General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

fHE UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF ASTRONOMY

McDONALD OBSERVATORY
Austin, Texas 78712

REPORT ON THE LUNAR RANGING
at
MCDONALD OBSERVATORY
FOR THE PERIOD
1 FEBRUARY 1976 to 31 MAY 1976* by
C. S. PALM
J. R. WIANT

UNTVERSITY OF TEXAS
MCDONALD OBSERVATORY
Research Memorandum \#76-004

June, 1976

* This work is supported by NASA Grant NGR 44-012-165.

Abstract

\section*{ABSTRACT}

The four spring lunations produced 105 acquisitions, including the 2000th range measurement made at McDonald Observatory. Statistics were normal for the spring months. Laser and electronics problems are noted. The Loran-C station delay was corrected. Preliminary "doubles" data is she . New magnetic tape data formats are presented. R \& D efforts include a new laser modification design.

TABLE OF CONTENTS

LIST OF FIGURES iv
LIST OF TABLES iv
I. SUMMARY OF OPERATIONS 1
RANGING STATISTICS 1
OPERATIONS NOTES 1
Laser. 4
Laser Power Supply, Capacitors 4
Electronics, TDC 100 6
Electronics, T140 Discriminator 6
Start Diode. 7
Loran-C Station Delay 7
Comments 8
II. DATA REDUCTION NOTES 10
RANGING DATA FORMAT CHANGE. 10
LORAN-C DATA RECORD 10
MAGNETIC TAPE RECORD TYPES 10
LASER PULSE WIDTH. 14
SUSPECTED BIAS ERROR 16
III. $R \& D E F F O R T S$ 17
TELESCOPE FLEXURE MODEL 17
LASER UPGRADE: PULSE SHAPING. 17
AIRCRAFT SPOTTER 18
TV AUTOGUIDER 19
APPENDIX A: The McDonald Lunar Laser Operations Log. 20
APPENDIX B: The Lunar Laser Calibration Data 35
REFERENCES 41

LIST OF FIGURES

Figure 1: Lunar Ranges at MeDoriald Observatory 3
Figure 2: Laser Spectra. 5
LIST OF TABLES
Table I: Ranging Statistics. 2
Table II: Double Photoelectron Events Per Lunation 9
Table III: Ranging Data Laser Shot Format 11
Table IV: Loran-C Data Format. 12
Table V: Record Types 13

I. SUMMARY OF OPERATIONS

RANGING STATISTICS

Table I shows a summary of the McDonald Observatory lunar ranging statistics for four lunations occurring between 1 February 1976 and 31. May 1976. The average signal level of 0.037 photoelectrons per laser shot, the 77% success rate and the 105 suncessful ranges compare favorably with the same spring-month lunations of 1974 and 1975. The average number of monthly ranges was 26 disring this triannual reporting period as compared to a 3l-range ronthly average over the past 13 months of operation. The dominant factor in limiting the number of ranging attempts was the weather. High winds, clouds and poor seeing conditions were prevalent. Only 125 range attempts were conducted under "clear" conditions for the spring lunations as compared with 205 attempts under "clear" conditions drring the winter lunations.

Figure 1 shows an updated histogram of successful range measurements made at McDonald Observatory since September 1970. It should be noted that the April lunation produced the 2000 ch lunar range measurement made at McDonald since September 1970.

As usual, a more detailed description of the daily operation is given in the McDonald Lunar Laser Operations Log which is presented as Appendix A. The system calibration data is explained and presented in Appendix B.

OPERATIONS NOTES

Operations for this reporting period were relatively uneventful as far as failures were concerned. There were no major failures, but a number of minor systems problems arose on occasion.

TABLE I

RANGING STATISTICS

Lunar Site*	Attempts	Ranges	Shots Fired	Returns	Signal Level
0	21	15	441.2	123	. 028 p.e./shot
1	0	0	0	0	-------------.
2	11	5	2521	39	. 015 p.e./shot
3	87	74	15794	702	. 044 p.e./shot
4	17	11	3431	91.	. 027 p.e./shot
total	136	105	26158	955	. 037 p.e./shot

Success Rate $=77 \%$

$$
\text { *Reflector Sites: } \begin{aligned}
0 & =\text { Apollo } 11 \\
1 & =\text { Luna } 17 \\
2 & =\text { Apollo } 14 \\
3 & =\text { Apollo } 15 \\
4 & =\text { Luna } 2.1
\end{aligned}
$$

Laser:

The laser oscillator rod and the laser mode selector were replaced during new moon on March 30, 19\%i, with no loss in ranging data. The rod showed signs of laser-induced damage on one end and the etalon mode selector showed signs of laserinduced damage across one surface. The rod was returned to the manufacturer for reconditioning, i.e. the removal of a portion of the end of the roil containing a bubble with subsequent polishing and antireflection coating of the new surface.

The spectral output of the laser using a new oscillator rod and a new mode selector was checked on April 7, 1976. Figure 2 shows a photograph of the laser spectra for cooling water temperatuces of $54.5^{\circ} \mathrm{F}$ and $62.0^{\circ} \mathrm{F}$ along with the atmospheric absorption spectrum. The atmospheric absorption spectrum showed very little contrast, therefore an atmospheric absorption curve ${ }^{1}$ has been superposed on the photograph for clarity. The relative atmospheric transmission is indicated as "~1.00\% T" for good transmission and "~50\% T " for the half intensity level. The laser is presently operated at a cooling water temperature of $56^{\circ} \mathrm{F}$.

The flashlamp in the \#3 laser amplifier failed after 18,000 cycles of operation on April 18, 1976. Later the same evening, the \#2 laser amplifiew arced to ground and literally severed the power cable at the underfloor power junction box. These two failures resulted in the loss of two or perhaps three laser range attempts, but the system was completely operable the following night.

Laser Power Supply, Capacitors:

A calculation of the life expectancy of the high energy storage capacitors used to fire the laser flashlamps indicated that approximately $55 \%-60 \%$ of the capacitor useful life has been utilized. Extrapolating into the future, we may expect at least one of the capacitors to fail by December, 1980. Since one of the capacitors shows signs of a possible partial failure

ATMOSPHERIC ABSORPTION

FIGURE 2: LASER SPECTRA
in the form of a slightly bulged casing, it was decided to procure a replacement as soon as possible. The spare high energy storage capacitor was received during the latter part of the Mixy lunation.

Electronics, TDC 100:

The TDC 100 timer (see RM \#75-009, June-Oct., 1975) showed signs of a few eighths of a nanosecond jitter during the February lunation. This would tend to show up as a spreading or widening of the laser pulse data and a corresponding spread in the lunar range residuals calculated during the February lunation. The TDC 100 was adjuster by $\sqrt{ }$. Wiant to give $\pm 1 / 8$ nanosecond jitter on the start and stop pulses. The timer has been operating at this jitter level since the first part of the March lunation.

Electronics, T140 Diseriminator:

The T140 discriminator (see RM \#75-009) is used in conjunction with the 100 Hz pulse train, the 20 MHz pulse sharpener and the TLC 100 timer in the timing system. The T140 unit had transistors fail on two separate resasions in March. It also showed signs of jitter and intermittent operation throughout the March lunation. Jitter in this component shows up as rather large variations in the feedback calibration data and a loss of ranging data due to displacement of the calculated residuals from actual lunar returns. Failure of the component results in a complete lack of calibration data and calculated residuals. J. Wiant repaired the unit on March 25, 1976 and no obvious problems with the T140's operation have been detected since that date.

Start Уiode:

The start diode (see MR \#75-009) is normally operated in a fhotoconductive mode with a 67.5 VDC reverse bitus applied via a dry cell. battery. Near the beginning of the April Iunation one of the leads became disconnected, presumably causing tine photodiode to operate in a photovoltaic mode. Hhe lower signal level to the strart diode discriminator was offset by operating the 453 discriminator at a lower minimum threshold level. The threshold was not lowered enough to incur premature triggering of the discriminator by Pockel.s cell spark gap noise and no significant effect on the operation of the system was noticed until late in the lunation when the flip mirror refused to operate with a three joule pulse being emitted by the laser. The "NO LASER" response on the teletype focused attention on the start diode circujit; the problem was identified and promptly cured.

Loran-C Station Delay:

William Klepczynski and Carl Lukac of the U.S. Naval Observatory checked the accuracy of the McDonald clock using a portable, cesium atomic clock after completion of the May lunation. It was found that the total propagation and instrument delay associated with the Loran-C receiver used at McDonald was in error by 28 microscconds. The total McDonald station delay used previously was 74698 microseconds; the corrected station delay as determined by comparison with the visiting atomic clock was 74670 microseconds. The change in the total station delay is presumably associated with the Loran-C receiver components. This was the first clock check performed since the Loran-C receiver was sent to the factory for repairs during the March-April, April-May lunations of 1975. A 28 microsecond offset error in the absolute time reference should cause a negligibly small error in the range measurements made at McDonald.

Comments:

A few range attempts were cancelled fur TV autoguider tests and several more attempts were cancelled due to thlescope scheduling conflicts with other projects, principalily nova observations, occultations, and lengthy interferometer runs.

The McDonald laser ranging station, as a whole, seems to be operating as well as ever. This statement has some credibility despite the fact that the March, Aprill and May lunations produced the fewest number of acquisitions of any three-month period in over a year. Even though the March lunation yielded only 17 successful range attempts, it was accomplished with "cleax" sky conditions on only 14 of the range attempts. This is a better acquisition-to-clear-sky ratio than the record month of October, 1.975; She February lunation produced one range with 12 returng in only 31 laser shots. That performance rival.s the best ranging performances that have ever come out of the MoDonald station.

To date, no statistics have been given on the effectiveness of the doubles counter (tag on a double photoelectron event) installed in September, 1975. The double photoclectron events have not been studied in any great detail, but Table II presents the total number of double photoel.ectron events per lunation since October, 1975. A few of the events were not correlated with the lunar residual and were presumably "noise doubles", however most of the events were within the lunar residual spread and may be considered "Iunar range doubles". The most impressive "doubles" range came on February 8, 1976 when 12 returns came from 62 laser shots with three double photoelectron events coinciding with the lunar residual.

TABLE II

JOUBLE PHOTOELECTON EVENTS PER LUNATYON

LunationOctober, 1975November, 1975January, 1976
"Doubles" Events
2415
December, 1975 1925
February, 1976 38
March, 1976 9
April, 1976 15
May, 1976 18

II. DATA REDUCTION NO'TES

RAIIGING DATA FORMA'T CHANGE

Starting with magnetic tape reference MCD 89, 4 March 1976, the ranging data laser shot format changes from a 14 word per shot to a 20 word per shot description. The additional words allow the data reducer to obtain parameters from the magnetic data tape that were previously given to him on computer cards. The old ranging data format may be found in a previous report, RM-\#75-009. The new format is shown in Table III.

LORAN $-C$ DA'IA RECORD

Starting with magnetic tape reference MCD 89, 4 March 1.976, the Loran-C versus the crystal clock readings are lifted one at a time from the housekeeping records, grouped together and written as a separate large record. Henceforth, clock epoch and frequency information are available to the data reducer directly from the magnetic lat tape. The Loran-C data format is shown in Table IV.

MAGNETIC TAPE RECORD TYPES

As a matter of convenience for the reader, a summary of the magnetic tape record types used throughout the ranging program fron 25 August 1971 to the present date is presented in Table V.

TABLE III
RANGING DATA LASER SHOT FORMAT
Legend: $0=$ Always 0
1 m Always 1
$X=0$ or 1
$N=$ Shot Number

Word No.	Bit Description	Symbol	Word	Form
$20(\mathrm{~N}-1)+1$	0000 00xX XXXX XXXX	Dayi.	Day, UTC	BCD
2	00xx Xxxx 0xxx xxxx	HM1	Hour, Minute, UTC	BCD
3	00000000 0xxx XxXX	SEC1	Second	BCD
4	Xxxx XxXX XXXX XxXx	RA2	Middle Adj. Range	$B C D$
5	XXXX XXXX XXXX XXXX	RA3	Least Adj. Range	BCD
6	XXXX XXXX XXXX XXXX	CRT3	Calc. Range . I Nano	BCD
7	0xXXXXXXXXXXXXXX	RES2	Range Resid . 1 Nano	BIN
8	0xXXXXXXXXXXXXXXX	R111	K	BIN
9	0 $\mathrm{OXXXXXXXXXXXXXXX}^{\text {d }}$	R110	Eighth Nano	BIN
10	0 $\mathrm{OXXXXXXXXXXXXXXXX}^{\text {P }}$	R121	Laser to 10MS	BIN
11	0xXXXXXXXXXXXXXX	R120	Eighth Nano	BIN
12	0 ${ }^{\text {PXX }}$ XXXX XXXX XXXX	SEC2	10 MS Time	BCD
13	XXXXXXXXXXXXXXXXXX	R211	K Prime, Tag 3	BIN
14	OXXXXXXXXXXXXXXX	R210	Fitghth Nano	BIN
15	0 ${ }^{0} \times \mathrm{XXXXXXXXXXXXXXX}$	R221	PivT to 10 MS	BIN
16	OXXXXXXXXXXXXXXXX	R220	Eighth Nano	BIN
17	0 ${ }^{\text {PXX }}$ XXXX XXXX XXXX	SEC3	10 MS Time	BCD
18	OXXXXXXXXXXXXXXXXX	R231	PMT to Second 10 MS	BIN
19	0 XXXXXXXXXXXXXXX	R230	Eighth Nano	BIN
20	0000000000000000		Spare	
TDC Format: The least SIG bit of the most. SIG word equals 2^{15}. SEC2, SEC3 concain 10SEC, SEC, 1COMS, 10MS BCD.				
This format starts with magnetic tape \#MCD 89, Day 64, 4 March				

TABLE IV

LORAN-C DATA FORMAT

$$
\text { Legend: } \begin{aligned}
0 & =\text { Always } 0 \\
1 & =\text { Always } 1 \\
X & =0 \text { or } 1
\end{aligned}
$$

Word No.	Bit Description	Symbo	Word	Form
1	1111111111111111	-1	-1, F1ag	BIN
2	0xxX XXXX XXXX XXXX		Remaining \# Words	BIN
3	0000000000000011	3	Record Type 3	BIN
4	00000001 XXXX XXXX	0176	McDonald site/year	BCD
5	0000 00xx XXXX XxXX	Day	Day,UTC	BCD
6	00xX XXXX 0xX0 0000	HM	Hour, Minute, UTC	BCD
7	0000000000000010	MLD1	McD Loran Delay MSW	BIN
8	0xxxxxxxxxxxxxxx	MLD0	McD Loran Delay LSW	BIN
9	0000000000000000		Spare	
10	000000000000000		Spare	
11	0000 00xX XXXX XXXX	Day	Day, UTC	BCD
12	00xX XXXX 0xX0 0000	HM	Hour, Minute, JTC	BCD
13	$000000 \times x \times x x x x x x x$	LC1	Loran Compare MSW	BIN
14	$00000 \times \mathrm{XXXXXXXXX}$	LC2	Loran compare LSW	BIN
15	0000000000000000		Spare	
16		Day		
17		HM		
18		LC1		
19		LC2		
20			Spare	
		etc.		

Maximum record length, 1010 words Mimimum record length, 15 words

TABLE V

RECORD TYPES

Record Effective Period Record Type, Comments

0	25	Aug MCD		- 29 Jun - MCD 80		Ranging Data, Verniers
1	25	Aug MCD		$\text { - } 29 \text { Jun }$ $\text { - MCD } 80$		Calibration Data, Verniers
2	17	$\begin{aligned} & \mathrm{JuI} \\ & \mathrm{MCD} \end{aligned}$		- 25 Feb - MCD 88	76	Kanging Data, TDC-100 AKPP in place of DR1 (1)
3	4	Mar MCD	$\begin{aligned} & 76 \\ & 89 \end{aligned}$			Loran-C Data
4	25	Aug MCD	$\begin{aligned} & 71 \\ & 34 \end{aligned}$	-		Housekeeping Data
	25	Aug MCD		- 29 Jun - MCD 80	75	Channels 3-7 Information
	4	Mar MCD	$\begin{aligned} & 76 \\ & 89 \end{aligned}$			Loran Delay to McDonald at Mt Locke
5	25	Aug MCD	$\begin{aligned} & 71 \\ & 34 \end{aligned}$			Operations Log
6	25	kug MCD	$\begin{aligned} & 71 \\ & 34 \end{aligned}$	-		Comments
7	25	Aug MCD	$\begin{aligned} & 71 \\ & 34 \end{aligned}$			Hand Typed Ranging Data
8	4	Mar MCD	$\begin{array}{r} 76 \\ 89 \end{array}$			Ranging Data, TDC-100, 20w/shot

(1) See MCD 81 Adderdum for peculiarities on MCD 81.

LASER PULSE WIDIH

The laser pulpe feedback calibration gives the single shot uncertainty associated with the laser pulse. The measure of the single shot uncertainty is obtained by piotting the K calibration data (the relative delay between trie photodiode start of the I'DC 100 and the photomultiplien stop of the TDC 100) for a given night and then estimating the spread of the K calibration date. The pules width is then reflected in the calibration data presented in column B of Appendix B.

Over the past year on so, there has been a gradual increase in the apparent width of the laser pulse. In June, 1975 the typical pulse width was ± 1.7 to ± 2.4 nanoseconds; in May, 197 the pulse width was typically ± 2.9 to ± 4.2 nanoseconds. There are three basic reasons for an apparont increase in the laser pulse width as published in these triannual reports: an actual increase in the laser pulse duration, jitter in the electronic components measuring the laser pul.se width, and an error in the estimation of the pulse width from the calibration data. Brief comments on each of these three areas are in order.

An actual increase in the laser pulse duration is readily checked by photographing the pulse shape as it appears on the Tektronix 519 oscilloscope after being detected by the Korad laser pulse monitoring photodiode. A large number of photographs gives a good indication of the stability and shape of the average pulse over the course of one night of ranging. This has been done on occasion to stay abreast of the laser performance on a real time basis. The February and March lunations showed signs of multi-mode lasing when observed via the photographs. The actual pulse length was greater than 5 nanoseconds full width at the half maximum points (FWHM) with nanosecond sub-structure discernable in the pulse shape. For the most part,
this problem was cured after the new oscillator rod and mode selector were installed. The laser pulse shape during the April and May lunations was relatively free of multi-mode structure and showed a reasonably constant pulse width of 3.0 to 4.5 nanoseconds FwHM.

The estimation of the laser pulse width from the calibration data is presently performed manually rather than being a com-puter-calculated value. Even though the method of estimating the pulse wiath has been consistent throughout the past year, it is felt that the pulse width calculation should be entirely a computer-calculated value. This change will be initiated as soon as time allows.

Jitter in the electronic components of the McDonald timing systern has been reported in numerous, previous reports. At the present time, we feel that we may have a jitter problem but further investigation is require before a definitive statement can be made on the subject. The primary evidence point:ing toward a jitter problem is the fact that certain range residuals show a statistical dispersion of ± 2 nanoseconds which is consistent with the photographed laser pulse shape, while the calibration data corresponding to those range residuals show a statistical dispersion of ± 3.5 nanoseconds which is consistent with the overall calibration data estimates of the laser pulse shape. A case which illustrates this type of behavior is range data from May 22, the 11:00 range on reflector number 3. Further comments on the electronic jitter problem will be made in the next triannual report.

SUSPECTED BIAS ERROR

The calculation of the system calibration constant requires a knowledge of " K prime", the difference between the start and stop paths which is internal to the timing electronics. This constant was measured to be 15.375 nanoseconds in October 1975. Since we did not anticipate any secular changes in this area, the constant was not monitored regularly. When checked in March 1976, it was found to have drifted to 16.8 nanoseconds due to a misalignment of the TDC 100. For the March, 1976 lumation and later the data can be corrected for the drift in K^{\prime} because the data format change (page 10) allows daily monitoring of this parameter. Unfortunately, the data between October and March may be biased by unrecoverable drifts in the K^{\prime} constant. We would guess that the range measurements may be as much as 1.4 nanoseconds too low in February 1976 with progressively smaller errors as far back as the November Iunation in 1975.

III. R \& D EFFORTS

TELESCOPE FLEXURE MODEL

The effort to improve the telescope pointing via a spherical harmonics flexure model has moved forward nicely from a computiar programming point of view, but has suffered from an applica";ion pont of view due to unpredictable movements of the primary mirror in the 2.7-meter telescope at MoDonald Observatory. A set of 201 observed positions in the ranges -3^{h} to $+4.5^{\mathrm{h}}$ (hour angle) and -30° to $+70^{\circ}$ declination have resulted in absolute position errors of 11.55 arc seconds for one standard deviation. The telescope pointing problems surfaced in May, 1976 when primary mirror movement was found to be responsible for pointing errors as great as 60 arc seconds in a 700-900 arc second drive. The 2.7 -meter primary has since been secured with a considerable improvement in the absolute pointing accuracy. The flexure observations will likely be continued after the primary mirror of the 2.7 meter telescope is aluminized in late July, 1976.

LASER UPGRADE: PULSE SHAPING

Components have been ordered to modify the laser oscillator cavity and perform pre-amplifier shaping on the Pulse Transmission Mode (PTM) pulse. Details of the laser modification will be given in a later report after the new systen has been successfully installed and is fully operational. Only a cursory description of the modification is given here.

The laser oscillator cavity will be lengthened enough to accomodate an additional Pockels cell and a small beam splitter. The oscillator cavity will still be "formed" by applying a voltage pulse to one of the Pockels cells. A fraction of the oscillator cavity energy will be diverted by a beam splitter to a laser triggered spark gap (LTSG) .

The LISG will be adjusted to switch a high voltage to the second Pockels cell when the oscillator energy build-up reaches a predetenmined level. The second Pockels celll will dump the energy in the cavity in a conventional PJM manner and then alip the trailing edge of the pulse after being turned off by a reflected voltage pulse. External to the oscillator cavity, a dye cell with a saturable absorber will sharpen the leading edge of the emitted laner pulse before it enters the laser amplifiers. The operational gain expected from this modification is two-fold. The pulse clipping and dye cell. leading edge shaping should reduce the pulse width to $1-1.5$ nanoseconds with a 300-500 picosecond risetime on the leading edge. The laser triggered spark gap should act as an internal power regulator to stabilize the laser output to a constant energy output. Thus, it is expected that the modification will produce a shorter, more stable laser pulse.

Preliminary tests with a static dye cell. located between the laser oscillaton cavity and the first amplifier have indicated that cryptocyanine in methanol will. indeed shape the leadirg edge of the laser pulse. The present PTM pulse showed a 40% increase in the leading dege slope (Δ power/ Δ time), a 22% improvement in the leading edge risetime, and a 20% decrease in the pulse width when the dye was near an optimum concentration.

ATRCRAFT SPOTTER

The automatic aircraft spotter system appears to be too expensive to have manufactured by an outside concern. Most of the cost estimates have been in the $\$ 15,000-\$ 18,000$ range with at least one system priced at $\$ 40,000$. Preliminary calculations for an "in house" aricraft spotter design show that an aircraft spotter- laser interrupt system could detect an aircraft at 30 miles distance from the observatory during night time operation. Calculations on the daylight performance
have not been completed yet. The cost estimate on the "in house" aireraft spotter is approximately $\$ 1500$.

TV AUTOGUIDER

The Reticon autoguider uses two different computers in guiding the telescope. The Varian computer in the laser room reads the angle of the bright limb imaged on the 32×32 diode array in the Reticon camera. After the Varian determines the l.imb angle and hence the location on the limb, the information is fed into the IBM 1800 computer where lunar libration corrections are made. The corrected lunar limb position is then used as a reference for computer driving to any other site on the lunar surface.

At the present time, the autoguider system lacks the computer link which allows the Varian to communicate with the 1800. Therefore, a test of the entire system has not been completed. However, Vanian limb angle, determination repeatability and 1800 limb-to-crater and crater-to-linb drive accuracy have been tested with encouraging results. Without being finely tuned, the Varian has demonstrated the capability of making lunar limb angle determinations with a repeatability of $\pm 0.2^{\circ}$. When the Varian determinations were manually fed into the 1800 computer, moderate telescope drives of several hundred arc seconds were accurate and repeatable to within l-2 arcseconds n The Varian limb measurements were improved by the addition of a transfer lens between the laser room focal plane and the Reticon photodiode array. The Reticon now sees five arc seconds per diode instead of the previous 1.85 arc seconds per diode. The increased field of view apparently helps to smooth over the local variations in the iimb appearance produced by lunar mountain ranges near the limb.

An actual lunar reflector acquisition was not acheived during the "manual data transfer" tests because of poor weather conditions and the long-drive pointing inaccuracies associated with the 2.7 meter primary mirror movement problems.

APPENDIX A

The McDonald Lunar Laser Operations Log

from

1 February 1976 to 31 May 1976

STATION LOG FEB. 1976

STATION LOG FEB. 1976

STATION LOG MARCH 1976							
DATE	DAY (GMT)	TIME	NO. OF SHOTS	RETURNS	WEATHER	SEEING	COMNENTS
Mar. 12	073	01:30			clouds		cancelled
		04:30			"		
Mar. 13	073	07:30			*		"
Mar. 13	074	02:00			$\begin{array}{cc} \text { heavy cirrus } \\ " & " \\ " & " \end{array}$	4-5	$\begin{gathered} \text { cancelled } \\ " \\ " \end{gathered}$
		05:00					
		08:00					
Mar. 14	075	02:30	224/3	4/3	cirrus	3-4	stopped by cirrus
		05:30	212/3	10/3	"	"	
		08:30	235/3	11/3			
Mar. 15	076	04:00			hazy	5-8	cancelled seeing $"$ $"$
		07:00			"	7-9	
		10:00			"	$8=10$	
Mar. 16	077	05:00	144/3	10/3	light haze	3-4	$\text { cancelled }_{n}$
		07:15			cloudy		
Mar. 18	078	$06: 30$	120/3	11/3	light haze		
		09:30	178/3	9/3	"		
			151/0	8/0		3	
		12:30	236/2	$5 / 2$	cloudy	3	cancelled
Mar. 19	079	07:00	196/3	11/3		2-3	tried new beam splitters
		10:00	139/3	9/3	clear	3	
			95/0	9/0	"		
			240/2	4/2	"		
		13:00	97/3	$0 / 3$	heavy cirrus	3	
Mar. 20	080	08:30			clear,windy		very windy, cancel.
		12:30			cloudy,windy		" ${ }^{\text {a }}$

DATE	DAY (GMT)	TIME	STATION NO. OF SHOTS	APRIL 197 RETURNS	WEATHER	SEEING	COMMENTS
April 1	92	22:50					Start tape MCD 90
April 2	93	$\begin{aligned} & 18: 00 \\ & 21: 00 \end{aligned}$			$\underset{\text { cloudy }}{ }$		cancelled
	94	00:00			"		"
April 3	94	$\begin{aligned} & 18: 45 \\ & 21: 45 \end{aligned}$			cloudy		cancelled
	95				"		
April 4	95	$\begin{aligned} & 19: 30 \\ & 22: 30 \end{aligned}$			Cloudy Rain		cancelled $"$
	96	01:30			"		"
April 5	96	$\begin{aligned} & 20: 30 \\ & 23: 30 \end{aligned}$			$\begin{aligned} & \text { Cloudy } \\ & \text { " } \end{aligned}$		Cancelled "
	97	02:30			"		"
April 6	$\begin{aligned} & 97 \\ & 98 \end{aligned}$	21:30 00:30 03:30			cioudy cloudy ptly cldy	4	```cancelled detector pkg alignment problem```
April 7	98	22:30			clear	4-5	cancelled occultation
	39	$\begin{aligned} & 01: 30 \\ & 04: 30 \end{aligned}$	234/3	2?/3	clear cirrus	$\begin{aligned} & 2 \\ & 4-5 \end{aligned}$	" "
April 8	$\begin{array}{r} 99 \\ 100 \end{array}$	$\begin{aligned} & 23: 30 \\ & 02: 30 \\ & 05: 30 \end{aligned}$			$\begin{aligned} & \text { cloudy } \\ & " \\ & " \end{aligned}$		$\begin{aligned} & \text { cancelled } \\ & " \end{aligned}$

STATION LOG APRIL 1976 NO. OF SHSTS RETURNS
$11 / 3$
$? 6 / 0$
Mッ mo mon mion
NEATHER
cloudy
$"$
ptly cldy
cldy
cldy
"

COMMENTS

OMO
NHN
ng
nin
nin

DATE	DAY (GMT)	TIME	STATION NO. OF SHOTS	G APRIL 1976 RETURNS	WEATHER	SEEING	COMMENTS
April 24	115	12:30	$\begin{aligned} & 274 / 3 \\ & 309 / 3 \end{aligned}$	$\begin{aligned} & 4 / 3 \\ & 2 ? / 3 \end{aligned}$	clear	3-4	
		14:30			clear, hzy	4	poor contrast electronics
		16:30			clear, hzy		cancelled, poor contrast
April 25	116	13:00			clear	5-6	cancelled seeingcontrast
		$\begin{aligned} & 15: 30 \\ & 17: 30 \end{aligned}$			"	"	cancelled JPL INT.
April 26	117	14:53					Stop MCD 90

[^0]$$
\text { STATION LOG MAY } 1976
$$
NO. OF SHOTS
O. OF SHOTS RETURNS
tape
$$
4-6
$$

DATE	DAY (GMT)	TIME	NO. OF	STATIO SHOTS	$\begin{aligned} & \text { G MAY } 197 \\ & \text { RETURNS } \end{aligned}$	WEATHER	SEEING	COMMENTS
May 9	131	00:20 03: 30 06:30			$\begin{array}{r} 0 / 3 \\ 13 / 3 \\ 0 / 3 \end{array}$	$\begin{aligned} & \text { ptly cldy } \\ & \text { clear } \\ & \text { clear } \end{aligned}$	$\begin{aligned} & 5 \\ & 3 \\ & 4 \end{aligned}$	
May 10	132	$\begin{aligned} & 01: 30 \\ & 04: 30 \\ & 07: 30 \end{aligned}$	$\begin{array}{r} 78 / 3 \\ 97 / 3 \\ 317 / 0 \\ 280 / 3 \end{array}$		$\begin{array}{r} 10 / 3 \\ 10 / 3 \\ 7: 0 \\ 9 / 3 \end{array}$	clear cirrus cirrus It. te heavy cirrus	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	
May 11	133	$\begin{aligned} & 02: 00 \\ & 05: 00 \\ & 08: 00 \end{aligned}$				cloudy cloudy cloudy		cancelled cancelled cancelled
May 12	134	$\begin{aligned} & 03: 00 \\ & 06: 00 \\ & 09: 00 \end{aligned}$				cloudy cloudy cloudy		cancelled cancelled cancelled
May 13	135	04:00				clear	3-6	bad seeing,grass fire to south
		$\begin{aligned} & 07: 00 \\ & 10: 00 \end{aligned}$	290/3		0/3	$\begin{aligned} & \text { clear } \\ & \text { clear } \end{aligned}$	3-4	cancelled nova
May 14	136	05:00				clear.	4	cancelled for auto guider
-		$\begin{aligned} & 07: 45 \\ & 11: 00 \end{aligned}$	241/3		$8 / 3$	clear clear	3	tests cancelled nova
May 16	137	$07: 00$ $11: 30$	$\begin{aligned} & 190 / 3 \\ & 292 / 0 \end{aligned}$		$\begin{array}{r} 10 / 3 \\ 0 / 0 \end{array}$	$\begin{aligned} & \text { c].ear } \\ & \text { cldy } \end{aligned}$	4	cancelled cancelled 1 run canc. inter.
May 17	138	$\begin{aligned} & 07: 30 \\ & 11: 30 \end{aligned}$				$\begin{aligned} & \text { cldy } \\ & \text { cldy } \end{aligned}$		cancelled cancelled 1 run canc. inter.

APPENDIX B

The Lunar Laser Calibration Data

from

1 February 1976 to 31 May 1976

APPENDIX 1
SYSTEM CALIDRATION DAIA

The following pages contain the cal.ibwation constants for the triannual period covered by the present report. The eategories $A-D$ are explained below.
A. Whis column contains the uncorrected calibration constant For the entire lunar laser ranging system as measured by the light enitting diode. Due to differing cable lenths for the calibration system, this number is not exactly the magnitude of the actual system calibration value. It is, however, an accurate measure of the relative shilt in the calibration value on a day-to-day basis.
B. This colum shows the single shot uncertainty as keyed to the following code: (all values are in nanoseconds) $A= \pm 0.4$,

$$
\begin{aligned}
& \mathrm{B}= \pm 0.5, \mathrm{C}= \pm 0.6, \mathrm{D}= \pm 0.7, \mathrm{E}= \pm 0.8, \mathrm{E}= \pm 1.0, \mathrm{G}= \pm 1.2 \\
& \mathrm{H}= \pm 1.4, \mathrm{I}= \pm 1.7, \mathrm{~J}= \pm 2.0, \mathrm{~K}= \pm 2.4, \mathrm{~L}= \pm 2.9, \mathrm{M}= \pm 3.5, \\
& \mathrm{~N}= \pm 4.2 . \text { The absence of a letter will indicate the single }
\end{aligned}
$$ shot uncertainty of J.

C. Ihis column gives the arlthmetic mean of the feedback calibration return through the entire lunar ranging system as reconded by the system teletype during the actual ranging.
D. This column shows the value of ELCOR which has been determined by subtracting K^{\prime} and adding 13.9 nanoseconds to the average in Column C. The units have been cilanged to tenths of nanoseconds and a minus sign added to coincide with how this additive constant appears on the preliminary data cards. Letters A, B, C, D Follow the corrected calibration, where: (all values are in picoseconds) $\mathrm{A}= \pm 200, \mathrm{~B}= \pm 400$, $\mathrm{C}= \pm 600, \mathrm{D}= \pm 1000$, and $\mathrm{E}= \pm 1000-1500$.

CALIB. FEB. 1976

31000 f $V=2900$ Disc. $=5$ Int., $=5$ G=2.0 $\mathrm{F}=0.4$

36	69.9	-	-	-
37	65.6	-	-	-
38	67.0	N	82.2 A	-807 A
39	66.4	M	81.4 A	-799 A
40	66.0	M	81.6 B	-801 B
41	66.8	M	82.0 C	-805 C
42	66.3	L	82.4 C	-809 C
43	-	M	81.7 A	-802 A
44	67.6	M	81.6 A	-801 A
45	67.0	-	-	-
46	66.7	M	82.2 A	-807 A
47	66.8	M	81.6 B	-801 B
48	60.4	L	81.7 B	-802 B
49	65.6	L	81.1 A	-796 A
50	66.3	M	82.1 A	806 A
51	67.5	M	81.7 B	-802 B
52	67.7	-	-	-
53	66.9	N	82.5 B	-806 C
54	$6 \kappa 5$	N	81.7 A	-802 A

CALIB. MARCH 1976

$\begin{aligned} & 31000 \mathrm{~F} \\ & \mathrm{~V}=2900 \end{aligned}$				
Disc=5.0				
Int. $=5$	A	B	C	D
$\mathrm{G}=2.0$				
$\mathrm{f}=0.4$				
063	567.6	M	83.0 A	-815A
069	567.1	L	83.6B	-821B
070	566.7	L	83.0A	-815A
071	566.8	-	-	-
072	567.4	L	82.8A	-813A
073	566.0	-	-	-
074	567.5	-	-	-
075	567.3	M	83.0A	-815A
076	566.7	-	-	-
077	566.9	M	83:8B	-823A
078	567.2	N	82.1A	-806A
079	566.2	L	81.5A	-800A
080	-	-	-	-
081	567.2	-	-	-
082	566.3	M	83.6A	-821A
083	567.1	-	-	-
084	567.2	K	82.2A	-807A

[^1]| $\begin{aligned} & 31000 f \\ & V=2900 \end{aligned}$ | | | | |
| :---: | :---: | :---: | :---: | :---: |
| Disc. $=5.0$ | A | B | C | D |
| $\begin{aligned} & \text { Int. }=5 \\ & G=2.0 \end{aligned}$ | | | | |
| | | | | |
| $f=0.4$ | | | | |
| 96 | 66.9 | - | - | - |
| 97 | 67.1 | - | - | - |
| 98 | 67.6 | - | - | - |
| 99 | 65.7 | N | 80.9B | -794B |
| 100 | 67.0 | - | - | - |
| 101 | 67.1 | - | - | - |
| 102 | 68.5 | M | 82.313 | -808B |
| 103 | 67.4 | - | - | - |
| 104 | 66.9 | M | 82.1A | -804A |
| 105 | 67.0 | M | 82.3A | -808A |
| 106 | - | - | - | - |
| 107 | 66.9 | - | - | - |
| 108 | 67.1 | - | - | - |
| 109 | 67.4 | M | 82.0 B | -805B |
| 110 | 67.0 | M | 82.8A | -813A |
| 111 | 66.3 | L | 82.4A | -809A |
| 112 | - | L | 82.5A | -810A |
| 113 | 63.7 | M | 82.9A | -.814A |
| 114 | - | - | - | - |
| 115 | 67.4 | N | 82.5A | -810A |
| 116 | 67.2 | - | - | - |

$\begin{aligned} & 31000 f \\ & \mathrm{~V} 29900 \end{aligned}$					
Disc. $=5.0$	A	B	C	D	
Int. $=5$					6
$\mathrm{G}=2.0$					
$\mathrm{f}=0.4$					
124	66.8	-	-	-	*
125	66.1	-	-	-	
126	65.9	-	-	-	
127	66.3	M	85.3A	-838A	
128	66.4	M	85.4A	-839A	
f changed	0.4 to	i	delay	by 1	
129	67.8	-	-	-	
130	67.2	-	-	-	
131	67.6	M	84.5A	-830A	
132	67.4	L	84.5A	-830A	
133	67.6	*	-	-	
134	67.0	-	-	-	
135	66.6	K	84.6B	-831B	
136	66.7	M	84.9 B	-834B	-
137	67.0	N	86.2A	-847A	
138	66.7	-	-	-	
139	67.4	-	-	-	
140	66.8	-	-	-	
141	68.1	-	-	-	
142	66.8	-	-	-	
143	66.1	M	85.4A	-839A	
144	67.0	K	85.7 A	-842A	
145	66.6	K	82.8B	-803B	

REFERENCES

1. Photometric Atlas of the Solar Spectrum, Sterrewacht "Sonnenborgh" Utrecht, reference 20.6, 114a.

[^0]: Successful measurements
 $2 / 0$
 $1 / 2$
 $19 / 3$
 $1 / 4$

[^1]: (assumes $K^{\prime}=15.4 \mathrm{nsec}$)

