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ANNUAL REPORT

NASA GRANT NSG - 1022
,r

X-ray Emission from High Temperature Plasmas

by

W.L. Harries*

The investigation is a continuation of contract

NAS1-11707-23 which ran 1 July 1973 to 30 June 1974.	 It

was renamed NSG 1022 and renewed 1 July 1974, and on 1

July 1975.	 This report covers the peiiod 1 July 1975 to

30 June 1976.

The work is an experimental investigation carried out

-	 at NASA Langley Research Cente;;; using their facilities. 	 The

experiments were done on the Focus I and Focus II devices in

'	 collaboration with J.H. Lee of Vanderbilt University working

under NASA Grant NGR 43-002-031, and D.R. McFarland of NASA.

The purpose of the work is to investigate the physical

processes occurring in Plasma Focus devices.	 These devices

produce dense high temperature plasmas, which emit x rays of

hundreds of KeV energy and 10 9-1010 neutrons per pulse.	 The

processes in the devices seem related to solar flare phenomena,
5

and would also be of interest for controlledthermonuclear fusion

applications.	 The high intensity, short duration bursts of
i

k
x rays and neutrons could also possibly be used for pumping

nuclear lasers.

*Professor of Physics, Old Dominion University, Norfolk, Va. 23508 1

a



f

r)

, The specific objective was to investigate x-ray

i emission.	 The emission was closely related to the dynamics

of the electrons and in particular the trajectories of the

high energy electrons. 	 Experiments performed during this

period included the "shadow" method of detecting the

direction and angular spread of the high energy electrons,
i

using a hollow anode with a hole in its upper surface.

Another expeC Cent consisted of placing a plate above the focus

and observing its lower surface for low energy x-ray emission -

none was observed indicating that there were hardly any

electrons travelling away from the anode at any time.	 Details

of these experiments together with previous worts have been

incorporated into a paper to be submitted to Plasma Physics,

"Trajectories of High Energy Electrons in a Plasma Focus",

- Appendix A.

It became evident that accelerated beams of electrons

existed that could only have been formed by strong electric

fields.	 These fields were directed away from the anode and would

also accelerate the ions. 	 The picture was found consistent

with the converging beam model of neutron production, proposed

previously by J.H. Lee (1)	Therefore several experiments were

made to detect ions moving away from the anode.	 The experiments
1

were not successful, and details are given in Appendix 8 -

"Detection of Ion Trajectories".

1.	 Lee, J.H., Shomo, L.P., Williams, M.D.'and Hermansdorfer,
y

` Phys. Fluids 14, 2217	 (1971).
2



The acceleration of the ions was related to neutron

production, and attempts were made to obtain the spatial

distribution of neutron emission. The experiments were very

difficult and not successful, and details are given.in

"Spatial Distribution of Neutron Emission," Appendix C.

The period since January 1976 has been spent observing

the plasma with electronic cameras and the Imacon image

intensifier. The purpose of the experiments was to observe by

streak and framing techniques, the distribution in space

and time of both visible light, and x rays. Observations -n

a faster time scale than any used hitherto might be important

in determining the mechanisms of the focus. The method has

worked for visible light, x rays of energies over 1 KeV, and

over 20 KeV in the streak mode. So far the results indicate

that the emission of the x rays is mostly from copper vapor

from the anode surface. Details of the experiment are yiv= in

Appendix D "Emission of X rays from a Plasma Focus vs ;Position

on a Fast Time Scale".

The work above has been carried out on the Focus I machine

and has resulted in four papers given at meetings which are shown

in the bibliography. A manuscript is to be submitted shortly

for publication.

The grant has been renewed from 1 July 1976 to 30 June 1977.

Future experiments will be carried out on the Focus II machine.
	

I

The Focus I device had 25KJ of energy at 20KV.in its capacitor

J
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bank whereas Focus II has 50KJ at 50KV, thus

giving a variation in parameters. All the techniques

used on Focus I can be applied to Focus II. In particular`

methods of increasing the emission of x rays and neutrons''

will be investigated.

The collaboration of J.H. Lee and D.R. McFarland in this

work is gratefully acknowledged.

i
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APPENDIX A

TRAJECTORIES OF HIGH ENERGY ELECTRONS IN A PLASMA FOCUS

Wynford L. Harries
Department of Physics,

Old Dominion University, Norfolk, Virginia 23508

Ja H. Lee
Department of Physics and Astronomy,

Vanderbilt University, Nashville, Tennessee 3723S

and

Donald R. McFarland
NASA Langley Research Center, Hampton, Virginia 23665

ABSTRACT

The intensity of x rays from a plasma focus was measured versus position,

time, energy, and angle of emission. The low-energy x-rays emanated from the

plasma, but the high-energy components came from a small region of the anode,

surface, on axis. Emission from the focus occurred some 20 ns prior to that

from the anode, but the latter continued for 500 ns. X-ray "shadow" techniques

'Showed that the high-energy electrons traveled in a beam almost perpendicular to 	 j

the anode surface. Spatial plots of x-ray intensity at different energies showed 	 {

that the electrons gained energy as they approached the anode. No counter streaming

of high-energy electrons away from the anode was evident. Polar diagrams of

medium-energy ti 20 keV x-rays resembled a cardioid, but high-energy a 100 keV

x rays were emitted in a narrow lobe toward the anode, with a forward-to-back

ratio of about 50; both results are consistent with Bremsstrahlung emission from
it

a. beam of relativistic electrons. The relativistic beam current was estimated at
i

several 100 A. The electric fields required to produce such electron trajectories

are also consistent with the observed anisotropy of ion emission in a focus, and

with the converging beam model of neutron production, proposed previously.

(e	
I	
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INTRODUCTION

The mechanism by which x rays of hunù ed of keV and neutrons are emitted from

plasma focus devices (Mather, 1964) is not well understood. It was thought at first

that the neutrons and x rays were emitted by thermal processes (Mather, 1965;

Beckner, 1966, 1967), i.e., collisions of particles in is:^ tropic Maxwellian

distributions in the dueterum plasmas. The plasma densities were over 10 19
 cni 3

I

and the electron and ion temperatures were several kilovolts (Peacock et al, 1968). '

However, Beckner, Clothiaux, and Smith (1969) showed that the dominant x-ray emission

teas due to nonthermal high-energy electrons striking the anode and suggested that

high electric fields existed. Bernstein et al (1969) showed that the x-ray photon

distribution did not appear to be due to electrons in a Maxwellian distribution.

Instead, it obeyed a power law, and was proportional to E Y , where E is the

photon energyand y = 2 for 7 < E < 29 keV. Lee, Leobbaka and Roos (1971)

showed similar behavior occurred above 100 keV except that Y was about 4.

Anisotropy in the intensity of x rays, with a reduced signal on axis, was also
a

reported by Jalufka and Lee (1972). Maisonnier et al (1975) have also suggested

the plasma, in a Filippov-type davice, was heated by an energetic electron beam.
a

Neutron production was also consistent with the concept that strong electric

fields accelerate the ions to high velocities. A mechanism for the ion acceleration i
has been suggested by Bernstein (1970). The ion energy distribution was deduced	

j

from measured anisatropies of neutron energy and fluence by Lee et al (1971, 1972).

However, several questions yet remained unanswered. First, what was the
i
i

polarity of the fields? Recently, Newman and Petrosian (1975) claimed the field 	 i

was directed toward the anode, and the electrons should be accelerated away from 	
c

`.	 it. Second, could the polarity of the field change in time? Third, how did beams

of accelerated particXes cross the magnetic field configuration?

7	
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The purpose of this investigation is to determine the trajectories of the

high-energy electrons in the focus by observing the Bremsstrahlung x rays emitted,

and to infer the electric field configuration from the trajectories. Section II

describes the experimental method and results. The direction and angular spread of

electron velocities are investigated, and new measurements of anisotropy of x-ray

flux at different energies are reported. In section III measurements by other

authors of ion and neutron anisotropy are discussed and shown to be consistent

with our results.

EXPERIMENTAL iTINOD AND RESULTS

A. Plasma-Focus Device

_t

	

	 The plasma-focus device was a Mather type, and is reported elsewhere (Lee et al.

1971; Jalufka et al, 1972). It consisted of coaxial cylindrical electrodes, 23 cm

long, with a cathode of 10 cm diameter, and an internal anode of 5 cm diameter, both

of copper (Fig. 1). They were enclosed in an aluminum sphere of 2 mm wall thickness

and 30 cm diameter. The filling gas was deuterium at about 5 Torr. The capacitor

bank provided 25 kJ energy at 20 W. During the "focus" state, the plasma was .

compressed into a volume % 10 
2 cm3 , with densities x 10 19 cm 3 , and electron

temperatures of several kilovolts. Copious neutrons, At 10 10 per focus were,

produced as well as intense x rays of over 100 keV.

B. Spatial Distribution of X Rays

Pinhole camera techniques for x rays are well known (Beckner et al, 1969). In

contrast to previous measurements, we have recorded x rays up to 100 keV energy,

(values higher than the voltage of the capacitor bank and in a range where there

were no copper lines.) Tht pinholes were in 2-cm thick lead and were tapered to
i

	a minimum diameter of 0.4 mm. Each camera had several pinholes and 1 : 1 images were	 j

formed on an image intensifier screen (Du Pont Chronex LightnirFg type), 15 cm behind'
i

i

the pinhole. Contact prints were recorded on Polaroid 3000 or 10 , 000 ISA film.

^t	
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X rays of energies above 1 keV were recorded through a 250 um Beryllium

window (Fig. 1, A), those above 15 keV through the 2 mm aluminum vacuum vessel

as shown in Figure 1, B, and those above 20, 30 and 50 keV were recorded by

using lead filters of 102, 254 and 762 Pm thickness respectively, observing

through the vessel. The filters were used simultaneously, and both single and

multiple shots were recorded. The results are summarized in Fig. 2a and confirm

the, observations of Beckner et al (1969) that the soft x rays came from the

plasma and the hard x rays from the anode surface. The new result here is that

the hardest x rays were emitted from a small region of the surface, on the axis.

Observations from C, (Fig. 1) confirmed that x rays above 30 kcV were emitted

from a radius of approximately 1 mm diamter.

The response of the intensifier screen-film combination was not determined,

so pinhole images of the x rays were also recorded on two 9 x 9 rasters of type

400 thermoluminescent detectors (TLD) (Cameron et al, 1968). Thene were small

cubes, 3 x 3 x 0.75 mm, and on exposure to x rays stored some of the energy in

metastable states. On being heated in a commercial analyser, visible light was

emitted proportional to the intensity of the x-ray dose. Their reliability is

discussed in Section D. X rays of energy greater than 15 keV and greater than

30 keV energy were recorded from 25 focuses (Fig. 2b). The readings were approx-

imately proportional to x-ray intensity and confirmed Fig. 2a except that the TLD's

showed that x rays of over 30 keV were emitted from the plasma approximately O.S cm

above the anode. Both experiments showed the high energy x rays emanated from

near the axis, consi§tent with a model based on an accelerated electron beam. A

beam would also explain the erosion of the anode, which occurred on axis. The first
s

few shots showed a just discernible depression of approximately l mm radius;

after 100 focuses it was about 1 mm deep and several mm in diameter. a

i
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C. Direction of Electron Velocity Vectors

The angular spread of electron velocities was next estimated. The electron

paths were determined from the x rays emitted, by using a "shadow" method. A

hollow anode was constructed, with an aluminum cap forming its upper surface, which

had a 5 mm diameter hole on axis (Fig. 3). The hole did not appear to affect the

discharges, and x rays of over 30 keV were recorded by a pinhole camera at 0 = 450,

outside the vacuum vessel. The aluminum cap was transparent to x rays of this energy

so it was possible to record emission from the upper surface of the cap at A (Fig. 3bj

and from the floor of the cavity at B, on the same film. The two outlines of the hole,

indicated that the main body of > 30 keV electrons had traveled essentially in paths

almost perpendicul;,r I'i', the anode surface with an angular spread of less than 100.

However, exposure to 20 focuses revealed the whole outline of the bottom of thu cavity.

i
	 suggesting lower energy electrons were traveling'at large angles relative to the axis.

We next checked whether at any time there were some electrons traveling away from

i	
the anode. A pinhole camera monitoring region D of the vessel (Fig. 1) (for x rays

s

> 15 kPi observed through the vessel) showed no evidence of emission when the same .

film was exposed to over 20 focuses. An insulated aluminum plate was then positioned

above the anode (Fig. 4) and observed through a 250 pm beryllium window. The plate

did not seem to affect the plasma parameters when its center was more than 3 cm above

the anode, and focuses were still obtained even when it was only approximately 1 cm

from the anode. However, at this position, the neutron emission was considerably

reduced although x rays from the anode surface were still evident. The field of view

of the camera encompassed the anode and plate and recorded emission from the plasma

as in Fig. 2a, but none whatever was recorded from the plate at any position. X rays

down to 1 keV from its lower surface would have been recorded if they had been present.

The-lack-of emission suggests there were few high energy electrons streaming upwards

at any time.

10
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D.' Angular Dnpendenre of X-ray Emission

Angular dependence was measured using type 400 thermoluminescent detectors.

There is a general impression that TLD's are unreliable for quantitative x-ray

measurements. Wide variations in readings wire found when the TLD's were

inadequately shielded from reflected x rays. However, lead containers of 3 mm

thickness (Fig. I t E and ;r) designed so that the detector saw only the plasma,

made the readings consistent; 18 detectors exposed simultaneously gave readings

within *.S%.  Tests using lead filters to reduce x rays and boron filled polythylene

to reduce neutron flux, showed the signals were approximately proportional to 	
i

x ray and not neutron intensity.

The TLD readings, however, were dependent on the energy of the x rays. The

fraction n of energy retained in the TLD was estimated by sending a collimated

x-ray signal through two detectors in series. If the incident signal flux was I;

and the signals from the first and second TLD were s  and s 2 , respectively,

then s 	 n I,	 and S2 = q(1 ; rl)I , or

q o 
l - 

s2
/5 1
	(1)

A rough estimate of n vs energy E was made by using lead filters. The thickness

of the filter essentially determined the lower er.;ay limit for x ray tran;;mission;

while the upper energy limit was a rough estimate only, as the x ray distribution

function versus E was not known. A value of 0.49 t. 0.05 was determined for

x rays of 15 < E < 25 keV, and a value of 0.15 ± 0 . 06 for the range of 30 < E < 50 keV,

(Backscatter of low-energy x rays into the rear TLD did not affect these estimates

as the results were similar with a lead surface adjacent to the rear TLD, and with

the surface removed 2 cm away, and shielded with aluminum, a good absorber.) The 	
1

a

value of n will be used later in comparing emission of different energies.

F
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Estimates of x-ray flux vs emission angle 8 were made by placing the TLD's

every 150 outside the vessel for o < e < n/2 (Fig. 1,E). The anode and cathode
t

intervened !or n/2 < e < n but readings at 8 = n were obtained by placing

detectors in a cavity 15 cm below the focus (Fig. 1 , G). The detectors were

protected by the cap H, 2 mm thick.

The cap was first made of copper, the usual anode material, so it was necessary

to normalize readings at G through copper to those at E through aluminum.

Therefore, detectors were also placed at F behind 2 mm copper. Separate runs

were also taken with H of 2 mm aluminum; the discharge parameters seemed to be

unaffected by changing H from copper to aluminum.

At each angle e, energy analysis was performed by simultaneously using

lead filters of thicknesses 0, 102, 203, 256, 508 and 762 um. Three detectors

recorded for each filter, except at G where there was only one per filter

(insufficient space). Emission from over 20 focus shots was superimposed on the

TLD's for each anode material. The upper limit to the number of shots was dictated

by the amount of erosion of the cap, which was small in each instance.

i
Polar diagrams of intensity of x rays in the 1S keV range with an aluminum

cap were obtained (Fig. Sa). The points at 6 = n /2 are due to the anode and .

cathode intercepting the x rays. The pattern confirms reduced emission at 6 = 00
j

(Jalufka et al, 1972). The extra point at e = n suggests the pattern is a cardioid.

However, the pattern for aluminum with a 762 un filter, (energies > So keV).(Fig. Sb)
I

is greatly different. The signals were reduced two orders of magnitude, but more

important, a for^%tard lobe (e = n) about 50 times greater than the sideways or

backward signal, was evident. The polar diagrams for .intermediate energies were
i

intermediate between a cardioid and a narrow lobe.

s

s
g
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Similar results were obtained with copper. The 2 mm W 4:k copper transmitted

energies > 30 keV, and the two triangles (Fig. Sa) normalized to the signal at 450
I'

suggest a slightly forward oriented lobe. X rays > 50 keV showed a pronounced lobe

with a forward to back ratio of about 40 to 1. The pronounced anisotropy of the

high energy x rays will be discussed in Section III.

E. Total X-ray Energy Emitted

t

	

	 The total x-ray energy per focus was estimated using TLD's which had been

calibrated using a standard x-ray source. The estimate was in order of magnitude

only, as the energy dependence of the emission from the plasma and the calibration

source were different. The relative response to the TLD I F, to the 0.662 MeV it rays

from the Cs 137 source was about 1/10 the response to x rays of 10 to 100 keV

(Cameron et al, 1968). The average dose per focus on TLD's placed 15 cm away outside

the vessel at e = 450, was approximately 4 mR. Assuming 1% transmission (averaged

over energy) through 2 mm aluminum, the total energy per focus for x rn.ys >1S keV

was of order 10 mJ. The dose on a TLD measuring s: rays > 50 keV at e = 450 was

50 times smaller than the dose at 9 = n. The total energy per focus for x rays

> 50 keV was estimated to be %, 1 W, after taking account of the anisotropy,,

F. Time of Emission of X Rays

The purpose of this experiment was to see if the x rays from the plasma and

from the anode surface were emitted at different times. A pinhole camera formed

an image on an intensifying screen, and two light pipes were placed against the
i

image, observing the dense focus region, and the anode surface region respectively.

The light signals were monitored with two separate photomultipliers and displayed

on an oscilloscope.

1
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The light pipes used were polished aluminmi. tubes, as the commercially

available fiberglass type became fluorescent from the x rays and neutrons.

The intensifying screen had a rise time of a few ns, and a decay time of several

ms. The x rays from the focus region were observed to occur 20 ns before those

from the anode surface region. The latter signal continued to increase in

amplitude for several hundred nanoseconds, indicating that x-ray emission persisted

beyond the apparent focus lifetime of 200 ns. This 'long emission time was in

agreement with the scintillation detector,signal.

DISCUSSION

In the dense focus, values of he = 1019 cm-3 , and Te and Ti of several

keV are generally accepted. Assuming Ti and T. = 3 keV, the electron and ion

self collision times are estimated as 1 and 60 ns respectively. The duration of

soft x-ray emission from the focused plasma, which for our purposes we shall regard

as a containment time Tc, is about 200 ns, so the electron velocity distribution

should be Maxwellian in the focus. Here the Debye length is estimated as 10
-5
 cm,

much less than the plasma dimension, so the focused plasma probably maintains

electrical neutrality. Indeed low-energy x rays corresponding to an electron

temperature of a few keV are observed as in Fig. 2(a).

The rasters of Fig. 2(b) which were placed on the image plane of a pinhole camera

were used to obtain the spatial distribution of the ratios of doses through two

different filters. The ratios can yield To if a Maxwellian distribution is

established by using the method of Elton and Anderson (1967). Unfortunately,

the doses through the thicker filter corresponding to the dense focus region about

2 cm above the surface were too small to be measured, even after exposures to

25 focuses. Estimates of 5 t 10 keV electron temperature were obtained for'the 	
i

region about 0.5 cm above the anode, but it is doubtful that a Maxwellian distri-
	 k

bution is applicable there. The ratios, however, give some measure of an average

a
S



energy for the electrons. The ratios decrease on approaching the anode surface

implying a higher average ei;_rgy there than in the plasma. The region of highest

energy is on axis on the anode surface. Very qualitative estimates of point by

point intensity ratios taken from the intensifier screen-polaroid film combination

confirm this result.

The observation of x rays of energies > 50 keV from the anode surface on

,i

	

	 axis, (Fig. 2 and Fig. 3b) implies electrons are traveling in a beam toward the

anode. Therefore, strong electric field:; exist between the dense focus and the

anode, sufficient to accelerate electrf„dis to energies of order 100 keV over a

distance of order 1 cm. Fields of such magnitude would have caused all electrons
L

over 200 eV to run away if ne = 1019 cm-3 (parL'ic;le-particle; collisions only are

taken into account).

We consider next the effect of the magnetic field B e (r) created by the

current through the plasma on the electron trajectories. The total current is about

1 MA at the instant o'f focus formation and should create an azimuthal magnetic

field of 100'T around the current column of radius ro = 1 mm. Inside the current

column Ba (r) a r; r < ro, (assuming constant current densit;, which may not be

true). During compression, the plasma and field are "frozen” together (the diffusion

time through a distance ro at % = 3 keV is 4 x 10-4 sec, much greater than

Tc). However, on axis, B B (0) = 0 so a beam of particles can travel on or near	 R

the axis from the focus to the anode without deflection by the field.

The polar diagrams (Fig. 5) confirm the high energy x rays are caused by

electrons with an anisotropic velocity distribution. The emission of Bremsstrahlung

from a directed beam of electrons is well known, and the intensity n (0) per

electron per unit solid angle per sec. is (see, for example, Leighton, 1959):

R (m) _ —	
g2a2sin2	

(2)
16 7T2 e oc3 (1 - B cos m)5

15
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Here q - is the charge of the electron, a magnitude of the acceleration, e 

the dielectric constant of free space, B = v/c, v the electron velocity, c the

velocity of light, and 0 the angle of emission relative to the forward direction

of the electron. The radiation patterns for different electron energies (Fig. 6a)

show that as B increases, the radiation is predominantly :orward. Then the intensity

at e - n - o would be the sum of patterns similar to Fig. 6a from electrons whose

velocity vectors lie in a cone at any angle up to a relative to the axis of symmetry

(Fig. 6 (b)). The intensity versus 6 for 20 ke-V would be a cardioid, (Fig. S(a)).

and for 100 keV would resemble a forward lobe, (Fig. 5 (b)). The pattern for copper

(ti 30 keV) would be intermediate, as observed.

Although the emission is thick target Bremsstrahlung, the argument is still

cor:n.istent as the high -energy Bremsstrahlung is mostly due to first deflections.

Comparison of Figs. S(b) and 6 (a) suggest values of B ti A.S indicating electrons

of energy approaching 100 keV, consistent with the transmission data obtained with

lead filters.

Very rough estimates of the total energy in the runaway current can be made.

Our measurements show the total energy in x rays above 50 } .eV is of order 1 mJ. The

runaway current is estimated assuming it consists of a monenergetic beam of electrons,

all of energy E = 50 keV. The efficiency of energy conversion from such a beam

into x rays is roughly

a= 109 EZ	 (3)

where Z is the atomic number of the target (Patou, 1970). Then a is 1.5 x 10-3
	

i

and hence the electron beam energy is of order 1J.. 	
i

f
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A beam of 50 keV electrons lasting for 100 ns and of 1.T total energy corres-

ponds to an average current of 200 A.

A theoretical estimate of the runaway current in a focus has W= made by

Hohl and Gary (1974). They assume that the beam has much higher current density

than the surrounding plasma, and creates the magnetic field in its neighborhood.

Then all particles within a gyroradius r  of the axis (rL is calculated from

the field at the edge of the beam) contribute to the runaway current Imo:

Irun n 2n(mKT) 1/2/poa
	

(4)

where m is the mass, a the charge, T the temperature of the particle, and

yo the permeability of free space. For electrons with kT e = 3 keV. Irun = 600A

agreeing in order with our values. The theory yields a beam radius of 1 Um.

The experiments (hard x-ray emission, (Fig. 2 (a), and the erosion) indicate a

beam diameter of approximately l mm at the anode surface. However, there could

have been spreading of the beam between the focus region and the surface of the

anode.

Estimates of beam currents in a focus device are reported by Maissonier et al

(1975) which are several orders of magnitude higher than ours. However, the experi-

ments were performed in a Filippov type device with a 40 kV, 74 W capacitor bank.
d

Any comparison with their results is difficult because of very different

parameters.	
l

The plasma sheath is probably formed just after maximum compression

because the plasma x rays appear slightly before the x rays from the anode.

This picture is consistent with computer simulations of Hohl et al. (1974).

The electric field should also accelerate ions away from the anode.

Evidence of erosion was clearly visible on the inner surface of the vacuum

vessel at 0 Oo . Recently Gullickson (1975) has shown that the flux of 	
7

energetic ions from a Mather device showed a very sharp peak at 0 = 0 0 .	 {
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The production of neutrons is also consistent, with a beam of ions accelerated

to energies of order 100 keV, and converging on the dense plasma. This mechanism

has been proposed previously by one of us (Lee et al, 1971) as the converging

beam model to explain the observed anisotropy of the neutron flux of the plasma

focus.

CONCLUSIONS

Spatial resolution of the x-ray emission from a plasma focus confirms that

the low-energy x rays are emitted from the plasma and the high-energy (> 50 kev)

x rays are emitted from the anode surface. In addition, new evidence is presented

that the highest energy x rays come from a small region (diameter ry 1 mm) on axis

As shown by an intensifier screen-polaroid sensor, by TLD rasters, and from

anode erosion.

The low-energy emission is consistent with a thermal plasma of a few keV energy:

The high-energy emission is consistent with an accelerated beam of electrons with

energies of order 100 keV. The electron beam reaches the anode 20 ns after the

dense plasma formation.

The existence of a directed beam of this energy implies a sheath region of very

high fields between the dense focus and the anode. The presence of the sheath is

assumed in this paper, and the mechanism by which it is created is not discussed.

The direction of the electron beam is essentially perpendicular to the anode,

as shown by the "shadow" experiment. There does not seem to be any streaming away

from the anode at any time as shown by lack of emission from the underside of the
a

plate. The electrons gain energy on approaching the anode as shown by both the
t
a

TLD raster and the intensifier screen-polaroid film experiments.

The plasma conditions are consistent with a "runaway".clectron beam. The
d

magnetic field configuration would have allowed the passage of the beam from the
	

1

focus to the anode, only near the axis, as observed.

is
	

t



The energy and current in the beam are roughly estimated from the x-ray

emission. The results are very approximate but show the beam energy for electrons

over 50 keV is of order W and the current of order 200 A. A theoretical estimate

yields 600 A - agreeing in order. Polar diagrams of x-ray intensity show that

low-energy emission is approximately isotropic. However, there is marked anisotropy in

x rays of energies over 50 keV, which show a lobe in the direction of the anode with

a forward-to-back ratio of 50 to 1. The lobe is consistent with a relativistic beam

of electrons of energies of order 100 keV directed toward the anode.

The above results show that the electric fields are directed away from the

anode - a conclusion which contradicts the postulate of Newman and Petrosian (1975).

A field directed away from the anode would be consistent with the anisotropy of ion

flux, measured by Gullickson (1975), and also consistent with the converging beam

model of neutron production (Lee et al, 1971).

if
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® LEr^,^
THERMO--
LUMINESCENT
DETECTOR

Fig. 1.- Experimental Arrangement. Pinhole cameras observed the plasma through

250 um beryllium window, A, and through the aluminum vessel at B and C.

Camera at D observed the vessel on axis. The thermoluminescent detectors,

E, were placed outside the vessel at different B, and also inside the

vacuum system, behind a copper shield at F, and in the hollow anode at

G. The anode cap H was interchangeable.
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I

Fig. 3.- Method of determining high energy electron trajectories from x rays

emitted: (a) structure of anode (b) view observed by pinhole camera;

x rays are emitted from surfaces A and li, showing the electron

trajectories arc alms-: perpendicular to the anode surface.
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Fig. 4.- 'Arrangement for detecting; high energy electrons

tl%c anode. Ilie aluminum plate was supported by

above. No x-ray emission from its lower surface
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APPENDIX 8

Detection of Ion Trajectories

The purpose of this experiment was to detect ions

moving away from the anode, and if possible estimate their

velocities.

Several methods were tried but all were unsuccessful.

First, an aluminum plate insulated from the vessel was placed

on axis and connected by cable to a 50 n resistor across the

input of an oscilloscope. This ion flux should generate a

positive voltage signal on the plate. Unfortunately, the signal

was buried in noise, although double shielding was used. A

teflon cylinder 15 cm long was then placed between the vessel

and the plate, to remove the plate from the region of strong

electrical noise, but any signal was still undetectable, even

using differential amplifier methods.

Next, several Rogowski coils were constructed that should

have detected any ion current travelling to the plate through the

teflon cylinder. The coils were connected to . differential amplifiers

and made symmetrical so that the noise picked up would cancel.

The system was double shielded, but the signals could still not

be detected. In addition, a balanced, ferrite core transformer

feeding a differential amplifier was constructed,with a flat

response up to _20 Mc, but this also failed to detect any signal.

The failure to detect any signal may possibly be caused by

the space charge of the ions being cancelled out by electrons,

dragged with them.
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APPENDIX C

Spatial Distribution of Neutron Emission

An attempt was made to determine the spatial distribution

of neutrons by using a collimator similar in cross section to

the one shown in Fig. 1 of Appendix D. 	 It was made of boron

filled polyethylene, and had a two dimensional array of l mm

diameter holes spaced 2.54 mm apart.	 The collimator was

15 cm thick and observed neutrons from the focus through the

2 mm aluminum vacuum vessel. 	 A 254 pm lead shield reduced the

x-ray flux.	 The neutrons were detected by two methods (a',, by

rods of NE102 scintillator placed in the holes and in

contact with 3000ASA film, and (b) by using a 4 x 24 raster

of Type 600 thermoluminescent detectors which should detect

neutrons.	 After a run of 50 focuses no definite pattern was

J_ evident on the film.	 The scintilla--or rods were then removed

and the TLD's positioned. 	 Previous estimates showed that

about 500 focuses should give reasonable signals, and a total

of 532 were superimposed over a period of weeks.	 However, no
d

firm conclusions could be drawn from the experiment.

i
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APPENDIX D

Emission of X rays from a Plasma Focus vs

Position on a Fast Time-Scale

The purpose of these experiments was to record

the emission of x rays from a plasma focus as a function of

position and time, on a much faster time scale than hithertoo.

The observations would be important in determing the mechanisms

of the focus.

The method consisted in using detectors that would

convert the x ray energy into visible light and then observing

the light with a fast electronic camera in the streak and

framing mode.

Two types of detectors were used namely NE102 scintillator,

and Du Pont Chronex Lightning Image intensifier screen.

The output from the NE102 had rise and decay times of

a few ns, and the scintillator would be the most desirable

material for fast time scales. The output increased with

absorbing thickness, and the maximum thickness used was 7.5 cm.

In all our experiments, even for x rays down to 1 KeV, the

light output proved inadequate. For the maximum thickness the

scintillator material was in the form of thin rods placed in a

lead collimator. The ends of the rods were observed with an

F2 lens, some 5" cm away. A factor of about 100 gain could

have been achieved if the ends of the rods had been placed

C	 adjacent to the photocathode of the camera, but this involved

1	 modifying tha electrical shielding of the apparatus and was
'i

^a
not done.	

;1
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The Du Pont image intensifying screen had a higher

intensity light output than the scintillator. The output

has a rise.time of a few ns but a decay time of several

us, so the results can only be used,in the formation stage of

a focus.

The electronic camera was an Imacon type, placed in

series with an Imacon image intensifier with a gain of 50,000.

The output was recorded on Polaroid 14000 ASA film. The

camera-intensifier combination were claimed to have ps resblution.

At the end of January 1976, the camera broke down, and was

replaced with a TRW500 with even higher gain. The TRW-imacon

intensifier combination worked well in the streak mode, but

was unsatisfactory for framing, as only two frames could be

•	 recorded. Therefore our main results are in the streak mode

using a Du Pont Ghronex screen for a detector, although framing

shots were also recorded. Observations were also made on

visible light emission.

The experimental arrangement for streak photographs is shown

in Fig. 1. A lead collimator was constructed with a single

vertical line s)f holes of 1 mm diameter and 2.54 mm apart and

placed opposite window A. The window allowed a vertical field

of view of approximately 4 cm. The near end of the collimator

was about 15 cm fromthe focus, so the holes could resolve

adequately.

Visible Light was recorded with window A of quartz and

detector B of ground glass. Two crossed polaxoids were introduced
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between A and the collimator to reduce the light intensity.

X rays of energy greater than 1 KeV were recorded with window A

`	 of 254 Um of Beryllium and detector B of Du Pont image

intensifying screen.	 Finally x rays of greater than 20 KeV were

recorded by interposing a lead filter of 100 ym thickness between

A and the collimator in addition. 	 These x rays had energies greater

than	 would have been obtained by direct acceleration of

the electrons by the voltage of the capacitor bank.	 Attempts

to record energies higher than 20 KeV by using thicker filters

reduced the signal to below noise level.

At the same time as the streak photographs were recorded,

a time integrated picture of the low energy x rays was recorded

through window C by a pinhole camera observing throughy

254 um of Beryllium.

The results are summarized in Fig. 2.	 The pinhole image

for x rays > 1 KeV is shown in (a).	 The streak results are

summarized in (b), where the vertical line of holes coincided

with PQ in (a).	 The region under the curves represents the

area illuminated on the film. 	 The curves in (b) have been idealized.
i

The visible light streaks (curve A) showed wide variations

in behavior.	 The rise times varied from a few ns to about l'usec,

corresponding to dotted curves A and B.	 A "plume" C was noticeable

in some discharges.	 Curve D for x rays > 1 KeV showed a longer

rise time.	 The curve has been smoothed and steps were observed_ a

for some focuses; nevertheless the rise time was about 1 Ps.

s'

R
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Data taken through the lead filter corresponding to energies

> 20 KeV have been idealized in curve E. Our results only

recorded x rays of this energy for a small distance above the

anode surface. The height of the illuminated section PQ was
i

about 2 cm.

The observation that the higher energy x rays came frcm near

the anode surface is in accord with time integrated pinhole

pictures (Appendix A, Fig. 2). The new information here is

that the emission of higher energy x rays occurred first from

near the anode surface and afterwards from near the dense

focus region. This suggests the emission of the x rays was

by colliLions of electrons with copper atoms or ions. The

x-ray intensity should be proportional to Z 2 where Z = 29 is

the atomic number of copper and the streaks should show regions

of density of copper, rather than information on

electron energies.

If so the slopes of the curves might yield the speed...

the copper particles arose from the surface. The

velocities from curves B, D and E are of order 104m/s.

A neutral copper atom of this velocity would possess

an energy of 15 eV corresponding to a temperature of

around 150,0000 - much too high for direct vaporation

from the surface. The copper atoms and /or ions were

probably heated by collisions from the plasma ions.

Framing pictures were also taken by replacing the
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I

collimator in Fig. 1 with a lead pinhole camera, and using the

same window and detectors. The pictures confirmed the time
i

integrated pinhole results, but should be repeated with the 	 I

Imacon camera which gives up to 1E frames per shot.

Zn conclusion, the x-ray streak method has worked
I

successfully at least for x rays of energy higher than the

bank voltage of the plasma focus.
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