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Page 231: Figure 6 is in error.
corrected version.

Figure 6.- Span load and section suction distributions on a swept and
skewed wing. A = 45°; A =1; M= 0.
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N76-28164

HISTORICAL EVOLUTION OF VORTEX-LATTICE METHODS

John DeYoung
Vought Corporation Hampton Technical Center

Good morning. In this short talk I will give a review of the beginnings
and some orientation of the vortex-lattice method. The vortex-lattice method
is a discrete vortex colocation method for obtaining numerical solutions to
the loading integral equation relating normal velocity an” wing loading. It is
a branch of computer fluid dynamics which in turn is mathumatically descended
from finite-difference concepts. Finite-difference concepts had been applied
to the development of calculus which dates it a relatively long time ago. For
our subject the beginning is much more current. Here for orientation we will
follow the historical course of the vortex-lattice method in conjunction with
its field of computational fluid dynamics. An outline of the concurrent
development of computer fluid dynamics and vortex-lattice methods is as follows:

L.F. RICHARDSON (1910) V.M. FALKNER (1943) FIRST USE OF NAME
VORTEX~LATTICE THEORY
L. PRANDTL (1918, 1921)
R. V. SOUTHWELL (1946)
H. LIEPMANN (1918)
C.M. TYLER, JR. (1949)
R. COURANT, K. FRIEDRICHS, AND
H. LEWY (1928) ELLIPTIC AND D. N. DeG. ALLEN, AND S.C.R. DENNIS
HYPERBOLIC EQUATIONS (1951)

A. THOM (1928) FIRST NUMEPICAL D. N. DeG. ALLEN, AND R.V. SOUTHWELL
SOLUTION OF VISCOUS FLUID- (1955)
DYNAMICS PROBLEM

F. H. HARLOW, AND J. E. FROMM (1965)
1/4 - 3/4 RULE CHORD CONCEPT (1937)

AERODYNAMIC ANALYSIS REQUIRING
%. H.)SHORTLEY, AND R. WELLER ADVANCED COMPUTERS, NASA SP347 (1975)

1938

LOS ALAMOS SCIENTIFIC LABORATORY
(WORLD WAR I1)

Since many mathematical models of fluid dynamics can be expressed as partial
differential equations then, historically, computer fluid dynamics can be said
to start with L. F. Richardson's paper. Some consider this paper as the
foundation of modern numerical analysis of partial differential equations. He
applied his methods to the engineering problem of determining stresses in a
masonry dam. In 1918 Prandtl formulated the 1ifting-line theory. The chord
loading is concentrated into a single load vortex, thus it is a one panel chord-
wise vortex lattice with flow conditions satisfied at the load line. In 1938
Prandtl proposed an explicit finite-difference method for solving boundary-
layer equations. Liepmann showed how to improve the convergence rate of




gt 3

e A B

Richardson's procedure. In later years Liepmann's method was found very
compatible with electronic computers and has been further developed. The
classic paper of Courant, Friedrichs, and Levy has become a guide for practical
fluid flow computational solutions. A.Thomm did early computational work in
fluid flow, two-dimensional and flow past circular cylinders.

The 1/4-3/4 rule has a fundamental role in vortex-lattice methods. This
concept first appeared in a paper by E. Pistolesi in 1937. He in effect did a
single panel vortex-lattice solution for a two-dimensional wing and found that
with the load vortex at the 1/4 chord line and downwash or normal wash point
(no-flow through condition) at 3/4 chord, the section 1ift and moment for con-
stant angle of attack is exactly that of thin wing theory. And 1ift is
predicted exactly for wing with parabolic camber. This rule was first applied
to wings of finite aspect ratio by W. Mutterperl (1941) and J. Weissinger (1942
and very often since by others. P.A. Byrd (Ing.-Arch. 19, 321-323, 1951)
expanded Pistolesi's work for sections divided into more than one panel on the
chord and with the 1/4-3/4 rule applied for each panel found that 1ift and
moment are predicted exactly. In later years this chordwise rule received
further mathematical attention. Shortley and Weller developed block relaxation-
a developed version of Liepmann's method. It was this work from QOhio State
University I had used in a gradu.te course at Washington State in 1943 to
numerically solve the Laplace equation for determining the stress pattern in a
twisted grooved rod. Work at the Los Alamos Scientific Laboratory has
contributed much to the advancement of computer fluid dynamics. This includes
the work of J. von Neumann, J. Fromm, and F. Harlow. From Los Alamos a graphics
fluid dynamics motion picture was circulated in this country in the 1960's.

It showed a computer fluid dynamics flow prediction of a dam bursting and the
water cascading down a gorge. V. Falkner covered the wing with a grid of
straight horsechoe vortices. Wing surface loadings were predicted. In one
report he uses the titie, "The Solution of Lifting Plane Problems by Vortex
Lattice Theory,” A.R.C.R.& M. 2591, 1947, which is a fir<t use of this name.
Faulkner's method and variations were tried extensively throughout the

industry during the 1950's. However, the calculation effect was large which
limited the number of panels then accuracy became questionable for some con-
figuration designs. The vortex-lattice method had to await computer capability.
Southwell improved the relaxation procedure by scanning the mesh for larger
residuals for new values calculation. This scanning procedure is not so
suitable for electronic computers. Tyler, in a Ph.D. dissertation, and Allen
and Dennis developed relaxation method solutions for computing wing lifting
surface loading. Using Southwell's relaxation method, Allen and Southwell did
a solution for the viscous imcompressible flow over a cylinder. The year 1965
is considered by some as a modern start to computer or computational fluid
dynamics. Harlow and Fromm provided stimulus and awareness in a Scientific
American paper entitlied, "Computer Experiments in Fluid Dynamics" which
includes the concept of numerical simulation. It has been observed that the
percentage of published scientific engineering numerical methods papers to
total papers has increased twenty fold in the decade of 1963 to 1973. The year
1965 can be considered as the start of the computational vortex-lattice method.
It has had a many fold growth in applications and development during the last
decade. It was certainly influenced by the stimuius and awareness of the
potential of the scientific computer occurring throughout the field of
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computational fluid dynamics. In the mid 1960's four independent papers
appeared on vortex-lattice methods, respectively Ly Rubbert, Dulmovits, Hedman,
and Belotserkovskii. These were extensions of Faulkner's method and adapted

to electronic computers. For the reported work of the 1960's and 70's
reference can be made to the bibliography list of this workshop. The state of
the art in general computational fluid dynamics is demonstrated in the volumes
of NASA SP-347 which is the result of a March 4-6, 1975 NASA conference at
Langler.

Computer capacity is developing rapidly. Computational speed has been
increased by a factor of 2.5 each year. The application of the vortex-lattice
method is being made to increasingly complex configuration designs such as multi-

‘planes, nonplanar wings, interference, and wing tip. It is a powerful tool as

an aid in parameter study and optimization. Currently attention is being
directed toward further improving the vortex-lattice representation by lattice
arrangement, panel geometry, and by better mathematical modeling of the flow
in the panel region. These have been referred to as advanced panel methods.
However, in some of these developments the simplicity of an elemental vortex
representation is lessened and leads to greater mathematical model complexity
of the panel flow, but computational efficiency may be increased. In summary,
this is computationally a new technology field only about 10 years old. It is
computer oriented with numerical simulation of the physical laws governing

the problem. It is a supplement to the two disciplines of theory and
experiment. It can logically be extended to find answers of complex flow
impractical to measure experimentally. In this workshop we will learn of

many unique utilizations of the vortex-lattice method, of lattice analytical
advancements, and the power and nature of this new discipline. Thank you.
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SUBSONIC FINITE ELEMENTS FOR WING-BODY COMBINATIONS
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James L. Thomas
NASA Langley Research Center

SUMMARY

Capabilities, limitations, and applications of various theories for the
prediction of wing-body aerodynamics are reviewed. The methods range from
app.oximate planar representations applicable in preliminary design to surface
singularity approaches applicable in the later stages of detail design. The
available methods for three-dimensional configurations are limited as inviscid
solutions with viscous effects included on an empirical or strip basis.

INTRODUCTION

Current research efforts directed toward the design of fuel-efficient air-
craft dictate that adequate tools be available for the assessment of aerodynamic
loads .cross the expected speed envelope. Ashley and Rodden (ref. 1) have sum-
marized the available methods for aerodynamic analyses of wings and bodies in
steady and oscillatory motion at both subsonic and supersonic speeds. The ana-
lytical methods applicable to generalized configurations vary over a range of
sophistication, accuracy, and computer times required but are generally limited
as inviscid solutions. Some inviscid-viscid coupling techniques in two dimen- '
sions have yielded good results (refs. 2 and 3), and their inclusion on a strip '
basis into three-dimensional inviscid solutions may serve as a near~-term solu-
tion. The inclusion of viscous effects for generalized configurations across
the Mach number range remains a far-term solution requiring extensive computer
resources and advances in turbulence modeling (ref. 4). Immediate design and
verification methods are thus a combination of experimental and analytical tech-
niques. The analytical methods largely remain inviscid solutions guided by the
inclusion of viscous effects on a semiempirical or scrip basis.

The purpose of this paper is to summerize the capabilities and limitations
of the existing methods for the steady subsonic analysis of wing-body combina-
tions. Solutions to the linearized perturbation potential equation (Laplace's
equation), with Mach number effects included by the Prandtl-Glauert transforma-
tion, are considered. Since the governing partial differential equation is
linear, the solutions may be approximated by distributing a finite number of
elemental solutions over the body and solving for their relative strengths by
imposing proper boundary conditions; for example, the flow field must satisfy
the tangential requirement on the body surface and the Kutta condition at sub-
sonic trailing edges. Such finite-element solutions have proven to be most
useful and versatile at subsonic as well as supersonic speeds. The quality of
the resulting solution is, however, a function of the type, distribution, and -
number of elemental solutions assumed. They require considerably less computer .
resources than the equivalent three~-dimensional finite-difference solutions

required at transonic speeds where the governing equations are nonlinear
(ref. 5).
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SYMBOLS

aspect ratio, bZ/s
wing span

lift coefficient
pressure coefficient
chord

section lift coefficient
body diameter

body length

Mach number

body radius

wing area

axis system

distances along X- and Z-axes
angle of attack
distance along semispan
sweep angle

taper ratio

Subscripts:

av

max

average
maximum
free stream

fuselage

GENERAL SLENDER BODY AND PLANAR WING SOLUTION

A large number of methods exist for the analysis of planar lifting surfaces

which account approximately for the presence of bodies.
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treat the body separately in an initial analysis and then modify the analysis
of the lifting surface such that the normal wash on the wing from the body is
included and the flow is diverted around the body.

Slender body theory is used in the initial analysis of the body since its
accuracy is consistent with the assumptions to be made in the wing-body inter-
actions. Slender body theory assumes the total potential can be composed of a
far-field potential dependent only on the area distribution and the Mach number
and a near-field constant-density cross-flow potential solved subject to the
three-dimensional boundary conditions of flow tangency at the surface (refs. 6
and 7). The equivalence rule extends the formulation to bodies of general cross
section as indicated in figure 1. The fiow around the actual body differs from
that of the equivalent body of revolution by only a two~dimensional constant-~
density cross-flow potential that satisfies the flow tangency condition at the
surface.

The constant-density cross-flow potential can be solved by any two-
dimensional method. Dillenius, Goodwin, and Nielsen (ref. 8) have developed a
solution applicable to noncircular fuselages composed of polar harmonic and two-~
dimensional source-sink terms. A conformal transformation and a distributed
singularity approach are shown in figure 2. The conformal transformation is an
adaption of the Theodorsen technique for airfoil design and was developed by
Bonner of Rockwell International (ref. 9). The actual body is mapped into a
circle and the potential for a source or doublet satisfying the boundary condi-
tions for the equivalent body is transformed back to the physical plane. The
method is very fast and simple but is limited to bodies in uniform flow fields
that can be described in polar coordinates as a single-valued function of radius
versus subtended angle. The distributed singularities approach was developed by
J. Werner and A. R. Krenkel of Polytechnic Institute of New York and solves for
the strengths of constant-strength source segments around the body by satisfying
the flow tangency requirement. The method is applicable to very arbitrary
bodies in nonuniform flow fields. Comparison of the conformal transformation
technique of Bonner with experiment (ref. 10) for a parabolic body of revolution
of fineness ratio 12 and elliptic cross section is shown in figure 3. The
agreement at this high subsonic Mach number at angles of attack of 0° and 4° is
generally very good.

Giesing, Kdlman. and Rodden (ref. 11) and Dillenius, Goodwin, and Nielsen
{-er. 8) have developed methods based on general slender body theory in combina-
“1on with vortex-latiice theory and the method of images. In both methods, the
influe',ze of the body on the "ifting surface is accounted for by including the
normal wash exterior to the body and then imaging the external singularities
inside the body. Since the method of images 1s based on a two-dimensional ana-
lysis, it does not entirely negate the normal wash from the wing onto the body.
Thus, the body loading in the nonuniform flow field of the lifting surface and
imag.: system must be recalculated to solve for this residual potential. The
complete splution is an iterative process in which the continued interaction
between the body and the lifting surface needs to be computed. However, refer-
ence 8 has indicated the method is strongly convergent and most of the effects
are included after the first iteration. The method of images is very attractive
in that no new unknowns are introduced into the solutions since the ‘mage
strength and location are directly related to the external singularity strengths
and the geometry of the body cross section.
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An alternate approach has been used by Spangler, Mendenhall, and Dillenius
(ref. 12) and Woodward (ref. 13) to approximately account for interference
effects. 1In their analysis, interference panels are placed on constant-section
stream tubes of the body. The normal wash from the body is included on the
lifting surface exterior to the body and the interference panels exist to cancel
the normal wash induced on the surface of the body. The net result is exactly
the same as that using the method of images in that the initial influence of the
body on the wing is included and the normal wash onto the body from the wing is
negated. However, there are more equations to solve when the interference
panels are used, although the region of influence of the wing on the body can
generally be assumed to be within a couple of chord lengths of the wing root.

A schematic of the utilization of general slender body theory with a traditional
vortex-lattice system is shown in figure 4.

The methods of images (ref. 14) and interference paneling in combination
with a vortex lattice are compared with an earlier modified Multhopp lifting-
line approach (ref. 15) for a high-~aspect-ratio wing~body combination in fig-~
ure 5. Both the method of images and the method of interference panels give
similar results and give lower results for the loadings than the earlier
Multhopp results. Reference 11 has compared the method of images with the
interference paneling used by Woodward and the agreement is excellent.

The assumption with either approach is that the flow field around the body
in the presence of the wing is the same as ihat for the body alone. Thin-wing
assumptions are used which do not account for the finite regions of intersection
between a wing and a body or the longitudinal acceleration of flow over the body
on the wing. Because of the singularities trailing downstream with either
images or interference paneling in accounting for interference effects, the body
representation is restricted to constant-section cylinders. The methods thus
give identical results for equivalent positions of the wing above or below the
midwing position as indicated in figure 6. The results presented are for a

high-aspect-ratio wing-body combination using a vortex lattice with interference
paneling.

A comparison of the theoretical and experimental (ref. 16) span loads for
a wing-body combination is given in figure 7. All the theoretical methods over-
estimate the span loading because of the low Reynolds number of the experiment
(0.3 x 106). The more approximate theories, however, agree well in the loading
prediction with the more exact surface singularity representations, such as
those of Labrujere (ref. 17) or Hess (ref. 18), and, in general, adequate pre-
dictions of 1lift and moment are possible with the approximate theories.

The assumptions of the methods which limit their applicability to general-
ized configurations also anhance their capability as a preliminary design tool.
Most of the wing-body interactions are handled and the computer resources
required are small because of the relatively small number of unknowns. Since
planar representations are used, the intersection of the wing and body is a line
and the geometry can be input rapidly. The capability is provided to predict
quickly and accurately overall lift, moment, and induced drag for complete con-
figurations at the early design stage, such as in the store separation studies
of reference 8. The prediction of optimum trimmed loadings subject to 1lift and
moment constraints are also possible from a far-field equivalent-horseshoe-
vortex Trefftz plane analysis such as in references 19 and 20.
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QUADRILATERAL VORTEX AND SOURCE LATTICE SOLUTION

A method which computes the interfering flow fields of both wing and body
simultaneously while still retaining the linearized boundary condition 1is that
of Tulinius (ref. 21). The method distributes a series of constant-strength
quadrilateral vortices over the surface of the body and in the region of the
wing near the wing-body intersection region as shown in figure 8, Horseshoe
vortices are used in regions of the wing away from the wing-body intersection
region. A source lattice 1s distributed over the surface of the wing at the
quarter-chord and three-quarter-chord of each panel, and the source strengths
are defined as the local slopes of the thickness distribution independent of
the wing 1ift. The influence of the quadrilateral vortex dies off rapidly at
points awsy from the quadrilateral because of the canceling effects of adjeacent
sides. Hence, the panels can be extended over the fore and aft regions of the
body. The analysis has been extended to predict thick wing and pylon-fuselage-
fanpod-nacelle characteristics at subsonic speeds by placing the vortices along
the mean camber line of the wing (ref. 22).

Results of the Tulinius wing-body program are compared with experiment in
figures 9, 10, and 11 for a swept wing-body combination at a Mach number of 0.60
and an angle of attack of 4°. The unit span load clc/CLcav and the longitudi-

nal distribution of fuselage lift c1 fd/dmax are predicted very well by the
’

theory (fig. 9); the fuselage 1ift increases rapidly in the region of the wing
root. The pressure coefficients on the wing at two spanwise stations in fig-
ure 10 and the pressure coefficients on the body at longitudinal stations just
above and below the wing in figure 11 are also predicted well. The body pres-
sures are influenced by the wing primarily in the wing root region, and the
pressures over the aft end of the body are not predicted because of viscous and
separation effects. The agreement with theory is expected since the wing is
relatively thin and attached in the midwing position.

The method cannot account for the longitudinal acceleration of flow over
the body on the wing (speed bump effect) or equivalent high and low positions
of the wing because of the linearized planar boundary conditions. The pressure
coefficients and not just loadings are predicted so that streamlining and con-
touring of adjacent surfaces at high subsonic Mach numbers can be accomplished.
Regions of intersecting surfaces are lines so that geometry description is rela-
tively easy. The number of equations to solve for the simultaneous quadrilateral
and horseshoe vortex strength increases in comparison with the slender body and
planar wing analyses but the quality of the aerodynamic solution iz higher since
the body and wing flow fields are solved simultaneously.

SURFACE SINGULARITY POTENTIAL FLOW

In order to account for the full potential interactions between the wing
and body, a surface singularity technique such as that in references 17, 18, 23,
24, or 25 must be used. In such a method, the singularities are placed on the
surface of the wing and body such that the tangency and Kutta conditions are
satisfied. The type of finite-element modeling used for the lifting surfaces
has been varied, including (1) constant-strength surface source panels with a
constant-strength vortex sheet on the surface (ref. 18), (2) constant-strength
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source pauels on the surface with interior vortex sheet (ref. 17), or (3) lin-

early varying source and quadratically varying doublet distributions on curved ; é
surface panels (ref. 25). Constant-strength source panels have been generally H :
used to model the body with the lifting surface carried through the body in order ¥

to approximately account for the wing carry-throug ‘'ift.

Such a surface singularity approach accounts for the finite intersection .
region of a wing and body as well as the longitudinal velocity perturbations of -
the body on the wing. However, the method requires a considerable amount of . iy
geometry specification to panel a complete configuration as shown in figure 12. t
The quality of the resulting aerodynamic solutions are a function of the par-
ticular finite elements chosen, their placement on the body, and the number
chosen, G35ince matrix solutior times are a function of the number of elements ,
cubed, the paneling of complete configurations with a minimum of computer time ;
while retaining desired accuracy is a difficult task. Recent advances to relieve '
the dependence of the resulting solution on the aerodynamic paneling chosen and
to reduce the number of unknowns required have been made in references 25 to 27.

Results for the Hess surface singularity approach (ref. 18) are presented B
in figure 13 for the A = 6 untapered unswept wing attached in intermediate, 1 ;
high, and low positions to an infinite circular-cylinder body - the case con-
sidered earlier with the approximate theory. The local span loading and total
1ift vary with the relative placement of the wing on the body; the body loads
are shown as average values since the available version of the computer program
only outputs pressures and integrated loads for the body. The intersection of
the wing section with the curved body is another curved region that tends to o i
accelerate the flow under the wing in a high wing position and above the wing g
in a low wing position. Since the singularities are on the surface, the local
velocity increase on the lower surface of the high wing decreases the local
loading and vice versa. Thus, the surface singularity approach yields differ-
ences in potential theory for high and low wing pladement, whereas, the linear-
ized planar lifting surface theories do not. However, the integrated values of
1lift differ very little with wing placement, indicating again that the approxi- i
mate theories are able to give reasonable estimates of the total forces and
moments.

The surface singularity approach is a detaill design tool applicable in the ‘
later stages of design after the initial planform sizes and locations have been C
determined, such as in the design of cruise overwing nacelle configurations in
reference 28. The inverse design for the surface singularity approach has been
completed in reference 24, but the procedure for generalized configurations is
necessarily lengthy and difficult, The surface singularity approach allows the ;
calculation of detailed pressure distributions in regions of adjacent surfaces ‘ :
(wing fillets, nacelle-strut intersections, etc.) so that contouring and stream-
lining for minimum adverse pressure and viscous drag can be accomplished.

CONCLUDING REMARKS 1 :

Various approximate methods utilizing some variation of general slender ,
body theory in combination with a planar lifting-surface representation, such : 7
as the vortex-lattice method or the constant-pressure panel of Woodward, are
adequate to estimate the loads, moments, and pressures in preliminary design

“
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applications., Such methods require limited computer resources and simple
geometry input specifications and are well suited to inverse design procedures
since the number of unknowns are small and the planar boundary conditions ara
retained. The methods are most applicable to midwing cases with constant-section

cylindrical bodies.

An extension of the vovrex-~lattice method to include a quadrilateral vortex
representation of the body solves for the wing and body loads simultaneously.

No restrictions on body shape or wing shape in the intersection regions are made
although the thin-wing representation is retained. Regions of intersecting sur-
faces are curved lines and the geometry input remains relatively simple. With
the method, pressures in regions of adjacent surfa-es are predicted to allow
contouring and streamlining. The method is also well suited to inverse design
procedures for the wing in the presence of the body since the camber and thick-
ness solutions are separate.

In order to accurately predict the correct potential flow pressures in
areas of intersecting wings and bodies, a surface singularity approach is needed.
The surface singularity approach removes all thin-wing and linearized-boundary-
condition assumpiions but more than doubles the number of unknowns to be solved

and the geometry definition required. The detail pressure distributions in
regions of intersecting surfaces are available so that adverse viscous effects

can be minimized.

Viscous effects are not predicted in any of the methods. For the present,
empirical or strip analyses must be used, such as in the prediction of viscous
effects using an infinite yawed-wing analogy in two-dimensional strips along a
swept wing. The usefulness of all the wing-body theories depend on how well the
theoretical loadings or pressures can be related to the actual physical situa-
tion. The nonlinear and viscous effects, such as vortex formation near the
wing-body juncture or separated flow at higher angles of attack, remains untract-
able computationally. The viscous calculation for generalized configurations

. across the Mach number range remains a far-term solution.
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FLOW FIELD AT ANY POINT DUE TO AN ARBITRARY BODY IS GIVEN BY
EQUIVALENCE RULE:

~A

d?OO - O

FLOW FIELD DUE =  SOLUTION FOR + 2D - 2-D
TO ACTUAL BODY EQUIVALENT BODY SOLUTION SOLUTION
OF REVOLUTION FOR ACTUAL FOR

BODY CROSS- EQUIVALENT
SECTION A-A CROSS-
SECTION A-A
- ~ J
3-D BOUNDARY CONDITIONS
ARE SATISFIED IN THESE
2-D SOLUTIONS ’

Figure 1.- General slender body theory.

Z 4 z
Y Y Y
u-PLANE T-PLANE
CONFORMAL TRANSFORMATION DISTRIBUTED SINGULARITIES

Figure 2.~ Methods for solving two-dimensional cross-flow potential for
arbitrary cross sections.
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Figure 3.- Comparison of slender body theory and experiment.
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EXTENDED APPLICATIONS OF THE VORTEX LATTICE METHOD

Luis R, Miranda
Lockheed-California Company

SUMMARY

The application of the vortex lattice method to problems not usually
dealt with by this technique is considered, It is shown that if the dis-
crete vortex lattice is considered as an approximation to surface-dis-
tributed vorticity, then the concept of the generalized principal part
of an integral yields a residual term to the vortex-induced velocity that
renders the vortex lattice method valid for supersonic flow, Special
schemes for simulating non-zero thickness lifting surfaces and fusiform
bodies with vortex lattice elements are presented. Thickness effects of
wing~-like components are simulated by a double vortex lattice layer, and
fusiform bodies are represented by & vortex grid arranged on a series of
concentrical cylindrical surfaces, Numerical considerationa peculiar
to the application of these techniques are briefly discussed,

INTRODUCTION

The several versions or variations of the vortex lattice method that
are presently available have proven to be very practical and versatile
theoretical tools for the aerodynamic aralysis and design of planar and non-
planar configurations. The success of the method is due in great pert to
the relative simplicity of the numerical techniques involved, and to the
high accuracy, within the limitations of the basiec theory, of the results
obtained. But most of the work on vortex lattice methods appears to have
concentrated on subsonic flow application. The applicability of the basic
techniques of vortex lattice theory to supersonic flow has been largely
ignored. It is one of the obJectives of this paper to show how the vortex
lattice method can be easily extended to deal with problems at supersonic
Mach numbers with the same degree of success that it enjoys in subsonic flow.

The other objective of this paper is to discuss a couple of schemes
by which it is possible to simulate thickness and volume effects by using
vortex lattice elements only. This represents an alternative, with somewhat
reduced computational requirements, to the method of quadrilatera) vortex
rings (refs. 1 and 2), The simulation of thickness and volume effects makes
possible the computation of the surface pressure distribution on wing-bvody
configurations. The fact that this can be done without having to resort to
additional types of singularities, such as sources, results in a simpler
digital computer code.
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THE BASIC EQUATIONS

Ward has shown, (ref. 3), that the small-perturbation, linearized flow
of an inviscid compressible fluid is governed by the three first order vector
equations:

Vv =75, V.%=4q, v=V.7 (1)

on the assumption that the vorticity W and the source intensity Q are known
functions of the point whose position vector is R. The vector V is the
perturbation velocity with orthogonal cartesian components u, v, and w, and
WV is a constant symmetrical tensor that for orthogonal cartesian coordinates
with the x-axis aligned with the freestream direction has the form

2
1-M 0 0
[« ]
v = 0 1 .0 (2)
0 0 1

where M, is the freestream Mach number. If 82 = l-M&.z, then the vector w

has the components W = B2 u I +v J + w K. This vector was first introduced
by Robinson (ref. 4), who called it the "reduced current velocity". If W
denotes the total velocity vector, i.e., W =(uw+u) T+vJ +wk, and p
the fluid density, then it can be shown that for irrotational and homentropic
flow

PU = p,Ug +p, W +higher order terms (3)
where the subscript « indicates the value of the quantity at upstream infinity,

e.g8.s o = Uy 1. Therefore, to a linear approximation, the vector W is
directly related to the perturbation mass flux as follows:

W=(pT - po Tw) /Pex (L)

The second equation of (1), i.e., the continuity condition, shows that for
source-free flows (Q = 0), w is a conserved quantity.

Ward hus integrated the three first order vector equationeg directly
without having to resort to an auxiliary potential functign., He obtained
two different solutions for v (R), depending on whether B° is positive (sub-
sonic flow), or negative (supersonic flow). These two solutions can be com-
bined formally into & single expression if the following convention is used:

K=2 for 32 >0
2

R’ = Real part of {(x-xl)2 + 32[(y-yl)2 + (Z-Zl)z]}
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f = Finite part of integral as defined by Hadamard (refs. 5
and 6).

The resulting solution for the perturbation velocity V at the point
whose position vector is Rl =X 1+ Yy 3+ z, %, is given by

V(R = - 5x ][H.W(ﬁ)vh—]e‘- as

(]

2 [R-
. 7LQ(§>V%;dV*5LK L w®) av  (5)

This formula determines the value of V within the region V bounded by
the surface S. The vector W is the unit outward (from the region V) normal
to the surface 8, Furthermore, it is understood that for supersonic flow
only those parts of V and S lying within the domain of dependence (Mach
forecone) of the point Rl are to be included in the integration.

For source-free (Q=0), irrotational (=0) flow, equation (5) reduces
to

2 R-R
¥ (R) = - 5= T.w(R) Vi as +%7(—{ﬁ x WE)} R—3-l as (6)
s s g

This is & relation between V inside S and the values of n.wand n x v
on S, but- these two quantities cannot be specified independently on S.

To determine the source-free, irrotational flow about an arbitrary body
B by means of equation (6), assume that the surface S coincides with the
wetted surface of the body, with any trailing wake that it may have, and with

a sphere of infinite radius enclosing the body and the whole flow field about
it, namely, S = SB + %ﬂ + Sm.

This surface S divides the space into two regicns, Ve external to the

body, and Vi internal to it. Applying equation (6) to both Ve and Vi, since
the integrals over S, converge to zerc, the following expression is obtained:
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R, = 2% fﬁ.m(mv-;—’ e - Lo f{ﬁ'
By * By

where § = fiy= -He is the unit normal to the body, or wake as the case may be,
positive from the interior to the exterior of the body, A W = We - Wi, and
AV = Ve - Vi, Here the subscripts designate the values of the quantities on
the corresponding face of S. The first surface integral can be considered
as representing the contribution of a source distribution of surface density
N . AW, while the second surface integral gives the contribution of a vorti-
city distribution of surface density N x A V.

If the boundery condition of zero mass flux through the surface SB + SW
is applied to both external and internal flows

-ﬁ.p'ﬁi--ﬁ.(pa'ﬁ +p°7ii)-0 (8)

then the condition N . A W = O exists over 85 + 8§, and the flow field is
uniquely determined by

) _
HE,) = - =2 7L TR x5 as (9)
SB.+SW

where ¥ (R) = N x A 7 is the surface vorticity density.

EXTENSION TO SUPERSONIC FLOW

In order to extend the application of the vortex lattice method to
supersonic flow, it is essential to consider the fundamental element of the
method, the vortex filament, as a nu-2rical approximation scheme to the
integral expressicn (9) instead of a real physical entity. The velocity field
generated by a vortex filament can be obtained by a straightforward limiting
procees, the result being

2 [ _ BF
W(Ry) =§§-K~ )(' rx 31 at (10)
c Ry
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where ['= lim Y. 0@~
Y=~o0
8 = O

§ is a dimension normal to y, and dl is the distance element along y. In the
classical vortex lattice method, applicable only to subsonie flow, the vorti-
city distribution over the body and the wake, i.e., over the surface Sp + Sy,
is replaced by a suitable arrangement of vortex filaments whose velocity
fields are everywhere determined by equation (10). This procedure is no
longer appropriate for supersonic flow. For this latter case, it is necessary
to go back to equation (9) and to derive an approximation to it. This is

done in the following.

If the surface Sp + Sy, which defines the body and its wake, is considered
as being composed of a large number of discrete flat area elements 7 over
which the surface vorticity density ¥ can be assumed approximately constant,
then equation (9) can be approximated by the following equation:

N
2 R-R
V(ﬁl)'-é‘.-"f 2 ‘fVJXR?A as (11)
J=l Ts 8

where N is the totai number of discrete area elements 7. When the poini
whose position vector is Ry is not part of TJ, the integral over this dis-
crete area can be approximated by the mean value theorem as fcllows:

R-R R-K '
f%*?'l'ds'% °J><]( < o (12)
R R
s B CJ ]

vhere Cy is a line in 7y parallel to the average direction of ¥ in Ty, &
is a distance normal to Cy, and 4l is the arc length element along Cg. Thip
means that the velocity field induced by a discrete vorticity patch 75 can
be approximated for points outside of 7y by some mean discrete vortex line
whos- strength per unit length is yy 4y. But if the point Ry I8 part of the
dizcvete area T, the integral in equation (11) has an inherent singularity
ot the Cauchy type due to the fact that R = R} at some point within r. In
order to evaluate the integral expression for this case, consider a point
close to Ry but located just above r by a distance ¢. As indicated in figure
1, the area of integration in 7 is divided into two regions, A ..  and A,
Obviously, the integral over A ,_ e has no Cauchy-type singularity, Hadamard's
finite part concept being sufficient to perform the indicated integration.
Thus,
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R3 e
Yo N €=»0 .
T

]
A T-r
'R'-El
=lim I(e) +ya <" 3 U (13)
N . R
c

The last integral in equation (13) represents the convertional discrete
vortex line contribution whose evaluation presents no difficulty. In order
to determine the integration denoted by I(«) assume that, for simplicity,
the coordinate system is centered at the pecint Pl, and that the x-y plane is
determined by the discrete area T. Then, if Y denotes the modulus of Y,

1( &) =.YJ_ Y,sénA-xgos/\ )‘3/2 dx dy (1k4)
A X ‘B (y

[

where A is the angle between the y-axis and the direction of the vorticity
in 7, and B2 = -8 (supersonic flow). The components of the vector
cross product ¥ ¥ (R-Ry ) ¥ x R which are nos normal to the plane of 7 have
been left out of equation (14) vecause, when the limit operation €0 is
carried out, they will vanish. The area Ae is bounded by & line parallel to
the vorticity direction going through x -(1+B)e and by the intersection of the
Mach forecone from the point (o, o, €) with the t-plane, consequently, if
the integration with respect to x is performed first,

"2 By? + &

ty - x )
e ”“AI[( freti e o )
M ty -(1+B)e

where t = tan A, and 1j, A2 are the values of y corresponding to the inter-
section of the line x=ty -(l+B)6‘ with the hyperbola , _ _Bi?‘yz + 20 Let

g= ¢ (1+213)-2( 1+B) ety -(B -t ) y2 , then the finiie part of the x-

integration yields

I(e) = A ty (ty-(1+B)e)
() Yc087C {Ba(y2+62)ﬁ JT}dy

A
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B y2 + 62

M

xcosA ‘ 2--(1*‘3) "tY‘(Ba‘ 2)Y2 l ay (16)
'3

Since ¢ is a very small quantity, the variation of y in the interval (Al, J\g)
is going to be equally small, ana, therefore, the quantity within brackets in
the last integrand of equation (16) can be replaced by a mean value and taken
outside of the integral sign. The same is not true of the term l/ﬂ- since
it will vary from co for y = A3, go through finite values in the integration

interval, and then again increase to @ for y = \2. With this in mind, and if
¥ denotes a mean value of y, I(€) can be written as

~ 2,2\ ~2 )‘2
I(e) = YCOSA Bee_(1+B) ety - (B°-t7) ¥ _[_ dy (17)
B2 3;2 + s2 ) ﬁ‘
M
But A1, X2 are the roots of ty-€ = -B\Jy2 + 62 , i.e., they are the roots of

the polynomial denoted by @#. Thus

Jo - J2imemetmay - (2 & V22 Joumey)  (8)

Introducing this expression for ./ @ into (17), and taking the limit
¢—0, the following value for I{e) is obtained:

I(o) = 1m1<e)--1£°—SLJ 7L ( (19)
M

c —0 -Y)(y-)\z)

The integral appearing in equation (19) can be easily evaluated by com-
plex variable methods; its value is found to be

_ dy
)\f V(=¥ (y-1,)
1
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The contribution of the inherent singularity to the velocity field induced
by vorticity patch T, within 7, denoted herein by w*, is therefore given by

Mo B 1me - xoeh (fR (21)

2n € -0

This contribution is perpendicular to the plane of 7, and it has only
physical meaning when B2 > t2, i.e., when the vortex lines are swept in front
of the Mach lines. It is expression (21), taken in conjunction with equation
(12), that makes the vortex lattice method applicable to svpersonic flow.

MODELING OF LIFTING SURFACES WITH THICKNESS

The method of quadrilateral vortex rings placed on the actual body sur-
face (ref. 1) provides a way of computing the surface pressure distribution
of arbitrary bodies using discrete vortex lines only. Numerical difficulties
may occur when the above method is applied to the analysis of airfoils with
sharp trailing edges due to the close proximity of two vortex surfaces of
nearly parallel direction. An alternative approach, requiring somewhat less
computer storage and easier to handle numerically, consists in using a double,
or biplanar, sheet of swept horseshoe vortices to model a lifting surface
with thickness, as shown schematically in figure 2. This constitutes an
approximation to the true location of the singularities, similar in nature to
the 2lassical lifting surface theory approximation of a cambered sheet.

All the swept horseshoe vortices, and their boundary condition control
points, corresponding to a given surface, upper or lower, are located in a
same plane. The upper and lower surface lattice planes are separated by a
gap which represents the chordwise average of the airfoil thickness distri-
bution. The results are not too sensitive to the magnitude of this gap; any
value between one half to the full maximum chordwise thickness of the airfoil
has been found to be adequate, the preferred value being two thirds of the
maximum thickness. Furthermore, the gap can vary in the direction normal to
the x-axis to allow for spanwise thickness taper. On the other hand, the
chordwise distribution, or spacing, of the transverse elements of the horse-
shoe vortices have a significant influence on the accuracy of the computed
surface pressure distribution. For greater accuracy,for a given chordwisge
number of horseshoe vortices, the transverse legs have to be longitudinally
spaced according to the ‘cosine' distribution law

T c 2J-1
xJ-xo 3 [l-cos (rr—ﬁ-)] (22)

where x} - x. represents the distance from the leading edge to the midpoint
of the swept ieg of the Jth horseshoe vortex, ¢ is the length of the local

chord running through the midpoints of a given chordwise strip, and N is the
number of horseshoe vortices per strip. The chordwise control point location
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corresponding to this distribution of vortex elements is given by

xg-xo=§-[l-cos(n%)] (23)

The control points are located along the centerl. ne, or midpoint line, of the
chordwise strip (fig. 3). ILan has shown (ref. 7) that the chordwise 'cosine'’
collocation of the lattice elements, defined by equations (22) and (23),
greatly improve the accuracy of the computation of the effects due to lift.
His results are directly extendable to the computation of surface pressure
distributions of wings with thickness by the 'biplanar' lattice scheme pre-
sented herein,

The smal. perturbation boundary condition

v.h'=-u .h (24)
(- -]
is applied at the control points. In equation (24), n =21 + mJ + nk, and
n' = mJ + nk, where {, m, and n are the direction cosines of the normal to
the actual airfoil surface. Equation (24) implies that |ful <<|mv + nw| .
The use of the small perturbation boundary condition is consis :ent with the
present 'biplanar' approach to the simulation of thick wings.

MODELING OF FUSIFORM BODIES

The modeling of fusiform bodies with horseshoe vortices requires a
special concentrical vortex lattice if the simulation of the volume displace-
ment effects, and the computation of the surface pressure distribution, are
to be carried out. To define this lattice, it is necessary to consider first
an auxiliary body, identical in cross-sectional shape and longitudinal area
distribution to the actual body, with a straight barycentric line, i.e.,
without camber. The cross-sectional shape of this auxiliary body is then
approximated by a polygon whose sides determine the transverse legs of the
horseshoe vortices. The vertices of the polygon and the axis of the auxiliary
body (which by definition is rectilinear (zero camber) and internal to all
possible cross sections of the body) define a set of radial planes in which
the bound trailing legs of the horseshoe vortices lie parallel to the axis
(fig. 4). As the body cross section changes shape along its length, the
corresponding polygon is allowed to change accordingly, but with the constraint
that the polygonal vertices must always lie in the same set of radial planes.
The axial spacing of the cross-sectional planes that determine the transverse
vor“ex elements, or polygonal rings, follows the 'cosine' law of equation (22),
The boundary condition control points are located on the auxiliary body sur-
tace, and in the bisector radial planes, with their longitudinal spacing given
by equation (23).

The boundary condition to be satisfied at these control points is the
zero mass flux equation
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V.E=-T_.7% (25)

where all the components of the scalar product W . n = Bal u +mv +nw

are to be retained. Thus, equation (25) is a higher order condition than

equation (24). The use of this higher order boundary condition, within the .
framework of a linearized theory, is not mathematically consistent. There-

fore, it can only be justified by its results rather than by a strict mathe-

matical derivation. In the present treatment of fusiform bodies, it has been

found that the use of higher order, or ‘'exact' boundary conditions is a re-

quisite for the accurate determination of the surface pressure distribution.

The fact that the vector W, instead of Vv, appears in the left hand member
of equation (25) requires some elaboration. First, it should be pointed out
that for small perturbations W . n= Vv . n'. Furthermore, for incompressible
flow (B = 1), the vector W is identical to the perturbation velocity ¥. Con-
sequently, the boundary condition equation (24) is consistent with the con-
tinuity equation, V. W = 0, to a first order f.r compressible flow, and to any
higher order for incompressible flow. But when a higher order boundary con-
dition is applied in compressible flow to a linearized solution, it should be
remembered that this solution satisfies the conservation of W, not of Vv, i.e.,

V. w = 0. Thus, the higher order boundary condition should involve the
reduced current velocity, or perturbation mass flux, vector W, as in equation
(25), rather than the perturbation velocity vector ¥.

The body camber, which was eliminated in the definition of the auxiliary
body, is taken into account in the computation of the direction cosines f,m,
and n, which are implicit in equation (25). Therefore, the effect of camber
is represented in the boundary condition but ignored in the spatial placement
of the horseshoe elements. This scheme will give a fair approximation to
cambered fusiform bodies provided that the amount of body camber is not too
large.

THE GENERALIZED VORTEX IATTICE METHOD

Description of Method

The three features discussed above, i.e., the inclusion of the vorticity-
induced residual term w* for supersonic flow, the 'biplanar' scheme for rep-
resenting thickness, and the use of a vortex grid of concentrical polygonal
cylinders for the simulation of fusiform bodies, have been implemented in a
computational procedure herein known as the Generalized Vortex Lattice (GVL)
method. The GVL method has been codified in a Fortran IV computer program
(VORIAX), which has been widely utilized throughout the Lockheed-Californis
Company as an efficient aerodynamic design tool for advanced aircraft confi-
gurations in subsonic and supersonic flows.
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The basic element of the method is the swept horseshoe vortex with
'bound' and 'free' legs. In the present version of the method, the free legs
may trail to downstream infinity in any arbitrary, but predetermined, direc-
tion. The lattice formed by the bound legs of the horseshoe vortices is
laid out on the proper cylindrical surfaces, the trailing legs being parallel
to the x-axis., Figure 5 illustrates schematically the representation of a
simple wing-body configuration within the context of the present method. The
streamwise arrangement of the lattice follows the 'cosine' distribution law
(eq. (22)), whereas the spanwise, or cross-flow, spacing of the trailing legs
can be arbitrarily specified. To each horseshoe vortex there corresponds an
associated control point, placed midway between the bound trailing legs of
the horseshoe and longitudinselly spaced according to equation (23).

The velocity field induced by the elementary horseshoe vortex is derived
from equstion (12), and it includes the contribution given by equation (21)
when the velocity induced by a horseshoe at its own control point is evaluated
at supersonic Mach numbers. This veloecity field is used to generate the co-
efficients of a system of linear equations relating the unknown vortex
strengths to the appropriate boundary condition at the control points. This
linear system is solved by either a Gauss-Seidel iterative procedure (ref. 8),
or by a vector orthogonalization technique (ref. 9).

The pressure coefficients are computed in terms of the perturbation
velocity components. Force and moment coefficients are determined through a
numerical integration process. Due account is taken of the leading edge
suction through the application of Lan's procedure (ref. 7), which the GVL
method directly extends to supersonic flow.

Numerical Considerations

At supersonic Mach humbers, the velocity induced by a discrete horseshoe
vortex becomes very large in the very close proximity of the envelope of Mach
cones generated by the transverse leg of the horseshoe. At the characteristic
envelcpe surface itgelf, the induced velocity correctly vanishes, due to the
finite part concept. This singular behavior of the velocity field occurs only
for field points off the plane of the horseshoe. For the planar case, the
velocity field is well behaved in the vicinity of the characteristic surface.
A simple procedure to treat this numerical singularity consists of defining
the characteristic surfaces by the equation

(xx)? = ¢ B (yy)® + (2-22)°) (26)

where C is a numerical constant whose value is greater than, but close to, 1.
It has been found that this procedure yields satisfactory results, and that
these results are quite insensitive to reasonable variations of the parameter
C.
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Another numerical problem, peculiar to the supersonic horseshoe vortex,
exists in the planar case (field point in the plane of the horseshoe) when
the field point is close to a transverse vortex leg swept exactly parallel
to the Mach lines (sonic vortex), while the vortex lines immediately in front
of and behind this sonic vortex are subsonic and supersonic, respectively.
This problem can te handled by replacing the boundar; condition equation for
such sonic vortex with the averaging equation

~Yp*_y t2 ¥k T ypry, = O (27)

where vy # is the circulatior strength of the critical horseshoe vortex, and
Yr*_q ang Ypx4 80 the respective circulation values for the fore-and-aft

adjacent subsonic and supersonic vortices.

The axialwash induced velocity component (u) is needed for the computa-
tion of the surface pressure distribution, and for the formulation of the
boundary condition for fusiform bodies. When the field point is not too
close to the generating vorticity element, the axialwash is adequately des-
cribed by the conventional discrete horseshoe vortex representation. But if
this point is in the close vicinity of the generating element, as may occur
in the biplanar and in the concentrical cylindrical lattices of the present
method, the error in the computation of the axialwash due to the discretiza-
tion of the vorticity becomes unacceptable. This problem is solved by resor-
ting to a vortex-splitting technique, similar to the one presented in refer-
ence 10. Briefly, this technique consists of computing the axialwash induced
by the transverge leg of a horseshoe as the summation of several transverse
legs longitudinally redistributed, according to an interdigitation scheme,
over the region that contains the vorticity represented by the single discrete
vortex., This is done only if the point at which the sxialwash value is re-
quired lies within a given near field region surrounding the original dis-
crete vortex.

COMPARISON WITH OTHER THEORIES AND EXPERIMENTAL RESULTS

Conical flow theory provides a body of 'exact' results, within the con-
text of linearized supersonic flow, for some simple three-dimensional confi-
gurations., These exact results can be used as bench mark cases to evaluate
the accuracy of numerical techniques. This has been done rather extensively
for the GVL method, and very good agreement between it and conical flow theory
has been observed in the computed aerodynamic load distribution and all force
and moment coefficients. Only some typical comparisons are presented in this
paper, figures 6 through 9.

Finally, the capability of computing surface pressure distributions by
the method of this paper is illustrated in figures 10 and 11.
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CONCLUDING REMARKS

It has been shown that vortex lattice theory can be extended to super-
sonic flow if Aue account is taken of the principal part of the surface vorti-
city integral. Furthermore, special vortex lattice layouts, which allow the
simulation of thickness and volume with horseshoe vortices, have been presen-
ted., All this greatly enhances the value of vortex lattice theory as a com-
putationally efficient design and analysis tool, as exemplified by its exten-

sive use at the Lockheed-California Company, discussion of which has been
precluded by space limitations.
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NUMERICAL METHOD TO CALCULATE THE INDUCED DRAG OR
OPTIMUM LOADING FOR ARBITRARY NON-PLANAR AIRCRAFT

James A. Blackwell, Jr.
Lockheed-Georgia Company

SUMMARY

A simple unified numerical method applicahble to non-planar subsonic air-
craft has been developed for calculating either the induced drag for an arbi-
trary loading or the optimum aircraft loading which results in minimum induced
drag. The method utilizes a vortex lattice representation of the aircraft
lifting surfaces coupled with the classic equations and theorems for computing
and minimizing induced drag. Correlation of results from the numerical method
with non-planar solutions obtained from other more complex theories indicates
very good agreement. Comparison of the induced-drag computations using the
numerical method with experimental data for planar and non-planar configura-
tions was also very good.

INTRODUCTION

Over the past few years, increased attention has been focused on improving
aircraft performance. One method to improve performance is to lower the air-
craft induced drag. This can be accomplished by more efficient desizn of con-
ventional configurations »r by developing new and unique designs whose intent
is to minimize induced drag. Typical of new configurations that have been
developed for this purpose are the Lockheed boxplane and the Whitcomb winglet
configuration.

The aircraft lifting surfaces for conventional aircraft as well as for new
configurations are generally non-planar in design. To achieve a minimum in-
duced d.rag, these non~planar surfaces must be designed to support the required
optimum loads as specified by classical theory (refs. 1 and 2). Unfortunately,
the use of classical theory to determine the design loads is quite cumbersome
since rather complex conformal transformations must be utilized. Thus, a
simple inexpensive method is required to determine what the 'design to'" loading
of a no.-planar configuration should be to minimize the aircraft induced drag.
Furthermore, for conditions where the aircraft is not operating at design con~
ditions, an analysis method is required to quickly assess the magnitude of the
aircraft off-design induced drag. Also, methods of this type are of particular
importance in making configurational trade-offs.

The objective of this paper is to present a simple unified numerical
method applicable to subsonic non-planar aircraft for the rapid calculation of:
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1. the induced drag for an arbitrary aircraft loading or
2. the optimum aircraft loading which results in minimum induced drag.

The paper will include a discussion of the fundamental theoretical concepts on
which the method is based, followed by the theoretical formulation of the nu-
merical calculation procedure. Computations will be made using the method and
will be compared to existing theoretical solutions and to experimental data.
This will be followed by an illustration of the utility of the method for
making configurational trade-offs by comparing the loading and induced drag
results for various types of wing additions such as winglets or wing-tip
extensions.

SYMBOLS
Aij geometric influence function
AR aspect ratio, b?/S
b reference span
c local chord of lifting surface
cav average chord (S/b)
¢n section load coefficient normal to load perimeter
CL lift coefficient
CDi induced drag coefficient
Cws bending-moment coefficient
Di induced drag (Dj =CDi qS)
e efficiency factor
F resultant ferce of lifting surface
h length of wing addition
k unit normal vector parallel to Z axis
L length of load perimeter
L lift force (L=Cp qS)
M Mach number
50
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Superscript:

Subscripts:

i

wi

o v e ey o e n e i e M ma e g % e r e s be) T Aewroas wpeATmmon 4 e ges T ATy S TN SRR L S

number of lifting elements on load perimeter
unit vector normal to load perimeter

section load normal to load perimeter (N=q c, c)
free-stream dynamic pressure

semi-width of vortex pair

nondimensional semi-width of vortex pair (s =2s'/b)
reference area

side force

induced velocities

resultant induced velocity

velocity normal to load perimeter

free-stream velocity

lifting element coordinate system

aircraft coordinate system

aircraft spanwise center of pressure

circulation (eq. (10))

rotation angle in the Y-Z plane

indicates vector quantity

»

number designating a vortex pair that model a particular lifting

element

number designating a control point on a particular lifting element

wing

winglet
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BASIC THEORETICAL CONCEPTS

Fundamental to the development of the present model is the representation
of the aircraft non~planar lifting surfaces by a system of rectangular horse-
shoe vortices (ref. 3). The induced drag for a given loading or the optimum
loading for minimum induced drag can be calculated for any arbitrary non-planar
aircraft at subsonic speeds utilizing this vortex representation and the
following basic law and theorems: Munk's Theorems I to I1I, Biot-Savart Law,
and the Kutta-Joukowski Theorem.

Munk's first theorem (ref. 1) can be stated as follows:

The total induced drag of any multiplane system ts unaltered
if any of the lifting elements are moved in the direction of
motion provided that the attitude of the elements is adjusted
to maintain the same distribution of lif' among them.

This theorem is commonly referred to as Munk's stagger theorem. An illustra-
tion of this theorem is shown in figure 1. Several practical applications can
be deduced from this theorem. First, the chordwise distribution of pressure
does not affect the theoretical induced drag of the aircraft if constant
section 1ift is maintained. Second, wing sweep does not effect the theoretical
induced drag as long as the spanwise distribution of 1lift is constant. A third
application is that the load from a system of multi-surfaces (i.e. wing and
horizontal tail) with the same projection in the Y-Z plane can be made equiva-
lent to a single surface for the purpose of calculating induced drag.

In the following theoretical development, use will be made of Munk's first
theorem to lump the chordwise distribution of vorticity into a single chordwise
load and to translate all loads into the 0,Y,Z plane (fig. 1).

Munk's second theorem (ref, 1) is illustrated in figure 2 and can be
stated as:

In caleulating the total induced drag of a lifting system,
once all the forces have been concentrated into the plane
0,Y,2, we may, instead of using the actual values of the
velocity normal to the lifting elements [Vy(x,y,2)] at the
original points of application of the forces, use one-half
the limiting value of the normal velocity [V,(»,y,z)] for
the corresponding values at points P(0,y,3).

This theorem allows the computations to be done in the Trefftz plane (down-
stream infinity) rather than in the real plane. In the subsequent theoretical
derivation, this fact will be utilized to make all the computations in the
Trefftz plane, thereby greatly simplifying the calculations.

The third theorem given by Munk (ref. 1) is presented as follows:
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When all the elements of a lifting system have been trans-
lated longitudinally to a single plane, the induced drag
witll be a mintmum when the component of the induced
velocity normal to the lifting element at each point is
proportional to the cosine of the angle of inclination of
the lifting element at that point.

This theorem is illustrated in figure 3 and can be summarized in equation form
as:

Vy = W cos@ (1)

For a horizontal lifting element it can be seen from equation (1) that the
normal velocity (downwash) across the span is equal to a constant (fig. 3). Tor
a vertical plane (6 =90°), the normal velocity (sidewash) must be equal to zero
for minimum induced drag. The physical interpretation of this theorem will be
further illustrated in a subsequent section.

Equation (1) will be utilized in the following theoretical development as
the boundary condition necessary to achieve a minimum induced drag and hence an
optimum aircraft loading.

Tte basic equation for calculating the aircraft-induced drag can be
derived by applying the Kutta-Joukowski theorem in the drag direction. By
virtue of Munk's thenrems, the calculations can be accomplished in the Trefftz
plane rather than the real plane. Thus, the equation for induced drag ex-
pressed in terms of the Trefftz plane variables and using vector notation is:

Dj = 5~ § Venade (2)

Equation (2) along with the induced velocities in the Trefftz plane de-
rived from the vortex model of the lifting surfaces will comprise the basis for
the induced drag computation. A

PHYSICAL INTERPRETATION OF THEORETICAL CONCEPTS

To provide a better physical understanding of the computation of induced
drag and the calculation of the optimum loading for minimum induced drag, the
theoretical concepts discussed in the previous section will be illustrated
using a wing-winglet configuration. 1In figure 4, the sources of induced drag
for a wing-winglet combination are shown. These are:

o Drag due to the induced flow by the wings on the wing

o Drag due to the induced flow by the wings on the winglet
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o Drag due to the induced flow by the winglets on the winglet
o Drag due to the induced flow by the winglets on the wing

For simplicity, the effects of symmetry are included in the sources of induced
drag shown and are not delineated separately.

In figure 4(a), the effect of the wing induced flow is shown. The wing
under positive_load produces a downwash on itself which results in the wing
force vector, F, tilting rearward by an angle aj. The wing force vector, F, is
perpendicular to the resultant, V, (Kutta-Joukowski thecrem). The rearward
rotation of the force vector results in a wing-induced drag. A sidewash is
also produced by te wing at the winglet location. As can be seen in figure
4(b), the sidewash from the wing combined with the free-stream velocity pro-
duces a tilt forward of the winglet force resulting in a thrust component.

In figure 4(c), the induced drag resulting from the sidewash of the win-,-
let on itself is presented. This results in a rearward tilting of the wing’et
force vector and an attendant induced drag. It should be noted that the d’rec-
tion of the winglet force vector is consistent with a positive (upload) or the
wing. The winglet also induces an upwash on the wing. In figure 4(d), it can
be seen that this upwash rotates the wing force vector forward producing a
thrust force.

The results from figure 4 are summarized in figure 5, where all the in-
duced velocities are combined. For minimum induced drag, equation (1) indi-
cates that the velocity normal to the winglet must be equal to zero (6 =90°).
This can be seen to occur when the sidewash produced on the winglet by the wing
exactly cancels the sidewash produced by the winglet on itself. In other
words, the induced angle of attack (aj) of the winglet is zero. The induced
drag of the wing is also minimized by the presence of a winglet since the wing-
let causes a reduction in the net downwash at the wing; and, hence, the induced
angle of attack is reduced.

DERIVATION OF NUMERICAL METHODS

Vortex Model

By virtue of Munk's theorems, the calculations for induced drag and the
optimum loading can be accomplished in the Trefftz plane. This fact consider-
ably simplifies the calculation problem since the method will not be a function
of the longitudinal coordinate. The projection of the aircraft non-planar
lifting surfaces "1 the Trefftz plane will be referred to as the load
perimater.

In the real plane, the aircraft lifting surfaces will be represented by a

system of horseshoe vortices. The equations describing the induced velocities
in the Trefftz plane at a control point P(e,y{,zj) (fig. 6) due to a horseshoe
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vortex located in the real plane at a point P(xj,yj,zj) are glven below as de-~
rived from the Biot-Savart Law (ref. 3):

e

v, "¢ (3)

Y _LIohifzt 2z

v, 2 vm(R1 R2> (4)

Y_.L=_1_F_J'_(L-_s_'l__(x;ﬁ).)

Vv, 2m vV R Ry (5)
where

Ry = (2')2 + (y' -s")? (6)

Ry = (2")2 + (y' +s')2 (N

y' = (yy-yj) cosj + (z; -z3) singj (8)

z' = - (yg-yj) sinbj + (z4 - zj) cosd; (9)

and the circulation by virtue of the Kutta-Joukowski theorem is given as

Ts (c c)j
Vl = nz (10)

@

Inspection of equations (3) to (5) indicates that there is no contribution
from the horseshoe bound leg in the Trefftz plane and the induced velocities
are not dependent on x. The resulting model then reduces to describing the
load perimeter in the Trefftz plane (fig. 6) by lifting elements that are
represented by a trailing vortex pair having a circulation of equal magnitude
but of opposite rotation. For each lifting element there is an associated
control point located midway between the pair of vortices.

Induced Drag Calculation

The basic equation for calculating the induced drag for an arbitrary non-
planar lifting system was given in equation (2) as:

1

P17 v

§ Ve NG de

The integral is a circuit integral taken around the perimeter of the pro-
jection of the lifting system in the Trefftz plane. The vector V is the
resultant induced velocity vector in the Trefftz plane from all vortices on the
load perimeter. The vector fi is a unit vector, normal to the load perimeter.
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Reducing equation (2) to coefficient form, nondimensionalizing the lifting
element length (L) by the reference semispan, and using the relationship for
the average chord, the following result is obtained

1§ i (mc 22!

Cog 4§ v, (cAv)ﬁd(b) an
Writing the above in the form of a srm and assuming symmetry about the X-Z
plane

(cp ey [V eos(V,A)];
cAv Ve

1 m
Cp; = 5 Zl A(28/b) 4 (12)

i

where m equals the number of elements that comprise the load perimeter.
Writing equation (1Z) in terms of the nondimensional lifting element semi-
width(s) and noting thac

v, = Vcos (V,7) (13)

the expression for induced drag can be written as

T Vny (eq )y
T
i=1 Ve

The velocities normal to the lifting elements (V,) can be determined by
utilizing the expressions for the induced velocities in equations (4) and (5).

From the geometry of figure 6, the normal velocity at P; due to a vortex

pair at Pj can be expressed in terms of the induced velocities as:

Yng _ Wy i
vm = v Cos (91“6]) - v 51n(6i—6j) (15)

[+ 2] o0

Combining equations (4), (5), (10), and (15) yields the expression for the
total normal velocity at the control point Py due to vortices at all points Py:

Vis m (c . ¢), c [ (y' +s’
Vl- }‘ 2 = 4AV((Y S) - S))COS(ei‘e-)
© j=1 CAV Ui Rl R2 3
CAV (2" 2z
IR : LA . : =0,
A (Rl Rz) 51n(61 eJ)l (16)

The portion contained in curvy brackets is only a function of the projected
aircraft geometry in the Trefftz plane and will be denoted by Aij' Thus, in
terms of the geometric influence function Ayj,
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% Vny m (cp ¢)
= A (17)
Vo jzl Cav 1]

Substitution of equation (17) into equation (14) yields the fiual expres-
sion for the induced drag:

) / m m (cqy ©) (cq ©).
i i
: Cp, = ( )( )()(A) (18)
: Dl i-z-'l jzl CAV CAV Si ij

-

The independent parameters in equation (18) are the loadings normal to the
load perimeter, the lifting element semi-widths, and the geometric influence
function. The loading normal to the load perimeter will be considered input to
the present method. The normal loading can be determined from any available
non-planar lifting surface calculation procedure such as in reference 3 or from
experimental data. The lifting element semi-width is also considered as input.
The geometric influence function (Aj;), as has been previously mentioned, is a
function of the input aircraft geometry.

For an arbitrary applied load, the 1lift can be determined from the follow-
ing expression

L=¢‘Nﬁoﬁd2 (19)

Expressing equation (19) in coefficient form and writing as a sum

m (cn c), _
CL=2 7} (—————1) (s5) cos(fiy, k) (20)
j=1 CAV
Since
cos(ﬁj, k) = cos ej (21) i

the final expression for the lift coefficient is given by

m ((Cn c).

Cay ) (sj) cos ej (22)

CL =2
j=1

The bending-moment coefficient at the X-axis can be expressed as

p (e ©). y Zs
Cup = 3 L (—-Z;;—l S (37% cosfy + E?%‘sinej) (23)

The spanwise center-of-pressure location can be determined from the following
equation:
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Jep , 1WB «,
b/2 - ¢ (24)

The aircraft efficiency factor can be calculated from the following
standard equation:

2
Cp

e.

Optimum Load Calculation

The expression for the total velocity normal to a lifting element was
given in equation (17) as:

v m (cq ©)
T’P-i- = Z ————‘ln Aij
© j-l CAV

According to Munk's theorem III, the loading for minimum induced drag is
obtained when the distribution of normal velocity satisfies equation (1):

Yoy Wo
v V“COSi

©

where w, is a constant. Using equation (1) as a boundary condition and combin-
ing it with equation (17), there results:

m (cq ©)
%— cosfy = ¥ "—_i Ay (26)
4=1  Cav

where the loading in equation (26) is the optimum loading. Using square
brackets to indicate matrix notation, equation (26) can be written as:

(cq ©)
[cosei] = ;Vm [ Aij] [—_22;—1] (27)

Solving for the optimum loading

5] 2] ]

The value of the arbitrary constant, Wy Can be determined from equation
(22) by specifying the aircraft 1ift coefficient.

In summary, to determine the loading for minimum induced drag, only the
1lift confficient and aircraft geometry are required for input. Once the
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loading has been determined, the minimum induced drag, the spanwise center-of-
pressure location, and efficiency can be determined in the manner previously
presented (eqs. (18), (z4), and (25)).

CORRELATION OF METHOD

The theory described in the previous section for calculating the aircraft
induced drag for a given loading or thz: loading for a minimum induced drag has
been coded for use on Lockheed computers. Jn this section, computations using
the present method will be compared to other theoretical solutions and to

experimental results.
Induced-Drag Correlations

Numerical solutions for the aircraft efficiency for a monoplane of aspect
ratio eight are shown in figurc 7 for various values of lifting element widths.
For this example, the widths of the elements over the load perimeter were held
constant. A more efficient result could have been obtained if, for instance, a
cosine spacing of the elements had been used. The input loading on the mono-
plane was specified to be elliptical. The exact solution for the efficiency
factor (ref. 1) on an elliptically lnaded moucplane is, of course, 1.0. As can
be seen, the numerical solution approaches the exact value as the width of the
elements become smaller. For a lifting element width equal to .0l (b/2), the
error was approximately 0.5% in efficiency.

A similar calculation was made for an aspect ratio eight biplane with
wings of equal span and a height-to-span ratio of 0.5. The biplane was loaded
optimally utilizing the loadings derived in reference 1, based on transforma-
tion theory. The numerical calculation for efficiency factor was 1.6307 (using
constant elements of 0.0125(b/2) in width) compared to the value of 1.6260
given in reference 1. The resulting difference was approximately 0.3%.

In figure 8, induced-drag results calculated using the present method are
compared to the experimental results for an advanced Lockheed transport de-
signed to cruise at 0.95 Mach number and at a lift coefficient of 0.47. The
spanwise loading for the aircraft was obtained from an available 1lifting
surface program similar to that in reference 3. As can be seen, the agreement
between theory and experiment is very good over a range near the design lift
coefficient.

A further correlation example is presented in figure 9 where numerical re-
sults are compared with experimental data for a non-planar Lockheed boxplane
configuration. Again, the loading was obtained from lifting~surface theory.

As indicated, good agreement is obtained.

Optimum Load Correlations

In figure 10 the optimum loading is presented for an aspect ratio eight
monoplane as calculated from equation (28) using constant elements of .01(b/2)
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in width., Also shown is the classic optimum result for a monoplane - an
elliptical loading. The correlation can be seen to be very good. The error in
induced drag of the computed result was approximately 0.57%, which is consistent
with the results in figure 7.

In reference 2, an optimum loading for a wing with a winglet is presented
as derived from transformation theory. This solution is compared to the result
calculated using the present method in figure 1l1. Good agreement between the
two methods is obtained.

ILLUSTRATIVE USE OF METHOD

Taken together, the present numerical method provides a unique tool for
understanding the sources of induced drag and making configuration trade-offs
to achieve an overall aerodynamic as well as structurally optimum aircraft. An
illustration of using the method to provide additional understanding into the
basic sources and mechanisms of induced drag is presented in figure 12, where
the magnitude of the induced-drag components for a wing-winglet configuration
(fig. 4) with optimum load is presented. From the figure, it can be seen that
the induced-drag contribution from the wing on the winglet and -he winglet on
the winglet are of the same magnitude and cancel each otner. Tnis is, of
course, the result previously illustrated in figure 5.

As a result of design or structural constraints, the aircraft may not be
able to achieve the op !mur loading for minimum induced drag. The penalties
that incur from the use of non-optimum loadings can be quickly assessed using
the present method. This is illustrated in f.gure 13, where the winglet load-
ing for a wing-winglet configuration is varied. As can be seen the induced
drag is sensitive to certain types of changes (non-optimum 1) where it is not
to others (non-optimum 2).

The present method can also be used to quickly make configuration trade-
offs. This is illustrated in figures 14 and 15. 1In figure 14 the parametric
effect of wing additions on induced drag and on the wiug spanwise center-of-
pressure location as calculated from the present method are presented. If, for
instance, it was desired to find a configuration which would give the maximum
induced drag reduction for a minimum outboard shift in wing center of pressure,
this can quickly be determined by replotting the parametric data of figure 14
in the form of figure 15 and the result determined.

CONCLUDING REMARKS

A unified numerical method applicable to non-planar subsonic aircraft hcs
been developed for the purpose of calculating the induced drag for an arbitrary
loading or the optimum aircraft loading that gives minimum induced drag.
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Use of the numerical method has indi-ated that:
(1) the method is simple and easy to use

(2) 1induced drag and optimum loading results from the numerical
method correlate very well with non-planar solutions obtained
from more complex theories

(3) numerical induced-drag predictions are in good agreement with
experimental data for planar and non-planar configurations

(4) the numerical method provides both analysis and design capa-
bility which allows the designer to make rapid configuration
assessments and trade-offs for the purpose of achieving an
overall aerodynamic as well as structurally optimum aircraft.
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Figure 2.- Illustration of Munk's theorem II.
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Figure 4.- Sources of induced drag for a wing/winglet configuration.
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Figure 12.- Illustration of induced drag calculations for
a wing/winglet configuration.
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Figure 13.- Effect of changes in winglet loading on the ind :ed drag

Sro I/ v 7 T Sroor e 1'/ "“'1*/"“'7———

of a wing/winglet configuration.

LIFT = CONSTANT
MINIMUM DRAG LOADINGS

/ /

s / /)
nee,  / /

/ 0¥

L..3— / /ﬂy

_ e

|
[ VR IR | I T 0. .. 1 | 1 e

0 4 8 12 16 20 o] -10 -20 -30 -40 -50

WING CENTER-OF-PRESSURE
CHANGE, % SEMISPAN

INDUCED DRAG CHANGES, %

Figure 14.- Basic theoretical effects due to wing additions.
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OPTIMIZATION AND DESIGN OF THREE-DIMENSIONAL AERODYNAMIC
CONFIGURATIONS OF ARBITRARY SHAPE

BY A VORTEX LATTICE METHOD

Winfried M. Feifel
The Boeing Company

SUMMARY

A new method based on vortex lattice theory has been devel-
oped which can be applied to the combined analysis, induced drag
optimization, and aerodynamic design of three-dimensional config-
urations of arbitrary shape. Geometric and aerodynamic con-
straints can be imposed on both the optimization and the design
process. The method is compared with several known analytical
solutions and is applied to several different design and optimi-
zation problems, including formation flight and wingtip fins for
the Boeing KC-135 tanker airplane. Good agreement has been
observed between the theoretical predictions and the wind tunnel
test results for the KC-135 modification.

INTRODUCTION

Falkner (ref. 1) has used vortex lattice networks as early a
1943 for the calculation of the aerodynamic forces on surfaces of

S

arbitrary shape. With the advent of electronic digital computers,

vortex lattice methods were the first powerful tools for three-
dimensional potential flow analysis. In the past decade, vortex
lattice computer codes were developed independently by several

investigators, including Rubbert (ref. 2) and the author of this

paper (ref. 3).

The vortex lattice approach is still favored for many engi-

neering applications for several reasons, such as the ease of the

problem description, the relatively sma'l computational effort
required and the "remarkable accuracy o. the solution", as noted
by James (ref. 4). One specific advantage of :he vortex lattice
idealization over the advanced panel methods is that the leading
edge suction force is inherently included in the solution. This
allows the computation of the configuration induced drag without
resorting to the Trefftz-plane theorem.

T T m————e - - . - ]
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Vortex lattice methods tend to slightly underpredict induced
drag, as observed by Rubbert (ref. 2) and Kalman (ref. 5). How-
ever, as long as the paneling scheme is kept uniform, the induced
drag computed by the vortex lattice method varies in a consistent
fashion from known exact solutions. Therefore, it appears to be
justifiable to utilize the vortex lattice near-field induced drag
predictions for the optimization of the aerodynamic load distri-
bution.

This paper presents a unified approach for the combined
analysis, optimization, and design of three-dimensional aerody-
namic configurations based on the vortex lattice technique. The
new method will satisfy aerodynamic and geometric constraints
while redesigning the contour of the configuration to yield mini-
mum induced drag.

The new combined analysis-optimization-design method takes
advantage of the vortex lattice near-field induced drag solution
for the optimization process. When linearized boundary condi-
tions with respect to the first guess of the configuration geo-
metry are introduced, the new method can predict with good
accuracy the changes in twist and camber required to achieve the
load distribution for minimum induced drag and also satisfy addi-
tional design constraints.

PROBLEM FORMULATION

A good example of a complex design problem is the addition
of wingtip fins to an existing airplane. For a given wing fin
height and planform, the task is to determine the fin twist and
camber, and the angle of attack of both the fin and the wing that
will result in minimal induced drag for the airplane at a pre-
scribed lift coefficient. To accomplish this, a mixed analysis/
design problem must be solved. The problem can be stated as
follows: Determine the twist and/or camber distribution required
for portions or all of a threc-dimensional system of wings with
arbitrary planforms while a number of prescribed design require-
ments are satisfied. The design requirements could be any mean-
ingful combination of the cc.dition that the induced drag of the
system (or of part of the system) be a minimum while at the same
time a number of constraint conditions are imposed. Typical con-
straints would be, for example, that a given amount of lift be
generated at a given pitching or rolling moment, or that the
boundary conditions be satisfied on portions of the initial con-
figuration.
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Translated into the language of mathematics, the task des-
crihed avove amounts to finding the extremum of a function sub-
ject to a set of imposed constraints. Such a problem can be
solved by Lagrange's method of multipliers.

SOLUTION

The configuration to be analyzed or designed is subdivided
irto a network of n panels spaced uniformly in spanwise and
chordwise direction, as outlined in figure 1. Based »n the
theorem of Pistolesi (ref. 6) an unknown lifting vortex singular-
ity v is located along the l/4-chord line of each panel. Hel-
moltz' law is satisfied by shedding a p:ir of trailing vortices
along the panel edges downstream to infinity. It is a basic
assumption for this horseshoe vortex model that these trailing
vortices are aligned with the locnl flow direction; therefore,
caly the forces acting on the lifting vortex elements need to be
computed. There are two points of special significance located
on each panel: the lifting vortex midpoint aid a boundary point
at 3/4-chord.

Boundary Conditions

In the configuration analysis mcde, the strength of the
unknown singularities y is determin<<¢ such that the flow tangency
condition is satisfied at all boundary points. 1In the configura-
tion design mode, the boundary condi-ions need not necessarily
be satisfied on the initial geometry, but there the angle formed
between the panel surface and the velocity vector at the panel
3/4-chord poi-t represents the unknown values Aa, AR of the
changes in panel orientation, which are necessary to yield the
contour of the updated configuration.

The boundary condition for the panel j can be written in the
generalized form

n
>
C(Yyr Yy eo¥y- bagr 8B5) = i2=:1 vy £33 = Bogag-bBsbiR -G =0 (1)

i J J )
where
f'i = boundary point influence coefficient indicating the
] velocity induced by a unit strength singularity i
parallel to the surface normal vector Nj on panel j.
Aaj,AB. = vnknown pitch and yaw angles that may be required to

reorient the panel j in order to satisfy the flow tan-
gency at its boundary point.
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a.,b. = panel reorientation 1nfluence coefficients that indi-
J cate the change in ﬁj-um when the panel j is pitched /
or yawed by Aa=AR=1°7

Uco = free stream velocity vector.

The panel reorientation influence coefficients are linear- N
ized with respect to the initial panel location. Therefore : .
equation (1) can be considered accurate for orientation changes
of approximately up to Aaj=ABj=20°. If the boundary condition
has to be satisfied at the original position of the panel (analy-
sis mode) then Aaj and ABj are zero.

Computation of Forces

The conditions at the 1/4-chord point (vortex m1dp01nt)
govern the forces acting on the panel. The velocity veator Vs
at the 1/4-chord point is obtained as the sum of the free stream
velocity vector Ue» and the velocity induced according to Biot-
Savert's law by all unknown vortex singularities in the flow
field:

n
> > >
vj =u_ + z; wji Y (2)

14

where @-i denotes the velocity induced at the midpoint of panel j
by the unit strength horseshoe vortex of panel i. The vel-city
at the midpoint is assumed to repr¢sent the average value .ver
the paunel and 1s used to determine the force F- acting on the
panel by applying Kutta-Joukowsky's law for a %luid of unit
density:

> -> ->

where $: describes the length and orientation of the lifting
vortex element.

The force vectox Fi comprises the panel drag compunent Ds;
and the lift vector Ly, which by definition is oriented normai to
the free stream vector u,

The induced drag of a whole configuration with n panels can

be exprer sed as a quadratic function of all the panel vortex
strengths y in the ftnrm of the double sum:

D(yy*"*vy) = El vy B 4 (4)
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The induced drag influence coefficients d4j describe the
drag force experienced by the panel j due to tge panel i when
their horseshoe vortices have unit strength. The drag influence
coefficients contain only geometrical terms. 1In order to get a
nontrivial minimum induced drag solution, at least one constraint
must be introduced in addition to equation (4).

Constraint Conditions

There are a large number of different constraint conditions
which can be imposed on the minimum induced drag problem. 1In the
present method, any meaningful combination of the following con-
straints may be specified:

1) Boundary conditions: For each boundary condition to be satis-
fied, a new equation (1) is introduced.

2) Relationships between unknown singularities: The strength of
certain horseshoe vortices or a relationship between groups of
horseshoe vortices is introduced via an equation of the type:

n
Clygr Ypuurvy) = 3 93 Y3 ¥ 954, = 0 (3)
i=1

where the constants (g) are weighting functions describing the
particular constraint condition.

3) Relationships between the panel reorientation parameters:

The movements of panels or of groups of panels are controlled by
the following constraint equations that establish relationships
between the unknowns Aa and/or AR:

n n

Cllay---Bop, 88y--*8B ) = 3 gjla;+ 3o gy .q BB+, .0 = 0 (6)
i=1 i=1

4) Force or moment relationships between groups of panels: Forces

and moments due to individual panels or groups of panels are pre-
scribed by equations of the following type:

ii

n
C(Yl""Yn) = i§1 g.h Yi * 9p41 (7)

where the influence coefficient hj indicates the force or the
moment of ‘he panel i for yj;=1.
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The influence coefficients hj are, in principle, described
by equation (3). Equation (2) shows that for the computation of
hj, all vortex strengths y need to be known. Equation (7) there-
fore is nonlinear. However, rather than solving the nonlinear
problem directly, an iterative scheme is employed where the first
solution of the vorticity distribution is found for hj 0 =hi(ﬁw)°

Subsequent iterations use updated coefficients, hj (k) = hj (U,

Yl(k—l),...Yn(k'l)) which are based on the vortex distribution of
the previous solution. This process converges very rapidly, and
in many cases the firs* solution is already sufficiently accurate.

Drag Minimizc tion Under Constraint Conditions

The induced drag function (4) and the constraints C given by
the expressions (1) and (5) through (7) may be combined in a new
quadratic function:

m

G(Y]_"Yn,Aal° °Aan,A81"ABn:)\l'"Am)=D(Y1"Yn)"‘_Z:1 Al Cl (8)
i=

where A are the Lagrangian multipliers for m constraints imposed.
A necessary requirement for the induced drag to be a minimum is
that all the partial derivatives of equation (8) be zero. Differ-
entiating the function G with respect to all its variables y)
through )\, yields a system of simultaneous linear equations for
the unknowns vy, Aa, AB, A. Solution of this system of equations
completes the configuration analysis-optimization-design process,
unless an iteration is required to update the influence coeffi-
cients h of equation (7) or if the redesigned geometry deviates
too much from the starting configuration.

VALIDATION OF THE TECHNIQUE

Tne vortex lattice analysis-optimization-design method has
been programmed in FORTRAN IV on the CDC6600 computer. A series
of data cases have been run to check the method against known
analytical solutions.

Planar Wings

R. T. Jones (ref. 7) has given an analytical solution for the
load distribution about wings of varying spans having the same
prescribed 1ift and wing root bending moment. Some of his cases
have been analysed by the present vortex lattice method using a
single lifting line subdivided into 40 equal panels. The wingtip
panel and its traili;a vortex were inset by 1/4-panel span as
proposed by Rubbert /ref. 2). The agreement between the vortex
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lattice results and Jones' exact solution is excellent for both the :
shape and the spanwise load distribution (see figure 2) and the in- j
duced drag ratios shown -n figure 3. ‘

Nonplanar Configurations

Lundry (ref. 8) gives the induced drag factor, e, and the
optimum spanwise circulation distribution obtained by a Trefftz-
plane analysis of wings with a wingtip mounted end plate. Figure
4 shows the optimum circulation distribution on a wing with a 20%
end plate compared to two vortex lattice results obtained with a
single lifting line but using a different number of spanwise
panels. The agreement with the exact solution is excellent,
except in the corner between- the wing and the tip fin. There the
vortex lattice solution obtained with 25 panels per half-wing
deviates slightly from the exact solution.

Some understanding of the source of the slight differences
in span loading can be gained by comparing the downwash and side-
wash computed at the midpoints of the lifting vortex elements
with the known exact distribution. The Trefftz-plane analysis
yields constant downwash along the span of the wing and zero
sidewash along the span of the tip fin for the minimum induced
drag load distribution. The present vortex lattice solution
yields essentially the same results, but there are noticeable
discrepancies in a small region of the wing-fin intersection, as
shown in figure 5. This indicates that under certain conditions,
the point selected for induced drag computation should not always
be located exactly in the middle of each panel lifting vortex
elemant. This error is, however, confired to a relatively small
portion of the configuration and some of the downwash deviations
are of oscillatory nature and therefore self-cancelling. The in-
duced drag efficiency factors indicated by the vortex lattice
method and by the exact solution are thus practically identical
for this particular configuration, as shown in figure 6.

APPLICATION OF THE PRESENT VORTEX LATTICE DESIGN METHOD

The present method has been applied to a variety of problems,
such as the design of wingtip fins, the modification of wings of
a hydrofoil boat, and the optimum positioning of the leading-edge
devices of the YC-14 military transport. The following two
examples demonstrate some of the capabilities of the combined
analysis-optimization-design vortex lattice method.
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Formation Flight

Formation flying techniques have been proposed repeatedly as
a means of reducing airplane drag. To get an estimate of the
possible savings in induced drag, a group of five airplanes flying
at the same altitude in an arrow formation illustrated in figure 7
were analyzed. The ideal (elliptic) load distribution, which
yields minimum drag for the whole formation, is well known from
the Trefftz-plane analysis. This optimum solution is, however,
not practical since none of the airplanes off the centerline
would be balanced in roll. In addition, a completely impractical
wing twist distribution would be required to achieve such a load
distribution. The induced drag savings indicated by this simple
theory are, therefore, far too optimistic.

A more realistic picture is obtained by introducing the
constraint that each airplane of the formation be trimmed in
pitch and roll with respect to its own center of gravity. For
this analysis, the airplanes are assumed to have swept:. constant
cho-d wings without wing twist. The left-hand and right-hand
ailzrons of each airplane are interconnected such that they de-
flect by equal but opposite angles. The horizontal tail is a
simple flat plate. The unknown geometry variables are the angular
deflections of every surface in the formation; ie, wing and hori-
zontal tail incidences and aileron deflection angles. A 1lift
coefficient of C;, = 0.5 is prescribed for the formation.

When only the lift for the whole airplane formation is pre-
scribed, each of the airplanes carries a different amount of load,
as seen in the top of figure 8. This distribution of the load
between airplanes creates the minimum amount of induced drag for
the whole formation flying at the conditions stated.

A more practical result is obtained when the constraint is
introduced that cach airplane in the formation flies at the same
1lift coefficient. Then the problem is fully defined, and only an
analysis-design scheme has to be implemented. The load distribu-
tion and the induced drag values for the airplanes operating
under this condition are shown in the center of figure 8.

As a third variant of the formation flight problem, the in-
duced drag of only the No. 2 and No. 4 airplane has been mini-
mized by allowing a redistribution of the formation weight among
the other airplanes. The results are shown at the bottom of
figure 8. The 1lift of the No. 2 and No. 4 airplanes is close to
zero for minimum induced drag; the small residual 1lift stems from
the condition that the planes are trimmed. This solution is only
of academic interest, but it demonstrates the capability of the
present method to minimize the induced drag of subsets of a con-
figuration.
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The analysis of this five-airplane formation using the vor-
tex lattice method indicates that drag savings can be significant
though much smaller than predicted by the idealizing Trefftz-
plane assumptions. In addition, it is seen that the induced drag
is unevenly distributed among the airplanes in the formation.
Therefore, different formation arrangements should be used to
obtain a more uniform drag level for all airplanes involved.

Wingtip Fins for the KC-135 Airplane

The present vortex lattice method has been used extensively
by Ishimitsu, et al., (ref. 9) to evaluate and design tip fins
for the KC-135 tanker airplane,

Figure 9 shows a typical vortex lattice representation of
the KC-135 wing with the tip fins. Since the prime area of
interest of this study was the region near the wingtip, the body
of the airplane was not modeled in potential flow. The small
loss in accuracy was believed to be outweighed by the savings in
computer time. After a series of trades varying tip fin height
and cant angle, the final planform was selected for the tip fin.
For this given fin planform, thc¢ fin incidence angle and the pro-
file camber shape were designed to yield minimum induced drag,
while at the same time the boundary conditions were satisfied on
the remainder of the airplane. As a first guess, the wing fin
was input as a flat plate. The chordwise vorticity distribution
on the fin was approximated by 10 lifting vortex elements, while
6 panels were used in the spanwise direction. Since the induced
drag is independent of the shape of the chordwise load distribu-
tion (Munck's stagger theorem), the induced drag minimization
problem is not fully defined unless a weighting fuaction is intro-
duced that prescribes how the vorticity is distributed among the
10 chordwise lifting elements. The vortex lattice progrem solves
for the optimum total amount of lift carried by each chordwise
column and for the orientation of tne panels necessary to produce
the prescribed chordwise load variation. The airfoil section
camber line is obtained by integrating the panel slope changes
calculated by the vortex lattice program. Thin airfoil theory
has been used to superimpose a suitable thickness distribution
and the fin camber lines. The results of this process are shown
in figure 10.

The final tip fin configuration was tested in a wind tunnel.
Figure 11 shows good agreement between the measured changes in a
airplane drag and the predictions of the vortex lattice analysis.
The experimental and theoretical loads on the wing and the tip
fin are compared in figure 12. Considering that the incompress-
ible vortex lattice analysis did not include the effects of the
body and wing thickness, the agreement with the experiment is
surprisingly good.
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CONCLUSION /

The vortex lattice method has been successfully applied to
the design and optimization of three-dimensional configurations.
The nonlinear analysis-design-optimization problem in which both
the geometry or portions thereof and the optimum load distribu-
tion are unknown can be solved in a straightforward manner. The *
validity of the method has been demonstrated by application to
several problems, previously not directly amenable to theoretical
analysis. The new method has no serious dra..oacks, but it must
be applied with caution in regions of sudden geometric changes,
such as intersecting wing surfaces, in which case additional work
is required to determine the best paneling scheme and optimum
location of the control points. Even though more advanced panel
methods have been developed, the vortex lattice approach is still
preferred in many applications for several reasons. The theory
is simple and can be translated into fast numerical schemes.

The vortex lattice approach, unlike many other methods, accounts
for the leading edge suction force and therefore, yields an
accurate near-field drag solution. These characteristics make
the vor*~ex lattice scheme a powerful tool in the hands of an ex-
perienc :d aerodynamicist for the analysis, modification, and
optimization of three-dimensional configurations.
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APPENDIX
SYMBOLS
A Wing area
. AR Wing aspect ratio

: b Wing span

‘ C Local chord length
c Mean chord length
Cp Total airplane drag
CDi Airplane induced drag
CDi 11 Induced drag of elliptically loaded wing

e

Cy, Wing lift coefficient
Cy Local 1ift coefficient

* e Induced drag efficiency factor
h Height of winglet
M, Free stream Mach number
n Number of panels
8 Wing kalf span
Sell Half span of elliptic wing
W Downwash or sidewash at vortex midpoint
X,Y,2 Cartesian coordinates
Y Local vortex strength
n Nondimensional spanwise station

—
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MINIMUM TRIM DRAG DESIGN FOR INTERFERING LIFTING

SURFACES USING VORTEX-LATTICE METHODOLOGY

John E. Lamar
NASA Langley Research Center

SUMMARY

A new subsonic method has been developed by which the mean camber surface
can be determined for trimmed noncoplanar planforms with minimum vortex drag.
This method uses a vortex lattice and overcomes previous difficulties with
chord loading specification. This method uses a Trefftz plane analysis to
determine the optimum span loading for minimum drag, then solves for the mean
camber surface of the wing, which will provide the required loading. Pitching-
moment or root-bending-moment constraints can be employed as well at the design
lift coefficient.

Sensitivity studies of vortex~lattice arrangement have been made with this
method and are presented. Comparisons with other theories show generally good
agreement. The versatility of the method is demonstrated by applying it to
(1) isolated wings, (2) wing-canard configurations, (3) a tandem wing, and
(4) a wing-winglet configuration.

INTRODUCTION

Configuration design for subsonic transports usually begins with the wing,
after which the body and its effects are taken into account, and then the tails
are sized and located by taking into account stability and control requirements.
With the advent of highly maneuverable aircraft having closely coupled lifting '
surfaces, there has been an increased interest in changing the design order so :
that multiple surfaces could be designed together to yield a trimmed configura-
tion with minimum induced drag at some specified 1ift coefficient. Such a com-
bined design approach requires that the mutual interference of the lifting sur-
faces be considered initially.

Single planform design methods are available to optimize the mean camber
surface, better called the local elevation surface, for wings flying at sub-
sonic speeds (for example, ref. 1) and at supersonic speeds (for example,
refs. 2 and 3). The design method presented in reference 1 was developed from
an established analysis method (Multhopp type), also presented in reference 1,
by using the same mathematical model, but the design method solves for the
local mean slopes rather than the lifting pressures. In the usual implementa-
tion of reference 1, the design lifting pressures are taken to be linear chord-
wise, but must be represented in this solution by a sine series which oscillates
about them. An example presented herein demonstrates that corresponding oscil-
lations may appear in pressure distributions measured on wings which have been
designed by the method of reference 1. The method developed herein overcomes

this oscillatory lifting pressure behavior by specifying linear chord loadings
at the outset.
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The development approach used in the two~planform design problem will be
similar to that used for a single planform. The analytic method employed,
selected because of its geometric versatility, is the noncoplanar two-planform
vortex-lattice method of reference 4.

The design procedure is essentially an optimization or extremization prnb-
lem. Subsonic methods (for example, see refs. 5 and 6) are available for deter-
mining the span load distributions on bent lifting lines in the Trefftz plane,
but they do not describe the necessary local elevation surface. This is one of
the objectives of the present method which will utilize the Lagrange multiplier
technique (also employed in refs. 2 and 3). The method of reference 4 is used
to provide the needed geometrical relationships between the circulation and
induced normal flow for complex planforms, as well as to compute the lift, drag,
and pitching moment.

This paper presents limited results of precision studies and comparisons
with other methods and data and is a condensed version of reference 7. Several
examples of solutions for configurations of recent interest are also presented.

SYMBOLS
A a element of aerodynamic influence function matrix A which con-
1 tains induced normal flow at lth point due to nth horseshoe

vortex of unit strength; total number of elements is g-x g
AR aspect ratio
a fractional chord location where chord load changes from constant

value to linearly varying value toward zero at trailing edge
ai’bi’ci coefficients in spanwise scaling polynomial
b wing span
CD drag coefficient
CD,o drag coefficient at CL =0
CD vortex or induced drag coefficient, Yortex drag

A\ qS
o ref
C lift coefficient, Life
L q S
o ref
'Cm pitching-moment coefficient about ?-axis, Pitc:ingémoment
Y refCref

ACp 1lifting pressure coefficient
c chord
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section lift coefficient

reference chord
z [ﬁca + 0.75} (brackets indicate "take the greatest integer'")

maximum number of spanwise scaling terms in solution technique
for wings without dihedral

lift
pitching moment about coordinate origin
free-stream Mach number

number of span stations where pressure modes are defined as used
in reference 1

maximum number of elemental panels on both sides of configura-
tion; maximum number of chordal control points at each of m
span stations as used in reference 1

number of elemental panels from leading to trailing edge in
chordwise row

total number of (chordwise) rows in spanwise direction of
elemental panels on configuration semispan

free-stream dynamic pressure

reference area

horseshoe vortex semiwidth in plane of horseshoe (see fig. 1)
free-stream velocity

axis system of given horseshoe vortex (see fig. 1)

body~axis system for planform (see fig. 1)

wind~axis system for planform (see sketch (a))

distance along X-, Y-, and Z-axis, respectively

distance along X-, Y-, and Z-axis, respectively

incremental movement of X-Y coordinate origin in streamwise
direction
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*  k

Yy .2 y and 2z distances from imege vortices located on right half
of plane of symmetry, as viewed from behind, to points on {
left panel

Ec canard height with respect to wing plane, positive down

z/c local elevation normalized by local chord, referenced to local
trailing-edge height, positive down

(3z/93%) 1th elemental local slope in vector {3z/3x} of N/2 elements

1 (see eq. (1))

a angle of attack, deg

T, vortex strength of nth element in vector {I'} of N/2 elements

€ incidence angle, positive leading edge up, deg

§ independent variable in extremization process

n nondimensional spanwise coordinate based on local planform

1 semispan

£ distance along local chord normalized by local chord

g! fractional chordwise locaticn of point where mean camber height
is to be computed (see eq. (14))

g,c' dihedral angle from trailing vortex to point on left panel being
influenced; o measured from left panel, o' measured from
right panel

¢ horseshoe vortex dihedral angle in Y-Z plane on left wing panel,
deg

o' horseshoe vortex dihedral angle on right wing panel, ¢' = -9,
deg

Subscripts:

c canard

d design

i,j.k indices to vary over the range indicated

le leading edge

1,n assoclated with slope point and horseshoe vortex, respectively,
ranging from 1 to N/2

L left trailing leg
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R right trailing leg
ref reference value
w wing

Matrix notation:
{3 column vector

| square matrix

Flow angle of attack determined
at each slo: # point

i
>

Typical spanwise
vortex filament

S L~
<t

Z
/

oy

Wing section at an

Vortex-lattice trailing filaments
angle of attack

Sketch (a)

THEORETICAL DEVELOPMEN'T

This section presents the application of vortex-lattice methodology to the
mean-camber~surface design of two lifting planforms which may be separated ver-
tically and have dihedral. For a given planform, local vertical displacements
of the surfaces with respect to their chord lines in the wing axis (see
sketch (a)) are assumed to be negligible; however, vertical displacements of
the solution surfaces due to planform separation or dihedral are included. The
wakes of these beat lifting planforms are assumed to lie in their respective
extended bent chord planes with no roll up. For a two-planform configuration
the resulting local elevation surface solutions are those for which both the
vortex drag is minimized at the design lift coefficient and the pitching moment
is constrained to be zero about the origin. For an isolated planform no
pitching-moment constraint is imposed. Thus, the solution is the local eleva-
tion surface yielding the minimum vortex drag at the design 1ift coefficient.
Lagrange multipliers together with suitable interpolating and integrating pro-
cedures are used to obtain the solutions. The details of the solution are given
in the following five subsections.

Relationship Between Local Slope and Circulation

From reference 4, the distributed circulation over a lifting system is
related to the local slope by
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where the matrix [A] 1is the aerodynamic influence coefficient matrix based on
the paneling technique described in reference 4.

Circulation Specification

Once the surface slope matrix {3z/3x} 1is known, chordwise integration
can be performed to determine the local elevation surface z/c, which contains
the effects of camber, twist, and angie of attack. The major problem to be
solved is determining the necessary circulation matrix {T/U} to employ in
equation (1). The problem is simplified somewhat by having the chordwise shape
of the bound circulation remain unchanged across each span, although the chord-
wise shape may vary from one planform to another. The chordwise loadings allow-
able in the program range from rectangular to right triangular toward the lead-
ing edge and were selected because they are of known utility. An example is
given in figure 2, Two different techniques are utilized to arrive at the span-
wise scaling of the chordwise shapes. The particular technique to be employed
depends on whether the configuration has dihedral.

For a configuration having dihedral, the spanwise scaling must be deter-
mined discretely because no finite polynomial representation c¢f the scaling is
known with certainty, even for ar isolated wing. However, for configurations
with no dihedral, the spanwise scaling can be written as a polynomial for each
planform,

2 2 4
1- n‘ (ai+bin1 +cin1)

(see fig. 2) with a maximum of three coefficients per planform being determined
as part of the solution. It is possible to write this polynomial as a solution
because the isolated wing solution is known to be of the elliptical form

i1 - nlz, and the presence of the other planform is assumed to generate a load-

ing disturbance which can be represented by the other two terms in addition to
adjusting a . Once the scaling is known from either technique, then {r/ul 1is

readily obtained by multiplication.

Lift, Pitching-Moment, and Drag Contributions
Tre contributions to CL and to Cm’ respectively, from the jth chordwise

row of horseshoe vortices are

L 4q 8 cos ¢
- 15
b a8 USrer  1e1

) (2)

t::('—s

© ref
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and
M§ 4q 8 cos O N
i > 1<E (r)-
c - 2 - :E: ~) % (3)
™3 qmSrefcref qwsrefcref gm1 \U 1 3.1
where
<
1 (Ei-a)
(3) : (42)
= _ a
U/ 1-¢, (Ei >a>
l-a
-1i-0.
Ei = -0 75
Nc (4b)
and
- - (= _[1-0.75
R (xle)j 7 cj )
c
Even though CL j and Cm j actually occur on the wing at the jth span-
1 1]

wigse location, they can be utilized in a Trefftz plane solution if the chordwise
summations are performed. This utilization is possible herein because the trail-
ing wake is assumed not to roll up, and the general configuration has specifiable
chord loading shapes. Summing the chordwise loadings at this point allows the
solution of the spanwise scaling to be performed on a bent lifting line located
in the Trefftz plane, which is, of course, ideally suited for the vortex drag
computation. In addition, the summation reduces the number of unknowns from the

product of ﬁc and ﬁs to only ﬁs. Hence, a larger value of N_ can be used

in the Trefftz plane, which should yield improved accuracy in the spanwise scal-
ing factors without affecting the number of horseshoe vortices on the wing.
Then, when the circulations are needed on the wing for use in equation (1), the
well-defined variations of the spanwise scaling factors are interpolated to the
original spanwise positions of the wing vortex lattice which i1s used to generate

[A}. The procedure is implemented as follows:

The summation in the lift expression (eq. (2)) can be written as

N 1 . N

i (%)1 ) Z (ﬁt)i * Zc: (iri)i (6)

i=1 i=1 i=I+4]
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where I is the last 1 wvalue which satisfies 51 S a; that is,

I= [ﬁca + 0.7.'] (7)

where the brackets indicate "take the greatest integer." Hence,

ﬁc(%>i‘1+£ﬁc+o.7j(ﬁc-1)_ . %c:i

- - (8)
¢ i=] N (1 - a) N (1 - a) i=I+1
c c
Similarly, the summation in the pitch expression (eg. (3)) can be written as
N - -
c /1y - _ 0.75¢; (Nc +o.75)(nc - 1) ey L
> ()30 (), + =2 “-2a
i=1 i 3 Nc Nc(l - a) Nc f=]
1 _ 1.5cj Nc:
- <x1e) + cj + — E i
N (1 - a) 3 N i=I+1
) c c
N
c c
+ 3 < 42 (9)
2 i=I+1
N (1 - a)

The contribution to the vortex drag coefficient at the ith chordwise row due
to the jth chordwise row is obtained by using only half the trailing vortex
induced normal wash from the Trefftz plane. The result is
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P Py G teos (0,15 = ¢1)
D,i,] TS U 15 U 3

\‘I(yi’_1 + 8 cos ¢j)2 + (zi,j + s sin ¢j>2

2 2
\/(yi,j - 8 cos ¢j> + (zi,j - 8 sin ¢j>

[/y* + s cos ¢' 2 + (z* + 8 sin ¢' 2
\\\ i,3 3 i,] 3

(10)

* 2 * 2
V(yi’j - 8 cos ¢5) + (zi,j - 8 sin ¢5)

In the % sign, plus indicates that the trailing vortex filament is to the left
of the influenced point; minus, to the right.

In using equations (2), (3), and (10), a new vortex system is set up in the
Trefftz plane in which the bent chord plane is represented by a system of uni-
formly spaced trailing vortices (the quantity 2s 1in fig. 1). This un‘ormity
of vortex spacing leads to a simplification in the equations and can be thought
of as a discretization of the ideas of Munk (ref. 8) and Milne-Thomscen (ref. 9)
for a bound vortex of constant strength,

Spanwise Scaling Determination

To determine the spanwise scaling with either technique requires the com-
bination of the contributions from each spanwise position for configuratione
with dihedral or the mode shape contributions for configurations without dihe-
dral. These contributions must be employed in the appropriate total CL and

Cm constraint equations as well as in the C extremization operation. Due

D,v
to limited space only the solution for wings without dihedral will be discussed.
The equations to be employed in the Lagrange extremization method are

K
c =2 :_L: skcL’k (11)
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K
c =22 6, Cak (12)
k=1
and
K K
8,C ) (13)
cD,V -2 %:é_l 1°D,1,k°k

where K S 6 and C and C are the C and C contributions associ-
L,k m, k L m

ated with the kth term in the polyromials

\’ 2 2 4
1- n1 (61 + 62111 + 63\'11 )
\l 2 2 4

(Note that k = 1, 2, and 3 are assigned to the first planform and 4, 5, and 6
to the second.) These contributions are computed by first assuming a unit value
of scaling with each term in the polynomial, then multiplying each resulting

spanwise scaling distribution by the CL j and Cm j terms of equations (2)
] ]

and (3), and finally summing spanwise over all the chordwise rows associated

with 2ach set of k values (or planform). The vortex drag coefficient associ-

ated with the ith and kth combination of spanwise scaling distributions CD 1.k
L R

or

is compared similarly. The Gk terms are equivalent to the unknown coefficients ,

in the polynomial and are the independent variables in the solution.

An application of the preceding process to a conventional wing-tail config-
uration is shown in figure 3. The resulting idealized loading set is of the
type that would meet the constraints and extremization.

Determination of Local Elevation Curves
With 6§,  known, then {r/v}, C» Cyp» and Cp  cau be determined. The
1]
results for {I'/U} are interpolated to the original spanwise positions of the
paneling which is used in equation (l) and in the following equation to find the
local elevation curves. The equation for the local elevation above the computa-
tional plane at a particular point (£',y) is

- _ g - -
2,9 = j; 2,3 4t (14)

ox
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RESULTS AND DISCUSSION

General

It is riecessary to examine the sensitivity of the results of the present
method to vortex-lattice arrangement., It is 2lso important to compare res:lts
obtaine? with this method with those availabie in the literature. Unfortunately,
the available solutions, whether exact or numerical, may not be for configura-
t‘ons which will exercise the constraint or extreminization capabilities of the
present method. In fact, the available exact solutions are for configurations
which are either two~dimensional sections or iscla:’ . three-dimensionsl wings
with a nonelliptic span loading. The solutions rfor such configurations require
program modifications to the span loading and involve no optimization.

Two-Dimensional Comparison

Various chordwise arrangements and number of vortices were investigated for
several chordwise loading shapes, of which the a = 0.6 results are given in
figure 4. Although difficult to see clearly from this figure, the agreement of
the present method with analytic results (ref. 10) is good for both local slope
and elevation. Examination of figure 4 leads to the following general conclu-
sions concern‘'ng the chordwise arrangement: (1) Unifcrm spacing is preferred;
(2) Nc = 20 {s a good compromise when considering both computntional requira-

ments and completely converged results. An additional conclusion is that the
present method yields incidence angles near the leading edge which are slightly

higher than the analytical ones.

Number of Rows Along Semispan (ﬁs)

Various spanwise arvangements and number of vortices were studied for o..e
planform and from these studies the following conclusions were drawn: (1) Uni-
form spacing is preferred; (2) for at least 10 spanwire rows per semispan, the
local slopes and elevations were not too sensitive to increasing the number.

Three-Dimensional Comparisons

Two comparisons with available mean-camber-surface solutions will be made.

The comparisons are for a high-aspect-ratio sweptback and tapered wing with a
= 1.0 and M_ = 0.9% and a lower aspect-ratio

uniform area loading at CL d
?
a- 0.35, and

trapezoidal wing with a = 1.0, spanwise elliptic loading at CL
?

Mw = 0.40.

Figure 5 presents the predicted results from the present method for the
sweptback wing and compares these results with those from references 1 and 11.
A comparison of the three solutions indicates that they are all in generally

good agreement with the exception of the results at 3%7 = 0.05. The surprising

result is that the present method and the modified Multhopp method (ref. 1)
agree as well as they do at this span station because of the known differences

that exist between them near the plane of symmetry. <rhe reason for the larger

disagreement betweern the present method and that of reference 11 uear 3%5 =0
99
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is not clear, but this disagreement may be caused by the different ﬁc values

utilized by the two methods. Reference 11 effectively uses an infinite number
since over each infinitesimal span strip across the wing the method locates a
single quadrilateral vortex around the periphery of the enclosed area. This
vortex extends from the leading edge to the trailing edge and includes segments
of the edges as well. For a uniform area loading, the trailing leg parts of the
quadrilateral vortices cancel with adjacent spanwise ones all across the wing.
Thi- leaves only the edge segments to contribute to the induced flow field.

The present method utilizes a numerical rather than a graphical sclution in
order to provide a general capability; hence, ﬁc values ure limited as dis-

cussed previously. Also, vortices are not placed eround the leading and trail-
ing edges in the present method.

A comparison of the present design method with that of reference 1 is shown
in figure 6 for a lower aspect-ratio trapezoidal wing. The local s’opes and ele-
vations determined by the two methods are in reasonably close agreement at the
three spanwise locations detziled; however, an oscillatory trend is evident in
the local slopes obtained from the method of reference 1 (fig. 6(a)). These
oscillations apparently originate in the truncated sine series used in refer-
ence 1 to represent a uniform chordwise distribution. 1Integration of the local
slopes to obtain local elevations tends to suppress the oscillations (fig. 6(b));
however, the local pressures depend upon the slope rather than the elevation.
Consequently, the measured chordwise pressure distribution will demonstrate tha
same oscillatory character, A model built according to the design of reference 1
was tested (ref. 12), and the measured pressure distributions for a typical span-
wise location (fig. 6(c)) indicate that indeed the oscillations are present.
Presumably, similar measurements on a model designed by the present method would
not behave in this manner since the input loadings are truly linear.

Force tests (ref. 13) of an essentially identical model indicate that the

c 2
measured drag polar was tangent to CD = CD,o + AR’
was indeed a minimum at the design CL (or 100 percent leading-edge suction was

that is, the vortex drag

obtained). It is presumed from the small differences in local slope between the
present method and the method of reference 1 that a similar result would be
obtained for a design by the present method.

Application to a Wing-Canard Combination

The present method has been demonstrated by optimizing a wing-canard com-
bination (fig. 7). To illustrate how the span load optimizing feature operates
with the constraints, figure 8 presents individual and total span load distri-
butions for various values of a, and a, with the moment trim poiat at

- 2
%%7 = 0.1 and E%E = (0. (This trim point is given with respect to the axis
system shown in the sketch in figure 9.) From figure 8 there are three impor--
tant observations to be made: (1) The individual span loadings change in the
anticipated direction with the changing chord loadings in order to meet the same
CL and Cm constraints; f2) the total span loading does not change; (3) con-

sequently, the vortex drag of the configuration is constant, as would be antic-
ipated from Munk's stagger theorem.
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The effects of varying the vertical separation and the moment trim point on
the resulting drag and span loadings are also illustrated (figs. 9 and 10). All
surfaces are designed for CL 4= 0.2, a, = 0.6, a, = 0.8, and M= 0.30 and

have Cm = () about the moment trim point. Figure 9 shows that for all vertical !

separations, moving the moment trim point forward increases the vortex drag over ‘
some range, and furthermore, increasing the out-of-plane vertical separation Ps
reduces the vortex drag. Of course, not all moment trim points utilized will '
produce a stable configuration. These variations illustrate the importance of
balancing the lift between the two lifting surfaces so that for some reasonable
moment trim point and vertical separation, the vortex drag will be at a minimum.
The minimum point on each vortex drag curve occurs with the pitching-moment con-
straint not affecting the extremization.

Figure 10 presents the individual span loadings with increasing vertical
z
separation 3%5 < 0 above the wing plane| with a = 0.6 and a, = 0.8. There
are three observations which can be made from these results for increasing ver- g
tical separation: (1) The individual span loadings tend to become more ellipti- !
cal; (2) consequently, the vortex drag decreases; (3) the individual 1lift con-
tributions show only a little sensitivity to separation distance once the canard

is above the wing when compared with the coplanar results.

Application to Tandem Wing Design

This design method has-been employed in the determination of the local ele-~
vation surfaces for a tandem wing. Figure 11 shows a sketch of a tandem wing
configuration and selected results taken from the wind-tunnel tests made with a

model based on this design at a Mach number of 0.30 (ref. 14). At CL d= 0.35

the vortex drag increment is correctly estimated. The measured Cm is slightly

£ Rp gy T Ao e B Lk et 4

positive (0.02). Reference 14 states that a part of the Cm error (Cm should be ?

k zero) is a result of a difference in the fuselage length between the designed and
constructed model.

Design of a Wing-Winglet Configuration

H
Figure 12 presents the wing-winglet combination of interest along with !
pertinent aerodynamic characteristics and local elevations obtained from the !
present method. For comparison these same items are calculated with a program
modification that adds a root-bending-moment constraint to produce the same
moment that would be obtained o the original wing extending to the plane of
symmetry but without its basic wingtip. The assumed span loading is elliptical.
The force and moment coefficients are based on the wing outside of a representa-
tive fuselage and without the basic wingtip.

3
H
i
5
i
]
3

The results of this comparison are as follows: (1) The root-bending-moment
constraint increases the vortex drag slightly because of the changes in the ¢ ¢

1
distribution required; (2) the differences in local elevations are confined pri-
marily to the outer 50 percent semispan and result mainly from the differences
in the incidence angles; (3) significant amounts of incidence are required in
the winglet region with or without the root-bending-moment constraint.
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CONCLUDING REMARKS

A new subsonic method has been develuped by which the mean camber (local
elevation) surface can be determined for trimmed noncoplanar planforms with
minimum vortex drag. This method employs a vortex lattice and cvrercomes pre-
vious difficulties with chord loading specification. This method designs con-
figurations to have their local wmidsurface elevations determined to yield the
span load for minimum vortex drag while simultaneously controlling the pitching-
moment or root-bending-moment constraint at the design 1ift coefficient. This
method can be used for planforms which (1) are isolated, (2) are in pairs,

(3) include a winglet, or (4) employ variable sweep, but only at a specified
sweep position.

Results obtained with this method are comparable with those from other
methods for appropriate planforms. The versatility of the present method has
been demonstrated by application to (1) isolated wings, (2) wing-canard config-
urations, (3) a tandem wing, and (4) a wing-winglet configuration.
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Figure 3.~ Idealized loading set on trimmed configuration for minimum drag.
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Figure 6.~ Local slopes, elevations, and lifting pressure distributions;
CL a- 0.35; M_ = 0.40.
14

(¢) Lifting pressure distributions;

107
EO




108

Y
X J
- -
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Figure 9.- Vortex drag for range of center-of-gravity positions and vertical
separations; CL 4 = 0.2; M_= 0.30.
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Figure 10.- Effect of vertical displacement of span loadings for trimmed wing-

canard combination; a, = 0.6; a, =0.8; M, = 0.30; %% = 0,.10.
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APPLICATIONS OF "ORTEX-LATTICE THEORY TO

PRELIMINARY AERODYNAMIC DESIGN

John W. Paulson, Jr.
NASA Langley Research Center

STIMMARY

This paper presents some applications of the vortex-lattice theory to the
preliminary aerodynamic design and analysis of subsonic aircraft. These methods
include the Rockwell-Tulinius vortex-lattice theory for estimating aerodynamic
characteristics, a Trefftz plane optimizatlon procedure for determining the span
loads for minimum induced drag, and a modification of the Trefltz plane prcce~
dure to estimate the induced drag for specified span loads. The fi ;t two
methods are used to aerodynamically design aircraft planforms, twists, and cam~
bers, and the latter method is used to estimate the drag or components such as

flape and control surfaces.

Results from the theories for predicting lift and pitching moment, drag due
to lift, and the drag of control surfaces are compared with experimental data.
The data were obtained on a general aviation model with flaps and a close-

coupled canard-wing model.

INTRODUCTION

In the preliminary stages of aircraft design, it is necessary that the
designer have valid estimates of aircraft aerodynamics, particularly lift, drag,
and pitching moments. Lift and pitching moment are required to size the plan-
forms (wing, tail, and canard) and locate them with respect to a moment center,
usually a desired aircraft center of gravity, for trimmed lift requirements and
stability margins. Skin friction, form, and induced drags must be estimated
and minimized for best performance. Many theoretical methods involving various
levels of complexity have been developed which estimate these characteristics to
varying degrees of accuracy. The preliminary designer, however, wants methods
that are fast, reasonably accurate, and easy to use so that changes in aircraft
configuration can be easily assessed. Once the overall configuration geometry
is defined, he may wish to use some of the more highly sophisticated methods to
refine his estimates before beginning experimental verification of the design.
This paper will address applications of easy-to-use methods appropriate at the
preliminary design stage; these methods include the Rockwell-Tulinius vortex-
lattice theory for estimating aerodynamic characteristics, a Trefftz plane opti-
mization procedure for determining the span loads for minimum induced drag, and
a modification of the Trefftz plane procedure to estimate the induced drag for

specified span lioads.

PRECEDING PAGE BLANE N1 i ILKED 113

[

K s

b



:‘ T

oy

e WK g s A T

s e e

c
avg

(¢ 1)

SYMBOLS

aspect ratio, b2/S
span
drag coefficient

induced drag coefficient

minimum drag coefficient
lift coefficient

li1ft-curve slope

pitching-moment coefficient

normal-force coefficient

chord

average chord

mean aerodynamic chord

section 1i"t ccefficient

section normal-forcg coefficient

y-component of influence function for pair of trailing vortex legs

z-component of influence function for pair of trailing vortex legs v

induced-drag efficiency parameter, CLi/hD iWA
b

vertical separation -between canard and wing
y-component of normal unit vector
z-component of normal unit vector

dynamic pressure

wing area

incremental section width (from ref. 1)

tangent unit vector spanwise component
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Tz tangent unit vector vertical component
Vy free-stream velocity
w downwash velocity
X,Y,2 axis system
X,y distance along X- and Y-axes
X c moment~-center location
o angle of attack
r section circulation
Gf flap deflection
n fraction of semispan, x/%lz
o] density
Subscripts:
cp center of pressure
d design
i,k indices
max maximum
DISCUSSION

Prediction of Lift and Pitching Moment

The Rockwell-Tulinius unified vortex-lattice theory (refs. 1 and 2) can be
used to predict static and rotary stability derivatives for configurations with
multiple 1lifting surfaces of arbitrary shape. It can also compute the section
and total configuration forces and moments for arbitrary planform geometries
with twist and camber. This method, as programed, is fast, easy to use, and
fairly accurate.

The agreement between this theory and experimental data for the lift of a
simplified general aviation model is shown in figure 1. The model has a
straight untapered wing using the NASA GA(W)-1 airfoil section (refs. 3 and 4)
and had 2° of twist (washout) from the root to the tip. The model body was a
flat-sided ellipse. For the theoretical calculations, the fuselage was modeled
as a flat plate and the wing as a camber line with twist. Agreement between the
estimated CL and the experimental CL was quite good at low angles of attack

prior to flow separation which occurred at a = 49,
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Also shown in figure 1 are the theoretical drag polars for O-percent and
100-percent leading-edge suction as given by the equations
C

2
- L
¢ = CD,o t Tae

for 100-percent leading-edge suction and

for O-percent leading-edge suction. The value for CD o Vvas obtained from the
E]

experimental data. These curves for 100-percent and O-percent leading-edge
suction represent the best and worst possible drag polars, respectively, for a
given configuration. The leading-edge radius and/or camber design should pro-
duce data that are as close to the 100-percent suction polar as possible. Near-
field analyses are required to minimize viscous and separated flow cffects to
approach the 100-percent suction polar. For this case, the data show that the
design was close to the 100-percent suction polar up to CL = 1.2.

Two-dimensional separation can be delayed and minimized for moderate angles
of attack by proper planform shaping, camber design, and leading-edge~radius
selection. However, at large angles of attack, the viscous form drag must be
reduced by taking advantage of interfering flow fields of adjacent surfaces,
vortex flows, or induced propulsion effects. Examples of applications of this
appirvach for reducing viscous form drag due to 1ift are shown later in this
paper.

Figure 2 is a skeich of a close-coupled canard model tested in the Langley
V/STOL tunnel to investigate the effects of propulsion on stahility at high
angles of attack. A similar unpowered model was tested in the Langley high-
speed 7- by 10-foot tunnel by Blair B. Gloss (ref. 5) to determine the effect of

vortex lift on performance, especially CL nax’ The wings and canards of both
’

models had symmetrical circular arc airfoil sections. Also, strakes were uti-
lized in both tests to produce vortex lift at the higher angles of attack. The
agreement between theory and data of Gloss (fig. 3) is good over the linear
range of the data for the wing and the wing-canard configurations. The method
does not predict the additional vortex lift and resulting pitching moment when
the strake is present.

This mcthod was used to establish a moment center for a wing-canard model
to give a stability margin at low CL of -5 percent (30m/BCL = 0.05) prior to

testing in the V/STOL tunnel. The data, shown in figure 4, indicate a value of
BCm/BCL of about 0.06 to 0.05 at low CL’ which agrees well with the predi ted

value.
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Prediction of Minimum Induced Drag

Once the pla:..orms of a configuration have been sized and located to meet
lift and stability requirements, it is necessary to compute the optimum span
loads for minimum induced drag for the interfering planforms. The expression
for the induced drag was developed by using an equivalent lifting-line Trefftz
plane approach of reference 1 and is illustrated by the following sketch and

equation:

z . TRAILING
CANARD VORTEX LEG
A e eetetee __ SECTION
WING CIRCULATION
) ()
Y

TREFFTZ PLANE
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By utilizing the method of Lagrangian multipliers with the induced-drag equatiom,
the span loads for minimum CD § ey be calculated while constraining CL and
b

Cm to desired values. This procedure was programed by Tulinius and Gloss, and

the results are given in reference 2. The input for this program consists of
the basic planform geometry, as in the Rockwell-Tulinius method, along with the
desired (x/c)cp distribution. The (x/c)cp distribution is required to locate

the chordwise position of the net span load for constraining the pitching moment
and is generally selected from a desired two-dimensional section loading.

The method was applied to the close-coupled wing-canard model of Gloss and
the results with and without constraints on Cm are presented in figure 5.

The variation of the induced-drag efficiency parameter e 1s a function of

wing-canard span ratio bCanard b, wing-canard separation h/b, and wing-canard
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lift ratio. The left side of figure 5 gives estimates of e when CL is con-

strained and Cm is unconstrained. It can be seen that the estimated valu«~a

of e increase as h/b and b /b increase and are equal to or greater

canard
than 1.0. The right side of figure 5 gives estimates of e when both CL and
Cm are constrained to produce a trimmed configuration. It can be seen that the
extra constraint lowers the values of e; however, e can still be greater than
1.0 if an upload on the canavd is required for trim. When a canard or emparnag-
download is required for trim, e is equal to or less than 1. In this figure,

the location of the moment center was .ompletely arbifrary and was chosen simply
to give uploads and downloads on the canard.

A detailed study of the cffect of moment-center locrotiun on e was per-
fcrwed for one configuration (h/b = 0.09, bcanard/b = 0.6?) and is presented

in figure 6. It can be seen that e 1is a maximum at a moment-center location
of about 10 percent c¢ due to the nearly elliptic span loads present for this
case. As the moment center is moved away from 10 percent c¢, the loads required
on the wing and canard for trim become more nonelliptic and e decreases
accordingly.

It should be noted that the wing and canard must be twisted and cambered to
produce the span loads required to approach the minimum CD e The data of
s

Gloss (ref. 5) were obtained for both flat and cambered wings in the presence of
a canard. The cambered wings were designed to 1ift coefficients of 9.35 and
0.70. These experimental data are compared with the theoretical minimum value

C,-¢C
of —2——-52L2 in figure 7. The uncambered wing alone does not approach the
CL
theoretical minimum at low CL because the sharp leading edge does not carry

any leading-edge thrust. This wing departs drastically from the minimum at
higher CL because of the flow separation from the sharp leading edge. The

downwash and vortex from the canard and strake retard the two-dimensional type
of separation on the wing and the data show large improvements over the wing
alone at higher CL. However, the flat wing-canard-strake combination still

does not approach the theoretical minimum because of the zero leading-edge
thrust associated with the sharp leading edge. The cambered wings for the wing-
canard configuration do approach the theoretical minimum at the design CL

because the cambered airfoil carries thrust on the camber line and the leading
edge is drooped into the local flow direction to reduce the leading-edge flow
separation.

Prediction of Induced Drag Due to Control Deflections

In addition to using the theory to aerodynamically design a configuration
to meet the primary mission requirements, it is also useful in examining the
effects of deflecting control surfaces and high-lift devices on the induced
drag. A modification was made by Paulson and Thomas to the induced drag mini-~
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" mization program to calculate the induced drag for specified span loads. The

E input span loads may be obtained either theoretically or experimentally. An

& example of the variation in span load due to two different types of flaps is

¢ shown in figure 8. This analysis was done on the general aviation model shown

¥ in figure 1 without the fuselage. The span loads were calculated by using the

£ Rockwell-Tulinius method for the plain wing and for the wing with either slotted
¥ flaps or Fowler flaps deflected. Figure 9 shows the experimental drag polars

= for the three configurations. At CL = 1.0, the calculated differences in

- induced drag between the plain wing and the wing with slotted flaps or Fowler

flaps were 0.0010 and 0.0126, respectively. (See table 1.) The corresponding

> differences in the experimental data were 0.0012 and 0.0165, respectively. The
¢ additional skin-friction drag for the deflected Fowler flap (ref. 6) was esti-
. mated to be 0.0024. When this is combined with the computed induced drag, a

total theoretical increment in drag of 0.0150 is obtained for the Fowler flap.
This agrees well with the experimentally measured increment of 0.0165.

CONCLUDING REMARKS

Three applications of theoretical methods for preliminary aerodynamic
design have been discussed. These methods are used to estimate wing and empen-
nage geometries and locations to meet performance and stability requirements, to
estimate span loads for minimum trimmed induced drag, and to analyze the effects
of control surface deflection on induced drag. The theories are, in general,
easy to use, fast, and the agreement with experimental data shows that they give
accurate results. These methods are being used to design complex multiple
lifting-surface models for experimental investigations in the Langley V/STOL
tunnel.
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Figure 1.- Aerodynamic characteristics of general aviation model.

Figure 2.- Powered wing-canard research configurationm.
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Figure 3,- Comparison between vortex-lattice theory and data. Theory from
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Figure 7.- Effects of canard, strake, and wing camber
on drag due to lift.
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Figure 9.- Experimental drag polars for general aviation model.
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UTILIZATION OF THE AEDC THREE-DIMENSIONAL

POTENTIAL FLOW COMPUTER PROGRAM*

Richard L. Palko
ARO, Inc.

SUMMARY

A potential flow computer program has been in use at the Arnold Engineering De-
velopment Center (AEDC) for several years. This program has been used primarily as
a tool for flow-field analysis in support of test activities in the transonic wind tunnels
of the Propulsion Wind Tunnel Facility (PWT). Analyses have been made over a Mach
nuinber range from 0 to 0.9 for a variety of configurations from aircraft to wind tun-
nels, with excellent agreement between calculated flow fields and measured wind tunnel
data. Analytical and experimental data for seven different flow analysis problems are

presented  n this paper.

INTRODUCTION

The AEDC T'hree-Dimensional Potential Flow Computer Program (PFP) in the
existing form was develoned primarily as a result of the need to make calculations of
the flow field in the vicinity of aircraft fuselages (typically at locations where aircraft
inlets might be located). This need arose because of the suppori the theoretical flow-
field calculations could lend to a research program carried out at AEDC to simulate the
inlet flow fields in a wind-tunnel test of full/scale inlet/enJine systems (refs. 1 and 2).
Much of the computing capability that the PFP presently has resulted from these flow-
field calculations which have as their primary variables the flow angularity (upwash and
sidewash) over a y-z plane. After the initial solution of the velocity field for a given
model attitude and Mach number is obtained, the upwash and sidewash can be deter-
mined for any given point or over any grid desired. A new solution is required for each
model attitude or Mach number. In addition to computing the upwash and sidewash, the

PFP also computes the local Mach number, Cp, and flow streamlines. A computer
plotting program has been written to supplement the PFP, and computer plots can be

*The research reported herein was conducted by the Arnold Engineering Develop-
ment Center, Air Forcc Systems Command. Research results were obtained by per-
sonnel of ARO, Inc., Contract Operator at AEDC. Further reproduction is authorized
to satisfy needs of the U. S. Government,
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obtained for most of the above parameters. A streamline can be traced from any point
in the stream either upstream or downstream (or both). The capability to make a plot
of the mathematical representation of the model geometry before running the complete
program allows corrections to be made, if needed, with only a slight loss of computer
time. A two-volume report (ref. 3) that details the program, modeling techniques, ap-
plication, and verification has been published.

This paper briefly outlines the PFP application to seven flow analysis problems in
support of the transonic wind tunnels in the PWT at AEDC.

SYMBOLS

Values are given in both SI and U. S. Customary Units. The measurements and
calculations were made in U. S. Customary Units.

A angle of attack

CL lift coefficient

Cp pressure co:fficient

M, free-stream Mach number

p/po ratio of surface static pressure to free stream total pressure
X coordinate along tunnel axis, positive downstream
Y horizontal coordinate, sign as indicated

Z vertical coordinate, sign as indicated

a model angle of attack, deg, positive up

B model angle of yaw, deg, sign as indicated

€ upwash, deg, positive up

o sidewash, deg, positive as indicated

PFP APPLICATION AND UTILIZATION

The PFP at AEDC has been used primarily as a ool for analysis of the flow in the
far field. (Far field refers to a distance away from the analysis model surface equal
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to, or greater than, the vortex spacing in the direction of flov'.) The modeling tech-
niques required for this type of analysis are presented in vciume II of reference 3.
However, work is underway to develop the modeling technique to allow accurate analysis
of the surface pressure. Results of some of this continuing effort are reported in
reference 4. All the flow problems presented here are of the far-field type.

Flow Field Between Two Hollow Circular Cylinders

The analysis of these cylinders was part of a research program in which the objec-
tive was to create flow fields by some auxiliary method to simulate the flow entering a
full-scale inlet/engine at high angles of attack and yaw. The device was to deflect (or
induce) the flow upward as it passed between the inclined cylinders. A mathematical
model of the cylinders is shown in figure 1. The last circumferential ray on each cyl-
inder had trailing vortices that were trailed at an angle equal to one-half the cylinder
pitch angle. A comparison between the theoretical and experimental flow angularity
data is shown in figure 2. The theoretical results are shown as lines of constant flow
angle (both upwash and sidewash), and the solid symbols show the relative location of
experimental data with the magnitude of the measured angles indicated. The Mach num-
ber at which these data were taken was 0.9. It can be seen that the PFP overestimated

the flow inclination angles by approximately 1°,

Flow Field Around an Aircraft Fuselage

Primary purpose of this analysis was to verify the results obtained from the PFP.
Experimental flow-field data used for comparison with theory were available from wind-
tunnel measurements made during the Tailor Mate test series. The objective of the
wind-tunnel test was to determine the flow field (upwash and sidewash) at a typical en-
gine inlet fuselage location. The mathematical model of the fuselage configuration is
shown in figure 3. The comparison between the predictions from the PFP and the wind-
tunnel data for a pitch angle of 25° and a free-stream Mach number of 0.9 are shown in

figure 4. Here again, excellent agreement was obtained.

Flow Field Under a Fuselage-Wing Configuration

The purpose of this analysis was also for program verification; again experimental
data obtained during the Tailor Mate studies were used. The fuselage-wing configura-
tion was analyzed to compute the flow field under the wing at the wing-fuselage junction,
The computer math model used in the analysis is shown in figure 5. A comparison be-
tween the upwash and sidewash predictions and the experimental data for a Mach num-
ber of 0.9 and an angle of attack of 10° is shown in figure 6. Analytical and experi-
mental data trends show excellent agreement, although the predicted data show some-
what higher flow angularity gradients across the survey area than the measured data.,

129

BT

I

B
.

‘ é&«é‘-}g e



. ’\a@‘

e

.

PINPPRNSY

Streamtube Entering Inlet Behind Wing

The purpose of this analysis was to determine the origin of the streamtube entering
the inlet in support of an inlet hot gas ingestion investigation. The comparison between
experimental and theoretical data are shown in figure 7. These data were taken during
a store separation study in an effort to verify the accuracy of the PFP to predict the
correct flow field above and behind the wing. Data were taken at a Mach number of 0.3
with an angle of attack of 89, and show excellent agreement between the experimental
and theoretical values., The mathematical model and the predicted streamtube are
shown in figure 8. The streamtube was determined by tracing streamlines from four
locations beginning just upstream of the inlet and extending forw rd to just upstream of
the aircraft nose. A Mach number of 0.3 and an angle of attack of 8° were also used
for the streamtube analysis. This mathematical model is the largest analyzed to date,

with 1559 loop vortices and 20 horseshoe vortices, and required approximately 4 hours
run time on the AEDC IBM 370/165 computer.

Inlet/Engine in Crosswind

This analysis was made in support of a crosswind experiment conducted during an
inlet study in the AEDC 16-ft (4. 88-m) Transonic Wind Tunnel (PWT-16T). The objec-
tive of the analysis was to determine if a 0. 91-m-diameter (3-ft-diameter) crosswind
simulator would adequately simulate the crosswind when used in conjunction with the in-
let model, and to determine the position for the simulator to give best results. The
theoretical analysis was made with the inlet/engine in an infinite crosswind. The math-
ematical model included only a portion of the experimental model as shown in figure 9.
A computer plot of the mathematical model is shown in figure 10. The engine ducts
were closed on the downstream end and a negative source was located near the rear
center of each engine duct to produce the correct inlet mass flow when that particular
engine was in operation. Streamlines were traced upstream from near the four corners
of the inlet, for each engine in operation, to determine the flow pattern of the air-
stream entering the inlet. By tracing the streamlines, a fan position was deter-
mined that would influence the inlet flow for all engine power settings and cross-
wind velocities required. A typical flow pattern for the analysis is shown in figure

11 for a crosswind velocity of 20.57 m/sec (67.5 ft/sec) with both engines operat-
ing.

Pressure Distribution in PWT-16T Contraction Section
The objective of this analysis was to determine the pressure distribution

along the bottom and side walls of the PWT-16T contracti_n section. Pressure dis-
tributions were needed for use in a theoretical boundary-layer analysis of the wind-

tunnel nozzle to support a test-section flow angularity study., Mathematical modeling

used in the analysis is shown in figure 12. The flow in the test section area was speci-
fied to give the pressure ratio desired for Mach number 0. 6. The analysis provided
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streamline information at a distance of 0. 305 m (1 ft) from the walls, and the calculated
Cp was converted to p/po. Following the calculation of the theoretical pressure dis-
tribution, the pressure distribution was experimentally measured in the contraction
section. A comparison between the theoretical and experimental pressure distribution
is shown in figure 13, with excellent agreement indicated.

Strut Effects Analysis

The objective of this analysis was to determine the strut effect corrections to mea-
sured force and moment data for a slender winged vehicle with a mid-strut mount. The
vehicle wing was located just forward of the strut. For this analysis the upwash angle
was determined with the PFP for the body alone (fig. 14) and the body with strut (fig. 15).
An incremental upwash angle was then determined at the wing location from these two
sets of data. In this case the incremental values were negative because of the down flow
around the strut. The incremental values along the wing location were averaged and the
ACq, correction calculated from the average angle-of-attack change. A comparison of
the calculated corrections and those measured with a subscale model are shown in fig-
ure 16. Excellent agreement is shown in both the trend with Mach number and the ab-
solute values.

CONCLUDING REMARKS

The AEDC Potential Flow Program is used primarily as a tool for flow-field
analysis in support of the test activities in the fransonic wind tunnels of PWT. This
paper has covered seven different problems that have utilized the PFP including both
external and internal analysis. All but one of the examples have experimental data to
verify the calculated flow fields, and all comparisons show excellent agreement. The
PFP at AEDC has not been used as a tool to obtain absolute values, but rather as a tool
to predict and verify flow fields in support of the test activities. In addition fo the
problems presented, the PFP has been used to predict the flow angularity at the model
resulting from sting and support systems, to predict the flow around various types of
support systems, and many other general flow analysis problems directly connected
with wind-tunnel testing.
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EXPERIMENTAL  THEORETICAL

€= -6.15° € * 6,540
0= 3,36 o- 338

€ = -13.410 g = -13, 80
/_o- 2.70 o+ 540

— —

EXPERIMENTAL  THEORETICAL

€ = -615 £ * -6,580
6+ 3,360 o= 3.38

Figure 7.~ Comparison between experimental and theoretical data for
Mach number 0.3 at an angle of attack of 8°.
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REPORT ON THE STATUS OF A SLOTTED WIND-
TUNNEL WALL REPRESENTATION USING THE VORTEX-

LATTICE TECHNIQUE*

Fred L. Heltsley
ARO, Inc.

SUMMARY

A combined analytical/experimental program for development
of an improved slotted wind-tunnel wall representation is de-
scribed. The effort is presently being conducted at the Arnold
Engineering Development Center (AEDC) and is scheduled for com-
pletion in 1977. The vortex-lattice technique which is being
used as the primary analytical tool for representing both the
wind-tunnel and the lifting model is discussed. Comparisons of
results obtained to date with available data are presented.
Included also is a brief description of the experimental effort
to be conducted in conjunction with the analytical development.

INTRODUCTION

The literature contains numerous examples of the application
of vortex-lattice theory to the modeling of closed wall wind
tunnels (refs. 1 through 3). Interference factors provided by
the vortex lattice method correlate well with values computed
using various analytical techniques. Considerably less work,
however, has been directed toward the vortex-lattice simulation
of tunnels with partially open walls, in particular those with
slots (refs. 2 and 3). In addition, comparisons of the resulting
interference factors with those generated by analytical methods
are limited to cases involving extremely simplified wall config-
urations and equally simple test vehicle geometries since analyt-
ical solutions are not available for the more complex models.
This paper describes a program presently underway at the AEDC
which is intended to provide a more useful vortex-lattice venti-
lated wind-tunnel model by accounting for the viscous effects

*The work reported herein is sponsored by NASA/Ames Research Center
and was conducted by the Arnold Engineering Development Center, Air
Force Systems Command. Research results were obtained by personnel

of ARO, Inc., Contract Operator at AEDC. Further reproduction is
authorized to satisfy needs of the U.S. Government.
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associated with flow through and/cr across the slots (ref. 4).
Similar studies have been conducted to develop representations of
several aerodynamic configurations (refs. 5 through 9). Many of
the resulting models are capable of generating the effects of
complex real flow phenomena such as separated wakes and jet
exhausts although most of the simulations are strongly dependent
upon empirical information. The intent of the present effort is
to develop an improved mathematical wind-tunnel wall formulation

by supplementing an in-depth analytical study with appropriate
experimentation.

SYMBOLS
ﬁi unit normal vector at the ith control point, negative
away from the boundary on the inner surface
51 unit normal vector at the ith control point
c tunnel cross-sectional area
c* reference tunnel area
E.. influence of the jth singularity on the ith control
1 point
Cr, lift coefficient
Cp pressure coefficient
ds length of a vortex line
ii singularity density at the ith control point
N number of singularities
P wall
ﬁi unit vector parallel to the boundary at the ith
control point
(] wing area
146

=

e A B S 3 € U RS s

e RGBSR S

PP



W T,

B L

b e e et

u free-stream velocity

-
v, velocity induced at the ith control point in the
vortex sheet

;I velocity induced at the ith control point on the
inner surface of the vortex sheet

;;* velocity induced at the ith control point on the
outer surface of the vortex sheet

$w free-stream velocity

Av velocity jump across the vortex sheet

W local downwash velocity

X nondimensionalized distance from model along center
line

x/c nondimensionalized chord length

a angle of attack

Fj strength of the jth singularity

8 lift interference factor

§* normalized lift interference factor

A ratio of tunnel height to tunnel width

T ratio of wing span to tunnel span

ANALYTICAL STUDY

Vortex-Lattice Technique
The analytical work has been directed toward representing

both the wind-tunnel walls and the lifting model. The vortex-
lattice technique was chosen as the primary tool since the
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method can be extended to simulate extremely complex aerodynamic :
geometries without changing the basic solution scheme. Reference /
10 describes a digital program (PFP) which has been developed at :
the Arnold Engineering Development Center for potential flow |
analysis using vortex-lattice theory. The computation procedure
involves definition of the model geometry and boundary conditions,
calculation of the influence coefficient matrix, and solution of
the resulting set of linear equations for the strengths of the
individual vortex filaments. Once the singularity strengths are
known, velocities can be determined anywhere in the flow field,
including the model surfaces. In addition, the program is capable
of computirg lift forces, pressure coefficients, and streamlines.
Routines are also available for generating three-view, isometric,
and perspective plots of both the model input geometry and computed
streamlines and velocity vectors.

Solid Surface Simulation

The PFP has been used extensively at the AEDC for aerco-
dynamic analyses involving solid boundaries (refs. 5, 6, 8, and
10). These cases involved the classical form of the vortex
lattice equation:

> A > ~
V, - by = Vg . byt LgTy (€, . b.) (1)

4

A

-
Application of the solid-wall boundary condition, vy ot b; =0,

forces the components of velocity perpendicular to the surface to
vanish and permits solution of the resulting N linear homogeneous
equations.

The technique has been used to compute lift interference in
a closed wall wind tunnel. A simple example is illustrated in
figure 1. The resulting interference levels averaged along the
span at each axial location are shown in figure 2. 1Included also
in the plot are interference distributions for several other
tunnel cross sections along with corresponding analytical results
due to Kraft (ref. 12).

Slotted Wall Simulation

Exten.ion of the method to represent tunnels with partially
open walls is somewhat more difficult due to the added complexity
of applying the constant-pressure boundary condition in the
slots. This requires that the tangential component of velocity
on the interior surface of the vortex sheet which represents the
free jet boundary must vanish. It can be shown that the
continuity in the tangential component of velocity across the
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b vortex sheet is equal to the local vortex density, i.e.,

K = dr'/d%. Since equation (1) is expressed in terms of the
velocity directly on the sheet, only half of the velocity jump
must be accounted for. Modification of equation (1) yields

”~

Ir 5. o= - N p3 - 12 "
vi.p; =V .p;+ j£1 3 (Cij - p;)+(zK; x B.) . p; (2)

The nomenclature used in equations (1) and (2) is illustrated in
figure 3.

A vortex-lattice model of a slotted wall tunnel is presented
in figure 4 to demonstrate the application of both types of
boundary conditions. The wall interference distribution computed
for the configuration show in figure 5. 1In addition, distribu-~
tions for a closed tunnel and a tunnel with open upper and lower
walls and closed side walls are shown. Theoretical data due to
Kraft (ref. 12) and vortex-lattice results computed by Bhateley
(ref. 2) for similar configurations are included for comparison.
Two basic rules of thumb to be followed in the construction of a
model such as the one in figure 4 should be noted here. These
are (1) the edge of each slot should coincide with a vortex
filament and (2) the vortex grid and the control points should be
positioned by the same function. 1In the present case, the slot
configuration has been conveniently selected so that a uniform
spacing satisfies both rules. Situations in which the slots are
narrow relative to the width of the solid wall panels are some-
what more difficult to handle. Two primary alternatives exist. A
uniform spacing which is at least as narrow as the slots can be
used for both the slots and the solid wall panels. This may
result, however, in a prohibitive number of singularities. An
alternate solution is to select a nonuniform spacing. The use of
a cosine function has been found to yield good tip definition
when representing finite wings. A similar technique, illustrated
in figure 6, has been used by the author. 1In addition to reducing
the number of singularities required, the scheme provides excellent
mutual slot/panel edge definition.

Lifting Model

The experimental model used during this study to provide 1lift
interference measurements is shown in figure 7. The wing assembly
consists of a 32.0 in. (81.28 cm) span x 9.0 in. (22.86 cm) chord
NACA 63A006 airfoil with a minimum blockage circular centerbody.

A similar half-scale assembly is mounted aft of and above the
wing to provide tail surface measurements. A vortex-lattice
representation of the lifting model is presented in figure 8.
Since the PFP is capable of assuming symmetry, definition of only
one-halc of the mcdel is required. Pressure coefficient
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distributions over a two-dimensional version of the wing model

are shown in figures 9 and 10 to illustrate the effects of grid
spacing and angle of attack, respectively. In all cases, a
precisely computed cosine (cosine) function was used to determine
both the vortex and the control point locations. An attempt to
interpolate between previously obtained "as built" coordinates
proved to be unsuccessful due to the extreme sensitivity to the
lack of measurement precision. Finally, good results were achieved

by generating slope continuous smoothing functions to define the
surface.

Details of the leading and trailing edaes of the lattice
wing model are shown in figure 11. It should be noted that the
trailing edge was not closed but was allowed to "leak" in both
the two- and three-dimensional models since the tips of the
three-dimensional wing were closed witbh lattice plates.

A less detailed vortex-lattice representation of the lifting
model is under development which will require a significantly
smaller number of singularities. The new model will be utilized
in order to reduce the computer time required during the develop-
ment of the tunnel wall model. Later, the detailed vortex lattice
lifting model will be recalled to provide the necessary precision

for correlation of analytical and experimental interference
results,

EXPERIMENTAL PROGRAM
Wind-Tunnel Description

The AEDC Low Speed Wind Tunnel (V/STOL) shown in figure 12
will be used to provide experimental interference data. The
tunnel has a test section 45.0 in. (114.3 cm) wide and 36.0 in.
(91.44 cm) high and is capable of generating velocities from near
zero to 250 ft/sec (76.2 m/sec). The solid test section walls
can easily be replaced with selected slotted walls to provide
wall flow relief. Figure 13 is a schematic of the lifting model
installed in the V/STOL tunnel. The installation shown permits
an angle-of-attack variation from 6° to 16° about the pitch center.

Interference Free Data
Only a limited amount of suitable interference free data are
available for the lifting model since a majority of the previous

tests has been conducted at high Mach numbers. Plans are presently

underway to obtain the necessary additional interference free
data for the lower Mach numbers.
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CONCLUDING REMARKS

The vortex-lattice technique has been successfully used to
represent solid surfaces for both the wind-tunnel walls and the
lifting model. Correlation with available interference free
experimental data and analytical results were excellent. 1In
addition, the free jet boundary condition has been applied to
simulate the flow in the tunnel wall slots. Good agreement was
obtained with existing analytical predictions. Development of
both vortex-lattice models is continuing.

Preparation for the experimental program is underway and
testing will begin in the near future.
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Figure 1.- Vortex-lattice representation of the
NASA Ames flat oval tunnel.
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Figure 3.- Vortex-lattice boundary condition nomenclature.
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Figure 12.- AEDC low speed wind tunnel (V/STOL).
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A QUADRILATERAL VORTEX METHOD
APPLIED TO CONFIGURATIONS WITH HIGH CIRCULATION

Brian Maskew
Analytical Methods, Inc.

SUMMARY

A quadrilateral vortex-lattice method is briefly described for calcula-
ting the potential flow aerodynamic characteristics of high-lift configurations.
It incorporates an iterative scheme for calculating the deformation of force-
free wakes, including wakes frcm side edges. The method is applicable to mul-
tiple lifting surfaces with part-span flaps deflected, and can include ground
effect and wind-tnnel interference. Numerical results, presented for a number

of high-lift configurations, demonstrate rapid convergence of the iterative

technique. The results are in good agreement with available experimental data.

INTRODUCTION

The calculation of aerodynamic characteristics for three~dimensional
configurations with high circulation, e.g., a wing with flap and tailplane can
be misleading unless the trailing vortex wakes are represented correctly. In
fact, initial applications of a quadrilateral vortex-lattice method with rigid
non-planar wake (refs. 1 and 2) showed that results for a wing alone were sen-
sitive to wake location at even moderate lift coefficients. The high circula-
tion case, therefore, is non-linear, and requires a force-free wake represen-~

tation.

The problem of calculating vortex sheet roll-up has recieved considerable
attention in the past, (see review by Rossow {ref. 3)), but has been concerned
mainly with the two-dimensional case. More recent work has included three-di-
mensional factors. Butter and Hancock (ref. 4) and also Hackett and Evans
(ref. 5) included the influence of a bound vortex, and Belotserkovskii (ref. 6)
incorporated a wake roll-up procedure with a vortex-lattice method. Mook and
Maddox (ref. 7) developed a vortex-lattice method with leading-edge vortex rell-
up. The roll-up procedure incorporated in the quadrilateral vecrtex method
(ref. 2) differs slightly from the above methods, and is described here before

discussing the high-lift applications.
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SYMBOLS

o] incidence, in degrees
S area
c chord
< reference chord
a aspect ratio
n spanwise position normalised by wing semispan
CL lift coefficient
CM pitching moment coefficient (about the mid chord)
CD. induced drag coefficient

i
k induced drag factor, = TA CD./CL2

1

Subscripts:
W wing
T tailplane or wind tunnel
calc calculated
exp experimental

METHOD DESCRIPTION

The method, which incorporates an iterative procedure for wake shape, is
based on vortex-lattice theory (e.g., ref. 8), but the lattice is formed into
quadrilateral vortices (fig. 1) instead of horse-shoe vortices. The quadrila-
teral torm is equivalent to a piecewise constant doublet dictribution and each
vortex "panel” is self-contained, This makes it easier to apply to cambered
surfaces. Another advantage is that only the guadrilaterals adjacent to trail-
ing edges (and to side edges when edge separation is included) have trailing
vortices, and so they are the only panels whose influence coefficients vary in
the iterations [or wake shape. The complete matrix of influence coefficients
would be affected for the horse-shoe vortex model.
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For the wake model, each trailing vortex is divided into straight seg-
ments (fig. 1), the number and length of which can be varied from vortex to
vortex to allow more detailed representation in roll~-up regions. The segmented
part of each vortex ends in a semi-infinite vortex in the free-stream direction.
In the iterative wake procedure, each trailing vortex segment is made approxi-
mately force-free by aligning it with the local mean velocity vector. The
segment midpoint is the most appropriate position to apply this condition, yet
most methods use the upstream end of the segment (following ref. 6). Th~ pre-
sent method calculates the mean welocity at 55% of the segment leagth (extra-
polated from the previous segment) after examining a roll-up calculation
(ref. 2) for a pair of equal strength, segmented vortices. Compared with the
upstream end point, the 55% point gives faster convergence, and the results

are less sensitive to segment length, (fig. 2).

Small Rankine vortex cores are placed cn the vortices to avoid large
velocities being calculated near the vortices; nevertheless, when calculating
the velocity vectors for the wake relaxation, the local vortex contribution is
excluded. To obtain the first vortex strength solution, the trailing vortices
are assumed semi-infinite in the free-stream direction. A new vortex strength
solution is obtained after each wake relaxation is completed.

RESULTS AND DISCUSSION

Wing-flap-tailplane

The wing-flap-tailplane configuration is a typical problem facing the
aerodynamicist when calculating the behavior of an aircraft during landing and
take-off. The present method enables the free-air and the ground-effect re-
gimes to be evaluated. An illustrative calculation was performed for the part
span flap configuration shown in figure 3(a). The geometric characteristics

are presented in table 1.

Figure 3(a) shows the calculated vortex trajectories in free air after
the fourth iteration. The vortex roll-up region from the flap edge passes
close to the tailplane tip (outboard and below) and has clearly influenced the
tailplane tip vortex trajectory (compare vortex (15) with vortex (10) from the
wing tip, especially in the side view). The plan view shows wing inboard trail-
ing vortices passing directly below the centers of tailplane quadrilaterals.
If these vortices had been close to the tailplane surface, then the results
would have diverged. In its present form the method is not applicable to close
approach problems unless the vortex trajec.ories are constrained to align with
the local surface lattice. However, the close approach problem has been inves-
tigated, and a technique developed to overcome it (refs. 9 and 10) but, so far,
this has not been incorporated in the main program.

The effect of iteration on the trajectory of vortex (7) from the flap
edge region is giver separately in figure 3(b). This vortex moved the most in
the group; nevertheless, the figure shows little change between the third and

fourth iterations. Sections through the calculated wakes in free air and in
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ground effect are shown in figure 3(c). Compared with the free-air positions,
the vortices move outwards in ground effect, and are deflected upwards. This
movement will influence the ground-effect conditions at the tailplane.

Figure 4 shows the changes in wing and tailplane calculated lift and in-
duced drag with iteration in free-air conditions. The wing lift is essentially
converged by the second iteration and the induced drag factor, k, by the third.
The tailplane lift and induced drag (in the presence of the wing) are essenti-
ally converged by the second iteration after a relatively big jump from the
streamwise-wake value,

Table II gives the calculated values of lift and induced drag for free air

alone. These results impnly (for the combined configuraiioci) an average down-
wash angle at the tailplane of about 10.7° in free air and 1.7° in ground ef-
fect. The method, however, takes into acccunt variations in downwash - and
sidewash - across the span and chord of the tailplane. The presence of the
tailplane causes small changes in the wing characteristics. 1In free air there
is a small decrease in wing lift (= 0.8%) and a small increase in induced drag
factor (from 1.100 to 1.108), which result from a small downwash induced by the
negative circulation on the tailplane. In ground effect, however, the tailplane
- which now has positive lift - causes a small increase ir wing lift and a de-
crease in its induced drag factor (from 0.613 to 0.581). Although the tailplane
alone results show the expected increase in lift with ground effect, the wing-
flap alone result shows a decrease. This apparent anomaly is in accordance
with results found earlier in reference 1ll; with increasing camber and/or in-
cidence, the initial increase in wing lift in ground effect decreases and even-
tually goes negative. This feature is made more apparent in the spanwise dis-
tribution.

The calculated spanwise load distribution, CLC/E, and center of pressure

locus for the wing are shown in figures 5(a) and 5(b) for both free-air and
ground-effect conditions. I~ jround effect (at the same incidence as in free-
air) there is a relative loss in lift in the flapped region - evidently over
the flap itself because the center of pressure moves forward there ~ while out-
board there is a small increase in lift and a rearward shift in center of pres-
sure (i.e., the normally accepted influences of ground effect). The net result,
as already seen in table II, is a decrease in overall lift. Evidently, camber
has a strong influence .. the grnund interference effect which must be taken
into account when predicting aerodynamic characteristics near the ground

(ref. 11).

As would be expected, the induced drag is concentrated over the flapped
region in free air (fig. 5(c¢)), and in fact an induced thrust is calculated
over the unflapped region - a plausible consequence of concentrating the load
over the inboard part of a swept wing. In ground effect, the expected reduc-
tion in induced drag occurs mainly inboard of the flap edge region (i.e., in
the upwash region from the flap edge trailing vortex image).

166

;-




{ _,

B e T ! R ! )

Wing-Flap in Wind Tunnel

Standard correction methods for wind-tunnel interference are largely
based on image techniques, and assume the wing wake to be undeflected. When
testing high-1lift configurations, the trailing wake moves considerably from the
basic wing plane, so unless the model is very small relative to the tunnel (with
possible Reynolds Number problems), the real flow violates the assumptiomns.

The present method calculates the wake shape in the prasence of the model and
the tunnel walls - the latter also being represented by a distribution »f quad-
rilateral vortices. A calculation of this form would be particularly useful
for wing-tailplane configurations, but suificient elements were not available
for a fair application to such a problem at this time (i.e., to cover wing,
tailplane and wind tunnel). The results from a high-1ift wing-flap calculation,
therefore, are given here. The general arrangement is shown in figure 6, and
the geometry is defined in table III. Lift values were available from unpubli-
shed wind-tunnel measurements on a biown-flap model.

Figure 7 shows the calculated vortex trajectories for o = 5° in the wird
tunnel. The lift coefficient is 2.14, and a correspondingly high rate of vor-
tex roll-up is andicated. The tip vertex - which was allowed to separate from
the flap hinge line to be more representative of the real flow conditions -
moves steadily inboard as more vorticity is "entrained". The vortices just in-
board of the tip have large "curvature" at the start, and ideally, should have
had smaller segments there. A section through the calculated wake (fig. 7) is
compared with that for free-stream conditions at approximately the same 1lift
coefficient. This required a free-ai. incidence of 10° compared with 5° in the
tunnel. 1In the tunnel, the roll-v. region is squashed in a vertical sense and,
on the whole, the vortex positions iie outboard relative to their positions in
free air. 1In the tunnel, the vortices over the inboard region lie above the
free-air position ~ a recult of the rcduced downwash in the tunnel.

Figure 8(a) show: the ¢y, characteristics calculated in the tunnel and
in free air. The standard incidence correction (i.e., Aa = GCL SW/ST' with
§ = 0.101 here) applied to the in-tunnel values falls shor. of the free-air
result by the order of 35%. Al<~ shown are some values representing the experi-
mental wind tunnel measurem:nts with near critical blowing over the trailing-
edge flap. These measurements were originally for a wing-body configuration,
and have been modified to gross wing conditions. 1In view of this, they are in-
cluded here o.aly to indicate that the calculated in-tunnel Cp, ~ 0 values are

plausible. The modification for CL applied to the measured net wing Cp,
was of the form: gross
c \ c C
L - L L L
gross exp gross net theory net exp

The theoretical facvor was obtained after applying the method first to
the uross wing, and then to the net wing in the presence of a representative
body. The factor was found to be a function of incidence, and varied from
1.145 at o = 0° to 1.10 at a = 10°.
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The calculated induced drag factor characteristics are shown in figure
8(b), and show a dependence on C_ in both free-air and in-_unnel conditions -
the form of the dependence is noE shown since only two points were calculated
for each condition. The standard correction for drag (ACD = CLan) added to

the calculated in-tunnel induced drag gave k values which fell short of the
free-air calculations; the difference in the increment in k -

i.e., (& - Y/

calc standard Akcalc

varied from i:% at CL = 1.98 to 18% at CL = 2.14.

Small Aspect Ratio Wing

For an extreme test case for the wake roll-up calculatio»n, a slender
rectangular wing of aspect ratio 0.25 was considered at 20° incidence. CcCal-
culations were performed using an 8 x 6 vortex array and two iterations for
two configurations:

(a) flat plate
(b) bent plate (20o deflecticn about the mid choxd)

Flow visualization studies and wind-tunnel force and moment measurements have
been carried out on these configurations by Wickens (ref. i2). The real flow
for these cases is dominated by the tip-edge vorticity, and surfac viscous
effects are rr atively small; a comparison betw en the potential flow calcula-
tior and 2xperiment is therefore practicable.

The side view and plan view of the calculated vortex trajectories from
the flat 2ud bent plates are presented in figures 9(a) and 9(b), respectively.
Included in the side views are the approximate positions of the vortex cores
from flow visualization (ref. 12) and the calculated centroid of vorticity
locus. 1In the flat plate case, these lines are in excellent agreement, and
in fact are inclined at approximately &/2 to the surface - i.e., the theoretical
angle for vanishingly small aspect ratio. In the bent plate case, two vortex
cores appear in the experiment, one from the leading-edge tip and the other
from the bend line tip - i.e., from the two peak vorticity regions. Wwhen cal-~
culating the centroid of vorticity locus for this case, the edge vortices were
divided into two groups, the leading-edge vortex starting the first group, and
the hinge-line vortex the second. The calculated centroid loci initially have
fair agreement with the observed vortex cores, but later tend to diverge, indi-
cating . slower rate of roll-up in the calculation. Another iteration might
have helped here, but *he proximity of the end of the segment-represented region
(the extent of which was limited by the number of segments available in the
program) must have influenced the shape near the downstream end.
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Although the principal objective here was to observe the behavior of the
vortex roll-up calculation under extreme conditions, it is interesting to see
(fig. 10) that the calculated lift, drag and pitching moment are in reasonable
agreement with the experimental measurements from reference 12; the flat plate
results are particularly good, while the indications are that the bent plate
calculations are not fully converged. 1In the latter case, the changes in the
characteristics from the initiil (streamwise) wake values to those from the
second iteration are particularly large (see table 1IV).

Tip-Edge Separation

Earlier applications (unpub.ished) of che method to wings at large inci-
dence (8 to 16°) gave poor correlation with experimental spanwise lcad distri-
butions and wake deformation. The differences were attributable to the presence,
in the experiment, of tip-edge vortices of the type calculated on the small
aspect ratio wing. These effects are demonstrated here for a rectangular wing
of aspect ratio 5.33 and at 12° incidence. The vortex .attice is shown in
figure 11, and includes tip-edge vortices. The calculated vortex trajectories
are shown after two iterations. Figure 12{a) shows the spanwise load distri-
bution with and without the tip-edge vortices present. The edge separation
gives a higher loading level towards the tip and a local bulge near the tip
when using a large number of spanwise intervals. The bulge, consistently cal-
culated using lattices with 15 and 25 spanwise intervals, is also apparent in
the experimental load distribution from refiurence 13. (The lower lift level in
the experiment is caused by an inboard separation resulting from the interaction
hetween the wing and wall boundary layer.) The calculated lift coefficient
inceeases from 0.85 to 0.93 with the tip-edge vortices.

The calculations indicate that the extra loading near the tip is carried
on the rear of the wing; the center of pressure locus, (fig. 12(b)), shows a
marked rearward movement near the t.p with the tip-edge vortices compared with
the usual forward movement calculated with the "linear" method. The locus is
consistently calculated using 8, 15 and 25 spanwise intervals.

These edge effects, which are present also at flap edges, etc., have mark-
ed implicati~ns for calculations at high lift, affecting boundary layer deve-
lopment, tip .urtex formation and trailing vortex sheet shape. However, furtier
evaluation of these effects (such as detailed surface pressure distributicas)
would require the previously mentioned problem of close interference between
discretized vortex sheets to be removed. For such applications, the method
would need extending to include a near-field technique such as that developed
in references 9 and 10,

CONCLUDING REMARKS

1he guadrilateral vort~x lattice method with the iterative wake relaxa-
tion procedure has been applied to a number of configurations with high circu-
lation. The iterative procedure shows rapid convergence, and the calculations
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are in good agreement with available experimental results. Tip-edge separa-
tion effects have been shown to be important aspects of high-lift calculations.
More detailed theoretical evaluation of these effects, e.g., in terms of sur-
face pressure distributions, would require extensions of the method to incor-
porate recently developed near-field techniques. Such an extension would also
allow other close interference effects to be studied.

f
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TABLE I. GEOMETRIC CHARACTERISTICS FOR THE
WING-FLAP-TAILPLANE CONFIGURATIONS

General:
INCIAENCE & ¢ ¢ v ¢ « o v o o o o = 4 o o s « e . . W10

Ground height (normalized by wing mear chord c) . ...0.5

Wing:
Aspect ratio ¢ . . v ¢ ¢ 4« v i e 4 e v e e s e e .. s 4
Sweep back . .+ + v ¢« - ¢ 4 4 4 et 4 4 e e+ e s s+ . . 45
Taper ratlo . . . ¢ & ¢ ¢« v o 4 e e 4 e e e e e e . o1
Flap ChOXA/C v = & & & & o e e e e e e e e e e e . .. 0.25
Flap span/semispan . . « « « « = o = o« o« o« o« « o« « « » 0>0.48
Flap deflection: normal to hinge line . . . . . . . . . 36
in vertical streamwise plane . . . . . 27
Vortex quadrilateral array: across chord . . . . . . . 3

across semispan . . . . . 7

Tailplane:
Aspect Fatio . o v ¢« v v 4 4 e 4 e s e 8 e e e e .. 2
Sweep back . . . v 4 i e i 4 4 s e e 4 e e s e s s . . 45
Taper ratio . « & & ¢ ¢ « o o o o & o v o o« o 4 o s .
Span/Jing SPAn « -« « « ¢+« 4 e e s s e s e s s 4 e

(Distance aft from wing)/; e e s e e e e e e e e e s

Angle to wing plane . . . « « ¢ « ¢ s« e e e e e .

1
0
2

(Distance above wing plane)/z S ¢ )
0
Vortex quadrilateral array: across chord . . . . . . . 3
4

across semispan . . . . .
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TABLE II. CALCULATED WING-FLAP-TAILPLANE LIFT AND INDUCED DRAG
CHARACTERISTICS IN FREE AIR AND IN GROUND EFFECT
(SECOND ITERATION)

Configuration Wing-Flap Tailplane
(based on wing area)
CL k CLT CD_

tp
Free-air together 0.9613 1.108 -0.0104 -0.00206
alone 0.9691 1.100 0.1279 0.00761
Ground- together 0.9388 0.581 0.1067 0.01119
Effect alone 0.9385 0.013 0.1441 0.00757

173

Ao



TABLE III. BASIC CHARACTERISTICS FOR THE WING-FLAP
IN WIND-TUNNEL CONFIGURATION

Theoretical Model

Wing:
Aspect Ratio .« o ¢ ¢ ¢ 4o ¢ ¢ ¢t ¢ 4 o 4 0 e s s s e e ..

Taper Ratio e o o 8 e s = e e a o a4 o e o s s e s e o
Leading edge sweepbaCk . ¢ « ¢ ¢ ¢ ¢ o & o ¢ o o o o o

Trailing-edge flap:
Span/wing SPan . .« « . . e 4 e o s s o 4 e o o o o o
Chord/wing chord . . . ¢ « ¢ & o o« « o o o 2 o o o
Deflection (normal to hinge line) . . . . . . . . . .
Hinge-line sweepback . . + « ¢« ¢ ¢« &« + o &« & o o« « =«

Vortex quadrilateral array (chordwise x spanwise) . . . .
Wind Tunnel:

Wing span/tunnel width . . . . . . . . . . . ¢+ ¢ . ..

Wing airea/tunnel cross section area (Sw/ST) e e e e e e .

Tunnel 'length'/wing mean chord . . . . . . . . . « . . .

Vortex quadrilateral array (lengthwise x circumferential)

Experiment
Reynolds Number (based on wing mean chord) . . . . . . . . .

Gross Wing:
Basic details are the same as for theoretical model,
but in addition:

Leading edge flap:
Full net span
Chord/wing chord . « « ¢ o o o o o & = o o« « o o 2 o =
Deflection. « + v ¢ o o o o o o o o o o o o o o o o
Hinge-line sweepback c v e . « o e s s s s s s e s

Trailing-edge flap blowigg momentum coefficient
(critical value at @ = 87) . . v & « ¢ o o o ¢ o o o o

Body:
Width . & v v ¢ ¢ 4 v v o o e s e e s e s e e e s e e e s
Depth . . v ¢ ¢ ¢ ¢ ¢ o ¢ 6 o 4 o e o s 4 o v e s o o o« o
Length .« & v ¢ ¢ v o o o o o o o o o o = o s o o« o o s
Length of fore and aft fairings . . . . « . . . ¢« « .« . .
Wing position (above body center line). . . . . . . . . .
Section - rectangular witn rounded corners

* Note: normalised by gross wing semispan +(each)
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2.9
0.55
31

1.0
0.31
40°
17°

3 x10

0.56
0.256

11 x 1lv

1.2 x lO6

0.15
40
28

0.018

*
0.18,
0.36 ,
1.834,
0.357,
0.096



TABLE 1IV. CALCULATED CHARACTERISTICS FOR SLENDER RECTANGULAR
WINGS (ASPECT RATIO = 0.25)
Configuration Wake CL CD. CM
i
(% chord)
Streamwise 0.7489 0.2633 0.1069
Flat Plate
First Iteration 0.5301 0.1725 0.1111
4]
a = 20
Second Iteration 0.5301 0.1654 0.1116
F——.
Bent Plate Streamwise 1.9508 1.5405 -0.6056
a = 20° First Tteration 1.0934 0.6174 0.078
Bend = 20° Second Iteration 1.1241 0.6381 0.075
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— K————




176

TYPICAL COLUMN OF
QUADRILATERAL VORTICES VORTICES DISPLACED REARWARDS

" BY A QUARTER ELEMENT CHORD

CONTROL

TRAILING VORTEX SEGMENTS <~
(For simplicit/ only two per
vortex are 5 1own)

7
SEMI-INFINITE VORTICES ~

Figure 1.- Quadrilateral vortex model,
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) L 4h ITERATION
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SEGMENT LENGTH £

o\

~L

Figure 2.~ Calculated rol'-up of a pair of
segmented vo ices.
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[ 4
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(a) Configuration and general views after four iterations.

NING PLANE

EFFECT OF ITERATION ON VORTEX 7
SIDE VIEW

ITERATION
NUMBERS

EFFECT OF ITERATION ON VORTEX 7
PLAN VIEW

(b) Effect of iteration on vortex (7) trajectory.

Figure 3.- Calculated vortex trajectories for a wing-flap-
tailplane configuration in free air.
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PLANE OF SYMMETRY

SPANWISE
LOCATION OF
FLAP EDGE

' IN GROUND EFFECT
(a=10°)

IN FREE AIR
(a=10°)

SEE FIGURE 3 (a) FOR
POSITIOM OF SECTION

(c) Sections through the calculated wakes in
free air and in ground effect.

Figure 3.- Concluded.
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L e g e

0,98
WING LIFT COEFFICIENT

Clw <\
0.96 —0 0

WING INDUCED DRAG FACTOR

1.09 SEE FiGURE 3(o)
FOR CONFIGURATION

0
~0.02
TAILPLANE LIFT COEFFICIENT
_ (BASED ON WING AREA)
-0,04
0
- —0 —O— -0
o, o=
T
-0.004
TAILPLANE INDUCED DRAG COEFFICIENT
~ ( BASED ON WING AREA)
G
-oom
L L 1 A J
FREE STREAMWISE | 2 3 4
WAKE ITERATION

Figure 4.- Effect of iteration on the calculated lift and induced
drag of the wing-flap-tailpiece configuration in free air.
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CENTER OF PRESSURE x/c

‘05 -
SEE FIGURE 3(o)
FOR CONFIGURATION
1.0}
e
005 -
e——— FLAP ——
0 1 | L L I 1 1 | ] ]
0 0.2 0.4 0.6 0.8 n 1.0
(a) Spanwise loading.
0.5 [~
----- STREAMWISE WAKE }
£ IN FREE AIR
) —O— ITERATIONS 1 TO 4
0.4 --0-- ITERATION 2, IN GROUND EFFECT
* -~
003 =
0.2 =

‘k 1 1 L 1 1 1 1 | 1 J

0 0.2 0.4 0.6 0.8 n 1,0

(b) Center of pressure locus.

Figure 5.- Calculated aerodynamic characteristics for the wing
and inboard flap in the wing-flap-tailplane configuration

in

free air and in ground effect.



0.3\

SEE FIGURE 3 (a)
FOR CONFIGURATION

-~~~ STREAMWISE WAKE
—O— ITERATIONS 1 TO 4

--0-- ITERATION 2, IN GROUND EFFECT

}IN FREE AIR

. FLAP i
0.1F -
1 1 1 I i i A1 1 J
0 0.2 0.4 0.8 0.8 1.0

(c) Induced drag distribution.

Figure 5.~ Concluded.
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Ye VORTEX QUADRILATERALS REPESENTING
/ TUMNEL SURFACE

POSITION OF BODY N EXPERIMENT

-
A VIEW ON SECTION A-A
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WING MEAN CHORD
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- 0,256

b —

R e e
SEMI-INFINITE TRAILING
VORTICES FROM TUNNEL

PLAN VIEW

Figure 6.- Wing flap in wind tunnel -
general arrangement of the theoretical
model.

............... IN FREE AIR (C‘-Z.l5, a=10°)

IN WIND TUNNEL (CL- 2.4, 0w 3)
‘-——$
—- -0~ """ SECTION AT A-A

Figure 7.~ Calculated vortex trajectories
in wind tunnel.
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S
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(SEE TEXT)
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(b) Induced drag factor.

Figure 8.~ Calculated aerodynamic characteristics of the wing-flap
configuration in free air and in wind tuunel.
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L.E. SIDE VIEW T.E.

1

. o : =

S - - " - e
1 PLAN VIEW

VORTEX LINES
------- CALCULATED LOCUS OF VORTICITY CENTROID
—-— -~ VORTEX CORES FROM SMOKE VISUALIZATION (ref. 12)

(a) Flat plate.

SIDE VIEw

I

PLAN VIEW

(b) Plate with 20° mid chord bend.

Figure 9.- Calculated vortex trajectories for aspect
ratio 0.25 wings at 20° incidence.
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Figure 10.- Calculated aerodynamic characteristics
for the small aspect ratio wings compared with
experimental measurements.
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Figure 11.- Calculated vortex trajectories for
an aspect ratio 5.33 rectangular wing at
12° incidence after two iterations.
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Figure 12.~ Calculated aerodynamic characteristics
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UPPER-SURFACE-BLOWING JET-WING INTERACTION*

C. Edward Lan
The University of Kansas

SUMMARY

A linear, inviscid, subsonic compressible flow theory is formulated for
predicting the aerodynamic characteristics of upper-surface-blowing
configurat.ons. The effect of the thick jet is represent:d by a two-vortex-
sheet model in order to account for the Mach number nonuniformity. The wing
loading with the jet interaction effects is computed by satisfying boundary
conditions on the wing and the jet surfaces. The vortex model is discussed
in detail,

INTRODUCTION

In upper-surface-blowing (uiB) configurations, the low-pressure-ratio
jet from high by-pass ratio turbofan engines blows directly on the wing
upper surface. As the jet is relatively thick, being of the order of 10%
of the local chord, the conventional thin jet flap theory has been found to
be inadequate to predict the high 1lift (ref. 1). This means that additional
lift may come from the interaction between the wing flow and the thick jet
which has higher dynamic pressure than the freestream. Of course, the jet
entrainment will increase the 1ift also, mainly through producing the Coanda
effecc.

In this paper, a theoretical method will be described for predicting
the interaction effects due to nonuniformity in Mach numbers and dynamic

pressures in the flow field. The inviscid, linear, subsonic compressible
flow theory is assumed.

SYMBOLS

c total 1lift coefficient (circulation lift plus jet reaction lift)

* This work was supported by NASA Langley Grant NSG 1139.
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difference in lift coefficients with jet on and off
jet induced circulation 1ift coefficient

jet momentum coefficient

local chord length, m(ft)

length of trailing jet included in the analysis, m(ft)
number of integration points or Mach number

number of chrodwise integration points

number of streamwise vortices on the trailing jet
unit vector normal to jet surface

radius of curvature, m(ft)

coordinate tangential to the jet surface

= po/ Py

jet thickness, m(ft)

nondimensional backwash

velocity, m/sec (ft/sec)

rectangular coordinates, with x positive downstream, y positive spanwise.
to the right and z positive upward

angle of attack, deg. y
nondimensional vortex density
flap angle, deg.
jet~deflection angle, deg.

= Vo/Vj

=}y cos o

density, kg/m3 (slugs/ft3)

velocity potential, mZ/sec(ft2/sec)

nondimensional additional perturbation velocity potential



Subscripts:

c chordwise

3 jet flow

o outer flow
s spanwise
\ wing

o freestream

METHOD OF ANALYSIS

Formulation of the Problem

The perturbation flow fields inside and outside the jet are assumed to
be governed by the Prandt:-Glauert equations with M; and My, respectively.
The solutions of these equations must satisfy the boundary conditions that
the jet surface is a stream surface and the static pressure must be con-
tinuous across it, in addition to the usual wing tangency condition. In the
linear theory, these conditions can be written as (ref.l)

850 8$5 -Vé.;(l-u') (jet stream surface condition) (1)
on  _ 8m T3 -
304 39,

J 2" Yo
P T(u'") 5 T 0 (jet static pressure continuity) (2)
536 azc

= — - i )
% % tan o (wing tangency) 3
where

T = Do/pj (4)

and 36 and 35 are related to the dimensional velocity potentials ¢o and ¢j as

b0 = 6o Vo cO8 @, b5 = 05 Vj (5)

Since the above problem is linear, it can be decomposed into a wing-alone
case with potential 4, and the interaction case with additional potential y.
Let

90 = byo (Mo) + o (My) (6)
05 = duy (Mp) + ¥y () (7

where 5&0 and E&j satisfy the Prandtl-Glauert equations with respective

Mach numbers and the following houndary conditions
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33 9z¢
BZO(MO) = —a-x—‘ - tan a (8)
azwj aZc
5z (M) =g - tam o ®

Substitution of equations (6)-(7) into equations (1)-(3) gives
> —_—

Mo A5 Ve R(1-u') 3y I

m T v 3 T M T (10)
Ay o 3$§j 3bwo

—_— "2 = o '

5 - T2 == - 50—+ T2 o (11)
3,

P =0 (12)

The above equations indicate that there are jumps in normal velocities and
tangential velocities across the jet surface. If there is no jet (i.e., u'=l,
M, = My and T = 1), these equations show that the additional perturbatiou
potentials will be automatically zero.

Vortex Model

In order to satisfy equations (10)-(11) simultaneously, two vortex
sheets are introduced on the jet surface. These vortex distributions will in-
duce normal and tangential velocities in the flcw field. To evaluate these
induced velocities on the boundaries so that boundary conditions,equations
(10)-(12),can be satisfied, the *nduced vr ‘ocity integrals are reduced to
finite sums through the Quasi Vortex-Lattice Method (Quasi VLM) (ref, 2).

The resulting discretized vortex arrangement is as shown in fig. 1. Note that
the wing vortices directly below the jet surface are arranged so that they
coincide with the jet vortices in location. Furthermore, the shaded region
represents part of the nacelle. Since the present computer program does not
include the nacelle model, special care must be exercised in this region. If
vortex representation of the jet starts from the exit, instead of the leading
edge, it has been found that the jet would induce a leading-edge type loading
in the middle of the wing. Therefore, the vortex distribution must be extend-
ed to the wing leading edge, but with freestream conditiors assumed in the
nacelle region in the computationm.

With the vortex arrangement made, the required induced velocities can be
computed and substituted into equations (10)-(12) for the solution of unknown
vortex strengths. These equations are satisfied only at a discrete number of
control points which are chosen according to the "semi-circle method" as de-
scribed in the Quasi VLM (ref. 2). These calculations are mostly straightfor-
ward, except in computing the induced tangential velocities (i.e., backwash)
and representing the jet flap effect. These will be discussed below.
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Computation of Induced Tangential Velocities

The induced tangential velocities on the jet surface are needed to sat-
isfy equation (11). At any control point, the induced tangential velocity du
to the jet vortex distribution in its neighborhood is simply equal to the
vortex density at that control point. Since the vortex density at the control
point does not appear in the formulation, it is necessary to express it in
terms of those at the vortex points through interpolation, such as Lagrangian
interpolation. However, the contribution from those vortices not on the same
plane with the control point can not be accurately computed in the usual man-
ner as in computing tue induced normal velocities. To illustrate, consider the
backwash expression in tie two-dimensional flow:

- -z 1 y(xDdx'
u(x,z) = 21 | o m (13)

As 2z » 0, theintegrand of equation (13) will have a second-order singularity.
The usual method is not accurate in treating such singularity. Therefore,
equation (13) should be rewritten as

z [1y(x") = y(x) . Y(x)
ulx,2) = 57 0 -(_x.:xT)—T—I—-?Z R 2f0 ’x-x )-Z + 22

N N M sin 0O,
2 T y (81 -y (x) 2y(x) ™ j (14
el ) sin & + 055 I oz (4
T k=1 (x=x)2 + 22 My =1 (x=%3 z
where
2k -1
=1 (1 - 8), Ok =
x =% ( cos 6;), T (14b)
xj =1 (1 - cos ej), Sj = glii—£ m
and
M= 2PN (L4c)

for interdigitation between the control and integration points in the last
summation and p is an arbitrary integer greater than 1.

In the implementation of equation (l4a) in the present computer program,
it is assumed that M=8N if N>6 and M=16N if N< 6. To compute the tangential
velocity at a et control point due to wing vortices, equation (1l4a) is ap-
plied to three wing vortex strips in the immediate neighborhood of the control
point. This is indicated in fig. 2. On the other hand, if the control point
is on the jet upper surface, the effect due to all vortices on the jet lower
surface in the came streamwise section is computed with equation (1l4a).
Similar principle is applicable if the control point is on the lower surface.
This is illustrated in fig. 3. The accuracy of equation (l4a) has been
illustrated in ref. 3.
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Incorporation of Jet Flap Lffect in Thick Jet Theory

Due to Coanda effect, the USB jet will follow the wing surface and leave
the wing trailing edge at an angle relative to the chord tg produce the jet
flap effect. This is to produce varying but unknown V_ * n in equation (10)
along the trailing jet.

Since
-» ->
Voo o d
-v————%--a-,z;-i-tana, (15)

it is necessary to relate gi-to the unknown jet vortex density. As shown in
fig. 4, the irrotationality of the jet flow implies that

331 a$j
vy + Vj(gg-)ll(R - ty/2) = [vy + Vj(Sg_)Z](R + tj/2)

or

t 2 17 30y, 39,

3 "2 o o wo ;
T = TGAGO), - G, t Gy - ),] = £,y (
1 d2z

R dyl (17)

where the subscripts 1 and 2 denote the upper and the lower jet surfaces,
respectively, at the section under consfderation. Equations (16)-(17) give
the following initial value problem for determining dz :

dx
a2,
ty —5 = £(x,y) (18)
dx
z(t.e.) =0
dz
dx(t.é.) -Gj
To integrate the above problem for %& ,» a finite jet length Cj is first chosen

(It is nct necessary tc include infinite length of jet in the numerical
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method as far as the wing loading is concerned). Then let
c
X = X¢ o, + 51 {1 - cos 6) (19)
It follows that
d ,dz Cj
tj U ('&; = 2 sin 6f(0,y)

and after integration once,

ey
dz J .
cj(dx)i -ty 8y + b 3 sin 0f(6,y)do
= -ty 8y + (80) 5= [ I sin 0f(0x,y) + 5sin eif(ei,yi] (20)
k=1
by trapezoidal rule. With %% determined by equation (20) in terms of
3
f(6,y) and hence, TES through equation (16), it is possible to incorporate
98

these terms with unknown vortex densities to the left hand side of
equation (10) before equations (10)-(12) are solved.

Note that equations (10)-(12) are solved by the vector method of Purcell
(ref. 4) which processes row by row of the augmented matrix in solving the
equations. Since the tangential velocities are needed in equation (10) with
the jet flap effect (see equation 16), equation (11) must be processed first
with the tangential velocities computed there stored on file before
equation (10) cau be solved.

SOME NUMERICAL RESULTS

Before the method can be applied to any configurations, it is important
to know how the discretized vortices should be arranged to produce reliable
results, In the following, some convergence study with respect to the vortex
arrangement for the configuration used by Phelps, et al. (ref. 5) will be pre-
sented. Fig. 5 shows the effects of number cf vortices on the trailing jet
with C; = lc and 2c. It is seer that 6 vortices (NJ = 6) with Cj = lc appear
to be sufficient in applir~ations, If Cy is increased to 2¢, more vortices
would be needed to provide convergence. Fig. 6 indicates the rapid convergence
of ACLr with respect to the number of wing spanwise vortex strips.

The above method is now applied to the configuration of ref. 5 with 30°
full span flap. The jet-deflection angle is taken to be the angle of flap
extension relative to the chord line. It is found to be 46.7°, The Cp, values
were computed by adding predicted ACy to the experimerntal jet-off Cj. The re-
sults are <hown in fig. 7. The predicted values are slightly higher possibly
because the estimated jet angle was too high., On the other hand, the thian jet
flap theory by the present method (ref. 1) would underestimnte the 1ift.
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To illustrate the importance of improved tangential velocity evaluation /
(see equation lé4a), the configuration of ref. 6 with §¢ = 20° and 40° is

used in fig. 8. It is seen that without the improved integration technique,
the predicted lift would be too high.

CONCLUDING REMARKS

A vortex model for the USB jet-wing interaction has been described. The
model consists of using two vortex sheets on the jet surface to account for
Mach number nonuniformitv and differences in jet and freestream dynamic
pressures. The rate of numerical convergence with respect to the number of
vortices used appeared to be reasonably rapid. Comparison of the predicted

results with some available data showed much better ogreemen. than the thin
jet flap theory.
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Figure 1.- Vortex model for computing jet-interaction effects.
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: Figure 2.- Region (shaded area) of wing vortex strips subject to improved
‘ integration procedure of equation (l4a) for computing u-velocity at a
; jet control point.
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Figure 3.- Region (shaded area) of jet vortex strips on the lower surface
subject to improved integration procedure of equation (l4a) for com-
puting u-velocity at a jet control point.
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Figure 5.- Effect of number of trailing jet vortices on predicted lift.
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Figure 7.- Comparison of predicted 1lift curves with experimental data of
ref. 4. Cu = 0.8 x 2.095.
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CALCULATION OF THE LONGITUDINAL AERODYNAMIC
CHARACTERISTICS OF WING-FLAP CONFIGURATIONS

*
WITH EXTERNALLY BLOWN FLAPS

Michael R. Mendenhall
Nielsen Engineering & Research, Inc.

SUMMARY

An analytical method for predicting the longitudinal aero-
dynamic characteristics of externally blown flap configurations
is described. Two potential flow models make up the prediction
method: a wing and flap lifting-surface model and a turbofan
engine wake model. A vortex-lattice lifting-surface method is
used to represent the wing and multiple-slotted trailing-edge
flaps. The jet wake is represented by a series of closely
spaced vortex rings normal to a centerline which is free to
move to conform to the local flow field. The two potential
models are combined in an iterative fashion to predict the jet
wake interference effects on a typical EBF configuration.
Comparisons of measured and predicted span-load distributions,
individual surface forces, forces and moments on the complete
configuration, and flow fields are included.

INTRODUCTION

The short take-off and landing requirements for STOL air-
craft necessitate a means of achieving very high lift coeffi-
cients on aircraft in take-off or landing configuration with
little sacrifice in cruise performance. The externally blown
jet-augmented flap (EBF) provides such a means. The jet efflux
from engines mounted beneath the wing is allowed to impinge
directly on the slotted flap system (fig. 1), thus producing a
large amount of additional 1lift through engine wake deflection
and mutual interference effects.

An analytical method for predicting the longitudinal aero-
dynamic characteristics of EBF configurations has been developed
(ref. 1). Potential flow models of the lifting surfaces and the
jet wake are combined in an iterative fashion to satisfy two
requirements. First, the tangency boundary condition must be
satisfied at selected points on each lifting surface, and second,
the centerline of each jet wake must lie along a streamline of
the total flow field. One goal of the EBF method is to predict

*
Sponsored by NASA Langley Research Center, Contract NAS1-13158.
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the total loads and distribution of loads on each component of

the wing-flap configuration under the influence of multiple jet
A second goal is that a minimum of empirical information

wakes.

be required as input to the method.

This paper contains a discussion of the technical approach
to the prediction of EBF aerodynamic characteristics, a discussion

of the development of the potential flow models, and some
comparisons with data.

0

e

a 0 050 O 0

E= - -1
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SYMBOLS

section normal-force coefficient

drag coefficient, positive aft

lift coefficient

pitching-moment coefficient, positive nose up
normal-force coefficient

thrust coefficient of a single jet

total thrust coefficient for a configuration with
multiple jets

local radius of circular jet, m (ft.)
initial radius of circular jet, m (ft.)
axial velocity, m/sec (ft/sec)
free-stream velocity, m/sec (ft/sec)
initial jet wake velocity, m/sec (ft/sec)

jet coordinate system with origin at the center of
the jet inlet

wing coordinate system with origin at the wing root

chord leading edge
angle of attack, degrees
jet wake vortex cylinder strength, m/sec (ft/sec)

flap deflection angle, degrees

w



A convergence tolerance
As jet model vortex ring spacing, m (ft.)
n dimensionless spanwise coordinate
0) dihedral angle, degrees
ANALYSIS

Wing-Flap Vortex-Lattice Model

The lifting surfaces of externally blown flap configurations
consist of a wing and multiple-slotted trailing-edge flaps. The
lifting-surface model needed to represent the typical EBF wing-
flap configuration must be capable of handling individual lifting
surfaces and predicting the spanwise and chordwise load distribu-
tions on each surface. Mutual interference between svrfaces must
he considered along with interference effects induced by some
external source of disturbance, for example, the wake of a high
bypass ratio turbojet engine. It is also essential that the
lifting-surface model be capable of predicting the velocity field
induced in the vicinity of the wing and flaps. The above
requirements are best fulfilled through the use of a vortex-
lattice model of the lifting surfaces.

The wing and flaps are divided into area elements, in each
of which is placed a horseshoe vortex. Its bound leg is aligned
with the elemant quarter chord and its trailing legs lie along
the sides of the element as illustrated in figure 2. The trailing
legs are positioned in the plane of their originating element,
and they are deflected so that they lie in the plane of each
surface downstream of the originating surface. The trailing legs
extend to infinity in the plane of the last surface contacted.

The boundary conditions, expressing the flow tangency to
the camber surface, are satisfied at a set of control points
located at the midspan of the three-quarter chord line of each
area element. The wing control points are all assumed to lie in
the plane containing the root chord and making an angle ¢ with
the 2Z = 0 plane. The control points on each flap are assumed
to lie in the chord plane of the flap. The boundary condition
equations (ref. 1) state that the total flow is tangent to the
camber surfaces of the wing and flaps at each control point. The
total velocity at each control point is made up of the free
stream, the velocity induced by the vortex-lattice horseshoe
vortex system, and additional velocities induced by an external
source of disturbance. The solutior of these equations provides
the unknown value of the circulation of each horseshoe vortex.
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Once the circulation strengths are determined, the flow field
surrounding the lifting surface can be computed as well as the
surface load distributions. The force on each area element is
calculated as the product of density, local velocity norma.. to
the element of vorticity, and circulation strength. The total
force on each area element is made up of two contributions: that
acting on the bound leg of the horseshoe vortex and the force
acting on the trailing legs contained within the area element.
There is only one bound leg associated with each area element,
but numerous trailing legs may be present along each side of the
area element, one for each area element upstream of the element
being considered. All three components of force on each vortex
leg are computed on each area element. These are resolved into
normal and axial forces in each area element. The section char-
acteristics of each lifting surface are computed from these
elemental forces and finally the total individual surface forces
are resolved into the gross aerodynamic characteristics relative
to the aircraft axis system.

The vortex-lattice method is restricted to calculating
longitudinal characteristics, and compressibility corrections
are not included in the method. No small angle assumptions are
used in the theoretical model.

Since the EBF model is to be used as a predictive technique,
it is important that the vortex-lattice method be applicable to
typical EBF configurations. The wing and flap configuration
parameters are listed as follows:

Wing
Leading-edge shape: May have up to 30 breaks in sweep.

Trailing-edge shape: Same as leading edge.

Taper: Determined from leading-edge and trailing-edge
specification,

Tip chord: Parallel to root chord.

Dihedral: Constant over the semispan.

Mean camber surface: May have both twist and camber.
Thickness: Neglected.

Flaps
Number: Up to ten individual flap segments.

Location: Only trailing-edge flaps are considered; gaps
between surfaces are permitted.

Leading-edge shape: Straight,
Trailing-edge shape: Straight.
Taper: Linear.,
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Root chord: Must lie in a vertical plane parallel to the
wing root chord., /

Tip chord: Parallel to root chord.
Span: Full or partial span.
Deflection: Different for each flap.

Mean camber surface: Each flap may have both camber and
twist,

Thickness: Neglected.

The vortex-lattice arrangement on each lifting surface is
general enough to provide good flexibility in describing the
loading distribution. A maximum of thirty (30) spanwise rows of
vortices may be used, and each lifting-surface component can have
a maximum of ten (10) chordwise vortices, The area elements on
a lifting surface have the same chord at each spanwise station,
but the element chords need not be the same on adjacen* surfaces,
Thus, the number of chorAwise elements on each lifting surface
may be chosen according to the accuracy required in the predicted
chordwise loading distribution. In the spanwise direction, the
widths of the area elements may be varied to fit the loading
situations; that is, in regions of large spanwise loading
gradients, the element widths may be reducec to allow closer
spacing and more detailed load predictions. Convergence of
predicted results as a function of lattice arrangement on wings
and flaps is described in Appendix A of reference 2. One restric-
tion on the spanwise lattice arrangement on the wing and flaps is
the requirement that the lattice elements on the flaps be directly
aligned with those on the wing. This requirement is imposed be-
cause of the deflection of the vortex trailing legs and the neces-
sity for all trailing legs to lie along the edges of area elements.

When a wing-flap configuration has multiple spanwise flap
segments with different deflection angles like that shown in
figure 2, certain difficulties arise in calculating the loading
distributions on the flap.segments, particularly near the flap
edges. The problem is caused by the deflected trailing legs from
the upstream area elements on the wing. The individual circula-
tion strengths can be large; but when the side edges of the area
elements coincide, the trailing vortex legs tend to cancel and
the net strength of the trailing vorticity on this side edge is
quite small. When the side edges do not coincide, as is the case
on adjacent flaps with different deflections, the net strength of
the trailing legs along these edges can be large. This has two
effects on the loading calculation., First, the unbalanced
trailing leg strengths can cause unrealistic circulations to be
computed near the flap edges; and because of the mutual inter-
ference between panels, this can be felt on surrounding panels.
Second, these circulation distributions on the flaps lead to
unusual force distributions. This particular problem is not
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unique with this author as Rubbert presents an extensive
investigation of the same type of difficulty in reference 3. f

Since this problem has a large effect only on the flar
loads on the area clements near the edges of the flaps, and the
total effect on the gross loading on the configuration is small,
the following approximate solution is applied to this area. The
wing trailing vorticity at the semispan station corresponding to
the flap side edges is not allowed to deflect along the flaps but
is arbitrarily forced to move aft in the plane of the wing. It
is relatively unimportant as to the exact position assigned to
the wing trailing legs so long as they are combined; therefore,
the choice was made to leave the wing trailing legs (at this one
semispan station only) undeflected. There is still an imbalance
in the trailing legs associated with the flap edges, but it
generally has only a small effect on the resultiny flap circula-
tion distribution. In addition to the modification to the wing
trailing leg positions, the imbalance in the trailing vortex
ftrength on the flap edges produced some large forces on the
flap edges. For this reason, it was necessary to neglect the
normal-force component due to the trailing vortex leg at the free
edge of each flap. These modifications smoothed the predicted
load distribution on the flaps with negligible effect on the
total loading on the configuration.

Vortex Ring Jet Model

A potential flow model of a high-bypass-ratio turbofan
engine wake is needed which will provide a means for calculating
the induced velocity field both inside and outside the boundary
of the jet wake. The flow model should simulate the entrainment
effect exhibited by jet wakes, the jet boundaries should behave
according to observed spreading rates for jets in a coflowing
stream, and the wake should be positioned under the influence of
a lifting surface such that it lies along a streamline. Such a
potential flow model of a jet wake with circular cross section
is presented in reference 2, and the flow model is extended to
elliptic cross-sectional jets in reference 1.

The flow model consists of a distribution of vorticity placed
on the surface of an expanding cylinder with circular or ellipti-
cal cross section. The strength of the vorticity is determined
by the jet thrust coefficient. The distribution of vorticity on
the cylinder is modeled by a series of vortex rings coaxial with
the jet centerline and having the same cross-sectional shape as
the cylinder. Each ring represents a finite increment of length
of the cylinder, and the vortex strength of each individual ring
is equal to the net vorticity on the incremental length of cylin-
der which it replaces. The momentum inside the jet boundary
remains constant; and if the expansion of the boundary is speci-
fied correctly, the mass flow inside the boundary is in good
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agreement with actual jets. Thus, the model represents the
momentum, mass, and entrainment characteristics of a turbulent,
coflowing jet. While the velocity profile within the jet is
approximated by a uniform profile (fig. 3), the induced veloci-
ties outside the jet boundary are accurate because they are
related to the entrainment induced flow.

Measured velocity profiles in the wake of a JT15D-1 jet
engine mounted beneath a wing are available in reference 4. The
profiles were measured on both the wing side and the free side of
the engine centerline at a point approximately two nozzle diame-
ters downstream of the engine exit. These data are shown in fig-
ure 4 for Cqp = 0.56. A circular vortex ring jet mocdel was
designed to expand at a rate that would produce the same mAass
flow at the measured profile station. The resulting pre ‘.: ted
velocity profile is also shown in figure 4., The jet mod~. .as
approximately 5 percent less momentum than the real jet; tb:ive-
fore, the vortex ring model can satisfactorily match botl. wass
and momentum of an actual jet if the correct spreading rate is
known. Any interference calculation taking place inside the jet
boundaries will be reasonably accurate when averaged over the
total wake area, but there may be certain inaccuracies locally
due to diiferences in the shape of the velocity profile within
the wake,

Use of the vortex ring jet model requires three items to
determine completely the analytical description of the jet. The
first item is the initial vortex ring strength which is related
to the thrust and momentum in the jet. The remaining twc items
are the boundary of the jet and the position of the jet center-
line. The jet centerline can either be located a priori, or it
can be left free to move under the influences of the free-stream
velocity, the wing and flap loading induced flow field, and the
jet induced flow field. The objective in permitting the center-
line to move freely is to be able to position it along the
streamline of the wing-flap-jet flow which leaves the center of
the exhaust., Iterations can be performed until convergence is
attained between the jet centerline and the streamline position,

To complete the description of the jet wake, the boundary of
the jet must be specified at all points along the jet. An analyt-
ical method is available in reference 5 which gives the radius
distributions for axisymmetric jets in a coflowing stream for
variocus velocity ratios. Unfortunately, a similar series of
curves is not available for noncircular cross-sectional jets. It
is here that empirical evidence must be used to complete the
specifications of the jet.

Little data exist on the cross-sectional shape of nonaxisym-
metric jets in a coflowing stream, Jet wake extent and profiles
measured aft of the last flap on a four-engine EBF configuration
are presented in reference 6. These data illustrate that
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initially circular jets tend to mix and .z2come elliptical in
cross section after interaction with the flaps. The expansion
characteristics of thase jets between the engine exit and the
station aft of the wing is undetermined. Modeling of the jet

in this region requires simply a good engineering estimate until
more detailed measurements become available.

Interference Calculation

Calculation of the aerodynamic loading of a wing-flap ccnfig-
uration under the iufluence of the jet wake of a turbofan engine
is done with the combination of the two potential flow models
described above. The two flow models are combined by superposi-
tion (fig. 5). The jet model induces a velocity field on the
wing and flap which produces an interference loading on the
liftiny surfaces. The wing and flap loading. induce a velocity
field in the vicinity of the jet and tend to ~“eflect the jet
away from thesz surfaces. It is assumed that the engine tiarust
is unaffected by the presence of the wing-flap. Be.-ause of the
mutual interaction between the jet and lifting surfaces, an
iterative solution is required. The solution is carried out in
the following manner.

Before any calculations are made, the jet centerline is
positioned with respect to the wing and flap. The initial loca-
tion of the centerline car. be based on some a priori knowledge
of the flow field beneath the wing and flap system, or it can
be located in a strictly arbitrary fashion. For example, it is
quite acceptable to choose the initial jet centerline to be a
straight line aft from the engine exhaust as illustreted in
figure 5.

The (expanding) jet boundary and cross-sectional shape
distribution should be chosen according to whatever procedure
seems most appropriate, and this distribution (which will be
unchanged from this point on) is placed on the centerline to
define an initial jet wake. The jet-induced velocity field is
computed &t selected control points on the lifting surfaces and
the circulation distribution on the wing and flaps is obtained
such that the tangency boundary condition is satisficd at each
control point.

At this point in the solution, the boundary condition on
the wing and flap surfaces is satisfied but the jet position has
nct been influenced by the presence of the wing and flap. The
wing-flap influence consists of modifying the jet location to
cause the jet centerline to lie along a streamline of the combined
jet-wing-flap flow. The initial jet centerline is adjusted by
computing the total flow field at a number of points on the
centerline and moving the centerline to a new position such that
it lies along the computed flow direction at the specified points.
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This completes the first iteration. In this situation, the wing

and flap loading is not compatible with the jet flow field i
corresponding to the new position of the jet. Thus, a second

iteration is needed.

The flow field corresponding to the adjusted jet position
is computed, and a new wing-flap loading distribution is obtained.
The jet centerline is again moved to lie along the new flow
directions. This procedure is continued until either the center-
line position or the total wing and flap loading converges to
within a desired tolerance. With a converged solution, the total
flow is tangent to the wing and flap surfaces and the jet center-
line lies along a streamline of the flow.
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It is iuring the iteration procedure and the subsequent
motion of the jet centerline that another bit of empiricism is
used. The combination of the two potential flow models results
in the deflection of the jet such that it passes beneath the
wing and flap surfaces. A typical converged solution will show
the maximum jet centerline deflection angle to be close to the
maximum flap angle. Measurements indicate that the turning
efficiency of a typical EBF configuration can drop as low as
0.75 at high flap angles. Consequently, a limit on jet deflec-
tion angle is imposed during the iteration process to more
realistically model jet deflection for high flap deflection angles.

RESULTS

The methods of analysis described in the previous section
have been applied to a number of different EBF configurations
under various flow conditions. Convergence characteristics of
the iteration procedure are examined, and comparisons with
experimental data are presented.

Convergence Characteristics

For purposes of examining the convergence characteristics
of the prediction method, the four-engine EBF configuration of
references 4 and 7 was chosen. This large-scale model has a 25°
swept wing with an aspect ratio of 7.28 and a taper ratio of 0.4.
The trailing-edge flap system considered for the calculations
consists of three full-span, slotted flaps. Two JT15D-1 turbofan
engines are pylon mounted beneath each wing at 1 = 0.25 and
0.42. The lattice arrangement for this configuration is shown
in figure 6. The initial assumption for the jet centerline in
all cases is a straight line coincident with the engine centerline.
The convergence studies are carried out for the flaps in a take-
off position (8¢ = 09/20°/40°) and a configuratizcn angle of
attack of 18.5°,
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Convergence of the total wing-flap normal-force coefficient
is shown in figure 7 for thrust coefficients of 2.3 and 4.0. At
the end of the fourth iteration, both cases have converged to
within 7 percent. This convergence pattern has been observed on
the same configuration at other angles of attack and on other
similar configurations.

The convergence of the normal-force coefficient on each
component of the wing-flap configuration is shown in figure 8.
Each component tends to converge according to its own pattern,
but all components reach convergence at about the same time.

The convergence pattern of the spanwise distribution of
section normal force on a single component, flap 2, of the config-
uration is shown in figure 9 through four iterations. The peak
loadings are caused by direct jet interaction with the flap.

The span loads on the other components have a similar convergence
pattern and these are presented and discussed in reference 1.

The convergence results just described are typical of those
observed on other EBF configurations over a wide range of flow
conditions. The method has never failed to converge, but conver-
gence is slower for high flap angles. Generally, calculations
have been initiated with a straigb* jet centerline because of the
simplicity in prescribing the input; however, the number of
iterations required for convergence can be reduced if the initial
centerline is located closer to the final position. On the basis
of cases run, convergence is more rapid if the centerline
approaches its final position from above rather than below,
because the correcting velocities causing the centerline position
to change are larger if the centerline starts too close to the
wing and flaps.

EBF Data Comparisons

The overall EBF prediction method was evaluated by comparing
predicted results with data on several EBF configurations. These
comparisons are presented and discussed in detail in reference 1,
and results presented herein are typical examples of those
included in that reference.

The first configuration to be considered is the four-engine
model of references 4 and 7 with take-off flap setting (6¢ = 09/
20°/40°). The jet turning efficiency was assumed to be 85 per-
cent which limited the jet downward deflection angle to 34° for
all calculations. The predictions to follow have all converged
to within an 8-percent tolerance. The convergence is not the
same at all angles of attack, thus introducing some uncertainty
in the slope of the predicted curves.
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In figure 10, the predicted section normal-force coefficient
on flaps 1, 2, and 3 are compared with experimental results at
C, = 4 and a = 18.5° obtained from reference 7. Wing data are
not availabie for this configuration. The predicted peak loadings
on flaps 1 and 2 are greater than those measured and cover a
smaller portion of the wing. This indicates that the chosen jet
model has not expanded sufficiently at this station and perhaps
should be expanded at a faster rate to produce better agreement
with experiment. As noted on the figure, the predicted total
normal-force coefficients on flaps 1 and 2 are larger than the
value obtained by integrating the measured distribution. The
comparison for flap 3 in this same figure shows good agreement
between the predicted and measured loading distributions. The
peak loadings, the width of the loading, and the total normal
force on the flap are all in good agreement. Since this flap is
nearest to the point at which the jet wake is specified, based
on measurements in the wake of a similar EBF configuration
(ref. 6), the jet model is probably in better agreement with the
actual jet on this flap than on the previous two flaps.

The predicted and measured longitudinal aerodynamic coeffi-
cients on the four-engine EBF model with take-off flap configu-
ration are compared in figure 11. The predicted curves include
estimates for the force and moment contributions due to the
fuselage and engines. No estimate of viscous drag is included
in the predicted drag curve. The power-on results indicate
that the method is converging on a 1lift coefficient that is too
low ai low angles of attack. This result may be caused by a
poor estimate for the jet turning efficiency. The predicted
pitching-moment coefficients are in reasonable agreement with
experiment, but the moment curve slopes are in error. The pre-
dicted drag curves are in good agreement with experiment.

Comparisons of the measured and predicted section normal-
force coefficients on the same wing with landing flap configu-
ration (6f = 159/359/55°) are shown in figure 12 for ¢, = 4
and ¢ = 6.5°. The high loading peaks on the wing are caused by
the jet being driven up against the aft portion of the wing by
the induced upwash from the high loading on the flaps. The
loading peaks are also narrow compared to the data, another
indication that the real jet may be spreading faster than the
assumed analytical model. The loading peaks and spanwise extent
of the jet-induced loading on the flaps are in reasonable
agreement as illustrated in the remainder of figure 12.

The measured and predicted longitudinal aerodynamic coeffi-
cients on the landing flap confiquration are compared in fig-
ure 13. The overall results are very similar to those presented
for the tzke-off configuration. These results were obtained
assuming jet turning efficiency of approximately 0.70; thus, the
jet turning angle was limited to a maximum downward deflection

of 38.5°,
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The predicted flow field aft of the trailing edge of the
last flap at a spanwise station corresponding t.. the centerline
of the inboard jet is shown in figure 14 for the take-off contiig-
ure ion (é¢ = 09/209/40°) at ¢, = 2.3 and o = 18.5°. The uni-
formity of the jet flow characteristics of the vortex ring mode!
is well illustrated. 1In the inset, the measured flow field aft
of a similar EBF configuration under similar flcw conditions iy
reproduced from reference 6. The measured flow field, also
aligned with the centierline of the inboard jet, is very much like
the predicted flow field.

The results presented thus far have all been obtained using
a circular cross-sectional jet model because adequate informatioi.
needed to specify an elliptic jet boundary are not available.
Some results obtained using the elliptic jet model are de-
scribed in reference 1. The elliptic jet used had the same
initial momentum and cross-sectional area distribution along the
centerline as the circular jet model. The elliptic jet was
assumed to expand linearly from a circular cross section at the
engine exit to a 2:1 ellipse aft of the last flap. The same
jet turning efficiency used for the circular jet model was
retained. The calculation was carried out for the landing flap
configuration at a = 18.5° with the following results. The
predicted loading is distributed differently over the wing and
flap surfaces due to the different cross-sectional shape of the
two jets, but the total normal force imparted to the wing-flap
configuration by the elliptic jet model is only 2 percent diff-
erent from that obtained from the circular jet model. It appears
that the cross-sectional shape of the jet is important if loading
distributions' are important; but if gross aerodynamic forces are
the goal of the calculation, the jet cross-sectional shape is
relatively unimportant so long as the momentum in the jet is
vorrect,

CONCLUDING REMARKS

An engineeriing prediction method developed to predict the
loading distributions and longitudinal aerodynanic characteristics
of externally blown flap configurations has been described.
Comparisons of measured and predicted gross lift, drag, and
pitching-moment coefficients on configurations with moderate
flap angles (6f < 40°) indicate generally good agreement for all
thrust levels., This is due principally to the correct modeling
of the entrainment and momentum characteristics of the engine
wakes and to the proper treatment of the mutual interference
between the jet wake and wing~flap. The interference model
creates, on the wing-flap, both the momentum reaction due to jet
deflection and the additional induced circulation characteristic
of EBF systems.

210




%

s

s e

o= Y

R N R

JRSE R T

As the flap angles increase beyond 40°, the predicted

results agree less well with the data. The assumption that the

wing-flap induced interference on the jet affects only its
centerline and not its boundary becomes less accurate as the
jet is more highly deformed, and it is possible that this is

responsible for the poorer agreement at the higher flap angles,

Comparisons of measured and predicted spanwise loading
distributions on the individual lifting surfaces indicate good
quantitative agrezment in some cases and poor agreement in

others. Generally, the correct j.ilitative behavior is predicted
in which large peak loadings cccur locally on tne flaps due to
direct impingement of the jet wakes, but the magnitude of the
peaks is not consistently in good agreement witlh *the data. The
diZferences are felt to be due primarily to the modeling of the
velocity profile within the wake and the boundary of the wake.
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Figure 1.- EBF configuration.
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Figure 3.- Circular vortex ring wake model
and velocity profiles.
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Figure 6.- Vortex-lattice arrangement for
EBF configuration.
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SOME RECENT APPLICATIONS OF THE SUCTION ANALOGY

TO ASYMMETRIC FLOW SITUATIONS

James M. Luckring
NASA Langley Research Center

SUMMARY

This paper reviews a recent extension of the suctinn analogy for estimation
of vortex loads on asymmetric configurations. This extension includes asymmetric
augmented vortex 1lift and the forward sweep effect on side edge suction. Appli-
cation cf this extension to a series of skewed wings has resulted in an improved
estimating capability for a wide range of asymmetric flow situations. Hence,
the suction analogy concept now has more general applicability for subsonic

lifting surface analysis.

INTRODUCTION

For lifting surfaces having relatively sharp leading and side edges, the
comuensurate separation associated with the vortex-1lift phenomena can have con-
siderable impact on the performance of high-speed maneuvering aircraft. A
detailed knowledge of these flow phenomena, which are referred tc as vortex
flows, is necessary for proper design and analysis of such aircraft.

For estimating the lift associated with these vortex flows, Polhamus intro-
duced the concept of the leading-edge suction analogy (ref. 1). The suction
analogy states that for the separated flows situation, the potential-flow
leading-edge suction force becomes reoriented from acting in the chord plane to
acting normal to th. chord plane (a rotation of 90°) by the local vortex action
resulting in an additional normal force. (See insert on fig. 1.) The reasoning
is that the force required to maintain the reattached flow is the same as that
which had been required to maintain the potential flow around the leading edge.

An application of the suction analogy is shown in figure 1 for a 75° swept
sharp-edge delta wing at a low subsonic Mach number taken from reference 2.
Both lift as a function of angle of attack and drag due to lift are seen to be
well estimated by the analogy. Since the original application, the suction
analogy concept has been applied to more general planforms. (See refs. 3 and 4.)

In reference 5, Lamar demonstrated that the suction analogy was not limited
to analysis of leading-edge vortex flows, but could be applied wherever singu-
larities in the potential-flow induced velocities produce an edge force. Fig-
ure 2, taken from reference 5, iilustrates that vortex 1ift may be expected
along streamwise side edges due to the singularities in the sidewash.

Whecreas the theories of references 1 to 5 have dealt with estimating the
effects of separation-induced vortex flows on longitudinal aerodynamic charac-
teristics for symmetrical configurations having symmetrical loads, it is desir-
able to have a method which allows for asymmetric configurations such as oblique
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or skewed wings, for example, and asymmetric flight conditions such as those j
associated with sideslip or lateral control.

Accordingly, the present investigation deals with a recent extension of the
suction analogy concept to include asymmetric flow situations. To accomplish
this analysis, the computer program of references 6 and 7 has been generalized
to account for asymmetry resulting in the asymmetric vortex-lattice (AVL) pro-
gram. Although analysis with this program may be perfo-med on many different
types of asymmetric flow situations, as shown in figure 3, this paper will focus
on the analysis of wings with geometric asymmetries and, in particular, on unta-~
pered skewed wings having separated vortex flows along leading and side edges.
The effects of forward sweep on side-edge suction are introduced and the concept
of augmented vortex lift as developed in reference 8 is applied to skewed wings.

Subsonic solutions can be obtained with the AVL program for configurations
having matrix sizes up to 400 % 400. Operating in FORTRAN extended (FTN)
version 4.4, the program requires 740008 storage and can solve a 200 singularity

configuration in less than 2 minutes on the Control Data Corporation (CDC) 6600
system running under NOS 1.0. Compared with its symmetric progenitor, the pro-
gram requires 130008 more storage, but executes roughly 20 percent faster for

the same configuration.

SYMBOLS
A aspect ratio
b wing span
C drag coefficient, _Drag
D q.5
ref
CD o experimental value of drag coefficient at CL =0
b4
c, lift coefficient, —4ft
Yo ref
ACL v CL increment associated with augmented vortex lift
bl
C rclling-moment coefficient about reference point, Rolling moment
1 q,.S__ b
ref
C = -a—c—l-
'8 3B
. ) BC1
1 pb
iy
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aC
C = -4—
1y Ib
2U
Cm pitching-moment coefficient about reference point which is located
c .
at ref unless otherwise stated, Pitching moment
4 q. S __c¢
ref ref
C normal~force coefficient, Normal force
N Q.5
ref
c yvawing-moment coefficient about reference point, Yawing moment
n 9,5 _.¢b
ref
BCn
C = a———
3
ng B
acn
C =
n pb
P a(20
BCn
Cnr i 3 b
20
CS leading-edge suction-force coefficient, Kv lelsin al sin a
b
CT leading-edge thrust-force coefficient, CS cos A
CY leading-edge side-force coefficient, CS sin A
C side-edge side-force coefficient
Y,se
c streamwise chord
c characteristic length used in determination of ﬁv se
b
c section suction-force coefficient, Section suction force
s q.c
ct section thrust-force coefficient, Section :hEUSt force
00
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v,le

=i

v,se
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Section side force

section side-force coefficient,

C[ODC

elemental side force

a(cN,p)

d(sin o cos a)

potential-lift factor,

leading-edge-vortex lift factor,

Leading-edge suction force from one edge

qoosref

3 sin? o

side-edge-vortex lift factor,

Side-edge suction force from one edge

3 qOOSref
3 sin? «
Kv le
- i ——Yie =
augmented-vortex 1ift factor, ®) sec A c

free-stream Mach number

roll rate, rad/sec

free-stream dynamic pressure

yaw rate, rad/sec

surface area

free-stream velocity

induced velocity in x-direction at point (x,y)
induced velocity in y-direction at point (x,y)
centroid

angle of attack

angle of sideslip

distributed bound vorticity at point (x,y)

distributed trailing vorticity at point (x,y)




P N

n spanwise location in percent semispan

A leading~edge sweep angle, positive for sweepback
Subscripts:

av average

c centroid

i particular item of location

le leading edge

P potential or attached flow

r root

ref reference; for S, true wing area; for ¢, mean geometric chord
se side edge

tot total

vle vortex effect at leading edge

vse vortex effect at side edge

RESULTS AND DISCUSSION

Modified Vortex-Lattice Method

In the analysis of separation-induced vortex flow effects for symmetric
configurations by the method of references 6 and 7, the following equations are
used to compute C_, C., C , and C :

L D m 1

CL,p ' CL,vle CL,vse

TS h N — N

C =K sin o cos” a+ K lsin o] sin a cos o + K |sin a| sin a cos a
L,tot P v,le' v,se
(1)
or
. 2
= o o in o 0 cos a 2
CL,tot Kp sin O cos + Kv,totls n | sin a co (2)
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= = 2 3
= =C. + +
Cp CD,o + CL tan o CD,o Kp sin® o cos a Kv,tot sin® o (3) i
Cm,p Cm,vle
e N N
s - N -
*e *c,le
c = K_sin a cos a —2£ + K |sin a| sin o —==
m, tot P c v,le
ref ref
C
m,vse
ey N
r -
*.,se
+ K |sin a| sin a —2 (4)
v,se c
ref
C
l’p l,vle
e N
s T —
quR Ve, le
C = K_ sin a cos o — + K |sin o] sin a —2==
1stot P b v,le b
C
1»VSse
e N
r )
. . c,se
+ Kv,se]51n ol sin o b (5

where the particular X terms represent the distance between the appropriate

centroid and the reference point Xref taken to be the quarter chord of the

mean geometric chord. The potential flow lift term Kp is computed from the
symmetric vortex lattice and the vortex lift terms, KV le and K , are

’ b
computed from the symmetric potential flow solution by using the suction analogy.
The application of this technique is not limited, however, to symmetric condi-
tions and should be applicable to asymmetric conditions providing the appropriate
values of Kp and Kv can be obtained.

The asymmetric vortex-lattice computer program was developed from its sym-
metric progenitors (refs. 6 and 7) to compute potential flow solutions about
arbitrary thin asymmetric configurations. Once the asymmetric potential-flow
solution {and, hence, Kp) is known, the suctiun analogy may be invoked to com-

pute corresponding asymmetric vortex lift terms, Kv le and Kv se’ The anal-
y 9
ysis technique of equations (1) to (5) may now be employed by using the Kp

and Kv quantities as computed from the asymmetric potential flow.
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In applying this analysis to a series of sharp-edged skewed wings, some
additional aerodynamic effects associated with these wings had to be considered.
The following sections describe these effects and present the analysis.

Effects of Forward Sweep on Side-Edge Suction

In the computation of side-edge vortex lift by the method of reference 7,
the portion of the wing inboard of the side edge is assumed to contribute to the
side force acting on the side edge. For sweptback wings, this technique does
not lead to complications with the leading-edge forces in that the leading-edge
side force and the side~edge side force do not interact with one another. How-
ever, in the instance of forward sweep such as for a skewed wing as illustrated
in the upper left part of figure 4, the leading-edge side force and the side-
edge side force act in opposition to one another across an elemental spanwise
strip. A more detailed illustration of the forward-swept semispan is presented
in the upper right portion of figure 4. Here the leading-edge and side-edge
section side forces are seen to oppose one ancther along a representative ele-
mental spanwise strip; as a result, there is a region of positive elemental side
force and a region of negative elemental side force. The distribution of ele-
mental side force along the representative spanwise strip is shown in the lower
right part of figure 4.

The change of sign of the elemental side force would tend to imply that the
positive elemental side forces act on the side edge while the negative elemental
side forces act on the leading edge. A comparison of the leading-edge side-
force distribution computed by integrating the negative elemental side forces
on the sweptforward semispan with the side-force component of the leading-edge
thrust force on the sweptforward semispan is presented in the lower left part of
figure 4. The agreement tends to substantiate the implication that the negative
elemental side forces are in actuality the side-force component of the leading-
edge thrust. This force has already been accounted tor in the present method
by computing the leading-edge thrust and using the secant relationship of the
leading-edge sweep to compute the resultant leading-edge suction. Accordingly,
to compute the side-edge force on the sweptforward semispan properly, only the
positive elemental side forces inboard of the side edge are integrated.

Augmented Vortex Lift

In reference 8, Lamar introduced the concept of augmented vortex 1lift for
estimation of loads rising from a vortex persisting downstream and passing over
lifting surfaces such as the aft part of a wing or a tail. This persistence

results in an additional vortex lift term ACL v unaccounted for by the suction
4

analogy which deals only with the forces generated along a particular edge.

Figure 5 illustrates the concept of augmented vortex lift applied to a
skewed wing. 1In applying the method of reference 8, the leading-edge vortex

lift factor Kv le developed along the leading-edge length b sec A persists
9

over a portion of the wing aft of the leading edge ¢ taken to be the tip chord.

This condition results in the additional vortex 1lift factor
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K = <__¥;lgi)g (6)

v,se b sec A

which has the same angle-of-attack dependence as the other vortex terms. Since
the chordwise centroid of side~edge vortex lift distributions is generally near
the midpoinc of the tip chord, the chordwise centroid of the augmented vortex
1ift factor is taken to be the midpoint of the tip chord. It should be noted
that the augmented vortex lift occurs only on the downwind side edge.

As long as the leading-edge vortex remains in the vicinity of the leading
edge, it will pass over a region of the wing aft of the leading edge that has a
length roughly equal to the tip chord. The choice of the tip chord for ¢ is
consistent with the assumption employed in this analysis that the vortex loads
act along the edge from which they originate. This assumption is valid as long
as a substantial amount of vortex growth and subsequent inboard movement of the
vortex core is not encountered.

Skewed Wing Analysis

Figure 6 presents a comparison between a swept and a skewed wing of the
span load and section suction distributions. Although in each case the total
loads remain essentially the same for both wings, the distribution of the load
is seen to shift for the skewed wing to the sweptback semispan. A comparison
between the separated flow theory and experiment for these two wings is shown in
figure 7. Data for the swept wing was obtained from reference 9. Although the
lift is well predicted in both cases, the augmented pitching moment for the
skewed wing is seen to predict the data well up to an angle of attack of approx-
imately 6°; above this angle it overpredicts the data. The discrepancy between
theory and data for the skewed wing pitching moment may partly be attributed to
excessive vortex growth and subsequent movement of the vortex core inboard as
the angle of attack is increased. This behavior is illustrated in figure 8. In
the application of the suction analogy, the vortex loads are assumed to be edge
forces and no angle-of-attack dependence of the centroids is computed. More-
over, as the vortex moves inboard, the amount of the wing over which the vortex
passes giving rise to the augmented term decreases and may even become negative.
Hence, the present application of augmentation for moment calculation may only
be applicable for low to moderate angles of attack depending on how much variance
¢ will experience as a function of a.

Figures 9 to 11 present 1lift, pitching-moment, and rolling-moment character-
istics of several skewed wings having an aspect ratio of one and varying leading-
edge sweep. A configuration having a cylindrical fuselage 0.24b in diameter and
1.85¢c, in length with a midwing is also presented.

In all cases, the lift was well estimated by including the edge-vortex and
augmented-vortex contributions. Similarly, the nonlinear pitching-moment trends
were well predicted by the edge~vortex contribution, the augmentation enhancing
the prediction at low to moderate angles of attack. The potential-flow pitching-
moment curve is seen to have a sign opposite from that of the data. Rolling
moments were well predicted by the edge-vortex terms up to approximately 8°
where the inboard vortex movement became significant; this condition caused a
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sign reversal in the data except for the wing-fuselage configuration. The pri-

mary effect of the fuselage is to break the leading-edge vortex into two pieces, /
one emanating from the wing apex and bending downstream at the right-wing fuse-

lage juncture and the other emanating from the left leading-edge fuselage junc-

ture and bending downstream at the left wing tip. Regenerating the leading-

edge vortex with the fuselage substantially decreases the extent of inboard

movement of the vortex as exhibited by the agreement between theory and experi-

ment for the pitching- and rolling-moment coefficients of figures 10 and 1l.

Figures 12 to 14 present the lift, pitching-moment, and rolling-moment
characteristics of several skewed wings of varying aspect ratio. As in the
previous case, the 1ift was well predicted for the three wings. The experimental
pitching moments are well predicted by including the augmented term but the
experimental rolling moments still depart from the theory at approximately 6°.
Hence, for these wings the chordwise distribution of the load is being well esti-
mated whereas the spanwise distribution of the load can be estimated only as long
as a substantial inboard movement of the vortex is not encountered.

CONCLUDING REMARKS

This paper has presentcd a recent extension of the suction analogy for the
estimation of potential and vortex loads on asymmetric configurations. The
analysis has been accomplished by the development and application of an asym-
metric vortex-lattice computer program which may be used to compute the potential
and vortex loads on asymmetric configurations. In applying this analysis to a
series of sharp-edge skewed wings, the effects of forward sweep on side-edge
suction and of a skewed geometry on augmented ,vortex lift have been accounted
for. Total loads have been well predicted whereas pitching end rolling moments
have been well predicted only as loug as the assumption that the vortex loads
act along the edge from which the vortex has originated is not violated. Hence,
the suction analogy concept may now be applied to a wider range of isolated
planforms resulting in an improved estimating capability of separation-induced
vortex flow.
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Figure 5.- Concept of augmented vortex lift applied to a skewed wing.

Figure 6.- Span load and section suction distributions on a swept and
skewed wing. A = 450; A =1; M= 0,
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Figure 8.~ Con luded.
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Figure 9.~ Effect of leading-edge sweep on lift characteristics of
several skewed wings. A =1; M = 0.10.

Figure 10.- Fffect of leading-edge sweep on pitch characteristics of
several skewed wings. A = 1; M X 0.10.
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Figure 12.- Effect of aspect ratio on 1ift characteristics of several
skewed wings. A = 30°; M = 0.10.
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Figure 13.- Effect of aspect ratio on pitch characteristics of several
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APPLICATION OF THE VORTEX-LATTICE TECHNIQUE TO THE ANALYSIS OF
THIN WINGS WITH VORTEX SEPARATION AND THICK MULTI-ELEMENT WINGS

Charles W. Smith and Ishwar C. Bhateley
Fort Worth Division of General Dynamics

SUMMARY

Two techniques for extending the range of applicability of
the basic vortex-lattice method are discussed. The first tech-
nique improves the computation of aerodynamic forces on thin,
low-aspect-ratio wings of arbitrary planforms at subsonic Mach
numbers by including the effects of leading-edge and tip vortex
separation, characteristic of this type wing, through use of the
well-known suction-analogy method of E. C. Polhamus. Comparisons
with experimental data for a variety of planforms are presented.

The second technique consists of the use of the vortex-
lattice method to predict pressure distributions over thick multi-
element wings (wings with leading- and trailing-edge devices).

A method of laying out the lattice is described which gives
accurate pressures on the top and part of the bottom surface of
the wing. Limited comparisons between the result predicted by
this method, the conventional lattice arrangement method, experi-
mental data, and 2-D potential flow analysis techniques are
presented.

INTRODUCTION

Vortex-lattice methods are known to give reasonable results
for thin wings of moderate to high aspect ratio. However, use of
these methods to predict the aerodynamic forces on low-aspect-
ratio wings has not been practical due to the significant vortex
1ift generated by these wings. The analysis and prediction of the
nonlinearities associated with the vortex 1lift has received con-
siderable attention in the literature for many years. Methods of
solution based on complex mathematical models have generally
failed. However, within the past several years, E. C. Polhamus
of the NASA Langley Research Center has proposed and verified
through comparison with experimental data an analytical method
for sharp-leading-edge wings of zero taper ratio (reference 1). The
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method is based on a leading-edge suction analogy proposed by
Polhamus in reference 2. Extension of the suction analogy to
plane rectangular rings has been accomplished by J. E. Lamar in
reference 3. A method for calculating the 1ift, drag, and
pitching moment of cambered, sharp-edged wings of arbitrary plan-
form is presented here as a logical extension of the suction-
analogy concept. A vortex-lattice program is utilized to provide
the potential-flow force coefficients required by the suction-
analogy concept and to provide the foundation for development of
a computer procedure which incorporates the methods developed.

The accurate calculation of pressure distributions near the
leading edge of thick multi-element wings is of considerable
interest to the aerodynamicist. Vortex-lattice methods using the
conventional vortex-lattice arrangement of distributing the vor-
ticity on the camber surface yield pressure coefficients which
approach infinity at the leading edge due to the singularity at
the leading edge. An alternate method of laying out the lattice
is described which circumvents this difficulty and gives reason-
able predictions for the pressures on the top surface and a part
of the bottom surface of wings.

SYMBOLS

Values are given in both SI and U.S. Customary Units. The
measurements and calculations were made in U.S. Customary Units.

AR aspect ratio

c mean aerodynamic chord, cm (in.)

CA axial-force coefficient

Cpy, drag-due-to-1lift coefficient

CL total 1lift coefficient (CLp + Cyy)

CLp zero-suction potential-flow lift coefficient
CLy vortex-1lift coefficient

Cm total pitching-moment coefficient

Cmp zero-suction potential-flow pitching-moment

coefficient for half-span wing
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i
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Xm

Xn

normal-force coefficient

potential-flow normal-force coefficient for half-
span wing

pressure coefficient

potential-flow leading-edge suction coefficient
for half-span wing

potential-flow leading-edge thrust coefficient for
half-span wing

notential-flow side-force coefficient for half-
span wing

potential-flow side-force-coefficient contribution
from streamwise members of the vortex lattice for
half-span wing

nozzle momentum coefficient
potential-flow normal-force slope

potential-flow constant used in pitching-moment
calculation

vortex-lift constant

leading-edge vortex-lift constant used in 1lift
calculation

leading-edge vortex-1lift constant used in pitching-
moment calculations

tip vortex-1lift constant used in lift calculations

tip vortex-1lift constant used in pitching-moment
calculations

Mach number

pitching-moment arm for tip vortex-1lift contribu-
tions, cm (in.)

pitching-moment arm for leading-edge vortex-lift
contributions, cm (in.)
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x/c nondimensionalized chordwise location
Zn pitching-moment arm for leading-edge suction force,
em (in.)
o angle of attack, degrees
A planform taper ratio
A leading-edge sweep angle, degrees
) slope of the mean line perpendicular to the

planform leading edge, degrees

THEORETICAL DEVELOPMENT FOR THIN WINGS

The Polhamus Suction Analogy

The General Dynamics vortex-lattice method has been modi-
fied to incorporate the calculation of vortex separation effects.

The basis for this modification to the vortex-lattice pro-
cedure is the Polhamus leading-edge suction analogy, which is
detailed in reference 2. Briefly, it is based on the postulate
that the normal force on the upper surface is the same for
attached vortex flow as the leading-edge suction force for
attached potential flow. The total lift of sharp-edged, pointed-
tip wings is given as

CL = C]_,p + Cg cos o (1)

where C1,, is the potential-flow lift and Cgs is the leading-edge

suction force. Polhamus writes the 1ift in terms of K-factors,

?ﬁ and Ky, which are functions of planform and Mach number only.
at is,

CL =Kp sina cos? a + KVLE sinza cos o (2)

where K, is, by definition, the normal-force slope given by
potent:ial-flow theory,
6 CNp

osina cos o (3)

Xp
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and KVLE is, by definition,
ocC
= S
Kvig = Bsinla ()

J. E. Lamar extended the Polhamus concept to rectangular

wings of low aspect ratio in work reported in reference 3. The
equation is

CL = CLp + Cg cosa + Cy cos o (5)

where Cy is twice the potential-flow side force for the half-wing.

In terms of K-factors,

CL =K, sina cos2a + (Ky

+ in2
LE KVTIP)sm o cos o

where, by definition,
dCy

Kvrrp © osinla (6)

and Kp and KVLE are given in equations (3) and (4).

Extension to Arbitrary
Flat-Plate Wings

The above equations have been extended (reference 4) to more
complex planforms. For a trapezoidal planform, the finite tip
effects are taken into account for defining the vortex-lift con-
tribution as

C
T
CLv = [cos A + Cy - Cr tan A] cos o 7)

The above formulation recognizes that part of the total wing side
force acts on the swept leading edge as part of the leading-edge
suction vector (CT/cos A ), and that the remainder (Cy - Cr tan A)
acts on the wing tip, as shown in figure 1(a).
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Generalization of the above result to wings of arbitrary
planform results in the following equation for the lift:

N N
Ci =C + C1n + Cy - Ct, tan A cos o (8)
L™ My cosAn Y n n

n=) n=1

The notation is illustrated in figure 1(b). In terms of K-factors,
the total 1ift is given by

CL = Kp sina cosza + (KVLE + KVTIP) sina cos a (9)
where N
8 Cr
Kypp = ——5— L (10)
dsinla =1 cosAp
and
5 N
KVTIP = — Cy - E CTn tan Ap (1)
0sin“a =1

The potential-flow in-plane force coefficients, Ct and Cy, are
those computed by any accurate lifting-surface theory. 1In this
application, they are obtained from a vortex-lattice procedure.
Compressibility effects are included through use of the Goethert
transformation.

The zero-leading-edge-suction drag due to 1lift for sharp-
edged, uncambered wings is defined by

CDL = Cp, tan « (12)

where Cy, is the total 1lift coefficient as given by equation (9).

Extension of the above formulations for the calculation of
1ift to the calculation of pitching moment logically follows.
As in the lift case, the pitching moment is comprised of potential-
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flow and vortex contributions. In general form, the resulting
equation is

N+1

N
Cn = Ca, + 2| D, (C1/e08 An) (xn) +Z 2 ey, | G | 13)

n=1 m=1 m

The notation is illustrated in figure 1(b). The potential-flow
moment, Cm,, is the moment resulting from the potential-flow
normal forces on each member of the lattice.

The moment resulting from the vortex 1lift is comprised of
a leading-edge and a tip component. To determine the leading-
edge contribution, the leading-edge vortex lift, as determined
by the suction analogy (CT,/cos Ap), is assumed to act precisely
at the leading edge of each chordwise strip. The moment is then
the sum of the products of these forces and the moment arms (xp).
defined as the distance from the midpoint of the leading edge of
each chordwise strip to the reference location. The leading-edge
force includes a portion of the side force (Ct, tan Ap). The
remainder of the side force, which is equal to the contribution
of the streamwise members of the vortex lattice, is noted as

2 ch\

for each spanwise strip. The sum of this remainder constitutes
the total tip vortex lift. Thus the tip-vortex-lift contribution
to the moment is the sum of the products of these forces and the
moment arms (xm), defined as the distance from the midpoint of
the tip of each spanwise strip to the reference location.

In terms of K-factors,

oC
2 (14)

(Kp)m = d8in a cos
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ey & —=—Y I xal) (15)
VLE'm © @sinZa he1 08 Ap

and
5 M N+1
Kyorr) =—Z ch (xn/3) (16)
rre’m osinla |l \ 45 2 o .

The total moment is given by

Ch = (Kp)m sin a cos a + [(KVLE)m + (KVTIP)m] sinza (17)

Extension to Cambered Wings

The basis for determining the force and moment coefficients
for thin, cambered planforms is the hypothesis that the total
suction force acts perpendicular to the slope of the mean line at
the leading edge. This is a logical extension to the suction-
analogy assumption that the suction force acts in the normal-
force direction for flat-plate planforms. Thus for cambered
planforms, contributions to both the normal force and the axial
force (in the suction direction) are realized from the total
suction force calculated by potential-flow theory.

The development that follows further assumes that the
leading-edge vortex is positioned above the wing surface all
along the wing span. Thus, extreme camber cases where the
leading-edge vortex can be shed below the wing surface at low
angle of attack and may even roll around the leading edge to the
upper surface at some spanwise location are not allowed.

The general equation for 1lift as resolved from the normal,
CN, and axial, CA, forces is

CL=CNcosa - CAsina (18)

2 REPRODUCIBILITY OF THE
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Consistent with the current nomenclature, the total 1ift for the
cambered planform (neglecting frictien drag) the. becomes

N N
CL = Cnp + E Cr,co8fn/cos Ap + Cy - E CTytan Ap Jcos o
n=1 n=1
N
+ E CTnsin¢n sin o (19)

n=1

The angle @ is equal to the slope of the mean line perpendicular
to the planform leading edge at the midpoint of the leading edge
of each chordwise strip. Note that CT is defined as a positive
force in the upstream direction.

Similarly, the tcutal drag due to 1ift (neglecting friction
drag) is given by

CDL = Cy sina + (CA)Suction°°s a (20)
or, for the cambered planform,
N N
Cp, = CNp + E Crcosfin/cos Ay + Cy - E CT tan Ay )sin a
n=1 n=1
N
- E CT,8infn | cos a (21)

n=1

The pitching moment is determined in much the same manner as
that described previously for the uncambered planform. An addi-
tional term is required to account for the moment contribution
of the suction-force component in the axial-force direction. The
moment arm, 2zp, for this force is the vertical distance from the
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reference to the midpoint of each chordwise segment. The re-
sulting equation is

N M N+1
Cp = cmp+ % Z(CTncosﬁn/cos Ag) (xn)+z z CYZ (xm)
n=1 m=1l \1 m

+2(CT sinfy) (2n) (22)
ny n

where Cmp is the potential-flow moment resulting from the
potentizg-flow normal forces only.

EVALUATION AND RESULTS FOR THIN WINGS

Verification of the aerodynamic coefficient calculations
for unca. hered planforms has been accomplished through comparison
with test data for delta, arrow, diamond, double-delta, rectangular,
and ogee wings. Cambered wing calculations have been compared
with data for a moderately cambered delta planform.

Flat-Plate Wings

Data from reference 5 for delta and clipped delta planforms
of taper ratio 0.0 and 0.4 are presented in figures 2 and 3.
Results of the current method generally agree quite well with the
data. However, the test data for the delta wing begin to depart
significantly from the predictions when vortex breakdown reaches
the wing trailing edge. Reference 6 reports that vortex break-
down occurs at 14 degrees angle of attack for the wing of figure 2.
The delta wing (figure 2) exhibits little effect of vortex lift
on the pitching moment. Apparently the leading-edge vortex lift
is approximately equally distributed about the reference axis,
which is at the quarter-chord of the mean aerodynamic chord. On
the clipped delta wing of figure 3, the vortex-lift contribution
to the moment becomes much more pronounced. The potential-flow
results, considered alone, actually predict a moment in the wrong
direction.
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Comparisons between the theoretical results and data from
reference 7 for an aspect-ratio-2.0 rectangular wing are presented
in figure 4. Even though the predicted total lift agrees well
with the data up to an angle of attack of 12 degrees, the data
depart from the predicted moment at 8 degrees. This is attributed
to the progression of the vortex across the planform as angle of
attack is increased.

Comparisons with reference 6 data for an 80-/65-degree double-
delta planform and an ogee planform are presented in figures 5
and 6. Excellent agreement with the 1ift and drag predictions
is apparent to the angle of attack fcr vortex breakdown. Good
agreement with the pitching moment is obtained at the lower
angles of attack, but the data break away from theory before the
angle of attack for vortex breakdown is reached. This could be
caused by a complex flow interaction resulting from the formation
of multiple leading-edge vortices on this type planform.

Figures 7 and 8 present test-to-theory comparisons for two
planforms (reference 3) which help investigate the ability of the
method to evaluate the effects of trailing-edge sweep. The lift
of the clipped arrow wing of figure 7 is predicted very well,
however the lift of the clipped diamond wing of figure 8 is
under-predicted. This is attributed to the induced lift effect
of the shed vo tex on the additional surface area aft of the
trailing edge of the diamond wing tip.

Test data from a model which employs spanwise blowing on
the wing upper surface (reference 8) is presented in figure 9 for
a 30-degree delta wing. Comparison with predictions illustrates
the potential of this method as a tool for estimating the bene-
fits which can be realized from vortex augmentation of this type.
The ability of the spanwise blowing to extend the leading-edge
vortex lift to higher angles of attack is most pronounced. Agree-
ment with the predicted lift-curve slope is apparent to angles
of attack much above the no-blowing vortex breakdown region.
There is a blowing-induced camber effect which is, of course, not
predicted by the theory.

Cambered Wings

The cambered-wing equations have been used to predict the
characteristics of a moderately cambered (Czi = 0.15) delta wing

for which reference 5 presents test data. The comparisons of
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1lift, drag, and moment shown in figure 10 indicate good agreement.
The reference 5 data for the same wing with an uncambered section
have been included in figure 10 to illustrate the method's ability
to predict the incremental camber effect accurately. It is also
noteworthy that the incremental vortex-lift contribution due to
camber is very small. Thus, at least for small or moderate
amounts of camber, the potential flow increment due to camber
gives a good approximation for the incremental effects of camber.

VORTEX-LATTICE ARRANGEMENT FOR THICK WINGS

Vortex-lattice methods are best suited for the analysis of
thin wings with sharp leading edges which can be approximated
by camber surfaces. The predicted results in general for this
type of wing show good agreement with experimental data. How-
ever, when the vortex-lattice method is directly applied to thick
wings (including multi-element wings) the calculated results do
not agree with experimental data.

A typical conventional vortex-lattice layout for multi-
element wings is shown in figure 11. Each wing element is re-
presented by a network of horseshoe vortices lying on the camber
surface and trailing behind the surface. As can be seer from this
figure a bound vortex lies along the leading edge of each com-
ponent of the multi-element system. This causes infirite
velocities to be generated at the leading edge which produce very
large negative pressure coefficients (unrealistic) at points in
the immediate vicinity of the leading edge. This phenomenon is
acceptable for thin sharp-leading-edge wings but fails to give
acceptable predictions for thick wings. For example, the loads
calculated for the F-111 wing in the high-1lift configuration at
angles of attack of 4 and 15 degrees are compared with experimental
data (reference 9) in figures 12(a) and 12(b), respectively. Large
discrepancies between experimental and theoretical loads are
evident near the leading edge of the wing and flaps.

A technique for laying out the lattice has been developed
at General Dynamics which greatly improves the pressure distri-
butions predicted by the vortex-lattice method for thick multi-
element wings. A typical example of this lattice is shown in
figure 13. Each element of the multi-element wing is represented
by a network of horseshoe vortices lying on and trailing behind
a surface which is composed of the top surface and part of the
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bottom surface, and wraps around the leading edge of the wing.

The surface on the bottom is extended downstream of the antici-
pated stagnation point. If the surface is extended to the
trailing edge the problem becomes singular and meaningless results
are obtained. No large differences in predicted pressures have
been noted for variations in the extent of the vortex sheet on

the lower surface.

A large-aspect-ratio, unswept, untapered wing having the same
section as the F-111 wing section at BL 289 was analyzed using
this wrapped lattice arrangement. The pressure distributions cal-
culated at the centerline of this wing are shown in figures 14(a)
and 14(b) for angles of attack of 4 and 12 degrees, respectively.
The chordwise distribution of the vortex lines is also shown in
these figures. Since the pressures at the centerline of a large-
aspect-ratio wing are compatible with two-dimensional flow
results they are compared with two-dimensional experimental data
(reference 10) and two-dimensional theoretical results (reference
11) in these figures. The predictions show good agreement with
both the experimental and theoretical results. The two-dimensional
theoretical pressure distributions shown were obtained with a
much denser chordwise distribution of points. A better prediction
should be obtained with the vortex-lattice method if a denser
chordwise portioning of the lattice is employed.

CONCLUDING REMARKS

A method has been formulated for determining the 1ift, zero-
leading-edge-suction drag due to 1lift, and pitching moment of
thin, sharp-edged, low-aspect-ratio wings with camber. This
method utilizes a vortex-lattice procedure modified to include
vortex-1lift induced effects by including an extension of the
Polhamus suction-analogy concept. Good agreement with experiment
is obtained for simple highly swept planforms below the angle of
attack at which vortex breakdown reaches the trailing edge of the
wing and at somewhat lower angles of attack for wings with more
complex flow patterns, such as double-delta and ogee planforms.

The method shows promise as a tool for evaluation of the
potential of vortex augmentation systems.

To obtain more accurate predictions for {he more complex
planforms, it is necessary to include the effects of the
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progression of the vortices away from the leading edge and tip
of the planform and to include the vortex interactions on plan-
forms which emanate multiple leading-edge vortices.

A method has also been developed for laying out the vortex
lattice for thick multi-element wings which gives accurate
pressure predictions on the top and part of the bottom surface
of the wing. Comparison with experimental data and other
theoretical methods substantiates the accuracy of the results.
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Figure 1.- Potential-flow force coefficients from the
vortex-lattice procedure.

M = 0,60
o TEST DATA, 63A002 SECTION (REF. 5)

——— POTENTIAL

~— POTENTIAL + VORTEX
1.6} R R
1.2 F "

CL
-

B+

’ VORTEX
BREAKDOWN
(REF. 6)

|

j -
0 10 20 30
o, DEG

Figure 2.- Longitudinal aerodynamic characteristics
of a delta wing with A = 63°,
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Figure 3.- Longitudinal aerodynamic characteristics of a
clipped delta wing with A = 63° and X = 0.4.
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Figure 4.- Longitudinal aerodynamic characteristics of a
rectangular wing with AR = 2.0.
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Figure 5.- Longitudinal aerodynamic characteristics of a
double-delta wing with A = 80°/65°.
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Figure 6.- Longitudinal aerodynamic characteristics of
an ogee wing with AR = 1.7,
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Figure 9.- Longitudinal aerodynamic characteristics of a
delta wing with A = 30° and spanwise blowing.
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Figure 10.- Effect of camber on the longitudinal aerodynamic
characteristics of a delta wing with A = 639,
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Figure 1l.- Conventional vortex-lattice arrangement
n a thick multi-element wing.
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Figure 12.~ Conventional vortex-lattice results compared with
experimental pressure data on a thick multi-element wing.
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COMPARISON OF VORTEX LATTICE PREDICTED FORCES WITH
WIND TUNNEL EXPERIMENTS FOR THE F-4E(CCV) AIRPLANE
WITH A CLOSELY COUPLED CANARD
Lloyd W. Gross

McDonnell Aircraft Company
SUMMARY

The McDonnell Nouglas F-4E (CCV) wind tunnel model with closely coupled
canard control surfaces was analyzed by means of a version of a Vortex Lattice
program that included the effects of nonlinear leading edge or side edge vor-
tex lift on as many as four individual planforms. The results were compared
with experimental data from wind tunnel tests of a 5-percent scale model testea
at a Mach number M = 0.6. The comparison was facilitated by drawing the
respective lift or thrust force vectors on the lift vs drag polar diagram. It
indicated that nonlinear vortex 1ift developed on the side edges due to tip
vortices, but did not appear to develop on the leading edges within the range
of angles of attack that were studied. Instead, substantial leading edge
thrust was developed on the lifting surfaces.

A configuration buildup illustrated the mutual incerference between the
wing and control surfaces. The effect of adding a lifting surface behind
existing surfaces is to increase the loading on the forward surfaces. Simi-
larly, adding a forward surface decreases the load on the following surfaces.
On the configuration studied, addition of the wing increased the loading on the
canard, but the additional load on the canard dve to addirg the stabilator was
small. The effect of the wing on the stabilator was to reduce the static sta-
bility contribution of the stabilator. Then, when the canard was added, the
stabilator suffered an additional louss of static stability contribution, in
contrast to the effect on the canard of adding the stabilator.

This study verified che usefulness of the Vortex Lattice program as a
predictiv. tool. It pointed up the need for a version capable of including
vertical panels so that side forces and yawing moments can be includec. Also,
the ability to add independent planforms outboard of existing planforms, with
a proper carry-over of 1ift, would facilitate the study of "all-movable" con-
trol surfaces.

INTRODUCTION

The McDonnell Aircraft Company has been using the Vortex Lattice
prugram developed by Ma.gason and Lamar of the NASA Langley Research Center
(Reference 1) for the design and analysis of aircraft configurations having
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single or multiple planforms with good results (unpublished studies similar to
those of Reference 2). However, the available program was an early version of
limited capability. The advent of versions having enhanced capability increases
the potential for the use of the method as long as rules can be established to
define the applicable ranges of the pertinent parameters. The version that
currently has been made available by NASA (LRC Program No. A4737) includes the
prediction of nonlinear leading edge and side edge vortex lift detailed in
Reference 3 and has provision for as many as four planforms which can be
arranged asymmetrically. This version of the Vortex Lattice program was
developed by Jame~ .uckring of the NASA Langley Research Center.

A method of ai plane co~*rol that is receiving new emphasis is the use of
canards or control surfaces forward of the main 1lifting surface. This form of
control has been made attractive by advances in active control technology that
allow reduced or negative static stability. Also, it has been determined that
the interference between the wing and canard is such that direct 1lift control
and direct side force control can be achieved (Reference 4). These ideas have
been explored by many agencies, among which are a series of wind tunnel tests
conducted as part of the USAF Flight Dynamics Laboratory Fighter Control Con-
figured Vehicle (CCV) programs. Various horizontal and vertical canard plan-
forms were tested on several models of the McDonnell Douglas YF-4E airplane
(e.g., Reference 5). The close~-coupled, fully operable horizontal canards then
were test-flown on an YF-4E under the MCAIR-sponsored Precision Aircraft Control
Technology (PACT) program. These tests verified the use of canards for maneu-
verability enhancement and additional degrees of freedom of the flight path.

The use of canards on the YF-4E (PACT) airplane generated : 1 ji.ucerest in
predicting all of their effects. The Vortex Lattice program ha ‘e:n 3hown to
be useful in the prediction of the wing~canard interference (Reil. 2), but
it had been limited by the restriction to two planforms. Once the . wur-plan-
form version of the program becanme available, a more complex configuration
could be studied. In particular, it was of interest to determine how well the
Vortex Lattice program predicted the multiple lifting surface interactions and
to what extent the various elements generated nonlinear vortex 1ift. Direct
side force control could not be studied since there was no provision for verti-
cal paneling. For a study of the longitudinal forces and moments, the wind
tunnel model of Reference 5 was analyzed in order to provide a comparison with
the experimental data. In addition to the analysis of the specific configura-
tions for which experimental data was available, a complete configuration
buildup was made to give an indication of the interference that existed
between the components of the configuration.

SYMBOLS
b wing span
c wing or control surface chord
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<, wing or control surface section 1lift coefficient |
CD total drag coefficient § /
CDo total drag coefficient at zero degrees angle of attack L
CL total 1ift coefficient
CLo total 1ift coefficient at zero degrees angle of attack
CM total moment coefficient based on mean aerodynamic chord L
CN total normal force coefficient |
CNp total normal force coefficient due to potential flow normal

force on deflected control surface
CNs total normal force coefficient due to nonlinear leading edge

thrust of deflected control surface
CNr total normal force coefficient due to nonlinear leading edge

vortex 1lift of deflected control surface
CS total leading edge suction force coefficient
CT total leading edge thrust coefficient
CTp total leading edge thrust coefficient due to potential flow

normal force on deflected control surface
CTs total leading edge thrust coefficient due to leading edge

thrust of deflected control surface

CTr total leading edge thrust coefficient due to nonlinear vortex "
lift of deflected control surface

Cv total vortex force coefficient (Polhamus Effect)

CY total side force coefficient rotated to normal force direction

(Polhamus Effect)

K constant

c

Kp kernel of potential fiow normal force (defined in reference 3)
KPa kernel of potential flow normal force for undeflected portion

of planform

kernel of potential flow normal force for deflected control
surface
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KV LE kernel of nonlinear leading edge suction force (defined in
’ reference 3)

Kv SE kernel of nonlinear side edge thrust (defined in reference 3)

kernels of noniinear forces for deflected control surface

W,Lnb’ I\l,srzb

MAC mean aerodynamic chord

y distance from aircraft centerline in wingtip direction

a angle of attack

§ control surface deflection

6c canard deflection

6r 2?22221 surface deflection including rotation for Polhamus

MODEL CONFIGURATION

The YF-4E (PACT) is equipped with a 1.86 m2 auxiliary control surface
and related fairing located just aft of and above the engine inlet on each
side (Figure 1). The canard is an active control surface with the associated
actuators and electronics. The wing includes leading edge slats on both
inboard and outboard panels. The wind tunnel model, against which the analysis
was checked, is of 5-percent scale and alsc includes the leading edge slats.
The model was tested over a range of Mach numbers from M = 0.6 to M = 1.98,
although the analysis is resticted to a Mach number M = 0.6. The coafigurations
that wer~ tested include the basic airplane, the basic airplane without
stabilaccr and the basic airplane with horizontal canard. The model was
not tested with all of the configurations that normally would make up a
full configuration buildup. In particular, the configuration with canard
and wing but with the stabilator removed was not tested. Also, the design
of this model precluded the removal of the wings.

The planform configurations used to represent the aircraft model are shown
as Figure 2. The aft fuselage and stabilator configuration was changed from
that of the model in order to keep the stabilator effective, but no attempt was
made to determine whether this configuration change was necessary to match
experiment., A list of the configurations that were analyzed is given as Table
1. The configurations for which experimental data are available also are noted.

264




RESULTS AND DISCUSSION

Control Surfaces Undeflected

The results of the analysis are compared with experiment in Figures 3 and
4. These figures show the usual presentation of the 1lift coefficient versus
angle of attack and moment coefficient versus lift coefficient in Figures 3(a)
through 3(c) for the three configurations for which experimental data are avail-
able. The 1lift coefficient versus drag coefficient polars are compared with
experiment for these configurations in Figures 4(a) through 4(c). The three
curves shown in each figure represent the end points of the force vectors
identifiable by potential flow theory. The first curve is the sum of the 1lift
and induced drag forces due to integration of the incremental vortex forces
Y induced at right angles to the vortex lattice (pot~ntial flow normal forces).
The second is the combination of the potential flow normal force and the non-
7 linear thrust force induced in the direction of the vortex lattice (leading
edge suction or thrust). The third is the combination of the potential flow
normal force and the nonlinear forces normal to the vortex lattice induced by
the presence of vorticity in the flow field near a sharp leading or side edge
(vortex force). The magnitudes of the vortex forces are found by rotating the
E leading edge suction force cr side edge force through ninety degrees (Polhamus
°  Effect, Reference 6).

; Conclusions might be drawn from Figures 3 and 4 but it is difficult to
determine what percentage of leading edge thrust or vortex lift has been
achieved. This becomes more obvious if the forces are drawn in vectorial form
as in Figures 5(a) through 5(c). 1In this case the scales are not distorted as
they are in Figure 4 so that the angular relationships can be appreciated. Since
the drag direction is coincident with the freestream direction, the potential
flow normal force is inclined to the 1ift force direction by the angle of attack.
This vector is not drawn in order to reduce the number of lines but it locates
the origin of the subsequent vectors. The side force vector is directed normal
to the plane of the paper but appears in the direction of the potential flow
normal force when rotated by the presence of the tip vortex. The leading edge
suction force and the component of this vector in the thrust direction are at
right angles to the potential flow normal force. The Polhamus Effect is illus-
trated by rotating the leading edge suction force to lie in the direction of the

normal force.

The three examples for which experimental comparisons are available have
had their force vectors for the midrange of angles of attack combined as
Figure 6. It can be seen that there is a good agreement between experiment
and analysis when the leading edge thrust effect is considered. Thus, at these
angles of attack, there does not seem to be any leading edge vortex lift.

In order to evaluate the pitching moment predictions of the vortex lattice
method, the longitudinal static stability was determined from Figures 3(a) through
3(c) and compared with experiment in Table II. Since the longitudinal static sta-
bility contribution of the vortex 1ift 1is zero at a 1lift coefficient of zero,
its contribution was evaluated at the intermediate 1lift coefficient Cy = 0.3.

"
w?‘? wy
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The distance to the centroid of 1lift from the normal reference center, ex-
pressed in terms of the wing mean aerodynamic chord, also is given in Table
II. And since the centroid as calculated includes a portion of the fuselage
lift, the distance from the model balance center to the quarter-chord of the
mean aerodynamic chord for each lifting surface is included. It can be seen
that in all three cases the analytical static stability is more negative than
are the experimental values. Since the case without the stabilator shows good
agreement and the cases with the stabilator show poorer agreement, it would
appear that the stabilator as modeled is too effective. However, it was felt
that additional studies to determine how best to model the tail in order to
more closely match experiment were beyor ' the scope of this investigation.

Effect of Control Surface Deflection

While vortex lift did not seem to form on the wing or control surfaces
under standard flight conditions, it could form on thin control surfaces that
had been deflected through an appreciable angle. But in order to isolate the
effect of the deflected control surface, it was necessary to evaluate the force
vectors in detail. To do this, a purely geometrical study was resorted to.

The first assumption was that the leading edge sunction force vector of the
control surface was in the direction of the twist angle of the leading edge
panel. Thus, the single planform is made up of the untwisted part and the
twisted part b (Figure 7) whose principle force directions are separated by the
twist angle. It was further assumed that the total potential flow force as
given by the program was determined by the integration of the force produced by
the horseshoe vortices in the direction normal to the vortex lattice. In the
same way, it was assumed that the total nonlinear force was determined by the
integration of these vortex singularity forces in the direction of the vortex
lattice. Then the forces of the individual panels can be written in terms of
the given forces of the total planform (see Figure 7 for definition of the
appropriate vectors).

Normal Forces:

Kp sina cosa + CLo = KPa sina cosa + Kpb sin(a+8) cos(a+8) coss

Leading Edge Suction:
2 _ . 2
KV,LE sin a+Kc = - KPb sin(o+8) cos(a+8) sina + kV,LEb sin” (a+8) cosé
where § is the twist angle of the control f
g surface and Kp, KV,LE’ and CL are

known from the Vortex Lattice program solution.
At an angle of attack a = 0°

CLo = Kpb sind c0326

2 2
K =-K +
c Pp sin”d cosé KV,LEb sin®$§ cos$
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These are two equations for the four unknowns K, Kpa’ Kpp» and Ky LE,. To
provide the other two equations, the solutions are matched at a = -§ so that

-Kp sind cosé + CL, = Kp, sind cosé

SR

2
KV,LE sin™8 + Kc = 0

ST g e

Then, C

AT o
f

= - 2 =-—0_
K. = KV,LE sin”s Kpa 5ind coss T Kp
C

.- KV LE Lo
SRR - el b

e Y

sind cos26

and KV,SEb = Ky,SE since the integration of the side forces is unchanged by the
fact that the control surface is rotated.

Resolving the forces on the control surface to the principal normal force
and thrust force directions of the basic configuration:

Control Surface Potential Flow Force:

CNP KPb sin(o+8) cos(a+d) cosé

CTP -Kpb sin(o+8) cos(a+d8) sind

Control Surface Leading Edge Suction Force:

Cy, = in? (a+8) siné

l(v,u:b s

= Kv sin2 (a+8) cosé
,LEb

(@]
-3
\

s

Control Surface Suction Force with Polhamus Effect

_ 2
CNr = (KV,LEb + KV,SEb) sin® (ot+§) sinér

. B 2
er = (K L + KV,SEb) sin” (a+8) cosér
; where

- atd @
Sr =§ + TE:ET 5 to give the proper direction of rotation.

§ The method of vectorial addition of the forces of the undeflected and
deflected surfaces is illustrated in Figure 7. The 1ift vs drag polar for the
complete confliguration with the canard deflected 20° is shown in Figure 8. It
: can be seen that the vectorial representation gives a closer agreement with

the experimental results than does the case where the force coefficient kernels
Kp, Ky,LE and Ky gg are all grouped together linearly. In thi- case, the
agreement would appear to be enhanced if the side edge normal forces were
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discounted as well.

Lifting Surface Effectiveness

One method of determining the interference between the components of a
complete configuration would be an evaluation of the potential flow normal
force coefficient kernels Kp. Another, more graphic, method is to look at the
span loading for the individual components. In this case the span loadings
are compared at a constant angle of attack a = 16.45°. This angle of attack
gives an overall 1ift coefficient C, = 1.0 for the configuration including both
canard and stabilator. Figure 9 shows the total span loading for the three
cases with interfering flows. The integrated 1ift is approximately the same
for all three cases; in fact, there is less than a 3% difference between the
highest and the lowest total 1lift coefficient.

The span loadings on the individual components are given as Figures 10(a)
through 10(c). The wing loadings are shown as Figure 10(a) and it can be seen
that the presence of the canard decreases the total wing lift whereas the
presence of the stabilator increases it. Hcewever, with the canard in place,
the additional presence of the stabilator causes only a small increase of wing
1ift. The effect of the additional 1lifting surfaces on the canard is similar
as can be seen in Figure 10(b). The total lift on the canard alone is
increased by the presence of the wing and the additional presence of the
stabilator causes only a very small additional 1ift.

However, the stabilator is much more sensitive to the presence of addi-
tional 1lifting elements as can be seen in Figure 10(c). As a surface acting
alone, the stabilator can carry a good load. The presence of the wing sub-
stantially decreases the lift-curve slope so that the load carried at this
angle of attack Is much less than it would be if the stabilator were acting
alone. The addition of the canard further decreases the static stability con-
tribution of the stabilator. 1In this case the stabilator lift-curve slope is
only one-tenth of the 11ft cu..2 slope of the stabilator acting alone. This
effect is analogous vo the '"cascading of 1ift" discussed in Reference 7 with
respect to multi-element airfoils. In each case the addition of a 1lifting
element causes the 1ift of forward elements to be increased and that of
following elements to be decreased.

CONCLUSIONS

The Vortex Lattice program has been shown by comparison with wind tunnel
tests to accurately calculate the normal forces of alrcraft, even when multi-
ple elements with strong interactions are present. This is true up to angles
of attack where strong viscous-inviscid interactions become important.
Calculation of the leading edge thrust also is good. These conclusions hold
even for the case of deflected control surfaces as long as the force vectors
are properly directed. Prediction of the longitudinal pitching moment was
less satisfactory due to the stabilator paneling that was chosen.
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The 5% scale model of the F-4E (CCV) aircraft apparently did not develop
leading edge vortex 1ift up to the angles of attack where the viscous inter-
actions predominate. Although the lifting surface leading edges are round,
their thickness to chord ratios are small enough that leading edge boundary
layer separation should occur. Unfortunately, the presence of the leading
edge slat clouds the comparison so that general conclusions can not be drawn.

Two possible improvements have suggested themselves during this study.
The first is the inclusion of vertical panels so that vertical control sur-~
faces or fuselage surfaces can be modeled. This would allow the study of
phenomena such as direct side-force ccntrol due to differentially deflected
canards. The second is provision for the spanwise stacking of planforms (e.g.
a canard and forward fuselage) with a proper carry-over of 1lift. In _his way,
the effect of deflected control surfaces could be studied without having to
separate the contributions of the deflected and undeflected parts as was done

in this study.
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TABLE 1

CONFIGURATIONS STUDIED

1. Fuselage Alone

2. Fuselage + Canard

*3, Fuselage + Wing

4, Fuselage + Stabilator

5. Fuselage + Wing + Canard

*6. Fuselage + Wing + Stabilator

*7, Fuselage + Wing + Canard + Stabilator

*Experimental Comparison Available.
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Figure 1.- McDonnell Douglas YF-4E (PACT) airplane.
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Figure 2.- Planform configurations of the McDonnell Douglas F-4E (CCV) studied.
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Figure 3.- Lift and moment polars for three configurations of the
F-4E (CCV); Mach number 0.6.
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NEW CONVERGENCE CRITERIA FOR THE VORTEX-LATTICE MODELS
OF THE LEALING-EDGE SEPARATION®

Osama A. Kandil, Dean T. Mook, and Ali H. Nayfeh

Virginia Polytechnic Institute and State U iversity

SUMMARY

The convergence criterion for the vortex-lattice technique which deals with
delta wings exhibiting significant leading-edge separation has two re¢ juirements.,
First, the wake must converge to a force-free position for any given number of
discrete vortex elements. Second, the distributed loads must converge as the
number of elements increases. Replacing the vortex shezts representing the
wakes by a system of discrete vortex lines whose positions are determined as
part of the solution (first requirement), one finds that the total loads ~om-
puted agree very well with experimental data. But the predicted pressure dis-
tributions have some irregularities which are the result of discrete vortex
lines coming close to the lifting surface. Here it is shown that one can
eliminate these irregularities and predict pressvre distributions which agree
fairly well with experimental data (which show nome irregularities of their
own) by replacing the system of discrete vortex lines with a single concentra-
ted core. This core has a circulation equal tc the algebraic sur: of the cir-
cvlations around the discrete lines and is located at the centroid of these
lines. Moreover, the second requirement {s replaced by the requirement that
the position and strength of the core converge as the number of elements in-
creases. Because the calculation of the position and strength of the core is
much less involved than the calculation of the loads, this approach has the ad-

ditional desirable feature of requiring less computational time.
INTRODUCTION

A characteristic feature of the flow over wings having highly swept, sharp
leading edges is the formation of vortices above suction nides in the vicinity
of the leading edges. These vortices roll up in a conicai-like spiral with a

concentrated core. This vortex spiral grows in size and strength as it approaches

*This work was supported by the NASA Langlev Research Center under CGrant No. NSG
1262.
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the treiling edge. Below the angle of stall (i.e., the angle at which vortex ¢
bursting occurs), the effect of the leading-edge separation is to increase the
velocity on the suctinn side of the 1lifting surface by adding a strong cross-

flow component and hence to increase the aerodynamic loads. Experimental in-
vestigations, such as those described in refs. 1-7, and numerical investigations,
such as those described in refs. 8 and 9, confirm these conclusions. Detailed
descriptions of the flow field are als- given in these references.

Though the experimental results show that the pressure distribution is some-
what influenced by the character (laminar or turbulent) of the boundary layer,
the 1ift and pitching-moment coefficients are independent of the Reynolds number.
Thus, one expects an inviscid model of the flow to predict the total loads more
reliably than the distributed loads. And such has turned out to be the case.

The early attempts to develop an inviscid model of these flows were based
on assumptions of conical flow and/or slender-body theory. These assumptions
are apparently discredited by the experimcntal obsesvations; more discussi-n is
given in references 8 and 9,

Subsequent attempts to develop inviscid models did not use these assumptions.
Rehbach (ref. 10) developed a vortex-lattice technique which progressively short-
ens the leading edge of a rectangular wing until a delta winj is formed. Associ-
ated with this method are questions concerning the second convergence requirement
and the undesirable feature of long computation times; mcre discussion is given
in refs. 8 and 9. Weber et al (ref. 11) decveloped a technique which uses piece-
wise continuous, quadratic, doublet-sheet distributions. The second requirement
apparently was not considered, and no results showing the computed shapes of the
rolled-up wakes were given.

In a related effort, Suciu and Morino (ref. 12) developed a technique for
modelling the region adjoining the trailing edge. However, numerical experiments,
as described in refs. 8 and 9, show that the wake adjoining the trailing edge has
very little influence oa the aerodynamic loads.

In the present paper, the question of the convergence of the centroidal
line as the number of discrete elements increases is consideréd; and this line,

instead of the system of discrete vortex lines, is used to comprte the pressure.

286



PN

{ l l — T
SYMBOLS

&R aspect ratio

b wing semi-span

Cuz pitching-moment coefficient about the z-axis

Cn normal-force coefficient

cn(x) local cross-normal-force coefficient

Acp pressure coefficient

Cy root chord

s(x)/b local semi-span/wing semi-span

t/cr thickness ratio

u, free-stream velocity

XsY,2Z body-fixed axes (z-axis is in spanwise direction)
x/cr dimensionless chord station

z/s(x) dimensionless spanwise station

a angle of attack

I‘/crU00 dimensionless circulation

nel number of elemental areas of the lattice

FORMULATION OF THE PROBLEM

The perturbation velocity potential, ¢, of the inviscid. irrotational, in-
compressible flow past a wing is governed by Laplace's equation and satisfies
the following boundary conditions: (a) the no-penetration condition on the wing
surface given by

(U_+9) +n=0 onS() =0
where n is the unit normal to the wing surface S, (b) the no-pressure discontin-
uity condition across the wakes emanating from the leading and trailing edges of

the wing given by

Ap = 0 across w(r) = 0

where Ap is the pressure jump across the wake surface w. This surface is an un-
known of the problem and must be obtained as part of the solution, (¢) the Kutta
condition which requires that no-pressure jump exists across the wing surface
along the leading and trailing edges where the wake surface is emanating, and
(d) the disturbance velocity, V¢, diminishes far from the wing surface, S, and
the wake surface, w. We note that the problem is nonlinear due to boundary con-~

dition (b).
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DESCRIPTION OF THE METHOD OF SOLUTION

The solution of the problem posed above is constructed by modelling the
lifting surface with a bound-vortex lattice and the wake with a system of dis-
crete, nonintersecting vortex lines. Each vortex line in the wake is composed
of a series of short, straight segments and one final semi-infinite segment. The
unknowns here are the circulations around the vortex segments and the positions
of the finite segments in the wake.

The disturbance velocity field produced by this model of the wing and wake
is calculated according to the Biot-Savart law; thus, everywhere, except on the
wing and the wake, Laplace's equation is satisfied. Moreover, the disturbance
created by the wing dies out far from the wing and wake, boundary condition (d).

Associated with each elemental area of the lattice and with each finite seg-
ment in the wake is a control point. The lattice is arranged so that vortex seg-
ments leaving the sharp edges do so at right angles to the edge. Moreover, con-
trol points are placed between the last edgewise vortex segment of each row and
column and the edge itself., This arrangement partially satisfies the Kutta con-
dition (c).

The circulations and the positions of the finite segments in the wake are
obtained by simultaneously requiring the normal component of velocity to vanish
at the control points of the elemental areas of the lattice and the finite seg-
ments in the wake to be parallel to the velocities at their own control points.
Boundary conditions (a) and (b) and the Kutta condition (c) are then satisfied,
and the problem is solved for this lattice (i.e., the first requirement of the
convergence criterion is met). More details, especially those regarding the |
iterativc procedure used to effect the last step, are given in refs. 8 and 9.

Instead of calculating the aerodynamic loads and testing the second re-
quirement of convergence at this point, with the present procedure we calculate
the centroidal line of the system of free-vortex lines representing the leading-
edge wake. To construct this centroidal line, we consider a series of cross-
flow planes. Proceeding from the vertex toward the trailing edge, we calculate
the centroids of the vortex lines penetrating these planes according to

nj R
}'j - izlrri "1y
cj
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where T is taken to be the circulation around the centroidal line between the

cj
jth and (j+1)th planes and it given by
n,
]
r = T,
cj izl i

.i

IS )

I, is the position of the centroid in the jth plane, ;i' is the position of the
intersection of the ith vortex line with the jth plane,JI‘i is the circulation
around the ith line, and n, is the number of lines penetrating the jth plane.
More lines penetrate the pianes near the trailing edge than those near the ver-
tex; thus, ch increases toward the trailing edge.

Now, the number of elements is increased and new centroidal lines are cal-

culated until the changes in ch and T, fall within prescribed tolerances. At

this point, the second requirement of ghe convergence criterion is met.

Only when both requirements are met, do we calculate the aerodynamic loads
and pressure distribution. The details for calculating the loads are given in
ref. 8. The numerical results below show, for the examples being considered at
least, that the centroidal lines converge to a position which is very close to
the experimentally determined position of the core, that the total loads agree
very well with the experimental data, and that the pressure distributions agree

fairly well with the experimental data.
NUMERICAL EXAMPLES

Figures 1 and 2 show the actual calculated positions of the free-vortex
lines for two delta wings. The plan view also shows the bound-vortex lattice.
And the three dimensional view shows the free-vortex lines, their centroidal
line, and the trace of the spiral vortex sheet. All the following results are
associated with these two wings.

Figures 3 and 4 show the convergence of the circulations around the cen-
troidal line. And figures 5-8 show the convergence of the position of the cen-
troidal line and the close agreement between the position of the calculated line
and the experimentally determined position of the vortex core.

Figures 9 and 10 show the convergence of the total loads calculated by using
the system of discrete lines and by using the centroidal line as a function of
the number of elements (nel). These results are compared with those obtained by

the leading-edge-suction analogy (ref. 13) and with experimental data. We note
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that there 1s a considerable difference in the experimentally determined normal-
force coefficients in figure 10.

Figures 11 and 12 show comparisons of the predicted cross-load coefficients
and experimental data. And figures 13-16 show comparisons of the predicted
pressure distributions at several chordwise stations with those obtained by
another method (ref. 1l) and with experimental data. We note that the shape and
size of the suction peak on the upper surface under the vortex differ from one
experiment to another, depending on how thick the wing is and on whether the

boundary layer is laminar or turbulent (refs. 5, 6, and 14).
CONCLUDING REMARKS

The second requirement of convergence is based on the centroidal 1line of
the free-vortex lines representing the wake. Using this requirement greatly
reduces the computational time. The position of the centroidal line compares
very well with that of the vortex core. The centroidal line can also be used to
calculate the total and distributed aerodynamic loads with good accuracy. This
results in more reduction in the computational time and smoothing of the peaks

produced by using many discrete lines.
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Figure 1.- A typical solution of the wake shape for a
delta wing with AR = 1. 12x12 lattice.

Figure 2.- A typical solution of the wake shape for a
delta wing with R = 1.46. 12x12 lattice.
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Figure 13.- Surface pressure distribution of a delta
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Figure 14.- Surface preassure distribution of a delta
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Figure 15.- Surface pressure distribution of a delta

wing at ci =0.67. R =1.46; a = 14°,
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N76-28180
ARRANGEMENT OF VORTEX LATTICES

ON SUBSONIC WINGS*

Fred R. DeJarnette
North Carolina State University

SUMMARY

A new method is developed for solving the lifting-surface equation for
thin wings. The solution requires the downwash equation to be in the form of
Cauchy integrals which can be interpreted as a vortex lattice with the posi-
tions of the vortices and control points dictated by the finite sum used to ap-
proximate the integrals involved. Lan's continuous loading method is employed
for the chordwise integral since it properly accounts for the leading-edge
singularity, Cauchy singularity, and Kutta condition, Unlike Lan, the spanwise
loading is also continuous and the Cauchy singularity in the spanwise integral
is also properly accounted for by using the midpoint trapezoidal rule and the
theory of Chebychev polynomials. This techuljme yields the exact classical so-
lution to Prandtl's lifting-line equation. The solution to the lifting-surface
equation for rectangular wings was found to compare well with other continuous
loading methods, but with much smaller computational times, and it converges
faster than other vortex lattice methods.

INTRODUCTION

The vortex lattice method has proven to be a useful technique for calcula-
ting the aerodynamic characteristics of complete configurations as well as
wings. In the conventional vortex latiice method (VLM), the planform is di-
vided into a number of elemental panels, and a horseshoe vortex is placed at
the local quarter-chord of each panel. The boundary condition is satisfied at
the local three-quarter chord of each elemental panel (called control points)
by requiring the flow to be tangent to the surface there. The strengths of the
horseshoe vortices are determined by solving the matrix equation formed from
the tangent-flow boundary conditions. Then, the aerodynamic characteristics
are calculated by summing the results from each elemental panel. A complete
description of the conventional vortex lattice method is given by Margason and
Lamar in reference 1.

Although reasonable results are obtained by the conventional VLM, Lan (ref.
2) listed the following deficiencies: 1) The method used to compute the in-
duced drag implies that the leading-edge thrust is distributed over the chord

* This research is supported by the U. S. Army Research Office, Research
Triangle Park, N. C., under Grant Number DAAG29-76-G~0045.
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instead of being concentrated at the leading edge. 2) The predicted pressure
distribution is not accurate near the leading edge. 3) The convergence of so-
lutions is slow with respect to the number of panels used. In addition, the
Kutta condition is not explicitly satisfied. Hough (ref. 3) found some im-
provement by using a 1/4 lattice width inset at the wing tips.

Lan (ref. 2) developed an ingenious method for thin, two-dimensional air-
foils by using the midpoint trapezoidal rule and the theory of Chebychev poly-
nomials to reduce the downwash integral to a finite sum. This method gives the
exact 1ift, pitching moment, leading-edge suction, and pressure difference at
a finite number of points; and the Kutta condition is satisfied at the trailing
edge. A more detailed description is given below. Ilan also developed a quasi-
vortex lattice method for finite wings by using his two-dimensional method for
the continuous chordwise vortex distribution but a stepwise constant vortex
distribution in the spanwise direction. The results showed an improvement over
those calculated by the conventional vortex lattice method.

This paper develops a new vortex lattice method which uses Lan's continu-
ous chordwise vortex distribution but, unlike Lan, a continuous spanwise vortex
distribution also. Although the vortex distributions are continuous, the
method is easily interpreted as a vortex lattice method in which the arrange~
ment of horseshoz vortices and control points are determined from the finite
sum used to approcxzimate the downwash integral of lifting-surface theory. 1In
order to understand the development of the present method, Lan's two-dimensional
theory is reviewed first, and then the present method is applied to Prandtl's
lifting-line theory before developing the method for lifting-surface theory.

SYMBOLS

A aspect ratio
b wing span
c wing chord
y sectional 1lift coefficient
<h sectional moment coefficient about leading edge
e sectional leading-edge thrust coefficient
CD far-field induced drag coefficient

i
CD near-field induced drag coefficient

ii
CL wing 1ift coefficient
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NLR

VLM

1ift-curve slope, per radian except when ncted otherwi.e

w? 3 pitching moment coefficient about leading edge

pitching-moment curve slope, per radian

leading~edge suction parameter

wing leading-edge thrust coefficient

far-field spanwise efficiency factor, CL2/CD m™A
i

near-field efficiency factor, CLZ/CD T A
ii

parameter defined by eq. (26)

number of trailing vortices over whole wing span
number of spanwise control points over whole span
summational integer

number of chordwise vortices and control points
National Aerospace Laboratory, Netherlands

wing planform area

vortex lattice method

freestream velocity

downwash velocity, referred to V, and positive upwards

chordwise cocrdinate measured from leading cdge in direction of V.

sectional and wing aerodynamic center locations, respectively

spanwise coordinate, positive to the right

vertical coordinate of mean camber line
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o angle of attack

Y nondimensional circulation per unit chord

T circulation

ACp difference between lower and upper pressure coefficients (ACp = 2Y)
8 transformed chordwise coordinate, see eq. (2)

¢ transformed spanwise coordinate, see eq. (12)

Subscripts:

i chordwise control point, see eq. (7)

j spanwise control point, see eq. (15)

k chordwise vortex position, see eq. (6)

L spanwise trailling vortex position, see eq. (14)

p evaluated at spanwise position ¢p = pT/M

LAN'S TWO-DIMENSIONAL THEORY

For thin airfoils, the downwash equation is

[od
i 2m X, - X
(o]

The integral on the right side is of the Cauchy type.
nate by

x/c = (1 - cos 6)/2

and use the following result from airfoil theory (ref.

T

do
et
o

cos 81 - cos 6

to write eq. (1) as
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T, s g

S i

—— . - ' m—— Y _ﬁ“ .,‘

m m
. 1 Y(el) sin 61 del o1 [Y(Gl) sin 61 - v(8) sin e]del “
i 2m cos 61 ~ cos O 27 cos 61 - cos 8
o o
Lan (ref. 2) used the theory of Chebychev polynomials to show that
N —N2 for 1 =20
1 -
kZ1 cos §, - cos 8, - 0 for 140, N )
=1 )
N° for 1i =N
when the vortex positions are
- 2k - D7 =
Gk = N , k=1, ..., N (6)
and the control points are located at
im .
ei =x » 1= 0, 1, ..., N (7)

Then the integral in eq. (4) can be reduced to a finite sum by using the mid-
point trapezoidal rule (ref. 5) and eq. (5) to obtain

’ _ 1 Iil Yksinek-YisinGi
i 21 N k=1 cos ek ~ cos Gi
,
—%]imyw)sﬁlﬁ , 1=0
8-+0
1 g Yie sin ek
= o & ~ 0 , 1#0, N (8)
2N k=1 O Bk cos 6i ﬁ X
> 1im y(8) sin 8 , i =N
6-»m
\
However,

lim v(8) sin 86 = 4 C
8-+0

] )

where C_, is the leading-edge suction parameter and since the Kutta condition re-
quires that y(m) = 0,

1im v(8) sin 6 = 0 (10)
8-

Unlike the conventional vortex lattice method, the Cauchy singularity,
leading-edge square-root singularity and the Kutta condition are properly ac-
counted for in this method. Equation (8) can be solved with i # 0 to obtain
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the N values of Y, , and then the leading-edge suction parameter can be computed
by using eq. (8) with i = 0 (control point at the leading edge). Figure 1 il-
lustrates the positions of the vortices and control points by the "semicircle
method" for N = 2. With only one vortex (N = 1), the exact 1lift and leading-
edge suction are obtained, and the Kutta condition is satisfied. With two or
more vortices the exact pitching moment is obtained in addition to the above
properties and the calculated values of Yy are exact. It can be shown that the
remarkable accuracy of this method is due to eq. (5), which is similar to the
integral result given by eq. (3) and used in exact thin airfoil theory.

PRANDTL'S LIFTING-LINE THEORY

Before attacking the lifting-surface equation, the present method will be
developed for Prandtl's lifting-line equation to compare the spanwise 1lift dis-
tribution with the classical solution (ref. 4). The lifting-line equation is
given by ref. 6,

b/2 dy
F=7V cla-—— ar "L (11)
® am v dy;, (v - yy)
=b/2
This equation also has a Cauchy integral on the right side, and thus Lan's
airfoil technique is applicable. Transform the spanwise coordinate by
b
y = - 5 cos ¢ (12)
and replace the downwash integral in eq. (11) with the midpoint trapezoidal-
rule summation to get
b/2 (dl'/d¢,)
a1 J ar Y Eg’z‘ Iy 1%
j 4m v y dy1 (yj - yl) 4m V_ M b goq cos ¢2 - cos ¢j

This equation represents the downwash due to M trailing vortices of strength
—(dT/d¢1)Q (m/M) located at

- (28 - D7

b o RS (14)
with control points located at
T .
¢)j=JbT y o i=1, s, M-1 (15)
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Now the conventional vortex lattice arrangement is shown in figure 2*, whereas
the present arrangement is shown in figure 3. Note in particular that the tip
vortices extend to the wing tip in the conventional method, whereas eq. (14)
determines them to be inset (see fig. 3), which agrees with Hough's results
(ref., 3).

Since (dF/d¢1) is needed in eq. (13), it is convenient to represent the
circulation by Mult&opp's interpolation formula

M-1 M-1

T () = % }] T ] sin n¢_sin n¢ (16)
p=1 P p=1 P
where
- Lﬂ = -
o =% » P=L .Ml (17)

Equation (16) is basel on the following orthogonality property (ref. 7)

T
Y for P=13
M-1
= ] sin n¢_ sin np, = (18)
M a1 P i 0 for p#j

Substitute eq. (16) into eq. (13) and then the downwash becomes

M M-1 M-1 sin n¢p n cos n¢l

1
W, = = ————— z Z T z (19)
J vm M2 b 2=1 p=l p n=1 cos ¢2 - COS ¢j

However, this result can be simplified by using eq. (5) to derive the important
summation below

™ ? cos ncb2 ) T sin n¢j
M =1 COS ¢2 -~ cos ¢j sin ¢

(20)
3

This equation is similar to the following integral result used in thin airfoil
and lifting-line analyses (ref. 4)

Ll
J cos ndJl dcbl _ T sin n¢ (21)

cos ¢l -cos ¢  sin ¢
0

When eq. (20) is used in eq. (19), the downwash reduces to

* In some conventional techniques the spanwise length of each vortex is uniform,
but it is reported to have little effect on the results.
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M-1 M-1 sin nd_ n sin nd
N S P ]
LV ) T (22)
J (<) p-_-l p n=1

sin ¢,
¢J

Finally, substitute eq. (22) for the downwash in eq. (11) and apply the result-
ing equation at the spanwise locations ¢;(j = 1, ..., M-1) to obtain a matrix
equation for the (M-1) values of I'_. Then, the 1ift, pitching moment, and in-
duced drag can be calculated by regucing the spanwise integrals to a finite sum
through the midpoint trapezoidal rule. However, the midpoint trapezoidal rule
gives exactly the same result for the spanwise integrals as the integral itself
when eq. (16) is used for I'w To prove this assertion, consider the spanwise
integral for the 1ift. Using eq. (16), the exact integral result is

b/2

o
<
o'l
[

Z
b

- M-1
Tdy = % Zl Fp sin ¢p
-b/2 P

whereas the midpoint trapezoidal rule gives

b/2 M M-1 M-1 - M-

1
2 J 21 )
= My == )} ] T ] sin n¢_ sin nd, sin ¢, = } T zin ¢

which is the same as the exact integral result above. In obtaining this last
vesult, the following orthogonality property was applied

ST
rh
o
H
=]
n
-

M

i) . . _
v L sin n¢2 sin ¢2 =
0 for n#1

The integrals for the induced drag are handled in a similar fashion.

The remarkable feature of the present method is that the results are iden-
tical to the classical solution of Prandtl's lifting-line equation when a
finite number cf terms is used in the Fourier series for T (ref. 4). The suc-
cess of the present method is attributed to the location of the spanwise vor-
tices and control points, the summational result of eq. (20), and the accuracy
of the midpoint trapezoidal rule for the spanwise integrals.

Figure 4 illustrates the convergence of this method compared with the con-
ventional VLM for Cr, of rectangular and elliptical planforms with an aspect
ratio of 2m. Prandtl's lifting-line theory requires trailing vortices and
spanwise control points, but no chordwise control points are needed because the
theory assumes the downwash is constant in the chordwise direction. Therefore,
the control points are placed on .ae "bound" vortex for both methods. 1In this
way, the accuracy of the spanwise vortex arrangement can be tested without the
influence of the location of chordwise control points. Figure 4 shows that the
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conventional VLM converges slowly and Cj, does not appear to approach the cor-
rect limit when the curve 1s extrapolated to an infinite number of trailing
vortices, M+~ (1/M+0). On the other hand, the present method converges very
quickly and approaches the correct limit. As in the classical solutions, only
one horseshoe vortex (M=2) is needed to obtain the exact Cy_ for the elliptical
planform in Prandtl's lifting-line theory. TFigure 5 illustrates the effect of
the number of trailing vortices on the spanwise efficiency factor used in the
induced drag. Here again, the couventional VLM converges slowly and does not
appear to approach the correct limit, whereas the present method converges
quickly and approaches the correct limit.

LIFTING-SURFACE THEORY

For simplicity, the present method is developed here for rectangular wings.
The downwash equation from lifting.surface theory is usually given by one of
the two following integrals (ref. 6)

y(xy, y,) (x - x;)
wix,y) = i%-} f 1 12 1+ 1 dx1 dy1 (23)

s 0 -y /(x - xl)2 + (y - y1)2

or

/ 2 7
x-x)"+ & -y,
1 ({3 1 1 1
wiy) = - o J J oy, G-yp | * G- dx; dyy
5

(24)

Equation (23) contains the Mangler-type integral, and therefore, is not suitable
for the present method. Equation (24), however, contains Cauchy-type integrals
and is therefore in the form to apply a combination of Lan's two-dimensional
method for the chordwise integration and the lifting-line method developed above
for the spanwise integration. Note that the integrand of eq. (24) represents
the downwash at (x,y) due to half of a horseshoe vortex as shown below.

)
(x,y)

Dy

.

dy1 dx1
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With y = -b cos ¢/2 and x/c = (1 - cos 6)/2, replace both integrais in eq. (24)
with the midpoint trapezoidal-rule sum to get

-2NCS » 1 =0

S B ST 00 B U1 St S B 25)
i,] LTMND 21 k=l 8¢1 (cos ¢2 - cos ¢j)
k,2 0 , 1#0
where
/[ 2 2 2
(ces 8, - cos 8,)° + A"(cos ¢, ~ cos 9,)
K, =1+ k 1 2 ] (26)
ijk? ~ cos B, - cos 0
k i
The control points are located at
im
61 =5 i=1, ..., N (chordwise) (27)
and
¢j = %% s J =1, ..., M-1 (spanwise) (28)
and the "joint" in the horseshoe vortices are located at
o, = Z DT =1, ..., N (chordwise) (29)
and
¢2 = Sg&fi—lll , =1, ..., M (spanwise) (30)

The positions of the horseshoe vortices and the control points are illustrated
in figure 6 by the "semicircle method" for two chordwise vortices (N=2) and
four trailing vortices (M=4). As in eq. (16), represent the spanwise variation
of yk(¢), at the chordwise position 0y, by Multhopp's interpolation formula,

2 M:l Mi 1
Y () == ) ¥ sin n¢_ sin né (31)
k M p=1 Pk n=1 P

where Y ,k "epresents the unknown circulations per unit chord at Bk and ¢p = pm/M,
Substitute eq. (31) into eq. (25) to obtain the final f.rm of the downwash as

-2NCS , 1 =0
- Te N M-1 M-1 n sin n¢P cos n¢Q Kijkl sin Gk j
vy 3 N 2 Z Z Yp k (cos ¢, - cos ¢,) + (32)
’ 2bM"N =1 k=1 p=1 *" n=1 L 3
0 , 140
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The tangent-flow boundary condition for thin wings requires that

[BZCJ
w = —— - (33)
1,3 ax 1,4

where z.(x,y) is the shape of the mean camber line. The N(M-1) values of Yp

are calculated by solving the matrix equation formed by applying eq. (32) for

i # 0 at the chordwise and spanwise control points given by eqs. (27) and (28).
Ther. after v, | is calculated, the (M-1) leading-edge suction parameters

Cgy can be computed by successively applying eq. (32) with 1 = 0 (control point
at” the leading edge) at the spanwise positions j = 1, ..., M~1. Regardless of
the number (N) of chordwise vortices used, there is always a control point at
the trailing edge which satisfies the Kutta condition, and another control point
at the leading edge which gives the leading-edge suction parameter, if desired.

The sectional and wing aerodynamic characteristics may now be calculated
by using the midpoint trapezoidal rule to reduce the integrals to finite sums,
as shown below (for rectangular wings)

2r_ y . N
(cg)p = E—Vi ey I Yp(xl) dx, = g kgl Yo,k sin 8, (34)
o
b/2 e
CL = J cy cdy/S = o zl (cz)p sin ¢p (35)
~b/2 P
2 T i N
(cm)p = - ;E-J Yp(xl) X, dx1 - iﬁ-kzl Y & (1 - cos ek) sin Bk (36)
o
b/2 ) . M-1
CM = J c d%/%c * M z (cm)p sin ¢p (37)
p=1
-b/2
(xac/C)p= - (cm/c,z)p (38)
Xac/c = - CM/CL (39)
CIZJ Mil Mil 2 il 2
C, = — n ' sin no ' sin ¢ (40)
Di TA n=1 p=1 P p. p=1 P P
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2
(), = 2m ch (61)
b/2 M-1
- :
Cp = J c, © d%/% * o jzl (Ct)j sin ¢j (42)
-b/2
C =C a-C (43)
D, L T

The spanwise loading can be made coniinuous by eq. (31), and the chordwise
loading can also be made cortinuous by fitting Cg, and Yi,k to the chordwise
loading functions for thin airfoil theory (ref. 4%.

RESULTS FOR RECTANGULAR WINGS

For one horseshoe vortex and one control point (N=1, M=2), the present
method yields

C = and C =

L D
@ g+ /14 A% 1

These results give the correct limit as A+), but just as Lan found for airfoils,
at least two chordwise vortices are needed to get an accurate pitching moment.

Table 1 gives a detailed comparison ¢f the results of the present method
with those of several other methods for a flat A = 2 rectangular wing. The
methods chosen for comparison are the continuous loading method of the National
Aerospace Laboratory of the Netherlands (NLR) presented in ref. 8, Lan's quasi-
vortex lattice method (ref. 2), the conventional vortex lattice method of
Margason and Lamar (ref. 1), and Wagner's continuous loading method (see ref. 2).
In the NLR method (M-1) spanwise loading functions are applied but 8M spanwise
integration points are used. Therefore, :he results from this method are used
as a base for comparison purposes. Table 1 shows that the present method yields
more accurate overall aerodynamic characteristics than either the conventional
VLM or Lan's quasi-vortex lattices. This table also shows that the spanwise
variation of the sectional 1lift coefficient compares withia four significant
figures to those of the NLR method. The spanwise variation of the sectional
aerodynamic center also compares well except near the wing tip. When the number
of chordwise vortices was increased from N = 4 to N = 6 in the present method,
these differences decreased considerably. Figure 7 compares the present method
with the NLR method for the chordwise loading at midspan on this same A = 2
wing. Again, the results compare quite well.

The computational time required for the results in Table 1 was 22 minutes
for the NLR method on a CDC 3300 computer; Lan's method required one .inute on
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the Honeywell 635 computer; Wagner's method used about three rinutes; and

the present method required less than ten seconds on an IBM 37G/165. Therefore,
the present method is as economical as the VLM for the same number of vortices,
but it 1s generally more economical when one considers that a smaller numbher of
vortices can be used to achieve the same accuracy as the VIM.

The effect of the vortex lattice arrangement on the convergenca of the
lift-curve slope i3 presentad in figure 8 and compared with the conventional
VLM for flat rectangular wings with A = 2, 4.5, and 7. This figura illustrates
again the slow convergence of the conventional VLM and the rapid convergence of
the present method. For all three wings, the present method gives good ac-
curacy with only two chordwise vortices, but more spanwise vortices are needed
for the A = 7 wing (M/2 = 10) than the A = 4.5 wing (M/2 = 5) or A = 2 wing
(M/2 = 2). Results for the pitching moment, aerodynamic center location, and
induced drag were found to converge even faster than the lift-curve slope,
therefore they are not presented.

The Prandtl-Glauert rule can be easily applied to the present method to
include subsonic compressil'ility effects.

APPLICATIONS TO OTHER CONFIGURATILONS

Flaps and ailerons may be added tc the wing by using an approach somewhat
similar to that of Lan (ref. 2). For the chordwise integration, the interval
from the leading edge of the wing to the flap leading edge is transformed into
[0,7] by the "semicircle method", and the interval from the flap leading edge
to the trailing edge is also mapped into [0,m] by another "semicircle". The
same technique can also be applied in the spanwise direction.

Application of the present method to tapered and/or swept wings requires
additional considerations. Care nust be exercised so that the chordwise vortex
and control points at one spanwise location match those at another spanwise
position in order to evaluate the Cauchy jintegral properly. These configura-
tions are presently being studied along with non-planar wings.

CONCLUDING REMARKS

A new method is developed for solving the l*‘fting-surface equation for
thin, subsonic wings. The downwash equation is written as Cauchy-type inte-
grals for the chordwise and spanwise directions. They can be interpreted as a
lattice of horseshoe vortices and the positions of the vortices and control
points are determined by the finite sum used to approximate the integrals.

Lan's two-dimensional method is used for the chordwise integral since it pro-
perly accounts for the leading-edge singularity, Cauchy singularity, and the
Kutta condition. For the spanwise integral, Multhopp's interpolation formula is
used in conjunction with the midpoint trapezoidal rule and the theory of
Chebychev polynomials. This method properly accounts for the Cauchy singularity
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and yields the classical solution to Prandtl's lifting-line equation. The nu-
merical method for evaluating the chordwise and spanwise integrals is much {
simpler and quicker than other continuous loading methods.

The chordwise and spanwise methods are combined ‘. obtain a continuous
loading solution to the lifting-surface equation. The algorithm for the rectan-
gular wing gives results which compare well with other ccatinuous loading
methods, but with much smaller computational times. In addition, it converges
faster and is more accurate than other vortex lattice methods.

For rectangular wings, the vortex lattice arrangement dictated by the pre-
sent method differs from the conventional VLM in that the chordwise positions
of the vortices and control points do not follow the usual 1/4 - 3/4 rule.

There is always a control point at the trailing edge, which allows the Kutta
condition to be satisfied, and a control point at the leading edge which yields
the leading-edge suction parameter. The spanwise vortices determined by the
present method are not uniformly spaced, and the tip vortices are inset from
the actual wing tip. This vortex lattice arrangement gives better results than
other VIM's for rectangular wings. Other wing planforms require additiomal
considerations, and they are presently being investigated.
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TABLE 1. RESULTS FOR RECTANGULAR PLANFORM

A =2
NLR Lan VLM
Present | (rer. 8) | (ref. 2) | (ref. 1) | "agner
N=4, M=16 | N=4, M=16 |N=8, M=30 { N=6, M=40 | .o+ o
Overall Values

CL 2.4732 2.4744 2.4707 2.5239 2.4778
o

-CM 0.5187 0.5182 0.5173 0.5334 0.5180
a

Xac/C 0.2097 0.2094 0.2094 0.2113 0.2091

l/e 1.0007 1.0007 1.0050 1.0018 1.0005

l/enf 0.9951 1.0108 1.0022 0.9764 1.0172

Values of cz/CL Values of xac/c
2y/b Present NLR 2y/b Present NLR

0 1.2543 1.2543 0 0.2200 0.2199

0.1951 1.2331 1.2331 0.1951 0.2187 0.2187

0.3827 1.1692 1.1692 0.3827 | 0.2150 0.2149

0.5556 1.0625 1.0625 0.5556 0.2087 0.2085

0..071 0.9137 0.9137 0.7071 0.1999 0.1996

0.8315 0.7257 0.7257 0.8315 | 0.1896 0.1886

0.9239 | 0.5045 0.5044 0.9239 | 0.1798 0.1773

0.9808 | 0.2588 0.2587 0.9808 | 0.1731 0.1685
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X Control Points : 8, = ENI'- (1=1, ..., N)

Figure 1.- Lan's vortex arrangement for airfoils.
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Figure 3.- Arrangement of trailing vortices for Prandtl's
lifting-line equation.
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Figure 4.- Effect of number of trailing vortices on

Prandtl's lifting-line theory, A = 2m.
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exact and
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1/M

Figure 5.- Effect of number of trailing vortices on induced
drag from Prandtl's lifting-line theory, A = 27.
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Open Symbols - VLM (ref. 1)

Solid Symbols - Present Method
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LATTICE ARRANGEMENTS FOR RAPID CONVERGENCE

Gary R. Hough
Vought Ccrporation Advanced Technology Center

SUMMARY

A simple, systematic, optimized vortex-lattice approach is developed for
application to lifting-surface problems. It affords a significant reduction in
computational costs when compared to current methods. Extensive numerical
experiments have been ca.ried out on a wide variety of configurations, includ-
ing wings with camber and single or multiple flaps, as well as high-1ift jet-
flap systems, Rapid convergence as the number of spanwise or chordwise lattices
are increased is assured, along with accurate answers. The results from this
model should be useful not only in preliminary aircraft design but also, for
example, as input for wake vortex roll=-up studies and transonic flow calcula-
tions,

INTRODUCTION

The vortex-lattice method (VLM) for the analysis of lifting-surface aero-
dynamics has become a widely used technique during the past decade. Although
originally developed by Falkner in 1943 (ref. 1), it was not until the intro-
duction of high-speed digital computers in the early 1960's that the method was
reconsidered and extended, particularly by Rubbert (ref. 2). Since then, many
applications of the VLM have been made to problems of aerodynamic design and
analysis with considerable success,

The VLM represents a type of finite-element solution to lifting-surface
theory problems., As opposed to the alternate kernel-function approach, it
"seem(s) to possess none of the traditional values other than some approximation
to the calculus of infinitesimals" (ref. 3). Nevertheless, a number of compar-
isons between the two methods have been favorable overall,

Criticisms of the VLM have continued though. These usually contend elther
that the lattices can be laid out in a preconceived manner to give some desired
answer or that too many lattices are required for adequate convergence of the
computed loadings. The present study was undertaken to derive systematically
an optimized vortex-lattice layout which overcomes these objections and can be
adapted to a wide variety of confiqurations.

The philosophy of the approach is outlined briefly and then the numerical
results are presented,
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SYMBOLS

All lengths are dimensionless with respect to the wing root chord,

aspect ratio
induced drag coefficient
L lift coefficient
jet momentum coefficient
local wing chord
tip lattice inset distance, fraction of lattice span

flap chord/wing chord

number of chordwise vortices

c

d

E

K vortex drag factor, nACD/CL2

M

N number of spanwise vortices on wing semispan
T

total number of vortices
X,Y,2 right-handed Cartesian coordinates
x-center of pressure

wing semispan

X

Y

a angle of attack, degrees

B flap deflection angle, degrees
n

spanwise variable, y/yt

T jet deflection angle, degrees
THE VORTEX-LATTICE AFPROACH

The results presented here are based on the commonly used linearized anal=
ysis of thin lifting surfaces. The flow is considered to be steady, inviscid,
and incompressible (although this latter assumption can readily be relaxed by
using the Gothert transformation), While this strictly limits the study to
attached flows with small deflections, the basic model has proved its useful-
ness in many extended applications because of its simplicity and the general
agreement with experimental data.

The typical mechanics of the lattice layout, the mathematical details, and
the computations of the resulting loads will not be discussed here, as they are
assumed familiar or can be found in other reports (e.3j., refs., 2,4,5). Rather,
the focus of the analysis will be on deriving the optimized lattice structure
which results in an accurate, cost-efficient approach to performance prediction
for a wide variety of configurations, including wings with flaps and jet-flap
systems.,
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Before proceeding with the details of the optimized VLM, a word about the
"accuracy" (or lack of it) of these finite-element approaches is in order. It
should be remembered that with the assumptions employed, we are in effect solv-
ing a particular boundary-value problem, and a unique solution exists. Hence,
all properly formulated finite-element analyses (or assumed loadirg-function
approaches) based on this model should give results which converge to this solu-
tion as the number of unknowns is increased indefiniteiy. There are of course
some differences in the ease of application and computational effort involved
in the various approaches, but what ultimately distinguishes their merits is how
rapidly the results converge to the correct answer. This shouid be explored
numerically for a number of configurations in order to give the ultimate user
some degree of confidence in the particular prediction technique.

Since no exact solutions exist (except for the circular wing), determina-
tion of ji'st what is the 'correct' answer rests entirely upon comparison between
two or more different theoretical approaches to the same problem, Thus, in wnis
sense, a favorable comparison of analytical results with particular experimental
data does not guarantee that the method is 'accurate'. Rather, once some degree
of accuracy is established through numerical experimentation and agrecment with
other analyses, comparison with experiment should be used to verify the range of
validity of the linearized thin-wing theory model. |In cases where agreement is
not good, it indicates that a better basic model is required.

HUMERICAL RESULTS
Rectangular Planforms

We first consider the case ot an uncambered rectangular wing at angle of
attack o, which will serve to illustrate some of the optimized lattice features.
A right-handed xyz-coordinate system is chosen such that x is positive in the
freestream direction and the origin is located at the wing root leading edge.
For convenience, the wing root chord is normalized to unity, that is, all
lengths are dimensionless with respect to the root chord. Tnen this wing geom=
etry s completely described by y_, the y-coordinate of the wing tip (or
equivalently by the aspect ratio &).

The cor.ventional lattice layout for this case (ref. §5) is to use uniformly
spaced chordwise and spanwise panels which cover the whole wing. While the
computed loads converge, they do so somewhat slowly with respect to the number
of spanwise vortices. However, this can be accelerated by emrloying equally
spaced lattices which are inset from the tip by a fraction d of the lattice
span (0gd<1), (See fig. 1.) Such an idea was first suggestad in reference ?
and was subsequently shown (ref. 6) to afford a marked improvement in spanwise
convergence,

This is demonstrated in figure 2 where the percent error in the lift-curve
slope per radian CLQ is plotted as a function of the number of vortices on the
semispan N for A = 2 and A = 7. The baseline data which are ccnsidered to be
"exact" for these cases were taken from references 7 and 8, where careful calcu-
lations were carried out based on the kernel-function approach. It is seen that
the use of d = 1/4 dramatically improves the convergence. In fact, for one
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percent accuracy in CL., only 5 spanwise vortices need to be used when d = 1/4
as opposed to about 35 when d = 0. Since the computational effort increases as
between the square and cube of the number of unknowns, this represents possibly
a two order of magnitude cost savings.

A key calculaticn which further reveals the advantages of spanwise lattice
insetting is that of the lift-induced drag. This quantity may be computed by
either a near or a far field approach. The latter is based on the work of Munk,
in which a Trefftz-plane analysis is used to express the induced-drag coefficient
Cp in terms of the Fourier coefficients of the spanwise lift distribution., This
has the advantage of relative simplicity (assuming the lift distribution is
accurate) but cannot be used to find the spanwise variation of Cp- On the other
hand, the near field approach is more demanding of computer time, but does yield
this spanwise variation., For the near field computation, wve have found it best
to use the direct method of summing the forces in the freestream direction on
each bound vortex element, neglecting the influence of a bound element on itself,
(See also ref. 9.)

In figure 3, the vortex drag factor K = nACD/CL2 by both the near and far
field methods is shown for the A = 2 wing as a function of N with d = 0 and
d = 1/4. The convergence as N is increased is displayed more clearly by plotting
K against 1/N. Again, the great improvernent in using d = 1/4 is evident, along
with the remarkable accuracy of the near field calculation. Further, for no
insetting (d = 0), we see that to require very close agreement in the near and
far field drags is doomed to failure unless an abnormally large number of span-
wise vortices are used, The tendency of the VLM to 'predict' low values of K
(see ref. 9) is thus shown to be a consequence of not using the optimum lattice
inset arrangement.

To illustrate the effect of varying the number of chordwise vortices M, the
corresponding variation of K and the x-center of pressure X, are plotted in
figure 4, Note that K is independent of M for M>2 (whether Br not insetting is
used), while Xcp is nearly linear in 1/M2 and tip insetting does not improve its
convergence rate., For this A = 2 wing, the estimated converged values are
CLy = 2.L474, x 5 = 0.2094, and K = 1,001, which are in excellent agreement with
those obtained using the kernel-function approach (refs. 7 and 8) of CL, = 2.474b4
and xc, = 0,20939.

These calculations have been made for an inset distance of one-guarter of
a lattice span. A number of tests were made for other values of d, and it is
found that d = 1/4 represents approximately the optimum value. As is usual in
the VLM, the bound vortices are located at the local lattice quarter chord, and
the tangential flow boundary cordition satisfied at the local three-quarter
chord midway between the trailing vortices. These positions were suggested by
two-dimensional results and have been used by Falkner and all who followed. It
can be shown that they are mandatory for the three-dimensional case as well

(ref. 6).

Several other comments can be made regarding the overall lattice arrange-
ment, First, the use of nonuniform chordwise spacings which bunch the lattices
near the leading and/or trailing edges where the variation in vorticity is lar-
gest has been investigated. It is found for these uncambered wings that the
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uniform chordwise spacing is just as good. Next, various types of nonuniform
spanwise spacings (with and without insetting) were also tried, and again the
equal span lattice arrangement with d = 1/4 is always superior. Finally, it

has been suggested that the results from the VLM will be unreliable when indi-
vidual lattice aspect ratios drop below a certain value, usually unity. However
the calculations here have been carried out using lattice aspect ratios as low
as 0.08 with no degredation in accuracy, thus destroying this myth.

Not only the overall loads, but also the spanwise aistributions of 1ift,
center of pressure, and induced drag are in excellent agreement wich kernel-
function results when the optimized layout is used. Regarding computational
effort, we find that the execution time rises nearly as the square of the total
number of lattices T = MxN up to about T = 80, and then increases to become pro-
portional to N3 above about T = 120. Calculation of the near field drag in-
creases the basic computational time by approximately 40%. Still, because of
the very small number of lattices required (less than 30 for 1/2% convergence
in CLa)’ computing costs are minimal,

For rectangular planforms, the only parametric study which can be made is
on the effect of the aspect ratio A. This was carried out and several interest-
ing features are observed. For example, the induced drag has a maximum at
A = 3.5, and the y-center of pressure on the half wing remains very nearly con-
stant, Using a least squares analysis, an attempt to approximate the relation-
ship between CL, and A along the lines of the classical high and low aspect
ratio results yields the formula

27A
Cly = 73 (1)

This is within 1% of the correct value for 163A%2,5 and agrees exactly with
equation (7-52) of reference 10 for rectangular wings. A somewhat more accurate
formula valid down to A = 1 was also found and is shown in figure 5,

Cambered Sections

Since most wing sections have some nun-zero camber, it is worthwhile to
look at the optimal lattice layout for this case. The study was restricted to
rectangular wings with constant spanwise mean lines. However, the conclusions
should be applicable to more complicated geometries. Generally, airfoil mean
lines are characterized by large negative slopes near the leading edge, and we
anticipate that the chordwise lattice spacing is crucial here.

As an example case, an A = 5 wing having an NACA 230 mean line was studied
since some results for this case have already been presented (ref. 11). Calcu-
lations were made both for the uniform chordwise spacing and for a cosine-type
spacing which concentrates the lattices near the leading edge where the change
in slope is greatest. The results for C_ are shown in figure 6 as a function
of 1/M2 for o = 0°, It is seen that the cosine spacing converges more rapidly
and so is preferable. The estimated converged value is C = 0.077 which agrees
well with the Tulinius result reported in reference 11.

For cambered wings then, it is suggested that a nonuniform chordwise spac-
ing be used for better accuracy. It should be remembered though, that the lift
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due to angle of attack will generally be many times larger than the camber con-
tribution and hence errors in computing the camber-induced 1ift will be somewhat )
submerged. Thus, for the example case considered at « = 8°, the lift due to a /
is nearly 8 times that due to camber, and the total lift calculated using the

uniform chordwise spacing for M = 4 differs by only 1.5% from the cosine spacing
result.

Swept Tapered Planforms

The optimized VLM is readily extended to swept tapered wings by insuring
that the bound portion of eact horseshoe vortex is aligned with the local lattice
quarter chord. As the example planform here, we choose the Warren-12 wing,
which has been analyzed previously (refs. 7 and 12). It is defined by the
x-coordinates of the tip leading and trailing edges of 1.27614 and 1.60947, res-
pectively, and y, = 0.94281. This gives a taper ratio of 1/3 and an aspect ratio
of 2.8284. In figure 7 we show the convergence of the lift-curve slope C;, as a
function of 1/N for several values of d. As before, it is seen that d = /4 pro-
vides about the fastest convergence rate. From this and other planform results,
it turns out that the optimum value of d varies slightly with the aspect ratio
and sweep angle, but that choosing d = 1/4 is the best compromise for all cases.

The variation of x., with M and N for this wing is similar to that for rec-
tangular planforms, so tﬁat convergence is somewhat slower with respect to M.
For the induced drag, both the near and far field calculations were made as
before. This time, however, we find that the computed near field drag varies with
both M and N, more especially with the former and that K is always less than
unity. This poorer drag convergence for swept wings has been noted many times in
the past, and arises from the discontinuity in the bound vortex slopes at the wing
root. Tulinius (ref. 13) studied this problem and concluded that vortex-lattice
approaches which use swept vortices always predict the downwash incorrectly in
such regions (or near wing crank locations), but that the error is confined to
the immediate neighborhood of the discontinuity. He also showed that the near
and far field drag calculations should give identical answers when the bound
vortex elements are atl parallel.

There is a simple way to improve the near field convergence and accuracy. '
Suppose we have solved for the local bound vortex strengths using the appropri-
ate swept horseshoe vortex elements. Then, to¢ compute the drag, we must find
the sum of the products of the local vortex strengths and the induced downwash
at the bound vortex midpoints. Now, though, assume that the downwash is com=
puted using rectangular horseshoe vortices whose strengths are the same as the
swept elements which they replace. The results of such a calculation are shown
in figure 8 where K is plotted against 1/M and compared with the result using
fully swept vortices and also the far field calculation., It is evident that
using rectangular elements for the drag calculation only is the answer to the
problem. Not only is the dependence on M eliminated, but as it turns out, also
the dependence on N. Further, the far field calculations for increasing N
converge to this near field value.

While this approach has given a stable answer for the total induced drag,

there is still some room for improvement in the convergence of the spanwise
drag distribution, ch/ECD (where Cq is the local drag coefficient and c is the
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average chord). As shown in figure 9, the regions near the root and tip converge
more slowly, and further study of this problem is needed. It is interesting to
note that there is very little difference in the spanwise drag distribution curves
for computations made with the rectangular or the swept vortex elements,

The kernel-function approaches also encounter similar difficulties for swept
wings., In those analyses, the concept of artificial rounding at the root is
often introduced, but only partially alleviates the problems (refs. 7 and 12).

The estimated converged values for this Warren-12 wing are cLa = 2.74,
Xep = 0.751, and K = 1,008, The corresponding results from reference 7 are
CLg = 2.75 and x¢p = 0.753, while from reference 12, € = 2.74 and K = 1.010,
Again, the agreement is excellent. Here too, only a few lattices are required
for accurate answers, e.g., a total of 30 lattices gives better than 1/2% agree-
ment with the converged result.

This optimized layout has been used to study the properties of a number of
different combinations of sweep and taper, including delta planforms. In all
cases, rapid convergence and accurate results were obtained,

Other Planforms

A number of other wing planform arrangements have been studied to give fur-
ther guidelines for the optimized lattice structure. Consider for example a
cranked wing which has one or more discontinuities in the leading or trailing
edge sweep angles, Here it is of interest to examine how the spanwise lattices
should be laid out since in only a few very special cases will it be possible to
use equally spaced lattices across the whole wing and keep d = 1/4, As a test
case, a planform having both leading and trailing edge cranks located at the
midspan (0.5 y,) with A = 3,478 was chosen. Then N, vortices were used inboard
of the crank and N, outboard. The tip inset was set at 1/L4 of the outboard lat-
tice span. Figure 10 shows the convergence of C;_ with 1/N, (N = Ny + Nz), for
Ny = 0.5N2, N] = Nz, and Ny = 2Ny. Although all three arrangements appear to be
converging to the same value, the fastest rate is realized with Nj = Ny or
approximately equal inboard and outboard lattice spans.

Computations with other cranked wings have confirmed this finding; hence,
N1 and Ny should be chosen to give as nearly equal lattice spans across the wing
as possible. This rule is readily extended to wings with more then one span-
wise crank location. Also, the induced drag should be calculated using the re-
placement rectangular vortices.

Other configuraticns which have been treated include skewed wings and planar
interfering surfaces. In the former case, the symmetry with respect toy is
destroyed and so the entire wing must be considered rather than just the semi-
span., While more vortices are required for a given accuracy, the concept of tip
insetting with d = 1/4 still is needed for rapid convergence. Regarding the
planar interfering surfaces, tip insetting is beneficial here also (on both of
the wings), but an additional source of trouble is now present., This occurs if
one or more trailing vortex lines from the forward surface pass sufficiently
close to a control point on the aft surface where the local boundary condition
is satisfied. Then, their influence becomes unduly magnified, with irrationa’

[
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results. To overcome this instability, It is imperative to select the number of
spanwise vortices on each wing carefully so that all the trailing vortices from
the forward surface lie approximately on top of the trailing vortices from the
aft surface. It is recommended that calculations for several combinations of
spanwise vortices be carried out for each case to insure consistent answers.

Wings With Flaps

Although performance predictions for flapped wings using the VLM have re-
ceived some attention, no detailed convergence studies are available. Indeed,
from the results reported to date, it appears as if several hundred lattices are
necessary to insure reasonable accuracy. The basic difficulty with flapped
wings is that the loading is singular at the flap hingeline, and so a large num-
ber of chordwise vortices must be used to define the loading adequately in that
region. Even the use of nonuniform cosine spacing about the hingeline does not
improve the slow convergence with respect to M.

An optimized lattice arrangement has been developed which considerably re-
duces the number of unknowns required. For convenience in demonstrating the
lattice layout, consider the simple case of a rectangular wing with a full-span
trailing edge flap. The flap chord is taken as constant and equal to E, and
the flap has a deflection angle B. As usual, the convergence with respect to N
is accelerated by tip lattice insetting with d = 1/4, For the chordwise arrange-
ment, we place bound vortex elements directly on the hingeline itself. This was
apparently first proposed by Rubbert (ref. 2) but has not been widely used,
possibly because few details or numerical results showing its benefits were
given. As a result of placing bound vorticity on the hingeline, a finite load-
ing is carried there, as opposed to the theoretically infinite value. However,
the integrated loading on a non-zero chordwise element about the hingeline is
finite in both cases.

The power of this hingeline-vortex approach was demonstrated initially in
the two~dimensional case, There, convergence was greatly improved over the con-
ventional approach, and the results are as good as those obtained using the
quasi-continuous lifting-surface analysis of Lan (ref. 14). Calculations for
the three-dimensional case are shown in figure 11, for a wing with A = 4 and
E=0.4. It is seen that the convergence of the lift-curve slope C , is ex-
tremely good when vorticity is placed on the hingeline. From these and other
computations, we conclude that less than 100 lattices are sufficient to achieve
highly accurate results. This represents a substantial savings in computational
effort.

Part-span flaps can be analyzed in a similar manner. That is, bound vor-
ticity is placed along the flap hingeline and extended as necessary to the root
and/or tip. The practice of insetting the vortices at the flap side edges was
also recommended in reference 2, but numerical calculations here have shown that
not only the local, but also the overall, loadings are highly sensitive to such
an arrangement. Possibly the concept may be worthwhile in that nonlinear treat-
ment, but it should be avoided when using the linearized approach.

This optimized VLM can be extended to treat wings with multiple flaps.
These can be arranged in either chordwise or spanwise directions. For the
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multiple chordwise flap case, it is necessary to place bound vortex segments on
each of the flap hingelines to insure rapid convergence. The performance of
leading edge high-1ift devices can also be investigated using these layouts.

While there is a scarcity of good numerical results for comparison purposes,

one kernel-function calculation should be mentioned. |In reference 15, Garner
analyzed a swept untapered wing of aspect ratio 4 with a 25% chord flap extend-
ing from the 45% spanwise station out to the tip. Using the kernel=function
method, he predicted a value of CLg = 0.758 and Cp = 0.179. With the optimized
VLM and 91 unknowns, C o = 0.757 and Cp = 0.180. Here, 7 chordwise vortices

(5 ahead of the hingeline and | behind? and 13 spanwise vortices (6 inboard and
7 on the flap) were employed. Also, the spanwise 1ift distribution compared
very well for this case.

Finally, to show the versatility of this approach, the predicted spanwise
lift distribution on a cranked tapered wing (approximating the Convair 990 plan-
form) at 12° angle of attack with multiple spanwise flaps is plotted in figure
12, Here the seven flaps were deflected through various angles as shown in an
attempt to produce a nearly linear dropoff in the loading over the outer half
of the wing. Such loadings are of interest in wake vortex roll=-up calculations.

Jet-Flap Wings

The optimized VLM has also been applied to predict jet-flap wing perfor~-
mance, The jet flap is basically an arrangement for integrating the propulsion
system of an aircraft with its 1ift production by blowing a narrow jet of high-
velocity air from a slot at the wing trailing edge. This deflected jet, besides
supplying thrust, also increases the lift through an additional induced circu-
lation as well as by a reaction to its vertical momentum. The additional circu-
lation, or supercirculation as it is sometimes called, arises from the asymmetry
induced in the main stream by the presence of the jet and can amount to a large
fraction of the total 1ift on the wing under certain conditions.

Within the linearized theory framework, the trailing jet sheet can be
represented by vortex lattices and the appropriate dynamic boundary condition
satisfied at corresponding control points. We will consider only the so-called
"singular blowing' configuration in which the jet leaves at an angle T with
respect to the slope of the camberline at the trailing edge. The jet st igth
is described by the parameter Cg(y), the jet momentum coefficient., The fc.low-
ing results are taken from reference 16 wherein a complete performance ana.ysis
was carried out. This work was sponsored by NASA ARC under Contract NAS2-8115,

As in the pure flapped wing, the jet-flap loading exhibits a singular be~
havior. Here, it is at the trailing edge where the streamline deflection
changes abruptly. Thus, in analogy with the plain flap case, we try placing
bound vorticity along the wing trailing edge. This was again verified to give
good convergence characteristics in the limiting two-dimensional problem., In
addition, it turns out to be necessary to use a nonuniform chordwise spacing
which concentrates the lattices near the trailing edge. This does have the
advantage that the infinite downstream extent of the jet sheet can be mapped
into a finite region.
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In figure 13, the convergence behavior of the lift-curve slope CLT is plot-

ted for full-span blowing from a rectangular wing with A =2 and €, = 1. The
superiority of placing bound vorticity at the trailing edge is clear. Note that
the 1ift on the wing is computed by adding the jet reaction component to the
wing bound vortex, or circulation, 1ift. The numerical experiments indicate it
is best to consider all of the trailing edge vortex lift applied to the wing, as
shown in the figure. Overall, we must use a somewhat larger number of chordwise
vortices for the jet flap, but again the total number required is considerably
smaller than used in previous studies.

For the above wing, the estimated converged values are C . = 2.00 and
Xcp = 0.816. These can be compared with the results obtained in reference 17
by using an adaptation of Lawrence's improved low aspect ratio approximation,
where it was calculated that C;_=2.01 and x. = 0,810, Comparable agreement
was found at other values of A and C, for these rectangular planforms.

Other planforms and blowing arrangements have also been treated. Thus,
part-span blowing was analyzed and y-variations in C, (nonuniform blowing) were
taken into account. An exampie calculation for nonuniform blowing over part of
the wing span is illustrated in figure 14. |In this case, the jet extended from
the 25% to the 75% spanwise station, and Cp varied quadratically in this region,

An interesting result of the noruniform blowing calculations is that the
wing circulation 1ift as well as its spanwise distribution is relatively unaf-
fected by varying C, provided that the total, or integrated, jet momentum coeffi-
cient is the same for both cases. Thus, we can conclude that for most practical
purposes, it will be sufficient to carry out nonuniform blowing catculations
for the corresponding uniform blowing case with the same total jet coefficient,
and then add in the true nonuniform jet reaction components to find the total
lift, center of pressure, etc., at each spanwise location,

CONCLUSIONS

In conclusion, a simple, systematic optimized vortex-lattice layout has
been developed for application to a wide variety of configurations. It results
in a significant reduction in computational costs when compared to current meth-
ods. The key elements are:

(a) Use of tip lattice insetting to accelerate convergence as the number of
spanwise lattices is increased.

(b) Placement of bound vortices at locations where discontinuities in
streamline slope occur (flap hingeline, jet-flap trailing edge) to accel-
erate convergence as the number of chordwise vortices is increased,

(c) Use of nonuniform chordwise spacing for -ambered sections and jet-flap
wings to accelerate convergence for these cases.

(d) Use of rectangular horseshoe vortices to compute the near field drag.

Rapid convergence as the number of spanwise or chordwise lattices are in-
creased is assured, along with accurate answers, The results from this model
should be useful not only in preliminary aircraft design but also, for example,
as input for wake vortex roll-up studies and transonic flow calculations.
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Figure 1.- Vortex-lattice layout.
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Figure 5.- Lift-curve slope formulas.,
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OPTIMUM LATTICE ARRANGEMENT DEVELOPED FROM

» S,

A RIGOROUS ANALYTICAL BASIS*

John DeYoung
Vought Corporation Hampton Technical Center

SUMMARY

The spanwise vortex-lattice arrangement is mathematically established by
lattice solutions of the slender wing which are shown to be analogous to the
chordwise vortex-lattice thin wing sdlution. Solutions for any N number of
panels to infinity are obtained. With the optimum lattice for any N value the
slender wing theory 1ift and induced drag and thin wing theory 1ift and moment
are predicted exactly. For N, slender wing elliptic spanwise loading and
thin wing cotangent chordwise loading are predicted,which proves there is
mathematical convergence of the vortex-lattice method to the exact answer.
Based on this A+o and an A> planform spanwise lattice arrangements, an
A-vortex-lattice spanwise system is developed for arbitrary aspect ratio.

This A-lattice has the optimum characteristic of predicting 1ift accurately
for any N value.

INTRODUCTION

Growth of computer facilities has given the engineer a powerful tool for
obtaining solutions to generalized problems. This is possible because with
numerical or finite-difference methods the equations of a problem can be
simplified readily to computer language. Vortex-lattice methods have been
developed extensively for steady and unsteady pressure prediction and for
planar and nonplanar configurations. Examples of some of the work and ot
investigations in the vortex-lattice method and aspects and applications of '
this method are reported in references 1 through 20. A brief description
of the typical vortex lattice is that the surfaces are divided in the spanwise
and chordwise directions into panels which cover the surface with a lattice.
The sides of the panels are parallel to the freestream and the chordwise panel
boundaries follow the surface contour. The 1/4 chord line of each panel
contains a bound or lToad vortex while the trailing vortices are at the sides
of the panel. The boundary condition of no flow through the surface is ful-
filled on every panel at one point located at the lateral center of the 3/4
chord line of the panel. These panels are distributed in a uniform, and thus
geometrically simplest mesh, referred to as a planform lattice. However, in
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*Preparation of this paper was supported principally under NASA Langley
Contract No. NAS1-13500.
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1966 an application of the lattice method of reference 5 to a swept wing showed

that the chord loading in the panel bordering the wing leading edge was too /

low, the spanwise loading near the wing tip was too high for engineering

acceptability, and the net 1ift slightly too large. This was with 100 panels

on the semispan, 10 chordwise times 10 spanwise. Investigation of a iattice ;
mathematical model was made at that time of the chordwise panel distribution Lo
and later reported in reference 20. The results of this work showed that the :
loading at the leading edge panel needs a factor of about 1.128 which improved
the loading value in that panel. However, the too high wing tip loading and
1ift was not explained. In early 1972 a mathematically rigorous spanwise
vortex-lattice analysis was developed based on slender wing theory (part of
ref. 19). This was mathematically analogous to the earlier chordwise solution
but more complicated. This spanwise lattice arrangement is characterized by

a 1/4 - 3/4 rule which locates the trailing vortices inboard 1/4 of the
planform panel span and the no flow through points inboard 3/4 of planform
panci span from the planform panel outboard edges. This inboard shift cf

the lattice leads to solutions with less loading near the wing tip and less
lift, which improves the loading in the above example. This example supports
the observation that accuracy depends on the position of the panels in the
lattice as well as density of panels.

The objectives of the present study are to correlate and extend the work
of references 19 and 20, to investigate the effect of three-dimensional
planform on lattice arrangement, and to formulate a generalized vortex-lattice
arrangement and method for three dimensional wings.

7
SYMBOLS
A aspect ratio
A swept panel aspect ratio [eq. (52)]
b, ¢ wing span, wing chord i
CL, CLa Tift coefficient, Tift-curve slope
Cp;4 induced drag coefficient
c ., C section 1ift coefficient, section lift-curve slope

section pitching moment coefficient due to angle of attack
eNene parameter of chordwise loading [eq. (38)]

fNene  chordwise loading factor [eq. (41) and table 5]

G spanwise loading coefficient or dimensionless circulation [eq. (1)]
9nn parameter of spanwise incremental circulation [eq. (7)]
344
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spanwise loading gradient factor [eq. (19) and table 2]

1:: spanwise loading factor [eq. (22) and table 3]

N, N integer number of panels on wing semispan, and wing chord respectively
n,m integers denoting spanwise position of vortex, and downwash point
Ne,Mc integers denoting chordwise position of vortex, and downwash point
Vv free stream velocity

a angle of attack

r circulation, also Gamma function

n lateral coordinate per wing semispan

Ao sweep angle at 50% chord line

£ longitudinal coordinate per wing section chord

Subscripts:

v vortex

W downwash point

LE leading edge

SLENDER WING OPTIMUM VORTEX LATTICE

Physical Similarity of Trailing Vortex Sheet Flow with
Chordwise Thin Wing Theory Flow

The objective of this study is to do a rigorous analytical derivation
to determine the optimum spanwise distribution of panels analogous to the
analysis done in reference 20 for the optimum chordwise distribution of

panels.

Optimum here defines the lattice which best duplicates exact

solutions. A physical similarity does exist between the vorticity distribution
of the chordwise loading with the trailing vortex sheet from a finite span

wing.

This can be seen graphically in figure 1 where thin airfoil theory

chord-load vorticity is compared with the trailing vorticity which is predicted
by slender wing theory (refs. 21 and 22). It has often been noted that the
mathematics of thin wing and sliender wing theories have a striking similarity.

~om figure 1, it is noted that a similarity of vorticity is obtained
when .he wing tip at n = 1 correlates with the wing leading edge, and the

345

Y AR PR L i i NS A



BT e

p—— ——

midspan point at n = Q correlates with the wing trailing edge. Since this
correlation makes the flow fields analogous, it follows that the optimum span-
wise panel distribution is analogous to the optimum chordwise panel distribu-
tion given in reference 20. This is subject to the condition that the
distribution start at the wing tip and proceed inboard. Applying this
condition and using these distribution conditions, the spanwise panel
distribution becomes that shown in figure 2. The determination of an optimum
chordwise panel distribution is made by two-dimensionalizing the problem to
planar flow and thus the spanwise extent of the panel is infinite. The optimum
chordwise panel distribution is that which yields thin wing solutions which
most accurately duplicate the results of exact thin airfoil theory. In the
present work, the determination of an optimum spanwise panel distribution

will be made by two-dimensionalizing the problem to cross-sectional flow

and thus the chordwise extent of the panel is infinite. The optimum A-0
spanwise panel distribution is that which yields solution which most
accurately duplicates the results of slender wing theory.

The objective of the present paper is to apply the analytical methodology
of reference 20 to determine the optimum spanwise panel distribution. This
distribution should result in an exact prediction of total 1ift for any
number of spanwise panels and provide spanwise loading factors. The chordwise
panel distribution analysis is correlated with thin airfoil theory for the
determination of optimal accuracy. In an analogous procedure the spanwise
panel distribution analysis here will be correlated with slender wing theory
for the determination of optimal accuracy.

Formulation of Spanwise Lattice Matrix and Solution
to Infinity which Satisfy A1l Boundary Points

Slender wing theory ecuations for additional loading (ref. 22) are

dG (n) )
dn 7 - 477 (1)

e e ) = (- n2)2

_r(n) | &S
where Ga(”) = e " Jba

Also presented in reference 22 are solutions for flap, ailerons, and all
spanwise loadings, which can be used to evaluate lattice accuracy when a
problem involves these types of loadings.

By Biot-Savart law, the downwash at nyp due to an infinite extent vortex
at ny, is (see fig. 2)

Arn/g
w(n, wm5 (2)

yn ~

mn =

with vortices located at
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. n = 1/y
Myn = % N (3)

boundary condition points at

_.m=- 3/4
N = (4)
with equations (3) and (4) the downwash angle at Nm is
N
o (] . ] )gNn
a : nvn-nwm nvn+nwm 3N (5)

n=

with equations (3), (4), and (5) for additional Toading (oy=a), equation
(5) becoines

N
- 2 1 1 Oy . -
1= j(zn_2m+]+2n+2m_2) Nn; m ],2,...N (6)
n=1
where
3NAT
= Nn _ 3
Nn e 7 NAGaNn (7)

Generalized Inversion of Inn Equations

Equation (6) represents N unknowns, gyn, and N Equations. An inversion

of equation (6) means a linear simultaneous solution of N equations. Solutions

for N=1, 2, . . . can be obtained readily for small N and from the resulted

series formed of gy,, the general solution can be determined by induction. For

N =1, the solution is
9, 7 1

For N = 2, the linear simultaneous solution of two equations is

7 2
12917 * 15 923 then, 95 " 3
] 7 _ 54
12-7997 %39 922 7 35
These solutions are done for higher values of N until a sequence is formed.
This sequence is presented in table 1. Examination of the 1st column in
table 1 shows the sequence follows the general term of
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for n=1:

N+ Tyodd'

In the second column, ratios of gN2/gNL gives the sequence

N = 2 3 4 5 6

N2 _ 32x3  32x8 32x15 32x24  32x35
I ix7 3x9 5xT1 7x13 9xT5

This shows the general term as [and using 9N from eq. (9)]

forn = 2:
2(N2 - 2 - -
Iz = 32(N 1) 9N i} 3x3Z(N+1)(N-T)(N) (2N s)odd!
(2N + 3Y(2N - 3) (2N+3)0dd!

Similarly, ratios of gN3/gN2 give the sequence
N = 3 4 5 6

IN3 _ 52xE  52x12 52x21 5232
In2 11x4  3x13x4 5x15x4 7x17x4

This shows the general term as [using Oz from eq. (10)]

for n = 3;
9 - 52(N2-22)gNz ] 3x32x52(N+2)(N+1)(N)(N-])(N-Z)(ZN-7)0dd!
2Z{2N-5)(2N+5) 24(2N+5) ) 4!

These sequences of In1° In2° and 93 show that
2(N2.32
Ing - 72(N2-3 )gN3
32(2N-7) (2N+T7)

= 3x32x52x72(N+3) (N+2) (N+1) (N)(N-1) (N-2) (N-3) (2N-9) 4,1
I2X2F(2NHT) g

(10)

(11)

(12)

Then in ﬂenera1 the recurrence is [from first equalities of eqs. (10), (11),

and (12)
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O ea,
’ :
'
0

(21 2y ity S (13)

9y -
Nn = \597)° Nectnc1/2)2

The general term for net values of In is [from second equalities of
eqs. (10), (11), and (12)]

g 3(N+n-1)'[(2n-1 )Oddl]z (2N-2n-] )oddl (]4)
N AT TTR=TTTIZ (2 2n-1) g 1

Equation (142 is an exact mathematical inversion of the matri'. type represented
in equation (6). The equation (14) solution is exact for a' ' interger value
of N, including N equal to infinity.

The odd factorial (2n-1)odd! can be converted to direct -actorials by the
relation

(2n-1)1 = (2n-1) 44! (20-2),,!
where (2n-2) ! = (2n-2) (20-8) (20-6) .... = 2" (n-1)(n~ )(n-3)
= 27T (ne1)
then  (2n-1) 4 ! = (20-1)1/2" (n-1)1 (15)

Using equation (15) in equation (14), then Inn in terms of conventional
factorials is

_ 3n2(2N-2n)! (2n)!(N+n)!] 2
= (R+§)(2N2%n)! [(ﬁ?%ﬁéﬁfg%r] (16)

Factorials suggest Gamma functions. Extensive relations of Gamma
functions and tables are presented in reference 23. In terms of Gamma
functions equation (16) becomes

9y . 3n2 T(N-n+1/2) T(N+n+1) r(n+1/2)] 2
Nn = STNFY T(N-n+1) T{Nen+1/2) [‘?IEITS" (17)

The gy function is thus expressed in three forms given by equations
(14), (16), and (17) respectively.

Gradient of Spanwise Loading

The spanwise loading gradient is [using eqs. (3) and (7)]

' _ T
then G,'(nvn) = - 3 9y, (18)

349




—

[ Iy

-
T ip—

where gyp is given in equation (16). The spanwise position, ny,, is given by
equation (3). Comparable slender wing theory values of Ga’(nvn9 are obtained
by replacing n by nypy in the gradient function given in equation (1). Com-
parison of equation ?18) with the slender wing theory value of loading gradient
shows that the lattice-method loading gradient requires a factor. This factor
can be formulated accurately by this slender wing solution.

The loading gradient factor is defined as

G&(nvn) slender wing theory (19)
G, (hy,)

h

Nn =

Numerical values of hyn computed from equations (19) and (18) are presented
in table 2. These factors are very near unity except at the wing tip
region. Included are values for N*~ determined in a following section.

Spanwise Loading

With the vortex position set by equation (3) the aGynp extends from nyh =
(n - 1/4)/N to(n - 1 - 1/4)/N. The middle of this segment is at np =
(n - 3/4)/N, that is at the same spanwise position as the boundary condition
points given by equation (4). The spanwise station of the loading will be
assumed to be at the middle of the segment, that is, at ny. For symmetrical
loading, the loading at wing center is constant in the range
-(1 - 3/4)/N = n = (1 - 3/4)/N, and the middle of this segment is at n, = 0.

From equation (7) the loading at the n=N segment is

N _ T
Gann = 58NN = 3N 9NN
_ = _T
At N-T segment G\ =8G Gy v 1 = 3y (g + 9y Ny
N
Thus at the m segment Gonn = %N’:E: Inm (20)
m=n

where gyy is given in equation (16) and in table 1, but with n=m numbers.
These loadings are at the spanwise stations

n -3/4 .
——N——,forn>] (2-‘)

= 0 ; forn =1
Comparable slender wing theory values of Ga(n?) are given by equation (1) with

np of equation (21). Comparison of equation (20) with the slender wing theory
value of spanwise loading shows that the lattice-method loading requires a
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L
% factor. This spanwise loading factor is defined as '
: ? :
i i _ Ga(“n) slender wing theory f :
:,, Nn - G (ﬁ ) (22)
i a' n ..
e . - ,
L Numerical values of iy, computed from equation (22) are presented in table 3. ‘ i
, These loading factors are very near to unity. Included are values for N
ﬁi Lift-Curve Slope and Induced Drag
" The 1ift ccefficient is the integration of the loading coefficient, then
1 .
CL = A -1f G(n) dn (23)
Since AGyp is constant between ny, and -ny,, then the integration for 1ift is
a summation of the pyramid layers of 2nyp AGy,. Then by equation (23)
. N f
g ' C . =2A :E: GNn"yn (24) :
i , n=1 .
¢A

With the AGNn given in equation (7) and nyp in equation (3), then equation (24)
becomes CLG- The 1ift-curve slope is

N

2
B S (n- g, (25)
n =l

where gnn is given in equation (16) and in table 1. With equation (16) i
inserteg into (25) the 1ift-curve slope becomes CL, = nA/2 for any value of ‘
N. This compares with the slender wing value given in equation (1).

In a following section for N°* it is proven that C| = nA/2 for N,

The induced drag coefficient is given by (for constant ap)

N

_A _A
D; =7 ./ aie(”)dn -7 :E: %8Gy
n=1

C

;
¢

where apn is that in equation (5) but with changed position of n and m. Since
an=a by the conditions of equation (6), and using equation (24), then Cp; =
CLa/2. It was shown by equation (25) that C_ = wAa/2 for any value of N,
then
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which is then also valid for any value of N. This is identical to slender
wing induced drag. Therefore, it is concluded that this lattice and boundary
point distribution results in exact integrations for 1ift and induced drag for
any interger N. This exactness was not unexpected since the mathematics

is similar to the chordwise solution (ref. 20) in which the first harmonic
solution (elliptic chord loading) integrates exactly.

Solutions for N Approaching Infinity

Detailed mathematical derivations are developed in reference 19. Here
the results are a digest of the mathematics in that study. The primary
purpose for exploring solutions at N> 1is to prove that a finite lattice-
method solution does mathematically converge to the exact solution. In this
problem the exact solution is elliptical spanwise loading evaluated from
slender wing theory. Mathematical proof is needed that the integration for
1ift remains exact as N*=, Asymtotic values of the factors hyp
and iNp as N> are useful in the tables of these factors. As N the
functions become so unique and manageable the reader will find a mathematical
exciting experience.

Fquation (16) can be used to mathematically prove that spanwise
distribution predicted from finite element loading methods do converge on
the exact answer as the number of elements are increased.

Using the relation for large factorials

NS (2n)1/2 N1/ 2N (26)
then equation (16) becomes (except at the point n=N, i.e. at m=1 when N=*)
INn 3n (N + n)]/Z‘l . = 3% (27)
n(N+n) (N-n)’ AL
Combining equations (3}, (18), and (27) results in
-n
Ga'(nvn) = W (28)

Equation (28) is the same as the loading gradient given in equation(1) by
slender wing theory. Thus it is proven that as lattice panels are increased,
the solution converges to the exact loading.

With the relation that
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r(N+1/2) wo— 1
T(N + (N +1/8)1/2 (29)
then equation (17) can be expressed in the forms
N> N
n = finite N-n = finite (30)
o - 3n2[T(n + 1/2)]2 Iy Non = NV/ZT(N - n+1/2)
\ e+ 1) 2 /ET(N - n +1)

Then for N™™ the spanwise loading gradient factor of equation (19) becomes

N N

n = finite 5 Nen= finite (31)
b = n-1/4 [rin +1) ] N Non = r'(N-n + 1)
noLrintd/2) ], (N-n + 1/8)/2r(Nen + 1/2)

With the use of the series summation

5 ﬁ%{—-‘r/yﬁ = 2(N-m+1/2) H-/;Z—) (32)

=0

the spanwise loading factor of equation (22) for Newbecomes

\= (N-n+3/8)72 /(N -n+1) (33)
INN-n TN T nFI/2) TN - n + 172) .

Numerical values of equations (31) and (33) are listed in tables 2 and 2
Examination of these equatiorc indicates simple relationships. These
relationships extend to chordwise loading factors developed in a later
section and can be expressed in one equation as follows:

fOT‘ N = N = oo
c 1/2 ) f
hN N-n = -——fﬂﬂ___ = _ 1N,N—n+1 _ Nc Nc nc+] | ]
a-171602) 72~ [ 6nene) ] V2 Tiane(u-n -1)2) V2
f

For the zero condition

. 2
BN (N-n)=0 = ch,(nc.1)=0 = 75 = 1.128379

m
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For N-n =]

4 .
h 4 =f _q = — = 1.009253, h, __, = .954930, i, 1 °
N,{(N-n)=1 NC,(nc-l)-l for * UN,n=1 N, (N-n-+1)=1
f 4, = 977205
Nc,(Nc'"c+]"]
For N = = the expressinn for CLQ develops into the following scries
summation:
C _ (A (24)!
L, * (?) 3242 :E: 238[aT) 720+ 1) (20+3)(22+5) (35)
5=0

This factor of £/2 is =, thus CL = mA/2.

Qa

CHORDWISE VORTEX LATTICE

Formulation of Chordwise Lattice Matrix and Solution
to Infinity

In reference 2u the lattice is distributed into equal length chord
segments and the chcrd loading vortex is located at the 1/4 points of each
of the chord segment<; and boundary condition point at the 3/4 point of
each of the chord segments. Then the load vortex chord station and the
boundary condition chord station are respectively at

m-1/4
- n3/4 - C
%"c N ! Smc N (36)
c C
where £ = x/c.
The loading equations to be solved are given as,
Nc e
Ncnc
?ﬁ;:?ﬁZIT = 1; m. = 1, 2, . .. NC (37)
nC=
where
-AC
cc mcVa mWVa Zno
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The matrix inversion of equation (37) is obtained as a factorial function
- - - 1 N

‘n - (2Nc-2nc+1)odd! (2nc 3)odd! _ (2Nc2nc+1)! (2nc 2)!

¢ (2Nz2n gyy (2N -2)gy) ZZNC’Z[(NC-n,)!(nC-1)!] 2

In terms of Gamma functions

eN o 2nc(2NC-2nc+]) r(nc+l/2) r(NC-nC+1/2) (39)
cc n(Zné:17’r(nc+1) r(Nc-nc+1)

Numerical values of equation (39) are presented in tabie 4.

Chordwise Loading Factor

The exact solution by thin wing theory gives the additional loading by
the function [using gq. defined in eq. (36)]

Yn 1-&m N
e - Jc_2 c\1/2 _ 2 o 1/2
Nene = 3va = 7 an ) 7 G Y (40)
o
The chordwise loading factor is defined by the ratio of equation (40) to
equation (39). (@)
1,¢
Y - ] - -
fyn = Mencthin _ cthin _ (N-n *#3/4)7"" (2 -1) (n +1) T(N_-n +1)
cc e Y . 1/2
N.ne n. n.(2N.-2n +1) (n_-3/4)""" r(n _+1/2) T(N_-n_+1/2)

Numerical evaluation of equation (41) for a range of N, are given in table 5.

Chordwise Lift-Curve Slope and Pitching Moment

Section wing 1ift is the integration of the chordwise 1oading and section
roment is the integration of the product of chordwise loading and moment arm.
In mathematical representation

f] Y /! Y
¢, = 2 o Ve dg . Cn = 2 0 Ve tde (42)
LE
The lattice loading is constant with £ ovar the interval
86 = [n -(n_-1)]/N_ = 1/N_ and the lattice load vortex is located at
N c'c c c

Ene = (nc-3/4)/NC along the chord and the moment arm extends to this vortex.
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e ¢ f%i (43)
C 2n m - 2n 3
L = = }: e , ) (n_-3/4) e
o c Nc"c LE ch Nc"c
nc=1 nc=1

The summation terms in equation (43) are listed in table 4 which when inserted
into equation (43) show that the 1ift and moment for arbitrary N is the same
as predicted by thin wing theory, that is

- =TI =
¢, = 2n, ¢ 5 s a.C. .
a U.LE

= 1/4 (44)

Proof that c, is Exact at A1l Values of N

Inserting equation (39) into (43) results in

Ne
c, .4 :E: nc(2Nc—2nC+1) P(nc+]/2) F(Nc-nc+]/2) (45)
a N & (2n -T) t(n +T) T(N_-n_*T]

c
Now r(n+1/2) = (n-1/2) r(n-1/2); r(N-n-1/2) = r(N-n+1/2)/(N-n-1/2); and
r(n+1) = nr(n) = n!, then

"l Nen, r(n/2) r(N -n_+1/2)

(46)
a N néT'(NC-nc)!

The Gamma functions and factorials in equation (46) show trat this product
term is a symmetric function which is factored by an antisymietric term
(Nene)/Ne, Then some of the high nc terms cancel the low n. terms. By expanding
the summation a new summation can be formed given by

2n ®(z ) 1(nc#1/2) N -n +1/2) ()
o m n.T (N_-n)! 47
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where e(Nc -n)=1forn = Ne ,= 2 for n_ ¢ Ne
R c 2 €2

The summation term in equation (47) is the Legendre polynomial of the first

kind Py. (cos ©)g=g (see p. 36, ref. 24) and PN$]) = 1 for any N., Thus the

1ift-curve slope is 2 fo. any Nc which is that predicted by thin wing theory.
Chordwise Soluticns for N*=

For Nc™ and ne finite or Nc-n. finite then equation (39) becomes

N—)'m

C .. .
nc—f1n1te
_ an VY2, 1(n 41/2) )
eN n = c ¢ ‘¢
cc n(ZnC-T) r(nc+1)
(48)
N e
Nc-nc=f1n1te
®N_,N -n = EEFC-nE:;éz) I1(Nc"nc+]/z)
c’c ¢ J
nnc F(Nc—nc+1)
For both N_ and n_ large [using eq. (29)], equation (33) becomes
N—m
e
1/2
2(N_-n_) 1/2
e = c ¢ =2 1-¢
NCnC n !/L i ( £ ) (49)
c

Equation (49) is identical to the thin wing theory additional loading given
inequation (40) and shows that a chord lattice solution converges to
mathematical exactness as the lattice grid becomes infinite. With equations
(48), (40), and (41) the chordwise loading factor at wing leading edge is
given by (for N.»*)

r(n_-141)
fN n c

ce (nc-1+1/4)”2 r(n_-141/2)

This function is identical to that of equation (31) when nc-1 = N-n, and is
listed in equation (34). With equations (48), (40), and (41), the chordwise
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lcading factor at wing trailing edge is given by (for No*=)

] (N_-n +3/8)/2 t(N_on +1)
N N -n = (e cC C
c’c ¢ Wc—ncﬂ]?) rTNc-nc+‘I/2)

(51)

This function is identical to iy y_p Of equation (33) when N -n. = N-n, and
is listed in equation (34).

Ao-VORTEX LATTICE

Dependency of Spanwise Lattice on Effect of
Aspect Ratio

As aspect ratio approaches zero the spanwise optimum lattice arrangement
is that defined by equation (3), that is at Mvn = (n-1/4)/N. As aspect
ratio approaches infinity the spanwise lattice arrangement is the planform
lattice which positions the trailing vortices at nyn = n/N, that is at the
outside edge of the lattice panel including a vortex at the wingtip. This
is because at A = « the spanwise loading has the same distribution as the
wing chord along the span. This high loading near the wing tip (when A = =)
must be taken into account by the lattice trailing vortices. The objective
here is to develop an aspect ratio function factor for the lateral panel
positions which asymptotically approachestheccrrect values at Ag»0 and at
Ag+=. The subscript e denotes the effective swept panel aspect ratio given
by

Ae = A/COSA]/Z (52)

The planform lattice (nyy = n/N) is the lateral lattice arrangement that
has been in general use in most vortex-lattice methods.

An aspect ratio equal to four is about an aerodynamic mean between
0<Aei~. Loading values based on the Ag~»0 lattice and on the Ag»~ lattice will
be computed for an Ae = 4 rectangular wing. Comparison with the loading
predicted by an accurate analysis will establish the A-effect function that is
qeeded. By Biot-Savart law the downwash due to an unskewed horseshoe vortex
is

2 . 2 3 )2
) - Gnnc 89 * /g™ (g nyn*yp) %o *A/50" My v (53)
" 2ny ™ Nantvn "wm™"an"vn

Where €0 = £y, - Eync» and Gppe is the dimensionless vortex strength of the
elemental horseshoe vortex. For Nc =1 solution, £y remains constant equal to
1/4 for A = 4, n,, is the lateral middle of the n pancl. Foi the slender
wing (Ag~>0) lattice use
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yn = n-1 4 - M- Z = Q (54)
For the planform lattice use
"n N "wm R * "an -0 (5)

The equation to be solved for additional loadina for an N; = 1 solution,
A = 4 rectangular wing is

L R V2O T CNRE =N LI VTV VT e
-5 Z - (56)
" vn Mwm™ "vm
Wing lift-curve slope is determined from equation (24) and wing loading
by equation (20) with which
(CZC)n= _ZA__ 5 (57)
CLcav CLa Nn NN

where for the A-0 lattice iy, values are given in table 3, while for the
planform lattice iy, are a]? unity. Results of the solutions of equation
(56) with the Ag~0 lattice of (54) and with the planform lattice of (55),
for increasing N, are presented in tables 6 and 7. An accurate loading

prediction of this A = 4 rectangular wing is made in reference 19. From

reference 19

C, = 3.6623, n = cosY

* (58)

sing + .07879sin3¢ + .01290sin5¢ +.00350sin7¢ + .00170s1n9%)

=I‘L.b

3
C

Percent differences from the values of equation (58) are shown in tables 6 and
7. For this A = 4 wing the A+0 lattice has less than one-half the error of

the planform lattice.

Spanwise A -Vortex Lattice

Since for the A = 4 wing the A-0 lattice prediction is too small and the
planform (A+=) lattice prediction too large then a factor can be developed
between the two which forms the basis of spanwise Ag-lattice arrangement.

This factor is 2/4Re+4, then for the Ae-lattice
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)

where A, is defined in equation (52) and n, is the spanwise position of the
computeg loading distribution, These spanwise lattice panel positions
asymptotically approach the A+Q lattice and the planform lattice as A-0 and =
respectively. With equation (59) the solutions of equation (56) for 1ift and
loading are listed in tables 6 and 7. With the Ag-lattice the predicted 1ift
and loading is accurate for all N's which was the basis for the term

optimum applied to Lhe A-0 lattice and chordwise lattice. Equation (59) is
simply a mathematical statement that relative to the planform lattice all the
panels are shifted inboard by 1/2N#Ag+4, and that the downwash point is at the

lateral center of each panel except in the wing root panel.

Application of the Ae-Vortex Lattice

For a unifoi1n vortex lattice, the elemental ckewed horseshoe vortex
lateral position at the trailing vortices is given by nyn in equation (59) and
the chordwise position by gyp. in equation (36). The downwash points are
positioned laterally at nym in equation (59) and chordwise at gymc in
equation (36). Let Inpc be the unknown circulation strength of the elemental
skewed horseshoe vortex. For symmetric wing loading I'pp. is determined from
an NNc matrix solution which satisfiessNNc downwash point Boundary conditions.
The pressure coefficient at span station np in equation (59) and chord

station gyne = (nc-3/4)/N¢ is given by

AC . 'nn
p = =2N ip fo o€
nn. c ANn NcnC Cnv

where spanwise and chordwise loading factors are included [eq.

and 5]. Now

then the spanwise loading at n, of equation (59) is
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v .
r = (o =9 T
n)atn 7% )atnn ANn*n

which includes the spanwise loading factor [eq. (59), table 3].
loading gradient at span station nyp in equation (59) is

an
I = ~Pann N(r,-T

dn n+l )

where Tn is given in equation (61) and where the spanwise loading gradient

factor is given by

1 2 : .
ANn 1-(1 hNn) i with hNn in table 2.

The 1ift coefficient is [T, from eq. (61)]

The induced drag is given by

1
- _A._

n=2 }
N-1

_ N 1,1 1 -
%y T TV EN-n+1/2'N+n—1)F :E: m- n+1/2 m+n+1)(rm I1m+1il )
m=]

where Tp is given in equation (61).

(62)

The spanwise

(63)

(64)

(65)

For spanwise loading distribution already

known then equation (65) provides a convenient method for predicting induced
drag. For this case Fg)atnn is known then T,, is determined from equation (62)

for application in (65)

CONCLUDING REMARKS

The application of the vortex-lattice method to the slender wing configu-
ration has provided a rigorous analytical basis for the spanwise properties

of the vortex-lattice method.

verge to thin wing theory results.

Mathematical similarities are shown between

the spanwise panel lattice solution and the chordwise solution which con-
As the number of chordwise panels approaches

infinity, thin wing theory chordwise loading is predicted exactly except in

the 1imit points exactly at the leading edge and at the trailing edge. At
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these two points chordwise loading factors are mathematically evaluated which
are useful in finite panel solutions. Similarly, as the number of spanwise
panels becomes infinite, slender wing theory spanwise loading is predicted
exactly except at the point of the wing tip. At this point a spanwise loading
factor is mathematically determined from a 1imit solution. The presentation
in this paper is based on a planform uniform distribution of panels chordwise
and spanwise. In a discussion in 1972 Mr. W. B. Kemp, Jr. of NASA-Langley
said he had found that the chordwise vortex-lattice solution gave an accurate
integrated 1ift for an arbitrary planform panel distribution along the chord.
As part of the present work this was investigated and it was shown that using
the 1/4 - 3/4 rule for locating the vortex and downwash point in the planform
panel, the chordwise 1ift-curve slope of 27 and also the spanwise slender wing
value of nA/2 are predicted for any distribution of planform panels on the
wing and for any total number of panels. However, the loading distribution
factors are not as near unity. The aspect ratio effect on spanwise lattice
arrangement has a weak chordwise counterpart for a chordwise lattice
arrangement. An initial study of this effect indicates that the chordwise
lattice arrangement differs when aspect ratio is less than unity. In
conclusion, the Ag-vortex-lattice arrangement of the previous section provides :
a uniform uncomplicated, accurate system. It leads to computations with a !
high accuracy to work ratio. ;
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1 1
2 23 2x3%
3x5 3x5x7
y 33 23x3% 2x34x53
3x5x7 3x5x7x9 Modd!
4 22x3245  22x3%5 22x35x53 22x33x53x73
3x5x7x9 ] lodd! 13044 15044
5 32x52x7  23x35x52 2x36x53x7 25x33x53x73  2x33x53x73x93
11od&T> ]3odd! 150dd! 170dd! 19044
6 2x33x5x7  2x35x52x72  24x35x54x7  24x36x53x73 22x39x54x73 22x39x5<x73x113
3odd! T50dd* ~ Modd! 1954d! 21odq! 230dd!
NON-3)oga! 4y 3x2N-1[(2N-1)04q! 3
AN 153 D P Al 1 v (N-T) E(AN-T) 5gq!

TABLE 2. - han® SPANWISE LOADING GRADIENT FACTOR

n
N 1 2 3 4 5 6

1.082788
.965721  1.118660
.958851  1.000148 1.124345
.956981 .993739  1.005515 1.126193
.956199 .992082 .999207 1.007242 1.127013
.955795 .991404 .997613  1.000965 1.008002 1.127446

~ 4 Vo

954930 .990297 .995956 .997804 . 998625 .999060

\ O\

® 1.000564 1.000858 1.001459 1.003004 1.009253 '..:28379

DU H W —
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TABLE 3. - iNn’ SPANWISE LOADING FACTOR
\\\\D 1 2 3 4 5 6
N n=0
1 .954930
2 .983016 .966313
3 .990965 .988798 .972705
4 .994332 .993811 .992034 .974770
5 .996085 .995935 .995712 .993301 .975684
6 .99711¢ .997082 .997167 .996548 .993923 .976166
-N+n \\\\ \\\\‘
+6
w .999530 .999312 .998901 .997976 .995137 .977205
TABLE 4. - ey n CHORDWISE SOLUTIONS OF EQUATION (37)
cec
Ne N,
noo1 2 3 4 5 6 ey 1 z (n-2ey |
K SV ee n=1on cc
N
c
1 1 1 1/4
2 3/2 1/2 2 4/4
3 15/8 3/4 3/8 3 9/4
4 35/16 15/16 9/16 5/16 4 16/4
5 315/128 35/32 45/64 15/32 35/128 5 25/4
6 693/256 315/256 105/128 75/128 105/256 63/256 6 36/4
I [
N N</4
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TABLE 5. - fN n » CHORDWISE LOADING FACTOR
cec
% 1 2 3 4 5 6
. Ne
1 1.102658
2 1.122892  .986247
3 1.126095 1.004345 .980140
) 4 1.127139 1.007210 .998126  .978631
5 1.127603 1.008144 1.000974 .996589  .978043
6 1.127848 1.008559 1.001902 .999433  .995991  .977756
® 1.128379 1.009253 1.003004 1.001459 1.000858 1.000564
\
.Nc+nc \ \
\‘\\:6
® .999530  .999312  .998901  .997976  .995137  .977205
TABLE 6. - LATTICE COMPARISONS FOR PREDICTING
L , A=4 RECTANGULAR WING
planform lattice| A-0 lattice Ae—1attice
. CL ACL s % CL ACL Wb CL ACL v b
[+ a a ¢} a a
1 14,4904 22.61 | 3.2513 -11.27 |3.6176 -1.22
21 41267 12.68 | 3.4914 - 4.67 |3.6787 .45
3] 3.9629 8.21 | 3.5367 - 3.43 13.6622 0

C
TABLE 7. - LATTICE COMPARISONS FOR PREDICTING Cﬁ“ A= 4 RECTANGULAR WING
L

planform lattice A0 lattice Ae-1attice
Cp, Cp Cq C, Cg Cy, Cy CQ Cz i

n = = A ,% n _ % n ~ s ANn

N G G O 0 e Y
1500 1 1.092 -8.45| 0 1.273 1.187 7.251.146 1.176 1.179 -. 29 .9681
2.250 1.088 1.165 -6.62| 0 1.230 1.187 3.65[.073 1.1851.185 0  .9880
.750 .912 .914 - .21].625 1.026 1.024 .19].662 .989 .995 - .67 .9762
31167 1.126 1.177 -4.33] 0 1.224 1.187 3.09}.049 1.194 1.187 .58 .9936
,500 1.049 1.092 -4.01(.417 1.145 1.124 1.87[.441 1.1151.115 - .04 .9921
.833 .826 .799 3.34{.750 .891 .914 -2.57|.77" .871 .883 -1.36 .9807
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Figure 1.~ Comparlson of chordwise loading with spanwise loading gradient.
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Figure 2.- Spanwise panel distribution for N = 4, and location of trailing
vortex of 1/4 panel width in from wing tip, and location of boundary
point at 3/4 panel width in from wing tip.
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A SUBVORTEX TECHNIQUE FOR THE
CLOSE APPROACH TO A DISCRETIZED VORTEX SHEET+

Brian Maskew
Analytical Methods, In..

SUMMARY

The close-approach problem associated with vortex-lattice methods was ex-
amined numerically with the objective of calculating velocities at arbitrary
points, not just at midpoints, between the vortices. The objective was achiewved
using a subvortex technique in which a vortex splits into an increasing number
of subvortices as it is approached. The technique, incorporated in a two-dimen-
sional potential flow method using "submerged" vortices and sources, was evalu-
ated for a cambered Joukowski airfoil. The method could be extended to three
dimensions, and should improve non-linear methods, which calculate interference
effects between multiple wings and vortex wakes, and which include procedures
for force-free wakes.

INTRODUCTION

A fundamental problem associated with vortex-lattice methods (e.g., ref. 1)
is that appreciable errors can occur in velocities calculated close to the dis-
cretized vortex sheets because of the singular nature of the induced velocity
expression. This problem has been circumvented in the past by calculating
"near-field" velocities only at special points, e.g., midway between the vorti-
ces, and by employing interpolation for intermediate positions. For calcula-
tions involving multiple vortex sheets, (e.g., refs. 2 and 3), the near-field
problem often requires that adjacent lattices be made to correspond across the
gap between the sheets. However, such a solution is not practical in vortex-
lattice methods which incorporate iterative procedures for force-free wakes,
{(refs. 3 through 11). Although these methods have proved very versatile in
general, close-approach situations involving multiple discretized vortex sheets
require careful treatment, and, ideally, the near-field problem should be re-
moved.

The objective of this investiqgation was to develop a near-field modifica-
tion for the discrete vortices which would allow velocities to be calculated
anywhere in the flow field, not just at the special points. Such a capability
would particulariy benefit the analysis of high-lift configurations and the cal-
culation of other close interference effects between wings and vortex sheets

+ . .
This work was performed while the author was a National Research Council
Associate at the NASY Ames Research Center.
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(or vortices) such as occur in configurations with leiding-edge or tip-edge
vortices.

Although the present paper deals with the near-field problems in two-di-
mensional flow, the extension to three dimensions (particularly for methods
having a force-free wake) is a major consideration throughout. The development

of the technique described herein is presented in more detail in references 12
and 13.

EXTENT OF THE NEAR-FIELD REGION

To evaluate the extent of the near-field region, the velccity distribution
was examined for a flat, two-dimensional vortex sheet with a perabolic vorti-
city distribution (ref. 12). This distribution was discretized using forty
vortices with equal spacing, A. Velocity distributions were calculated over a
region between two midpoints near the quarter position on the segment {fig.
1(a)) and compared with the analytic values. Erro= contours are shown in fig-
ure 1(b). The discretization gives negligible errors for both components of
velocity in the region beyond 1A from the sheet. In effect, the "holes"™ in the
representation are not sensed until we enter the 1A region. Inside the 1A re-
gion the errors increase rapidly except along special lines of approach to the
sheet. For the normal velocity component, the zero-error lines follow approxi-
mately the normals to the sheet at the points midway between the vortices and
also at the vortices. (Deviations from the normal lines occur because of the
gradient in vorticity across the region.) Both sets of positions on the sur-
face are used in the non-linear vortex-lattice method, (e.g., ref. 3), i.e.,
the midpoints are used as control points, as in the standard vortex-lattice
theory, and the vortex points are used when applying the Kutta-Joukowski law
for local forces and also whenr performing the trailing-vortex roll-up calcula-
tions. The zero-error lines for the tangential velocity component are less
well known; these lines enter the near-field region above the quarter and three-
quarter positions between the vortices, and approach the vortex locations along
approximately elliptical paths. All the zero-error paths are situated on ex-
treme "precipices" in the error contour map; small deviations from the paths
result in large errors and lead to the near-field problems.

NEAR-FIELD MODELS

The previous section indicated that errors arising from the discretization
of a vortex sheet become appreciable only within the 14 region. Clearly, if
we wished to calculate velocities very close to the discretized vortex sheet,
we cnuld simply decrease the size of A by increasing the number of vortices;
however, for three-dimensional problems the computing time could then become
prohibitive. An alternative solution is to apply a near-field treatment to
the vortices. This treatment would be applied only to those vortices that are
within a specified near-field radius (e.g., 1A) from the point where the
velocity is being calculated. A number of near-field models were considered.
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A core model offers the simplest near-field treatment which removes the
singular behavior of the velocity field. In such a model the velocity induced
by the voriex is factored locally so as to remain bounded at the vortex center.
The Rankine vortex and Lamb's viscous vortex are well known examples, but there
are other possible forms. Core models have been used in the past to smooth the
motions of vortices used in two-dimensional roll-up calculations (e.g. refs. 14
and 15). Several core models were tested using the discretized paraboiic vor-
ticity sheet, but none were found satisfactory for both components of velocity.
For example, they fail to restore the tangential component of velocity near the
vortex sheet. This can be seen in figure 2, which shows the error contours for
a Rankine vortex model with a core diameter of A. Although the tangential velo-
City errors appear slightly worse than for the unmodified vortex (compare figs.
1(b) and 2), the normal component errors are improved, on the whole, within the
core. But the error levels are still significant, and the zero-error lines no
longer approach the vortex points. Other near-field models were, therefore,
considered in which the vortex itself is modified, its strength being effect-
ively distributed along a line representing the local position of the vortex
sheet. This investigation led t5 the subvortex technique.

SUBVORTEX TECHNIQUE

A technique was developed in which the strength of a near-field vortex is
distributed by splitting it into a number of small vortices, i.e., subvortices.
These are distributed evenly along the vortex sheet joining the vortex to its
two immediate neighbors. The joining sheet is not necessarily a straight line;
the subvortices can be placed on an interpolated curve passing through the basic
vortices, and this allows a close representation of curved vortex sheets. Half
intervals separate the basic vortices from the nearest subvortices (fig. 3(a)),
and so the basic vortex positions become midpoints in the subvortex system.

This feature improves the accuracy of the calculated velocity at the basic vor-
tices (see "error contours").

The subvortices must have a combined strength equal to that of the associ-
at. 1 basic vortex. In the technique as used here, their strengths vary linearly
with distance from the basic vortex position. When several neighboring basic
vortices are treated in this way, the local effect approaches that of a piece-
wise linear vorticity distribution. Clearly, higher order distributions could
be used, but would involve more than one basic vortex interval on each side.

The number of subvortices used is such that the point where the velocity
is being calculated cannot "see the holes" in the discretized voitex sheet,
i.e., the point is kept just outside the new local 1A region of the subvortex
system. Figure 3(b) shows how this works using the following expression for
the number of subvortices on one side of the basic vortex:

NSV = integer-part-of (1 + A/H) (1)

where H is the normal distance of the point from the segment. Use of this ex-
pression keeps the number of subvortices to a minimum and helps to keep compu-
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ting costs down. When applied to the vor-ex-lattice methods, the midpoints be-
tween the vortices (i.e., the control points) should remain midpoints in the
subvortex system; NSV must then be even, i.e., as shown dotted in fig. 3(b).

A maximum limit, NSVpay, is placed on the number of subvortices to avoid
a runaway condition when the height H approaches zero. This limit controls
the closest approach that can be made to the vortex sheat before the new local
1A region of the subvortices is entered. It can therefore be used to control
the "accuracy"” of the calculation in a trade-off with computing time, i.e.,
by increasing the limit the error region would decrease in size, but the com-
puting time would increase, and vice-versa. To mini~ize calculation errors
inside the 1A region of the subvortex system, each subvortex has been modified
with a Rankine vortex core of diameter slightly less than the subvortex spacing.
This smears out the tangential velocity discontinuity associated with the vor-
tex sheet, but only over the new, diminished error-region. When representing
free vortex sheets, this smeared region could be related to the thickness of
the viscous wake in real flow.

Although the velocity errors become significant only within the 1A region,
the near-field radius, within which the subvortex technique is applied, had
to pe increased to 5A to obtain the required accuracy (+ 0.5% error). The
reason for this extension is that the induced v:locity from the "distributed”
model does not match that from the basic vortex until some distance away (ref.
12).

Error Contours

The technique was tested on the discretized parabolic vorticity distribu-
tion considered earlier. The error contours (fig. 4) are reduced to a very
small region adjacent to the vortex sheet where the approach is closer than *the
subvortex spacing. The extent of this error region depends on the maximum limit

placed on the number of subvortices. In these calculations NSVMAX was 10,

The normal component of velocity calculated at the vortex locations has
always been slightly less accurate than that calculated at points midway be-
tween the vortices. (The vortex points are effectively midpoints in a coarser
discretization.) For the present discretized parabolic vorticity distribution,
the error at the vortices in the region considered (see fig. 1l(a)) is 2.8% com-~
parad with 0.03% at the midpoints. With the subvortex technique applied, the
error at the vortices decreases to 0.2%; this reduction is helped by the fact
that the basic vortex locations become midpoints in the subvortex system.

SUBMERGED SINGULARITIES

The subvortex technique was incorporated in a two-dimensiocnal potential
flow method (ref. 13) aimed at calculating pressures at arbitrary points on
airfoil surfaces. Por this purpose, the error region associated with the sub-
vortex system was enclosed in the contour by "submerging" the vortices a small
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distance below the surface (fig. 5). The basic vortices (before submerging)
were positioned on the airfoil surface using equal angle increments in a cosine
equation applied to distance along the contour. 1In this spacing system, half
angles separate the initial vortex positions from the control points where the
boundary condition of tangential flow is specified. This is an adaptation of
Lan's work (ref. 16); it keeps the singularity strength distribution more uni-
form when passing through "difficult" regions such as leading and trailing
edges and flap hinge lines. With this point distribution, the first control
point is located at the trailing edge, and so the Kutta condition is applied by
specifying the flow direction there, e.g., the direction along the mean line.

From their initial surface positions, the basic vortices are submerged
along the local normals to the surface by a fraction of A, i.e., SDFA. The sub-
merged depth factor, SDF, is constant over the whole contour except in the
trailing-edge region where it automatically decreases along the single sheet
(fig. 5). The control points remain on the airfoil contour except in the region
very close to the trailing edge; here, corresponding upper and lower control
points are combined and moved to the mean line. Hence, the model adjacent to
the trailing edge resembles a camber line model. Because of this modelling,
there are more control points than unknown singularities, and so the equations
are solved in a least-squares sense.

The subvortices are placed on straight segments joining the basic vortices
(see fig. 6). They are positioned in accordance with equal angle increments in
the same system as the basic vortices (ref. 13).

For the three-dimensional case, quadrilateral vortices have been found
convenient for modelling arbitrary geometry configurations (refs. 2,3 and 11).
The present study, therefore, is based on the two-dimensional form of that
model, viz., opposing vortex pairs, (fig. 6), which are equivalent to a piece-
wise uniform normal doublet distributior. Such a model, forming a closed sur-
face, requires one doublet panel strength to be specified, otherwise the system
is indeterminate. Accordingly, the upper panel adjacent to the crossover (fig.
6) is specified to have zero strength. The boundary condition equation associ-
ated with the control point above the spe_ified panel is still included in the
system of equations. The resultant vortex strengths are:

i k=1, 2, ..., N (2)

where Dk are the doublet panel strengths, i.e., the strengths of the opposing

vortex pairs. (Note that D has been assumed zero.)

N+1

Preliminary calculations using vortices alone (ref. 13) showed problems
near the leading edge and near the crossover of the interior vortex "sheets".
These problems were attributed te ill-conditioning of the boundary equations,
particularly near the crossover, because the vortices were trying to provide
thickness effects (as well as lifting effects) from a small base. Source singu-
larities, which are more suitable for providing thickness effects, were there-
fore included in the model. The sources, coincident with the vortices and
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receiving the same "subvortex" treatment, have a simple strength distribution
which provides the basic thickness form symmetrically about the mean line (ref.
13). The sources particularly benefit the pressure calculations in the leading-
and trailing-edge regions.

RESULTS AND DISCUSSION

Figure 7 shows the pressure distribution calculated at 120 surface points
that are not related to the vortex/control point locations. The airfoil is a
cambered Joukowski represented by 46 vortex/sources with a submerged depth of
0.1 and a near-field radius of 5 . Trapezoidal-rule integration of the pres-
sure distribut >n yields the following lift, drag and moment coefficients: CL

= 1.7040 (0.4% error); CD = =0.0069 (an error of 0.4% of CL); and CM = -0.5377

(0.26% error). The calculated pressure values show good agreement with the
exact distribution, but they show a minor tendency to oscillate near the lead-
ing edge. The oscillations can be reduced (ref. 13) by increasing the density
of the subvortex system, but the computing time increases (53% increase in time
for a factor of 2 on the number of subvortices). "se of a higher order inter-
polation scheme for positioning the subvortices also reduces the oscillatory
tendency (ref. 13). The oscillations can be eliminated by using a large number
of basic singularities (e.g., 90). It is significant that the small oscilla-
tion disappears when there is no suction peak, e.g., figure 8 shows the pres-

sure distribution for the same airfoil at zero incidence, the CD error in this

case being 0.0002 or 0.4% of CL' (This case had the higher-order geometry rou-

tine for positioning the subvortices.) This implies that a higher-order srength
variation for the subvortices might be useful when using only a small number of
basic singularities; this would ensure that peaks in the pressure distribution
are adequately represented. The higher-order routines would only be applied
locally in the problem areas.

Figure 9 shows the pressures calculated at the same 120 arbitrary points
as before, but with only 19 basic singularities; using so few vortex unknowns
would clearly bc an advantage in three dimensions. The distribution in figure
9 corresponds with figure 12 in reference 13, but the subvortex system for the
present case was doubled. The higher-order geometry routine for positioning
the subvortices was used, but the subvortex strength variation was linear. The
calculated pressures are in good agreement with the exact solution except near
the leading edge. A higher-order strength varjation for the subvortices, as
discussed above, should improve the calculations in the peak suction region.

Submerged Depth

The submerged depth has a‘significant effect on the solution. Typical

variations in the errors in integrated CL' CM and cD with submerged depth

factor, SDF, are presented in figure 10. The errors in CD and CM decrease ra-

pidly as the dpeth decreases, but the computing time increases because the
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number of subvortices must increase; e.g., the time for SDF = 0.05 is 35% high-
er than that for SDF = 0.1. A submerged depth of about 0.1 seems a reasonable
compromise.

Near-field Radius

The near-field radius factor, NRF, when multiplied by the A value of a
basic vortex, defines a circle centered on that vortex. Whenever a velocity
calculation point comes inside the circle, then that basic vortex is modified
by the subvortex technique. Figure 11 shows the effect of NRF on the force and
moment errors from the pressure integration. They show excellent convergence
characteristics as NRF increases, although CL appears to be converging towards

an error of the order of 0.5%. The error in CL based on circulation, however,

converges towards zero. The calculated pressure distribution at the arbitrary
points improves as NRF increases, but there is little visual change in the dis-
tributions from that shown in figure 7 (NRF = 5) for NRF values above about 3.
Computing time decreases rapidly as NRF is reduced; a value of 3 instead of 5
for NRF gives a time saving of 30%.

CONCLUDING REMARK.

Discretization of a vortex sheet introduces significant velocity errors
only within a distance from the sheet equal to the vortex spacing in the lat-
tice. Core models applied to the vortices help to limit the size of errors but
do not reduce them to a satisfactory level when the field of interest approach-
es close to the vortex sheet. The region where significant errors occur can be
reduced to a small region of controllable width close to the vortex sheet by
the use of the near-field model in which a discrete vortex splits into an in-
creasing number of subvortices as it is approached. The combination of the
subvortex technique with a concept that places the singularities inside the
airfoil has resulted in a method by which accurate pressures (and velocities)
can be calculated directly (i.e., without interpolation) at any arbitrary point
on the airfoil surface. The method is essentially a numerical integration pro-
cedure, but, by developing it from the vortex-lattice model, a useful set of
rules aad automatic procedures has resulted, which makes the method accurate
as well as efficient when moving from near tou far-field regions. The calcula-
.ions were enhanced by combining sources with the vortices.

The results obtained so far indicate that the number cf basic singularities
used to represent an airfoil should be of the order of 40 to 50. However, the
results also suggest that the use of a higher-order strength variation for the
subvortices in regions of high pressure gradient might allow the number to be
decreased - possibly as low as 20. Bearing in mind accuracy and computing ef-
fort, the optimum values for the submerged depth and for the near-field radius
would appear to be of the order of 0.1A and 3A, respectively. The method could
be extended to the three-dimensional case for application to vortex-lattice
methods, and should then allow close-approach situations associated with multi-
ple components and force-free wake calculations.
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(b) Velocity error contours for the basic discretization.

Figure l.- Velocity error calculations.
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Core diameter = A.

Figure 2.- Velocity error contours for a Rankine vortex core
model.
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Figure 3.- The subvortex technique.
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Figure 4.- Velocity error contours for the subvortex technique.
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Figure 5.- Submerged singularity model with discrete vortices.
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Figure 6.- Equivalent piecewise constant doublet model.
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Figure 7.- Pressures calculated at arbitrary points on a
Joukowski airfoil at 10° incidence. Model: submerged
vortices and sources (coincident) with subvortex tech-
nique applied (linear interpolation for position);

46 basic singularities; submerged depth = 0.14; near-
field radius = 5A.
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Figure 8.- Pressures calculated at arbitrary points on
a Joukowski airfoil at zero incidence. Model: as
in figure 7 but with higher-order interpolation for
subvortex positions.

-5.00
-4.00
S o CALCULATED PRESSURES
—— EXACT DISTRIBUTION
3.0}
(€4
-2,00 -
-1.00
0.00 1 1 1 1
k-/ ;;:=a===eeee=-e--a-‘""°m—1
1.00 ] 1 2 1 ]
0 0.2 0.4 0.6 0.8 1.0
x/C

o SINGULARITY POSITIONS
x CONTROL POINTS

Figure 9.- Pressures calculated at arbitrary points
on a Joukowski airfoil at 10°. Model: as in
figure 7 but with 19 basic singularities.
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Figure 10.- Effect of submerged depth factor, SDF,
on the errors in the integrated force and

coefficients. Basic case as in figure 7.
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SOME APPLICATIONS OF THE QUASI VORTEX~LATTICE METHOD
IN STEADY AND UNSTEADY AERODYNAMICS

C. Edward Lan
The University of Kansas

SUMMARY

The quasi vortex-lattice method is reviewed and applied to the evalua-
tion of backwash, with applications in ground effect analysis. It is also
extended to unsteady aerodynamics, with particular interest in the calcula-
tion of unsteady leading-edge suction. Some applications in ornithopter
aerodynamics are given.

INTRODUCTION

The quasi vortex-lattice method (Quasi VLM) has been shown to produce
good accuracy in lifting-surface problems not only for non-flapped but also
flapped configurations (ref. 1). In these applications, the only induced
velocity to be evaluated is the downwash. However, in some other applica-
tions such as ground effect analysis and wing-jet interaction (ref. 2), it
is necessary to compute the u-induced velocity (i.e. backwash) in the
flow field away from the wing plane. It is the purpose of this paper to
assess the accuracy of such backwash computatioa.

One important feature of the Quasi VLM is the accurate prediction of
the leading-edge suction without resorting to kutta-Joukowsky relation. It
is this feature that makes it possible to extend the method to the predic-
tion of unsteady leading-edge suction in unsteady aerodynamics. This exten~-
sion 1is also presented below.

385

mpnobinn A Eafia {440 Burd ST S0 4 16 b

enanmertied oA kS,

Biricsoiians



S2d B vt commarite » e

P

K L

386

SYMBOLS

aspect ratio
chord length, m(ft), taken as unity.
leading-edge singularity parameter, defined in eq. (3c)

induced drag coefficient

sectional lift coefficient

amplitude of sectional 1lift coefficient in unsteady flow
total lift coefficient

lift curve slope, per radian

pitching moment coefficient

pitching moment curve slope, per radian

pressure coefficient difference
time-averaged leading-edge thrust coefficient

nondimensional height measured from the wing plane, referred to
the chord length. See fig. 5.

flapping amplitude

flapping amplitude at the wing tip

reduced frequency, defined as wc/2V
number of integration points, or Mach number

number of chordwise vortices
number of spanwise vortex strips

leading-edge suction, N(1b), or wing area, m2(ft?)
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Subscript:

£

amplitude Pf unsteady leading-edge suction
nondimensi;nal backwash, positive downstream
amplitude of unsteady backwash on the wing plane
freestream velocity, m/sec (ft/sec)

nondimensional downwash, positive downward

rectangular coordinates, with x positive downstream, y positive
spanwise to the right and z positive upward

camber slope

angle of attack, deg.

amplitude of pitching oscillation
- V12

propulsive efficiency, percent
nondimensional spanwise coordinate

nondimensional vortex density

oscillation frequency, rad/sec

density, kg/m3 (slugs/ft3)

freestream dynamic pressure, N/m2 (lb/ftz)
-1

amplitude of flap angle

sectional lift coefficient in free air

flap
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BASIC ANALYSIS IN QUASI VLM

TN

For simplicity in presentation, consider the two-dimensional (2-D) downwash
equation:

1
w(x) = %Ff y(x')dx"' (L
0 x-x"'

The integral is first transformed to a 6-integration and then reduced to a
finite sum thrcugh the midpoint trapezoidal rule. It is obtained that

n T
-1 y(8') sind' d6' -1 ' '
wix,) = -‘f - — = o= y'sin8' - ysin® _ ,
i 27 0 cos@ - cos6 27 0 " cosé — cosd’ de
. -1 N Yksinek - yisinei
2t N k=1 cosei - cosek
1 yksinek NC , i=0
=N —_— + (2)
k=1 X1 % 0 , i#0
where
X, =X (1-cos8,) , 6, = 1=0,1,...,8 (3a)
i 2 i ] i N ’ phlygeceoy
=1 = k-1)T -
X =3 (1 - cosek) . ek N , k=1,...,N (3b)
2C = 1im Y(8)sin © (3¢)

60

Note that eq. (2) differs from the conventional VLM in that sin® in the for-
mulation will eliminate the square-root singularities at the edges and the
vortex densities are directly predicted, instead of the strengths of discrete
vortices, Furthermore, the control and vortex points are defined by the so-
called "semi-circle method." This is illustrated in fig, 1, By sclving

eq. (2) with i#0, N yk-values can be obtained. Then the leading-edge singu-

larity parameter C can be computed by taking i=0, i.e., by taking control
point at the leading edge. The leading-edge suction is then

2
S = mpg- (4)
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In three-dimensional cases, the above concept is also applicable by treat-
ing each chordwise vortex integral in a similar manner as in eq. (2). In this
case, not only chordwise control and vortex locations are defined by the semi-
circle method, but also the spanwise vortex strips and control locations. See
fig. 1. The detail is referred to in ref. 1. The rate of convergence of this
method is indicated in figs. (2) and (3) for a 45°-sweep wing of AR=2 and
constant chord. It is seen that the method converges reasonably fast.

BACKWASH EVALUATION AND GROUND EFFECT ANALYSIS

In ground effect analysis, it is known that the image vortex system may
produce strong backwash to decrease the air velocity on the wing great enough
to be significant. In fact, as a result the wing 1lift in ground effect may
be less than the free air value. This unfavorable effect of backwash is par-
ticularly important in powered-lift aerodynamics and for wings under high lift
conditions (ref. 3). Therefore, any formulation of ground-effect problem
without backwash computation is applicable only to small loading conditions
as analyzed in ref. 4.

To see the accuracy of backwash computation by VLM and Quasi VLM, con-
sider the 2-~D expressions for the backwash and downwash:

u(x,z) = —-[ y(xdx' (5)
0 (x-x')%4z2

1 \J L t
w(x,z) = _;__ f (x=x")y(x')dx (6)
"0 (x-x")2+ 22

If y(x')= V(1-x')/x' , the integration can be performed exactly. The results
are shown in Appendix A. The downwash expression is included here for later
comparison. In all computations shown below, equal-spacing elements are used
for the VLM. For the Quasi VLM, again the 6-transformation is applied first
before using the midpoint trapezoidal rule. Fig. 4 shows that the backwash
along the chord evaluated by the VLM at both control and vortex points tend
to be too high, in particular near the leading edge. On the other hand, the
Quasi VIM gives quite accurate results everywhere at these not too small z-
values. With these results in mind, both methods are now applied to the fol-
lowing 2-D linear ground-effect equations:

i (x-x')-2h,a dz
21rf xgx de zﬂfY(x') 1 dx,_q_&_& (7
0 (x--x')2+4h12
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1
c, =2 j. y(x) (1+u(x))dx (8)
0

The corresponding geometry is given in fig. 5. The second integral in eq. (7)
represents the normalwash due to the image vortex system. The ''2ha" term is
the backwash contribution. The results of computation are shown in fig. 6.
Two points are of particular interest. Firstly, the linear vortex theory will
give better results if the mean surface (as used in the mean surface approxi-
mation of the linear airfoil theory) is taken through the 3/4 chord point.
Secondly, both the Quasi VLM and VLM predict approximately the same 1lift, de-
spite the fact that the VLM gives higher backwash. This is because the VLM
also produces higher downwash at a given z-value. This is shown in fig. 7.
This means that the higher upwash from the image vortex system as predicted
by the VLM tends to compensate the effect due to the higher predicted back-
wash., With flap deflected, the VLM predicts lower 1lift than the Quasi VLM
does as shown in fig. 8.

The analysis with eqs. (7)-(8) becomes increasingly inaccurate at h<0.2.
As an extreme example, let z=0.05 in eq. (5). With y= J(1-x)/x , the results
are shown in figs. 9 and 10. It is seen that the backwash is underpredicted
at the control points and overpredicted at the vortex points by both the VLM
and the Quasi VLM. Depending on a, this would result in small or even nega-
tive cy in eq. (8). The backwash computation with small z has important ap-

plications in wing-~jet interaction theory (ref. 2). Therefore, it is desirable
to find a practical way to improve the accuracy of the computation. Even
though increasing the number of vortex points (i.e. the number of integration
points) can increase the accuracy,it is not a practical way because the number
of unknowns to be solved would greatly increase, in particular, in 3-D appli-
cations. Since the inaccuracy is mainly due to the second-order singularity

in eq. (5) as z-»0, a practical method is described in ref. 6 to deal with this
by weakening the singularity., According to this method, eq. (5) is evaluated
as follows:

1 . 1 '
u(x,z) = i;_f Y(x")-y(x) dx' + ZIZSX) f dx 9)
"0 (xex") 22 T 0 (x-x')%+22
N M
-y(x), .
22 Rl Al sine, + 24D L T ity o
T

1 (X‘xk)2+ z?2 M i=1 (x-xj)2+22

where x may be the control points (eq. 3a) or the vortex locations (eq. 3b) and

xj a% (1-.(:036.1) . ej = -(—%31-—1—)-1 . jsl,...,}‘l (11)
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with M chosen to be 2PN for interdigitation between control and vortex points,

p being any integer. Note that the last integral in eq. (9) can be integrated

exactly in 2-D case. However, the similar integral in 3-D would bs too compli-
cated to integrate. The accuracy of eq. (10) is also demonstrated with p=3 in

figs. 9-10, 1Its application in a wing-jet interaction theory is discussed

in ref. 7.

PREDICTION OF UNSTEADY LEADING-EDGE SUCTION

As mentioned earlier, the Quasi VLM predicts the leading-edge suction
through the computation of the leading-edge singularity parameter. This fea-
ture can be easily extended to the unsteady aerodynamics if the downwash ex-
pression similar to that due to a steady horseshoe vortex can be derived for
unsteady flow. This has been done recently by integrating the doublet poten-
tial by parts. The results are given in Appendix B for planar configurations.
Note that if the oscillating frequency is zero, the expression is reduced to
that for a steady horseshoe vortex. Using this expression, it is possible to
extend the steady Quasi VLM to the unsteady case. In 2-D flow, this has been
done in ref. 8. Some comparison with exact solutions of unsteady leading-edge
suction (ref. 9) is made in Table I. It is seen that the accuracy of the Quasi
VLM is quite good. Other aerodynamic characteristics at low or high subsonic
Mach numbers can also be predicted accurately, including gust response (ref. 8).

In the 3-D method, note that the downwash expression given in Appendix B
involves two types of integrals. The integration associated with I-integral,
eqs. (B.15) and (B.18), can be performed by approximating the integrand, as
has been done in ref. 10. On the other hand, the integrals, F2 and F4, can

most convetiiently be integrated by approximating the integrands by quadratic
functions of the integration variable as has been done in ref. 10. The re-
maining aspects of the method follow closely the steady version.

To show the 3-D applications, the characteristics of a rectangular wing
of aspect ratio 2 undergoing the first bending mode of oscillation (ref. 11)
are computed. To indicate the rate of convergence of the method, the pre-
dicted complex 1ift coefficient is plotted in fig. 11 against the number of
spanwise strips, It is seen that the method converges relatively fast for
this planform. For instance, with Nc=4, CL is changed by only 1% as Ns is

increased from 10 to 20. Furthermore, the effect of Nc is seen to be small

for this wing without chordwise deformation. The predicted pressure distribu-
tions at one spanwise station are compared with experimental data and those
predictod by the Doublet-Lattice Method (DLM) (ref. 10) in fig. 12 with good
agreement. The 3-D exact solution of unsteady leading-edge suction 1is not
available. However, Bennett (ref. 12) has applied Reissner's high aspect-
ratio theory to the computation of propulsive efficiency of ornithopters.
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Here, the propulsive efficiency is defined as

_ quCTV (12)
ns=——T—
q SCLh
s 1
N | =\ (13)
ch = guf BT, man
-1
All quantities in eq. (12) have been averaged over one cycle. Tae : ' .wits for
two rectangular wings of aspect ratios of 6 and 12 performing line.- apping
(E(E) ='Etn) are shown in fig. 13. It appears that the high aspect - .'o

theory tends to predict higher thrust than the present method. The agreement
of the predicted efficicency by both methods is good for AR=12, But for AR=6,
the high aspect-ratio theory predicts lower efficiency, presumably because it
would predict much higher input power which depends on the wing loading.

CONCLUDING REMARKS

The quasi vortex-lattice method was shown to possess good convergence
characteristics in steady wing theory. 1Its application to the computation
of downwash and backwash away from the wing plane in 2-D flow showed better
accuracy than the conventional VLM with z not too small. When z is small,
both methods become inaccurate in backwash computation. An improved methol
for the Quasi VLM was presented. The Quasi VLM was also extended to the un~
steady aerodynamics, with the calculation of unsteady leading-edge suction
being of particular interest.
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APPENDIX A
Exact Integration for Eqs. (5) and (6)
(1) Eq. (5)
1 2
z [1-x" _dx' _ az b(l-x)-a m 2
u(x,z) = ETT f x' 2,.2 B .é.l—; 4,122 {i 51gn[b(l_X)_a !
0 (x~x")“+2 a'+b<z

+ % sign[bx+32]} (A.1)
where

b = %(1—2x) a”

al = \/[zz+x(l~x)]2+(1-—2x)zz2 - [224x(1-x) ]

) (A.3)
(2) Eq. (6)
1
1-x'
1 (x-x") [ ~— -p! 2_
w(x,z) 77 2 X' ax! = (D-D )cosel+D cosggl
— ! 2 -
0 (x=x) “42 D2+D 2-2c052‘31

where

UEX { [242'4+(2' 241622) 7] + [Z'+(Z'2+16zz)%]%} -

6, = cos™! {[ 2 %]%cos{} (A.5)

242" + (2'%+41622)

Z' = 4z2-3in?0 (A.0)
cosf = 1-2x (A.7)
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APPENDIX B

Downwash due to an Oscillating Horseshoe Vortex

The dowmwash produced by an "oscillating horseshoe vortex" for a
planar configuration can be written as

a9 2 (8.1)
3z 3z 3z
where
29,
7 ThtH (8-2)
%9,
3z T3t F (8.3
Y (0 SN 1
1 8 ) vi-y 322 2
V(x-x")2482(y-y")
' (x'-x)(xz—x1)+82(y2-y1)(Y"Y)
+
\[y'-y q 1
x'=x2
x exp { 0 MVGex) 2482 (yy ') 2 ‘"2"‘"")} Y'Yy (B.4)
: v 2
B
x'=x1
y'=y,
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1 {
I ffz 1, 1 [(“2""1) (n-y)+Q ‘
2 1v 8n n-y (yz-yl)R n-y ,
0
- . - 20y ov 12(ne »
+((x2 x)) (n-y)4Q) (x,-x,) + 8(y, ¥ (n y)] Lfi
Q
5 i
_ x 2 X,-X MR-M“x =
x lH(R! n) + (H_ Eo_ - ..H_..) 2_ 1] exp [—i% -—'———-—0] (yz-yl)dt (B.5) ‘
82 82 yZ yl 82 “
R = JarZ4BeC (B.6) ;
g A= (xy7x))? + B2(y,~y,)? (8.7)
% B = -2[(x-x;) (x)=x,) + 82(y-y)) (y,~y,)] \B.8)
¥ 3
: €= (x-x)% + B2(y-y))? (.9)
! n=y = (y,~y)1=(y-y;) (B.10)
% Q= Geymx) (y-y9) - (x=x)) (y,-y,) (B.11) ’ :
b i
i
: Xy = X-X; - T(xz-xl) (B.12) \
w 4% 1 1 : ;
! F3=-Y& V- = I + ¥,y 11} (B.13)
s 1 -f:k
aC :
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g

-x0+Mm

B?

r,2 = (y-m?
(11r1)1= Tlrl at t=0

(Tlrl)2 =TT, at T=1

11 r12 at t=0

~
N
[}

12 r12 at t=1

%01 = %o at t=0

x02 = xo at t=1

an M(y n{l )e-l—(r r1+x0)+1 I(r) 0
147, 2 Yoy
1
T X XA—X
+ (1 - 1 Ye ~-ig (T1r1+x0 2 17271
1+112 BZR 82 yz_yl
Wy
- (y-1) TR 4o
'2+r 2)3/2
T

In the above expressions, (xl, yl) and (x
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Table I. -- Comparison of Predicted Leading-Edge Suction
Parameter with Exact Solutions in 2-D Incom-
pressible Flow.

s = 1lim u(x)V 1+x
x>=1
;E = 3s/3a , 5= = 3s/38

8

(A) Pitching motion about midchord

k N Present Method " Exact, Ref. 9

0.1 10 1.18870-0.255551 1.18870-0.255561
0.5 15 0.89889-0.355271 0.89889-0.355291
1.0 15 0.83374-0.467371 0.83378-0.467481

(B) Flap Rotation with flap-chord ratio = 0.3

S

k (Nl’ NZ) Present Method § Exact, Ref. 9

0.1 (12, 7;_ 0.37115-0.146961 0.37139-0.147051
0.5 (12, 7) 0.17483-0,115651 0.17496-0,115761
1.0 (12, 7) 0.12972-0.065801 0.12982-0.065921

Note: N1 = number of doublet elements on the airfoil.

N2 = number of doublet elements on the flap.
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Figure 4.~ Comparison of backwash evaluations (eq. 5) by different

methods. Y(x) = “(l - x)/x: N = 8.
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UNSTEADY FLOW PAST WINGS HAVING SHARP~-EDGE SEPARATION#*
E. H. Atta, O. A. Kandil, D. T. Mook, A. H. Nayfeh
Virginia Polytechnic Institute and State University

SUMMARY

A vortex-lattice technique is developed to model unsteady, incompressible
flow past thin wings. This technique predicts the shape of the wake as a func-
tion of time; thus, it is not restricted by planform, aspect ratio, or angle of
attack as long as vortex bursting does not occur and the flow does not separate
from the wing surface. Moreover, the technique can be applied to wings of arbi-
trary curvature undergoing general motion; thus, it can treat rigid-body motion,
arbitrary wing deformation, gusts in the freestream, and periodic motiomns.

Nuaerical results are presented for low-aspect rectangular wings undergoing
a constant-rate, rigid-body rotation about the trailing edge. The results for
the unsteady motion are compared with those predicted by assuming quasi-steady

motion. The present results exhibit hysteretic behavior.
INTRODUCTION

For steady flows there is ample experimental evidence indicating that flows
past thin wings, even those exhibiting significant leading-edge and wing-tip
separatiou, can be described by a velocity potential. We assume that the same
is true for unsteady flow.

The velocity potential for incompressible unsteady flow is governed by
Laplace's equation and is subject to the following boundary conditions:

(1) the fluid cannot penetrate the lifting surface,

(2) the disturbance created by the lifting surface must die out away

from the surface and its wake,

(3) there must not be a discontinuity in the pressure in the wake, and

(4) the Kutta condition must be satisfied along the sharp edges when

the flow is steady.

The present technique is an improvement over the previously developed tech-
niques for treating this problem. For example, Morino and Kuo (ref. 1) develop-

ed a technique in which the integral equation governing the velocity potential

*This work was supported by the NASA Langley Research Center under Grant No. NGR
47-004-090.
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is solved numerically. Ashley and Rodden (ref. 2), Rodden, Giesing and Kalman
(ref. 3), Giesing, Kalman, and Rodden (ref. 4), and Albano and Rodden (ref. 5)
developed techniques employing combinations of horseshoe-vortex lattice -.nd
doublets. However, these methods can treat small harmonic motions, and be-
cause none is capable of determining the geometry of the wake, the small harmon-
ic motions must be about small angles of attack. Belotserkovskii (ref. 6) de-
veloped a technique for treating general unsteady motion, but because it is not
capable of determining the geometry of th: wahe, it too is limited to small
angles of attack. Djojodihardjo and Widnall (ref. 7) also developed a general
technique in which the integral equation governing the velocity potential is
solved numerically. Though they determined the geometry of the wake adjoining
the trailing edge, they ignored the wing-tip vortex system; thus, their techni-
que at best is limited to large angles of attack for moderately swept, high-
aspect wings. With the present technique, the geometry of the wakes adjoining
all sharp edges is determined as part of the solution, and there are no re-
strictions on the type of motion. The essential difference between the tech-
niques of Belotserkovskii, Djojodihardjo and Widnall, and the present paper are
illustrated in figure 1.

SYMBOLS

&

aspect ratio

wing semi-span

o
B

normal-force, pitching-moment coefficients, respectively
pressure coefficient

root chord

La I~ N -

force vector
length of vortex segment

position vector

T Ry O 0 0O o

nondimensional time

*ime increment

(ad

nondimensional velocity vector
wing-fixed coordinate system

angle of attack

initial and final angles of attack

o
Q
"h

nondimensional circulation

Qe 1 Q@ Q M <4y D>
<
N

rate of change of angle of attack
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THE PRESENT TECHNIQUE

For completeness, the vortex-lattice technique for steady flows is briefly

discussed. Then the modifications needed to model unsteady flows are described.
Steady Flows

The wing surface is represented by a lattice of discrete vortex lines, while
the wake is represented by a series of discrete nonintersecting vortex lines.
Each vortex segment of the lattice is straight (the elemental areas are not nec-
essarily planar), and each line in the wake is composed of a series of short
straight segments and one semi-infinite segment. Control points are associated
with each elemental area of the lattice and with each finite segment of the wake.

The desired velocity potential is the sum of the known freestream potential
and the potentials of all the discrete vortex lines. The velocities generated
by the latter are calculated in terms of the circulations around these segments
according to the Biot-Savart law. These circulations are the primary unknowms.

To satisfy the no-penetration boundary condition, the normal component of
the velocity is forced to vanish at each control point of the lattice. The velo-
city field generated by the vortex segments is calculated according to the Biot-
Savart law; thus, the disturbance dies out far from the wing and its wake. The
finite segments in the wake are aligned with the velocity at their control points
in order to render the pressure continuous. Finally, no vortex segments on the
lattice are placed between the last row and column of control points and the
edge where the Kutta condition is imposed.

The problem is solved by the following iterative scheme:

(1) a direction is assigned to each segment in the wake,

(2) the circulations around each of the vortex segments are determined

by simultaneously satisfying the no-penetration condition and
spatial conservation of circulation,

(3) the segments in the wake are rendered force-free while the circula-

tions are held constant,

(4) steps (2) and (3) are repeated until the shape of the wake doesn't

change.
An example of a steady solution is shown in figure 2.

More decails and results are given by Kandil, Mook and Nayfeh (ref. 8) and
by Kandil (ref. 9).
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Unsteady Flows

The initial condition can be a steady flow such as one obtained by the meth-
od described above or no flow at all. Here we consider the former. When condi-
tions change with time, starting vortices form along the sharp edges; then they
are shed and convected downstream with the local particle velocity. Thus, an
ever-growing portion of the wake must also be represented by a lattice, not a
series of nonintersecting lines as in the steady case. This i1s the essential
difference between the steady and the unsteady model.

The continuous variation with time is approximated by considering the mo-
tion to be a series of impulsive changes occuring at evenly spaced time inter-
vals; thus, the motion becomes smoother as the time intervals become smaller.

In figure 3, the wake adjoining the wing tip and trailing edge is spread
out to illustrate how the lattice forms in the wake. The first arrangement
shows the initial conditions; this corresponds to a steady solution such as the
one shown in figure 2. The next arrangement corresponds to time = 1; hence,
there is one shed vortex line in the wake. The last arrangement shown corres-
ponds to time = 2. An actual solution is shown in figure 4; this picture corres-
ponds to time = 4,

With an incompressible model of the flow, the instant the angle of attack
changes, the vorticity on the wing and the position of the entire wake (i.e.,
the direction of the vorticity in the wake) change. A starting vortex forms a-
long the sharp edges and subsequently is shed. But the strength of the vorticity
in the wake does not change because the vorticity is convected downstream with
the fluid particles. Such a model of the flow is realistic only when the parti-
cle velocity is small compared with the speed of sound (i.e., when the Mach num-
ber is small).

In terms of the present discrete-line representation, the instant the angle
of attack changes, the circulations in the lattice representing the surface and
the directions of the finite segments representing the wake change. But the cir-
culations around the finite segments in the wake do not.

One cannot, simultaneously, render the wake force-free, satisfy the no-
penetration condition on the surface, and spatially conserve circulation unless
one adds a new vortex line which essentially parallels the sharp edges. Thus,

the Kutta condition cannot be imposed during unsteady motion. This new vortex
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line represents the shed vorticity which is convected downstream causing a
lattice to form in the wake. One new vortex line is formed for each time inter-
val. When the wing stops rotating, lines continue to be shed; however, the
strengths of these lines decrease and the steady-state results are approached
rapidly. This is illustrated in figures 5 - 7. The sequence of events leading
up to figures 5 - 7 is as follows: Initially the angle of attack was eleven
degrees and the flow was steady. Then the angle of attack was increased at the
rate of one degree per nondimensional time unit until the angle of attack reach-
ed fifteen degrees. At this point the angle of attack stopped changing. The
general unsteady program was allowed to run for twelve time units. This allowed
the strength of the shed vortices to vanish, those of appreciable strength to be
convected far downstream, and the flow to achieve a steady state.

In all three cases, the 1ift and moment produced by the unsteady flow are
lower than those produced by a steady flow at the same angle of attack. The
steady-flow results are shown by the dotted lines.

At each time step, the solution is obtained in essentially the same way
that the steady problem is solved. But now there is the added complication of
convecting the shed vorticity downstream with the particle velocity. This is
accomplished by moving the ends of the segments of the shed line according to

T(t + At) = F(t) + vat
where Vv is the particle velocity and At is the time interval.

The nondimensional loads are calculated according to

F=2aT xv
where £ is the nondimensional length of the segment on which the force ¥ acts,
T is the circulation around this segment multiplied by a unit vector parallel
to the segment and Vv is the velocity at the midpoint of the segment. The re-
sultant force is obtained by adding the forces on the bound segments. The
pressures are calculated by averaging one-half the forces on the segments along
the edges of an elemental area over the elemental area, exceptions being those
elements along the leading edge for which the entire force acting on the forward
segment is averaged.

Figure 8 shows the convergence as the number of elements is increased. Com-
paring figures 9 and 10 with figures 5 and 6 shows that the unsteady results
approach the steady results as the rate of changing the angle of attack decreases.

Figures 11 and 12, which show hysteretic behavior, compare the results for
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increasing angle of attack, decreasing angle of attack, and the steady state.

The initial conditions are the steady-state solutions at eleven and fifteen

degrees.

More details and results are given by Atta (ref. 10).
CONCLUDING REMARKS

The method presented here is general. It can be used to treat arbitrary mo-

tions, including harmonic oscillations. And it can be used to treat leading-

edge separation.

1.

10.
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SUMMARY OF OPEN DISCUSSION ON FUTURE VORTEX-LATTICE UTILIZATION

John C. Houbolt
NASA Langley Research Center

The response of the attendees during the open discussion on vortex-lattice
utilization was excellent. The intent of this summary is not to evaluate the
comments made but simply to indicate the topics discussed. Essentially, the
discussion focused on the following general topics: grid layout, drag calcula-
tions, bodies in combination, vortex lift, and separated flow effects.

In order to stimulate and initiate the discussion, a panel was set up
on a spur-of-the-moment basis. Members were Jan Tulinius of NASA Langley
Research Center, Joseph Gilesing of McDonnell Aircraft Company, Winfried Feifel
of The Boeing Company, and Brian Maskew of Analytical Methods, Inc. The sub-
jects covered by each of these members are essentially as follows:

Tulinius, in effect, gave a very good impromptu paper. He covered two-
dimensional and three~dimensional drag effects and discussed the equivalence of
near- and far-field drag estimates. He mentioned supersonic vortex-lattice
methods and pointad out problems associated with Mach cone and sonic line singu-
larities, with natural edge conditions, and with nonplanar effects. He also
discussed the use of distributed singularities versus the use of lattice con-
straint functions. Also covered was the topic of free vortices, whether of the
leading-edge variety for arbitrary planforms or as associated with trailing-edge
and tip wakes.

Giesing's remarks also constituted a very guod impromptu paper. He dis~
cussed areas for numerical improvement of the lattice method with topic coverage

as follows:

Supersonic flow
Infinite velocity on Mach cones
Smearing of loads - loads wandering out of Mach cone
Instability of solutions

Convecting singularities (jets, wakes, leading-edge vortices)

Infinite velocity when vortex contacts control point

Force or pressure calculation inconvenient on yawed elements
Wake next to fuselage

Low lift for jet flaps
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Subsonic flow

Discontinuity in Ax causes disturbance in pressures

Collocating points on body surfaces, while using axial singularities can
cause instabilities

High frequency lattice method expensive and/ur inaccurate

Computing time and accuracy trade-off for wing-bodies

Areas where Giesing felt there was need for basic improvement in the
lattice methods are as follows:

Transonic flow
Empirical corrections
Viscous corrections

Steady
Unsteady

Oscillatory flow

Nonplanar flaps down, etc.
Wing-jet interaction (compressible)
Leading-edge vortex

Lateral-directional forces

Feifel emphasized the need for practical considerations and input sim-
plicity. He discussed problems related to the treatment of cambered wings. He
also felt more attention should he given to grid system layout, especially with
respect to the simulation of bodies or other complex configurations. The treat-
ment of high 1ift configurations, such as constant chord flaps on tapered wings,
and the situation of wings with cutouts also represent problem areas.

Maskew's comments are summarized as follows. He referred to the use of
constraint functions discussed by Tulinius as a possible alternative to the
subvortex technique for keeping the number of unknowns down while effectively
using a large number of vortices. Maskew mentioned that he had used constraint
functions with a subvortex model, as reported in NASA TM X-73115 \ref. 1). The
number of unknowns was halved without spoiling the pressure calculations at the
arbitrary points. With the small number of unknowns, i.e., 46, the savings in
solution time was about the same as the time required to manipulate the matrix.
For a larger number of unknowns, there should be a savings in computer time.

On the question posed by Houbolt on separated flow modeling, Maskew felt the
answer might be found in Giesing's comments, namely, that the multienergy
modeling developed by Shollenberger for jet flow interference might also be
adapted for the low energy region associated with separated flows. Maskew
mentioned that certain problems arise in wake rollup calculations of compli-
cated flap systems. For tne 747 flap system, with edge vortices on each flap,
he found that the two opposing regions from the flap edges adjacent to the high-
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speed aileron pose a problem in that the calculations predict an orbiting motion )
: which does not appear in real flow. The two vortices in fact soon cancel each /
1 other, leaving a single wake vortex. This merging problem needs further inves-

3 tigation so that it can be modeled correctly. Another problem he discussed

deals with the near-field calculation of forces using the Kutta-Joukowski law

applied to vortex segments. He pointed out that in most cases the forces are

calculated only on the bound vortex segments, and with the assumption that the

chordwise segments are alined with the local mean velocity and therefore carry

no load. In some configurations this assumption is not valid. He brought out

the example of a yawed wing which has been paneled for symmetrical flow and

raised the question, does the wing need repaneling before calculating the yawed

condition. The problem alsc appears on wings with deflected flaps. Large mean

spanwise flow components exist on the flaps, particularly near the tip, and if

the forces on the chordwise segments are computed in this case, the Kutta

trailing-edge condition appears violated. Maskew pointed out that this problem

requires further attention and that perhaps the chordwise segments should always

be alined with the mean flow direction.

g ke e 2

e ol A B o e

: In summary, the following items appear to be of chief concern in continuing
: and future development of the vortex-lattice methods:

1. Grid layout, especially with respe-t to the use of the 1/4-point,
3/4-point rule, or the approach which employs equal angular spacing
within a semicircle

2. Drag calculation techniques

3. Bodies in combination

4. Separated flow effects including wake rollup

5. Supersonic f£low applications

6. Treatment of lateral flow or of combined pitch and yaw displacement

REFERENCE

1. Maskew, B.: A Submerged Singularity Method for Calculating Potential Flow
Velocities at Arbitrary Near-Field Points. NASA TM X-73115, 1976.

421



T

O . R

Lk

[

g 8 RO iy S WS Ay D

e b

S T A A TR

o R Tt By G5 PSR UL

> e o BT e

RS AOT GRS RN Sk A A e

N76-28186

SAMPLE WINGS FOR STUDY

John E. Lamar
NASA Laugley Research Center

During the Vortex-Lattice Utilization Workshop, the proposal was made that
the same sample wings be studied by all those interested in order to gain an
appreciation for the accuracy of the various implementations - both old and new -
of the vortex-lattice method. Therefore, two simple wings have been selected for

which force, moment, and pressure data are :vailable and they are presented in
figures 1 and 2.

Figure 1.- Aspect-ratio-2 rectangular wing.

Figure 2.- Aspect-ratio-5 tapered wing. Leading-edge sweep, 3.3179;
trailing-edge sweep, -11.308°; taper ratio, 0.5.

Data for the aspect-ratio-2 rectangular wing are found in references 1 and 2,
and for the aspect-ratio-5 tapered wing in references 3 and 4.
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