n=-1i+1 components of z, need be involved in these corarutations,
Note also that the number of multiplications performed in this algo-
rithm is data dependent, A detailed error analysis of this algorithm
is given in ref, 3 showing this algorithm to be quite stable,

To employ this algorithm, we must first rewrite eq, 2
expressing the covariance matrix, K‘**!) associated with the
first r + 1 daa vectors to that, K(r) , associated with the first

r data vectors:

l+l r 1 (r (l
K( ) = K( ) +——|l ¥4 ) - )

where

l<(r-+-l) - lr i(r+l)

and

(r) ;
=" : ) Fay - YT xe.,

L

VE %o r+l

Given m data points, then the algorithm for computing the MCD of
K(r+l) .
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Composite-t MCD Algorithm

1. Set L=1,, D=0, and Se=Xy

3, For r=2,3,...,m
a) set t! = r
b) for i=1,2,...,n, compute

zi-si/"’r_-f-"r—-Ix

ir
r
(N.B, For r=m $; = m ”i)
¢) use Rank-one Composite-t Algorithm to

update [. and D (note that t, > 0)

L3
-

For i=1,2,...,n

di . d1 / (m=1)

The number of multiplications involved in this algorithm whén m > > n

is approximately mn 2

+ 7mn., m square roots are also necessary,
After L. and D have been computed, data vectors may be
added or deleted yielding a modified . and D by using the following

algorithm

Composite-t Update Algorithm

1. Compute dy ~ d, » (Mm-1) where ™
is the net number of points used to compute
L. and D, If s is unavailable, it may

be computed from s, = m u,
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2. If a point is being added, set t, = m+1,
y = Vm , and q = M+l

3. If a point is being deleted,
a) set t, = -fi, y = Vm-1,
and q = m-1
L) 84 - B4 - a,
where o, is the date vector to be

added »~r deleted

4, Compute z, = 8, / y -y a,
If a point is to be added,

Bet 8, ~ 8, + [» "
5. Use Rank-one Composite-t Algorithm

6., Compute d, ~ d, / (q-1) and

<oy m - q

This algerithm requires approximately 3n2/2 multiplications to

2

delete a data point and n“ te add a data point.

Numerical Examples

In this section, we present some numerical examples illustrating
the properties of the algorithms discussed in the previous section.
Listings of the programs used to implement these algorithms are
given in the appendix.

Using some 12 dimensional pseudo-random data of 100 points,
we tested all three methods on an IBM 370/155. All algorithms
yielded the same results to ~5 decimal places, The times for

computing the MCD's by each method are: standard method—
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.59 sec,, Householder—,78 sec,, and composite-t—1,02 sec. Note
that the order of these timings is as predicted, but due to diffcrences
in bookkveping and other operations involved in each method, these
timings do not follow the ratios of the number of multiplications in
Table 1.

To test the stability of the three methods for computing the

MCD, we used the data matrix

1 -.99 -.001 0.
X = N A -.01 0.
i 001 = . 001

which generates an ill-conditioned covariance matrix. The resultant
L's and D's for each method and the exact [. and D are given
below (to six digits): (We use the subscripts E, S, HR, and CT
for exact, standard, Householder, and composite-t methods,
respectively. Also only the below diagonal elements of [, are

given,in the order £, , L3, , L3y )

Lg = (. 995505, 1.00050, ~-.185148)

Lg = (.995504, 1.00050, -.180695)
L= (.995505, 1.00050, -.185112)
Lop= (.995505, 1.00050, -.185147)
Dp = diag. (.666001, .405405 x 104, . 444444 x 107%)
Dg = diag. (.666001, .405539 x 10™%, 823690 x 107%)
Dyp= diag. (.666000, .405427 x 1074, . 444646 x 1079)
Dop= diag. (.666000, . 405405 x 1074, . 444447 x 1076
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To illustrate the effect of these rounding errors, we then solved the

T |
Kb = LDL b = 0
0

The computed b's (accurate to six digits), are given below

system

(3182965., -518130., -2665833.)"

E =

bg = (1715970., -283491., -1433039.) T
byp = (3181330, -517794., -2664543,) ¢
bop = (3182936, -518124., -2665813.)"

Note that bg is off by a factor of ~ 2 (mostly attributable to the
computed value of d3 ), whereas by, o is accurate to 3 digits and
bCT to 5 digits,

We next tested the updating capability of the composite-t update
algorithm, When data points are added, the algorithm yields the same
results as if one started with all of the data points since, except for a
few multiplications, the computations are equivalent, When data is
deleted, however, the answers may differ, since the process of data
deletion is intrinsically less stable(s). The following example illus-

trates this:

Let
X = (1 =-.99 -001 0O, 1
1 -.9 -.01 0. 2
1 - =L .001 L0011

(This is the same data as used above with the addition of the data
vector (1,2,1)7.) Using o = (1,2,1)1 and specifying deletion

to the composite-t update algorithm yielded
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L
D

(.995504, 1.00050, -.186673)
diag. (.665999, .402583 x 104, 431288 x 107%)

which is to be compared to L - and DCT as computed above:

(.995505, 1.00050, -.185:47)
diag. (.666000, .405405 x 104, 444447 x 10"

IACT

6
Der

)

The differences are in the second and third digits of some of the
computed quantities, It should be pointed out, however, that this is a
particularly ill-conditioned example, and other examples yielded satis-

factory results,

Conclusions

Though efficient, the standard method suffers from an
inability to update accurately and efficiently the MCD , as
well as stability proolems associated with having to work with
matrices of the form YY ' . The Householder method obviates
these problems at the cost of storage requirements and efficiency.
Though slower still, the composite-t method drastically reduces
the storage requirements, readily provides for updating of the
MCD and improves computational performance from a stability
standpoint,  Which method one should use depends on the problem
at hand and the weights one assigns to the various trade-offs
between speed, stabil.ty, and updating capability.

In many of the computations for the analysis of remotely
sensed data, the actual calculation of the covariance matrices

and their MCD's takes relatively little time, so speed may not
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be an important factor. In this case, the optimal choice would appear
to be the composite-t mettod, due to its superior numerical stability,
relatively small storage requirements, and its updating capability.

In areas such as signature extension, the updating capability of this
method could be especially valuable,
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APPENDIX

Listings of the program used to test the three methods are given
below. KBYSM computes the MCD by the standard method (subroutine
MCHLSK is used to actually compute the MCD from the computed
covariance matrix), KBYHR computes the MCD by the Householder
method, KBYCT computes the MCD by the Composite-t method,
usirg subroutine COMPT which computes a rank one update of the
MCD (Note that all of the data is in KBYCT, though the algorithm
only requires that one data vector at a time be available, This was
done for timing purposes only,) CTUPDT updates the MCD using
subroutine COMPT,
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SUERCGUT INE KBYSMI X s Mg Ne MAN 4LLD)

THIS ROUUTINE COMPUTES THL mMCD OF A CUVARTANCE MATRIX 0OY ThE
STANDAKD METHUD

REAL*4 X(MXNs1).LDC(1)
REAL*8 51(12)¢52(78)

X = The N BY M DATA MATRIX WHOSE FIKRST DIMEMNSION IN T4t CALLING
PROGHAM |5 MXN

M = Tht NUMUBLK OF DATA VECTURS

N = THE DCIMENSION OF THE DATA

LD = THL RESULTING MCD CONTAINGG THE FELLMENTS OUF L £ N9 THIES
MATRIX 1S5S STURED IN SYMMETRIC STURAGL MUDE (leke L OWER
TRIANGULAK PURTIUN STORED bY RUWS) wlTH THE ELFMENTS OF ¢
UCCUPYIMNG THE DIAGUANAL ENTKIFS.

INITLALIZL

DU 20 I=l+t¢
S1(1)=0.00
DO 30 1=1.78

52(1)=0.0C
COMPUTE THE SUM UF THL UATA VECTOKS AND THr IR CROSS=PROMICTS,

DO 10 L=1«M
k=C

VO 20 =1,
Sll)=51(1
RO 10 J=1»
K=K+]
S2(K)I=S2(K)I+X(TsL)*EX(Joi)

N
:OX(I-L’

CUMPUTE THE CUVARIANCE MATRIX & STUkL IT IN LD

K=C

DO 40 I=1+N

DU 40 J=1.1

K=K+
COIK)=(S2(R)=STL(L)#*S1(J)I/ M)/ (M=)
CUNTINUE

MCHLSK CCMFUTES ThE MCL w7 THE COVARILIANCKF MATHIX & UVFHRWRITES
THE RESULT UN [T

CALL MCHLSKILDsNeS1452)
RE TURN
END

. IGINAL PAGE IS
OF POOR QUALITY!
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SUEKCUTINE MOCHLSK (KR sNV «OUNGDET)

AL R L AL R R R L e L R L R L R

THIS RUUTINE CUMPUTES THE MUDIFILD CHULESFEY DECUMPOSITION LF
THE CUVARIANCL MATK ]I X, THE CFCLMPOSITIOCNS LVERLAY THY ELEVANTS
OF THE CUVARIANCE MAT <l X,

KEKzL D Le

LA AL R AL R R L L R L L L A R R R R L

——
N

KK = THE CUVARILIANCE MATPRIX STOUKRLD IN SYMMFETRIC STURAGFE ™MCLCH
NV = THE NUMOER UF CHANKEL S ULED

DUM = A CUUDLE PRECISIUN WURK ARELA OF SI12F Nve]

ODET = THE DETERMINANT OF ThE COVARTANCY MATHIX .

HE AL KK(1)
RE AL®a DUML ]
HE AL®d el
LOCICAL®] JL
JEI=aTRUL »
J1=0

JL =0

DET=1,.

LOUP OUVER ALL CHANNLLS

)
Y1+ 7F
1

VU 10 J=lsNV

KL =J=]

L=J+)

Ju=Jl

Jl=Jl+y

TF=C +0UC

i1F (JE1} GO TO 12
Kl=0

CCMFUTE THE DIAGINAL ELEMENTS wLr 1D AND STL<t IN Kk
TEMFURAKILY STUREL THr RPIUDUCT KE(l ol )®K£(Jal) IN Duatl)

CUNT INUL

CUANT INUE

TF=TF+KK(J]1)

KA(J] )=TF
DET=DET*TF

IF (L«GTeNV) GU TU 10
IRC=Jl=L+1

COMPUTE Tht ReJeTH ELEMENT UF L USING T1

DU 20 [IR=L NV
IRC=1hkUtIn=]

T1=0.00

I1F (JEL1) GU TL 16

DU 2% [=1+KL
Til=Tl=DUM( 1 )*KK( IRD+])
CONTVINLE
KEK(IHRD+J)=(TI+KK(IRD+J))/ZTF
CUNTINLE

JE 1=eFALSE »

CUNT INUE

RE TUKN

eND

p SINAL pyg,
OF POOR " -
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SUERUUTINE KUYHKRI{ X eMUsNeMsLeMXNGLD)

HE AL ®4 LD(1) 20
He AL *4 X(MXNsM) s MUIN)UL(A)

RE AL®E 5

GIEVEN ThHe MATRIX OF UBSLHEVATIONS Xe CUMPUTE TiE MEAN AGD MCD OF Trt
KESULTING CUVAKLIANCE MATHIX E STUKRE 1T IN ThHE LUwWEk TRIANGUL AR
PART UF Xe HUUSEMOLOLK HEFLECTIUNS ARE USL® TO COMPUTE THL M D,

X = DATA MATRIX wHICH 15 UESTRLYFC

MU = (AN OQUTFUT o THE MEAN VECTURN

N = THE VDIMENSIUN

M & TEHL NUMUEK UF UHSERVATILNS TU HL USLR

MXN = THE UVIMENSIUN (¢ OF HUwWS ) OF X IN THL CALLING PRIUOG
U = WUhrRING STURAGE OF DIMENSICAN AT L EAST M

LD = QDESIKEL MCD STusxeD IN SYM STUHAGL MULUL

NP =M= |
SSET LP NMATHIX T wBE TRIANGULARIZED

DU 10 I=1..
S5=C.00

CONMPUTE ML_ANS

DO 20 J=1.M
S=S5¢txX(1eJ)
MULL)=E/N

CUMPUT THE MATKI X X=MEANS

DU 30 J=|l.+M
X(leJd)=xtlaJd)=Mull)
CUNTINUE

PERFURM HULSEMULDER THRANSFLUREMATIUNS
KK =0

DU 40 1=14.N

COMPUTE NECESSAKY GWUANTITIES TL ANNIHILATLE LUTTUM PART UF l=sTH CCL
5=C.0L0

CNLY LAST M=]¢] ELEMENTL UF U ARE USED

DU 45 J=] M

AX=X(1ed)

2= Se X NEXX

Ul J)=xx

ALF=5 I ONISNOGLIDSGRTIS) ) sUL D))
IF (l1sECain) GU TO 44
Ulll=ull)+aLP

Bt TA=ALF=U(])

LL=1+1

APFLY TRANSFURMATICN TL RUWKS [4]1 TuU M E CGLS TI+1 TG N & SETY
leI=Th ELEMENT TU =ALP

DG S0 L=11N

S=0eDO

DU 955 K= M
S=S+ULK)#X(LK)
XX=5/8ETA

DU 50 J=lM
XKlLoed)=X(Lodd=UlJ)®xX
CUNT INUE

X(lel)==aLpP

IF (letWel) GU TU 42
o

COMPUTE L & © "SUM L*SCHI(D)=R=TRANS/SGHT(Me1)e STURE L IN
LUWKK TRIANFULAR PART LF X £ D ALUNG DIAG.

I1=l=1 e

LC 60 J=1411 (, PAGE W

KK KK +1 = ATTALITY
LOGRK)I=X(TeJ)/X(Jed) W mg'ﬁ'lhnj

KK =RK +1

LUOCKK)=ALP®ALP/NK |

CUNT LNUE

HE TUKN
D
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SUERLUT INE UIMET (LD T e dotin VaelTMp)
KL AL®G LU

WL AL *A T(1)
KL AL®8 TMP(
REAL®E 5

LUucCICaL»1 7

u
LIND)sVIN)
)

LS vHNLDEHRHR oL ALP

This RUUTINE IS5 AN [IMPLEMEATATION OUF THe

TU PRRFUKM A HANK | UPDATF UF THE MCD
KEL*UoL=THANS L WE wiliosH Tu COMPUTE L*
E K'=L*sLsL"=TKANS),

LD = ARRAY CONTAINING L & C STURFD IN

T = AN N#]1 VECTUKR wHUSE FI1FRST ELEMENT
L = VECTUK UF THE ULPDAEE AS AELVE

N = Tht UDIMENSIUN

V = WURKING STURAGE UF LENGTH +GEe N
TMF = DOUBLE PRECISIUN AORKING STORAGFH
TRCS=T(1)sGT 0

IF (TPCS) GO TO 3%

A PUINT IS TU UE DELETED
EPS=54.57E=8
SULVE L#v=Z FUK V

DO 1S J=1,.14
K=r+1
S=ES+LOD(KI*VIY)
K=K+]
Vvil)=2(1)=5%
CUONTINUE

CUNMPUTE ThHE T(1*5)
K=(C

HRNLEIkH= s FAL St »
DU 20 I=1«N

K=K+l

TMPOE)=viL)*VvIT) /L0
TCI+#L)=TCL)+TMIPL L)

LF (T(I+1)eClt eDe) KNDERK=. THUE o
CUNTINUE

IF ( «NCToRANDERR) GU Tu 45

HUUNDING ERRUR HAS MALE A TUI#]1)eGE o0

TOA#L)=EPS*T(1)

DU 30 J=14N
L=h=J+]
TOCI)=T(1l+]l)=TME(])
CUNTINLE

CONTINLE

eUe) Gu TL 44

D(I) =0s SU <ANK CF D wiLL EITHER INCFKFEALI

IF (LAESIVII))eGT aleb=3C) GU TL 4¢
RANK OF C wilbLi REMAIN UNCHANGLL

TOI+1)=T(1)
U TU 40
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COMPOLSITE = T ALGCKIThM
STLUMED IN AdEAY LD(] oEs
LUY SeTeR"2K4Z87=TRANEZT(])

SYM L STURAGE

IS AS ALUVF

UF LENGTH oGE »

18]

CLRRECTY {OR

OR

HEMALIN

MODE

N

FTHlLS

UNCHANCED
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45
“a4

KAKNKE CF O wiLL INCREALEL ©Y

LuCLJdsviLdeveld“vel)
IF (1l etQen) KRETUWN
K= 1J

DU 45 J=llem

KEaKegw |

LDIR)=L0a)/ V(L)
CUNTINLE

HE TUKN

CUNT INUE

UPLCATE ©

I# (TFCS) 17
ALP=T(1*L)/
LOCLJD)=D1wA
IF (1eEGaN)

[ gl N

UPLATE L £ MOULFY £ ACCLADINGLY

ETAs(VILdZ7LL)ZTLL#L)
LALP= FALSE »
Ir (ALPsLEs%:) GU TC S2
THIS METHOL UakD TUL INSUKLE
LALM= s THUE »
GANMET(LD)ZT(L1%*1)

K=1J

DU S0 J=11.N

K=Kt jm ]
KXZLGAMELUD(K)YDETARZ( )
2UJ)=2(J)=Ni 1) sLUIK)

LUK )=xK

CUNTINGE

GJ TU 40

an=lJ

DU 60 g=ll«n
KRaKedw ]
AJd)=2tddev( L)Ll
LOIK)=LLIR)+UETAR?
CUnhT INUE

CONTINLE

K TUKN

ENC

K)
(J)

STASILITY 1IF ALPHA 6T,

4

22
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SUUKLUTINE ruYCT (LOeNeMANsS e XaM,T)
HE AL®G LODCL) o SIN) s X(MaN M)

HE AL*lE T(1)

INTLGER®SG &

THIS RCLUTIANL CUMPULTESLD ThHL MCD UF THE CLVAKTANCE MATHIX o MF AND
sGIVEN Thi N=DIMENSIUNAL M DATA VECTLUwS STUKED IN Xe LED AnLE
STCHLL IN LL & THF MEANS IN VECTOR S

LU = CN UUTPFUT s THE MCD UF THE CUVARe MAMKILIX SGTURED IN SYM,
STORAGL MUDE wiITH D ALUONG THEFE DIAGUNAL »

N = TrHEL LIMENSIUN

MAN = THE NUMBLR CF ROwS OF x AS DIMENSIONEFD IN THE CALLING FPRUG

® N JUTFLT, THE VLOCTCR CF MFANS

= ML UDATA MATKIX

® THE NUMuER UF DATA CECTORS TU oL UJUSKED.

® WORKING STURAGE JUF DIMEASICAN oGLe G%ne]

- X

INETIALIZE L & U MATRICLS E VECTUR §

1J=0
DU 10 I=1sN

CUNTINLL
LUCP OVEK ALL PGLINTS TU CUMPLTE L & D Ok (N=]) ek

DU 20 K=24WN
TC1)=R
SRI=LSURT(FLUAT (k=1 ))

CUMPUTE 72 FLin THIS X & UPDATE &£
Du 2% I=1«M

TiINeL*1)=0

StL)=5(C1)+

UPCATE L £ DO

(L)/75SkI=sl®xX(] k)
X(1ate)

CALL COMPTILOeToTINEZ)Y oy TCoERe L) o TLOENSS))
CUNTINLE

MUCIFY D SeTs K==L ®DeL=TrANE & STUKE MEAN IN O
LR I=Mm]
1J=0
DO 4C I=1+M
1

JYr/5SR]
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SUOHUUTINE CTUPDTYT (LDeNeM s ACL s SeALP LT )
HEAL®G LUOCL)eALIPIN)D SiIN)

Wi AL®H T(1)

LUCICAL®]L ALD

THIL RCUTINE UPLATES ThL MCL STOHED In LD oY C1THES ADDINC
UR VELETING A DATA VECTLI AS SPeCTIFIEG Y THE LLGICAL VARKILATCLE ALl

LU = The MLL STORLE IN SYMGOTUKRAGE MUDFE wliTH D ALUNG THL DI AGUNAL

N = TrHE UINMEASTIUN WF THL UATA VECTUM

M ® TRt MT NUMULR UF DATA CECTLHS USED Tu CUMPUIE LD M wilt HL
UPCATED N UUTPUT

ADC = =T IF CATA TG BF ADULLe =F IF DATA TC IF DELETID.

S ® VECTUK COUNTAINING MeML ANS
S il LL UPDATLD UPCN FETURN

ALP = CATA VECTUR Tu Bf ADLCEODZULLLTID

T = WURKING SYORAGE OF DIMINSITCN sGL et #Ne )

MUDIFY O SeTe (Ms)] )ek=LsDeL=THANS

KM=M

14=0

DO 10 I=1sh

LJ=1Je |
LUCIJ)=LD(1J)* (M=) )
CUuNTINUE

IF («NCTLALLE) WU TU 12

ADC A FCINTY

Til)=Me]

Y= SURT(XM)

=N+

wu TU 14

DELLTE A PLINT

Tll)==p

Y= SUkT(xMe=])

PR LD

CUMPUT. 7 AND UPDATE 5

DU 20 I=1.N

IF («oNLTLALCL) SCL)=S(I)=ALF(]1)
TOlentl )= (1) /Y=Y eALP(])
IF (AQL) Stl)=501)eaLPll)

CUNTINUL

UPLCATE L & C

CALL COMETILDoT o TIN® ) oy TC28N+) o T 48N+ ) )
MUDIE Y C SeTeKk=L#U#L=ThaNS

1J4=0

DD 30 I=1sM

INESED |
LO(IJ)=LLLLI)/(Uu=]14)
CUNTINUE

HiLotT M

M=_C
HE TUKN
ENC

ORIGINAL PAGF i
OF POOR QUALITY
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