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SECTION I 

CLASSIFICATION SOFTWARE ASSESSMENT -
REQUIREMENTS AND APPROACH 
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One of the roles af &e MSFC Discipline Center for Data andMorz" 
Management is 'to provide objective and impartid evaluation of data sysbm 
techniques and developments. Currently many d a e r e n t  software techniqnea 
are finding applka$km in the extraction of information from earth resources 
imaging systems, ;but few guidelines exist to direct a concerned user to the 
technique most suitable for his application. As a partial fulfillment of this 
role and as a r e d t  of increasing user interest in obtaining software tech­
niques and analyses, this document is mainly concerned with the evaluation 
development in  the area of pattern classification software. The purposes of 
this document are: 

0 	 to document, in  laymen's terms whenever possible, the resources 
required to utilize a particular technique, what the technique does, 
and how well the technique performs, 

0 	 to establish a standardized procedure for evaluating classification 
techniques that could be extended to other technique development, 
and 

0 	 to determine selected areas of emphasis for future technique 
development, as well as minimize duplication of effort. 

In order to be an impartial evaluator, MSFC has de-emphasized local technique 
development and therefore has no stake in any particular technique. In addition, 
another OA Program area, the Earth Resources Office of the Data Systems 
Laboratory, MSFC, was used as an intermediary between the evaluation of 
results and the performance of the analysis. This procedure produced an air 
of anonymity to the technique and personnel that provided the results, which in 
turn provided a means of obtaining unbiased and critical user evaluation. The 
work arrangement was organized such that the Information Management and 
Analysis Branch and Computer Sciences Corporation provided the analysis 
results and performed the computer related evaluation, the Earth Resources 
Office provided the data and user ,  and the user provided a set of requirements, 
ground truth, and an evaluation of results. 

The methodology for conducting technique assessment experiments and for 
establishing the standardized evaluation procedure is illustrated in  Figure 1-1. 
U s e r  specified data sets are classified by each technique in turn, and the 
classification performance is observed, using the supplied verification data 
(ground-truth map) for accuracy assessment. The results of this work, 
classification maps and other performance data, are transmitted to the end 
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Figure 1-1. Methodology for Classification Technique Assessment 



user, who evaluates their efficacy within the context of his operational environ­
ment and intended application. Currently, the computations are carried out in 
a batch mode, and the technique results are transmitted to the end user  in the 
form of hard copy. In the future, an interactive implementation of the classifica­
tion testbed will provide a mechanism for the user to interact with each technique 
and to assess results instantly through the medium of video display screens. 
Once the user's assessment has been made, those techniques whose results can 
be directly assimilated, in the form of data products, within the user's applica­
tion can be considered as candidates for standardization and for wide dissemina­
tion among the user community. Those techniques whose results exhibit short­
comings or  weaknesses a re  analyzed, refined to accommodate the user assessment, 
and evaluated again. Also, those techniques which emerge as having the potential 
for high operational utilization, are analyzed to determine efficient mechanisms, 
or  special purpose devices, to simplify and redace the cost of their application. 

The initial technique selection was  based upon those techniques that were most 
heavily promoted, recommended, used, and readily available; but in order to 
broaden the base of the evaluation, other techniques will be included later, as 
well as other data sets,  users, and requirements. The techniques assessed 
and reported in  this f irst  document release a re  itemized in Section 11.1. In 
addition, the technique evaluation was  mainly conducted on an IBM 360/65, but 
the utilization o r  mention of any computer or  related hardware should not be 
construed as an endorsement of a commercial product. 

Suggestions from users or readers of this document of other techniques that 
could usefully be included in this assessment program will be welcomed. 
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2 . 0  BACKGROUND: CLASSIFICATION/PATTERN RECOGNITION TECHNIQUES 

In the context of this report, classification techniques are discussed in terms of 
applying the techniques to image analysis, where the imagery is in  a digital 
form. The analysis could include such application areas as character recogni­
tion, diagnosis of blood cells, recognition of chromosomes, X-ray image analysis, 
fingerprint classification, and natural resource recognition, to name a few. In 
all these cases, the goal of the user is to obtain, in some form, a "classification" 
of the observations relevant to his applications. From the point of view of a use r ,  
a pattern recognition system can be represented as shown in Figure 2-1. The 
"black-box" in this figure can be filled in several ways. While the user is not 
necessarily interested in unlocking the locks of the black-box, he would certainly 
like to find out how well the available alternatives would satisfy his needs. For 
instance, in  processing the large quantities of data generated by spaceborne 
sensors, the user might wish to have a system which would assure high speed 
commensurate with the rate of observation, whereas in other environments he 
might be willing to sacrifice processing speed in  favor of higher accuracy. 

The main concerns of a user  of a pattern recognition system (PRS) are how much 
he should spend for the system and what he will get out of it. The complexity of 
answering these apparently simple questions is revealed by a slight peek into the 
black-box. * The system can be subdivided as shown in Figure 2-2. The measure­
ment process is added outside the PRS as a separate box since the user  may not 
be concerned with selecting a measurement process, even though the design o r  
choice of the PRS might depend on it. The design process for a PRS is illustrated 
in Figure 2-3. 

Each of the blocks in the design process is seen to receive data from the others. 
Pattern analysis consists of using the knowledge of the problem at hand to direct 
the measurement process and subjecting the data to a variety of tests to identify 
structures, if  any, present in the data that may lead to better feature definition 
and classification. The word "feature" refers to an entity that might be derived 
from some initial measurements. Feature extraction is the process by which a 
measurement vector is transformed into a new vector, the goal being to find fea­
tures that are effective in discriminating between pattern classes. A classifier 
uses the features and assigns the observations to various classes. A large number 
of choices is available for  each of the steps in  the design process. 

In order to perform a reasonable evaluation of the classification algorithms, i t  
is necessary to be sufficiently exhaustive in  enumerating the currently existing 
algorithms and keep the list up to date as new techniques are developed. Since 

*The development of Figures 2-2 and 2-3 follows that of "Patterns in  Pattern 
- ~~Recognition: 1968-1974, Kanal, L . ,  E E E  Trans.  on Information Theory, 

Vol. IT-20, No. 6, November 1974. 
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Figure 2-2. A Slightly More Detailed View of the Pat tern Recognition System 
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the  number of techniques developed is quite l'mge, it is convenient to categorize 
them as follows,, basedl on the knowl'dge tha$the  u shas about the input dah^ 

As mentioned earl'ier, the input to SL pattern recogpition system is a sequence d 
observations, which may be called "'measurement' vectors." The u s e r  might hame 
varying degrees of knowledge about the measurements. A simple example to 
illustrate this is the case o$ remotely sensed data of a region on earth (say, 
LANDSAT data). Suppose the goal of the user  is.to find the land use categories 
in a given area.  He mQht, in some cases, know the categories he is Looking for 
and the "ground truth'' (i.e. , the class designations) at a small subset of locations 
from the remotely sensed image. On the other hand, he might know nothing &out 
the data and have to rely entirely on the classifier to analyze it and produce 
classifications. It is common, in the literature on pattern recognition, to look 
upon the classifier as a "student" and the information supplied by the use r  about 
the ground truth as a "teacher." With this analogy, the classifier can be broken 
into two phases, the first called "learning" and the second called "classification" 
(see Figure 2-4). When the ground truth is known, the learning is said to be "super­
vised." When there is no knowledge of ground truth, the student is unaided by the 
teacher and hence the learning is said to be unsupervised. 

There are several cases between these two extremes. The user might know, say, 
by photointerpretation of a high altitude aerial photograph, that a certain section 
of the region under study is representative of all the classes of interest, but may 
not be able to supply the class names corresponding to each point in  the image. 
In this case we say that the "training samples" are known, but the "labels" for 
them are unknown. The classifier should first  separate the classes present 
within the training set and, based on that experience, classify the entire data set .  
This can be called "pseudosupervised learning'' (Figure 2-5). 

Another case arises where the user knows the labels for the training samples, 
but is not certain of their correctness. In this case, the labels a re  said to be 
unreliable. This situation could occur when a low altitude photograph is used to 
obtain the ground truth information. Suppose several photointerpreters are used 
to derive the labels and their results differ. Then we can associate a confidence 
level (reliability or  probability of being correct) with each of the labels, depend­
ing upon how many of the interpreters agreed on that label. (Equivalently, if we 
have a certain level of confidence in a particular photointerpreter based on 
his past record, we can associate a reliability measure with his labels.) In this 
case, the learning is said to be through an "imperfect teacher"*(see Figure 2-6). 

*K. Shanmugam, "A parametric procedure for learning with an imperfect teacher, 1t  

IEEE Trans. Inform. Theory. IT-18, pp. 300-302, March 1972. 
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Figure 2-6. Learning Through an Imperfect Teacher 
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Consider further the case where the photointerpreter's pase record in unknown 
and the labels produced by him on a low altitude aerial photograph are used with 
the training samples. Then the labels are unreliable and their reliability measure 
is unknown. In this case, the learning is said to be through an unfamiliar 
teacherPsee Figure 2-7). 

The categprization of classification methods considered so far is based on the 
degree of howledge of the training samples, Another type of division is made 
depending upon the howledge of the multivariate probability distribution for 
each class. If  the &&dm.tions are completeePy known, then there is, indeed, 
no need for using any training samples. The distributions can be directly used 
by the classifier. (we can say that the learning phase in this case consists of 
o o m e r h g  the distributions into convenient ''discriminant functions" --functions 
which a re  computed and then compared by the classifier to make the classifica­
tion decision.) When the distributions a re  known only in functional form with a 
finite set  of unknown parameters (or i t  is reasonable to assume so),  the 
parameters should be determined on the basis of observed samples. This is 
called "parametric learning. " Situations where even the functional form of the 
distributions are  unknown call for "nonparametric learning. 'I 

Of the two categorizations described above, parametric and nonparametric, the 
former can be looked upon as based on the level of detailed knowledge of a small 
subset of the data, while the latter may be regarded as dependent on the degree 
of knowledge of the gross behavior of the observations. Figure 2-8 shows a 
flowchart indicating the choice of the types of classification methods based on 
the user's knowledge about the data to be classified. Table 2-1 summarizes the 
characteristics of some of the techniques that have been most widely used in  the 
practical applications of pattern classification. 

*B.V. Dasarathy and A. L. Lakshminarasimhan, "Sequential Learning Employing 
Unfamiliar Teacher Hypothesis (SLEUTH) witn Concurrent Estimation of Both the 
Parameters and Teacher Characteristics, " Int. J1 of Computers and Information 
Sciences, Vol. 5, No. 1, January 1976. 
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Table 2-1, A Partial List of Classification Methods 

Claaslflcatlon Method Categorlzntion 1 Cntegorization 2 Comments 

Bmyeo Supervlaed I Parnmetrio 	 I Mlnlmlzes "nvernge risk" of mlsclnsslflcatlon. Roqulrer knowledge of 
a prlorl probnbllltles of Occurrence of cnch class. 

I 

Mlnlmlzes avcrage rlsk of mlsclassiflcatlon when the probablllties of occur-

Mudmum Ukellhood I Supervlsed Parametrio I rence of cnch clnas are equal. When the conditional density functlonn am 
assumed Gaussian, this Is n quadratic classifier used In LARSYS, ELLTAR. 

I I I ctc. 
I I I 

Flnds clnss assignments of K-nearest neighbors and puts glven eamples InK-Nearest Nelghbor Supervlsed I I the majority class. 

Prototype I Supervised 1. Nonparametrio I 	 Rcprcsents each class by a prototype and asslgna a point to nearest 
prototype. 

Pleccwlre Linear 

Quadratic and Higher 
Order Polynomtd 

Linear classifier Is a general term to encompass techniques which use l inea 

methods for derlvlng such hyperplanes. 

This is a generalization of linear classlflers. Useful when the classes are 
not separable by hyperplnnes (elther pairwise or Indlvidunlly from dl other 
clnsscs). 

Use higher order surfaces for separating classes. The surfaces can be 
found using the same methods as for the Linear Classlfler by sultablc 
enlargement of the feature vectors. 

I I I 	 There are several methods which use dlstance measures to group data Into 
clusters. These are Iterative methods and vnry sUihtly from each otherMstmce Based Clustering Unsupervired Nonparametric 	 in thc details of handling, Initiation, and updating of clusters (e.g. 
K-JIcane, CURRY, SSCP, CLIJsrEI~). 

I I I 
Assuming form of probablllty density functions, flnd cluster aaslgnmentaDenslty Dased Clusterfng I Unsupervised I Parametrio I such that a measure of overlap is minlmlzed. 

I I I 
I I I 

Approxlmate multivarlato density by sample histograms or some other 
Density Baeed Clustering Unaupervlsed Nonparametrlo smooth functions and seek thelr local maxima (modes) (e.&, HINDU 

systcm). 

T&le Look-Up 



3.0 WHY IS TECHNIQUE EVALUATION NECESSARY ?-

In recent years, there has been a great deal of interest i n  classification/pattern 
recognition techniques as evidenced by the hundreds of journal articles and books 
on the subject, with the main concentration of effort being on technique develop­
ment. The large number of different approaches that have been incorporated into 
the classification technique development is mostly a direct result of the multi­
disciplinary nature of the applications and tends to indicate that no single approach 
is able to satisfy a large class of users. 

Results evaluating different techniques have been published, but the majority of 
these efforts consists of the evaluation of a technique by the original developer. 
This tends to preclude the application of other known techniques, and emphasizes 
a particular application to the exclusion of other possible related applications. 
Also, the evaluation often is performed on only one data set, or even using only 
simulated data so that generalization to live applications may be questionable. 
In other cases, the developer may concentrate on particular aspects of a tech­
nique without regard to successful performance i n  an operational environment. 
Generally, the evaluations a re  performed on different computers, so that i t  is 
difficult to compare the operational characteristics of different techniques. As 
illustration of the over-emphasis of mathematical development in  the field without 
regard for applications, a fair comment is a quotation from a book review. * 

"While he should not be blamed for  the unsatisfactory state of the 
ar t ,  he can be blamed for not making any attempt to convey to the 
reader a sense of the effectiveness and ineffectiveness of his methods. 
There are almost no applications (of 242 pages, only 6 a r e  concerned 
with actual pattern recognition experiments). Thus a new sacred 
cow of mathematical machinery is created--its priesthood will 
probably make a good academic living regardless of whether the 
cow gives any milk.'' 

As a result ,  the evaluations that a r e  available are difficult to piece together to 
obtain an overall visibility concerning technique development. 

The major part of the problem of obtaining a comprehensive evaluation of classi­
fication technique development is that i t  is a formidable task and no one individual 
has the computer hardware resources or variety of users' interfaces. Because . 

*Bremmerman, H .  J ., "Review of 'An Introduction to Mathematical Techniques 
in Pattern Recognition' by H .  C . Andrews, '' American Scientist, Vol. 62, 
pp. 244-245, 1974. 
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of thisproblem, there has been no overall coordinated attempt at standardization 
of 

0 evaluation criteria, 

unbiased evaluation procedures, and 

e computer hardware and software programming practices, 

as well as a generalization of applications to include 

0 multidisciplinary users and data sets and 

0 an end-to-end systems approach to the evaluation. 

Since the resources and user interfaces already exist within NASA, the establish­
ment of such etandardization and generalization practices could provide the means 
to focus the technique development for 

0 identifying problem areas, 

0 emphasizing areas of needed development and minimizing duplication 
of effort, and 

0 optimizing technology transfer to users .  . .  

!.. 
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4.0  EVALUATION CRITERIA 

There are probably many ways to evaluate classification techniques, but from a 
user's point of view the three most important areas of concern appear to be: 

0 	 the resources required to run the program and perform an 
analysis, 

0 a description of the analysis process, and 

0 the performance of the technique. 

Ideally in a systematic evaluation, these factors would be addressed in  both their 
quantitative and qualitative aspects, with the qualitative aspects rates subjectively 
on a scale of excellence so that realistic comparison of the techniques' various 
attributes may be made. At this point, however, insufficient testing has been 
performed to permit an adequate qualitative assessment of the different classifica­
tion techniques. Later issues of this document will include such an assessment, 
and will also incorporate a summary of technique performance as a function of 
disciplinary application. 

For the present, the evaluation criteria used s t ress  the quantitative aspects, and 
a re  intended to provide a user with necessary information so that estimates may 
be made of initial cost of resources (if the purchase of a system is being considered), 
of operating costs (if the technology is being transferred to an existing system), and 
of potential costbenefit ratios. In addition, with regard to the development of the 
techniques themselves , the evaluation cri teria are designed to provide some 
standardization in relative comparison of different classification techniques and 
their performance, with a view to identifying areas where improvements, in con­
cept or in  implementation, are necessary. 

Section I1 of this document presents descriptions of each classification technique 
that has been evaluated. The material is organized to address the Resource 
Requirements, Analysis Process, and Performance Characteristics of each tech­
nique, as described in more detail below. For convenience of the reader in cross 
correlating the performance of the various techniques, Section I11 reports the 
results of evaluation tests on a variety of data sets.  

4.1 RESOURCE REQUIREMENTS 

The quantitative aspects of the resource requirements are essentially concerned 
with the computer hardware necessary to run the program. These resources 
consist of: 

0 number of tape drives, 
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0 amount of mass storage, 

0 amount of core memory, 

0 	 number of routines that are specialized to a particular computer or 
hardware component, 

0 number and type of output devices, and 

0 number of input variables required to run the program. 

The qualitative aspects of the resource evaluation consist mainly of knowledge 
available to the user  about the program and the data set to be analyzed. Under 
the first category, there is a subjective evaluation concerning the adequacy of 
the technique documentation, which preferably should also include recent reports 
on applications or  demonstrations of the technique if available, and a discussion 
of the types of input data that can be utilized, as well as input/output formats. 
The second category concerns the user 's  knowledge of the data set. What the 
use r  wants to do with data will to  a large extent determine the type of technique 
(unsupervised or  supervised) to be used on the data set. This in turn will impose 
a requirement for certain types of expertise and experience, for example in 
photointerpratation and in statistical data analysis. 

4.2 ANALYSIS PROCESS 

There are two basic types of classification techniques, supervised and unsuper­
vised, each of which may be broadly subdivided into two categories, parametric 
and nonparametric. Generally, supervised techniques are used when ground 
truth is available to classify the entire data set or  to identify a few specific 
classes. Unsupervised techniques are generally used when ground truth is not 
available to classify the entire data set .  If either of the approaches assumes a 
model for the distribution of the data, the technique is called parametric, as 
opposed to nonparametric. 

The purpose of this subsection in the technique descriptions is to provide a lay­
man with a reasonable understanding of the classification analysis process and 
the role that a user  plays in the analysis, as well as to contrast differences and 
highlight similarities between the various techniques. The description, in con­
junction with the performance characteristics, leads to a categorization of 
classification techniques for indicating problem areas, tradeoffs between the 
various techniques, and needed research in technique development. This sub­
section also contains a list of input parameters with definition and uses.  
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4.3 PERFORMANCE CHARAGTERBTICS 

The performance characteristics are intended to indicate operational costs, 
cost/benefits, and maximum capabilities of the various techniques. Those 
quantities that can be enumerated are: 

computer time , 

relative accuracy in  terms of direct pixel comparison of ground 
truth data and classification maps , 

maximum number of channels , 

maximum data set size, 

maximum number of clusters o r  classes, 

costbenefit estimates in terms of relative accuracy and the use of 
conventional techniques, and 

manhours required by the user  in the analysis. 

The last two items tend to be subjective, since they depend on the type and 
quality of ground truth as well as on the human capabilities applied to the suc­
cessive phases of photointerpretation, classifier training, and iteration a num­
ber of times through the analysis process to attain satisfactory results. 

The qualitative aspects of the performance characteristics consist of: 

0 a description of all output information products, 

0 sensitivity of results to input parameter values, 

0 sensitivity of results to starting conditions, 

0 	 sensitivity of results to factors peculiar to a particular application 
or data type, and 

0 	 quality control of results, which include discussions on restart  
capabilities, modularity of program, iteration dependence, and 
r isk of not obtaining the desired results at an early stage in the 
analysis. 
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4.4 CONDUCT OF USER EVALUATION 

In order to obtain a complete evaluation of a technique, it is desirable to utilize 
a variety of data sets and work with users  in  a multiplicity of disciplines. Also, 
in order to both benefit the technique development and satisfy u s e r  requipements, 
it is desirable to have the user provide ground truth maps for pixel-by-pixel 
accuracy comparison and participate in  the evaluation. The user can provide 
important feedback by examining the data products and providing written comments 
to questions such as those listed below. 

Where were we able or unable to  satisfy your requirements in 
providing computer-derived products ? 

Which computer technique best satisfies your requirements and how 
would you rank them in order of satisfaction? 

What do you consider to be the shortcomings and good points of the 
results produced by each technique ? 

What are the criteria by which you judge the results ? 

What improvements or changes need to be made in the analysis 
procedure or output product ? 

Which techniques provide information beyond what is contained in 
the ground truth maps that is useful or improves the accuracy ? 
If so, what new information was provided o r  where was the improve­
ment noted ? 

What is the costbenefit,  if any, you would derive from using com­
puter versus conventional techniques ? 

What would be your opinion on using the best technique at your 
facility and at your cost to produce computer products for public 
use ? 

In order to maintain a high degree of objectivity in the evaluation, it is desirable 
not to  have a technique developer utilize his own technique to provide results, 
but instead use an independent agent or middleman to provides results to a user. 
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5.0 PROCEDURES 

In conducting a systematic assessment of classification techniques, certain pro­
cadures must be adopted to achieve consistency in results and to assure that 
relative comparisons have meaning. It is most important that measures of 
technique performance be free from biases introduced unintentionally by persons 
conducting the evaluation. The following paragraphs discuss some of the princi­
pal factors to be considered in Technique Assessment. These include: 

choice of data sets, and their preparation for analysis, 

0 	 use and treatment of Ground Truth Data, to assure compatibility with 
the remotely sensed imagery, 

0 	 selection of samples within the imagery to be used for training 
supervised classifiers to recognize particular classes, and 

0 methods for comparing results of different classification techniques. 

5.1 ACQUISITION OF DATA SETS 

The data sets to be used in evaluating classification methods should be 

0 	 sufficiently large and varied so that statistically significant numbers 
of data elements are present in several classes of interest, 

0 	 multivariate, since the majority of classification techniques a re  
structured to analyze multivariate data, and 

0 as similar as possible to data encountered in real  applications. 

While data sets  can be generated analytically using specified distributions, they, 
by nature, tend to favor some of the classification methods. Since no extensive 
work on the statistical modeling of disciplinary data sets has been done, i t  seems 
reasonable to test the algorithms on a few representative data sets  from the 
particular discipline. The current work emphasizes algorithms applicable to the 
classification of large remotely sensed data sets such as Landsat images. 
Therefore, the tests here will  be confined to remotely sensed image data of the 
earth acquired by multiband cameras and multispectral scanners. It is also 
necessary in evaluation to work with data sets whose ground truth is known. 

The data sets a re  generally available as computer compatible tapes o r  sets of 
film transparencies. In the latter case, the images should be suitably digitized, 

1-2 0 




and in all cases congruenced and registered before applying the digital classifica­
tion algorithms. 

Digitization of film transparencies requires the use of an instrument, typically a 
microdensitometer, that measures the optical density of each picture element 
(pixel) and converts i t  to a numerical value, generally in the range 0-63 or 0-255, 
the 0 value corresponding to fully transparent. These ranges are compatible with 
the 7- or  9-track formats employed in digital computer magnetic tape units. 

To bring two or more images into congruence requires operations to be performed 
that assure the scene content will match in scale and orientation. Landsat 
multispectral scanner imagery is inherently distorted, compared with a photo­
graphic camera image, because of satellite motion and the action of the scanner. 
When two Landsat scenes of a given area, but acquired in  different-seasons, 
a re  to be compared, there is a possibility that the distortions in the later scene 
are slightly different from those of the earlier one. One of the scenes must then 
be chosen as a reference, or control, scene and the other must be "geometrically 
corrected" so that all i ts  detail of shape, the outline of river banks for example, 
exactly matches that of the reference scene. In cases where the data have been 
acquired from inherently different sensors, for example the Skylab multispectral 
scanner and multiband camera, and must be combined for analysis, the geometric 
correction operations to achieve uniformity of scale and orientation are very 
time consuming. 

Registration of two or more images requires that, once congruenced, the images 
may be overlaid exactly. Then the pixels that characterize an element of scene 
detail in the reference image can be associated one-for-one with the pixels 
characterizing the same element in  the other images. 

5.2 PREPARATION OF GROUND TRUTH INFORMATION 

Ground truth information may be available in various forms. The most common 
form is a manually prepared map in which the various classes a re  marked in 
different colors or shadings. The information contained in the ground truth map 
typically is collected from different sources, for example from existing topo­
graphic maps and aerial surveys, from aerial surveys conducted specifically to 
acquire the ground truth information, and from in situ inspections in the field. 
The map should be supplemented with notes and comments, to indicate its cur­
rency and to draw attention to any factors, such as seasonal or climatic, that may 
affect i t s  interpretation or validity. To achieve the ground truth detail compatible 
with digital computer analysis, considerable time and cost is entailed. Practical 
factors often preclude the collection of highly detailed ground truth information, 
and i t  is found that differences between computer classifications and ground truth 
arise because of the absence of this detail. The term "ground truth" therefore is 
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applied figuratively, and the ground truth map must be used with caution in 
assessing the results of computer classifications. 

In order to compare the classification maps with the ground truth map auto­
matically and to highlight the differences, it is necessary to obtain the ground 
truth map in  digital computer compatible form. Also, both the ground truth 
map 'and the classification maps should have the same scale and orientation. 
Since there a re  generally several classification maps of the same scene, i t  is 
more economical to adjust the ground truth map to match the remotely sensed 
data geometrically. 

A ground truth map can be obtained in digital form by digitizing a color trans­
parency of it on a microdensitometer, provided the map has uniform coloring 
for the individual classes. (A preferable method is to employ a flatbed digitizer 
for tracing the boundaries between classes and then to use an interior detecting 
algorithm to create the entire digital map.) 

The geometric transformations, if needed, are found by identifying several con­
trol points on the ground truth map and the remotely sensed image. Typically, 
these a re  chosen to be landmarks with well defined edges and exhibiting high 
contrast against their background in  the image, for example intersections (or 
tips) of water bodies and/or highways. Then, the transformation is required to 
match a set  of points A A2, ..., A n withB1, B2, ..., Bn' The transforma­

tion is defined in terms of a small set  of parameters which are  found such that 
the (mean-squared) e r r o r  between the two sets of points is minimized. 

The transformation is then implemented digitally. This implies that the grid 
over which the ground truth map was originally sampled to get a digital image is 
to be distorted and the resulting digital map will not necessarily have i t s  samples 
at integral locations on the original grid. Therefore, when the ground truth map 
is so/transformed, the class at a given sample location is taken to be that at the 
nearest sample location in the original grid. Thus, if the point P in the trans­
formed image corresponds to the point Q i n  the original image, the class 
corresponding to P is that at Q' (see Figure 5-1). 

5 . 3  TRAINING SITE SELECTION 

As described in  Section 2 .0 ,  classifiers of the supervised type require as input 
a set  of data samples called the training set. The classes to which these samples 
belong must be known, and a number of samples (typically one hundred or more) 
must be supplied for each class which is to be identified in  the data set by the 
classifier. These samples are used to develop decision functions, which may 
then be used to classify unknown samples. The classification will be reasonably 
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(a) ORIGINAL GRID (b) TRANSFORMED GRID 

Figure 5-1. Digital Geometric Transformation 
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accurate i f  the classes chosen are distinguishable by the measurements made 
in obtaining the data, the training samples are truly representative of the classes 
and an appropriate type of decision function is computed. 

Thus, a critical aspect of the supervised classification problem is the selection 
of data to be used as training samples. This is generally accomplished by visual 
inspection of the imagery, coupled with additional sources of information such 
as topographic maps o r  personal knowledge of the area. 

In order to define the segments of a digitized data set  belonging to the specified 
classes, i t  is necessary to use some method of displaying the data so that the 
classes are  recognizable. The resources required for this phase may range 
from a standard line printer to an interactive system employing CRT displays, 
with a corresponding range in ease of use and cost. In addition, it may be 
desirable to have the software required to display the imagery at various &eveisof 
magnification, to enhance the imagery by adjusting density levels, and to i n d i m  
on the imagery the sites from which the data are being extracted. 

The initial attempt a t  specifying the training data sites i s  generally not completely 
satisfactory to the user. The initial classification of the data should be sufficiently 
accurate to indicate the outlines of the classes present much more closely than 
any of the input measurements. By examining the initial classification map, the 
user may discover that certain training sites do not lie exactly in the regions 
intended, due to the difficulty in discerning class boundaries in the original data. 
Thus, a change in the coordinates of the training sites would be desired. Also, 
the initial classification map may indicate areas of misclassification due to a 
choice of training samples for certain classes which are not representative of those 
classes. For example, i f  one wishes to define a discriminant function for the 
purpose of detecting forested regions, the training samples should be chosen from 
regions of deciduous forest and evergreen forest if both a re  present in the data 
to be classified. In this example, selection of forest training data from only 
evergreen data samples could well result in a loss of accuracy in  deciduous 
forest regions, which would be evidenced in the classification results. Thus, 
several modifications may be made to the training samples in the course of 
designing a supervised classifier. 

The extraction of the training data samples from the full data set is consistent 
with the use of a direct access storage device, as the samples will be located 
in  small regions throughout the data set. However, a sequential access device 
(e.g. , magnetic tape) is sufficient, even if inconvenient. 

Programs employing either direct access o r  sequential storage have been tested 
on the IBM 360/65. A program which extracts up to 50 rectangular areas from a 
sequential data set requires (in eight-bit bytes of storage) 3 . 2  x lo3 locations, 
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plus a buffer array sufficient to store the measurements for  all spectral bands 
along one record of data. 

A set of subroutines which uses direct access storage to extract the interior of 
polygonal areas requires 8.4 x 103 bytes of storage, plus two work arrays each 
of length equivalent to the number of data points in a record of data, and a buffer 
array of length equal to  the number of data points times the number of spectral 
bands. 

5.4 ACCURACY COMPARISONS 

An evaluation of the accuracy of the classification maps is a necessary part of 
comparing classification methods. While i t  is true that a ground truth map should 
be the basis for measurement of accuracy, it is also useful to compare classifica­
tion maps with each other to find how and where they are different. A higher 
similarity between classification maps than relative to the ground truth map 
would cast doubt on the correctness or completeness of the ground truth map. 

A pixel-by-pixel manual verification of the class assignments is quite a tedious 
exercise for all but very small scenes. Therefore, a computer algorithm is 
used to facilitate the determination of accuracy. 

Depending upon the algorithm (supervised or unsupervised) used to generate the 
classification maps and on whether a comparison is being made between two 
classification maps o r  between a classification map and a ground truth map, 
different approaches have to be used for evaluating the similarities and display­
ing the differences. Three cases arise: 

0 	 known labels versus known labels (e. g., ground truth versus 
supervised classification), 

0 	 known labels versus unknown labels (e. g. , ground truth versus 
unsupervised classification), and 

0 	 unknown labels versus unknown labels (e. g., two unsupervised 
classifications) . 

The details of the methods to be used in each of the above cases are described 
elsewhere. * The principal idea is to use "joint histograms" (contingency tables) 

*"Automated Point by Point Comparison of Classification Maps, 'I H. K .  
Ramapriyan, Computer Sciences Corporation Memorandum Number 533090-1-3, 
Huntsville, Alabama, July 2, 1975. 
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and difference maps to show the dissimilarities between maps. The joint histo­
gram of maps 1and 2 is defined as a matrix A with 

a.. = 	Number of simultaneous occurrences of classes i and j in maps 1 
and 2, respectively. 

In the case of comparisons between two maps with known labels, the "similarity 
measure" is defined as the total number of simultaneous occurrences of identical 
labels in the two maps expressed as a percentage of the total number of points in 
either of the maps. In terms of the joint histogram, this simply amounts to 

100 Trace (A)/(Sum of all the elements of A) 

Ideally, i? two comparable maps, which when digitized comprise, say, 100 rows 
and 100 columns so containing 10,000 pixels total, the same number of pixels will 
be assigned in each map to a given class. If as an illustrative example, the actual 
land cover is 10 percent urban, 20 percent water, 40 percent agriculture, and 
30 percent forest, the A matrix has values in its diagonal elements only, namely, 
1000, 2000, 4000, and 3000 as in Table 5-l(a). The sum of the diagonal elements, 
the Trace of A, is the total number of pixels i n  one map, and the similarity 
measure clearly is 100 percent. 

In practice, the two maps will not be identical in every detail and the similarity 
matrix shown in Table 5-l@) is more typical. This illustrates that both maps 
differ from the actual land cover classification. Examining the totals, Map 1 
shows 8 percent urban, 22 percent water, 45 percent agriculture, and 25 percent 
forest, while Map 2 shows 12 percent urban, 15 percent water,  38 percent 
agriculture, and 35 percent forest. Obviously, neither map is wholly accurate, 
and whether one is more accurate than the other can be decided only within the 
context of i ts  application, since the distribution of erroneous pixel assignments , 
rather than the aggregate, is more significant in  assessing classification accuracy. 
The similarity matrix is not intended to provide any measure of classification 
accuracy. Rather it shows explicitly the number of pixels at which the two maps 
agree. This number, expressed as a percentage of the total, provides the 
similarity measure, which in the example is 6 7 . 9  percent. In addition, by the 
way in  which pixel differences are distributed in the off-diagonal elements, the 
similarity matrix highlights the ambiguities between the two classifications, and 
provides clues about the existence and nature of classification e r rors .  Further 
insight into the distribution of e r ro r s  is achieved by exhibiting the results pic­
torially in the form of a "difference map, " examples of which a re  presented in 
Section III. 

If a map with unknown labels is involved in the comparison, it is first necessary 
to assign labels to the class numbers in the map, and to account for the fact 
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Table 5-1. Illustrative A-Matrix -Joint Histogram of Maps 1and 2 

' Urban 1000 1 1000 Urban 1 600 I 10  1 400 I 190 11 1200 


Water 2000 2000 


Agriculture 4000 4000 


Forest 3000 3000 


Totals 1000 2000 4000 3000 10000 



that one map may have a different number of classes present than the other. 
This is equivalent to performing certain elementary transformations (permuting/ 
adding rows and/or columns) on the matrix A. The best assignment, yielding 
the maximum similarity measure, is found in  those cases and the resulting joint 
histogram and difference map are produced. 
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SECTION I1 

PROGRAM DESCRIPTIONS 
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1 .0  INTRODUCTION 

This section contains the descriptions of the programs that are used in the 
classification technique assessment. The programs, described herein, vary 
in sophistication from basic density slicing to conventional statistical methods 
and include the usually more complex unsupervised techniques. Hence, the 
density slicing method may be considered as a benchmark for obtaining some 
measure of cost effectiveness for  the more sophisticated techniques. 

The classification techniques described in this f irst  i s sue  are 

Supervised Methods Unsapervised Methods 

0 Density Slicing 0 Binary Classification 

0 Maximum Likelihood 0 Spatial and Spectral Clustering 

0 ELLTAB 
Program (SSCP) 

0 Linear Sequential 0 HINDU 

All of the mentioned programs have been made operational on the IBM 360/65 
and UNIVAC 1108 at  Marshall Space Flight Center, and in  some cases developed, 
by Dr. R. Atkinson, Dr. B. Dasarathy, M r .  M. Lybanon, and Dr. H. Ramapriyan 
of Computer Sciences Corporation and Dr .  R. Jayroe of the Information Sciences 
Division, Data Systems Laboratory. The authors also wish to acknowledge 
M r .  Clay Jones of the National Space Technology Laboratory for his cooperation 
and assistance in obtaining program ELLTAB. 

I1-2 




. . , , . ,  

_ _  ~ -~2 . 0  CLASSIFICATION BY DENSITY SLICING 

Density slicing refers to the process of identifying regions or objects in an image 
by choosing a range of densities (a density slice) corresponding to each region or 
object. Inspection of multiband imagery reveals that significant classes of 
homogeneous terrain cover can be identified visually by the reflectance charac­
teristics and contrast within single bands. For example, bodies of water appear 
dark on infrared bands while some types of pasture appear very bright. Similarly 
forest canopy appears dark in  the red band, while man-made objects, for example, 
concrete or  asphalt paving, buildings and large stone o r  metal structures, appear 
bright in  the green band. Accordingly, terrain cover types can frequently be 
separated on the basis of the contrast against their background in any one spectral 
band. Human photointerpretation depends heavily on such tonal differences for 
discriminating between different object classes in  a scene. The process is fre­
quently combined with color coding, in which the density slices a re  made highly 
visible by being assigned different colors. The method is appealing because of 
i ts  simplicity, since cross -correlation of the reflectance values between several 
spectral bands is not required. Thus the classification process does not involve 
numerical computations employing discriminant functions followed by a decision 
based on the result, but may be implemented by testing the density values against 
the density ranges for each class. However, a density slicing result may be 
obtained by using a linear classifier restricted to the use of one spectral band. 

Correspondingly, the density ranges can be chosen manually by examining the 
density values in each region of interest, or the spectral band and density range 
for each class may be selected by a feature selection and linear classification 
algorithm. The latter method was  tested for inclusion in this report as the 
algorithms were available. It is worth noting that this procedure does not result 
in the most efficient implementation of the density slicing technique. Indeed 
special equipment is commercially available, in  which the density slicing function 
is performed at very high speed by electronic comparator circuits, and the density 
slices displayed in color code on a television type display screen. 

2 . 1  RESOURCE REQUlREMENTS 

The classification system requires as input the number of classes and spectral 
bands present in the data and a set of training samples. 

The data samples to be classified are to be supplied with the measurements for 
each spectral band arranged in  vector format, and the classification results are 
written on an output tape. 

The following arrays are required in  main storage: 

0 	 An array to store the training samples indexed by class number, 
feature number, and sample number 
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0 	 An array into which all the data in one scan line can be read, before 
classification 

0 	 An output array containing the class numbers for each set of measure­
ments in a scan line 

0 	 Arrays to store the discriminant coefficients by class, and the order 
in which discriminants are tested 

0 	 A work array for storing the interclass and intraclass distances for 
each feature 

0 	 Two work arrays dimensioned by the number of training samples, for 
use in training 

The program subroutines required to perform various tasks a re  given in  

Table 2-1. Their purpose and storage requirements are included. These 

requirements a re  constant, as storage for the problem-dependent arrays listed 

previously is allocated in the main control program. 


2.2 ANALYSIS PROCESS 

In order to verify that the best possible spectral band is chosen to discriminate 
any given class from all the others, a quantitative band (feature) selection method 
is applied first. Usually this confirms what is visually obvious, but sometimes the 
quantitative selection scheme will identify a spectral band to be superior for class 
discrimination than another that appears from visual inspection to be appropriate. 

Using a set  of training data samples whose classifications are known, the average 
distances between pairs of samples from different classes and within classes were 
computed for each spectral band. The spectral band chosen is that for which the 
ratio of between-class distance to within-class distance is a maximum, 

Linear discriminant functions a re  then computed for each class, using the spectral 
band chosen by the above criterion for  each class. The coefficients in  the dis­
criminant function a re  chosen by an iterative procedure. * The two coefficients 
determined (constant term and data value multiplier) may be used in a linear 
discriminant function, as is done in  this case, or may be used to calculate the 
density ranges occupied by each class. 

*An Integrated Feature Selection and Supervised Learning Scheme for Fast 
Computer Classification of Multi-Spectral Data," A. D. Bond and R .  J. Atkinson, 
Remote Sensing of Earth Resources, Vol. 1, F. Shahrokhi, Ed., U. of Tenn. 
Space Institute, March 1972. 
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- -  
360/65 
Storage 

(8-bit bytes) 

3 .8  x 10 3 

3 4.8 x 10 

3 
1.5 x 10 

3 1 . 4 ~  10 

2 7.5 x 10 

3 
1.8 x 10 

3 1.1 x 10 

Table 2-1. Density Slicing Classifier 

-

Subroutine 
.. 

EFFECT 	 Compute interclass and intraclass 
distances, determine order of class 
separability. 

SNOPAL 	 Supervised nonparametric learning 
of linear discriminant functions. 

NTEST 	 Test classification of training 
samples. 

NCLASS 	 Handle 1/0 to classify data; compute 
class percentage occupancies. 

NOPACA 	 Linear discriminant classification 
of a feature vector. 

GASINV 	 Matrix inversion; required in 
learning algorithm. 

SORTSL 	 Sorting algorithm, required in class 
ordering 

- _ . _ - - . 

360/65 
Storage 

(8-bit bytes) 

3 .8  x 103 

4.8 x 103 

3
1.5 x 10 

1031 . 4 ~  


27.5 x 10 


3
1.8 x 10 

1.1 x 103 
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2.3 PERFORMANCE CHARACTERISTICS 

The algorithm can operate on large numbers of spectral bands and classes. The 
size of the data set to be classified is immaterial, as the classification is done 
on a point-by-point basis. 

The output of the program is a tape containing the class number of each pixel 
and a listing of the class populations and percentages. 

A data set  containing 52,000 pixels was classified in  16-1/2 seconds on the 
IBM 360/65. 
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3 . 0  MAXIMUM LIKELIHOOD CLASSIFIER 

The maximum likelihood classifier is a supervised, parametric technique and is 
probably the most widely known and used multichannel data classification method. * 
A set of data samples, whose classifications are known, is required to define the 
parameters of the functions which are used to determine the classes of unknown 
data samples. The required parameters are those which define the Gaussian 
distributions for each class of the training data, namely the mean vectors and 
covariance matrices. 

3 . 1  RESOURCE REQUIREMENTS 

The maximum likelihood classification system requires as input parameters the 
number of classes and features (spectral bands) present in the data and the 
Gaussian parameters (mean vectors and covariance matrices). The data samples 
to be classified are assumed to reside in feature vector arrangement (typically 
the reflectance measurements pertaining to any one pixel organized in the order 
of spectral bands or  channels, green, red, infrared, etc. , followed by the meas­
urement pertaining to the adjacent pixel) on a FORTRAN readable data set .  The 
classification results, in the form of numbers (1-n) corresponding to n classes 
present, are written on an output tape. 

The following arrays require an amount of storage dependent on the number of 
classes and spectral bands in the data, the number of training samples selected 
(typically l o o ) ,  and the number of pixels in a line of data on the input and output 
data sets: 

0 	 an array to store the training samples by class number, feature 
number, and sample number, 

0 an array into which the input feature vectors are read, 

0 	 an array in which the output class numbers a re  placed, to be 
written as output, and 

0 	 arrays to store the mean vectors and covariance matrices by 
class number. 

The program subroutines required to perform the various tasks, such as com­
puting the mean vectors and covariance matrices, handling input/output of data and 

""Learning Machines," N. J .  Nilson, McGraw-Hill, N.Y. , 1965. 
"Information Processing of Remotely Sensed Agricultural Data, " Proceedings 
IEEE, Vol. 57, No. 4, April 1969. 
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class numbers, and classification, are given in the following table, along with 
their storage requirements. These requirements are constant, as storage for 
the problem-dependent arrays listed previously is allocated in  the main control 
program. 

, Subroutine 

SUBLOP 

PTEST 

.PCLAsS 

MALICA 

GASINV 

Table 3-1. Maximum Likelihood Classifier 
~ 


Purpose 

Compute Gaussian parameters 
from training samples 

Test classification of training 
samples 

Handle 1 / 0  to classify unknown data 
set; compute class occupancies 

Maxi mum likelihood classification 
of a feature vector 

Matrix inversion; inverts covariance 
matrix 

____ 
IBM 360/65 

Storage 
(8-bit bytes) 

2.0  x 103 

3
1 . 4  x 10 

3
1 . 3  x 10 

2
9 . 3  x 1 0  

31 . 8  x 10 
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3.2 ANALYSIS PROCESS 

The following paragraphs describe the form of the Gaussian distribution, the 
definition of parameters, and the classifier. 

If a set  of data samples from a single spectral band is examined, the number of 
measurements falling in successive small intervals may be represented by the 
height of the bars  on a histogram, as illustrated in  Figure 3-1. 

A smooth curve outlining the shape of the histogram is a probability distribution 
curve. A typical example is the bell-shaped curve of the Gaussian or normal 
distribution, as in Figure 3-2. 

The mathematical function for this curve is 

where o and m. a re  the standard deviation and mean for measurement x 
j J j 

belonging to class ci’ 

Considering multichannel measurements, the joint probability function for a 
complete multivariate feature vector is 

1P(x1’x2’ x3’ .. . ,Xn/Ci) = 

H D 

where (X-M) is the vector {x1-ml, x2-m2, ..., xn-mn 1, K is the covariance 

matrix, and D is the determinant of K. The elements of the covariance matrix 
a re  a measure of the deviation of the corresponding x’s from their mean values m: 

1 N 
1J = - c ‘Xin - mi’ (Xjn - m.)K.. N-1 

n=l J 

where N is the number of data samples used in the calculation. 
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Figure 3-2. Gaussian Probability Distribution 
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MEASURED VALUES 

Figure 3-1. Histogram of a Set of Measurements 

T 

"'i 'i 

Figure 3-2. Gaussian Probability Distribution 

11-10 




The parameters--mean values and covariance matrices--completely define the 
Gaussian distribution functions. These parameters are easily determined for 
each class under consideration from the known set of training samples. 

When the Gaussian parameters have been estimated, the Gaussian probability 
distribution for each class is completely defined. Thus, given any unknown 
feature vector, it is possible to compute the probability of this feature vector 
belonging to any one of the classes under consideration. Assignment is made to 
the class for which the probability is greatest; this is termed the maximum 
likelihood method of classification. For  faster computation, the logarithm of 
the probability is computed and the decision function takes the form 

1 
2 
1 1 T -1

G.1 = l n  p1 - , e n  1 ~ - ~ -(X-MJ K~ (x-M.)1 

P. is the probability of class i being present, M. is the mean vector, and Ki 
1 


is the covariance matrix. The decision point between two classes occurs when 
the probabilities are equal, at point x

0 
in Figure 3-3. Note that x

0 
is not 

midway between the means when the widths of the distributions are unequal. At 
point x1’ the probability P

1 
is greater and hence x1 is assigned to class 1. 

The analysis flow in classifier training is shown in Figure 3-4. Once a candidate 
set of training samples has been identified, the Gaussian parameters (mean 
vector and covariance matrix) are computed. Then using the above decision 
function, o r  discriminant, each training sample is classified as if  its true identity 
were unknown. The test results are printed and scrutinized. Ideally, all the 
training samples that were selected from a particular class will  be assigned by 
the classifier to that class. If this is not the case, the reason for  the variation 
must be determined. Often the variation will be due to impurity in the training 
samples, caused by inadvertent selection of samples lying on a class boundary. 
In this case, the training sample set must be refined by choice of other more 
representative samples. A further cause of variation is that often the distribution 
of training samples is not well approximated by a Gaussian distribution. If the 
histogram of the training samples for one class shows several peaks, the data 
is said to be multimodal, and in this case, the class should be divided into sub­
classes, each one of which is characterized by a set of Gaussian parameters. 

When the analyst is satisfied that the training sample set is the best attainable, 
the entire image data set is classified, as in Figure 3 - 5 .  
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Figure 3-3. Decision Point for Assigning Measurements 
to Two Gaussian Distributions 
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Figure 3-4. Classifier Training Phase of Maximum Likelihood 
C lassification 
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Figure 3-5. Classification Phase of Maximum Likelihood Classifier 
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3 . 3  PERFORMANCE CHARACTERISTICS 


The performance of a maximum likelihood classifier with respect to accuracy 
and speed may be inferred from an examination of the method itself. If the data 
samples do obey the Gaussian distribution for each class, this method produces 
optimum results. However, the actual data samples belonging to a given class 
may produce a histogram having two or  more peaks. Typical causes of this 
effect in earth resources data are differing soil conditions, sun angle, crop 
health and maturity, and the widely varying reflectivity of man-made objects. 
In the case of such a multimodal distribution, the Gaussian parameters which 
a re  computed do not accurately describe the actual distribution, and the classifi­
cation accuracy is reduced. 

The maximum likelihood classifier is relatively slow because the classification 
of a data sample requires the evaluation of the decision function for each class 
being considered. 

This method will operate satisfactorily on large numbers of spectral bands and 
classes. The size of the data set  to be classified is immaterial to the process, 
as each data point is classified independently. 

The output of the classification program i s  a tape containing the classification 
map and a listing of the class populations and percentages. 

The following table gives classification rates for various data sets. Computer 
time required to read the input tape and write the classification tape is not 
included. 

Table 3-2. Maximum Likelihood Classifier Times (IBM 360/65) 

Number of Number of Number of 
Classes Spectral Bands Data Points 

__b 


3 4 510,000 

6 4 52 ,000  

7 3 122, 850 

6 16 52 ,000  

7 16 52 ,000-


PointsComputer Time 
Classified(Seconds) Pe r  Second - ~ 


564 904 

114 457 

225 546 

69 0 75 

809 64 
-
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4.0 ELLTAB 

The name ELLTAB stands for ELLiptical TABle, which gives a partial descrip­
tion of the program. ELLTAB is a version of the (supervised) Gaussian maximum 
likelihood method, implemented using a novel table lookup technique. The program 
is an application of the general table lookup pattern recognition method devised by 
Eppler. * The general idea of the method is, in  the training phase, to precompute 
the possible results of the decision rule, as a function of position in  feature 
(measurement) space, and store them in a table. Then, in the classification 
phase, each measurement vector is used to enter the table, which tells which 
class the point is to be assigned to. (The method is described in more detail in 
Section 4.2. ) 

In constructing the table, each possible result only needs to be computed once, 
while in conventional implementations of pattern recognition techniques, the same 
calculation could be performed several times. For  four-dimensional data for 
which each component may take on all integer values from 0 to 255, such as 
LANDSAT multispectral scanner data, there are about 4 . 2 9  x l o 9  conceivable data 
values. If i t  were necessary to calculate results for each of these values, the 
table lookup method would probably be slower than any other method. However, 
by making use  of the statistics of the training data set, ELLTAB considerably 
reduces the amount of computation. In fact, in  most cases it is not even necessary 
to calculate the probabilities of assignment of points to the various classes. The 
time per point required for the classification phase is approximately proportional 
to the number of classes. (Actually the increase in time as the number of classes 
is increased is slower than direct proportion.) Since the classification itself is 
performed simply by looking up results in a table, the time required is not at all 
dependent on the classification rule used in preparing the table. So, for very large 
data sets,  particularly if the classification rule requires complex calculations in  
a conventional implementation, and for many classes, the table lookup method 
could be expected to provide an important increase in speed. 

4.1 RESOURCES REQUIRED TO RUN ELLTAB 

ELLTAB was originally written in  FORTRAN V for the UNTVAC 1108 computer. 
It is presently being tested here in its 1108 version. While it is certainly t rue  
that testing of several routines on the same computer provides a basis for 
comparison, it must be kept in  mind that it is not an absolute comparison. If 
program A is better in some sense than program B on one computer, the reverse 

""Table Look-Up Approach to Pattern Recognition, '' W. G. Eppler et al, Proc. 
7th International Symposium on Remote Sensing of Environment, U. of Michigan, 
Ann Arbor, May 1971. 
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may be true on another computer. Even though a program is written in a high-
level language, such as FORTRAN, some machine-dependent features (a greater 
or lesser number of registers, special instructions, etc. ) may affect performance. 
And special care is required to avoid the use of convenient machine-'or system-
dependent features available on the computer for which the program is first 
written. Because of such factors, conversion of a program from one computer 
to another may be much less than straightforward, and unless considerable time 
and effort are expended an inferior version of the program might result. For  
these reasons, ELLTAB was first  tested on the 1108. 

The version of ELLTAB received from the author* uses several 1108 features 
that are not available on the IBM 360/65 or other computers.** These include: 

0 The FLD (bit-manipulation function) 

0 	 Use of the FLD function on the left of the equal sign in arithmetic 
statements 

0 The BOOL (make typeless) function 

0 Backward DO loops (negative increment) 

0 DO loops starting with zero index 

0 RETURN 0 statement 

0 DEFINE statement 

0 PARAMETER variables 

0 ERTRAN (system processor) 

0 NTRAN (system processor) 

0 U s e  of literals on the right of the equal sign in arithmetic statements 

0 0 (octal) format (the nearest equivalent on the 360 is the Z format) 

-

*"Implementation of an Advanced Table Look-Up Classifier for Large Area Land-
Use Classification, '' Clay Jones, Proc. 9th International Symposium on Remote 
Sensing of Environment, U. of Michigan, Ann Arbor, 1974. 

**UNIVAC 1100 Series, FORTRAN V Programmer Reference, UP-4060 Rev. 2, 
Sperry Rand Corporation, 1973. 
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Certain of these could be simulated on the 360, but others would require extensive 
reprogramming. A good example of the latter is the use  of the FLD function. 
That function makes possible the movement of specific bit strings in a FORTRAN 
program. Although such a program could be written for another computer (most 
conveniently in assembly language), the appearance of FLD on the left of the equal 
sign in arithmeti'c statements would be considered a syntax e r ro r  by the FORTRAN 
compiler. Also, the uses to which the FLD function are put in ELLTAB are 
specialized. They include unpacking nine 8-bit bytes from two 36-bit words, 
storing and retrieving lookup table information (values are stored in partial words 
to save space), and packing output values to prepare a tape for a specific output 
device. On a byte-oriented computer (with 32-bit rather than 36-bit words) such 
as the 360, most of this would be irrelevant or  would be done entirely differently. 
Also, one part of ELLTAB deals with converting EBCDIC annotation data to 
FIELDATA--unnecessary on the 360. In short, ELLTAB is explicitly an 1108 
program, despite being entirely in FORTRAN. A potential u s e r  would either 
have to run i t  on the 1108 or  invest considerable effort in conversion and repro­
gramming. 

ELLTAB consists of two executable modules, ELIPSE and ASSIGN. Each con­
tains a main program and several subroutines. ELIPSE constructs the lookup 
table (training phase), which is then used by ASSIGN to classify a scene (table 
lookup phase). The table constructed by ELIPSE is based on partitioning feature 
space into hyperellipsoids, one for each class, based on statistics derived from 
training data; the Gaussian maximum likelihood classification rule is implemented. 
The program allows for the possibility of overlap of ellipsoids, which sometimes 
results in  multiple ranges of a feature for a single class. ASSIGN makes u s e  of 
the table "built" by ELIPSE in classifying data, and outputs a classification tape. 
Because ASSIGN merely reads a table in a standard format, i t  should be able to 
accommodate tables constructed using other classification rules. 

The two modules are executed separately. ELIPSE requires about 30K words of 
core storage. About 70 percent of this space is used for data storage, and over 
half of the space occupied by data is accounted for by three arrays: one to hold 
the table built for a single class, another to hold the table after an operation 
known as "null squeeze, I' and one to hold the inverse covariance matrices for all 
classes other than the one for which the current table is being constructed. An 
additional 2K words are used to hold covariance matrices, in  the original order  
and sorted as needed in building the table (in general, the order differs from table 
to table). The dimensions of these arrays depend on the maximum size expected 
for a table, the maximum number of classes the program can accommodate, and 
the number of channels. One tape drive is required for the (output) table tape. 
The tape is written using NTRAN, an efficient 1/0 system permitting parallel 
processing. All other output is on the system output device (usually a line 
printer). Input to ELIPSE is on cards. The information required is a set of 

11-17 



"switches" (0 or 1values) to direct the program with regard to six output options, 
the number of classes to be used, the number of scanner channels (restricted to 
4 in the present implementation), and the minimum and maximum scanner output 
values. In addition, some information is separately required for each class: an 
identifier, class number, training statistics (mean vector and covariance matrix), 
a priori probability of assignment (default value is l/number of classes), and a 
"relax option" and "quadratic threshold, " which are discussed in  Section 4.2. 
An optional input quantity is the number of points in the training data set, printed 
for convenience along with the other input data. No direct-access storage o r  
special output devices are used. 

It should be noted that the module ELIPSE does not start  with training data. 
Rather, i t  requires as input training statistics (means and covariances), which 
must be derived from training data separately. Therefore, ELLTAB is not a com­
plete system. Perhaps this can be regarded as avoiding duplication, since a u s e r  
is likely to already have a program for deriving statistics from training data. 
However, in order to use ELLTAB, a user must have such a program. 

The other executable module, ASSIGN, requires about 27K words of core storage 
(modified for local use as described below). The program is this size with the 
array used to hold the combined lookup tab12 for all classes dimensioned 9000; 
as received, i t  was dimensioned 6500. Data storage w a s  over 70 percent of the 
total, and nearly two-thirds of that was taken up by two arrays,  the combined 
lookup table and an array to hold a line of unpacked (vector) data. Three other 
arrays (one record read from table tape, one line of packed data, and one classified 
line) bring the total for the five arrays to 75 percent of the space used in ASSIGN 
for  data storage. Three tapes are used: the table tape, the (input) data tape, and 
the (output) classification tape. However, only two tapes are required simultaneously. 
After the table tape is read into core, i t  is dynamically freed and the data tape is 
dynamically assigned, using ERTRAN (an 1108 EXEC 8 system feature that allows 
"executive requests"--requests to use a feature of the operating system--to be 
made directly from the user program). No direct-access storage is used by 
ASSIGN. The special system routines NTRAN and ERTRAN are called by ASSIGN. 
As received, ASSIGN wrote an output tape in a special format for a specific output 
display device. For the purposes of this study, that routine was modified to 
simply produce a tape containing the point-by-point class assignment numbers, one 
scan line per record. This is actually more general since the interface with a 
specific output device can be implemented fairly trivially as a post-processor 
(or as several post-processors: one for  a filmwriter, one for printer plots, 
one as input to a data base, etc.) .  Printed output consists of: 

0 a summary listing of the card input data, 

0 	 information decoded from the Landsat bulk data tape's ID 
record, 
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0 	 physical description of output tape format (produced by the new 
tape output subroutine), and 

0 	 class assignment histogram (number of pixels assigned to each 
class). 

The input data on cards consists of: 

0 	 extent of the data to be processed (first and last records, first 
and last pixels), 

0 total number of classes for which tables have been constructed, and 

0 	 number and identification of classes into which points are to be 
classified (may be less than total). 

Some other information specific to the program is also input. 

4.2 ANALYSIS PROCESS 

The table lookup method of pattern recognition is motivated by a desire to reduce 
the total amount of computation required for classifying large data sets,  possibly 
using complex decision rules. A secondary goal is to make i t  possible to 
accomplish this using minicomputers. After a step that partitions feature space 
into regions according to some decision rule and constructs tables incorporating 
this information, classification of multispectral data is performed simply by 
entering the tables, which have a form essentially independent of the decision 
rule. 

ELLTAB is an implementation of the table lookup technique for a specific classifi­
cation method. The method is the supervised Gaussian maximum likelihood 
technique, with "quadratic thresholds" (defined below). The description of the . 
algorithm will begin with a sketch of how the table lookup is performed, and then 
outline the method of constructing the tables. So first the operation of ASSIGN 
will be described, and then the operation of ELIPSE. It will be seen that the method 
of the former is more general than the latter. Also, the methods are somewhat 
more general than the programs themselves. Figure 4-1 illustrates the flow of 
data through ELLTAB, while Figure 4-2 shows the lookup procedure. 

The tables constructed and used by ELLTAB comprise a geometric description of 
the classes in feature space. The lookup portion of the program (ASSIGN) is 
independent of the method used to partition the measurement space among the 
various classes (ELIPSE). There is one table for each class. Processing of 
each data point begins by forming a hypothesis C concerning the class assign­
ment. The initial hypothesis is that the class is the same as that assigned to 
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Figure 4-2. Table Look-up Procedure Used in  ELLTAB 
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the preceding pixel. If that hypothesis fails, the other classes are tested in order 
of decreasing a priori probability. (It is possible that a point will not be assigned 
to any class.) The testing is done as follows: The first component, X1, of the 

point is tested to see whether it lies within the permissible range of values for 
that class, L1(C) s X1 H1(C). If not, that hypothesis fails. If so, X2 is 

tested to see whether i t  lies in  the allowed range for  that class and for that value 
X1, L2(C,X1) 5 X2 H2(C,X1). If that test is also passed, X3 is tested to see 

if it lies in the range L
3 

(C,X
1

,X
2) * X3 5 H 3(C,X ,X  ); etc. The tables, then,1 2  

contain a description of the class boundaries, along with "pointers" to tell where 
in the tables to look to find the limits for the next test. In case some of the 
classes overlap, it  is possible that, for a given class C, the allowable range for  
a component may be discontinuous--that is ,  there may be a gap in i t .  ELLTAB 
allows for this eventuality. Also, for different classes the labels X 1' x27 e . * 

may label different components. The order of utilizing components of measure­
ments is chosen for each class to minimize the size of the table for that class. 
Eppler" proposed using the table lookup method in four dimensions; the amount 
of space required to store the tables increases dramatically for higher dimen­
sionality. He also proposed using a feature selection technique, for N > 4 
dimensions, to select the best (possibly different) set  of four channels to analyze 
for  each class. ASSIGN (and ELIPSE) is a four-dimensional program. However, 
it does not incorporate this latter suggestion. 

The table-building phase could use any method of partitioning measurement space 
and constructing tables in the format described above. ASSIGN explicitly uses  
the Gaussian maximum likelihood method. The tables describe hyperellipsoids 
in four-dimensional space. Assuming first  that the regions for the classes do 
not overlap, the statistics derived from training data are  used to determine the 
ellipsoids. The sizes are given by the quadratic threshold values Q specified 
in the input data. The parameter Q is the maximum Mahalanobis distance from 
the mean that a measurement vector can have and still be assigned to that class. 
Values of Q are equal to percentage points of the x2 distribution--that is, 
values of x2 (for four degrees of freedom) for specified exclusion probabilities. 
A value Q = 13.2767 will exclude 1 percent of the sample points from a true 
normal distribution. Table size is sensitive to the value of Q.  If there is no 
overlap between classes, nothing else is necessary. For regions of overlap, 
points are assigned to the class for which the likelihood discriminant function 

*"An Improved Version of the Table Look-Up Algorithm for Pattern Recognition, I* 

W. G. Eppler, Proc. 9th International Symposium on Remote Sensing of Environ­
ment, U. of Michigan, Ann Arbor, April 1974. 
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has the greatest value. It is possible for an anomalous condition to occur for 
certain cases of overlap. An ellipsoid for a class A may be partially or  com­
pletely contained within the region nominally belonging to a larger ellipsoid for 
another class B. It is possible that a point outside the pre-specified quadratic 
threshold Q for class A may nonetheless have a greater likelihood of belonging 
to A than to B. Therefore, it will not be assigned to either class. The relax 
option permits the program to relax the strict  assignment rule and assign the 
point to class B, in such cases. 

4 . 3  PERFORMANCE CHARACTERISTICS 

Since ELLTAB is an implementation of the multivariate Gaussian maximum 
likelihood decision rule, its performance (e.g. , with regard to the type of 
classification e r ro r s  it may yield, etc. ) should be similar to that of other 
implementations of the method. Because of the quadratic threshold feature 
described in Section 4.2, some data points will generally be assigned to the 
unclassified "class ." That is, while in programs without this feature every 
pixel will be assigned to some class, certain points will not be assigned to any 
class by ELLTAB. 

The following statistics refer to ELLTAB as it was received from the author, 
except where otherwise noted: 

Number of channels = 4 (fixed) 


Maximum number of classes = 100 


Maximum size of a table 
= 5000 words (in ELIPSE)
for a single class 


Maximum size of combined 

table for all classes = 9000 words* (in ASSIGN) 


The last two quantities, although not directly comparable with anything in other 
programs, are listed because they have a major effect on the amount of storage 
required for ELLTAB. In connection with this, Eppler asserts that the table 
lookup method is probably not practical for more than f o u r  dimensions because 
of the amount of storage that would be necessary for  the tables. 

*This dimension was  originally 6500, but it needed to be increased to run the 
test cases. 
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There is essentially no limit to the number of data points ELLTAB can process 
in a single run, since it classifies one scan line at a time. ELLTAB was spe­
cifically written to process Landsat data; it "expects" its data tape to be in  
Landsat bulk data tape format. The array that holds one packed scan line 
(nine 8-bit bytes in each two consecutive 36-bit words) is dimensioned 733 in  the 
subroutine in  which it is defined. This is sufficient for standard Landsat tapes 
(810 four-dimensional data values, followed by 56 calibration values, packed 4-1/2 
per  computer word). However, the subroutine that is used to read records from 
the tape permits 752 words to be read. If the number of words in a record ex­
ceeds 733, this could lead to unpredictable e r ro r s  o r  failure. (The tape read 
subroutine also has other defects. ) 

In addition, the array to hold an unpacked record and the array to hold a line of 
classified output are dimensioned to hold 876 points. This number is not con­
sistent with either of the dimensions above. Since the size of a packed record 
is actually restricted to 733 (containing 810 pixels), the 876-point arrays waste 
storage space. 

The documentation provided with ELLTAB was not adequate to permit a user 
unfamiliar with the details of the program to use it without a period of experi­
mentation. The documentation consisted of one-sentence descriptions of each 
routine, reproductions of program listings (with some pages missing and some 
out of order), sample input and output, a system-level flowchart of each module 
(ELIPSE and ASSIGN), a description of the table storage format, two examples 
of the lookup procedure, a summary of ELIPSE output options, a feature-space 
diagram illustrating a cross-section of the geometry represented by three tables, 
and a description of NTRAN (one page illegible) and the FLD function. However, 
there w e r e  no user instructions, and no definitions of input quantities. Leaving 
all of the ELIPSE output options expended several hundred pages of printout 
and several minutes of computer time before any results w e r e  produced. It is 
likely that the quantity most troublesome to the unfamiliar user will be the quad­
ratic threshold value Q. It seems to be necessary to develop a ''feel" for this 
quantity tG use ELLTAB effectively. 

The following results were obtained from test runs: The test area was a 200 x 260 
segment of Landsat data. Training statistics for six classes were derived from 
100 samples each. 

The value of Q corresponding to excluding an average of 100 points from each 
of the six classes (an exclusion probability of 0.01154) is Q = 12.96. Using this 
value for each class, the run of ELIPSE to make a table tape took 0.8 minute 
(CPU time). The run of ASSIGN, classifying 52,000 points, took a little less 
than 0.5 minute. This time included reading data cards, reading the data tape, 
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unpacking, classifying, packing, and writing the output tape. The time for  
classification alone was 250-300 microseconds per  pixel. This time should be 
regarded as typical; however, i t  could vary in  other cases. Probably large 
homogeneous areas could be classified faster than regions where there are 
frequent changes between classes. Classification time should increase with 
the number of classes (as is the case with other classification programs). It 
should be emphasized that these times were measured on a UNIVAC 1108, and 
cannot be compared directly with running times on another computer. It should 
also be emphasized that, although ELLTAB is restricted to Landsat tapes, 
this lack of generality is compensated for by speed. It is not necessary to pre­
cede a run of ELLTAB with a run to  unpack and reformat the data. 

For Q=12.96, the expected number of points not assigned to any class was 600.  
The actual number was 1220. 

In the table-generation step of this test, the values input for "minimum and maxi­
mum scanner output values" were the extreme values actually present in this data 
set, as determined from a histogram of the occurrence of data values, This 
reduced the sizes of the tables generated by ELIPSE. Since the tables occupy 
a significant amount of storage, the simple preliminary step of making a histogram 
wolxld appear to be worth the trouble. 

It would seem that the Gaussian maximum likelihood classification rule without 
quadratic thresholds is equivalent to the method with quadratic thresholds having 
arbitrarily (or at least sufficiently) large values, therefore small probabilities 
of exclusion. However, results from ELLTAB did not agree with this expecta­
tion. For Q = 18.16  (exclusion probability 0.001154),  the tables for three of 
the six classes were larger than for  Q = 12 .96 ,  but the tables for the other 
three were much smaller. (Table size is related to the size of the corresponding 
ellipsoid. It should be recalled that in regions of overlap in feature space class 
assignments are made on the basis of relative assignment probability. ) N o  
points--not even the training samples for these classes--were assigned to the 
latter three classes, and 31,616 points w e r e  not assigned to any class. 

Results were even worse for an exclusion probability an additional order of 
magnitude smaller (Q = 23.30) .  In generating the table for one of the classes 
(the one having the largest table for both other values of Q), the expression giving 
the range of values in one channel involved the square root of a (significantly) 
negative number. 

These failures may indicate program bugs or  inaccuracies in  some of the calcu­
lations. At present, a qualitative evaluation is that good results seem to be 
obtained for values of Q corresponding to exclusion probabilities of the order 
of 1 percent, but unreliable results are produced for significantly larger Q 
values. 
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Further investigation has revealed one problem area. The most complicated 
calculations in ELLTAB are in the table generation phase. The range calculations 
for the tables (e.g. , the range of X4 for  each possible XI, X2, X3 combination) 
involve the solution of quadratic equations whose coefficients are complicated 
expressions. It was found that the implementation used for  those equations some­
times led to loss of precision. Changing those equations from single to  double 
precision was found to lead to significant differences in some cases. A recheck 
was made of the Q = 12.96 results; there were no changes in the tables for that 
case. However, it is likely that the anomalous results for larger values of Q 
were influenced by this problem. In particular, the situation described above 
for the Q = 23.30 calculation was the same as was corrected in other tests by the 
change to a double-precision calculation. 
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5.0 LINEAR. CLASSIFIER 

The linear classifier described here is a supervised, nonparametric technique. 
Thus, the initial phase of the classification process consists of the definition of 
a set of discriminant functions using data samples whose classifications are 
known.. 

In separating one class of objects from one or  more other classes, i t  is desirable 
to de-emphasize the characteristic features that the classes may have in  common, 
and to emphasize where possible the features that are unique to the class of 
interest. The most obvious first approach is to say that the distinctive character 
of an object o r  class of objects is the sum total of its features, some features 
being more distinctive than others in  certain environments. The Linear Classifier 
concept depends upon this assumption, and aims at  developing a single measure of 
a class's composite features. This measure, the discriminant, is formed by 
adding the value of each feature (reflectance value or brightness in the case of 
multiband imagery), after each feature has been weighted according to i t s  useful­
ness in separating the class of interest from the other classes. 

5 . 1  RESOURCE REQUIREMENT 

The linear classification system requires as input the number of classes and 
spectral bands in the data and a set of training samples. 

The data samples to be classified are assumed to be arranged in feature vectors 
on a FORTRAN-readable input device, and the classification results are written 
on an output tape. 

The linear classifier package requires the following arrays: 

0 	 an array to store the training samples by class number, feature 
number, and sample number, 

0 an array into which the input feature vectors are read, 

0 	 an array into which the output class numbers are placed, to be 
written as output, 

0 	 arrays to store the discriminant coefficients by class, and the order 
in which discriminants are tested, 
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0 	 a work ar ray  for storing the interclass .and intraclass distances 
for each feature, and 

0 	 two work arrays each dimensioned according to the number of 
training samples, for use in training. 

The program subroutines required to perform various tasks i n  a linear classifica­
tion system are given in Table 5-1, along with their storage requirements. These 
requirements are constant, as storage for the problem-dependent arrays listed 
previously is allocated in  the main control program. 

Table 5-1. Linear Classifier 

Subroutine Purpose 
~ ~- .-

EFFECT 	 Compute interclass and intraclass 
distances; determine order of class 
separability 

SNOPAL 	 Supervised nonparametric learning 
of linear discriminant functioris 

Test  classification of training 
samples 

Handle 1/0 to classify unknown data 
sets; compute class occupancies 

Linear discriminant classification 
of a feature vector 

Matrix inversion; required in 
learning algorithm 

LSORTSL Sorting algorithm; required in 
class ordering 

360/65 
Storage 

(8-bi t& tesJ ~ __ 

3
3 . 2  x 10 

3 

4.1 x lod  

31.4  x 1 0  

3
1 . 3  x 10  

2
6.2 x 10 

3
1 .8  x 10 

1.1x 103 
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5.2 ANALYSIS PROCESS 

Nonparametric methods are so termed because the parameters of the distribution 
functions of the data are not used. The training algorithm determines the values 
of the weighting factors "w" to be used in  a discriminant function of the form 

G = w + w x  2 2  n n0 1 1  + w x  +. . .+  w x  

A set of weights is determined for each class of data, the value of a weight 
reflecting the significance of its associated feature in separating the class from 
its companion classes. Thus for each unknown feature vector, a value of G is 
obtained for each class. 

There are two approaches possible in  the application of linear classifiers. In the 
first ,  the discriminant functions are designed such that one class may be sepa­
rated from each of the other classes, painvise. Then, in determining the class 
to which a particular feature vector (the reflectance values from one pixel) should 
be assigned, the value of G is calculated by substituting the values of the feature 
vector in the discriminant function for each of the classes. The class for which 
the value of G is largest is the class to which the feature vector is assigned. 

In the second approach, the one employed at NASA-MSFC, * the discriminant func­
tions are designed such that one class may be separated from all of the other 
classes considered collectively as one class. Unlike the first approach in  which 
all discriminants are calculated concurrently, here the discriminants are calcu­
lated sequentially. Referring to Figure 5-1, the straight line corresponds to the 
discriminant function that will separate Class 4 from Classes 1, 2, and 3 taken 
together. If a given feature vector lies to the right of this line, the discriminant 
has a positive value and the vector is assigned to Class 4. If i t  lies to the left of 
the line, the discriminant has a negative value, and the vector is not assigned to 
Class 4. Class 4 may then be removed from consideration, and a further test is 
applied using the discriminant function for Class 3,  say. These tests are 
repeated until the feature vector is assigned to a particular class, at which time 
testing ceases, and a new unknown feature vector is called in. The sequential 
nature of testing results in a speed advantage over the parallel procedure 
employed in  the first approach. 

*"An Integrated Feature Selection and Supervised Learning Scheme for Fast 
Computer Classification of Multi-Spectral Data, I' A. D. Bond and R. J . Atkinson, 
Remote Sensing of Earth Resources, Vol. 1, F. Shahrokhi, Ed., U. of Tenn. 
Space Institute, March 1972. 
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The linear classification scheme described here is combined with a feature 
selection algorithm that determines which of the features of any class are of 
greatest significance in separating that class from the others. The method of 
feature selection is based on the concept that the classification is more 
accurate if 

0 	 data values from different classes are widely separated (interclass 
distance is large), and 

0 	 data values within each class are closely grouped (intraclass dis­
tance is small). 

These effects are illustrated in  Figure 5-2. 

The interclass and intraclass distances a r e  computed for each feature by calcu­
lating the t o t a s  of the separations between all pairs of points in different classes 
(interclass) and within each class (intraclass). The optimum is obtained when the 
interclass distance is maximized and the intraclass distance is minimized. 

After calculating the criterion for  best features (based on separations between 
training data of the various classes), the feature selection values a re  combined 
to yield a value which determines the most easily separable class (Class 4 in  
Figure 5-1), for which the discriminant function coefficients (w's) a r e  then 
computed. 

The analysis process in the training phase is illustrated in Figure 5-3.  After 
the training samples have been selected, they are processed by the feature selec­
tion algorithm EFFECT. This determines which class is the most easily separable 
f rom all others, and the optimum subset of features (spectral bands) for separating 
that class. This latter option may be bypassed if  not many (three or  four for 
example) spectral bands of data are available, but i t  is very useful if  many bands 
of multispectral scanner data have been acquired. The discriminant weights for 
the most easily separable class a re  then calculated, using the algorithm SNOPAL. 

The values of the weights are determined by an iterative procedure. In  each 
iteration, the value of w is changed slightly from i ts  previous value to produce 
an improved se t  of weights. Several options are available in the algorithm for 
terminating the iteration. Once the weights for the most easily separable class 
have been determined, the training samples for that class a re  removed from the 
data set, and EFFECT then determines the next most easily separable class and 
its optimum feature subset. Then SNOPAL computes the required discriminant 
function coefficients, This process of identifying an easily separable class and 
its discriminant, suppressing i t s  data and moving on to the next easily separable 
class, is repeated until a discriminant function has been calculated for all of the 
classes in the training data set. 
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The training phase is completed by performing a test classification of all training 
samples. Ideally, the classifier should assign the training samples to the class 
from which they were  selected by photointerpretation. If the classifier assigns 
more than a few samples from Class 4 to Class 1, for example, this will suggest 
an unsatisfactory choice of training samples, and that some of Class 4's training 
samples were  inadvertently selected from Class 1. The choice of training 
samples must then be revised, and the entire training phase repeated. 

In the classification process for an unknown feature vector, shown in Figure 5-4, 
the values "G" of the discriminant functions are computed in the same order as 
the functions were defined, and the assignment is made to that class for which 
G is a positive number. 
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5 . 3  PERFORMANCE CHARACTERISTICS 

This method will operate satisfactorily on large numbers of spectral bands and 
classes. The s ize  of the data set to be classified is immaterial. 

The output of the classification program is a tape containing the classification 
map and a listing of the class populations and percentages. 

Table 5-2 gives classification rates for various data sets.  Computer time 
required to read and wr i te  the input and classification tapes is not included. 
Although one normally expects the classification time of the linear classifier to 
increase in direct proportion to the number of spectral bands analyzed, reference 
to the third and fifth entries of the table shows this not to be a general rule of 
thumb. Here  the processing time increased by a factor slightly more than 2 
although the number of bands increased by a factor of 4. This apparent anomaly 
can be accounted for partly by a certain factor due to overhead in the computer 
system software, and partly by differences in the sequential operation of the 
NOPACA algorithm when processing different data sets .  

Table 5-2. Linear Classifier Times 

PointsNumber of Number of Number of Computer Time ClassifiedClasses Spectral Bands Data Points Seconds Per Second 

3 4 510,000 129 3981 

4 4 3 , 7 5 0 , 0 0 0  1279 2933 

6 4 52 ,000  18 2970 
I 

7 4 3 ,750 ,000  	 I 2006 1869 
I 

6 16 52 ,000  	 i 39 1337
1 
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6.0 BINARY CLASSIFIER 

The Binary Classifier is an unsupervised classification program specifically 
designed for Landsat data that extracts a maximum of 24 classes. The classi­
fication scheme is based on the shape (amplitude ratios) of the four channel 
vectors of which there are 4! or 24 different possibilities. The decision spaces 
for  the different classes all have a common intersection at a line whose direc­
tion cosines are [1/2, 1/2, 1/2, 1/21 and, hence, the decision spaces lie in 
rotation about this line. The program compresses the 4-channel Landsat data 
into a single band image containing a maximum of 24 different integers. 

6.1 RESOURCE REQUIREMENTS 

The program is utilized in much the same manner as a program to reformat a 
data tape, and therefore requires only an input and output tape and no prior 
knowledge of the features contained in the data set, Hence there are no input 
parameters that control the classification process. Also, the program currently 
uses  104K 8-bit bytes of core memory, much of which is unnecessary. There are 
no documentation or results for this program except for what is contained in 
this report. 

6.2 ANALYSIS PROCESS 

For a particular pixel, let x. be the value of the data in channel i .  The program
1 

creates a binary vector for each pixel by comparing x4with x1’ x
4 

with x2’ 
x4 with x3, x2 with x1’ 

and x2 with x
3‘ 

The binary vector contains a component 

for each comparison which is either a zero or a one. For example, i f  x4 2 x
1’ 

the first component is one, otherwise it is zero. The second component is deter­
mined in a similar manner by comparing whether o r  not x4 2 x2. The third, 

fourth, and fifth components are determined from x4 2 x3, x2 2 x1’ and x
2 
2 x3’ 

respectively. This binary vector is then converted to a decimal number by dotting 

it with a vector whose components are [2 
0 , 21 , 22 , 23 , 243 .  As a result of the 

dot product, it is possible to generate the following 18 decimal numbers: 1, 3, 
4, 5, 7, 8, 9, 10, 12, 16, 17, 23, 24, 25, 26, 29, 30, and 32. There are, 
however, six decimal numbers (1, 3, 8, 25, 30, and 32) which represent two 
differently shaped feature vectors, and these vectors can only be distinguished 
by going to a sixth comparison, x

1
2 x

3’ 
Thus, if x

1 
2 x

3 
for the decimal 

numbers 1, 3, 8, 25, 30, and 32, then 1is changed to 2, 3 to 6, 8 to 11, 25 to 13, 
30 to 14, and 32 to 15 by assignment. The 24 possible classes are indicated by 
the following decimal numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 
15, 16, 17, 23, 24, 25, 26, 29, 30, and 32. Figure 6-1 shows the possible four 

II-3 6 



1:io, 0,0,0,0,Ol 2: [ 0, 0,0,o ,o,11 3: 10, 1, 0,0,0,Ol 4: 11,1,0,0,01 5: [O, 0,l,O,11 

23:[0,1,1,0,
11 24: [I, 1, 1.0. 11 25: [O.O.O. 1, 1,Ol 26:[1,0,0,1,ll 29: [O,O, 1, 1, 11 30:[1,0,l,l, 1.01 


32: [l ,1, 1, 1, 1.01 

i’ x3i’ 
Figure 6-1. Four Channel Vector Shapes 
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channel vector shapes, the decimal class number and the binary vector, whose 
sixth component is indicated when appropriate. 

6 . 3  PERFORMANCE CHARACTERISTICS 

The program is dimensioned to handle four channels of data, a total of 824 
samples per  channel per  scan (record), and as many scans of data as required. 
The maximum number of classes is 24. The outputs of the Binary Classifier 
are a table indicating class population and percentage and a tape whose informa­
tion is normally converted to a photographic product. The results of this 
program need to be further evaluated for the effects of preprocessing such as 
calibration and density stretching. 
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~7.0 SPATIAL AND SPECTRAL CLUSTERING PROGRAM (SSCP) 

The Spatial and Spectral Clustering Program (SSCP) can be run in  either an 
unsupervised or supervised mode, and is composed of two modules which are 
run separately. The first module allows a user  to select training areas manu­
ally or will automatically select training areas based upon the spatial and 
spectral characteristics of the data set, and automatically merges data from 
training areas that are spectrally similar. The second module classifies each 
individual pixel according to whether or not it belongs to one of the described 
classes. Each class is described by a mean vector and a set of eigenvectors 
and eigenvalues, which are derived from module one and used in module two. 
The classification is thresholded, which usually results in  some pixels remain­
ing unclassified. 

7 .1  RESOURCE REQUIREMENTS 

The resources required by a user, as far as a knowledge of the data set  is con­
cerned, can range from very little knowledge to considerable detailed informa­
tion, since the program can be run in  either a supervised or  unsupervised mode. 
The resources that are available concerning a programmer's documentation of 
the program are fair to poor, but the transfer of the program to a user can be 
accomplished. There are, however, two reports that mathematically describe 
the program and present results on aircraft scanner and Landsat multispectral 
data. * 

The program will operate on single channel as well as registered multispectral 
data, and the only specialized routine (developed specifically for the IBM-360/65) 
that is separate from the program but needed, is a routine to reformat the data. 
The program (SSCP)accepts data in the format of one scan being a record and 
each pixel (picture element) being represented by a vector, whose components 
are the amplitude of the data in each channel. 

The program, as it is currently used, is run in two parts. The f i rs t  part acquires 
the statistics necessary to classify the data and uses 206K eight-bit bytes of core 
memory. This part of the program also utilizes four tape drives and eight sections 
of disc'storage, each of which contains 2341 blocks (records) of 1028 bytes. One 

*"Unsupervised Spatial Clustering with Spectral Discrimination, It R. R. Jayroe, 
NASA T N  D-7312, May 1973. 

"Computer and Photogrammetric General Land U s e  Study of Central North 
Alabama," R .  R. Jayroe, P. A. Larsen, and C .  W. Campbell, NASA TR'R-431, 
October 1974. 
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of the tapes contains previously acquired statistics, i f  there are any, the second 
tape contains the reformatted data, and the third tape contains the output sta­
tistics used in classifying the data. The fourth tape is optional and contains the 
cluster map. 

The second part of the program classifies the individual pixels based upon the 
acquired statistics and utilizes l lOK eight-bit bytes of core memory. This part 
of the program also utilizes three tapes which contain the input statistics, the 
input reformatted data, and the output classification map. One section of disk 
is reserved that contains 2340 blocks of 3300 bytes. 

There are a total of seven different parameters, which have a dominant effect 
on the accuracy of the classification, and these will be discussed in the next 
section. 

7.2 ANALYSIS PROCESS 

The program contains two modules which are presently run separately. The 
first module performs three different operations on the data, while the second 
module only classifies the data. Thus, the entire program consists of a boundary 
routine, a spatial clustering routine, a spectral merging routine, and a classi­
fication routine. 

The purpose of the boundary routine is to compress the multichannel data into 
one channel of data for the spatial clustering and at the same time categorize 
the data into spatially and spectrally homogeneous areas that are separated by 
boundaries. This approach provides a computer map similar to what would be 
obtained by a draftsman tracing a map from a photograph. Mathematically, the 
boundary map is produced in the following manner. Each pixel of data is repre­
sented by a multispectral vector whose components are the amplitude of the data 
contained in the different channels, The spectral vector distance is computed 
between the pixel in  question and the previous adjacent pixel in  the same scan, 
and also between the pixel in  question and the adjacent pixel in the same column, 
but in  the previous scan. If the vector distances are large enough, this indicates 
spectrally that a new or different feature is being encountered in the data. Such 
a large change occurring between adjacent pixels in the same scan would indicate 
a vertical boundary, while a large change occurring between adjacent pixels in 
the same column would indicate a horizontal boundary. A boundary map of the 
data set is then produced showing where these large changes or  boundary pixels 
occur. 

The spatial clustering routine uses the boundary map as an input and searches 
the boundary map for homogeneous areas. This search is accomplished by using 
a fixed shape array (maximum size is 11samples wide by 11samples long) that 
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queries the boundary map. The rules for the array are that it cannot enter the 
boundary map if  it will contain a boundary point, and the array can move to the 
right and down until it encounters a boundary point once it has entered the 
boundary map. Each time the array enters the boundary map, a new cluster is 
started and all of the locations consumed by the array are given the same number 
on the boundary map, indicating which spatial cluster they belong to. If two 
spatial clusters overlap by four or  more scans, they are spatially merged and 
defined to be the same cluster. Thus, the boundary mapping and spatial cluster­
ing is a machine analog to selecting training areas manually. The user could 
bypass this much of the program by manually inputting the coordinates of desired 
training areas.  

The purpose of the spectral merging routine is to determine which spatial clusters 
are spectrally similar and which ones are spectrally distinct. The inputs to this 
routine are the raw data and the cluster map or  training area coordinates, which 
provide the program with information on where to fetch the raw data for each 
cluster. Once the data have been fetched, the following quantities are calculated 
for each cluster: 

0 pixel population, 

0 mean value for each channel (i.e. ,  mean vector), 

0 covariance matrix, 

0 eigenvectors, and 

0 eigenvalues. 


The data belonging to each cluster are then enclosed by a surface in  the multi­
spectral space whose dimension is equal to the number of channels of data. This 
closed surface is a hyperellipse whose center of location is the mean vector, 
whose orientation is given by the eigenvectors, and whose extent in the direction 
of orientation is governed by the magnitude of the eigenvalue associated with i t s  
eigenvector. The rule for spectrally merging two clusters is that the mean 
vector of each cluster must be contained i n  the other cluster's closed surface. 
When two or  more clusters are spectrally merged, the previously mentioned 
quantities are recalculated for the combined data of the merged clusters. Once 
the merging process has been completed, the remaining clusters are called 
classes. 

The classification program then classifies each pixel as to whether it belongs to 
a particular class or  none of the classes. The rule for classification is that the 
pixel vector first  must be contained within the closed surface defining a class 
and, secondly, if  it is contained within more than one such surface, the pixel 
vector is assigned to the class whose center location (mean vector) is the closest. 
The inputs to the classification program are the raw data and the class statistics, 
which are the mean vectors, eigenvalues, and eigenvectors. 
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If the classification map is incompletely classified, the clustering and merging 
program can be resubmitted on the unclassified areas and a new updated statistics 
tape will be created. This procedure can be repeated as many times as desired. 

A flowchart of the program is shown in  Figure 7-1 along with where the parameters 
are used that affect the classification accuracy. The definitions and use of these 
parameters are  as follows: 

MANUAL -When MANUAL=O, the clustering program will pick training areas 
I from the boundary map. When MANUAL=l, the user can select 

up to 46 training areas manually by using the parameter ISELET. 

ISELET -	Input coordinates for the training areas that are manually selected. 
For each training area,  six coordinates a re  input in the following 
manner: s tar t  scan, stop scan, start  scan start  column, stop 
scan start  column, start  scan stop column, and stop scan stop 
column. 

IXXX -	The width in the data columns of the fixed shaped clustering 
array used on the boundary map when MANUAL=-. IXXX 11. 

I W Y  -	The length in data scans of the fixed shaped clustering array used 
on the boundary map when MANUAL=O. IYYY 5 11. 

NCLUST -	NCLUST is equal to the number of sets  of class statistics con­
tained on the input statistics tape for both the clustering and the 
classification programs. 

SCLMRG -	This parameter controls the extent of the closed surface for all 
clusters used in the clustering program and hence governs whether 
o r  not clusters will merge. More clusters will merge together 
when the value of SCLMRG is made larger. For four channels of 
Landsat data, SCLMRG is normally equal to 1. 

SCLCLS -	This parameter controls the extent of the closed surface for all 
classes used in the classification program for classifying data 
vectors. As SCLCLS is made larger, more data vectors will be 
included in  each class. For four channels of Landsat data, SCLCLS 
is normally equal to 2 .25 .  
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Figure 7-1. Flowchart of Spatial and Spectral Clustering Program (SSCP) 



7 . 3  PERFORMANCE CHARACTERISTICS 

SSCP is dimensioned to handle a maximum of 12 channels of data, 150 unmerged 
clusters, or 46 input training areas,  and 42 final classes. The clustering part 
of the program is dimensioned to handle a strip of data 256 columns wide and as 
many scans as desired, while the classification program is dimensioned to 
handle 824 columns of data and as many scans as desired. 

In the unsupervised mode, the program tends to work best on large data sets 
where there is the opportunity to find large (typically 10x10 pixel arrays) 
homogeneous areas on the boundary map. The most critical part of the analysis 
is making sure that the boundary map contains enough boundaries so that data 
from different ground scene features do not spatially mix and that SCLMRG is 
small enough so that different features are  not spectrally mixed together. The 
analysis can be checked by examining the printout of the clustering program 
which contains the following: 

0 a boundary map showing the location of each cluster, 

0 	 the statistics associated with each cluster (population, mean vector, 
covariance matrix, eigenvectors, and eigenvalues), 

0 	 the cluster number and the cluster or  clusters that were merged 
together as well as the updated statistics, and 

0 	 the final class assignment of each cluster and final statistics for 
each class. 

The output of the classification program is a tape containing the classification 
map and a listing of the class population and percentages. A separate program 
is used to obtain a printout of desired portions of the map, but the data on the 
tape is normally converted to a photographic product. Typically, i t  is possible 
to classify at least 90 percent of the data using the program in the unsupervised 
mode. The urban category is usually the most difficult to classify using the 
unsupervised mode because urban areas  tend to end up as boundaries. 

Typical 360/65 running times on previously analyzed Landsat data sets a re  shown in 
Tables 7-1 and 7-2. The column entitled "Total Cluster Population'' in Table 7-1 
is the percentage of the data set  that was used in calculating statistics for all of 
the clusters, while the column entitled "Classification Percent" in Table 7-2 is the 
percentage of the data set that was classified into one of the permissible classes. 
The remaining data was  unclassified. In the clustering program, the length of 
time required to produce a boundary map is directly proportional to the number 
of pixels in the data set or about 335 pixels per second. There appears to be no 
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Table 7-1. Clustering Proppun Running Times-

No. of Bomdary No. of Total Cluster No. of Clustering 
Pixels CPU Time - -

Clusters.  Population-_ Classes CFU Time 
~ 

120,000 5 min.,58 sec. 49 6.65% 13 11min.,09 sec. 

12G,GOO 5 min.,55 sec.  55 23.33% 13 11 min., 10 sec.  

264,000 13 min., 07 sec. 52 71.36% 11 28min., 04 sec. 

288,000 14min., 18 sec. 45 82.56% 9 20 min., 17 sec.  

328,000 
-

16min. , l7  sec. 
_-

139 
-

37.26% 9I 29 min., 14 sec. 
~~ ~_ - - .. 

Table 7-2. Classification Program Running Times 

Number of Number of Classification Classification 
Pixels ~~ ClasLes Percent CPU Time 

451,000 11 86.85 22 min. , 47 sec.  

451,000 11 91.52 21 min., 55 sec.  

891,000 11 90.16 38 min., 29 sec.  

1,223,100 9 79.60 46 min., 42 sec. 

1,223,100 9 83.21 46 min., 00 sec. 

1,223,100 13 69.18 67min., 11 sec. 

1,223,100 13 83.48 62min., 31 sec. 

1,223,100 13 90.65 58min., 12 sec. 

1,223,100 13 91.61 56 min., 47 sec. 
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simple time relationship involved with the clustering except that i t ,  too, 
tends to increase with the number of pixels. The classification program 
time also appears to be linear with the number of pixels for a given number of 
classes, except for a variation due to the percent of the data classified. This 
variation is caused by the classification logic which checks the class assignment 
made to pixels spatially adjacent to the pixel in question. If the pixel in question 
will fit into an adjacent pixel class, there i s  no need to check for the other 
possible class assignments. However, i f  a spatially adjacent pixel is unclassified, 
all possible class assignments have to be checked for the pixel in question. 
Hence, fewer possible class assignments have to be checked as more pixels a re  
classified. The main currently recognized bottleneck in  the program, which 
concerns running time, is the way that the data is read into the program. The 
data is read into the program from tape by a subroutine which is not efficient 
on the IBM-360/65. Since the running time is highly dependent on the number of 
pixels, i t  is anticipated that a significant reduction in running time can be achieved 
by rewriting the data reading subroutine. 
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8.0 	 HISTOGRAM INSPIRED NEIGHBORHOOD DISCERNING UNSUPERVISED 
(HINDU) SYSTEM 

This technique comes under the category of unsupervised, nonparametric classifi­
cation techniques and is most suited for application to environments wherein 
neither ground truth nor information about the distributions underlying the data 
are available. The methodology is highly automated and requires little human 
interaction. U s e r ' s  subjective influence on the process is limited to prescription 
of the maximum and minimum limits on the number of clusters. The only other 
input parameters that need to be specified, in addition to these subjectively chosen 
maximum and minimum limits, are the size of the data set  in terms of dimen­
sionality of the measurement vector, number of measurement vectors, and the 
approximate range in the values of measurements. Assuming the data to be avail­
able on tape, the system expects to have the data in measurement vector format 
with all the feature values of each data point input consecutively and accordingly 
the size of the data set  is to be specified by the number of data points per record 
and the number of such records. With this input of unlabeled data set ,  the 
HINDU system derives the corresponding output label set-withno further human 
intervention. 

8 .1  RESOURCE REQUIREMENTS 

The program, as is currently implemented, is dimensioned to handle four dimen­
sional data sets .  There is no critical limitation on the number of scan lines and 
the number of data points/scan line, and accordingly there is no strict  limitation 
on the size of the data set. A typical setup of up to 500 data points/scan line calls 
for a core memory requirement of 150K @-bit) bytes. For input/output of data sets  
and labels, two tape drives are called for by the program (one of the tape drives 
can be substituted for by a disk depending on the user's resources for display of 
results, etc.) .  The only other requirement external to the program is a matrix 
inversion subroutine. There are no other special processing requirements. 

The input parameters that need to be specified by the user  are: 

N: Dimensionality of the data set 

MS: An estimate of the maximum spread in the data values 

IS: Number of data points/scan line 

NSL: Number of scan lines of data 

MAX: Maximum number of clusters acceptable to the use r  

MIN: Minimum number of clusters acceptable to the use r  
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CPM: Cluster population minimum (may be set to zero if unknown) 

IC: Initial grid size for the histogram (may be set  to zero if unknown) 

CPM is generally set  to zero, in  which case the program chooses its own 
threshold for cluster population minimum. Otherwise, CPM is to be prescribed 
as the smallest cluster population (asa percentage of the total population) 
deemed significant by the user.  Similarly, IC, the initial trial grid size, 
can be either specified by the user or set  to zero (in which case the system 
internally chooses i t s  own value). The program limitation of N 4 can be 
relaxed by appropriate changes in the dimension statements, but only to a certain 
extent. Conceptual considerations limit the dimensionality of the data set  to 
relatively modest values and this is discussed under Performance Characteristics 
(see Section 8.3). The size of the data se t  is not very critical and the current 
version of the program handles up to 500 data points/scan line which can be 
extended if  needed by changing the dimension statements. The number of scan 
lines itself is relatively open ended. The ultimate limitation on the size of the 
data is, of course, the CPU time and core memory available to the user. 

8.2 ANALYSIS PROCESS 

The major components of the HINDU system, as shown in Figure 8-1, are: 

0 Histogram Generator, 
0 Cluster Formulator, 
0 Discriminant Designer, and 
0 Label Designator. 

8.2.1 Histogram Generator 

The function of the Histogram Generator, as the name implies, is to generate the 
multidimensional histogram of the input data set. The histogram analysis leads 
to a set  of multidimensional cells occupied by the input data set .  The output of 
this Histogram Generator consists of: 

0 	 an address array listing the (multidimensional) address of each of 
these nonempty cells, 

0 	 a density array containing the densities (i.e . ,  number of samples 
allotted to each) of these cells, and 

11-48 




H 

L 

HISTOGRAM INSPIRED NEIGHBORHOOD DISCERNING UNSUPERVISED (HINDU) SYSTEM 


t
-
H 

& HISTOGRAM CLUSTER DISCRIMINANT LABEL
b -

DESIGNATOR OUTPUT^co 
INPUT DESIGNERGENERATOR FORMULATOR 
0 UNLABELED LABELED 

Figure 8-1. Block Diagram of HINDU System 

I 



0 	 "n" feature average arrays storing the corresponding feature 
averages of all the samples contained in each of the cells. 

These (n+2) arrays describe in  essence the terrain of the histogram in the multi­
dimensional space. The actual length of these arrays (i.e., the number of non­
empth cells) depends on the grid size or cell width of the histogram, range (or 
width) of values in the data set, and the dimensionality of the data. The system 
is automated so that, depending on the maximum and minimum limits on the 
number of clusters specified by the user, an appropriate grid size is chosen 
internally. The system has the flexibility to try alternative grid sizes and choose 
the one that leads to a permissible number of clusters. 

8.2.2 Cluster Formulator 

The output of the Histogram Generator is processed here to formulate the cluster 
(of cells) and define their boundaries. This is achieved by a sequential procedure 
consisting of the following steps: 

0 identification of the current lowest density cell, 

0 	 connection of this cell to i t s  higher density neighbors by reassign­
ment of the contents of this cell to these neighbors in proportion to 
their current density levels, 

0 	 storage of these connections in memory in the form of a connectivity 
matrix, and 

0 	 updating of the density and average arrays to reflect the changes due 
to reassignment. 

This sequential processing is continued until all the originally nonempty cells 
are processed. As is to be expected, this processing leads to a finite number of 
cells whose contents remain unassigned, there being no higher density neighbors 
to these cells. 

These cells are considered as candidate cluster nuclei. However, some of these 
cells may not truly represent significant clusters, but are merely outliers of the 
distributions containing insignificant numbers of samples which are possibly 
just noisy measurements. This can be tackled by establishing a threshold density 
level (such as average density value of all originally nonempty cells) and con­
sidering as significant only those cluster nuclei that have their updated density 
values higher than the threshold value. Now, this reduced set of nuclei cells 
represents the cluster cores deemed significant in the given data set. 
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The connectivity matrix can then be processed to trace out the connections of 
each cell up to these significant cluster nuclei and thereby identify the clusters 
of cells surrounding each nucleus cell, Such cells are considered to represent 
the fuzzy boundary separating the corresponding clusters. 

Thus, the Cluster Formulator leads to a set of significant clusters each identified 
in  terms of interior cells (determined as being connected to a single cluster 
nucleus) and boundaries identified by cells with multinuclei associations. 

8 . 2 . 3  =-Discriminant Designer 

The objective here is to determine the set of hyperplanes which discriminate 
between each pair of clusters. The conventional methods of learning the discrimi­
mant functions based on error-correcting procedures and solution of linear 
inequalities a re  not well suited in  view of the fact that there exists a significant 
amount of information i n  terms of cells representing the fuzzy boundaries. The 
methodology adopted here*tackles this modified problem environment by ensuring 
that the hyperplane represents an optimum fit to the fuzzy boundary in addition to 
fulfilling i t s  traditional role of being a discriminant between the two identified 
clusters. This is achieved by viewing i t  again as a linear inequality problem, but 
with certain additional minimization constraints and establishing an equivalent 
unconstrained linear inequality problem amenable to conventional techniques. 
(Here, the well  known Ho-Kashyap algorithm is adopted to handle the equivalent 
unconstrained linear inequality problem. ) This modified method of nonparametric 
learning of discriminant functions, one of the useful innovations of the system, 
leads to the determination of the se t  of discriminant hyperplanes that form the 
basis of the labeling scheme. 

8.2.4 Label Designator 

The label designator essentially consists of a table of labels corresponding 
to the Centroids of the histogram cells as discerned by the Histogram 
Generator. The identities of the input samples, in terms of their addresses 
in the histogram space, being known, the labels of the individual samples are 
derived by looking up this table for the corresponding entries. The labels of 
the Centroids or the prototypes are of course determined by the discriminant 
hyperplanes designed earlier. This table lookup approach leads to accelerated 
recognition and label designation of the input sample set and is recorded onto a 
tape. 

*B. V. Dasarathy, "Discriminant Hyperplane Abstracting Residuals Minimization 
Algorithm for Separating Clusters with Fuzzy Boundaries," Proc. IEEE, Vol. 64, 

(to appear in) April 1976. 
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8.3 PERFORMANCE CHARACTERISTICS 

The method is designed for processing relatively large data sets of moderate 
dimensionality under unsupervised environments wherein computational economy 
is a significant factor in dictating the choice of the technique to be employed. 

This method does not involve intersample distance computations , a common 
feature of many other clustering approaches; and hence the computational load 
increases only linearly with increase in data size (and not in proportion to the 
square of the number of samples as i t  would be in the other cases). Thus there 
is not much of a critical limitation in the size of the data set .  However, there 
is a limitation on the dimensionality of the data set  because, for a given grid 
size, the number of occupied cells encountered in the histogram space increases 
exponentially with increase in dimensionality (of course, with an upper bound in 
terms of the number of samples in the data set). This increase can be com­
pensated to an extent by increasing the grid size. But the increase in grid size 
cannot be continued indefinitely as at least a minimum number (three or  four) 
of grid divisions along each dimension is necessary to be able to extract informa­
tion of value in terms of histogram peaks and valleys along the individual feature 
directions. 

In view of this, the system is presently designed to handle up to 4 dimensional 
data sets.  A preprocessor for dimensionality reduction is suggested in cases 
wherein the dimensionality of the data set is significantly higher. For  small 
increases in the dimensionality (say up to 5 o r  6 ) ,  the program can itself be 
redimensioned without going in for a preprocessor , as dimensionality reduction 
necessarily results i n  loss of available information. But for large dimension­
ality data sets, this is unavoidable and for this purpose a computationally 
feasible preprocessor is available as part of the total system. 

CPU time requirements of this method, depending on the data set, can vary 
between 0.5-2 minutes in the range of data sizes tested. Typically, processing a 
four-dimensional data set consisting of 1/4 million data points required approxi­
mately 89 seconds to derive the label set .  Of this, 84 seconds were spent in 
identifying the significant clusters in terms of their centroids, 3 seconds in 
establishing their boundaries and defining the hyperplanes , and the rest  (2 
seconds) in  deriving the individual sample labels. The major part of the time is 
thus spent in  learning and identifying the clusters inherent in the environment. 
The time required in  identifying the clusters in  terms of the centroids and 
boundaries (i. e., unsupervised learning) which really represents the core of 
this method, is less than two minutes in most of these cases and is significantly 
small unlike most other comparable techniques. Here, the time for labeling of the 
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individual samples is of the order of 7 micro secs/sample and this actually 
decreases with increase in size of the data set as there is a relatively con­
stant effort involved in creating the label table. Thus, the method becomes 
much more attractive for larger data sets. 
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SECTION III. TECHNIQUE ASSESSMENT 

1 .0  INTRODUCTION 

One of the most important cri teria in the evaluation of classification methods is 
the accuracy with which they assign class designations to each point in the data. 
The expected accuracies of certain methods can be evaluated in some cases 
using theoretical techniques by making assumptions on the statistics of the input 
data. However, this is difficult in many cases and a comparison of the classifier 
performance on several data se t s  with known ground truth i s  more useful. 

This section of the Classification Software Technique Assessment describes the 
results of tests in which particular data sets are classified using the repertoire 
of methods described in Section II. In time, it is expected that a body of results 
and conclusions will be developed to result in firm criteria and guidelines for the 
use of particular techniques in  particular types of applications. 

The results obtained by analyzing one data set are presented in this issue. This 
se t  includes multitemporal data, that is imagery of one test site acquired at 
different times of year. 

Fo r  each data set  considered, general descriptions of the data sets are followed 
by details pertaining to the Ground Truth and i t s  preparation for digital processing. 
The classification results are shown in pictorial form, and accuracy comparisons 
between each method used and the Ground Truth Map are presented. Joint 
histograms (similarity matrices) and difference maps are used extensively to find 
the accuracies and highlight the differences. Accuracy comparisons between the 
various techniques, taken in  pairs,  are also presented. Observations and con­
clusions based on the analyses are itemized and discussed. 

For  convenience of reference, performance summary tables are presented in a 
separate chapter. 
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2.0 THE BALD KNOB, TENNESSEE, QUADRANGLE TEST SITE 

The contributors to this section include Mr.  John Wilson, Director of Natural 
Resources, and his staff from the Tennessee State Planning Office who provided 
the test site, ground truth information, and user  assessment. Dr. C. T.  N .  
Paludan, Chief, Earth Resources Office, Data Systems Laboratory, coordinated 
the exchange of information and provided guidance and information. The analyses, 
results, and reporting were provided by Dr. R. Atkinson, Dr. D. Bond, 
Dr. B. Dasarathy, Mr. M .  Lybanon, and Dr. H. Ramapriyan of Computer 
Sciences Corporation and Dr.  R. Jayroe of the Information Sciences Division, 
Data Systems Laboratory. 
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2 . 1  DESCRIPTION OF DATA SETS 

The data employed in  this study were obtained from the computer compatible 
tapes of the four Landsat Multispectral Scanner (MSS) Images each consisting 
of information in four spectral bands: 

1211-15493: February 19, 1973 
1265-15444: April 14, 1973 
1337-15490: June 25, 1973 
1607-15440: March 22, 1974 

The test site used as the object of the study is the 7-1/2 minute quadrangle known 
as the Bald Knob Quadrangle in the State of Tennessee. Located with i ts  South­
west corner at latitude 35O 45'N, longitude 85' 30'W, the site is typical of much of 
the rural  land in  the southern Appalachian region, with rolling wooded hills and 
diversified agriculture practiced in  the valleys. Community settlements a re  
small and scattered. 

A region containing the Bald Knob Quadrangle was extracted from each of the 
above images and the images were registered so that the four data sets on tape 
corresponded to exactly the same region. The image size was  200 lines with 
260 pixels in each line. Due to the orientation of Landsat, this was approxi­
mately the minimum size of the rectangle containing the desired geographic 
region. 

The April 14, 1973, image was processed by the classification algorithms, incle­
pendently of the others, to produce maps of land cover. Un les s  otherwise speci­
fied, the classification maps in the sequel refer to this image. Also, classifica­
tion maps were  obtained by processing all four images simultaneously (using 
16-dimensional feature vectors). These will be referred to as multitemporal 
classification maps. 

Figure 2-1 shows the 16 images corresponding to the four bands in each of the 
four data sets mentioned above. They are  arranged from left to right in the 
order of the Landsat multispectral scanner channels 4 (green: 0.5 to 0.6  vm), 
5 (red: 0 . 6  to 0.7 pm), 6 (infrared: 0 .7  to 0.8 pm), and 7 (infrared: 0.8 to 
1 . 1  pm). The seasonal differences in the scene a re  striking, exemplified by 
the tonal differences, caused by variations in reflected sunlight, i n  the red band 
(second column from the left) for the spring, summer, and winter scenes. 
Unfortunately, the two infrared channels malfunctioned during the summer 
Landsat overpass, resulting in a high level of electrical noise (random fluctu­
ations) in  the data. The effect of this anomaly on the analysis could not be 
assessed, although i t  certainly prejudiced the quality of results obtained in  
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L A N D S A T  D H T A  - B A L D  K N O B  Q U A D R A N G L E  


F E B R U A R Y  19 1973 


APRIL 1 4  1973 


JUNE 25 1973 


Figure 2-1'. Landsat Images of the Bald Knob Test Site 
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multitemporal classification, since infrared reflectance in a summer scene is 
known to be a significant component in discriminating between land cover types. 

Figure 2-2 shows one band of the April 14, 1973, image with the training samples 
identified by their boundary polygons (or by simply lines in the case of single-
line sets  of samples). 

Also shown in Figure 2-2 is a preliminary classification map that illustrates the 
procedure, described in Section 1-5.3,  of improving the purity of training samples 
by slightly varying the location of training sites to assure,  as far as possible, 
that they do not intersect class boundaries. The selection of training sites is a 
time consuming procedure, and usually requires several attempts before a 
satisfactory set  is identified. 
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Figure 2-2. Training Site Locations in the Bald Knob Quadrangle 
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2.2 PREPARATION OF THE GROUND TRUTH MAP 

A manually prepared ground truth map showing eight land use classes was sup­
plied by the Tennessee State Planning Office. It was developed using information 
extracted by interpretation of orthophotoquads and hyperaltitude color infrared 
aerial photography. The classes were: 

Urban 

Transportation 

Agriculture 

Deciduous Forest  

Evergreen Forest 

Mixed Forest  

Water 

Strip Mining 


The map was traced and copied in color using sufficiently distinct colors for each 
different class and omitting the annotations. This map was reduced to a 35 mm 
transparency and digitized using red, green, and blue filters. The resulting three-
band image was then classified using a linear classification method, training 
samples being chosen from each of the (uniformly colored) areas. The output of 
this was compared with the original map and some minor manual editing was 
performed. 

The scale and orientation of this map were different from those of the Landsat 
data. Since this map had to be compared with several maps produced from the 
Landsat data, it was more economical to distort it to the geometry of the 
Landsat data (rather than vice versa). The correction transformation was 
found using several control points on this map and a topographic map of the 
same region, employing a mean squared e r ro r  minimization method* to find the 
transformation to UTM coordinates and using a previously determined trans­
formation from UTM coordinates to Landsat pixel coordinates. The RMS 
error at the control points was approximately 0.5 Landsat pixel and the m&­
mum e r ro r  1.2 pixels. The geometric correction was performed digitally, 
nearest neighbor values being used in  resampling. 

~ ~~ 

*"Geographic Referencing of Remotely Sensed Imagery Employing General Linear 
Transformations, " M . Lybanon, Computer Sciences Corporation Memorandum 
Number 533030-1-4, Huntsville, Alabama, January 29, 1975, 
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The resulting map was used in  all the comparisons. It will simply be referred 
to as the "Ground Truth Map" (GTM). This map is shown in Figure 2-3 and is 
color coded as follows: 

Urban 
Transportation 
Agriculture 
Deciduous Forest  

- Red Evergreen Forest - Dark Green 
- White Mixed Forest - Green 
- Yellow Water - Blue 
- Pale Green Strip Mining - Purple 
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Figure 2-3. Ground Truth Map After Digitization and Distortion to Congruence 
with Landsat Scenes (for Color Code, refer  to Text) 
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2.3 COMPARISONS WITH THE GROUND TRUTH MAP 

. 2.3 .1  Similarity Measu-res and the Bases for Comparison 

The maps produced by each of the classification methods were compared with 
the GTM. Since the GTM was geometrically distorted to match the Landsat 
images, there was a likelihood of an e r r o r  in  registration of the order of one 
pixel. Therefore, in testing each of the supervised classification maps, nine 
joint histograms were obtained by considering the GTM and the eight possible 
shifts of i t  by one pixel. It was  found that a shift to the left by one pixel yielded 
the greatest similarity measure in  most cases, but the unshifted GTM gave 
almost the same result. Therefore, the unshifted GTM was  taken as the correct 
reference and only the comparisons with it will be presented. 

Note that the GTM has three forest classes--Deciduous, Evergreen, and Mixed. 
The mixed class is simply a mixture of the other two classes. Therefore, 
assignment of points in the mixed class in the GTM to Deciduous or Evergreen 
by a classifier should not be considered an e r ror .  This is reflected in the 
similarity measures defined between the supervised classifications and the GTM. 

If A is the joint histogram between the GTM and a supervised classification map 
(see Section I-5.4), then the rows 4, 5, and 6 of A correspond respectively to 
Deciduous, Evergreen, and Mixed Forest  classes. The classes in the supervised 
classification maps are Urban, Transportation, Agriculture, Deciduous Forest, 
Evergreen Forest ,  and Water. Therefore, the similarity measure is defined as 

Number of joint occurrences of similar classes 
Total number of points 

6 

However, in the case of the unsupervised maps, the correspondence of homogeneous 
clusters to the ground truth classes is not known beforehand and hence a simple 
expression such as the above cannot be derived. Therefore, a reassignment 
algorithm* is used to maximize the similarity measure, treating Mixed Forest as 
a separate class. 

*"Constrained Assignment of Unsupervised Classification Numbers to Maximize 
Similarity with a Supervised Classification, H. K. Ramapriyan, Computer Sciences 
Corporation Memorandum Number 533090-1-5, Huntsville, AL, October 1975. 
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Similarity measures were also found by combining the forest classes. Then, in 
the case of the supervised maps the similarity measure is given by 

In the case of the unsupervised maps, the rows of A corresponding to the Forest 
classes a re  first  added and then the reassignment of columns is made to maximize 
the similarity measure. 

Further, the difference maps indicate that most e r ro r s  occur along the boundaries 
between ground truth classes. This is partly attributable to: (i)possible e r r o r s  
in ground truth boundary determination, (ii)mixture of colors occurring along 
boundaries while digitizing the ground truth map, and (iii)e r ro r s  in the determina­
tion of the geometric transformation. Therefore, it is appropriate to show 
difference images indicating locations of e r ro r s  corresponding to boundary points 
in the GTM separately from those at interior points. In doing this, any point in 
the GTM is considered a boundary point if at least one of its four neighbors (left, 
right, top, and bottom) is different from it. 

A third kind of similarity measure is determined by treating as erroneous classi­
fication only the interior dissimilarities between the GTM and the classification 
maps. 

In subsections 2.3.2 through 2.3.8, the classification maps and similarity matrices 
for the algorithms described in Section I1 a re  presented. The normal similarity 
and the similarity measures derived through combining Forest classes and by 
suppressing boundary e r ro r s  are quoted in each case. In a few instances, pri­
marily for illustrative purposes, the dissimilarity map is also exhibited. A 
summary tabulation of the similarity measures is presented in subsection 2,3.9.  

All of the supervised classification results were produced with only six classes, 
the "Mixed Forest" and "Strip Mining'' classes being omitted, since the former 
is not different from the other two Forest classes, and the number of points in 
the latter (16 out of 52,000) is not statistically significant. In the similarity 
matrices that follow, the Ground Truth Map classes a re  ordered i n  rows, and 
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1 1 
2 2 
3 3 
4 4 
5 5 
6 6 
7 
8 

- -  - -  

the classification map classes are ordered in columns. Fo r  simplicity, the 
classes are numbered as follows: 

GTM 

Urban 

Transportation 

Agriculture 

Deciduous Forest  

Evergreen Forest  

Mixed Forest 

Water 

Strip Mining 


Classification M 9  

Urban 
Transportation 
Agriculture 
Deciduous Forest  
Evergreen Forest  
Water 

The one exception to this convention applies to the Table Lookup Classifier 
ELLTAB, which produces a seventh "rejection" class due to the thresholding 
feature of the algorithm. In presenting the supervised classification maps, the 
color code was chosen to be approximately the same as that for the corresponding 
classes in the GTM. 

The number of classes produced by the unsupervised classifiers varies depending 
on the technique and its manner of use. In this case the correspondences with 
the GTM were established manually by inspecting the joint histograms. The 
predominant classes were assigned colors corresponding to the respective classes 
in the GTM. The remaining classes were assigned arbitrary but distinct colors. 

. ~ ~­2 . 3 . 2  Density Slicing Classification Map (DSCM) 

Application of the feature selector EFFECT to the April 1973 data set  determined 
the optimum spectral bands and corresponding density ranges for separating the 
six classes to be those listed below. 

Optimum Spectral Bands and Density Slices 

Class Spectral Density 

- 1  
Water 0-12 
Evergreen 0-21 
Deciduous 0-36 

Band Range 

Transportation 13-23 
Agriculture 30-255 
Urban 24-29 
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The resulting classification map appears in Figure 2-4, and the similarity 
matrix is given in  Table 2-1. 

Table 2-1. 	 Similarity Matrix Between GTM and Density 
Slicing Classification Map 

C L A j S  NU. 1 2 3 4 5 

1 6 8  5 1  3 3  1C5 19 

2 1 5 9  1 6 5  1 1 7  3 3 2  6 3  

3 2 7 6 7  6C9 5 2 4 1  446 4 9 0  

4 4 3 C  1 E 3 7  1 1 5  4938 5 50 

5 171  1 7 0  7 2  41 0 462 

6 1 0 0 7  1 9 7 2  4 0 8  4 2 8 8  8 0 4  

7 4 3  44 12  i 50 85  

9 0 4 0 12 0 

G T i 9  v / S  ljSCM 

6 


0 

2 

15 


19 


23 


129 


245 


0 


The similarity matrix points out some of the key ambiguities in the classification. 
Observe for example, that the GTM contains only 276 Urban samples total, while 
the Density Slicing classifier identified 4695 Urban samples. Of these, 2767 were 
incorrectly assigned to the Agricultural class. This is not suprising in  light of 
the density slices, which exhibit a broad spread of densities (30-255) associated 
with Agriculture, and a narrow spread of contiguous densities (24-29) in the same 
spectral band associated with Urban. This points up one of the weaknesses of 
separating classes on the basis of one spectral band only. Notice also that 250 of 
the GTM samples corresponding to Water were incorrectly assigned to the 
Deciduous Forest Class, again not suprising since the reflectance characteristics 
of Bands 3 and 4 are quite similar, and the Density range for Deciduous Forest  
in  Band 3 (0-36) overlaps that for Water in Band 4 (0-12). 
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The similarity measures with the Ground Truth Map are 

Normal 63.65 percent 
Forest  Merged 66.53 percent 
Boundary Errors  Ignored 84.89 percent 

2 . 3 . 3  Maximum Likelihood Classification-Maps 

The April 1973 Data 

The Maximum Likelihood Classification Map (MLCM) appears in  Figure 2-5 and 
the corresponding dissimilarity map in  Figure 2-6. Table 2-2 shows the 
Similarity matrix, which indicates similar trends in false assignments as 
applied to the density slicing classifier, though not quite as extreme. Again the 
confusion between Urban and Agriculture is apparent, though the confusion 
between Water and Deciduous Forest is not quite so serious, no doubt due to 
multiple band correlation implicit in the Maximum Likelihood scheme. As seen 
from Figure 2-6, the majority of the points of dissimilarity (colored grey) lie 
along boundaries. 

Table 2-2. 	 Similarity Matrix Between GTM and Maximum 
Likelihood C1assification Map 

I 

~ 

C L A S S  N O .  1 2 3 4 5 

1 59 47  3 5  1 1 4  2 0  

2 1 2 9  163 1 4 2  3 3 5  6 8  

3 2325 751 5 9 0 4  4 0 3  179 

30 8 1 1 3 %  1 5 2  1 0 6 3 6  738 

1 2 1  2 c4  8 2  3 4 0  53 4  

707 1062 5 1  1 4 0 5 4  1186  

7 40 95 1 1  1 5 6  62 

8 0 7 0 8 1 

G T M  V / S  MLCM 

6 

1 

7 

14 

17 

33 

188 

315 

0 
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The three measures of similaritywith the Ground Truth Map are 

Normal 68.41 percent 
Forest  Merged 71.65 percent 
Boundary Errors Ignored 88.86 percent 
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Figure 2-5. Maximum Likelihood Classification Map 
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Multitemporal Data 

All 16 bands of the data exhibited in Figure 2-1 were  also classified by the 
Maximum Likelihood Classifier, and this result appears in Figure 2-7 as the 
Multitemporal Maximum Likelihood Classification Map (MLMCM). Figure 2-8 
exhibits the corresponding dissimilarity map and the similarity matrix is given 
in Table 2-3. 

Table 2-3. 

~­ ~~ 

C L A S S  NO.  

1 

2 


3 

4 

5 

6 

7 

8 

Similarity Matrix Between GTM and Multitemporal 
Maximum Likelihood Classification Map 

1 2 3 


58 49 44 


101 247 175 

1369 1126 6 7 5 0  

3 4 5  891 210 

9 2  3 04 1 3 1  

5 8 9  1 5 2 3  74 7 

36 133 34 

0 9 0 

G T N  V / S  M A M C H  

4 5 6 

103 2 1  1 

240  76 5 

203 96 32 

1 0 6 1 1  8 99 33 

233 498 5 6  

3485 1093 271 

69 48 359 

7 0 0 

For this particular data set, the reduction in  confusion by incorporating this data 
from other seasons is not as striking as would be hoped. 

For  example, in residential urban areas, the summer t ree  canopy causes under­
standable confusion with the Forest class, but use of winter data enables this 
anomaly to be controlled. Here, however, 1136 of the classifier Urban samples 
were actually Forest in the April data (Table 2-2), but addition of other season 
data reduced this misclassification only to 1026 samples. The Transportation 
class showed a slight improvement with multitemporal data. For this class, the 
GTM indicated a total of 844 Transportation samples, but the April classification 
identified only 163 as Transportation, while 335 were identified as Deciduous 
Forest. With multitemporal data, these assignments changed to 247 as Trans­
portation and 240 as Deciduous Forest. 
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Figure 2-7. Multitemporal Maximum Likelihood Classification Map 
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Figure 2-6. Dissimilarity Map Between GTM and Maximum Likelihood 

Figure 2-8. Dissimilarity Between GTM and Multitemporal Maximum Likelihood 
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The most noticeable improvement appeared in reducing confusion at the Urban/ 
Agriculture interface. Of the 9576 Agriculture samples in the GTM, the April 
classification identified 5904 (61.7 percent) as Agriculture and 2325 (24.2 percent) 
as Urban. With multitemporal data these assignments changed to 6750 (70.5 
percent) as Agriculture and 1369 (14.2 percent) as Urban. 

The three measures of similarity between the Ground Truth Map and the Multi­
temporal Maximum Likelihood Classification are 

Normal 69.16 percent 
Forest  Merged 72.55 percent 
Boundary Errors  Ignored 90.31 percent 

2 . 3 . 4  Table Lookup (ELLTAB) 

Since ELLTAB employs a maximum likelihood classification table, i ts  result 
should not differ appreciably from that of the maximum likelihood classifier, and 
this expectation is confirmed by comparing the ELLTAB Classification Map (ETCM), 
Figure 2-9 with that in Figure 2-5, and the similarity matrix Table 2-4 with that 
in Table 2-2. 

Table 2-4. Similarity Matrix Between GTM and ELLTAB Classification Map 

C L A S S  p10. 1 2 3 4 5 6 7 

5 9  46 3 5  1 1 1  20 1 4 

126 160  1 3 9  326 66 7 2 0  

2 172 734 5 7 8 4  3 8 9  1 7 1  14 31 2 

297 1116  1 4 8  1 0 4 9 7  719 15 1 9 7  

115 1 9 8  7 9  3 3 4  522 2 9  3 7  

6 8 5  1038 5 0 1  3973 1 1 5 8  175 17 a 

38 82 10 146 6 1  3 00 42 

0 7 0 7 1 0 1 

G T M  V / S  E T C H  
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The table entries differ only slightly, the majority of the 791 samples rejected by 
the thresholding criterion (column 7) being ilr the Agriculture and Forest classes. 
These cause a slight reduction in similarity measures, which for this case are 

Normal 67.22 percent 
Forest Merged 70.25 percent 
Boundary Errors Ignored 88.06 percent 
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Figure 2-9. Table Lookup Classification Map 
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2.3.5 Linear Sequential 

The-April 1973 Data 

The Linear Classification Map (LCM) appears in Figure 2-10, and the corres­
ponding similarity matrix i n  Table 2-5. 

Table 2-5. 	 Similarity Matrix Between GTM and Linear Sequential 
Classification Map 

I 

C L A S S  NO. 1 2 3 4 5 6 

1 50 3 6  41  1 2 1  2 8  0 

101 151 164 355 72 1 

1 e l l  610 b 3 0 8  6 G 3  2 3 3  5 

2 6 3  1 2 2 9  188 10308 9 9 9  2 

8 5  1 3 3  1 0 7  4 7 7  4 8 b  26 

5 9 9  818 602 45C6 1033 1 5 0  

2 8  62 17 156 1 2 6  290 

0 7 0 9 0 @ 

G T M  V I 5  L C M  

These results differ only slightly from the single season Maximum Likelihood 
Classification and areas of confusion are similar. While there is less confusion 
between Urban and Agriculture, there is more confusion between Agriculture and 
Deciduous and Evergreen Forest. Similar observations may be made across the 
matrix. 

The three measures of similarity with the ground truth map for this case are 

Normal 69.25 percent 
Forest  Merged 73.35 percent 
Boundary Er ro r s  Ignored 88.66 percent 
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Figure 2-10. Linear Sequential Classification Map 
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Multitemporal Data 

All 16 bands of the data exhibited in  Figure 2-1 were  also classified by the Linear 
Sequential Classifier, and this result appears in  Figure 2-11 as the Linear 
Multitemporal Classification Map (EMCM). The corresponding similarity 
matrix is given in Table 2-6. 

Table 2-6. 	Similarity Matrix Between GTM and Multitemporal Linear 
Classification Map 

C L A S S  N O .  1 2 3 4 5 6 

1 49 3s 43 126 22 1 

2 89 1 4 9  1 6 0  3 6 3  80 3 

3 1 7 1 4  8 3 9  6357 4 1 6  2 34 16 

4 24C 4 0 9  2 2 3  11309  8 03 5 

5 83 150 125  4 5 4  4 7 0  32 

6 5 5 2  7 0 8  6 9 6  9 5 4 7  1026 179 

7 3 4  7 2  2 1  113 1 5 3  286  

8 0 7 0 8 1 0 

G T H  Y /S  LHCM 

Here the most striking improvement resulting from multitemporal data shows up in 

reducing confusion between Deciduous Forest  and Transporation. Of the 12989 

Deciduous samples in  the GTM, 10308 (79percent) were  classified as Deciduous 

Forest and 1229 (9 percent) as Transportation, using single season data. With 

multitemporal data, these assignments changed to 11309 (87percent) Deciduous 

Forest and 409 (3 percent) Transportation. Althouzh the similarity matrices show 

only slight variations, i t  is worth observing that the Transportation routes 

apparent in  the lower right side of the GTM and Maximum Likelihood Classifications, 

do not appear in Figures 2-10 and 2-11, and these in fact show up as boundary 

dissimilarities in  the Linear dissimilarity maps. This suggests that the linear 
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classifier may be slightly more sensitive to boundary effects (for example mal­
registration) than the maximum likelihood classifiers, a conjecture supported by 
the similarity measures below. 

Normal 72.43 percent 
Forest Merged 76.19 percent 
Boundary Errors  Ignored 91.37 percent 
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Figure 2-11. Multitemporal Linear Sequential Classification Map 
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2 . 3 . 6  Binary Classifier 

The Binary Classifier is the most rudimentary of the unsupervised classification 
methods assessed, based as it is sole on comparisons of the magnitudes of 
feature vector components. The Binary Cluster Map (BCM) appears as 
Figure 2-12, and the associated similarity matrix is given in Table 2-7.  

The Binary Classifier identified 11 distinct clusters in the data, and i t  is apparent 
from Table 2-7 that the most populous clusters are 1, 2 ,  3 ,  4, and 6.  Because 
of the distributions of these populations, there is no clear correspondence 
between any one cluster and a single ground truth class. While one may be 
tempted to associate cluster 4 with the Agriculture class, and cluster 1 with the 
Deciduous Forest class, these associations are far from unique, since clusters 1 
and 3 contribute significantly also to the Agriculture class while cluster 1 is the 
major contributor to the Mixed Forest Class. Clearly spectral resolution in  the 
original data is too low to result in well defined homogenous clusters of reflec­
tance values from vegetative land cover. 

As described in Section 111-2.3.1, the basis used for calculating similarity with 
the GTM is to reassign clusters, effectively merging clusters, i n  order to maxi­
mize the similarity measure subject to the constraint that the total number of 
remaining clusters equals the number of known ground truth classes. 

The three measures of similarity with the GTM are 

Normal 54.79  percent 
Forests Merged 76 .18  percent 
Boundary Errors  Ignored 90.05 percent 

Also, if the GTM "Mixed Forest" samples are treated as either Deciduous Forest 
or Evergreen Forest, the normal similarity measure increases to 73 .59  percent. 
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Table 2-7. Similarity Matrix Between GTM and Binary Cluster Map 

II 
! I 
C L A S S  N O .  1 L 3 4 5 6 7 0 9 1 0  11 j 

A 1 4 0  i c  4 I. 1 9  0 5 2  0 0 3 1 o i  
2 4 6 7 73 1 2 5  5 2  0 1 1 7  0 2 1 7 0 

3 2 8 4 5  1 1 4  2 3 2 5  3 2 1 2  3 5 9 1  7 4 8  4 2 2  8 

4 1 6 6 5  2 2 6 2  3 1  L 4 9  3 2 5 7 4  1 3 2 9  87 4 

5 6 0 8  71 4 2 9  6 a  1 i 10  0 1 4 2 1  1 

6 4 5 4 5  5 5 2  9 9 6  2 3 5  3 1 1 7 7  0 5 12 1 8 0  3 

7 2 0 5  1 3 6  5 2  1 2  3 16 0 5 7 249 2 

a 5 5 0 0 3 3 0 0 1 2 0 

i T 1 3  V / S  B C M  



Figure.2-12. Binary Cluster Map 
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-2.3.7 Spatial and Spectralglustering Program (SSCP) 

The Spatial and Spectral Clustering Program identified six homogenous clusters. 
As seen from the similarity matrix Table 2-8, there are few low-population 
clusters comparable to the low-population GTM classes (Urban, Water, Strip-
mining). This is to be expected because of the spatial "windowing" property of 
the algorithm, which results in weak discrimination of spatially small features. 
The SSCP classification map appears in Figure 2-13. 

Table 2-8. Similarity Matrix Between GTM and SSCP Classification Map 

C L A 5 S  N U .  1 2 3 4 5 6 7 

1 0 5 1  143 3 69 3 7 

2 0 1 7 2  468 23 1 5 3  6 2 2  

3 0 1913 1127 1437 4451 624 24 

4 0 7'39 l i O O 3  20 203 4 960 

5 0 5 1 7  64Y 17 1 1 2  3 16 

6 ci 14CY 531 8 63 719 2b 174 

7 0 412 209 1 30 1 26 

8 0 b 9 0 0 0 1 

G T M  V / S  S S C P C M  

The three similarity measures for this case are 

Normal 50.64 percent 
Forests Merged 65.45 percent 
Boundary Errors Ignored 82.24 percent 

Also treating as correct the assignments of GTM "Mixed Forest!' samples to either 
Deciduous Forest or Evergreen Forest, the normal similarity increased to 66.64 
percent. 
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Figure 2-11. Multitemporal Linear Sequential Classification Map 



2 . 3 . 8  HINDU- .~ Classifier 

The Histogram dependent clustering technique identified nine homogenous 

clusters in the data. The similarity matrix Table 2-9 shows that, as with the 

other cluster techniques, there is no unambiguous association between individual 

clusters and GTM classes. The HINDU classification map is shown in Figure 2-14. 


Following reassignment to maximize similarity, subject to the constraint of pre­

serving eight clusters, the similarity measures between GTM and the HINDU 

classification map become 


Normal 52.18 percent 
Forest Merged 82 .73  percent 
Boundary Er ro r s  Ignored 95 .14  percent 

Also treating as correct the assignments of GTM "Mixed Forest" samples to either 
Deciduous Forest o r  Evergreen Forest, the normal similarity increased to 
64.43 percent. 
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Table 2-9. Similarity Matrix Between GTM and HINDU Classification Map 

C L A S S  NO. 1 2 

1 95 105 

2 301 324 

3 404 1760 

4 8579 4007 

E 5 725 424 
w 
Q, 6 4037 2690 

7 257 114 

8 10 2 

3 4 5 

46 4 I1 

122 31 31 

4024 1935 914 

156 31 54 

97 12 16 

540 71  106 

22 3 1 

0 0 0 

G T M  V / S  HANDUCM 

6 7 8 9 

IO 5 0 0 

25 8 2 0 

246 271 21 1 

73 4 77  8 

11 1 17 11 

77 20 112 55 

4 0 148 130 

4 0 0 0 

I 



Figure 2-14. HINDU ClassificationMap 
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2 .3 .9  Comparisons with the Ground Truth Map -Summarysf Results 

For convenience of comparison between methods, the similarity measures 
between the Ground Truth Map and the Supervised Classification Maps are 
collected in Table 2-10. The similarity measures between the Ground Truth 
Map and the Unsupervised Classification Maps are  collected in Table 2-11. 

Table 2-10. Comparisons of GTM and Supervised Classification Maps 
~~ ~~~ ~-~~ 

Classification Similarity Measures w. r. t. GTM (%) 
-

Map Normal 
-

Forests Merged-~ Boundary ErrorsIgnored 

DSCM 63.65 66.53 84.89 

MLCM 68.41 71.65 88.86 

ETCM 67.22 70.25 88.06 

LCM 69.25 73.35 88.66 

MLMCM 69.16 72.55 90.31 

LMCM 72.43 76.19 91.37 

-~ ______ 

Map Normal Forests Merged Boundary Errors 

BCM (11)' 54.79 (8) 76.18 (6) 90.05 (6) 
73.59* 

SSCPCM (6)' 50 .64  (6) 65 .45  (6) 82.24 (6) 
66.64* 

HINDUCM (9)' 52.18 (8) 82.73 (6) 95.14 (6) 
64.43" 

I- I I
~~ ~ 
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2 . 4  COMPARISONS BETWEEN CLASSIFICATION MAPS 

It is seen from Subsection 2 . 3  that the similarity measures between the ground 
truth map and the classification maps are all of the same order. This indicates 
that the classification maps themselves might be quite similar to each other. 
It is useful to compare classification maps with each other to find how and where 
they are different. A high similarity measure between the classification maps 
obtained by different methods but a low one between classification maps and the 
GTM could cast a doubt on the correctness of the GTM. 

Three similarity measures were used in the comparisons, as in  the Ground 
Truth Map cases. 

The "normal" similarity measure is simply given by 

The similarity measure when forest classes are merged is given by 

i=l 

The third similarity measure is again determined by ignoring the boundary e r ro r s ,  
the boundary points being defined by examining the f i rs t  map (e. g. , MLCM when 
comparing MLCM versus MLMCM) . 
Some illustrative similarity matrices and dissimilarity maps a re  presented that 
typify the general trend in these comparisons. 

Table 2-12 shows the similarity matrix between the supervised Maximum Likeli­
hood and Linear Sequential Classifiers. The concentration of large populations on 
the diagonal elements of the matrix indicates the close agreement between the 
classification results, Notable areas of disagreement a re  between Urban and 
Agriculture, Transporation and Deciduous Forest, and Deciduous and Evergreen 
Forests. 
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The similarity measures in this comparison are 

Normal 85.59 percent 
Forests Merged 91 .04  percent 
Boundary Errors  Ignored 98.02 percent 

Thus clearly the areas of disagreement are primarily due to differences in 
classifying the colored spectral signatures associated with boundary points. 

What is surprising is that the single season Maximum Likelihood Classification 
agrees less with the Multitemporal Maximum Likelihood Classification than with 
the Linear Classification. The similarity matrix is shown in Table 2-13 and the 
dissimilarity map on Figure 2-15. Areas of disagreement a re  similar to those 
of the linear case, but the extent of divergence is considerably greater. However 
inspection of Figure 2-15 shows the majority of dissimilarity points to lie on 
boundaries. This suggests that registration of the multiple bands of imagery was  
insufficiently precise, resulting in a "smearing" of the spectral signatures at 
boundary points. The similarity measures in this case a re  

Normal 75.92  percent 
Forests Merged 79 .60  percent 
Boundary Errors  Ignored 97.76  percent 

Considering that the addition of multiple season data improved similarity with 
GTM by only a few percent at most, the 76 percent normal similarity here and 
98 percent boundary suppressed similarities point to the requirement to improve 
image congruencing techniques. 

By contrast the similarity comparison between Maximum Likelihood and ELLTAB 
classifications, Table 2-14 shows complete agreement, disregarding the few 
hundred thresholded samples. Figure 2-16 shows the majority of these to be at 
interior points, as is confirmed by the small increase in  similarity when the 
boundary points a re  suppressed. 

Normal 97.63  percent 
Forests Merged 97 .63  percent 
Boundary Er ro r s  Ignored 99.52 percent 

As a final illustrative example, the similarity matrix between the Supervised 
Linear Classifier and the Unsupervised HINDU Classifier is shown, in Table 2-15. 
Here notable points of similarity include the association of 12123 samples in 
Cluster 1 with the Deciduous Forest Class 4 ,  2684 samples in  Cluster 2 with the 
Transportation Class 2 ,  though the large number of samples in  this cluster 
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associated with Urban and Deciduous Forest  further emphasize the weak spectral 
structure in the original data. After reassignment of classes to enable more 
meaningful comparison, the similarity measures become 

Normal 71.80  percent 
Forests Merged 80.46  percent 
Boundary Errors Ignored 99 .26  percent 

A summary of the complete comparison between the techniques employed i s  
given in Tables 2-16 and 2-17, the former referring to supervised techniques 
only, and the latter to comparison of supervised and unsupervised techniques. 
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Figure 2-15. 	 Dissimilarity Map Between Single Season and Multitemporal 
Maximum Likelihood Classification Maps 

Figure 2-16. Dissimilarity Map Between Maximum Likelihood and 
ELLTAB Classification Maps 
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Table 2-12. 	 Similarity Matrix Between Maximum Likelihood and 
Linear Classifiers 

C L A S S  N O .  1 2 3 4 5 6 

1 2 5 3 7  1 C 8  8 5 3  165 26 0 

2 160 2 4 8 2  0 6 4 4  1 6 4  1 7  

3 2 12 1 6 5 7 4  2 8  22  0 

4 2 8  4 5 2  0 1 4 7 2 2  8 4 4  0 

5 0 0 0 9 7 2  1816 0 

6 0 3 0 10 105 4 5 7  

C L C M  V I 5  L C M  

Table 2-13. 	 Similarity Matrix Between Maximum Likelihood and 
Multitemporal Maximum Likelihood Classifiers 

I C L A S S  N O .  1 2 3 4 S 6 

1 1301 7 8 6  1562 38 0 2 

2 596 1 7 6 0  153  a 2 4  78  56 

3 440  66 6 3 3  0 1 0 0 

4 182  1 1 7 4  3 9  1 3 6 6 7  8 5 6  1 2 8  

5 6 9  4 6 2  5 4 0 5  1789 5 8  

6 2 34  2 16 8 5 1 3  

M L C M  V / S  MLMCH 
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Table 2 -14. Similarity Matrix Between Maximum Likelihood and ELLTAB Classifications 

C L A S S  N O .  1 2 3 4 5 b 7 

1 3 4 9 2  1 0 0 0 0 1 9 6  

2 0 3 3 8 0  0 0 0 0 8 7  

3 0 0 6 6 9 6  0 0 0 141 

4 0 0 0 15783 0 0 2 6  3 

5 0 0 0 0 2 7 1 8  0 7 0  

6 c) 0 0 0 0 5 4 1  3 4  

M L C M  U/5 E T C M  

-

Table 2-15. Similarity Matrix Between Supervised Linear and Unsupervised HINDU Classifiers 

C L A S S  NO. 1 2 3 

1 0 1383 758 

2 190 2707 0 

3 0 231 4181 

4 11631 4831 51 

5 2514 272 17 

6 73 2 0 

LC H 

4 5 6 7 8 9 

0 515 252 29 0 0 

0 1 144 0 0 4 

2074 617 44 2 80 0 0 

3 0 9 0 10 6 

10 0 0 0 147 17 

0 0 1 0 220 178 

V / S  HI:JDUCM 
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Table 2-16. Comparisons Between Supervised Classified Maps- - - ­_--
Classification Map -1 Similarity Measures  (%) 

- .  . - -_ . .  .~ 
~ i~ -__--­-. 

Normal Forests Merged Boundary ErrorsMap 1 I Map2 
- .  . .  .~ - - --. ~ 

- Ignored 
I 

MLCM DSC M 79.37 83.40 96.48 

MLCM ETCM 	 1 97.63 97.63 99.52 
~ 

MLCM LCM 85.59 91.04 98.02 

MLCM MLMCM 75.92 79.60 97.76 
I 

LCM DSCM 79.94 83.08 97.06 
I 

LCM LMCM 79.30 84.80 98.82 

MLMCM LMCM 78.30 83.35 97.97 
- =  . , - . - .. .~ =~.. .. - = =- ~ -

Table 2-17. Comparisons Between Supervised and Unsupervised Classification Maps 
-. i_ - = - i - _  

Similarity Measures (%) 

Normal Boundary Errors  
- - -.. . 

MLCM BCM 62.50 (6) 68.00 (5) 96.05 (5) 

MLCM SSCPCM 55.90 (6) 65.18 (5) 91.98 (5) 

MLCM HINDUC M 70.18 (6) 79.09 (5) 99.45 (5) 

LCM BCM 63.37 (6) 68.49 (5) 95.37 (5) 

LCM SSCPCM 56.91 (6) 65.78 (5) 91.12 (5) 

LCM HINDUCM 71.80 (6) 80.46 (5) 99.26 (5)-

Ignored 

Notes: 	 The similarity measures reflect the best that can be obtained by a reassign­
ment of the classes in the unsupervised maps to classes in the respective 
supervised maps. 
The numbers in parentheses are the numbers of classes in the Unsupervised 
Maps (Map 2) 
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2.5 INVENTORY COMPARISONS 

In many instances, the users are simply interested in the inventories or the 
estimates of percentage occupancies of the various classes over a given region, 
rather than the point-by-point occurrences of the classes. It is reasonable to 
expect that the accuracy of the inventories derived from any classification 
method should be greater than the point-by-point accuracy of the corresponding 
classification map. This contention is easily justified for a two-class map. 
Suppose there are M and N points in  classes A and B, respectively, and 
a classifier assigns m and n points from A and B into B and A, respec­
tively. Then the map inaccuracy is (m+n)/(M+N) whereas the inventory inaccuracy 
is only Im-n I/(M+N). 
To explore this for the various classification maps, a study was made comparing 
the inventory obtained from the GTM (of the Bald Knob Quadrangle) with that from 
each of the classification maps. Since, in the inventory, i t  is impossible to 
account for the "mixed forest" class in the classification maps, the forest 
classes were merged in the GTM and all the maps. The similarity measure 
between inventories is defined as 

r m m 1 

1- I pli - p2i I / 2 c  pli J 100% 
. . . i=l i=l 

where pli and p2i a r e  the populations of the class i in maps 1and 2 and m 

is the number of classes. This definition has the significance that the dissimi­
larity is measured as the norm of the deviation of either of the inventory vectors 
from their mean. This definition assures that the ISM is between 0 and 100 
percent, agreeing with the intuitive concept of similarity. When the inventories 
are identical, the ISM is 100 percent and when they a m m o s t  dissimilar (with all 
samples assigned to one class in map 1and to a different class in  map 2) the 
ISM is 0. The factor 2 in the denominator is used to assure this. 

The results of this experiment are shown in Table 2-18 as S
3'  

Also shown are 

the similarity measures S1 and S2 corresponding to the pixel-by-pixel com­

parison with the forest classes merged and with the boundary e r ro r s  ignored. 
(These are repeated from Tables 2-10 and 2-11.) In the case of the unsupervised 
classification maps, the assignments used to compute S

3 
were the same as 

for S2 '  
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Table 2-18. Inventory Similarities Relative to GTM - ­. ~ ~ _I--

Similarity Measures (%)-~~ ~. 

Pixel by Pixel 
(Forests Merged) 

s1 


DSCM 66.53 
MLCM 71.65 
ETCM 70.25 
LCM 73.35 
MLMCM 72.55 
LMCM 76.19 
BCM 76.18 
SSCPCM 65.45 
HINDUCM 79.42 

- ~ ~ _ ___ 

Boundary 
Errors Ignored 

s2 ­

84.89 
88.86 
88.06 
88.66 
90.31 
91.37 
90.05 
82.24 
92.93 

~ -- ~ 
J 

Inventory s -s2 3  
s3 

~­

77.46 7.43 
81.94 6.92 
81.94 6.47 
85.46 3.20 
82.56 7.75 
88.01 3.36 
90.08 -0.03 
79.27 2.97 
92.70 0.23 

( S O - S O )'Table  2-19. Heuristic Analysis of "Bias" 

s -s Components
2 3  

Forcing Lack of(Nearest Training 
Parametric Cluster DecisionAreaInteger) 

Selection.. - Distribution-
~~ 

Merging Rigor 
i­

-BCM 0 
HINDUCM +1 1 -SSCPCM 3 -LCM 3 -LMCM 3 

DSCM 7 4 


-MLCM 7 -MLMCM 8 -ETCM 6 
I -
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Figure 2-17 gives a pictorial representation of the values of S
1' 

Sz,  and S3 for 

the various classification maps. The "normal" similarity measures from 
Tables 2-10 and 2-11 were used as the abscissae to mark the various classification 
maps. The dashed line indicates a separation between unsupervised and super­
vised methods. As noted in Section 111-2.3.1, the "normalff similarity measure in 
the case of unsupervised methods is computed somewhat differently from that 
for supervised methods (due to the existence of a mixed forest class on the 
GTM). The ordinates indicate, for each classification map, the similarity 
measures S1' S2 , and S3 on the curves with the appropriate names. As 

expected, the inventory similarity measures are greater than S 
1' This increase 

ranges from 10 to 14 percent. In the case of BCM, S2 and S, are 

approximately equal. This indicates that the compensatory effects of mis­
classifications by the decision boundaries in feature space in inventory evaluation 
a re  comparable to the effects of neglecting misclassifications at the spatial 
boundaries. A heuristic explanation accounting for the various components of 
S -S is given in Table 2-19. The several biases indicated should only be regarded2 3  
as a first  attempt a t  identifying the causes for the differences. Notable are the 
groupings of the three parametric supervised maps (ETCM, MLCM, and MLMCM), 
the nonparametric maps (LCM and LMCM), and the unsupervised maps (HINDUCM 
and BCM) which do not use any information on spatial coherence or  homogeneity 
of training sets.  While SSCP does use parametric descriptions of the clusters 
and homogeneous training areas, the biases introduced by these may be looked 
upon as being counteracted due to the provision to merge the clusters so obtained. 
The bias introduced in the case of supervised methods can be viewed as that due 
to choosing a few homogenous training areas and forcing good discrimination of 
them which does not necessarily imply generalizability to the entire data set .  
The decision rigor involved in  quantifying the feature space into regions of 
different classes or  clusters is least in  DSCM and this introduces certain bias. 
In the case of HINDUCM also there is a certain lack of rigor introduced by the 
table lookup scheme of classification (being based on use of prototypes for 
creating the label table) but to a much lesser degree than in  DSCM. This area 
of accounting for the various types of differences between classification maps 
and quantifying them requires further study with respect to other classification 
methods and data sets. 
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Figure 2-17. Graphic Presentation of Similarity Measures 
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2 . 6  USER ASSESSMENT 

The following response to the user  questionnaire described in  Section 1-4.4 was 
received from Mr. John Wilson, Director of Natural Resources, Tennessee 
State Planning Office, Nashville, Tennessee. 
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STATE PLANNING OFFICE 
RAY BLANTON 6M)CAPITOL HILL BUILDING 
Governor 301 SEVENTH AVENUE, NORTH 

NASHVILLE, TENNESSEE 37219 
NILES SCHOENING 615-741-1676 
Diwctor 

December 11, 1975 

M r .  Robert Jayroe 

Harsha l l  Space F l igh t  Center 

Marshall  Space F l igh t  Center,  Alabama 


Dear Bob: 

I n  response t o  the  user  evaluat ion ques t ionnai re ,  the  following answers have 
been prepared: 

Quest ion 1 - How w e l l  w a s  t he  computer analyses  a b l e  t o  s a t i s f y  the  land use  
requirements ? 

I n  general ,  I would have t o  say t h a t  t he  computer analyses  were a b l e  t o  s a t i s f y  
our requirements,  but  c e r t a i n  q u a l i f i c a t i o n s  need t o  be discussed. F i r s t ,  t he  
accuracy f igu res  der ived from d i r e c t l y  comparing the  c l a s s i f i c a t i o n s  maps with 
the  ground t r u t h  map (normal column) are su rp r i s ing ly  low. P a r t  of t h i s  problem 
may be due t o  the  f a c t  t h a t  t he  t r a i n i n g  and ana lys i s  w a s  l imi ted  t o  a s m a l l  
area (52,000 p ixe l s )  and obtaining pure f ea tu res  f o r  t r a i n i n g  w e r e  d i f f i c u l t .  
More accura te  r e s u l t s  probably could have been obtained i f  t he  e n t i r e  image had 
been used as a resource f o r  t r a in ing .  Secondly, t he  accuracy assessment pointed 
out  t h a t  p i x e l  mixing, a t  t he  boundary between two d i f f e r e n t  f ea tu re s ,  w a s  t he  
dominant problem. More r e so lu t ion  i n  the  da t a  may help t h i s  problem, but  i n  
order  t o  understand the  mixing problem, ground checks need t o  be made of t he  
c l a s s i f i c a t i o n  map da ta  i n  question. 

Quest ion 2 - Which computer technique b e s t  s a t i s f i e s  t he  land use  requirements? 

Based upon the  accuracy assessments,  t he  answer would have t o  be t h e  multi­
temporal l i n e a r  c l a s s i f i e r .  However, t he  accuracy assessment a l s o  ind ica t e s  
t h a t  there is  no technique that is  outs tandingly super ior  t o  a l l  of t he  o thers .  

Question 3 - What c o s t l b e n e f i t ,  i f  any, would you de r ive  from using computer 
versus  convent ional  photo- interpret ive techniques? 

The  computer assoc ia ted  c o s t s  are approximatly $800 f o r  d a t a  tapes  (4 temporally 
d i f f e r e n t  tapes  a t  $200 each) and roughly $200 f o r  t he  ana lys i s ,  which t o t a l s  
$1,000. The cos t  f o r  t he  conventional da t a  and phto i n t e r p r e t a t i o n  is  approxi­
mately $1,300 ($1,000 f o r  t h e  orthophotoquad, $300 f o r  ana lys i s  and cartography).  
The computer ana lys i s  would appear t o  be more cos t / e f f ec t ive ,  e spec ia l ly  on 
l a r g e r  areas, s i n c e  t h e r e  is  a n  i n i t i a l  c o s t  t h a t  i s  not  area dependent (cost  of 
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o r i g i n a l  da ta  and t r a in ing )  and the  c l a s s i f i c a t i o n  area ana lys i s ,  once the  

t r a in ing  has been completed, is a small  f r a c t i o n  of t he  photo in te rpre t ive  

cos t s .  The cos t  of photo in te rpre ta t ion ,  however, i s  cons i s t an t ly  propor t iona l  

t o  t h e  s i z e  of t he  area. There is a need t o  qua l i fy  t h i s  d i scuss ion  from two 

po in t s  of view. F i r s t ,  I a m  r e f e r r i n g  t o  t h e  c l a s s i f i c a t i o n  of gross  f e a t u r e s  

only (agr icu l ture ,  f o r e s t ,  urban, e t c . ) ;  and secondly, our eva lua t ion  is  an 

experiment concerned wi th  using high a l t i t u d e  photography, which should no t  be 

confused with the  more conventional and opera t iona l  procedures t h a t  have been 

used i n  the  pas t .  


Question 4 - What improvements o r  changes need t o  be made, i f  any, i n  the  

computer analyses? 


F i r s t , I  th ink  t h a t  areas o ther  than the  o r i g i n a l  tes t  s i te  should be included 

f o r  s e l ec t ing  t r a i n i n g  da ta  and analyses ,  even though t h e  accuracy assessment 

is  t o  be performed on t h e  tes t  s i te  only. Secondly, t h e r e  is t h e  need t o  supply 

t he  use r  with geographical ly  co r rec t  photoproducts t h a t  i s  appropr ia te ly  scaled 

with t h e  o r i g i n a l l y  supplied ground t r u t h  map. Thirdly,  t he  geographically- 

correc ted  c l a s s i f i c a t i o n  maps need t o  be s tudied t o  understand the  p i x e l  mixing 

problem and improve the  c l a s s i f i c a t i o n  techniques.  This s tudy should inc lude  

extensive f i e l d  work. 


Quest ion 5 - What do w e  consider  t o  be the  short-comings and good po in t s  of 

each technique r e s u l t ?  


Generally speaking, t he  unsupervised techniques appear t o  l a c k  the  a b i l i t y  t o  

pick out  t he  d e t a i l  t h a t  can be achieved wi th  t h e  supervised techniques,  and 

t h i s  appears t o  be mainly a r e so lu t ion  problem. W e  w i l l  be b e t t e r  a b l e  t o  

answer t h i s  quest ion when w e  rece ive  the  geometr ical ly  cor rec ted  c l a s s i f i c a t i o n  

maps. 


Question 6 - How would we rank the  technique r e s u l t s  i n  order  of s a t i s f y i n g  t h e  

land use  requirements? 


A v i s u a l  comparison of t he  maps as t o  p r i o r i t y  by accuracy r e su l t ed  i n  the  

following list: 


Multitemporal ML c l a s s  

Maximum Likelihood class 

Multitemporal Linear c l a s s  

Linear class 

E l l t a b  c l a s s  

Hindu c l u s t e r  

Density S l i c ing  class 

Spa t i a l  and Spec t r a l  class 
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Quest ion 7 - Which, i f  any, of t he  techniques provide information beyond what 
is contained i n  the  ground t r u t h  maps, t h a t  i s  use fu l  o r  improves the  accuracy? 
I f  so, what new information w a s  provided o r  where w a s  t he  improvement noted? 

The most s i g n i f i c a n t  improvement w a s  t he  a b i l i t y  t o  obta in  a numerical per­
centage of t he  f ea tu res  contained i n  the  map. Further  examination of t h e  
c l a s s i f i c a t i o n  maps present ly  ind ica t e  t h a t  t he  maps provided no add i t iona l  new 
information, and i n  some cases  less, when compared t o  the  ground t r u t h  map; but  
a geographic corrected vers ion  of t he  c l a s s i f i c a t i o n  maps is  needed t o  confirm 
t h i s  observation. A s  an  example, it w a s  not poss ib l e  t o  de l inea te  the  TVA 
power l i n e s ,  un less  t h e  June da ta  w a s  used by i t s e l f  or  i n  a multi temporal set. 
Again these  s ta tements  have t o  be qua l i f i ed  i n  t h a t  w e  are only concerned with 
gross f ea tu res  where new types of information a r e  not  too l i k e l y  t o  occur i n  t h i s  
p a r t i c u l a r  area of t he  da t a  sets. 

Question 8 - What would be your opinion on using the  bes t  technique a t  your 
f a c i l i t y ,  a t  your cos t  t o  produce computer land cover maps f o r  publ ic  use? 

From the  c o s t / e f f e c t i v e  and opera t iona l  po in t  of view previously discussed the  
suggestion appears a t t r a c t i v e ,  but  I am concerned t h a t  t he  i n i t i a l  c o s t  and 
continued resource support  may be p roh ib i t i ve .  A s  you know w e  have pa r t i c ipa t ed  
i n  t h i s  endeavor only i n  the  i n i t i a l  phase of i den t i fy ing  a s p e c i f i c  f ea tu re ,  
and i n  evaluat ing the  r e s u l t s .  I f e e l  t h a t  w e  could b e t t e r  understand t h e  e f f o r t  
i n  i t s  e n t i r e t y  and the  resources  involved and s ta te  a more s p e c i f i c  opinion i f  
w e  had had the  opportuni ty  t o  p a r t i c i p a t e  i n  the  ana lys i s  d i r e c t l y .  

I f  you need f u r t h e r  information, p lease  l e t  m e  know. 

Sincerely , 

#John M. Wilson 
Direc tor ,  Natura l  Resources Sect ion 
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2 . 7  OBSERVATIONS AND CONCLUSIONS 

Certain observations and conclusions will be drawn from the study of this data 
set and i t  is, therefore, extremely important that the following statements not 
be misunderstood, quoted out of context, or generalized to all possible technique 
analysis results. The observations and conclusions represent only a beginning 
in the study of classification technique assessment and at present have to be 
qualified by the following statements: 

Qualifying Statements 

0 	 The present results are based only on one data set, the Bald Knob, 
Tennessee, Quadrangle. Thus , some observations and conclusions 
are probably data set dependent. 

0 	 The present results consider only one application; namely, land 
cover mapping. Thus, some observations and conclusions are also 
probably application dependent. 

0 	 The computer analysis was performed on Landsat data, while the 
ground truth information was obtained from higher resolution aerial 
photography and photointerpretation. Thus, a comparison between 
apples and oranges may have occurred in  some cases, although the 
intent was honorable. 

0 	 Possible inaccuracies a n d m 
make the automatic classification map results appear less  accurate. 

With respect to the Ground Truth Map, no e r r o r  analysis is available concerning 
the differences that would occur had the Ground Truth Map been developed by 
several different photointerpreters, or had the ground truth map been developed 
from Landsat imagery rather than from aerial photography. In either case, the 
differences in observation would probably have occurred mainly in the urban 
category, where context is used in the photointerpretation decision process, and 
in the mixed forest (deciduous and coniferous) category where photointerpretation 
is not necessarily precise. Attempts at classifying a mixed forest category with 
computer analysis were  unsuccessful as expected, since mixed implied an aggre­
gation of pixels and the computer classification techniques consider individual 
pixels. The result was that pixels contained in the mixed category were usually 
classified either as deciduous or  coniferous. 

The fact that computer techniques deal with individual pixels is illustrated by the 
frequent incidence of isolated points in the classification maps exhibited in 
Figures 2-4 through 2-13. Comparing these with the Ground Truth Map, Figure 2-3 , 
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edominantat 

the latter is seen to have much greater homogeneity within classes. Since no 
field survey was  conducted in preparing the Ground Truth Map, i t  is not possible 
to asser t  that all individual point differences are classification e r ro r s  , though 
the similarity measures are reduced by this effect. 

0 	 The small  scale of the test siteLnd itsxrEund features makes selec­
t i e  of pure data samples for_trainingJhe supervised classifiers~­

- . _yery difficult, so degrading their acc_uracy and biasing their results. 

The majority of the e r ro r s  in misclassification occurred at the boundaries 
between two or more different features, which will be discussed later,  and in 
not satisfactorily distinguishing the urban from the agriculture category. Part 
of the urban/agriculture confusion is due to the fact that no pure urban area 
existed in the Landsat data for the test  site, and therefore the training areas 
for urban, which were widely scattered houses in a ru ra l  community, unavoid­
ably contained data relating to agriculture. Also the areas designated as urban 
on the ground truth map were derived from the higher resolution aircraft 
photography where individual houses could be seen and included surrounding 
areas which were  agricultural. If one considers classifying individual pixels 
of Landsat data without the higher resolution aircraft imagery providing con­
textual information, then there probably is no discernible urban category in the 
Landsat data test site because of insufficient resolution. This statement is 
supported by the fact that the areas of urban/agriculture confusion are high 
reflectance areas in the Landsat data and visually the classification maps 
agree more with the Landsat imagery than the aircraft imagery. 

Classification e r r o r s  appear to be caused mainly by pixel mixing,_IL~_ - _ _  
due to insufficient spatial resolution in the data, and this effect is-

EL -_--class boundaries.- _ _  -~ Geometric e r r o r s  also result 
_ _apparentin ~-classification e r ro r s .  

Examination of difference maps between the classification results and the Ground 
Truth Maps reveal, as previously mentioned, that the majority of e r r o r s  occurred 
at the boundaries between two or more different features. Based upon this com­
parison, there are several possible sources of e r r o r s  that can be mentioned 
although their individual contributions to the total e r r o r  have not been determined. 
These sources of e r ro r s  could have resulted from: 

0 	 photo-misinterpretation, leading to inaccuracies or insufficient .detail 
in the Ground Truth Map, 

0 	 imprecise location of boundaries between features on the original 
Ground Truth Map, 
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0 	 imprecise location of boundaries between features on the Ground 
Truth Map that had to be duplicated from the original for photo­
graphing and digitizing, 

0 	 imprecise registration in matching geographic coordinates of the 
digital Ground Truth Map with pixel coordinates of Landsat data, 
and 

0 pixel mixing in both digital Ground Truth Map and Landsat data. 

An additional possible source of e r ro r  contributed by the analysis was i n  the 
selection of training areas,  which in some cases were necessarily diminutive 
and irregular in size and small i n  number of pixels for several features. 
However, it appears that the dominant e r r o r  is a result of pixel mixing, since 
all of the classification maps agree with each other more than with the ground 
truth map, and difference maps between different classification results still 
indicate that the majority of disagreements occur at the boundaries between 
two or  more different features. 

0 	 Comparative classification accuracy between the various techniques 
improves significantly i f  classes a re  homogeneou,s and-if boundary-
-effects a re  suppressed. 

The accuracy assessment permits one to draw mixed conclusions about the 
accuracy of supervised versus unsupervised techniques, but i t  is suspected that 
these conclusions a re  mainly due to the nature of the data set alone. The data 
set  is predominantly agriculture and forest with the other features occurring 
in scattered narrow or  small patterns that represent a much smaller portion 
of the data set, and use of the similarity tables results i n  the unsupervised 
technique maps being compressed mainly into the forest and agriculture cate­
gories. The reason for this is that SSCP requires at least a 7 by 7 pixel 
homogeneous area in which to cluster and in the case of HINDU the unearthing 
of a class is highly dependent on the class population and distribution dispersion 
in the data set. Hence, the unsupervised techniques had little or  no chance of 
discovering and distinguishing the smaller features that were present in the 
data set. The above statements are supported by examining the similarity 
measures for three different cases. 

If one compares the classification maps with the Ground Truth Maps, the highest 
similarity for the six class supervised technique is 72 percent, while the highest 
similarity for the eight class unsupervised technique is only 55 percent. The 
percentages appear rather low and may be somewhat misleading since approxi­
mately 30 percent of the data set are boundary pixels which account for most of 
the e r ror .  In this comparison, it was  assumed that the boundary pixels on the 
Ground Truth Map were correct. 
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In the second case, i f  one considers deciduous and coniferous as only one cate­
gory, forest, the highest similarity measure increases to 76 percent for the six 
class supervised technique and to 79 percent for the six class unsupervised 
technique. The unsupervised techniques are about 3 percent more accurate 
than the supervised techniques, but mainly because the data set  is predominantly 
agriculture/forest . 
In the third case, if one further considers that the boundary pixels are classified 
correctly by each technique, then the highest similarity measure increases to 
91 percent for the six class supervised technique and to 93 percent for the two 
class unsupervised technique. Again, the predominance of agriculture/forest 
in the data set  gives the unsupervised techniques a slight edge in  accuracy. It 
is interesting to note that density slicing is only about 5-10 percent less  accurate 
than the other supervised techniques on this particular data set for land use 
application, but generalization of this statement to all cases is considered rather 
risky. It may also be argued that the particular 5-10 percent increase in accuracy 
may be the most significant 5-10 percent. 

_ _  ­0 U s e  of Landsat data from-more than one season had a negligible 
effect on  SasGification accui-acy for this particular test site.- ~ 

With regard to using multitemporal data to increase the accuracy, i t  was found 
for this data set  and application the similarity increased by 3 percent at the 
most. Again a generalization is rather risky because the accuracy increase will 
be highly dependent upon the test si te as well as application. It is also interesting 
to note that the method used for band or channel selection in the multitemporal 
linear classification and density slicing techniques picked the infrared band 
(. 8-1 .1  microns) for classifying all of the features except deciduous and coniferous. 
The .6-. 7 micron and .7-. 8 micron bands were chosen to distinguish these two 
features and the .5-. 6 micron band was a last choice in all cases. The same 
choices were  apparent in the multitemporal data with the addition that the winter 
scene was relegated to a last  choice. 

0 	 -The various techniiuestested are comparable in accuracy and, in  
general, differences between results-lie within a spread of about 
10 percent. 

Examination of the worst case similarity measures for this data set  and applica­
tion indicate that there is less than 10 percent difference between the various 
supervised technique results under all cases examined. The maximum difference 
between the various unsupervised results was 15 percent, 10 percent spread being 
a more typical value. There is no more than 16  percent difference between the 
unsupervised and supervised technique results. If the classes deciduous and 
coniferous are considered as one class, forest, and if pixel mising is ignored 
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by assuming that each technique classifies boundary pixels correctly, then the 
difference between all of the techniques is less  than 10 percent. 

Insufficient spatial resolution in the data and pixel mixing are~- the 
- _____L ~~chief problems in reliable computer classification of Landsat data-

for inhomogeneous rural  areas. Without these problems, over­
90 percent classification accuracy is attainable. 

The two main problems appear to be lack of resolution in  the satellite data and 
pixel mixing. Since the unsupervised techniques have more difficulty in  dis­
tinguishing the smaller features, it would appear that increased resolution would 
provide them with the most improvement. In any event increased resolution 
would probably increase the accuracy since the number of boundary pixels would 
tend to increase at a linear rate compared to an area rate for the number of pixels 
adjoining a boundary. However, an increase in resolution would not necessarily 
improve the pixel mixing problem and in some cases may actually magnify the 
problem. One possible approach to handling the pixel mixing problem is to em­
ploy boundary detection o r  enhancement techniques to first separate the data into 
homogeneous areas,  which have a minimum of pixel mixing, and boundary pixels. 
Once the boundary pixels have been isolated from the rest of the data, special 
techniques can be developed for handling them in a more effective manner. 
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3.0 PERFORMANCE SUMMARY AND RECOMMENDATIONS 

3 . 1  PERFORMANCE SUMMARY 

For ease of reference, the classification techniques described in Section II and 
assessed in  Section 111-2 are briefly summarized. Table 3-1 identifies the chief 
characteristics of each technique considered. Table 3-2 summarizes the cost 
and performance data acquired in test and evaluation. Figure 3-1 protrays 
graphically the percentage similarity measures between a Ground Truth Map and 
the various classifier results for the following cases. 

Normal -pixel-by-pixel comparison with Ground Truth. 

Forest Merged -Same as Normal, but with a mixture of two Ground Truth 
classes considered as one. 

Boundary Er ro r  Ignored -Same as Forest  Merged, but with all pixels on 
the boundaries between classes being disregarded. 

Forest  Merged Inventory -Similarity based on comDarison of class 
populations without regard to pixel location. 
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Table 3-1. Characterist ics of Techniques Assessed 

Classification decision based on tonal differences within a single spectral band. 
Density Slicing Yes No Threshold values for decision rule determined by visual experiment or using a 

feature selection technique. 

Assumes data have Gaussian probability distributions, Gaussian parameters (mean 
Maximtun Likelihood Yes Yes  and covariance) for each class estimated from set of known samples. Class assign-

ment made by computing largest decision function, using class Gaussianparameters. 

Partitions measurement space into regions associated with each class, determined 
ELLTAB Yes Yes by analyzing known samples to find their Gaussian distribution properties. Each 

region is defined in a table. Class assignment made by table lookup. 

Separates classes sequentially in order of separability by linear surfaces (hyper-
Linear Sequential Yes No planes). These surfaces are  determined by iterative analysis of samples whose 

identify is known. 

Binary No No 
Determines regions of data homogeneity (clusters) by associating the relative magni-
tudes of spectral band reflectances with a binary decision vector. 

Identifies regions of spatial homogeneity by mapping boundaries. Combines boundary
Spatial and Spectral Optional Calculated map with original data to define spectrally similar clusters. Class assignment isClustering (SSCP) Internally by a minimum distance decision rule. 

Estimates the local density of samples in measurement space by computing histo-
HINDU No No 1 grams, and automatically locates centroids of data clusters. Class assignment is 

, by table lookup of labels corresponding to the Centroids of the occupied histogram 
cells,with the table being created udng a piecewise linear discriminant classifier.-~ 



Table 3-2. Cost/Performance Summary 

I1 I 
# of Classification 1 # of Pixels 

1 Technique Classes Time (see) j Pixels 'Per  Seci 
I I. 

I I I 

, Density Slicing 4 36 j 17 - 1 6 , 16.5 ' 52,000' 3152 I 3.26 
1 , 160 , /  163.26 

Maximum Likelihood 36 4.5 114 11.52 160 	 , 171.52 
I 

Multitemporal Maxi- l6 l ., 36 12 
I 

52,000: 75 I/ 68.25 160 ,, 228.25mum Likelihood 4 
ELLTAB 4 36 4.5 52,000, 825(21 6.56 160 I 166.56 

Linear Sequential 4 36 . 40 52,000 2970 1 5.64 160 161.64 

Multitemporal Linea 16 I 36 900 6 I, 39 52,000 1337 
~' 91.29 160 I 251.29Sequential 

H ,  I II 
Q, 

4 - - 230,400 482 48.51 

4 58 1208 T:: 0.60 60,000 80 190.46 

4 9 24.5 52,000 8666 2.45 
I 
Notes: (1) TheSuper 1s analyst time to e .ect and refine training samples. 

(2) UNIVAC 1108 time (all othere apply to IBM 360 i5) 
(3) $35O/HoUr 

(4) $lO/Hour 

(5) Does not include aualyst time, which cannot yet be estimated for operational work. 
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Figure 3-1. Summary of Similarity Measures  Between the Classification Maps 
and a Ground Tru th  Map 

111-62 



3.2 RECOMMENDATIONS 

Based upon the results of this initial study, there a re  several areas of activity 
that need to be further pursued in order to obtain more visibility on existing 
techniques via assessments. These activities include: 

Problem separation -Determine and isolate those problems that 
can be attributed to sensor specification only, data sets only, 
techniques only, and applications only. 

Problem synthesis -Determine the overall dependence of the above-
mentioned independent problem areas. 

Develop methods to properly understand and handle the pixel mixing 
problem. 

Extend the results of signature extension in a geographical and 
temporal sense. 

Extend the results to other temporal, spatial, and spectral domains 
to determine the time frames, resolution, and spectral bands and 
bandwidths needed for a particular discipline application. 

Extend the results to other discipline applications to determine whether 
one technique is more suitable to a particular application than another. 

Extend the results to include multilevel data bases. 

If the above problems can be effectively solved, then optimum impacts can continue 
to be made of future operational remote sensing platforms and efforts can be 
initiated to provide more cost/effective and timely automatic processing. 
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