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SUMMARY

An analytical study was performed to determine the structural approach best

suited for the design of a Mach 2.7 arrow wing supersonic cruise aircraft.

Results, procedures, and principal justification of results are presented

in Reference 1. Detailed substantiation data are given herein. In general,

each major analysis is presented sequentially in separate sections to pro-

vide continuity in the flow of the design concepts analysis effort. In

addition to the design concepts evaluation and the detailed engineering

design analyses, supporting tasks encompassing: (1) the controls system

development (2) the propulsion-airframe integration study, and (3) the

advanced technology assessment are presented.

Nl'^

Reference 1 Sakata, I. F. and .Davis, G. W.: Evaluation of Structural. Design
Concevts for an Arrow-Wing Supersonic Cruise Aircraft NASA
CR-	 1976

iii
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INTRODUCTION

The design of an economically viable supersonic cruise aircraft requires

reduced structural mass fractions attainable through application of new

materials, advanced concepts and design tools. Configurations, such as

the arrow-wing, show promise from the aerodynamic standpoint; however,

detailed structural design studies are needed to determine the feasibility

of constructing this type of aircraft with sufficiently low structural mass

fraction.

For the past several years, the NASA Langley Research Center has been

pursuing a supersonic cruise aircraft research program (1) to provide

an expanded technology base for future supersonic aircraft, (2) to pro-

vide the data needed to assess the environmental and economic impacts on

the United States of present and especially future foreign supersonic

cruise aircraft, and (3) to provide a sound technical basis for any future

consideration that may be given by the United States to th6 development of

an environmentally acceptable and economically viable commercial supersonic

cruise aircraft.

The analytical study, reported herein, was performed to provide data to

support the selection of the best structural concept for the design of a

supersonic cruise aircraft wing and fuselage primary structure considering

near-term start-of-design technology. A spectrum of structural approaches

for primary structure design that has found application or had been proposed

for supersonic aircraft design; such as the Anglo-French Concorde supersonic

transport, the Mach 3.0-plus Lockheed F--12 and the proposed Lockheed L-2000

and Boeing B-2707 supersonic transports were systematically evaluated for

the given configuration and environmental criteria.

The study objectives were achieved. through a systematic program involving

the interactions between the various disciplines as shown in Figures A through

C. These figures present an overview of the study effort and provides a

summary statement of work, as follows:

(1) Task I - Analytical Design Studies (Figure A).- This initial

task involved a study wherein a. large number of . c.andidate structure

PRFOE }
DI TG PAGE BLANK NOT EILUEV v



concepts were investigated and subjected to a systematic evaluation

process to determine the most promising concepts. An airplane
configuration refinement investigation, including propulsion--airframe

integration study were concurrently performed.

(2) Task TT - Engineering Design/Analyses (Figure B).- The most

promising concepts were analyzed assuming near-term, start-of-design
technology, critical design conditions and requirements identified,

and construction details and mass estimates determined for the

Final Design airplane. Concurrently, the impact of advanced tech-

nology on supersonic cruise aircraft design was explored.

(3) Task SZS - Mass Sensitivity Studies (Figure C).- Starting with

the Final Design airplane numerous sensitivity studies were performed.

The results of these investigations and the design studies (Task I
and Task II) identified opportunities for structural mass reduction
and needed research and technology to achieve the objectives of
reduced structural mass.

Displayed on the figures axe the time-sequence and flow of data between dis-

ciplines and the reason for the make-up of the series of sections presented

in this report. The various sections are independent of each other, except as

specifically noted. Results of this structural evaluation are reported in

Reference 1. This reference also includes the procedures and principal justi-

fication of results, whereas this report gives detailed substantiation of the

results in Reference I. This report is bound as four separate volumes.
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SECTION 12

STRUCTURAL CONCEPTS ANALYSIS

INTRODUCTION

The design of an economically viable supersonic cruise aircraft requires the

lowest attainable structural--mass fraction commensurate with the selected near-term

structural.--material technology. To achieve this goal of minimum structural-mass

fraction, various combinations of promising wing and fuselage primary structure were

analysed for the load-temperature environment applicable to the arrow-wing config-

uration. This analysis was conducted in accordance with the design criteria spec-

ified in Section 4 and included extensive use of computer-aided analytical methods
to acr.een the candidate concepts (Task 1) and select the most promising concept(s)

for the in--depth structural analysis (Task 11).

Structural Design Concepts

Both wing and fuselage primary load-carrying structural concepts were investigated

for application to the arrovr-wing configuration. For the wing analysis structural

arrangements were investigated that included candidate surface panels. spars and

nibs, and the associated non-optimum factor. These candidate concepts are charac-

terized by the type of wing primary load--carrying arrangement (i.e., chordwise,

spanwise. , and monocoque) and are shown in Figure 12--1. Similarly, the fuselage

analysis included the investigation of the major weight components associated with

fuselage design, i.e., the shell, and frame. Figure 12-2 contains a list of the

panel and frame concepts evaluated. Although the sandwich shell was recognized

to have potential. be _efits for (1) structural mass reduction, (2) sonic- fatigue

resistance, and (3) reduced sound and heat transmission over the panel concepts

shown in the figure, it was not included as part of the study. The results

(Appendix A) of the structural assessment performed to quantify the potential mass

savings of the honeycomb sandwich fuselage for a near-term supersonic cruise air-
-craft, indicated a weight disadvantage for the sandwich shell because of the parasitic

weight of the titanium alloy core and aluminum alloy braze material..

1
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For both the wing and fuselage analysis, candidate metallic and composite material

were considered; The metals included representative Alpha-Beta (Ti-6A1- HIV) and

Beta (Beta C) titanium alloys. For the composite materials, Boron/polyimide, Boron/

aluminum, and Graphite/polyimide reinforced structure were evaluated. A more

detailei description of these structural-material concepts and their corresponding

fabrication methods and design parameters (constraints) are presented in Sections 1,

7, and 8, respectively.

STRUCTURAL ARRANGEMENTS
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BIAXIALLY STIFFENED

HONEYCOMB SANDWICH

'	 !	 I TRUSS CORE1
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i
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3

'-
----------
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Figure 12-10 Candidate Wing Structural. Arrangements
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Point Design Regions

The basis for the structural-material evaluation was the definition of the candidate

structural components and the load-temperature environment at selective wing and

fuselage regions. These regions, hereafter referred to as point design regions,

are described in the following text.

Wing Point Design Regions. - The location of the wing point design regions are

shown in Figure 12-3 and includes the six-regions which are displayed on the wing

planform of the structural model. These regions are identified by the NASTRAN panel

element numbers used for the finite element model (Section 9). Representative
structure is specified at each of these locations and include a definition of the

upper and lower surface panels, typical rib and spar structure, and the associated

non-optimum factors. These regions were selected as representative of wing critical

design regions. A description of these regions is as follows:

Forward wing box - Point design region 40322 is located forward of the main
landing gear in a fuel tank region. This area is characterized as basically

transmitting pressure loads with low load intensities with respect to wing

bending loads.

Aft box region -- Point design regions 40236, 40536, and 41036 are located in
the wing aft box with 40236 and 40536 located in fuel tanks and 41036 in a dry

bay region. In general, these areas represent regions of high span-vise load

intensities and variable chordwise load intensities due to wing bending. The

chordwise .Load intensities on region 40236, most inboard regions, reflect the

influence of fuselage body bending while the outboard region 41036 displays

the effect of the wing tip load redirection.

Wing tip region - Dry bay regions 41316 and 41348 are located approximately
at the root and mid--span of the wing tip. These areas are characterized by

high load intensities indicative of the aero-elastic effect on this flexible

region.

Fuselage Point Design Regions. -- Four point design regions were selected as

representative of the actual fuselage design. These regions are shown in Figure 12-4
and are located at fuselage stations 750, 2000, 2500, and 3000 for the Task I
analysis.
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For Task II, slight changes in these locations where required to reflect the

revisions incorporated on the finite-element model. and these changes are presented

in the Task II introductory text. Conventional structure composed of skin/stringer

panels and sheet metal frames were selected for these regions. The panel concepts

were varied to reflect the specific design being evaluated. These regions were

selected as typical of the critical design regions on the fuselage and, in general,

classified as follows:

Fuselage Forebody (FS 750) - Generally characterized as fatigue-designed
structure with low load intensities due to fuselage bending.

Fuselage Centerbody (FS 2000 and 2500) - Wing/fuselage regions subjected

to maximum body bending and wing spanwise loads.

Fuselage Aftbody (FS 3000) - High body bending; and torsion loads with regions

subjected to a high acoustic environment.

Fuselage point design regions located at FS 2000 and FS 2500 are coincidental with

the wing forward box and aft box point design regions.

Point Design Environment

The load-temperature environment was defined for each wing and fuselage point design

region in support of the specific task being conducted. A detail description of this

environment is presented in Section 11, Point Design Environment, and in general

included:

• The load intensities and thermal strains from the NASTRAN internal load

solution.

• The normal loads acting at each region, considering both aerodynamic

pressure and fuel inertia heads.

• The average component temperatures and gradients associated with the

specific structural arrangement.

In addition to the detail description of the paint design environment ^^ n+ni ^ptq in

Section 11, each of the enclosed. analysis sections contain the point

meat for its critical flight condition(s).
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Analytical Methods

Structural analyses were performed on each candidate wing and fuselage concept,

Figures 12-1 and 12-2, to define the minimum weight designs and corresponding

panel proportions. These analyses were conducted with computer programs which used

sound analytical methods and incorporated optimization subroutines for determining

the minimum weight design. These programs, formulated for either the direct-search

or synthesis-method of structural optimization, generally included the following

subroutines: (1) definition of the total inplane stress resultants, (2) calculation

of the section properties and stiffnesses, (3) a stress analysis, (4) definition of

the allowable stresses, and (5) the optimization procedure.

Chordwise Panel Concepts - A computer program which uses the direct search method,

was used to determine the minimum weight designs for chordwise concepts. The ana-

lytical methods employed in this program, which is entitled STRUDE II, are reported

in Section 12 of Reference 1 and analyzes these concepts for the total inplane stress

resultants and normal pressure. In addition, the analysis procedure includes the

bending moment attributed to eccentric edge loading, initial deflection due to

manufacturing, and bowing caused by a temperature gradient through the panel thickness.

For the compression-combined load condition, the theory is based on the wide-

column approach of Reference 2 modified to include bending loads with an inter-

action equation used to include the shear load. The magnification effects of

simultaneously applied axial and transverse loadings (beam column analysis) is

included for the compression-load condition but conservatively neglected for the

tension condition.

For the combined load condition with an applied tension axial load, the maximum

equivalent stresses ( feq ; were calculated using the principal stress equation:

	

feq _ 2 * /(.[) 2
+ 	 fxy2

where (f) and ( fxy ) represent the axial and shear stresses respectively. The allow-
able tensile stresses were based on fatigue allowables commensurate with the

panel fatigue quality index (x^) for a calculated fatigue life of 1.25 x 10 5
flight-hours. These stresses were determined by the methods described in

^^7	
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Section 13 and are reported, along with the associated quality index, in the follow-

ing analysis sections.

Spanwise Panel Concepts - The minimum weight panel designs for the spanwise

concepts were determined using the same methods as described for the chordwise

concepts.

This analysis was conducted using two computer programs, entitled Panel and Fatigue,

for the specific compression or tension combined loading condition. As with the

chordwise concept, the combination of axial load, shear, and bending moment were

included in the analysis. The exception being the method used to account for the

bending due to panel edge eccentricity, initial curvature, and thermal, bowing where

the concept of equivalent design pressure was introduced to include these effects.

Table 12-1 presents the equivalent pressure expressions for each type of,bending

load. Since these values show that the equivalent pressures depend on the panel

depth (h) and rib spacing (L) an iterative procedure was included to determine the

panel design and equivalent pressure based on a common panel depth.

The same compression and tension design criteria as used for the chordwise concepts

were applied to the spanwise concepts. The compression loaded panel designs were

based on the local buckling strength of the shin and stiffener elements for combined

compressive (due to axial load and bending) and shear loading, whereas, the applied

stresses for the tension loaded designs were based on the maximum equivalent stress

and compared to the fatigue allowable stress.

Biaxially Stiffened Panel Concepts - The candidate biaxially stiffened panels were

analyzed using the STRUDE II computer program, which is described in Section 10 of

Reference 1. The two candidate concepts, honeycomb sandwich and truss core, are

displayed in Figure 12--1.

The multiple panel loading conditions. include biaxial loads, shear, primary bending

and secondary or deflection induced bonding. Bending loads include normal pressure,

edge eccentricity, initial deflections, coupling eccentricity, and initial curvature

due to thermal gradient (X = ci& Tlh). As with the analyses of the preceeding

uniaxial stiffened concepts, the beam-column effect was included for the compression

combined load condition and conservatively neglected for the tension .combined load

condition.
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Analytical Procedures

. To provide a rational basis for evaluating the weight of the candidate structural

arrangements, detail analytical procedures, commensurate with the specific state of

design under consideration, were established for conducting the structural analysis.

These procedures are described in the following text for each major study task of

this program, i.e., Task I, Analytical. Design Studies and the Task II Detailed

Engineering Studies.

The Task I Analytical Design Studies were conducted in two stages as defined in

Figure 12-5 as the Initial Screening and Detail Concept Analysis. The Initial

Screening Analysis, in general, consisted of the following steps:

(1) At selected point design regions the load--temperature environments

were defined for each general type of wing arrangement and the single

fuselage arrangement. For each wing arrangement the basis for the

internal loads was the NASTRAN redundant structure analysis solution

using 2-D structural models. For the fuselage, existing body shear

and bending moment diagrams were used to calculate the theoretical,

internal load distributions. Aerodynamic heating analysis were con-

ducted to determine the average temperature and gradients on the wing

and fuselage primary structure.

(2) A weight/strength analysis was conducted on each of the candidate wing

panel and fuselage shell concepts. Panel proportions and unit weights

were determined for various rib and spar spacings for the wing surface

panel concepts and frame spacings for the fuselage concepts. Computer-

aided analytical methods were used to optimize the panels for their most

critical tension or compression design condition. For the compressive

condition, local and general instability modes were included with plastic

deformation taken into account with the use of the Ramberg--Osgood stress-

strain relationship. For the tension stress state, the equivalent stress

was not allowed to exceed the gross area fatigue allowable commensurate

with the fatigue quality of the panel under investigation. In addition
to the strength analysis, damage tolerance analyses were conducted at

selective locations for each of the candidate panel concepts and the
results are reported in Section 13.
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(3) As a result of the panel weight/strength analysis each panel concept

within a general arrangement was ranked in accordance with weight, e.g.,

with reference to the chordwise stiffened wing arrangement shown in

Figure 12-1, the circular are .-convex beaded panel weighed less than

circular are-concave beaded, corrugation--concave beaded and the beaded

corrugation-concave beaded concepts. From this ranking the most promising

panel concept from each wing and fuselage arrangement was selected for

further evaluation in the next stage of the Task I analysis, the Detail

Concept Analysis..

The Detail Concept Analysis was conducted on typical wing box and fuselage structure.

In addition to the surface panels, the investigation included an evaluation of the

substructure, i.e., the ribs acid spars for the wing box and the frames for the

fuselage segment. The analytical approach was shown previously in Figure 12 -5 and
was conducted in accordance with the following procedure:

(1) Additional wing and fuselage point design regions were selected and

their specific point design environment defined. The load-temperature

environment eras based on the same NASTRAN redundant structure analysis

solutions and aerodynamic heating calculations performed for the initial

screening analysis.

(2) Each of the wing arrangements and the fuselage arrangement were subjected

to a weight/strength analysis which included a further evaluation of the

most promising panel concepts surviving the initial screening analysis

and typical substructure applicable to each basic arrangement. As

discussed in the Initial Screening procedure, the components ,were analyzed

for the most critical ultimate design condition with a fatigue cut-off

stress being used for the tensile stress-state condition. Additional

analyses were conducted on those arrangements which include' basic air-

plane flutter, damage tolerance and sonic fatigue. These results are

reported in Sections 10, 13, and 14, respectively.

(3) The results of the Detail Concepts Analysis were the weight ranking of the

basic wing arrangements and the fuselage arrangement. Weight comparisons

were made by reviewing the point design unit weights as well as the total,

airplane weight, reported in Section 15• In addition, these arrangements

were evaluated for cost and performance, reported in Sections 16 and 17.
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As a result of these evaluations, a hybrid wing design (combination of

structural--material concepts) and a conventional fuselage design were

selected as the best airplane structural arrangement warranting further

evaluation in the Task II Detail Engineering Studies.

The Task 11 Detailed Engineering Studies were conducted using the least weight hybrid

arrangement resulting from the Task I analysis with its corresponding wing rib and

spar spacings and fuselage frame spacings. The major structural components of this

arrangement were subjected to an in-depth structural analysis consisting of the

following steps:

(1) A 3-D structural model was established using the stiffnesses representa-

tive of the strength-sized hybrid arrangement and a NASTRM redundant

structure analysis solution.obtained. Using these results the wing and

fuselage point design environments were redefined.

(2) The structural concepts at each of the six wing and four fuselage

regions were subjected to point design analysis which included

evaluation for ultimate loads, load-fatigue, sonic-fatigue, and

damage tolerance. In additioi, airplane vibration and flutter

analyses were conducted.

(3) The definition of airplane stiffnesses resulting from the above structural

analysis were compared to those values input in the 3--D structural model

described in Step (1). The stiffnesses were generally in good agreement

except for the highly elastic wing tip where the required stiffnesses

dictated by the aeroelastic and flutter effects were in considerable

disagreement with the initial model input values. Because of this dif-

ference in wing tip stiffness, the model input data (element properties)

described in Step (1) were altered to reflect the new strength and stiff-

ness requiremento and a new NASTRAN solution was conducted.

(4) The aeroelastic loads, internal loads, and vibration and flutter analyses

were .performed using the data generated from the new INASTRO soluticn,

i.e., structural influence coefficient and stiffness matrices. The mass

matrices used in the above analyses were revised to reflect the a= ended

model stiffness.

t
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(5) in general, good agreement in load intensities and displacement were

obtained in the strength-designed regions between the design cycle con-

ducted using the strength-sized model and those of the strength/stiffness

model. This convergence precluded the need for any major strength

reanalysis.

(6) The unit weights defined at the strength-designed and stiffness-designed

regions were used to define a group weight statement and total weight for

the baseline Final Design airplane, see Section 15.

The results of the weight/strength analyses described in the above procedures are

presented in this section, whereas, the vibration and flutter, damage tolerance

(fatigue and fail--safe), sonic-fatigue (acoustics), structural design loads, and

mass analyses are reported in their respective sections of this report. Specifically

for the weight/strength analysis, these procedures are described for each wing and

fuselage arrangement investigated and are presented in the order or occurrence in

which they were conducted for this study. Additional introductory remarks and data

are presented for the Task II analyses to maintain continuity for the reader.
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CHORDWISN STIFF`= WING ARRANGEMENT TASK I

An Initial Screening and a Detailed Concept Analyses were conducted on the chordwise

wing structural arrangement. luring the Initial Screening Analysis two candidate

structural-materials (both metal) a-.d four candidate panel concepts were investi-

gated. The four panel concepts are presented in Figure 12 -6. Also included on this
figure is a typical wing box segment depicting the major tying components included

in the Detailed Concepts Analysis. Those components considered in this analysis are:

the surface panels, spar caps and webs, rib caps and webs, and the appropriate non-

optimum factors.

Fabrication limits for the chordwise panels and closures are summarized in Figure 12-7

with a detailed description of this data contained in Section 7, Materials and
Producibility Section.

The basis for the structural analysis was the internal loads resulting from the

NASTRAN redundant structural analysis solution. A 2-D structural model with flexi-

bilities representative of a typical chordwise stiffened wing was used for this

solution. These internal loads in conjunction with the applied pressures (aerodynamic

and fuel) and temperatures defined the point design environment for these chordwise

panels. Table 12-2 contains the most critical Task I point design environment.

Chordwise Initial Screening

The chordwise initial screening analysis was conducted in two parts, which were:

(1) a material tradeoff study to select the most promising material system and (2)

a detail analysis to screen the candidate panel concepts and select the least-

weight concept for further valuation.

The initial material tradeoff study was conducted using a representative Beta (Beta

C) and Alpha-Beta (6Al -4v) 'titanium alloys. This tradeoff study was conducted by

strength--sizing both materials for the trapezoidal corrugation-panel concept (Fig-

ure 12-6) using the point design environment specified for reg i on 40536 (Table 12-1).
The results of this study indicated the Alpha Beta (W -W alloy was the least-
weight concept and this material system was selected for application to the candidate

panel concepts for the screening analysis.
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NOTES III A 7.25 FACTOR HAS BEEN APPLIED TO THE THERMAL STRAIN WHEN THE SIGN ISSAME AS THE AIRLOADN

1-j	
SIGH, OTHERWISE NO FACTOR APPLIED.

co	 121 PRESSURE SIGN CONVENTION' NEGATIVE . SUCTION

WFIGHT-660X103j.Ej 	
CONDITION 200 (START OF CRUISE); MACH NO.= 2.7; nz = 2.5

POINT DESIGN REGION
ULTIMATE
DESIGN
LOADS

ITEM
UNITS 40236 41036 41315 40536 41348 40322

UPPER
SURFACE

LOWER
SURFACE

UPPER
SURFACE

LOWER
SURFACE

UPPER
SURFACE

LOWER
SURFACE

UPPER
SURFACE

LOWER
SURFACE

UPPER
SURFACE

LOWER
SURFACE C

LOWER
SURFACE

NX MIN 22 --041 i41 -137 137

AIR LOADS Nv LBAN 4'921 -10,062

2,202

_3'1}ii -,707 3,707 -5,564 5,564

Nxy LBIIN -1601 tsDI -1,235 1p235 <,2W -1,167 1,187 664 -664 :	 ..'	 Zn 97

THERMAL
Ex INJIN -282 x 10- 10 94 7: 10 -94 x 10 13 x lo^ ' -13 x -40 :j 10 40 x 10 0 632 x 10 -pb

STRAIN Cy INIIN 401 x 13- t̂ol x 10 15 x 10 - b-15 7 10 19 x 16-t -1^	 11I	 .4 ,-91 x 1c )I x 17 1 x lo-6 -I . 10 -6 0 f i :W`... 939 It 10-t
Exy INIIN 426 x io-J -42t x lo^ -.21 x IC-6 .l A 10 116 x lo- a, , 10-6 -260 x i0--6 i30 x 10 1.25 x 17^^ -1.25 x 17.4x 10-t

AERO Psi -1.70 -0.74 -1.25 0.35 -1.65 1.00 -1.47 -0,36 -1.29 1.04 a -0.17
PRESSURE FUEL PSI -6.42 -7.84 0 a 0 a 00 -7.11 0 0

NET PSI ^. 1p -- .55 1.25 0.34 -1.0 1.00 -7.47 -7.47 -1.29 1.04
TAV OF 704 !Z-, 337 335 335 330 212 331 334 347TEMPERATURE O

F_ -195 1	 --:L5^2 -19 -33 -39 -33 -139 -71

I/-
TABLE 12-2. I-TING POINT DESIGN ENVIRONMENT, CHORDWISE ARHi- 71GEMENT TASK I

Cl̂  0

0	 3	 CONDITION (B ;MACH NO. =1.25;nz=2.5
0 t^ WEIGHT -60 -A 10LB.

POINT DESIGN REGION
ULTIMATE
DESIGN ITEM UNITS 236 4ID36 41316 40536 41348 40322

LOADS UPPER LOWER UPPER LOWER UPPER LOWER . ........ -'.14wfo, UPPER
SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE

Nx LIVIN _0 -1,L3' :,435 571 -5-1 455
AIR LOADS NY LEAN -1,, ; 3 : 1=, 3 1 )dr

.	 .	 .......	 . ..

NAY LBAN 1, 31 1, 31 1 ,

•
,4w..

CA inlIN J 0 0 0 0
THERMAL
STRAIN cy INIIN

AERD PSI !x

PRESSURE FUEL PSI -X.

NET FISI -10.14 -1.'7 71 4.:,,- 5.33

TEMPERATURE
TAV OF

141 114 70. 31 I)L 164

&T OF 1; -173 -45 -4 3

NOTES,' III A 125 FACTOR HAS BEEN APPLIED TO THE THERMAL STRAIN WHEN THE SIGN IS SAME AS THE AIR LOAD
SIGN, OTHERWISE NO FACTOR APPLIED.

Q) PRESSURE SIGN CONVENTION: NEGATIVE - SUCTION



The chordwise screening analysis was conducted on the four candidate panel concepts

which were previously shown in Figure 12-6 and include) the following concepts:

• Circular-arc convex beaded skin

• Circular--arc concave beaded skin

• Trapezoidal corrugation-concave beaded skin

• Beaded corrugation-concave beaded skin

These panel concepts were subjected to a weight-strength analysis at three point

design regions as shown in Figure 12-3 using the point design environment presented

in Table 12-2. This analysis was conducted on all chordwise-stiffened panel concepts,

both upper and lower surface panels, for variable spar spacings of 20, 30 and

40-inches with a constant rib spacing of 60 inches.

In summary, the initial screening results indicated the circular-arc convex beaded

panel concept afforded the minimum weight design at each of the point design regions.

A weight of 1.75 1b/sq.ft. was recorded for the 20-inch spar spacing design at

region 40322 and approximately 2.00 1b/sq.ft. for the same designs at regions 40536

and 41348. No consistent ranking, with respect to weight, was noted for the other

three panel concepts at the regions investigated.

Material Tradeoff Study - In support of the material selection for the baseline

metallic airplane a weight--strength analysis was conducted on representative

metals from each general class of allows considered. Ti 6Al-4V(Ann.) and Beta C

were chosen as representative of the alpha-beta and 'beta alloys, respectively.

The basic mechanical and physical properties, and fabrication technique of the

candidate alloys are presented in the Materials and Froducibility Section,

Section 7. In addition, the basic design parameters were as defined in Figure 12--7.

The tradeoff study was conducted at point design region 40536 and consisted of

sizing both upper and lower surface panel for spar spacings of 20-, 30--, and

40-inches with rib spacing held constant at 60-inches.

The chordwise panel concept investigated for the application of the two materials

was the trapezoidal corrugation-concave beaded skin concept. The results of panel

sizing for the Beta C material are presented in Table 12-3 and the corresponding

Ti 6A1-4V panel data are shown in Table 12-4. Using these results, the upper and
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TABIjH IP-3. GEi)W PRY AND WEIGHT FOR THE TRAPEZOIDAL CORRUGATION PANEL CONCEPT, BETA C MATERIAL -
TASK I MATERIAL TRADEOFF STUDY

PANEL_ CONCEPT:

TRAPEZOIDAL CORRUGATION-
CONCAVE BEADED SKIN

MATERIAL:

TITANIUM ALLOY BETA C (STA)

NO

POINT DESIGN 40536REGION

SURFACE UPPER LOWER

SPAR	 (m) .51 .76 1.02 .51 .76 1.02
SPACING	 (in) 20 30 40 20 30 40

DIMENSIONS:

to	 (in) .029 .032 .043 .033 .030 .037
ti	 (in) .025 .029 .033 .020 .024 .025
Rolto 53.79 56.88 43.35 59.09 56.33 49.19

0	 (DEG) 77.47 79.70 79.11 66.37 81.47 90.00
bo	 (in) 1.20 1.40 1.50 1.50 1.30 1.40
bf	 (in) 0.80 1.00 1.00 0.80 1.00 1.40
h	 (in) 0.90 1.10 1.30 0.80 1.00 1.20
bs	 (in) 0.75 0.75 0.75 0.75 0.75 0.75

MASS DATA:
t	 (in) .0730 .0863 .1083 .0629 .0747 .0905
w	 (Iblft2) 1.787 2.113 1.539 1.828 2.217

CRITICAL.
L31CONDITION 31 31 31 31 31

ho	 bsl2

R 

L
ho
	 h

bf

ho/bo - 0.10



TABLE 12--4. GEOMETRY AND VEIGHT FOR THE TRAPEZOIDAL CORRUGATION PANEL CONCEPT, 6Al-4V (ANN.) MATERIAL -
TASK I 1ATERIAL TRADEOFF STUDY

ro
N
F'

POINT DESIGN
40536REGION

SURFACE UPPER LOWER

SPAR	 (m) .51 .76 1.02 .51 .76 1.02
SPACING

(in) 20 30 40 20 30 40

DIMENSIONS:

to	 (in) .029 .034 .044 .034 .030 .038

ti	 (in) .026 .028 .030 .020 .024 .024

Ro/to	 -- 58.28 57.35 44.32 57.35 56.33 51.32

(deg) 72.64 77.20 83.42 63.43 81.47 87.80

bQ 	(in) 1.30 1.50 1.50 1.50 1.30 1.50

bf	 (in) 0.80 1.00 1.20 0.70 1.00 1.40

h	 (in) 0.75 1.10 1.30 0.80 1.00 1.30

MASS DATA:

i	 (in) .070 .084 .106 .063 .075 .089

W .	 (1 b/ft2) 1.6221.946 2.435 1.461 1.720 2.059

CRITICAL 31 31 31 31 31 31
CONDITION

PANEL CONCEPT:
TRAPEZOIDAL CORRUGATION--
CONCAVE BEADED SKIN

MATERIAL:
TITANIUM ALLOY 6AI-4V (ANN.)

bo	 b5/2

Ro

to

halbn = 0.10

h	
ti	

h	
b/2 =.375

aW____.

0

b#	 -w --

ho/bo = 0.10



lower surface panel weights were plotted for comparison purposes and are shown in

Figure 12-8. With reference to this figure, the Beta C design panel is approximately
seven percent heavier for the lower surface panel and ten-percent heavier on the

upper surface. The largest weight variation occured on the compression design upper

surface panel and can best be explained by a comparison of the compressive buckling

weight index, P/1'(Ec) '2. The terms in this expression are: P is the material density,
77 is the plasticity correction factor, and E  is the compression modulus. For

stresses within the elastic region (Yj= 1), the compressive buckling weight index for

Beta C is approximately twelve-percent higher than Ti 6A1-4v(Ann.) material in the
elastic region.

Panel Screening - The four candidate chord-wise wing panel concepts shown in Fig-

ure 12-6 were analyzed using the most promising metallic material resulting from the
material tradeoff study, 6Al-4v(Ann.) titanium alloy. This analysis was conducted

at the three wing point design regions indicated in Figure 12-3 using the correspou3-
ing load/temperature environment defined on Table 12-2. The analytical methods used

to strength-size the panel concepts were as previously described in the introductory

text.

Convex Beaded Panel Concept - The results of the strength analysis conducted on the

convex beaded panel concept are presented in Table 12--5. This table displays the

panel cross-sectional dimensions, mass data, and the critical design conditions.

For the three point design regions the skin thicknesses ranged from 0.015-inches

to 0.041-inches, with the minimum design thickness constraints (foreign object

damage) active for the 20-inch spar spacing design at region 40322. The wing panel

unit weights ranged from 0.80 lb/sq.ft. to 1.60 1b/sq.f-t. for the lightly loaded

region 40322 and approximately 1.30 1b/sq.ft. to 2.20 1b/sq.ft. for regions 40536
and 41348.

To minimize aerodynamic drag the bead height-to-chord ratio (h/c) was held constant

at 0.10 with the flat between beads (b) maintained at 0.75 inches to allow for sub-
structure attachment. In addition, the maximum value of the inner bead semi-apex

angle (6 = 87 degrees), commensurate with manufacturing limits of this design, was
used in the evaluation of all designs.

Concave Beaded Panel Concept - The panel results for this concept are presented in

Table 12-6. For this analysis, the cross-section geometry was subjected to the
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CHORDWISE ARRANGEMENT
TRAPEZOIDAL CORRUGATION CONCEPT
POINT DESIGN 40536
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TABLE' 12-5e PANEI, GEOMETRY AND WEIGHT OF THE CIRCULAR ARC-CONVEX BEADED CONCEPT - TASK I CHORDWISE
wind, ARRANGEMENT INITIAL SCREENING

P

POINT DESIGN
REGION 40322 40536 41348

UPPER LOWERSURFACE UPPER	 LOWER UPPER	
I	

LOWER

SPAR	 ( m}
1

.51	 .76	 1.02	 .51	 .76	 ° 1.02 .51	 .76	 1.02 .51 .76 1.02 .51 .76 1.02 .51 .76 7.02
SPACING

(in) 20	 30	 40	 20	 30	 40 20	 30	 40 20 30 40 20 30 40 20 30 40

DIMENSIONS •
I

i^	 (in) .015	 .021	 .026,	 .015	 .020; I ,025 .025	 .035 s .040 .024 .028 .033 .025 .033 .038 .023 .020 .023

to	 (in) .015	 .025 ^.Q31	 020	 .020 I .02:5 .035	 .036	 .040 .025 .029 .037 .036 .037 .Q41 .028 .034 .038

R,	 (in) 0.9	 1.2	 1.4	 0.9	 1.4	 1.8 0.9	 1.1	 IE 	 1.4 0.8 1.0 1.4 0.9 1.1 1.4 0.7 0.8 0.9

8	 (deg) 87	 87	 87	 87	 87	 87 87	 87	 87 87 87 87 87 87 87 87 87 87

b	 (in) .75	 .75	 .75	 .75	 1, 	 .75 +	 .75
I	 I

.75	 .75	 .75 .75
I.

.75 .75 .75 .75 .75 .75 .75 .75

MASS DATA: i

I

I
I

i	 (in) .036	 .055	 .070	 .041 ; .049	 .061 .070	 .085 .097 .058 .068 .084 .071 .084 .095 .059 .058 .070

w	 (lblft2) .08251.263 {11 9 619 1 0.942{ 1.120 1.413 1.6091.965 2.241 1.335 1.570 1.943 1.6321.92512.19911.366 1.328 1.616

CRITICAL
CONDITION 20	 20 20	 31	 31 31 31 31 31 31 31 31 31 31 31 31 31 31

---^wC^	 PANEL CONCEPT:

to	 CIRCULAR ARC-CONVEX
h	 t^	 BEADED SKIN (h/c= 0.10)

R^	 b!2



^r

F-r

N
V1

TABLE 12-6. PANEL GEOMETRY AND WEIGHT OF CIRCULAR ARC--CONCAVE BEADED SKIN CONCEPT -- TASK I CHORDWISE
WING ARRANG51ENT INITIAL SCREENING

POINT DESIGN 40322 40536 41348
REGION

SURFACE UPPER LOWER UPPER LOWER UPPER LOWER

SPAR	 (m) .51 .76 1.02 .51 .76 1.02 .51 .76. 1.02 .51 .76 1.02 .51 .76 1.02 .51 .76 1.02
SPACING

(in) 20. 30 40 20 30 40 20 30 40 20	 1 30 40 20 30 40 20 30 40

DIMENSIONS:

t 	 (in) .020 .025 .034 .020 .025 .030 .029 .038 .041 .025 .030 .036 .028 .035 .041 .022 .023 .024

to	 (in) .015 .015 .017 ) .020 .020 .020 .033 .037 .054 .025 .031 .035 .035 .041 .055 .029 .029 .034

RI 	(in) 0.9 1.4 1.7 0.9 1.3 1.7 1.0 1.3 1.7 0.8 1.1 1.4 1.0 1.4 1.6 0.7 0.9 1.1

6	 (deg) 87 87 87 87 87 87 87 87 87 87 87 87A 87 87 87 87 87 87

b	 (in) .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75

MASS DATA:

t	 (in) .043 .051 .066 .048 .056 .063 .074 .091 .114 .059 .073 .086 .074 .091 .114 .059 .061 .068

w	 (lb/ft2) 0.982 1.165 1.517 1.100 1.279 1.457 1.69 2.099 2.62 1.366 1.688 1.993 1.712 2.101 2.538 1.358 1.405 1.586

CRITICAL 20 20 20 31 31 31 31 31 31 31 31 31 31 31 .31 31 31 31
CONDITION

to C^
PANEL CONCEPT:	 f

T	 ..8

CIRCULAR ARC-CONCAVE	 h
BEADED SKIN (h/c = 0.10) t T

	 b/2

IR
I



same constraints as previously disclosed for the convex beaded concept except for

the bead height-to-chord ratio which was held constant at -0.10.

With reference to Table 12-6, the skin thicknesses ranged from 0.015-inches on the

upper surface exposed skin at region 40322 to 0 . 055-inches for the wing tip upper

surface skin. The unit weight ( lb/sq.ft.) for the panels at region 40322 ranged

from 1.00 lb/sq.ft. to 1.50 lb/sq.ft. The unit weights for regions 40536 and 41348

ranged from 1.40 lb /sq.ft. to 2.6 lb/sq.ft.

Trapezoidal Corrugation- -Concave Beaded Skin Concept - The results of the strength

analysis are summarized in Table 12-7. For this analysis the bead height -to-chord

ratio (h/c) of the exposed skin was held constant at -0.10. While the minimum gage

thickness and flat distance between beads were identical to those previously dis-

cussed for the convex beaded concepts. A sketch of the panel cross -sectional

dimensions is contained in the footnotes of the referenced table.

With reference to Table 19-7, skin gages for the beaded skin ranged from
0.020-inches to 0.044 --inches while the corrugation thickness varied from 0.019-

inches to 0.030-inches. The unit weight of the surface panels at region 4U322

ranged from 1.2 1b /sq.ft. to 1 . 9 lb/sq.ft. The corresponding unit weights for the

surface panels at regions 40536 and 41348 varied from 1 . 3 lb/sq.ft. to 2. 4 lb/sq.ft.

Trapezoidal Beaded Corrugation - Concave Beaded Skin - This concept had the same

geometric constraints as the previous trapezoidal corrugation concept plus the

additional constraints imposed on the corrugation bead. A sketch showing the

dimensions of this concept is included in Table 12-8 and indicates the values of the

aforementioned geometric constraints.

For the three point design regions the gage thicknesses varied from 0.018--inches

to 0.037-inches, corrugation height (h) ranged from 0.70-inches to 1.4- inches,

and the bead. width ( bo ) from 1.1-inches to 1.4-inches. In addition, the

corrugation exterior angle ( c^) varied for 63-degrees to 90-degrees.

Unit panel weights . ranged from 1.2 lb/sq.ft. to 2.2 lb/sq.ft. for region 40322

with regions 40535 and 41348 having slightly higher values, 1.4 lb/ sq.ft. to

2.4 lb/sq.ft.
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TABLE 12-7; PANEL GEOMETRY AND WEIGHT OF THE TRAPEZOIDAL CORRUGATION-CONCAVE BEADED SKIN CONCEPT - TASK I
CHORDWISE WING ARRANGEMENT INITIAL SCREENING

H
ro
N
-I

POINT DESIGN 40322 40536 41348
REGION

SURFACE UPPER LOWER UPPER LOWER UPPER LOWER

SPAR	 (m) .51 .76 1.02 .51 .76 1.02 .51 .76 1.02 .51 .76 1.02 .51 .76 1.02 .51 .76 1.02
SPACING

(in) 20 30 40 20 30 40 20 30 40 20 30 40' 20 30 40 20 30 40

DIMENSIONS:

to	 (in) .020 .023 .028 .020 .023 .025 .029 .034 .044 .034 .030 .038 .028 .034 .035 .034 .034 .034

ti	 (in) .019 ..023 .028 .019 .022 .024 .026 .028 .030 .020 .024 .024 .024 1.029 .034 .018 .020 .024

Ra/to	 - 97.50 84.78 69.64 84.50 84.78 78.00 58.28 57.35 44.32 57.35 56.33 51.32 46.23 57.35 55.71 57.35 57.35 57.35

0	 (deg) 65.77 73.74 74.93 66.04 74.74 75.96 72.64 77.20 83.42 63.43 81.47 87.80 77.47 74.74 79.11 53.13 66.37 65.77

ba	 (in) 1.50 1.50 1.50 1,30 1.50 1.50 1.30 1.50 1.50 1.50 1.30 1.50 1.00 1.50 1.50 1.50 1.50 1.50

bf	(in) 0.60 0.80 0.80 0.50 0.90 0.80 0.80 1.00 1.20 0.70 1.00 1.40 0.60 0.90 1.00 0.60 0.80 0.60

h	 (in) 1.00 1.20 1.30 0.90 1.10 1.40 0.75 1.10 1.30 0.80 1.00 1.30 0.90 1.10 1.30 0.60 0.80 1.00

M ASS DATA:

F	 (in) .050 .065 .081 .050 .062 .073 .070 .084 .106 .063 .075 .089 .072 .085 .102 .057 .064 .072

w	 (7b/ft2) 1.158 1.493 1.873 1.156 1.425 1.676 1.622 1.946 2.435 1.461 1.720 2.059 1.664 1.964 2.352 1.322 1.472 1.668

CRITICAL
20 20 20 1	 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31

CONDITION

halba = 0.10
PANEL CONCEPT; 

toC-1

a	 h	 b/2=.375

TRAPEZOIDAL CORRUGATION -•-
CONCAVE BEADED SKIN	

^

bf

1



Ir

Thilhi? !..'-fi. PANEL GEOMETRY AND WEIGHT OF THE TRAPEZOIDAL BEADED CORRUGATION-CONCAVE BEADED SKIN CONCEP
TASK I CHORD'JISE WING ARRANGEMENT INITIAL SCREENING

-/I- _

s
N

POINT DESIGN
40322 40536 41348

REGION _

SURFACE

__

UPPER LOWER UPPER LOWER UPPER LOWER

SPAR	 (m) .51 .76 1.02 .51 :76 11.02 .51 .76 1.02 .51 .76 11.02 .51 .76 1.02 .51 1.02
SPACING

1.76
(in) 20 30 40 20 30 40 20 30 40 20 30 40 20 30 40 20 30 40

DIMENSIONS:

t^	 (in) .020 .025 .030 .023 .025 .029 .027 .032 .034 .032 .033 .031 .028 .034 .034 .034 .036 .037
ti	 (in) .019 .024 .026 .023 .025 .030 .024 .027 .031 .018 .021 .026 .024 .023 .031 .018 .019 .020
Rp/to	 - 91.00 72.80 60.67 79.13 72.80 58.30 52.96 56.87 53.53 57.88 55.15 58.71 51.07 49.71 53.53 53.53 50.56 49.19

Ri/ti	 -- 4.40 4.18 6.43 6.08 7.35 5.01 4.87 8.05 7.01 8.36 10.35 7.71 4.88 8.36 7.01 6.50 6.16 9.19

0	 (deg) 65.77 70.02 81.25 71.56 82.87 81.87 77.47 87.40 87.80 72.65 87.14 85.60 77.47 90.00 87.80 63.43 66.37 81.47

bo	 (in) 1.40 1.40 1.40 1.40 1.40 1.30 1.10 1.40 1.40 1.40 1.40 1.40 1.10 ".30 1.40 1.40 1.40 1.40

b f	 (in) 0.50 0.60 1.00 0.80 1.10 0.90 0.70 1.30 1.30 0.90 1.30 1.20 0.70 1.30 1.30 0.70 0.70 1.10

h	 (in) 1.00 1.10 1.30 0.90 1.20 1.40 0.90 1.10 1.30 0.80 1.00 1.30 0.90 1.10 1.30 0.70 0.80 1.00

MASS DATA:i	 ;in) .052 .068 .086 .060 .077 ,097 .072 .089 .105 .062 .075 .089 .073 .091 .105 .061 .066 ,076

w	 (ib/ft2) 1.188 1.563 1.973 1.385 1.782 2.243 1.654 2.047 2.419
1

1.422 1.737 2.056 1.677 2.106 2.419 1.402 1.520 1.739

CRITICAL
CONDITION 20 20 20 31 31 1	 31 31 31 31 31 31 31 31 31 31 31 1	 31 31

h	 b	 b/2

t	 bk/b f = ,33. PANEL CONCEPT: 
hi/bi	 =.48

TRAPEZOIDAL BEADED	 ho/bo =.10
CORRUGATION-	 tit	 hi	 >r	 b12	 .375
CONCAVE BEADED SKIN

I, bi
bk-a-
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Chordwise Surface Panel Results - The results of the initial screening analyses of

the ehordwise surface panels are presented in graphic form in Figure 12-9. This

figure compares the total panel weight, sum of the upper and lower surface panels

weights, at the three point design reyions as a function of the variable spar

spacing.

With reference to the lightly loaded region 40322, the circular-are convex beaded

concept was the least -weight concept with the trapezoidal beaded corrugation concept

the heaviest, e.g., for the 20-inch spar spacing designs the respective values of

1.76 and 2.57 lbs/sq . ft. are noted. The circular-are concave and trapezoidal

corrugation concepts have intermediate values. An exception to this ranking occurs

at the 40- spacing were the circular -arc concave beaded concept exhibits a slightly

lower value, approximately 2-percent lower, than the convex beaded concept.

For region 1 0536, the circular-arc convex beaded panel concept was again the least-

weight panel concept, less than 3.0 lb/sq.ft. for 20.0-Mach spar spacing and

slightly over 4.0 lb / sq.ft. at 1+0-inch spar spacing. These values are indicative

of the higher load intensities experienced at this region and hence more efficient

designs were obtainable. This trend is indicated in Figure 12-9 by the small weight

range exhibited by the four panel concepts.

As with the previous point design regions, Figure 12-9 indicates the circular-arc

convex beaded concept is also the least -weight concept for wing tip region 1+131+$.

Approximate urit weight values of 3.0 lb/sq.ft. and 3 .75 lbs/sq.ft. are noted for

spar spacings of 20-inches and 1+0-inches, respectively. The concept ranking,

relative to weight, for this region is (1) circular -arc convex beaded, (2) trapezoidal

corrugation--concave beaded, ( 3) circular-arc concave beaded, and ( 4) trapezoidal

beaded corrugation.

To provide further credence to the selection of the least- -weight panel concept a

supplemental analysis was conducted to assess any possible changes in panel concept

ranking when substructure is incorporated in to the design. This wing box analysis

was conducted at the highly-loaded aft box region 4.0536 and included sizing typical

substructure associated with each panel concept. The results of this analysis are

contained in Table 12-9 and for comparison purposes displayed graphically in

Figure 12-10. This analysis indicates the design using the circular-arc convex

beaded panel results in the least-weight wing box. Approximate unit box weights of

I i
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TABLE 12--9. UNIT WING BOX 14EIGHT FOR CHORDWISE PANEL CONCEPTS - TASK I CHORDWISE
ARRANGEMENT INITIAL SCREENING

Ew

PANEL
CIRCULAR ARC- CIRCULAR ARC- THAPEZ13111AL	

^^r_

^^
BEADED	 zr

CORRUGATION_CONVEX CONCAVE	 f CORRUGATION-
CONCEPT BEADED SKIN BEADED SKIN CONCAVE BEADED SKIN CONCAVE HEADED SKIN

SPAR SPAC (1N) 20 30 1	 40 20 30 1	 40 20 30 40 20 30 40
PANELS
UPPER 1.609 1.965 2.241 1.696 2.099 2.620 1.622 1.946 2.435 1.654 2.047 2.419
LOWER 1.335 1 . 570 1 .943 1.367 1 .688 1.993 1 .461 1 .720 2. 059 1.422 1 .737 2.056
E (2,944) (3.535) (4.184) (3.063) (3.787) (4.613) (3.083) (3.666) (4.494) (3.076) (3.784) (4.475)

RIB WEBS
BULKHEAD 0.238 0.238 0.238 0.238 0.238 0.238 0.238 0.238 0.238 0.238 0.238 0.230
TRUSS 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228
E (0.466) (0.466) (0.466) (0.466) (0.466) (0.466) (0.466) (0.466) (0.466) (0.466) (0.466) (0.466)

SPAR WEBS
BULKHEAD 0.270 0. 319 0 .375 0 .270 0.319 0 .375 0.270 0.319 0.375 0.270 0.319 x1.375
TRUSS 0.490 0.403 0.325 0.490 0.403 0.325 0.490 0.403 0.325 0.490 0.403 0.325

(0.760) (0.722} (0.700) (0.760) (0.722) (0.700) (0.760) (0.722) (0.700) (0.760) (0.722) (0.700)

RIB CAPS
UPPER 0.116 0.117 0.130 0.104 0.123 0.152 0.094 0.104 0.122 0.038 0.100 0.109
LOWER 0.086 0.097 0.116 0.087 0.103 0.117 0.093 0.093 0.104 0.087 0.093 0.097
E (0.202) (0.214) (0.246) (0.191) (0.226) (0.269) (0.187) (0.197) (0.226) (0.175) (0.193) (0.206)

SPAR CAPS

UPPER 2.710 2.770 2.890 2.710 2.800 2.930 2.850 2.850 2.950 2.850 2.850 2.950
LOWER 3.950 4.040 4.190 3.950 4.080 4.240 4.010 4.160 4.290 4.010 4.160 4.290
E (6.660) (6.810) (7.080) (6.660) (6.880) (7.170) (6.860) (7.010) (7.240) (6.860) (7.010) (7.240)

NON OPTIMUM
FASTENER 04200 0.190 0.180 0.200 0.190 0.180 0.200 0.190 0.180 0.200 0.190 0.180
WEB INTERS. 0.120 0.110 0.100 0.120 0.110 0.100 0.120 0.110 0.100 0.120 0.110 0.100
E (0.320) (0.300) (0.280) (0.320) (0.300) (0.280) (0.320) (0.300) (0.280) (0.320) (0.300) (0.280)

POINT
E	 DESIGN	 1 f 2 ^ 11.352 12.047 12.956 11.460 12.381 13.498 11.676 12.361 13.406 11.657 12.475 13.367

MASS
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11.3 1b/sq.ft. to 13.0 lb/sq..ft. are noted for this concept at spar spacing of

20-inches and 40-inches, respectively.

By comparing the results shown in Figure 12-9 with those in Figure 12-10 it can be

seen that the findings of the panel investigation are validated by the results of the

wing box analysis, i.e., least--weight concept is the circular -arc convex-beaded

i el.

Chordwise Detailed Concept Analysis

For the detailed concepts analysis, elementary wing boxes, left-hand sketch can

Figure 12-6, were subJeeted to point design weight-strength analyses. Structural

components included were the least-weight panel concept surviving the initial

screening analysis, circular-arc convex beaded concepts, with substructure commen-

surate with the chordwise design. This substructure included spar caps and webs,

rib caps and webs, and associated non-optimum structure (i.e., posts, shear ties,

fasteners, etc.)

Six wing point design regions were selected for this analysis, the, three used

for the initial screening analysis plus three additional regions. Figure 12--3

contains the locations of these regions. The three additional wing regions were

located in the wing aft box and wing tip regions.

The critical panel load-temperature environments are displayed in Table 12-2

for each of six wing point design regions. The substructure was analysed using

the internal forces derived from the NASTRAN redundant structure analysis

solution.

Panel Analysis - The results of the panel analysis are summarized in Table 12-10.

This table displays the panel dimensions and mass data for the three additional

point design regions 40236, 41036, and 41316. All panels were designed for the

critical symmetric flight condition at Mach 1.25, Condition 31.

With.reference to this table, the bead skin thicknesses ranged from 0.019-inches

to 0.072-inches for these regions with no minimum gage restrictions. The radius

for the inner bead Rh varied from 0.7-inch to 1.5-inches. The semi-apex an^Ie 9,

flat width b, and exterior skin bead height-to-chord ratio h/c were held tc t_

12-33



TABLE 12-10. PANEL GEOMETRY AND ITEIGHT OF THE CIRCULAR ARC-COINER BEADED CONCEPT - TASK I CHORDTr7ISE
ARRP21GEMEIIT DETAIL CONCEPT APIALYSIS

Lo

POINT DESIGN 40236 41036 41316
REGION

SURFACE UPPER LOWER UPPER LOWER UPPER LOWER

SPAR	 (M) .51 .76 1.02 .51 .76 1.02 .51 .76 1.02 .51 .76 1.02 .51 .76 1.02 .51 .76	 1 1.02
SPACING

(in) 20 30 40 20 30 40 20 30 40 20 30 40 20 30 40 20 30 40

DIMENSIONS:

t,	 (in) .019 .024 .030 .022 .028 .034 .024 .028 .033 .020 .021 .023 .028 .030 .038 .026 .033 .037

tU 	 (in) .019 .024 .028 .025 .030 .033 .030 .037 .040 .030 .029 .030 .072 .072 .067 .051 .046 .050

RI	(in) 0.7 1.0 1.3 0.9 1.2 1.5 0.8 1.1 1.3 0.7 0.8 1.0 0.9 1.1 1.4 0.8 1.0 1.2

8	 (deg) 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87

b	 (in) .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75

MASS DATA:

F	 (in) .045 .058 .071 .056 .070 .082 .063 .077 .087 .057 .058 .062 .112 .115 .122 .087 .092 .103

w	 (1b/ft2) 1.032 1.325 1.629 1.279 1.606 1.887 1.452 1.766 2.007 1.320 1,336 1.435 2,571 2.650 2,811 2.007 2,129 2.366

CRITICAL 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31
CONDITION

h	 r C

PANEL CONCEPT:

8	 CIRCULAR ARC-CONVEX
BEADED SKIN (h/c= 0.10)

R	 tjj	 b/2



same constraints as the panels during the initial screening analysis: 87-degrees,
0.75-inches, and 0.10, respectively.

The detail concept analysis used the panel weights determined during the initial

screening analysis at point design regions 40322, 40536, and 41348. See Table 12 -5
for a summary of the panel geometry and weight of these regions.

Substructure Analysis - For the chordwise stiffened wing arrangement, the wing

chordwise extensional stiffness and wing torsional stiffness are primarily a

function of the surface panel properties with the wing bending stiffness provided

by the submerged spar caps. Hence the spars (caps and webs) are major weight

components for the chordwise arrangement. In addition, the rib caps and webs, and

the associated non-optimum structure were included in this substructure analysis.

The substructure weight--strength analysis was conducted at each of thq six point

design regions using representative substructure commensurate with the specific

region being analyzed, i.e., wet bay or dry bay region. A typical substructure

arrangement for point design region 40536 is shown in Figure 12-11. The number of
components associated with each rib and spar spacing are shown superimposed on

panel dimensions used in the finite-element structural model. All study dimensions

were related to the model dimension. To protect the spar caps from the thermal

environment and provide clearance for the uses of large surface panels (continuous

panel stiffeners) the spar caps are submerged. The caps become large rectangular

blocks with integral tee clips attaching to the skin. At bulkheads the surface

stiffeners taper out and the tee clips are continuous. At intermediate spars the

clips are cut away to allow for continuous panel stiffeners and are hence local

discrete elements.

In addition, the model loads reflect spar caps at the wing surface, hence the actual

spar cap loads used in the weight-strength analysis were adjusted by the ratio of

model spar height. An example of the spar cap stress analysis is shown on Table 12-11,

and Table 12-12 presents the resulting spar cap geometry and weight. Study spacings,

model spacings and inter-related number of caps are defined for each point design

region. The cap geometry and area, and the equivalent surface panel unit weights

are displayed for both upper and lower caps. The nomenclature for the cap geometry

and the weight equation are shown in the footnotes of this Table. The tension

designed lower surface caps (90,000 psi.. gross area fatigue allowable stress) are
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Figure 12-11. Chordwise Substructure Arrangement Point
Design Region 40536
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TABLE 12-11. CHORDWISE ARRANGEMENT SPAR CAP ANALYSIS

POINT SPAR
APPLIED LOAD

CAP fTrC(1) FTC (2) MARGIN(3)
DESIGN
REGION SURFACE

SPACING
(IN.)

COND.
NO.

PULT
(KIPS)

.AREA
(IN.2) (KSi) (KSi)

OF
SAFETY

40322 UPPER 20 9 -27.4 0.21 -131.1 -131.4 0.00
30 9 -41.6 0.32 -130.8 -131.0 0.00
40 9 -56.0 0.43 -129.9 -131.0 0.01

LOWER 20 9 27.4 0.30 90A 90.0 0.00
30 9 41.6 0.46 89.8 90.0 0.00
40 9 56.0 0.62 90.3 90.0 0.00

40536 UPPER 20 31 -307.4 2.35 -130.8 -131.0 0.00
30 31 -472.8 3.62 -130.6 -131.0 0.00
40 31 -656.6 5.02 -130.8 -131.0 0.00

LOWER 20 31 307.4 3.43 89.6 90.0 0.00
30 31 472.8 5.27 89.7 90.0 0.00
20 31 656.6 7.27 90.3 90.0 0.00

41348 UPPER 20 31 -272.2 2.09 -130.2 -131.0 0.01
30 31 -436.0 3.33 -130.9 -131.0 0.00
40 31 -632.0 4.83 -130.8 -131.0 0.00

LOWER 20 31 272.2 3.02 901 90.0 0.00
30 31 436.0 4.83 90.3 90.0 0.00
40 31 632.0 7.05 89.6 90.0 0.00

NOTES

1.	 APPLIED STRESS = PULTIA
2.	 ALLOWABLE STRESS:

COMPRESSION ( FC) ` FCY
TENSION (FT) = 90,000 PSI (FATIGUE ALLOWABLE)

3.	 MARGIN OF SAFETY = F/f -I



TABLE 12-12. SPAR CAP GEOMETRY AND WEIGHT OF THE CHORDWISE WING ARRANGEMENT

MODEL
SPACING SPACING

UPPER.SURFACE SPAR CAPS LOWER SURFACE SPAR CAPS
POINT SPAR RIB SPAR RIB N
DESIGN a b A B NUMBER W t w W t AC w
REGION (IN.) (IN.) (IN.) (IN.) SPARS (IN.) (IN.) (IN2) (LB/SQ. FT) (IN.) (IN.) (IIN2) (LB/SQ. FT)

40322 20 60 90 71 4.50 1.50 .139 .209 .241 1.50 .203 .304 .350
30 60 90 71 3.00 1.50 .212 .318 .244 1.50 .308 .463 .356
40 60 90 71 2.25 1.50 .287 .431 .248 1.50 .413 .620 .357

40236 20 60 80 63 4.00 2.0 1.37 2.74 3.16 3.0 1.37 4.12 4.75
30 60 80 63 2.66 3.0 1.41 4.23 3.25 3.5 1.81 6.34 4.86
40 60 80 63 2.GO 3.0 1.92 5.76 3.31 4.0 2.16 8.64 4.97

40536 20 60 80 64 4.00 2.0 1.18 2.35 2.71 2.5 1.37 3.43 3.95
30 60 80 64 2.66 2.5 1.45 3.62 2.77 3.0 1.76 5.27 4.04
40 60 80 54 2.00 3.0 1.67 5.02 2.89 3.5 2.08 7.27 4.19

41036 20 60 100 64 5.00 2.0 0.810 1.62 1.87 2.0 1.17 2.347 2.71
30 60 100 64 3.33 2.5 1.03 2.58 1.98 2.5 1.50 3.75 2.88
40 60 100 64 2.50 3.0 1.21 3.63 2.08 3.0 1.75 5.25 3.02

41316 20 60 50 45 25 2.5 1.36 3.40 3.92 3.0 1.66 4.98 5.73
30 60 50 45 1.66 3.0 1.81 5.43 4.15 3.5 2.25 7.88 6.04
40 60 50 45 1.25 3.5 2.23 7.81 4.50 4.0 2.84 11.36 6.55

41348 20 60 35 40 1.75 2.0 1.045 2.09 2.41 2.5 1.208 3.02 3.48
30 60 35 40 1.17 2.5 1.332 3.33 2.56 3.0 1.610 4.83 3.72
40 60 35 40 0.875 3.0 1.610 4.83 2.78 3.5 2.014 7.05 4.06

SPAR CAP DIMENSIONS

I	
-IAC = CAP AREA OF EFFE F'TIVE LOAD CARRYING MATERIAL

=W x 
tj	 w = EQUIVALENT SURFACE PANEL WEIGHT, LB/SQ. FT.

N x AC
--	 x23.04

W	 A
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heavier than the compression designed upper surface caps. At point design region

40236, inboard location on aft wing box, the lower surface caps are approximately

1.6 lb/sq.ft. heavier than the upper surface caps. As to be expected, the spanwise

cap areas increased at the wing tip root and the wing/fuselage intersection. On

the aft box, reading from outboard to inboard, the unit weights of the upper surface

spar caps for 20.0-inch spacing ranged from approximately 1.90 lb/sq.ft. to 3.2 lb/

sq.ft., respectively. The corresponding weights of the lower surface caps ranged

from approximately 2.70 lb/sq.ft. to 4.8 lb/sq.ft. A general ranking of the wing

regions by their spar cap weights are as follows: heaviest zaps are indicated for

the wing tip regions (41316 and 41348), intermediate weights for the aft box regions

(40236, 40536, and 41036), and least-weight for the lightly loaded spars in the

forward wing box region 40322.

The rib caps carry relatively low loads as the chordwise stiffened surface panels

are the primary load-carrying structure. The rib caps were designed to support

the surface panels, provided the necessary material for panel splicing, and in

association with the rib web, supply additional chordwise bending stiffness.

The rib cap geometry was held constant, a tee 2.0-inches wide with a 1.0-inch

flange, with only the thickness allowed to vary with the load intensity. A

minimum design restriction of 0.04-inches was imposed on the thickness. A

summary of the rib cap geometry and weight are shown in Table 12-13. This table

contains the same type of spacing data and number of rib caps as described for the

spar caps analysis. The upper and lower surface rib cap geometry for each region

are displayed along with the equivalent surface panel unit weight. The footnotes

contain the typical rib cap geometry, and the cap area and equivalent panel unit

weight equations. The rib caps at point design region 1 1316 (wing tip/aft box

interface) required the greatest areas (heaviest weight) with the caps at region

40322 being the least-weight designs. A unit weight of 0.16 lb/sq.ft. is noted

for the upper rib cap for 20-inch spar spacing at region 41316 and 0.058 lb/sq.ft.

for the corresponding spacing design at region 40322.

A combination of circular-arc corrugation and truss designs was considered for

the spar and rib webs. The type of web used was contingent on the location of the

specific point design region being analyzed. For wet-bay regions, a combination

of bulkhead and truss webs was considered; whereas, for the dry-bay wing tip

regions the relatively small wing thickness prohibited the use of truss webs and
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TABLE 12-.L 3, li I fi CA1 3 GEOMETHY AND WEIGHT OF THE CHORDWISE WING ARRANGEMENT

r

0

MODEL
SPACING SPACING

NUMBER UPPER RIB CAP LOWER 	 CAP
POINT SPAR RIB SPAR RIB RIB

DESIGN a 6 A B CAPS t AR w t AR w
REGION (IN.) (IN.) (I N.) (IN.) N (IN.) (IN 2) (LB/SQ. FT) (IN.) (IN.2) (LB/SQ. FT)

20 60 90 71 1.50 .040 ,120 .058 .045 1135 .065
40322 30 60 90 71 1.50 .055 .166 .081 .050 .150 .073

40 60 90 71 1.50 .066 .199 .097 .050 .150 .073

20 60 80 63 1.00 .064 .191 .070 .076 .228 .083
40236 30 60 80 63 9.00 .077 .230 .084 .090 .271 .099

40 60 80 63 1.00 .090 .270 .099 .102 .306 .112

20 60 80 64 1.00 .107 .321 .116 .080 .240 .086
40536 30 60 80 64 1.00 .108 .324 .117 .090 .270 .097

40 60 80 64 1.00 .120 .360 .130 .107 .321 .116

20 60 100 64 1.66 .052 .156 .093 .049 .147 .087
41436 30 60 100 64 9.66 .061 .182 .109 .049 .147 .087

40 60 100 64 1.66 .067 .201 .120 .051 .153 .091

20 60 50 45 .750 .139 .416 .160 .109 .327 .126
41316 30 60 50 45 .750 .141 .423 .162 .112 .336 .129

40 60 50 45 .750 .145 .435 .167 .1'22 .366 .141

20 60 35 40 0.666 .089 .267 .103 .064 .192 .074
41348 30 60. 35 40 0.666 .101 .303 .116 .076 .228 .087

40 60 35 40 0.666 .112 .336 .129 .077 .231 .088

}^-}--^-	
A = AREA, IN2

200	
FI 	 = 3.00 x t

^1	 w = EQUIVALENT SURFACE PANEL UNIT WEIGHT, LBIFT 2t

N x A R x 23.04
-	

B
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only corrugated webs were considered. The spar web geometry and corresponding

weights are summarized in Table 12-14, with the similar data for the rib webs

shown in Table 12-15. Both tables contain the pertinent type and number of webs

for each point design region. In addition, the geometry nomenclature, and the

area and weight equations are defined in the footnotes.

Unit Box Weights - Tables 12--16 and 12-17 contain a summary of the component and

total weights of the chordwise wing concept for the six paint design regions. The

components included: the upper and lower surface panels, rib webs, rib caps, spar

webs, spar caps, and non-optimum factors. In addition to the component weights, the

total point design box weight is also included on these tables. For ease in interpre-

ting these results, the component and total weights at each point design region as a

function of spar spacing are presented in graphic form in Figure 12-12 through

12-17.

The results for the lightly loaded forward wing box region 40322 are presented in

Figure 12-12. The total box weight curve has a positive slope of approximately

.025 lb. /sq.ft. per inch of spacing frith a minimum-weight value of 3.8 lb/sq.ft

occurring at the 20-inch spar spacing design. With respect to the panel weight

curves the compression design upper surface panels are heavier than the lower sur-

face panels for all designs with approximately 25-inch or larger spar spacings. The

panel weights for the 25-inch spar spacing designs are 1.05 lb/sq.ft. For the

20-inch spar design the incremental weight between the upper and lower surface is

approximately 0.12 lb/sq.ft. with the upper surface design (0.82 I'o/sq.ft.) being

the lightest. All substructure components are less than 1.0 lb/sq:ft, with the

spar webs for the 20-inch spacing design being the heaviest freight component.

The wing box weights for region 40236 are shown in Figure 12--13. For this chord--

wise stiffened wing panel concept, the wing spanwise bending loads are.carried by

submerged spar caps which for this region are the heaviest component and weight

approximately 8.0 lb/sq.ft. The surface, panels are relatively light-weight

components with the heaviest panels being the lower surface panels trh:ich weigh

approximately 1.30 lb/sq.ft. and 1.90 1b/sq.ft. for the 20-inch and 40-inch spar

spacing designs, respectively. Of the remaining components, the spar webs were

the heaviest item at 0.90 lb/sq.ft. for the 20-inch spar spacing design. The

total weight curve is linear with a positive slope, a minimum total weight of

approximately 12.0 lb/sq.ft. occurs for the 20-inch spar spacing design.

nAi
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TABLE lL,-1.4. SPAR AM GEOMETRY AND WEIGHT OF THE CHORDWISE WING ARRANGEMENT

F'd GD

cro
y^A

ti

N
Rlt
.^
1V

MODEL TRUSS WEBS
SPACING SPACING

N BULKHEAD WEBS N TUBE WALL
POINT SPAR RIB SPAR HIE; NUMBER NUMBER DIA. THK. NUMBER

DESIGN
REGION

a
( IN.)

b
(IN.)

A
(IN.)

B
(IN.)

BULKHD
WEBS

h
(IN.)

B
(DEG,I

R
(IN.)

t
(IN,)

w
(LB/SO. FT)

TRUSS
WEBS

D
IIN.)

t
(IN.)

L
( I N.)

A
UN?)

DIAGONAL$
n

w
(LB/SR. FT)

20 co 90 71 1 42 80 1,20 .022 .336 3.5 1.50 .023 44.6 .107 5 .301
40322 30 60 90 71 1 42 79 1.30 .022 ,333 2.0 1.50 .026 44.6 .119 5 .191

40 60 90 71 1 42 68 1.60 .026 .336 1.25 1.50 .033 44.6 .152 5 .153

20 60 80 63 1 35 63 1.80 .029 .361 3.0 2.25 .037 38.9 .261 4 .544
40236 30 60 80 63 1 35 79 1.40 .02B .396 1.66 2.25 .053 38.0 .365 4 .421

40 60 80 63 1 35 75 1.50 .033 ,451 1.00 2.25 .066 38.0 .465 4 .323

20 60 80 64 1 27 67 1.40 .027 270 3.0 1.625 .065 28.3 .321 4 .490
40536 30 60 80 64 1 27 72 1.30 .031 .319 i.66 1.625 .D99 2B.3 .475 4 .403

40 60 80 64 1 27 63 1.70 .039 .375 1100 1.525 .136 28.3 .636 4 .325

20 60 100 64 1 16.5 62 1.00 .023 .109 4.0 1.50 .063 22.0 .284 4 .359
41036 30 60 100 64 1 16.5 63 1.00 .028 .132 2.33 1.550 .063 22.0 .389 4 .287

40 60 100 64 1 16.5 65 1.00 .032 .151 1.50 1.50 .096 22.0 .423 A .201-

20 60 50 45 2.5 13.5 60 1.00 .023 .439
41316 30 60 50 45 1.66 13.5 60 1.00 .D28 .354 - - - - - - -

40 60 50 45 1.25 13.5 60 1.00 .031 .28B

20 60 35 40 1.75 11.0 60 1.D0 .019 .291
41348 30 60 35 40 1.17 11.0 70 1.00 .024 .264 - - - - - - -

40 60 35 40 0,875 11.0 60 1.00 .025 .182

BULKHEAD WEBS (CIRCULAR-ARC CORRUGATION) TRUSS WEBS (DIAGONAL. ELEMENTS)

tj	 Rl	 w a EQUIV. SURFACE PANEL WT., LBISQ. FT.
AD - DIAGONALAREA

1.
8	

' - 7F14(DQ2.DL2)

t	 x N	
sin 

6 
1	

{	 1 t x 23.04
1	 /

w= EQUIV.SURFACE
PANEL, WT., LB/SQ. FT.

is 1-30-1  15	 N(n x AD x L1
60	 a	 x 23.04

Ax B



TABLE 12-15. RIB WEB GEOMETRY AND WEIGHT OF THE CHORDWISE WING ARRANGEMENT

W

MODEL 'TRUSS WEBS
SPACING SPACING

N BULKHEAD WEBS N TUBE WALL
POINT

DESIGN
REGION

SPAR
a

(IN.)

RIB
b

(IN.)

SPAR
A

(IN.)

RIB
B

( IN.I

NUMBER
BULKHD
WEBS

NUMBER
TRUSS
WEBS

DIA.
D

(IN.)

THK.
t

(IN.)
L

(IN.)
AD

(IN?)

n
NUMBER

DIAGONALS
w

( LBISO. FT.)
h

(IN.)
$	 I

(DEG.)
R

( 1N.)
t

(IN.)
w
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40322 30 60 90 71 0.50 45 78 144 .029 29B 1.00 1.50 .015 45.5 .074 6.0 .074

40 6D 90 71 0.50 45 78 1.50 .029 296 1.00 140 .021 47.4 .097 4.5 .074

20 60 80 63 0.50 36 65 1.80 .034 .279 0.50 2.25 1093 41.0 .630 4.0 237
40238 30 60 80 E3 0.50 36 65 1.80 .034 .279 0.50 2.25 .073 39.0 .499 5.33 .237
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40 60 1D0 64 1100 16 60 1.00 .016 .111 0.666 1.00 .065 26.0 .192 5.00 1060

20 60 60 45 0.75 13 60 1.00 .045 .270 - - - - - -- -
41316 30 60 50 45 0.76 13 60 1.00 .045 .270 - - - -- - - --

40 60 50 45 0.75 13 60 1.00 .045 .270

20 60 35 40 0.656 12 60 1.00 .019 .105
41348 30 60 35 44 0.666 12 60 1.00 .019 .106 -- - - - - - -

40 60 35 40 0.666 12 60 1.00 .019 .106
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TABLE 12-16. DETAIL WING WEIGHTS FOR THE CHORDWISE VING ARRANGEMENT

POINT
DESIGN 40322 40536 41348
REGION

SPAR SPAC (IN) 20 .30 40 20 30 40 20 30 40

PANELS

UPPER 0,825 1.263 1.619 1,609 1.965 2.241 1,632 1,925 2,199
LOWER 0.942 1,120 1.413 1.335 1.570 1.943 1,366 1,328 1.617

E (1.767) (2.383) (3.032) (2,944) {3,535} (4.184) (2.998) (3.253) (3.816)

RIB WEBS

BULKHEAD 0,298 0.296 0,298 0.238 0.238 0,238 0.106 0,103 0.106
TRUSS 0.074 0.074 0.074 0,226 0.228 0.228 - - -

E {0,372) (0.372) (0.372) (0.466) (0.466) (0.466) (0.106) 10.106) (0.106)

SPAR WEBS

BULKHEAD 0.336 0.333 0.336 0.270 0.319 0.375 0.291 0.264 0.192
TRUSS 0,301 01191 0,193 0.490 0.403 0.325 - - -
E (0.637) (0.524) (0.489) (0.760) (0.722) (0.700) (0.291) (0.264) (0.192)

RIB CAPS

UPPER 0.058 0.081 0.097 0.116 0.117 0.130 0.103 0.116 0.129
LOWER 0.065 0,073 0.073 0.086 0.097 0,116 0.074 0.087 0,088
E (0.123) (0.154) (0.170) (0.202) (0.214) (0.246) (0,177) (0,203) (0,217)

SPAR CAPS

UPPER 0.241 0.244 0.248 2.710 2.770 2,890 2.410 2.560 2.780
LOWER 0.350 0.356 0,357 3,950 4.040 4,190 3.480 3,720 4.060

E (0.591) (0,600) (0.605) (6.660) (6,810) (7,080) (5,890) (6.280) (6.840)

NON-OPTIMUM

MECH. FAST. 0.1811 0.170 0.160 01200 0.190 0.180 0.200 0.190 0,180
WEB INTERS. 0.120 0.110 0.100 0.120 0.110 0.100 0.120 0.110 0,100
E (0.300) (0,280) (0.260) (0.320) (0.300) (0,2801 (0.320) (0.300) (0,280)

POINT
DESIGN FT2 3.790 4.313 4.928 11,352 12.G47 12.956 9.782 10.406 11.451
MASS

3244

1
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TABLE 12-17, DETAIL WING WEIGHTS FOR THE CHORDWISF, WING ARRANGEMENT

POINT
DESIGN 40236 41036 41315
REGION

SPAR SPAC (1N) 20 30 40 20 30 40 20 30 40

PANELS

UPPER 1.032 1.325 1,629 1.452 1.764 2.007 2.571 2.650 2.811

LOWER 1:279 1.606 1.887 1.320 1.336 1.435 2.007 2.129 2.366
E (2.311) 12.931) (3.516) (2.772) (3.100) (3.442) (4.578) (4.779) (5.177)

RIB WEBS

BULKHEAD 0.279 0.279 0,279 0.111 0.111 0.111 0.270 0.270 0.270

TRUSS 0.237 0.237 0.237 0.060 0.060 0.060 - - -

E (0,516) (0,516) (0,516) (0.171) (0.171) (0.171) (0.2701 (0.270) (0.270)

SPAR WEBS

BULKHEAD 0.361 0.396 0.451 0.109 0.132 0.151 0,439 0,354 0.288

TRUSS 0.544 0.421 0.323 0.359 0.287 0.201 - - -

E (0.905) (0.817) (0.774) (0.468) (0.4191 (0.352) (0.439) (0.354) (0,2881

RIB CAPS

UPPER 9.070 0.084 0.099 0.093 0.109 0.120 0.160 0.162 0.167

LOWER 0.083 0.099 0.112 0.087 0.087 0,091 0.126 0.129 0.141

E (0,153) ( 0.1831 (0.211) (0.180) (0.196) (0.211) (0.286) (0.2911 10.308)

SPAR CAPS

UPPER 3.160 3.250 3.310 1.870 1.980 2.080 3.920 4.150 4,500
LOWER 4.750 4.860 4,970 2.710 2.880 3.020 5,730 6.040 6.550

E (7,910) (8,110) (8,280) (4.580) (4.860) (5.100) (9.650) (10.190) (11.050)

NON-OPTIMUM

MECH. FAST. 0.200 0.190 0.180 0.200 0.190 0.180 0,200 0.1.90 0.180
WEB INTERS. 0.120 0.110 0.100 0.120 0.110 0.100 0.120 0.110 0.100

E (0,320) (0,300) (0,280) (0.320) (0.300) (0,280) (0.320) (0.300) (0.280)

POINT
DESIGN F^ 12.115 12.057 1$ 577 8,491 9.046 9.556 1 65,543 16.184 17.373
MASS

ORIGINa PAGE M
OF oo.R QUAL7,rly
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The results of the weight-strength analysis for region 40536 are presented in

Figure 12-14 and indicate the least weight design (11.4 lb/sq.ft,.) occurs at-the

smallest spar spacing investigated, 20-inches. As with region 40236, the spar caps

(upper and lower caps) were the heaviest weight components ranging from 6.7 lb/sq.ft.

at the 20-inch spar spacing to 7.1 lb/.sq.ft. at the 40--inch spar spacing. The

spar cap weight amounts to approximately 55- to 59-percent of the total box weight

with the larger percentage occurring for the 20 -inch spar spacing design. The

surface panel weight, combined weight of the upper and lower panels, varied from

2.9 lb /sq.ft. to 4.2 lb /sq.ft. for the 20-inch and 40--inch spar spacing designs,

respectively, with the upper surface panel being the heaviest panel for all designs.

The surface panel weight amounts to approximately 26-'to 32 -percent of the total box

weight. The sum of the weight of the remaining structural. components ( spar and rib

webs, rib caps, and non-optimum factor) amount to a maximum of 15-percent of the

total weight for the 20 -inch spar spacing design and approximately 13-percent for the

40-inch spar spacing design.

The wing box weights for region 41036 are presented in Figure 12-15. As with the

previous discussed regions the least -weight design corresponded to the . smallest

spar spacing (20-inches) design investigated and weighed approximately $.5 lb/sq.ft.

The upper surface panel was the heaviest panel for all spar spacings investigated

with the weight ranging from 1.45 lb/sq.ft. to 2.00 lb/sq.ft. for the 20-inch and

40-inch spar spacing design, repectively. The spar caps (upper and lower) weighed

approximately 5.0 lb /sq.ft. and amounted to approximately 54-percent of the total

box weight. With reference to the remaining structure, no single component weighed

more than 0.5 lb/sq.ft.

The wing , box weights for the wing tip inboard point design region, region 41316,

are presented in Figure 12-16. The minimum-weight design (15.5 lb/sq.ft.) occurs

at the 20-inch spar spacing with the 40- inch spar spacing - design being the heaviest

at 17.4 lb/sq.ft. For the minimum-weight design, the weight of the spar caps

amounts to 62-percent of the total weight, while the weight attributed to the panels,

upper and lower, accounts for approximately 29-percent of the total weight. The

remaining structure for the 20-inch spar spacing design amounts to approximately

9-percent of the total weight. The corresponding weights of these components for

the least-weight 20-inch design are: 9.65 lb/sq.ft., 4.5$ lb/sq.ft., and

1.31 lb/sq.ft., respectively.
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The component and total box weight for region 41348 are presented in Figure 12-17.

The minimum-weight design is the 20-inch spar spacing design which has a total box

weight of 9.8 lb/sq.ft., with a unit weight of 5.89 lb/sq.ft. for the spar caps.

The upper and lower surface panels weigh 1.63 lb/sq.ft. and 1.37 lb/sq.ft.,

respectively, with the rib caps and webs, spar webs, and non-optirium factors

having individual weights Less than 0.5 lb/sq.ft. for all spar spacings.
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SPAMUSE STIFFENED WING ARRANGEMENT - TASIS I

An Initial Screening and a Retailed Concept Analysis were conducted on the spanwise

stiffened wing structural arrangement. The four panel concepts evaluated during the

Initial Screening are presented. in Figure 12-18. Also included on this figure is a

typical wing box segment depicting the components included in the detailed concepts

analysis. 't=hese components are: the upper and lower surface panels, spar caps and

webs, rib caps and webs, and the appropriate non-optimum factors.

Minimum gages and other fabrication limits are summarized in Figure 12-19 for the

spanwise panel concepts. A more detail description of this data is contained in

the materials and producibility section, Section 7.

The load-temperature environment for the spanil se wing arrangement is based on the

internal loads resulting from a NASTRAN redundant analysis solution. This solution

utilized the 2-D finite element model with flexibiliti.es representative of a

typical spanwise stiffened wing. A description of the model and the input data is

contained in Section 9, entitled Structural Analysis Models. Since the

resulting internal loads are typical values, the point design environment was

invariant and was used to analyze all the spanwise arrangements.

The,point design environment was defined from a comprehensive list of flight

conditions, see Section 11. The load-temperature environment for the most

critical Task I flight condition is presented in Table 12-18. This condition

is the Mach 1.25 symmetric flight condition at stall speed.

Spanvise Initial Screening

The spanwise stiffened wing panels are uniaxially stiffened panels which are of

two basic constructions: integral and non-integral stiffened sheet. A total

of four panel concepts, two of each basic construction, were included in the

initial screening analysis; these concepts were:

s Zee stiffened

• Hat stiffened

s Integral zee, and the

s Integrally stiffened

it
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TABLE 12-18. WING POINT DESIGN ENVIRONMENT, SPANWISE ARRANGEMENT - TASK I
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A weight-strength analysis was conducted on these panel concepts at the three point

design regions: 40322, 40536, and 41348. See Figure 12-3 for the location of these

regions on the wing platform.

The critical design condition and the corresponding Load-temperature environment

for this condition are presented in Table 12-18 with the pertinent regions used

for the initial screening analysis noted.

The weight-strength analysis was conducted on both upper and lower surface panels

for variable rib spacings of 20-, 30-, and 40-inches and a constant spar spacing

of 60-inches. This analysis was conducted using the methods as previously

described and the results are presented in the following text.

Hat-Stiffened Panels - The results of the panel analysis are summarized in

Table 12-19 which presents the panel cross-sectional dimensions and mass data for

each of the rib spacings investigated. In addition to the above data, a sketch

of the panel cross section is presented in the footnotes.

A minimum gage constraint (0.020-inches) was active for the lower surface panels

at point design region 40322. The skin thickness ranged from 0.020-to 0.109-inches,

while the stiffener thickness varied from 0.019-to 0.100-inches. Unit weight,

varied from 1.20 lb/sq.ft. to 2.50 lb/sq.ft. on point design region 40322 and from

3.40 lb/sq.ft. to 6.3 lb/sq.ft. for regions 40536 and 41348.

Zee Stiffened Panels - The results of the analysis conducted on this concept are

summarized in Table 12-20 with a sketch showing the cross-sectional dimensions

included in the footnotes.

As with the hat-stiffened concept, minimum skin gages (0.020-inches thick) are indi-

cated for the lower surface panels at region 40322. For both panels at this region,

the skin thickness ranged from the minimum gage value of 0.020-inches to 0.055-inches.

The corresponding thickness range for region 40536 and 41348 was 0.060- to

0.114-inches.

The panels at region 40322 were the lightest weight designs ranging in unit weight

from 1.14 lb/sq.ft. to 3.15 lb/sq.ft. Conversely, the heaviest panel designs occurred

at region 40536 and varied from 5.28 lb/sq.ft. to 6.30 lb/sq.ft. The wing tip

point design region 41348 indicated intermediate unit weight values ranging froia

3.45 lb/sq.ft. to 5.06 lb/sq.ft.
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TABLE 12--19. PANEL GEOMETRY AND WEIGHT FOR HAT SECTION STIFFENED CON:";r T - TASK I SPANWISF WING ARRANGEMENT

YN
1

POINT DESIGN REGION 40322 40536 41348

SURFACE UPPER LOWER UPPER LOWER UPPER LOWER

RIB	 Im} 0.51 0.76 1.02 0.51 0.76 1.02 0.51 0.76 1.02 0.51 0.76 1.02 0.51 0.76 1.02 051 0.76 1.02
SPACING	 (in.) 20 30 40 20 30 40 20 30 40 2D 30 40 20 30 40 2D 30 40

DIMENSIONS:

is 	(cm) 0.0660 0.0890 0.1110 0.0520 0.0520 0.0530 0.2260 0.2390 0,2590 0.3770 0.2640 02670 0.148D 0.1710 0.2010 0.1600 0.1510 0.1610
(in.) 0.0260 0.0350 0.0440 0.0200 0.020A 0.0210 0.0890 04940 0.1020 0.109D 0.1040 0.1050 0.0580 0.0672 0.0732 0.0630 0.0630 0.0640

bs - bw ° b=	 (cm) 2.2800 3.2400 4.1700 10100 2.4600 2.8800 4.4600 5.3500 6.3700 5.1100 5.6900 6.4700 3.4100 4.4800 5.6100 3.5700 42400 5.0200
(in.) 0.8960 1.2750 1.6420 0.7910 0.9690 1.1330 1.7570 2.1070 2.5090 20120 22410 2.549D 1.3440 1.7630 22090 lAD50 1.7110 1.9790

tW ° t1	(an) 0.0610 0.0830 0.1030 0.0480 0.0460 0.0490 0.2090 0.2210 0.2390 0.2550 0.2440 0.2450 0.1360 0.1570 0.186D 0.1470 0.1480 0.1490
Un.) 0.0240 0.0320 0.04DD 0.0190 0.0190 0.0790 0.0820 0.0870 0.094D 0.1000 ('_`960 0.0970 0.0540 0.0620 0.0730 0.0580 0.0580 0.059D

b{	1«n) 0.6830 0.9730 1.2500 O.u'D20 .0.7390 0.0540 1.3400 1.60 DD 1.9100 15200 1.710D 1.9400 1.020D 1.3400 1.6800 4	 1.070D 1.3000 1.51DD
(in.) 0.2690 0.3930 0.4930 0.2370 0.2910 0.340D 0.5270 0.6320 0.7530 0.600D 0.6720 0.7650 0.4030 0.5290 0.6630 OA21D OS730 0.5940

bs -bl	(c:n) 1.5900 22.'30 29200 1.4100 1.7200 2.0100 3.1200 3.7500 4A600 3.5600 3.9800 4.5300 2.39110 3.1300 3.9300 25000 3.0400 3-v'!00
(in.) 0.6270 0.8930 1.1500 0.5540 0.6780 03830 1.2300 1.4750 1.7570 1.4010 1	 1.5690 1.784D 0.9410 1.2340 1.5470 0.9930 1.1980 12260

MASS DATA:

i	 (em) 0.1669 0.2253 02804 0.1302 0.1302 0.1335 0.5716 0.6028 0.6544 0.6981 0.6665 0.6749 0.3735 0.4306 05074 0.4025 0.4056 0.4072
(in.) 0.0657 0.0887 0.1104 0.0512 0.0512 0.0526 0.2256 0.2377 0.2577 0.2748 0.2624 0.2657 0.1470 0.1695 0.1998 0.1584 0.7597 0.1603

w	 (kglm2) 7.3900 9.9800 124200 5.7700 5.7i:0 5.9100 25.3200 26.7400 28.9900 30,9000 29.5200 29.8900 16.5400 19.0700 22.4700 17.8200 17.9600 18.0400
11ib!(t2) 1.5140 2.0440 2.5433 1.11110 1.1810 1.2110 5.1850 5.4760 5.9370 6.3300 6.0460 6.1220 3.3880 3.9000 4.6020 3.6510 3.5750 3.6940

CRITICAL CONDITION 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31
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FABLE 12--20. PANEL GE014ETRY AND WEIGHT FOR ZEE STIFFENED PANEL CONCEPT

.I
Drj

t5

f-'N
I

POINT DESIGN REGION 40322 40536 T	 41348

SURFACE UPPER LOWER UPPER LOWER UPPER LOWER

RIB	 1m) 0.51 0.76 1.02 0.51 0.76 1.02 0.51 0.76 1.02 0.51 0.76 1.02 0.51 0.76 1.02 0.51 0.76 1.02
SPACING	 (in.) 20 30 40 2D 30 40 2D 30 4D 20 30 40 2D 30 40 20 30 40

DIb1ENSIONS:

Is	 (cm) 0.0800 0.1090 0.1400 0.0510 0.0510 0.0520 0.2350 0.2560 0.2900 0.2590 0.2640 0.2670 0.1540 0.1920 0.2260 0.1620 0.1630 DAM

Ord 0.0310 0.0430 0.0556 0.0200 0.0200 0.0210 0.0930 0.1010 0.1140 0.1020 0.1040 0.1050 0.0600 0.0750 0.0890 0.0640 0.0640 0.0640

bs 	(cm) 2,8800 4.1300 SA100 23000 2.8400 3.3000 5.250D G.40DD 7.7800 5.5800 6.530 7.4600 4.020D SA800 6.8600 4.1400 5.0500 5.8200
(in.) 1.1350 1.5270 2.1290 MUM 1 .1180 1.2990 2 ,0670 25190 3.0620 2.1960 .25710 2.9360 1 .5Bl0 2.1560 16990 1 .6290 1.9B70 2.2900

tw =t f 	fern) 0.0840 0.1160 0.1490 0.0540 0,0550 0.0550 0.249D 0.272D 0.3070 0.2740 0.2790 0.2820 0.1630 0.2030 0.2390 0.1720 0.1720 0.1720
fin.) 0.0330 0.0460 0.0580 0.0210 0.0220 0.0220 0.0980 0.1070 0.1210 0.1080. 0.1100 0.1110 0.0640 0.0600 0.0940 0.0680 0.0680 0.0680

bey	 (em) 25100 3.6000 4.7000 2.0000 24700 28700 4.6700 5.5700 6.7700 4.8500 5.6800 6.4900 3A9OD 4.7600 5,9600 3.6000 4.39DO 5.0600
(in.) 0.9880 1.4160 1 .8520 0 .7890 0.9730 1.1300 1 .7980 21920 2.6640 1 .9100 22370 2.5540 1 .3750 , 1.8760 2.3480 1 A170 1.7290 1.9920

bf	 (em) 0.7500 1.013DO 1.4100 0.6000 0.7400 0.8600 1.3700 1.0700 20300 1.4600 1.7000 1.9500 1.0500 1.430D 1.7900 1.0800 1.320D 1.5200
(in.) 0.2.960 0.4250 0.5560 0.2370 0.2920 0.3390 0.5390 0.6570 0.7990 0.5730 0.6710 0.7660 0.4130 0.5630 0.7050 0.4250 0.5190 0.5980

MASS DATA:

t	 (em) 0.1972 9.2703 0.3468 0.1258 0.1275 0.1292 05823 0.6319 (17166 O.G388 0.6526 0.6596 0.3604 OA743 0.5576 0.4006 0.4029 0.4012
(in.) 0.0776 0.1064 0.1365 0.0495 0.0502 0:0509 0.2292 0.2488 0.2821 0.2515 0.2569 02597 0.1498' 0.1868 0.2195 0.1577 0.1586 D1560

w	 (kglm2) 8.7300 11.9700 15.3600 5.5700 5,6500 5.7200 25.7900 27.9900 31.7400 28.2900 28.9000 29.2100 16.850Q 21.0100 24.7000 17.7400 17.84G0 17.7700
(lblft2) 1,7890 24520 31460 1.1410 1.1570 1.1720 5.2820 5.7320 65000 5.7950 5.920 55830 3.4510 4.3030 5.0580 3.634D 3.6540 3.6390

CRETFCALCONOi.T(ON 31 31 31 31 3i 31 31 3i 31 31 31 31 31 31 31 31 31 31
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Integral Zee Panels - The results of the panel sizing are shown in Table 12-21.

With reference to this table, skin thicknesses ranged, from the minimum gage

value of 0.020-inches to 0.122-inches for the three point design regions.

The heaviest-weight panels occurred at point design region 40536, which varied from
5.13 lb/sq.ft. for the upper surface panel to 6.47 lb/sq.ft. for the maximum weight
lower panel. The least-weight panels occurred at region 40322 and ranged from

1.06 lb/sq, .ft. to 2.84 lb/sq.ft. The intermediate weight panels, region 41348,
ranged from 3.22 lb/sq.ft. to 4.69 lb/sq.ft.

Integrally Stiffened Panel - The results of the panel arr.alysis, which are shorn

in Table 12-22, indicate this concept is the most inefficient spanwise design from

a weight/strength standpoint. With referenco- to 'this table, minimum gage skins

are noted on the lower surface panels at-point design region 40322, while the thick-
est skin gages occur on the surface panels at region 40536 where the corresponding

stiffener thicknesses range from 0.046- to 0.31--inches.

The forward wing (region 40322) lower surface panels weigh approximately
1.20 lb/sq.ft., while the heaviest panels, approximately 6.50 lb/sq.ft. occur at
point design region 40536. The panels at region 41348 range from approximately

4.0 lb/sq.ft. to 6.0 lb/sq.ft.

Spanwise Surface Parcel Results - Comparison curves of the surface panel weights for

the spanwise concepts are presented in Figure 12-20. `these unit weights, sum of

the upper and lower surface panel weights, are displayed as a function of rib

spacing at each of the point design regions.

With reference to the forward wing box region 40322, the hat-»stiffened concept is

the least--weight panel concept at all rib spacing investigated, e.g., approximately

2.7 lb/sq.ft. at 20-inch rib spacing. Conversely, the integral stiffened concept

is the:heaviest design with a unit weight of 3.4 1'b/sq.ft. for the 20-inch rib

spacing. For the remaining concepts, the integral-zee and zee--stiffened concepts

are.ranked, with respect to weights, as the second and third best concepts,

respectively.

The panels at point design region 40536 exhibit the same weight characteristics

uE those at region 40322, i.e., least-and heaviest-weight designs are the hat-

stiffened and integral--stiffened panel concepts, respectively. The exception

being the ranking of the concepts for the 20-inch rib spacing designs, for this
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TABLE 12-21. PANEL GEOMETRY AND WEIGHT FOR THE INTEGRAL ZEE PANEL CONCEPT - TASK I
SPAM-TISE WING ARRANGEMENT

^ U
b

F'r

pN
t

N

POINT DESIGN REGION	 40322 40536 41348

SURFACE UPPER LOWER UPPER LOWER UPPER LOWER

RIB	 (ml (L51 0.76 1.02 0.51 0.76 1.02 0.51 0.75 1.02 0.51 0.76 1.02 041 0.75 1.02 0.51 0.76 1.02

SPACING	 list.) 20 30 40 20 30 40 20 30 40 20 30 40 20 30 40 20 30 40

DIMENSIONS:

is	(cm) 0.0780 0.1060 0.1360 0.0510 0.0510 0.0600 0.2460 0.2620 0.2890 0.3070 0.3100 0.3020 0.1540 0.1900 02160 0.182D 0.1780 0.1780

00 0,0310 (10420 0:0540 0,026u 02200 0.0240 0.0970 0.1030 0.1140 0.1210 0.1220 0.1190 0.0610 0.0750 0.0880 0.0720 0.0700 0.9700

bs	 (cm) 2.4900 3.5800 4.6300 2D1D0 24600 3.0800 4.7400 5.6700 6.7700 5.4900 6.3500 63600 3.5200 4.7500 5.9600 3.9109 4.6000 5.3DOD

(in.I 0,9800 1.4080 1.8230 0.7900 0.9680 1.2140 1.8650 2.2330 26650 21630 2.501)D 2.7400 1.3840 1.8700 2.3480 1.5390 1.8110 20880

tw A tf	(cm) 0.0780 0.1080 0.1360 0.5100 0.0510 0.0600 0.2460 0.2620 0.2890 0.3070 0.3100 0.3020 0.1540 0.1900 11.2160 0.1820 0.1780 0.1780

(iml 0.0309 0.0424 0.0335 0.0200 0.0200 0.0237 0.0968 0.1030 0.1140 0.1210 0.1220 0.1190 0.0607 0.0749 0.0885 0.0718 0.0703 0.0700

bw	 (cm) 24900 3.5800 4.6300 20100 24640 3.0800 24900 3.5800 4.6300 2.0140 24600 3.0800 3.5200 4.75DO 5.961(0 3.9190 4.6000 5.3000

(in.l 0.9800 1.4800 1.8230 0.7500 0.9680 1.2140 1.8650 2.2380 26650 21630 2.5900 2.7400 1.3840 1.8700 2.3490 1.5390 1.8110 20880

bf	 (cm) 0.7500 1.0700 1.3900 0.6000 0.7400 0.9200 1.4200 1.7100 2.0300 1.6500 1.9000 2.0600 1.050D 1.4200 1.7900 1.1700 1.38DO 1.5900

lim) 02540 0.4220 0.5480 0.2370 0.2900 0.3640 0.5000 0.6720 0.8000 0.650D 0.7500 0.8210 0.4150 0.5610 0.7040 0.4610 D.S430 0.6260

MASS DATA:

t	 (cm) 0.1504 02481 0.3128 0.1173 0.1173 0.1383 0.5652 0.6005 0.6640 0.7088 0.7131 0.6950 0.3544 0.4377 0.5173 0.4195 0.4105 6.4090

lin.1 0.0710 0.0977 0.7231 0.0452 0.0462 0.0545 0.2225 0.2364 0.2614 0.2791 0.2608 0.2736 0.139ci 0.1723 0.2035 0.16S2 0.1616 0.1610

26.6900 29.4000 31MOD 31.5800 30.7800 15.7000 19.3800 22.9100 18.5900 18.1800 18.1100w	 (kglm2) 7.9900 10.9900 13.8500 5.1900 5.Z(10 6.130D 25.0300

(Ibfft2 l 1.6370 2.2510 2.8370 1.0640 1.0640 7.2550 5.1270 SA470 6.0230 6.430D 6.4690 6.3040 3.2150 3.9700 4.6920 3.£-` '0 3.7230 3.7100

CRITICAL CONDITIC! 37 31 31 1	 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31

---I bf [--	 tf

rTbN,

is
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TABLE 12-22. PANEL GEOMETRY AND WEIGHT FOR THE INTEGRALLY STIFFENED PANEL CONCEPT - TASK I
SPAMUSE WING ARRANGEMENT

r
1

Lo

POINTOESIGN REGIONS 40322 40536 41348

SURFACE UPPER LOWER UPPER LOWER UPPER LOWER

R18	 (m) 0.51 0.76 1102 0.51 0.76 1.02 0.51 0.76 1.02 0.51 036 1.02 0.51 0.76 1.02 0.51 0.76 1.02
SPACING	 (in.) 20 3D 40 20 36 40 20 30 40 20 30 40 20 30 40 2D 30 40

DIMENSIONS:

is	 (cm) 0.1 ODD 0.1380 0.1760 0.0510 0.0510 0.0550 0.2560 0.3000 03530 0.2640 02900 0.3000 0.1840 0.2330 0.", ' 0.1800 0.1760 0.1760

(in.) 0.0390 0.0540 0.0700 0.0200 0.0200 0.0260 0.1010 0.1180 0.1390 0.1120 0.1140 0.1180 0.0730 0.0970 0..,;,", 0.0710 0.0700 0.0700

bs	 (cm) 4.2300 6.1000 7.9600 3.0500 3.7300 4.8400 6.9200 8.9900 11.2640 7.3900 8.8500 10.3700 5.7500 7.9200 9.9300 5.6900 5.7900 7.9600

fin.) 1.6660 2.4010 3.1340 1.2000 1.4700 1.9050 2.7240 3.540 4.4320 2.9110 3.4850 4.0810 22640 3.119D 319210 2.240D 2.7290 3.1340

tw I tf	 (an) 0.224D 0.3100 0 .3960 0.1160 0.1160 0.1470 0.5740 0.6760 0.7950 0.6380 0.6550 0.6730 DA140 0 .5230 0.6220 0A060 0.4DID 0.3960

((n.1 0.0883 0.1220 0.1560 0.0459 0.0459 0.0578 0.2260 0.2660 0.3130 0.2510 02580 0.2650 0.1630 0.2060 0.2450 D.16DD 0.1580 0:1560

bey	 (cm} 27500 3.9600 5.1700 1.9800 2.4300 3.1400 4.5000 5.8400 7.320D 4.8000 5.7500 117400 3.7400 5.1500 SA700 3.7000 4.5600 5.1700

VnJ 1.0830 1.5610 2.0370 0.78D0 0.9560 1.23B0 1.7700 1	 23010 2.8810 1.8920 2.2650 1	 2.6530 1.4720 2.0270 25480 1.4560 1	 1.7740 20370

MASS DATA-

t	 (c) 0.2460 0.3400 0.4340 0.1270 0,1270 0.1600 0.6680 0.738D 0.8694 0.6980 0.7160 0.7370 0.4530 0.5740 0.6800 0.4440 0.4390 0.4340

(11.) 0.0967 0.1338 0.1710 40502 00502 0.0632 0.2475 0.2906 0.3421 02746 0.2819 0.2900 0.1785 0.2258 0.2677 0.1740 0.1729 0.1710

w	 (kglm2) 10,8700 18.7400 19.2400 5.6400 5.6440 7.1100 27.8400 327100 38.4800 30.8900 31.7100 32.6200 20.0800 25.4100 30.1100 19,6600 19.4500 19.2400

(Ib/lt2 1 22270 3.0840 3.9400 1.1560 1.1560 1A560 5.702 6.6990 7.8810 6.3270 BAS50 6.6820 4.1130 5.2040 6.1680 4.0270 3.9830 3.9410

CRITICALCONDITmN 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31
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spacing the zee-stiffened concept supersedes the hat--stiffened concept as the least

weight design. The unit weight values for the lightest (zee-stiffened) and heaviest

(integrally-stiffened) concepts for the 20-inch rib spacing designs are approxi-

mately 11.0 lb/sq.ft. and 12.0 lb/sq.ft., respectively. In general, the zee-

stiffened and integrally-zee concepts are ranked second and third with unit weights

ranging from 11.0 lb/sq.ft. to 12.5 lb/sq.ft. for the various rib spacings.

The surface panel weight curves for the wing tip region 41348 are the center curves
shown in Figure 12-20. With respect to these curves, the ranking of the panel

concepts on a weight basis is: (1) least-weight hat--stiffened concept, (2) integral

zee, (3) zee--stiffened, and (4) heaviest-weight integrally stiffened concept. This
ranking holds for all rib spacings. For comparison purposes, the least-weight hat

stiffened design and heaviest-weight integrally stiffened design have respective unit

weights values of 7.0 lb/sq.ft. and 8.1 lb/sq.ft. for the 20-inch rib spacing design.

Spanwise Detailed Concept Analysis

The most promising panel concept surviving the spanwise initial screening analysis
was the hat--stiffened concept. This panel concept was subjected to point design

analysis at six wing regions, the three regions investigated during the initial,

screening plus three additional regions located in the wing aft box and wing tip.

Figure 12--3 indicates the locations of the point design regions used for this

analysis.

In addition to analyzing this concept at more locations, the weight--strength analysis

was conducted in more depth and included determining unit box weights at each of
the six point design regions, i.e., weights of surface panels, substructure, and

non-optimum factors.

The surface panel load-temperature environment for the most critical flight condition
at each point design region was as previously shown in Table _2-18. In addition, the

panel fabrication limits defined in Figure 12-19 are also applicable for this analysis.

Panel Analysis - The results of the weight-strength analysis at the three new point

design regions are presented in Table 12-23. This table summarizes the panel dim-

ensions and weights for each of rib spacings studied; 20-, 30-, and 40-inches. A

constant spar spacing of 60--inches was maintained.
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TABLE 12-23. PANEL GEOMETRY AND WEIGHT FOR THE HAT SECTIO14 STIFFENED PANEL CONCEPT -- TASK I SPA191ISE
I-TING ARRANGEMENT - DETAIL CONCEPT ANALYSIS

b

c^

Wit{
85

f-'
N
)

m

POINT DESIGN REGIONS 40236 41036 41316

SURFACE UPPER LOWER UPPER LOWER UPPER LOWER

RIB	 (m) 051 0.76 1.02 051 0.76 1.02 0.51 0.76 1.02 0.51 0.76 1.02 0.51 0.76 1.02 0.51 0.76 1.02
SPACING	 1110 2D 30 40 20 3o 40 20 30 40 20 30 40 20 30 40 20 30 40

DIMENSIONS:	 (an)ts 0.2090 0.2290 0.2650 0.2260 0.2250 0.2300 0.1600 0.1780 0.1960 0.1850 0.1810 0.1800 0.2490 0.2540 0.2730 0.2760 0.2770 02730
(in.) 0.0820 0.0900 0.1040 0.0890 0.0890 0.0910 0.0630 0.0700 0.0770 0,0730 0.0710 0.0710 0.0980 01000 0.1080 0.1090 0,1090 0.1080

bs ° bw - bZ	(cm) 4.2400 5.7200 6.4400 4,4600 5.1700 0.0000 3.5700 4.5600 5.5400 3.9100 4.6000 5.3100 4.7460 5.5500 6,5400 5.0800 5.8600 8w400
'{ia1 1.6680 20540 7.5360 1.7570 20340 23640 1.4050 1.8030 2.1800 1.5400 1.8130 Z09DO 1.8670 2,1860 2.5750 20020 23090 25750

tw -tf	1n1) 0.1930 0.2120 0.2440 0.2090 0.2080 0.2150 0.1470 0.1650 0.1810 0.1700 0.1670 0.1660 02300 0.2340 0.2520 02550 0.2560 02520
Un.) 0.0760 0.0830 0.0950 0.0870 0.0820 0.0640 0.0586 0.0650 0.0710 0,0670 0.0660 0.0650 0.0900 0.0920 0.0990 0.1000 0,1010 0,0990

bf	(cm) 1.2700 I	 1.5600 1.9300 1.3400 1.5500 1.8000 1.0700 1.3700 7.6600 1.1700 1.3800 1.5900 1A200 1.6700 7.9600 14200 1,7600 1.9600
(in.) 0.5000 0.6160 0.7610 0,5270 0.6100 0.7090 0.4210 0,5410 0.6540 OAK t ,	 0.5440 0.6270 0.5610 0,6560 0.7730 0.6000 0,6930 0.7730

bs - b f	(cm) Z9700 3.6500 45100 3.1200 3.6200 4.2000 25000 3.2000 3.8800 2.7400 3.22oo 3.7206 3.3200 3.8900 4.5800 3.5600 4.1100 4.5800
Iln.) 1.1680 1.4380 1.7750 7.2300 1.4240 1.6550 119830 1.2620 1.526D 1.0780 1.2690 1.4630 1.3070 1.5300 1.8030 1.4010 1.6170 1.8030

MASS DATA:

t	 (cm) 05277 0.5786 0.7389 0.5716 0.5668 0.5808 0.4025 D-4505 0.4940 O.A659 0.4555 0.4539 0.6273 46409 0.6889 OL981 0.6988 0.6889
fin.) 02078 0.2278 0.2941 0.7250 0.2239 0.2287 0.1584 0.1774 0.1945 0.1834 0.1794 0.1787 0.2470 0.2523 0.2712 02748 0.2751 0.2712

w	 Ikglm2) 23.3700 25.6200 33.0800 25.320D 25.1900 25.7230 17.8200 19.9600 21.8800 20.6300 20.1800 20.1100 27.7800 28.3900 30.5100 30.9000 3DA400 305100

(Ib/It2 ) 4.7900 5.2500 6,7800 5.1800 5.1600 5.2700 3.6500 4.0900 4.4800 42300 4.1300 4.12 t , D 5.6900 5.8100 6.2500 6.3300 63400 6.2500

CRITICAL CONDITION 31 31 31 31 31 31 31 31 31 37 31 31 37 31 31 31 31 37
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Skin thicknesses varied from 0.063-inches to 0.109-inches with the stiffener

thickness ranging from 0.058-inches to approximately 0.100-inches.

Region 41036 had the least-weight panels for the new point design regions, unit

weights for this region varied from 3.65 lb/sq.ft. to 4.46 lb/sq.ft. for the upper

surface panels. The heaviest-weight panels occurred at point design region 41316,

inboard region of the wing tip, where the upper surface panels varied in weight from

5.69 lb/sq.ft. to 6.25 lb/sq.ft. And the tension design lower surface had an

average unit weight of approximately 6.30 lb/sq.ft. The upper surface of region

40236, inboard region on the aft wing box, experienced the largest variation in unit

weight, ranging from 4.79 lb/sq.ft. to 6.78 lb/sq.ft. This variation is attributed

to the panels being predominately designed by the high compressive loads. The

tension design lower surface panel at region 40236 experienced a slight variation

in unit weight (0.11 lb/sq.ft.) with an average weight of approximately

5.20 lb/sq.ft.

The surface panel designs established for the hat-stiffened concept during the

initial screening study are applicable for this analysis. The panel dimensions

and unit weights for these regions (40322, 40526, and 41348) were previousiy
presented in Table 12-19•

Substructure Analysis - For the spanwise stiffened firing arrangement the surface

panels carry the wing spanwise bending loads with the rib caps supporting the

chordwise loads. The chordwise loads resisted by the skin were conservatively

neglected. Both truss and circular-arc webs were considered for the spar and

rib web design. Since the panels are the main spanwise load carrying members,

only light spar caps located at contour are required.

All substructure components were subjected to analysis at each point design

region and the resulting weights are summarized in the detail wind; weights

reported later in the wing box results. For this section, only the results of

the rib cap analysis (geometry and weight) are reported to illustrate the depth

of analysis conducted on the substructure components. Table 12-24 contains this

data for the upper and lower rib caps at each of the point design regions. A

sketch of the rib cap design is included in the footnotes.

spanwise Box Weights - A compilation of the component and total wing box weights

for the spanwise arrangement at each point design region are shown in Table 12-25

and 12-26. These tables includes the weight of the surface panels, rib webs, spar

12-67



TABLE 12--24. RIB CAP GEOMETRY AND WEIGHT FOR THE SPAI41ISE WING ARRANGEMENT

F--
h]

SPACING UPPER CAP DATA LOWER CAP DATA
POINT
DESIGN
REGION

SPAR
(IN.)

RIB
(IN.)

h
(1N.)

b
(IN.)

t
(IN.)

A
(IN.2)

t
(IN.)

h
(1N.)

b
(IN.)

#
(IN.)

A
(IN 2)

t
(IN.)

40322 60 20 1.00 2.0 .060 .120 .0060 1.00 2.0 .060 .120 .0060
30 1.38 2.0 .060 .120 .0040 1.07 2.0 .060 .120 .0040
40 1.74 2.0 .060 .120 .0030 1.23 2.0 .060 .120 .0030

40536 60 20 1.70 2.0 .060 .120 .0060 2.11 2.0 .067 .134 .0067
30 2.21 2.0 .072 .144 .0048 2.34 2.0 .105 .210 .0070
40 261 2.0 .099 .198 .0050 2.65 2.0 .144 .288 .0072

41348 60 20 1.39 2.D .104 .208 .0104 1.51 2.0 .156 .312 .0156
30 1.87 2.0 .175 .350 .0117 1.81 2.0 .253 .506 .0169
40 2.31 2.0 .261 .522 .0131 2.08 2.0 .379 .758 .0190

40236 60 20 1.80 2.0 .060 .120 .0060 1.90 2.0 .060 .120 .0060
30 2.20 2.0 .060 .120 .0040 2.20 2.0 .060 .120 .0040
40 2.70 2.0 .060 .120 .0030 2.50 2.0 .060 .120 .0030

41036 60 20 1.60 2.0 .060 .120 .0060 1.70 2.0 .060 .120 .0060
30 2.00 2.0 .090 .180 .0060 2.00 2.0 .065 .130 .0043
40 2.30 2.0 .131 .262 .0066 2.30 2.0 .091 .182 .0046

41316 60 20 2.00 2.0 .061 .122 .0061 2.20 2.0 .060 .120 .0060
30 2.30 2.0 .092 .184 .0061 2.50 2.0 .061 .122 .0041
40 2.70 2.0 .138 .276 .0069 2.70 2.0 .095 .190 .0048

CAP GEOMETRY NOTES:
AREA (A) = b x #

tT T = AIRIB SPACING.	
I

AREA OF THE CLIP AND WEB ATTACHMENT INCLUDED IN
b	 1.00 NON-OPTIMUM WEIGHTS.



TABLE 12--25. DETAIL WING LdEIGHTS FOR THE SPA19-TISE WING ARRANGEMENT

N^
rn'^i

POINT DESIGN 40322 41316 41348REGION

RIB SPAC (IN) 20 30 40 20 30 40 20 30 40

PANELS
UPPER 1.514 2.044 1.543 5.690 5.814 6.249 3.388 3.906 4.602
LOWER 1.181 1.181 1.211 6.330 6.339 6.249 3.651 3.679 3.694

(2.695) (3.225) (3.754) (12.020) (12.153) (12.498) (7.039) (7.585) (8.296)

RIB WEBS
BULKHEAD 0.517 0.551 0.555 0.271 0.218 0.181 0.276 0.187 0.159
TRUSS 0.409 0.373 0.296

(0.926) (0.924) (0.851) (0.271) (0.218) (0.181) (0.276) (0.187) (0.159)

SPAR WEBS
BULKHEAD 0.133 0.133 0.133 0.163 0.163 -0.163 0.200 0.200 0.200
TRUSS 0.230 0.230 0.230

(0.363) (0.363) (0.363) (0.163) (0.163) (0.163) (0.200) (0.200) (0.200)

RIB CAPS
UPPER 0.139 0.105 0.070 0.139 0.147 0.159 0.240 0.270 0.302
LOWER 0.139 0.105 0.070 0.139 0.101 0.108 0.360 0.390 0.583

(0.278) (0.210) (0.140) (0.278) (0.248) (0.267) (0.6001 (0.660) (0.885)

SPAR CAPS
UPPER 0.069 0.069 0.076 0.357 0.247 0.202 0.063 0.079 0.093
LOWER 0.069 0.069 0.069 0.395 0.268 0.202 0.073 0.075 0.074

(0.138) (0.138) (0.145) (0.752) (0.515) (0.404) (0.136) (0.154) (0.167)

NON-OPTIMUM
FAST./CLIPS 0.180 0.170 0.160 0.200 0 .190 0 . 180 0.200 0.190 0.180
WEB INTERS. 0.129. 0.129 0.121 0.043 0.038 0.034 0.048 0.039 0.036

(0.309) (0.299) (0.281) (0.243) (0.27-B) (0.214) (0.248) (0.229) (0.216)

POINT
DESIGN LB 4.709 5.159 5.534 13.727 13.525 13.727 8.499 9.015 9.923
WEIGHT FT2



TABLE 12-26. DETAIL I•TING WEIGHTS FOR THE SPAMWISE WING ARRANGEMENT

Ns
0

POINT DESIGN 40236 40536 41036REGION

RIB SPAC (IN) 20 30 40 20 30 40 20 30 40

PANELS
UPPER 4.787 5.248 6.776 5.185 5.476 5.937 3.651 4.088 4.481
LOWER 5.185 5.159 5.268 6.330 6.046 6.122 4.226 4.133 4.118

(9.972) (10.407) (12.044) (11.515) (11.522) (12.059) (7.877) (8.221) (8,599)

RIB WEBS
BULKHEAD OA51 0.513 0.559 0.396 0.422 0.425 0.150 0.177 0.204
TRUSS 0.642 0.423 0.300 0.410 0.280 0.187 0.175 0.124 0.073

(0.093) (0.936) (0.859) (0.806) (0,702) (0.612) (0.325) (0.301) (0.277)

SPAR WEBS
BULKHEAD 0.353 0.353 0.353 0.380 0.380 0.380 0.072 0.072 0.072
TRUSS 0.080 0.080 0.080 0.125 0.125 0.125 0.040 0.040 0.040

(0.433) (0.433) (0.433) (0.505) (0.505) (0.505) (0.112) (0.112) (0.112)

RIB CAPS
UPPER 0.139 0.092 0.092 0.139 0.110 0.115 0.139 0.145 0.152
LOWER 0.139 0.092 0.069 0.155 0.161 0.160 0.139 0.100 0.104

(0.2781 (0.184) (0.161) (0,294) (0.271) (0.275) (0.278) (0.245) (0.256)

SPAR CAPS
UPPER 0.296 0.219 0.213 0.120 0.116 0.159 0.227 0.171 0.143
LOWER 0.319 0.215 0.165 0.169 0.154 0.196 0.260 0.173 0.132

E (0,615) (0.434) (0.379) (0.289) (0.270) (0.355) (0.487) (0.344) (0.275)

NON-OPTI MUM
FASTENERS/CUPS 0.200 0.190 0.180 0.200 0.190 0.190 0.200 0.190 0.180
WEB INTERS. 0.152 0.136 0.130 0.131 0.121 0.112 0.044 0.041 0.030

(0.352) (11.326) (0.310) (0.331) (0.311) (0.292) (0.244) (0.231) (0.210)

POINT
DESIGN LB 12.743 12120 14.186 13.740 13.581 14.098 9.323 9.454 9.729
WEIGHT FT2
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webs, rib caps, spar caps, and associated non-optimum factors. For easier

interpretations these results are displayed in graphic form in Figures 12-21

through 12-26.

The component weights and total box weight for the forward wing box point design

region 40322 are presented in Figure 12-21. The upper surface panel displays a

large positive slope characteristics of panels designed by high compression loads

in combination with normal pressure, i.e., beam column effect. The panel weight.

ranged from 1.5 to 2.5 lb/sq.ft. for 20- and 40-inch rib spacing, respectively.

The lower surface panel weights. which are tension designed, indicate only a slight

variation with rib spacing and has a value of approximately 1.20 lb/sq.ft. The

weights for all other components display only a slight variation with rib spacing

with the largest weight attributed to the rib webs, approximately 0.90 lb/sq.ft.

With reference to the total weight curve on this figure, the minimum-weight design

is coincidental with the smallest rib spacing investigated with the total weight

varying from approximately 4.7 lb/sq.ft. to 5.5 1b/sq.ft. for the 20- and 40-inch

rib spacing designs, respectively.

With reference to Figure 12-22, a minimum-weight design of 12.72 lb/sq.ft. is

indicated for region 40236 at a rib spacing of 30-inches. A slightly higher total

box xeight is noted for the 20-inch rib spacing design (12.7 1 lb/sq.ft.), while a

much larger weight increase is shown for the 40-inch design, i.e., approximately

12-percent increase over the minimum--weight design. The weight curves for the

surfL!! panel design exhibit the same characteristic slopes as those indicated

for region 40322. The upper surface panel weights vary from 1L.8 lb/sq.ft. to

6.8 lb/sq.ft. for the 20-inch and 40-inch rib spacing designs, while the weights of

the lower surface panels were almost invariant with respect to rib spacing at

approximately 5.2 lb/sq.ft. All other components indicated negligible weight changes

with respect to rib spacing with the largest weight component being the rib webs

at approximately 1.0 lb/sq.ft.

The point design box weights for region 40536 are shoim in Fig,-ire 12-23. This

region, which is located at approximately mid-span on the i-ring aft box, has

a minimum-weight design of 13.58 lb/sq.ft. (total box weight) for the 30-inch

rib spacing design. The corresponding t^tal box weights for the 20-inch and

1+0-inch designs are 13.74 lb/sq.ft. and 14.10 lb/sq.ft., respectively. As comp^Lred

with the prior regions, a smaller weight increment is noted between the upper and
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lower surface panels with a maximum increment of 1.0 lb/sq.ft. indicated for the

20-inch rib spacing designs, which decreases to 0.20 lb/sq.ft. for the 40-inch

design. As with -the previously discussed point design regions, the weight of

the substructure components vary slightly with rib spacing with no component

weighing more than 1.0 lb/sq.ft.

The unit box weight for point design region 41036 representative of the structure

located outboard on the wing aft box, are presented in Figure 12-24. A curve with

a slight positive slope defines the total box weight with a minimum value of 9.3 lb/

sq.ft. occurring for the 20-inch rib spacing design and a maximum value of 9.7 1b/

sq.ft. for the 40-inch design. A maximum weight increment of only 0.60 lb/sq.ft. is

indicated between the surface panels for the 20-inch spacing design where the heavier

lower surface panel weighs 4.2 lb/sq.ft. Identical surface panel weights (zero weight

increment) of approximately 4.1 lb/sq.ft. are noted for a 30-inch rib spacing design.

For the 40-inch rib spacing designs, the upper surface panel is the heaviest panel

and is approximately 0.4 lb/sq.ft. heavier than the corresponding lower surface

panel. All substructure components have unit weights lese than 0.50 lb/sq.ft. with

the spar caps having the maximum values at all rib spacings.

A symmetrical total weight curve is noted in Figure 12-25 for point design region

41316. This curve shows a minimum-weight design of 13.5 lb/sq.ft. for 30 -inch rib

spacing and identical values of 13.7 lb/sq.ft. for the 20- and 40-inch designs.

The predominately-tension designed lower surface panels are heavier than the

corresponding designs for the upper surface panels. The exception being the

40-inch rib spacing designs where the surface panels have identical unit weights

of 6.25 lb/sq.ft. The heaviest substructure components are the spar caps which

have a maximum value of 0.75 lb/sq.ft. for the 20.-inch rib spacing design.

The last point design region included in the Detailed Concept Analysis is the mid-

span wing tip region 41348. The results of this analysis are presented in Fig-

ure 12-26 where the total weight curve indicate the least--weight design occurs for

the lowest rib spacing investigated, 20-inches. A unit box weight of 8.5 lb/sq.ft.

is noted for this design. The predominately compression designed upper surface

panels are heavier than the lower surface panels for designs with rib spacings greater

than approximately 25-inches. At this rib spacing, both panels weigh approximately

3.66 lb/sq.ft. The rib caps are the heaviest weight substructure component h_.ving

a unit weight of 0.90 lb/sq.ft. for the 40-inch rib spacing design.
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MONOCOQUE WING ARRANGEMENTS - TASK I

The monocoque (biaxially stiffened) panel concepts were subjected to the same stages

of analysis as the uniaxial stiffened panel arrangements, i.e., an Initial Screening

and a Detail Concept Analysis. In addition, an additional analysis was conducted at

the start of the initial screening to ascertain the minimum weight panel proportions

(aspect ratio) prior to screening the candidate concepts.

The two candidate panel concepts are shown in Figure 12-27 and include the honeycomb

core and truss core sandwich concepts. In addition this figure contains a sketch of

typical monocoque arrangement wing box segment depicting the biaxially stiffened

surface panels and related substructure.

The fabrication .limits for the monocoque panels and closures are contained in F5.g-

ure 12-28. These limits include the thickness constraints imposed on the face

sheets due to foreign object damage (F.O.D.); which were: .020-inch for the lower

surface and .015-inch for the upper surface exposed skins.

The point designs environments for the critical flight conditions are presented in

Table 12-27. The critical flight conditions for the Task I analysis were condi-

tions 20 and 31. Condition 20, start of cruise, being the most severe environment

for the forward wing box region 40322 with the symmetric flight condition.at

Mach. 1.25, condition 31, being the most critical for the aft box and wing tip

regions.

Monocoque Initial Screening

The candidate monocoque wing panel concepts are biaxially stiffened panels with the

two most efficient designs being investigated in the initial screening analysis;

these concepts were:

• Honeycomb core sandwich

e Truss core sandwich

The initial screening analysis was conducted at the three point design regions shown

in Figure 12-3 using the associated critical point design environments presented in

Table I2-27

i
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 x I4 ::?. 1 x 10
_6
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TAV OF 44 313 31B Pi 4
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AT °F -?28 -237 -3^ -70 -99 -e4 -?33 -241 -3 - 7  :-I-

TV
NOTES: III A 1.25 FACTOR HAS BEEN APPLIED TO THE THERMAL STRAIN WHEN THE SIGN IS SAME As THE AIRLOAD

[ SIGN, OTHERWISE NO FACTOR APPLIED.
121 PRESSURE SIGN CONVENTION: NEGATIVE-SUCTION

CONDITION 31 : MACH NO. = 1.25: n z = 2. 5
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ULTIMATE
40236 1 41036 41316

;.	 ..
+

..,
i13{IC. q.
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N%V LWIN 2099 2G99 3'D9 3"09 3310 3310 ^^	 7^r.4, ksd> ^3	 at 3"'S: 191 191
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STRAIN EY INAN 0 0 0 0 0 0 0 0	 '^ 'iA 1S	 .	 ''-'_ D O

fxY tN11N 0 0 0 0 9 0 Q!< .'	 ',.4 L1 0 O
AFRO PSI -3.03 -1..0 0.11 -4.98 _.P6 1 1 •-a'R ^	 .a. ^r. -1.L"1 .96

PRESSURE FUEL PSI _5,93 - 8.24 0 0 D s	 5 is f5-i .'':> ze -6,86 -9. 
. NET PSI -B.0 -10.14

E-4,

0.11 _4.9 B -0.; r, b.$t z ` r * ^?,Qt:	 `- -B. 4,94
TAV °F 146 147 124 179 17? 1L' lU 1^ 1 16 156

TEMPERATURE Ar °F 12 -448 _rs0 -9H -94 _1 1. -igF •49. ,	 .	 ,4
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NOTES 111 A 125 FACTOR HAS BEEN APPLIED TO THE THERMAL STRAIN WHEN THE SIGN IS SAME As THE AIRLOAD
SIGN. OTHERWISE NO FACTOR APPLIED.

121 PRESSURE SIGN CONVENTION: NEGATIVE - SLICTION



The rationale used for evaluating the monocoque panel concepts during the initial

screening etas:

(1) To ascertain the minimum weight panel proportions by conducting an aspect

ratio study using a representative panel concept, honeycomb core sand-

wich. This included evaluating multispar and multirib designs on a weight

bases for panel and wing box designs.

(2) Then conduct a weight/strength analysis for each candidate panel concept

using the minimum-weight panel proportions determined from the aspect

ratio study.

(3) Compare the results of the above panel analysis and select the most prom-

ising concept for further in-depth analysis in the Detailed Concepts

Analysis.

The analysis conducted using the above procedure is described in the following text.

Aspect Rat io Study -- For this study, various aspect ratios were investigated for

multispar and multirib honeycomb core sandwich panel designs. The panel orientation

and the general dimensioning associated with these arrangements are shown in Fig-

ure 12-2q.

Multispar Arrangement -- Variable spar spacings of 20-inches, 30-inches, and 40-inches

were used for each point design analysis. A constant rib spacing of 60-inches was

used for regions 40536 and 41348 with a 130--inch rib spacing selected for the

lightly loaded forward box region 40322. For direct comparison between general types

of load carrying panels, the rib and spar spacing selected for the multispar arrange-

ment are identical with those selected for the chordwi.-e stiffened panel concepts.

The results of the basic panel sizing for the multispar arrangement are shown in

Table 12-28 and includes the panel proportions, cross sectional dimensions, and the

weight data. The panel aspect ratio (ip,x/ yp,y) ranged from 0.33 to 0.67 for

regions 40536 and 413+8, and .15 to .31 for region 10322. Panel heights (h) varied

from approximately .25-- to .50-inch, thicknesses from .011-inch to .087-inch,

and cell size from .17-inch to .50-inch. A minimum core foil thickness of

.002-inch was maintained for all designs. With reference to Table 12-28, the

panel equivalent thickness (t) and unit weight, (w) includes the core. In addition,
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POINT DESIGN REGION 40322 40536 4134B

SURFACE UPPER LOWER UPPER LOWER UPPER LOWER

SPAR	 (ml 0.51 0.76 1.02 0.51 0.76 1.02 0.51 0.76 1.02 0.51 0.76 1.02 0.51 0.76 1.02 0.51 0.76 1.02
SPACING	 (in.) 20 30 40 20 30 40 20 30 40 20 30 40 20 30 40 20 30 40

RIB	 (m} 3.30 3.30 3.30 3.30 3.30 3.30 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52
SPACING	 (in.) 130 130 130 130 130 130 60 60 60 60 60 60 60 60 60 60 60 60

ASPECT RATIO 0.15 0.23 0.31 0.15 0.23 0.31 0.33 0.50 0.67 0.33 0.50 0.67 0.33 0.50 0.67 0.33 0.50 0.67

DIMENSIONS:

H	 (cm) 1.577 2.530 3,713 2.101 2.652 5.184 2.126 3.233 3.762 0.737 1.153 1.984 1.826 2.647 3.279 0.561 0.917 1.156
(in.) 0.621 0.996 1.462 0.827 1.044 2-041 0.837 1.273 1.481 0.290 0.454 0.781 0.719 1.042 1.291 0.221 0.361 0.455

t1	(cm) 0.038 0.046 0.058 0.023 0.033 0.038 0.135 0.132 0.127 0.193 0.193 0.221 M089 0.091 0.099 0.119 0.178 0.137
(in.) 0.015 0.018 0.023 0.011 0.015 (1.015 0.053 0.052 0.050 0.076 0.076 0.087 0.035 0.036 0.039 0.047 0.070 0.054

t2	(cm) 0.038 0.038 0.038 0.051 0.051 0.051 0.132 0.130 0.127 0.155 0.160 0.135 0.097 0.097 0.102 0.112 0.051 0.099
-(in.) 0.015 0.015 0.015 0.020 0.020 0.020 0.052 0.051 0.050 0.061 0.063 0.053 0.038 0.036 0.040 0.044 0.020 0.039

tC	(cm) 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 01005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
(in.) 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

S	 (cm) 0.597 0.716 0.795 1.270 1.270 1.270 0.655 0.470 0.424 • 1.270 1.270 1.270 0.808 0.655 0.737 1.270 1.270 1.270
(in.) 0.235 0.282 0.313 0.500 0.500 0.500 0.258 0.185 0.167 0.500 0.500 0.500 0.318 0.256 0.290 0.500 0.500 0.500

MASS DATA:

t	 (cm) 0.102 0.119 0.142 0.097 0.109 0.130 0.297 0.333 0.353 0.353 0.361 0.368 0.208 0.225 0.244 0.234 0.234 0.241
(in.) 0.040 0.047 0.056 0.038 0.043 0.051 0.117 0.131 0.139 0.139 0.142 0.145 0.082 0.089 0.096 0.092. 0.092 0.095

W	 (kg - m-2) 4.511 5.263 6.289 4.248 4.863 5.737 13.124 14.740 15.682 15.634 16.000 16.346 9.169 10.009 10.785 10.336 10.370 10.658
Ib-ft-2) 0.924 1.078 1.288 0.870 0.996 1.175 2.688 3.019 3.212 3.202 3.277 3.348 1.878 2.050 2209 2.117 2.124 2.183

w 	 (kg - m-2) 1.040 1.538 2-051 0.718 0.908 1.850 1.279 3.095 4.458 0.137 0.283 0.576 0.913 1.694 1.880 0.117 0.244 0.327
(lb-ft-2) 0.213 0.315 0.420 0.147 0.186 0.379 0.262 0.634 0.913 0.028 0.058 0. 8 0.187 0.347 0.385 0.024 0.050 0.067

PC	 ft - m-3) 75.431 62.824 56.641 35.433 35.433 35.433 68.880 104.25 127.12 35.433 35.433 13&4i313 55.632 68.863 61.062 35.433 35.433 35.433
(]b-fo) 4.709 3.922 3.536 2.212 2

'

 212 2.212 4.300 6.508 7.936 2.212 2.212 2.212 3.473 4.299 3212 2.212 2.212 2.212

CRITICAL CONDITION 20 20 20 20 20 20 31 1	 31 31 31 31 31 31 31 31 31 1	 31 -S-

Y

t^

FABLE 12--28. PANEL GEOMETRY AND WEIGHT FOR THE HONEYCOMB CORE SANDWCH PANEL
MULTISPAR ARRANGEMENT -- ASPECT RATIO STUDY



the core density ( pc ) and weight (wc ) are also listed separately. The panel unit

weights, includes face sheets and core, range from a minimum weight of 0.90 lb/sq.ft.

to a maximum of 3.35 lb/sq.ft.

The weight related to the panel fabrication technique was investigated to obtain a

more realistic comparison between arrangements. The weight data for the 3003 alumi-

num braze alloy used for panel fabrication was obtained from empirical data reported

in Reference 3 and is shown in Figure 12-30. Using this data and the basic panel

results shown in Table 12-28, the combined panel weights were calculated and are

presented in Table 12-29 for the multispar design.

Multiri.b Arrangement - For this arrangement, variable rib spacings of 20-inches,

30-inches, and 40-inches were used at each point design region with a constant spar

spacing of 60--inches. Similar to the panel dimension ci°iteria used on the multispar

arrangement, the multirib panel dimensions were selected for direct comparison with

the uniaxial spanvise stiffened arrangements.

The results of the panel sizing analysis conducted on the multirib panel designs

are summarized in `fable 12--30. With reference to this table, the aspect ratio varied

from 1.5 for the larger rib spacing to 3.0 for the smaller spacing. The panel

heights, face sheet thicknesses, and core cell sizes, ranged from: 0.85-inch

to 2.0-inch, 0.012-inch to 0.105-inch, and 0.20-inch to 0.50--inch, respectively.

The panel weights, sum of the face sheets and core, varied from approximately

0.90 lb/sq.ft. to 3.50 lb/sq.ft. The braze heights were defined using Figure 12-30

and are included in the panel freight summary for the multirib arrangement presented

in Table 12-29.

Aspect Ratio Study Results - Table 12-29 presents both designs for comparison

purposes and includes the individual panel, braze material, and combined weight for

both the multispar and multirib designs. For clari°$y in reporting, these values

are displayed graphically in Figure 12-31. From a review of this figure, the weight

of the multispar panel arrangements were lighter thea those of the multirib designs

at all point design regions. The exception being :mot region 40322 where the multirib

design has a slightly lower weight, i.e., approximately 1-percent lighter than the

multispar design. In addition, the minimum-weight designs for both arrangements are

those associated with the smallest spar spacing, 20-inches.

Panel weights for the 20-inch spar spacing multispar designs at regions 40322,

41349, and 40536 are 2.1 lb/sq.ft., 4.3 lb/sq.ft., and 6.2 lb/sq.ft., respectively.
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TABLE 12-29. SURFACE PANEL t•TEIGHT COMPARISON OF THE 14ULTISPAR AND
MC]LTIRIB DESIGNS -- ASPECT RATIO STUDY

WT.

H
i
co
co

ITEM SURFACE PANEL UNIT WEIGHT (LB./SQ. FT.)

POINT DESIGN
REGION 40322 40536 41348

SPAR SPACING (IN.) 20 30 40 20 30 40 20 30 40

MULTI SPAR DESIGN

• UPPER SURFACE (1.14) (1.31) (1.61) (2.92) (3.49) (3.77) (2.02) (2.31) (2.47)

PANEL 0.92 1.08 1.29 2.69 3.02 3.21 1.88 2.05 2.21

BRAZE 0.22 0.23 0.32 0.23 0.47 0.56 0.14 0.26 0.26

(0.98) (1.12) (1.44) (3.30) (3.38) (3.46) (2.24) (2.22) (2.29)• LOWER SURFACE

PANEL 0.87 1.00 1.18 3.20 3.28 3.35 2.12 2.12 2.18

BRAZE 0.11 0.12 0.26 0.10 0.10 0.11 0.12 0.10 0.11

• TOTAL (2.12) (2.43) (3.05) (6.22) (6.87) (7.23) (4.26) (4.53) (4.76)

MULTI RIB DESIGN

UPPER SURFACE (1.13) (1.30) (1.43) (3.08) (3.99) (4.10) (2,21) (2.55) 1'2.72)

PANEL 0.93 1.07 1.19 2.78 3.41 3.51 1.99 2.30 2.43

BRAZE 0.20 0.23 0.24 0.30 0.58 0.59 0.22 0.25 0.29

(0.96) (1.10) (1.25) (3.27) (3.54) (3.66) (2,20) (2.26) (2.29)LOWER SURFACE
PANEL 0.86 0.98 1.07 3.26 3.39 3.48 2.10 2.16 2.19

BRAZE 0.10 0.12 0.18 0.01 0.15 0.18 0.10 0.10 0.1119

(2.09) (2,40) (2.68) (6.35) (7.53) (7.76) (4.41) (4.81) (5.01;TOTAL
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TABLE 12--30. PANEL GEOMETRY .AND I-MIGHT FOR THE 14ULTIRIB DESIGN HONEYCOMB CORE SANDjlTCH
PANELS, MONOCOQUE ARRANGEMENT - ASPECT RATIO STUDY

F3
n]
I

POINT DESIGN REGION 411322 40535 41348

SURFACE UPPER LOWER UPPER LOWER UPPER LOWER

SPAR	 (m} 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52
SPACING	 (in.) 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60

RIB	 (m) 0.51 0.76 1.02 0.51 0.76 1.02 0.51 0.76 1.02 0.51 0.76 1.02 0.51 0.76 1.02 0.51 0.76 1.02
SPACING	 6W.) 20 30 40 20 30. 40 20 30 40 20 30 40 20 30 40 20 30 40

ASPECT RATIO 3.0 2.0 1.5 3.0 2.0 1.5 3.0 2.0 1.5 3.0 2.0 1.5 3.0 2.0 1.5 3.0 2.0 1.5

DIMENSIONS:

H	 (cm) 1.689 2.421 3.284 1.831 2.418 3.810 3.239 5.034 5.438 2.164 2.850 3.503 2.761 3.678 4.199 1.374 1.654 1.593
(in.) 0.665 0.953 1.293 0.721 0.952 1.500 1.275 1.982 2.141 0.852 1.122 1.379 1.087 1.448 1.653 0.541 0.551 0.627

t1	(cm) 0.038 0.046 0.051 0.030 0.038 0.036 0.130 0.132 0.132 0.079 0.102 0.130 0.097 0.122 0.130 0.102 0.109 0.130
(in.) 0.015 0.018 0.020 0.012 0.015 0.014 0.051 0.052 0.052 0.011 0.040 0.051 0.038 0.048 0.051 0.040 0.043 0.051

12	 (cm) 0.038 0.038 0.038 0.051 0.051 0.051 0.130 0.132 0.132 0.267 0.254 0.229 0.086 0.089 0.089 0.122 0.117 0.102
(in.) 0.015 0.015 0.015 0.020 0.020 0.020 0.051 0.052 0.052 0.105 0.100 0.090 0.034 0.035 0.035 0.048 0.046 0.040

tc	(cm) 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 umb5 0.005 0.005 0.005 0.005 0.005 0.005
(in.) 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

S	 (cm) 0.622 0.721 0.754 1.270 1.270 1.270 0.638 0.462 0.460 1.270 1.262 1.270 0.714 0.941 0.787 1.270 1.270 1.270
{in.) 0.245 0.284 0.297 0.500 0.500 0.500 0.251 0.182 0.181 0.500 0.497 0.500 0.281 0.331 0.310 0.500 0.500 0.500

MASS DATA:

t	 (cm) 0.102 0.117 0.132 0.094 0.109 0117 0.307 0.376 0.386 0.361 0.373 0.384 0.218 0.254 0.2G9 0.234 0.239 0.241
(in.) 0.040 0.046 0.052 0.037 0.043 0.046 0.121 0.148 0.152 0.142 0.147 0.151 0.086 0.100 0.106 0.092 0.094 0.095

W	 (kg -m -2 1 4.550 5.210 5.600 4.179 4.809 5.205 13.598 16.654 17.147 15.922 16.561 16.976 9.721 11.230 11.869 10.258 10.551 10.678
(1b-ft21 0.932 1.057 1.188 0.856 0.985 1.066 2.785 3.411 3.512 3.261 3.392 3.477 1.991 2.300 2.437 2.101 2.161 2.187

Wd	{kg - m'3 1 1.167 1.455 1.826 0.620 0.825 1.318 2.099 5.009 5.429 0.644 0.889 1.113 1.626 1.855 2.275 0.410 0.508 0.483
jib -ft-3 1 0.239 0.298 0.374 0.127 0.169 0.270 0.430 1.026 1.112 0.132 0.182 0.228 0.333 0.380 0.466 0.084 0.104 0.099

.2
PC	 (kg - m2 ) 72.419 62.200 59.749 35.433 35.433 35.433 70.561 104.94 104.97 35.417 35.673 35.449 63.129 53.486 57.154 35.433 35.433 35.433

(lb-ft	 ) 4.521 3.883 3.730 2.212 2.212 2.212 4.405 6.551 6.553 2.211 .2.227 2.213 3.941 3.339 3.568 2.212 2.212 2.212

CRITICAL CONDITION 20 20 20 20 20 20 31 31 31 31 31 31 31 31 31 31 31 31

NOTE: (1) ASPECT RATIO = Lp.X/Lpy
(2) BRAZE MATERIAL NOT INCLUDED



POINT DESIGN 40536

MULTI RIB
r

--

MULTI SPAR

POINT DESIGN 41348

MULTI RIB

MULTI SPAR

POINT DESIGN 40322

MULTI SPAR

MULTI RIB

9

40
8

c^

35
^7

E. 1
F—

x
1	 3Q

z
CD
M

Q

i^:6

^
^ z

Z!
q 25

LU
LU

LUz
Q

a5
uUUa

w
Q
u,

20^ 4
cc:
q
co

z

z
co

enLUq
U 15 z3

13
z

0
°'

0

10 2

0 0

20	 30	 40

MINIMUM PANEL WIDTH — inch

.50	 .75	 1.00
MINIMUM PANEL WIDTH — meter 	 a

i

Figure 12-31. Comparison of Surface Panel I-feight for the
Multispa,r and Multirib Designs

I

12-90 	
J
IJ

I
1



In general, the largest difference in weight between the multispar and the multirib

arrangements occur at Region 40536 where a difference of 0.66 lb/sq.ft. is noted
for the 30--inch spacing designs.

Conversely, no appreciable weight difference is indicated between the 20-inch

spacing multispar and multirib designs at any of these regions. A maximum weight

difference of approximately 0.20 lb/sq.ft. is noted at Region 41348 where the

lightest design is the multispar design.

The panel aspect ratio study indicates the multispar panel arrangement results in

the lightest weight designs for the larger panel widths, but the data is inconclusive
for the smaller panel widths.

To establish the weight trends for the multispar and multirib designs at the smaller

panel widths, the aspect ratio study was extended to include the weight of the

associated substructure. In addition to the panels sized for the panel aspect ratio

study, the weights attributed to the rib and spar caps, rib and spar webs, and non-

optimum factors were included in the wing box aspect ratio study. For this study,

only the results will be presented since a thorough description of the substructure

is included in the following Detailed Concepts evaluation.

The results of the unit box weight study are summarized in Tables 12-31 and 12-32

for the multispar and multirib arrangements and include the unit weight for each

component and the total box weight, As with the panel aspect ratio study, point

design regions 40322, 10536, and 413+8 were used for this analysis.

For an interpretation of these results the point design boas weights are displayed

graphically in Figure 12-32, With respect to this figure, the multispar arrange-

ment affords a lighter weight design for all panel widths. The exception being the

35-inch or greater multirib designs at Region 40322 which are lighter than the

corresponding multispar designs. The minimum-weight multispar arrangements are the

20-inch spar spacing designs which weigh 4.5, 5.8, and 8.7 lb/sq.ft. for Regions 40322

41348, and 40536 respectively,

In conclusion, the multispar panel arrangements affords the minimum ifeight designs

from both a panel and wing box segment standpoint. In addition, the inclusion of
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TABLE 12--31. DETAIL WING WEIGHTS FOR THE HONEYCOMB SANDWICH PANEL
MULTISPAR ARRANGEMENT - ASPECT RATIO STUDY

POINT DESIGN 40322 40536 41348REGION

SPAR SPAC (IN) 20 30 40 20 30 40 20 30 40

PANELS
UPPER 1.144 1.308 1.608 2,918 3.489 3.772 2.018 2,310 2.469
LOWER 0.980 1.126 1.445 3.302 3,377 3.458 2.241 2.224 2.288E (2.124) (2.434) (3.053) (6.220) (6.366) (7.230) (4.259) (4,534) (4.757)

RIB WEBS
BULKHEAD 0.241 0.241 0.241 0.244 0.244 0.244 0.100 0.100 0.100
TRUSS 0.198 0.198 0.198 0.229 0.229 0,229 - - -

(0.439) (0.439) (0.439) (0.473) (0,473) (0,473) (0.100) (0.100) (0.100)

SPAR WEBS
BULKHEAD 0.355 0.343 0.352 0.245 0,285 0.321 0.401 0.301 0.251
TRUSS 0.339 0.194 0.121 0.590 0.389 0:326

F, (0.694) (0.537) (0.473) (0.835) (0.674) (0.647) (0.401) (0.301) (0,251)

RIB CAPS
UPPER 0.120 0.140 0.158 0.127 0.143 0.150 0.127 0.146 0.154
LOWER 0.133 0.138 0.193 0.100 0.106 0.127 0.099 0.106 0.113

(0,253) (0.278} (0,351) (0.227) (0.249) (0.277) (0.226) (0,252) (0,267)

SPAR CAPS
UPPER 0.401 0.307 0.268 0.418 0.311 0,242 0.376 0.289 0.227
LOWER 0.445 0.316 0.325 0.332 0.236 0.206 0.290 0.208 0.167

E (0.846) (0.623) (0.591) (0.750) (0.547) (0,448) (0.666) (0.497) • (0,394)

NON-OPTIMUM
MECH, FAST. 0.050 0.040 0.030 0.050 0.040 0.030 0,050 0.040 0.030
WEB INTERS. 0.113 0.098 0,091 0.131 0.115 0,112 0.050 0.040 0.035

(0.163) (0.138) (0.121) (0.181) (0.155) (0.142) (0.100) (0,1380) (0.065)

POINT
DESIGN LB 4.519 4.449 5.028 8.686 8.964 9.217 5.752 5.764 5.834
WEIGHT FT2

f
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TABLE 12-32. DETAIL WING WEIGHTS FOR THE HONEYCOMB SANDWICH PANEL
MULTIRIB ARRANGEMENT -- ASPECT RATIO STUDY

POINT DESIGN 40322 40536 41348REGION

RIB SPAC (IN) 20 30 40 20 30 40 20 30 40

PANELS
UPPER 1.132 1.297 1.428 3.085 3.991 4.102 2.211 2.550 2.721
LOWER 0,956 1.105 1.256 3.271 3.542 3.657 2.201 2.261 2.287

(2.088) (2.402) (2.684) (6.356) (7.533) (7.759) (4.412) (4.81) (5.008)

RIB WEBS
BULKHEAD 0.446 0.446 0.454 0.292 0.333 0.430 0.250 0.167 0.133
TRUSS 0.300 0.164 0.115 0.541 0.330 0.245 -- - -

F, (0,746) (0.610) (0.569) (0.833) (0.663) (0.675) (0.250) (0.167) (0,133)

SPAR WEBS
BULKHEAD 0.352 0.352 0.352 0.388 0.388 0.388 0.251 0.251 0.251
TRUSS 0.048 0.048 0.048 0.137 0.137 0.137

E (0.400) (0.400) (0.400) (0.525) (0.525) (0.525) (0.251) (0.251) (0.251)

RIB CAPS
UPPER 0.406 0.296 0.240 0.491 0.364 0.281 0.447 0.504 0.532
LOWER 0.421 0,300 0.268 0.333 0.296 0.246 0.353 0.373 0.366

F, (0.827) (0.596) (0,508) (0.824) (0.660) (0.527) (0.800) (0.877) (0.898)

SPAR CAPS
UPPER 0.132 0.146 0.161 0.157 0.189 0.190 0.198 0.223 0.235
LOWER 0.137 0.149 0.180 0.138 0,153 0166 0.157 0.165 0.162

F, (0,269) (0.295) (0.341) (0.295) (0.342) (0.356) (0.355) (0.388) (0.397)

NON-OPTIMUM
MECH. FAST. 0.180 0.170 0.1.60 0,200 0.190 0.180 0.200 0.190 0.180
WEB INTERS. 0.115 0.101 0.097 0.136 0.119 0.120 0.050 0.042 0.38

(0,295) (0.271) (0.257) (0.336) (0.309) (0.300) (0,250) (0.232) (0.218)

POINT
DESIGN L 

B 4.625 4.574 4.759 9.169 10.032 10,142 6.318 6.726 6.905
WEIGHT FTZ
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substructure in the analysis resulted in a larger variation between the arrangements

and provides a much clearer definition of the minimum weight arrangement.

Panel. Screening - A structural analysis was conducted on the tiro candidate monocoque

panel, concepts (honeycomb-core sandwich and truss -core sandwich) to define an accurate

weight for each concept and select the most promising concept for further study in

the Detail Concept Analysis. This screening analysis was conducted at three point

design regions using the related monocoque load/temperature environment specified

in Table 12-27. In addition, the metallic material used for these concepts was

6Al-4v (ANN.) titanium alloy and the panel proportions were commensurate with the

findings of the aspect ratio study, i.e., mul.tispar arrangement. For this arrange-

ment variable spar spacings of 20-inches, 30-inches, and 40-inches were investigated

for a constant rib spacing,

Honeycomb-Core Sandwich - Since the material system and applied loads (point design

environment) are identical to those used for the aspect ratio study, the panel

sizing data calculated for the multispar structural arrangement is also applicable

for this analysis. Fable 12--28 contains these results which included the basic cross

section dimensions and weight data for each design. The total panel weights (com-

bined weight of the basic panel and aluminum braze) for the honeycomb core sandwich

concept are presented in Table 12-»33 and includes the braze weight as determined

from Figure 12-30.

Truss-Core Sandwich - The basic panel sizing; results for the truss-core sandwich

are presented in Table 12-34 and contains similar cross sectional properties and

weight data as shotm for the honeycomb core sandwich panels. With respect to this

table, minimum panel weights are noted for region 40322 where the weights ranged

from a minimum of 1.32 lb/sq,ft. for the loiter surface panel with 20-inch spar

spacing to a maximum of 2.70 lb/sq.ft. for the upper surface 40-inch spar spacing

design. For region 40536, the panel, weight varied from approximately 3.2 1b/sq,.fE.

to 4.5 1b/sq,.ft. Similarly, the weight range at point design region 41348 was

approximately 200 lb/sq..ft. to 3.2 .lb/sq.ft. In addition, this table indicates the

critical Task X flight condition designing each region, see Section 11 for a.

description of the flight parameters.
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TABLE 12-33. C014PARISON OF THE CANDIDATE MONOCOgUE SURFACE
PAUL HEIGHTS - INITIAL SCRMNING

WT.

1TEM SURFACE PANEL UNIT WEIGHT (LB./SQ. FT.)

POINT DESIGN
REGION 40322 40536 41348

SPAR SPACING (IN.) 20 30 40 20 30 40 20 30 40

HONEYCOMB CORE
SANDWICH

• UPPER SURFACE (1.14) (1.31) (1.61) (2.92) (3.49) (3.77) (2.02) (2.31) (2.47)

PANEL 0.92 1.08 1.29 2.69 3.02 3.21 1.88 2.05 2.21

FAB. METHOD
(BRAZE) 0.22 0.23 0.32 0.23 0.47 0.56 0.14 0.26 0.26

(0.98) (1.12) (1.44) (3.30) (3.38) (3.46) (2.24) (2.22) (2.29)s LOWER SURFACE

PANEL 0.87 1.00 1.18 3.20 3.28 3.35 2.12 2.12 2.18

FAB. METHOD
(BRAZE) 0.11 0.12 0.26 0.10 0.10 0.11 0.12 0.10 0.11

(2.12) (2.43) (3.05) (6.22) (6.87) (7.23) (4.26) (4.53) (4.76)w TOTAL

TRUSS-CORE
SANDWICH

UPPER SURFACE (1.61) (2,00) (2.70) (3.16) (3.73) (4.46) (2.15) (2.70) (3.25)

PANEL 1.61 2.00 2.70 3.16 3.73 4.46 2.15 2.70 3.23

FAB. METHOD
(DIFF. BOND.) - - - - -

-
-

-
-

(1.32) (1.34) (1.95) (3.31) (3.47) (3.60) (2.00) (2.12) (2.19)LOWER SURFACE

PANEL. 1.32 1.34 1.95 3.31 3.47 3.60 2.00 2.12 2.19

FAB. METHOD
(DIFF. BOND) -

(2.93) (3.34) (4.65) (6.47) (7.20) (8.06) (4.15) (4.82) (5.44)TOTAL	 E



FABLE 12-34. PANEL GEOMETRY AND WIGHT FOR THE MULTISPAR DESIGN TRUSS --
CORE SANDWICH PANELS -- IIVITIAL SCREEIUNG

d
rd

C-t

H

117
E

POINT DESIGN REGION 40322 40536 41348

SURFACE UPPER LOWER UPPER LOWER UPPER LOWER

SPAR	 {m) 0.51 0.76 1.02 0.51 0.76 1.02 0.51 0.76 1.02 0.51 0.76 1.02 0.51 0.76 1.02 0.51 0.76 1.02
SPACING	 (in.) 20 30 40 20 30 40 20 30 40 20 30 40 20 30 40 20 30 40

RIB	 [ml 3.30 3.30 3.30 3.30 3.30 3.30 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52
SPACING	 (in.) 130 130 130 130 130 130 60 60 60 60 60 60 60 60 60 60 60 60

ASPECT RATIO 0.15 0.23 0.31 0.15 0.23 0.31 0.33 0.50 0.67 0.33 0.50 0.67 0.33 0.50 0.67 0.33 040 0.67

DIMENSIONS:

H	 (cm) 1.557 2.515 3.830 1.067 1.148 2.802 2.337 3.094 4.028 0.556 0.871 1.176 1.661 2.380 3.043 0.734 1.204 1.260

(in.) 0.613 0.990 1.508 0.420 0.452 1.103 0.920 1.218 1.586 0.219 0.343 0.483 0.654 0.937 1.198 0.289 0.474 0.496

t1	(cm) 0.051 0.064 1 " 1558 0.030 0.033 0.048 0.135 0.147 0.145 0:170 0.180 0.188 0.107 0.119 0.137 0.104 0.117 0.119
(in.) 0.020 0.025 4.423 0.012 0.013 0.019 0.053 0.058 0.057 0.067 0.071 0.074 0.042 0.047 0.054 0.041 0.046 0.047

t2	(cm) 0.038 0.051 •051 0.051 0.051 0.051 0.117 0.119 0,127 0.160 0.165 0.168 0.069 0.081 0.094 0.089 0.086 0.084
(in.) 0.015 0.020 0.020 0.020 0.020 0.020 0.046 0.047 0.050 0.063 0.065 0.06E 0.027 0.032 0.037 0.035 0.034 0.033

tc	(cm) 0.025 0.025 0.028 0.028 0.075 0.025 0.041 0.048 0.056 0.028 0.025 0.028 0.030 0.036 0.043 0.025 0.025 0.028
(in.) 0.010 0.010 0.011 0.011 0.010 0.010 0.016 0.019 0.022 0.011 0.010 0A11 0.012 0.014 0.017 0.010 0.010 0.011

bS 	(cm) 0.917 1.207 1.148 0.889 0.968 1.234 2.009 2.047 2.057 1.118 1.361 1.681 1.697 1.737 1090 3.053 3.485 2.624
(in.) 0.361 0.415 0.452 0.350 0.381 0.485 0.791 0.806 0.810 0.440 0.535 0.662 0.668 0.684 0.823 1.202 1.372 1.033

be	(cm) 1.580 2532 3.820 1.118 1.207 2.822 2.428 3.132 4.023 0.683 0.975 1.306 1.788 2.441 3.109 1.656 2.052 1.750

(in.) 0.622 0.997 1.504 0.440 f1475 1.111 0.956 1.233 1.584 0.269 0.384 0.514 8.704 0.961 1.224 0.652 0.812 0.689

(rad) 1.278 1.330 1.421 1.162 1.159 1.351 1.145 1.237 1.312 0.613 0.799 0.871 1.077 1.208 1.229 0.396 0.564 0.724
(deg) 73.2 76.2 81.4 66.5 66.4 77A 65.6 70.9 75.2 35.1 45.8 49.9 61.7 69.2 70.4 22.7 32.3 41.5

MASS DATA,

t	 (cm) 0.178 0.221 0.297 0.145 0.147 0.213 0.348 0.411 0.490 0.363 0381 0.396 0.236 0.297 0.356 0.221 0.234 0.241

(in.) 0.070 0.087 0.117 0.057 0.053 0.084 0.137 0.162 0.193 0.143 0.150 0.156 0.093 0.117 0.140 0.087 0.092 0.095

W	 (kq - rn'2) 7.856 9.775 13.193 6.435 6.552 9.501 15.424 18.226 21.756 16.141 16.927 17.596 10 A97 13.187 15.751 9.740 10.331 10.678
(lb -fr2) 1.609 2.002 2.702 1.318 1.342 1.946 3.159 3.733 4.456 3.306 3.467 3.604 2.150 2.701 3.226 1.995 2.116 2187

we	(k9 - m -2) 3.881 4.721 8.378 2.856 2.81.7 5.146 4.292 6.420 9.667 1.553 1.645 1.655 2.759 4.394 5.512 1.221 1.333 1.640
(Ib-fr2) 0.795 0.967 1.716 0.585 0,577 1.054 0.879 1.315 1.980 0.318 0.337 0.380 0.565 0.900 1.129 0.250 0.273 0.336

PC 	(k9 - m -3) 256.71 192.06 221.84 278.75 254.37 186.94 193.98 215.87 248A6 395.02 235.63 185.86 175.15 192.63 188.22 19158 120.76 14149
(lb - ft-3) 16.026 11.990 13.849 17.402 15.880 11.670 '12110 13.539 15.511 24.660 14.710 11.603 10.934 12.026 11.750 11.960 7.539 8.839

CRITICAL CONDITION 20 20 20 20 20 20 31 31 31 31 31 1	 31 31 31 31 31 31 31

NOTE: (1) ASPECT RATIO = Lp.X/Lp.y
(2) PANELS HAVE SPANWESE STIFFENING



The diffusion bonded technique was employed for fabricating the skin-to-core

attachment. This process results in no discernable weight penalty for the basic

truss-»core panel as summarized in Table 12-33.

Monocoque Surface Panel Results - The results of the panel sizing analysis conducted

on the candidate monocoque concepts are presented in Table 12-33 and displayed

graph:-'cally in Figure 12-33. With respect to Figure 12-33, the honeycomb core

sandwich concept is the lightest-weight concept at each of the three regions investi-

gated for this study. The exception being region 41348, midspan wing tip location,

irheru the truss-core and honeycomb-core concepts have approximately the same

vei.ght (4.2 lb/sq.ft.) for the 20--inch spar spacing design. The least-weight designs

for each concept occur at spar spacing of 20-inches. For this spacing, the minimum-

weight honeycomb sandwich concept has unit weights of 2.1 lb/sq. ft. , 4.2 lb/sq.ft.,

and 6.2 lb/sq.ft. for region 40322, 413+8, and 40536, respectively.

Similar to the chordwise and spanwise initial screening analyses, an additional

weight-trend study was conducted where the candidate panel concepts were applied to

representative wing box structure. For this analysis, the wing box weight at

region 40536 was defined for each panel concept using typical substructure and

panel close-out designs. Figure 12 -34 contains the close-out designs for the two

panel concepts.

The detail wing weights for the two concepts are shovm in Table 12-35 and presented

graphically in Figure 12-35. From a review of 'able 12-35, the predominant weight

component for each design are the surface panels with the spar webs and rib webs

ranked a distant second and third, respectively. Similar to the panel study, the

20-inch spar spacing wing box design which incorporated the honeycomb core sandwich

panels resulted an the least-weight design. Unit box weights ranging from

8.3 lb/sq.ft.. to 8.9 lb/sq.ft. are noted for the 20-inch and 40-inch spar spacing

designs, respectively. The corresponding box weights for the truss-core sandwich

range from 8.6 1b/sq.ft. to 9.9 lb/sq.ft. for the same spar spacings.

Based on the panel and wing box study results, the honeycomb core sandt-rich concept

was selected for further valuation in the following Detail Concept Analysis.
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T'A13LE 12-35• DETAIL WING WEIGHT COMPARISON OF TIM MONOCOQUE
PANEL CONCEPT - INITIAL SCREENING

PANEL CONCEPT HONEYCOMB CORE
SANDWICH TRUSS-CORE SANDWICH

POINT DESIGN 40536

SPAR SPACING (IN) 20 30 40 20 30 40

PANELS
UPPER 2.92 3.49 3.77 3.16 3.73 4.46
LOWER 3.30 3.38 3.46 3.31 3.47 3.60

(6.22) (6.87) (7.23) (6.47) (7.20) (8.06)

RIB WEBS
BULKHEAD 0.24 0.24 0.24 0.24 0.24 0.24
TRUSS 0.23 0.23 0.23 0.23 0.23 0.23

(0.47) (0.47) (0.47) (0.47) (0.47) (0.47)

SPAR WEBS
BULKHEAD 0.24 0.28 0.32 0.24 0.28 0.32
TRUSS 0.59 0.39 0.33 0.59 0.39 0.33

(0.83) (0.67) (0.65) (0.83) (0.67) (0.65)

RIB CAPS
UPPER 0.07 0.08 0.09 0.13 0.15 0.18
LOWER

F,
0.07 0.07 0.08 0.12 0.10 0.11

(0.14) (0.15) (0.17) (0.25) (0.25) (0.29)

SPAR CAPS
UPPER 0.24 0.18 0.14 0.21 0.15 0.16
LOWER 0.24 0.16 0.14 0.20 0.15 0.12

(0.48) (0.34) (0.28) (0.41) (0.30) (0.28)

FASTENERS 0.05 0.04 0.03 0.05 0.04 0.03
(0.05) (0.04) (0.03) (0.05) (0.04) (0.03)

WEB INTERSECTION 0.13 0.12 0.11 0.13 0.12 0.11
(0.13) (0.12) (0.11) (0.13) (0.12) (0.11)

POINT
DESIGN LB 8.32 8.66 8.94 8.61 9.05 9.89
WEIGHT FT2
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Monocoque Detail Concept Analysis

The most promising panel concept surviving the Initial Screening analysis wai the

honeycomb-core sandwich panel concept with the general panel proportion commensurate

with a multispar structural arrangement. In addition, only one material was con-

sidered for this investigation, titanium alloy Ti-6A1 -4v (ANN).

For this analysis, representative wing box segments were subjected to a weight

evaluation at the six study point design regions. These firing box segments included

the wing panels, representative substructure, and the related non-optimum factors.

In addition, unit wing box weights were calculated. to reflect the specific method

of attaching the panels to the substructure.

Panel Analysis - In addition to the panel proportions defined for the initial

screening analysis, the honeycomb sandwich panels were sized for three additional

point design regions: 40236, 41036, and 41316. 'These panels were analyzed for

their most critical load/temperature environments (Reference Table 12-27) and the

results are summarized in Table 12-36. This table includes the specific panel cross

sectional dimensions and related mass data for each of the new, point design regions.

Substructure Analysis - Typical substructure was investigated for application to the

monocoque structural. arrangement. This substructure included the following com-

ponents: spar caps and webs, rib caps and webs, and the applicable non-optimum

factors. The weight of the rib and spar caps varied with the specific type of

panel-to-substructure attachment being considered; whereas, the remaining substructure

components (rib and spar webs) were invariant t'-rith the attachment design.

The three types of panel--to-substructure junctions considered in this analysis are

shown in Figures 12-36, 12,37, and 12-38.. The first type (Figure 12-36) consists

of embedding tubular inserts into the honeycomb panel at the rib and spar intersec-

tions and mechanically fastening the structural components. Figure 12--37 presents

the second type, which also uses a tubular insert that is welded into the panel,

and to the rib and. spar attachments. The last type of panel-to-substructure junction

considered is shown in Figure 12-38 and is comprised of a densified core insert

which is mechanically fastened to the substructure.

12-103
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TABLE 12-36. PANEL GEOMETRY AND MEIGHT FOR THE MULTISPAR
DESIGN HONEYCOMB SANDWICH PANELS

I
i3
O
4^-.

POINT DESIGN REGION 40236 41035 41316

SURFACE UPPER LOWER UPPER	 i LOWER UPPER LOWER

SPAR	 {m} 0.51 0.76 1.02 0.51 0.76 1.02 0.51 0.76 1.02 0.51 0.76 1.02 0.51 0.76 1.02 0.51 0.76 1.02
SPACING	 (in.) 20 30 40 20 30 40 20 30 40 20 30 40 20 30 40 20 30 40

RIB	 (m) 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52
SPACING	 (in.) 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60

ASPECT RATIO 0.33 0.50 0.67 0.33 0.50 0.67 0.33 0.50 0.67 0.33 0.50 0.67 0.33 0.50 0.67 0.33 0.50 0.67

DIMENSIONS:

iN	 (cm) 1.958 2.883 3.818 1.059 1.412 2.360 1.760 2.525 3.254 0.655 0.848 1.095 1.834 2.545 3.409 0.488 0.622 0.808
(in.) 0.771 1.135 1.503 0.417 0.556 0.926 0.693 0.994 1.281 0.258 0.334 0.431 -	 0.722 1.002 1.342 0.192 0.245 0318

tl	(cm) 0.119 0.122 0.130 0.234 0.188 0.147 0.084 0.084 0.091 0.119 0.127 0.114 0.132 0.137 0.145 0.178 0.173 0.173
(in.) 0.047 0.048 0.051 0.092 0.074 0.058 0.033 0.033 0.036 0.047 0.050 0.045 0.052 0.054 0.057 0.070 0.068 0.068

t2	 (cm) 0.124 0.127 0.130 0.069 0.117 0.157 0.084 0.094 0.094 0.091 0.081 0.097 0,135 0.137 0.135 0.157 0.163 0.163
{in.) 0.049 0.050 0.051 0.027 0.046 0.062 0,033 0.037 0.037 0.036 0.032 0.038 0.053 0.054 0.053 0.062 0.064 0.064

tc	 (cm) 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.905 0.005 0.005 0.005 0.005
(in.) 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0,002 0.002 0.002 0.002 0.002 0.002

S	 (cm) 0.947 0.744 0.729 1.270 1.270 1.270 0.747 0.767 0.752 1.270 1.270 1.270 0.925 0.831 0.726 1.270 1.270 1.270
(in.) 0.373 0.293 0.287 0.500 0.500 0.500 0.294 0.302 0.296 0.500 0.500 0.500 0.364 0327 0.286 0.500 0.500 0.500

MASS DATA:

t	 (cm) 0.264 0.284 0.310 0.310 0.315 0.323 0.191 0.208 0,226 0.213 0.213 0.218 0.284 0.302 0.323 0.335 0.335 0.338
(in.1 0.104 0.1.12 0.122 0.122 0.124 0.127 0.075 0.082 0.089 0.084 0.084 0.086 0,112 0.119 0.127 0.132 0.132 0.133

W	 (k9 - m 2) 11.674 12631 13.715 13.720 13.964 14.305 8.393 9.228 9.989 9.443 9.477 9.623 12.597 13.412 14.252 14.857 14.891 15.009
{Ib - fr2) 2.391 2.587 2.809 2.810 2.860 2.930 1.719 1.690 2.046 1.934 1.941 1.971 2.580 2.747 2.919 3.043 3.050 3.074

we	(kg - m -2) 0.815 1.592 2.192 0.269 0.391 0.723 0.962 1.377 1.836 0.156 0.225 0.312 0.762 1.230 1.938 0.054 0.103 0.166
(lb- ft-2) 0.167 0.326 0.449 0.055 0.080 0.148 0.197 0.282 0.376 0.032 0.046 0.064 0.156 0.252 0.397 0.011 0.021 0.034

PC	(kg - m-3) 47.687 60.390 61.655 35.433 35,433 35.433 60.277 58.724 59.861 35.433 35.433 35.433 48.616 54.174 61.959 35.433 35.433 35.433
(Ib-fr3) 2.977 3.770 3.849 2.212 2.212 2212 3.763 3.666 3.737 1	 2.212 2.212 2.212 3.035 3.382 3.866 2.212 2.212 2212

CRITICAL CONDITION 31 1	 31 31 31 31 7^3131 3 31 31 31 31 31 31 31 31 31

NOTE: (1) ASPECT RATIO = Lpx/Lpy
12) BRAZE MATERIAL NOT INCLUDED
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For the vertical web designs, combinations of circular-arc and truss-type webs were

used as dictated by the specific design requirements at each point design region.

For example, at region 40536 which is located in a fuel tank, circular-arc webs

were used for the fuel tank bulkheads and truss trebs for the intermediate spars and

ribs.

The weights of the substructure components are itemized in the detail freight state-

ments for each of the tying structural arrangements.

Monocoque Box Weights - A detail weight statement and the optimum rib/spar spacings

were determined for each of the monocoque wing arrangements. These arrangements, as

characterized by the type of panel-to-substructure junction design, are all multi-

spar arrangements and employ the honeycomb-core sandwich panel concept.

Mechanically Fastened-Tubular Insert - A detail weight statement for this arrangement

is shown in Table 12-37. This data reflects the weight/strength analysis conducted

at point design regions 40322, 40536 and 41348. In addition, this data includes a

variable spar spacing of 20-inches, 30-inches, and 40-inches with a constant rib

spacing.

In addition to the detail weight tables these weights are presented graphically in

Figures 12-39, 12-40, and 12.41, for regions 40322, 40536, and 41348, respectively.

The for4Tard wing box region 40322, displayed in Figure 12-39, has an optimum design

for a spar spacing between 25-inches and 30-inches with a total wing box weight of

approximately 4.4 lb/sq.ft. For region 40536 (Figure 12-40) no discernable optimum

spar spacing is indicated for the positive sloping, total weight curve. The least-

weight design is for 20-inch spar spacing, and weighs approximately 8.7 lb/sq.ft.

The total weight curve for region 41348 is shown in Figure 12-41. A minimum weight

of 5.8 lb/sq.ft. occurs for the smallest spar spacing investigated, 20-inches.

Welded-Tubular Insert - Detail weight statements are shown in fables 12-38 and

12-39 for the six point design regions investigated. This data reflects a multispar

arrangement with a constant rib spacing and variable spar spacings of 20-inches,

30-inches, and 40-inches. For ease in interpretation, this weight data is shown

graphically in Figures 12-42 through 12-47. No discernable optimum design is

noted for any of the regions with the exception of region 40322. The total weight
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TABLr, 12-37. DETAIL WING Z-TEIGHTS FOR THE MONOCOQLTE- MMANICALLY
r'ASTENED - TUBULAR INSERT ARRANGEMENT

POINT DESIGN
REGION 40322 40536 41348

SPAR SPAC (IN.) 20 30	 40 20 30 40 20 30 4O

PANELS

UPPER 1.144 1.308 1 . 608 2918 3 . 489 3.772 2.018 2.310 2.469

LOWER 0.980 1.126 1.445 3.302 3.377 3.458 2.241 2.224 2.288

F (2.124) (2.434) (3.053) (6.220) (6.866) (7.230) (4.259) (4.534) (4.757)

RIB WEBS

BULKHEAD 0.241 0.241 0.241 0.244 0.244 0.244 0.100 0.100 0.100
TRUSS 0.198 0.198 0.198 0,229 0.229 0.229 - -- -
f̂ (0.439) (0.439) (0.439) (0.473) (0.473) (0.473) (0.100) (9.100) (0.100)

SPAR WEBS

BULKHEAD 0.355 0.343 0.352,	
l

0.245 0.285 0.321 0.401 0.301 0.251
TRUSS 0.339 0.194 0.12'1 2.590 0 .389 0.326 - - -

E (0.694) (0.537) (0.473)
l1111 	

(0.835) (0.674) (0.647) (0.401) (0.301) (9.251)

RIB CAPS

UPPER 0.120 0.140 0.158 0.127 0.143 0.150 0.127 0.146 0.154
LOWER 0.133 0.138 0.193 0.100 0.106 0.127 0.099 0.106 0.113

F (0.253) (0.278) (0.351) (0.227) (0.249) (0.277) (0.226) (0.252) (0.267)

SPAR CAPS

UPPER 0.401 0 .307 0.268 0 .418 0 .311 0 .242 0.376 0.289 0.227

LOWER 0.445 0.316 0.325 0.332 0.236 0.206 0.290 0.208 0.167
(0.846) (0.623) (0.591) (0.750) (0.547) (0.448) (0.6GG) (0.497) (0.394)

NON-OPTIMUM

MECH. FAST. 0.050 0.040 0.030 0.050 0.040 0.030 0.050 0.040 0.030
WEB INTERS. 0.113 0.098 0.091 0.131 0.115 0.112 0.050 0.040 0.035

` (0.163) (0.138) (0,121) (0,181) (0.155) (0.142) (0.100) (0.080) (0.065)

POINT

F DESIGN LB 4.519 4.449 5.028 8.686 8.964 9.217 5.752 5.764 5.834
WEIGHT FT2
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TABLE 12-38. DETAIL WIM WEIGHTS FOR THE MONOCOQLTE VE, LDM -
MULAR INSERT ARRANGEMENT

POINT DESIGN 40322 41316 41348REGION

SPAR SPAC (IN) 20 30 40 20 30 40 20 30 40

PANELS
UPPER 1.144 1.308 1.60f3 2.710 2.957 3.189 2.018 2.310 2.469
LOWER 0.980 1.126 1.445 3.143 3.150 3.174 2.241 2.224 2.288

E
(2.124) (2.434) (3.053) (5.853) (6.107) (6.363) (4,259) (4.534) (4.757)

RIB WEBS
BULKHEAD 0,241 0.241 0.241 0.187 0.187 0.187 0.100 0.100 0,100
TRUSS 0.198 0.198 0.198 - - - - -- -

(0.439) (0,439) (0.439) (0.187) (0.187) (0.187) (0.100) (0.100) (0.100)

SPAR WEBS
BULKHEAD 0.355 0.343 0.352 0.289 0.229 0.190 0.401 0.301 0.251
TRUSS 0.339 0.194 0.121 - - - - - -

F,
(0,694) (0.537) (0.473) (0.289) (0.229) (0.190) (0.401) (0.301) (0.251)

RIB. CAPS
UPPER 0.114 0.134 0,158 0.139 0.154 0.173 0.141 0.160 0.168
LOWER 0.127 0.133 0.188 0.090 0.129 0.117 0.113 0.123 0.127

E
(0.241) (0.267) (0.341) (0.229) (0.283) (0.290) (0.254) (0.283) (0.295)

SPAR CAPS
UPPER 0.355 0.285 0.258 0.463 0.341 0,258 0.419 0.317 0,248
LOWER 0.399 0.294 0,310 0.304 0.288 0.177 0.332 0.241 0.188

F, (0.764) (0.579) (0.568) (0.767) (0.629) (0.435) (0.751) (0.558) (0.435)

NON-OPTIMUM
MECH, FAST. - - - - -- - - - -
WEB INTERS. 0.113 0.098 0.091 0 . 048 0 .042 0 .035 0 .050 0 .040 0.035

(0.113) (0.098) (0.091) (0.048) (0.042) (0.035) (0.050) (0.040) (0.035)

POINT LSDESIGN 4.365 4.354 4.965 7.373 7.477 7.500 5.815 5.816 5.874
'^--+ WEIGHT	 FT2
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TABLE 12--39. DETAIL ITING WEIGHTS FOR THE MONOCOQUE, I-JELDED --
TUBULAR INSERT ARRANGEAMT

POINT DESIGN 40236 40536 41036REGION

E 
SPAR SPAC (IN) 20 30 40 20 30 40 20 30 40

PANELS
UPPER 2.511 2.817 3.109 2.918 3.489 3.772 1.869 2.090 2.246
LOWER 2,910 2.960 3.030 3.302 3.377 3.458 1.944 2.041 2.071

F, (5.421) (5.777) {8.139} (6.220) (6.866) (7.230) {3.813} (4.131) (4.317)

RIB WEBS
BULKHEAD 0.329 0.329 0.329 0.244 0.244 0.244 0.126 0.126 0.126
TRUSS 0.396 0.396 0.396 0.229 0.229 0.229 0.111 0.111 0.111

E (0.725) (0.725) (0.725) (0.473) (0.473) (0.473) (0.237) (0.237) (0.237)

WEBS_SPAR
BULKHEAD 0.367 0.422 0.463 0.245 0.285 0.321 0.096 0.114 0.130
TRUSS 0.877 0.706 0.514 0.590 0.389 0.326 0.188 0.183 0.165

(1.244) (1.128) (0.977) (0.835) (0.674) (0.647) (0.284) (0.297) (0.295)

RIB CAPS
UPPER 0.127 0.145 0.157 0.123 0.139 0.146 0.124 0.138 0.139
LOWER 0.105 0.115 0.136 0.096 0.102 0.123 0.099 0.104 0.125

E (0,232) (0.260) (0.293) (0.219) (0.241) (0.269) (0.223) (0.242) (0.264)

SPAR CAPS
UPPER 0.378 0.273 0.247 0.376 0.292 0.235 0.357 0.278 0.188
LOWER 0.313 0.234 0.209 0.290 0.217 0.199 0.288 0.206 0.169

E (0.691) (0.507) (0.456) (0.666) (0.509) (0.434) (0.655) (0.484) (0.357)

NON-OPTIMUM
MECH. FAST. - - - - - - - - -
WEB INTERS. 0.197 0.185 0.170 0.131 0.115 0.112 0.052 0.053 0.053

E (0.197) (0.185) (0.170) (0.131) (0.115) (0.112) (0.052) (0.053) (0.053)

POINT
FI DESIGN LB 8.510 8.582 8.760 8.544 8.878 9.165 5.264 5.444 5.523

WEIGHT FT2

1 P-l14



cv	 20

E

`$

4.0

°'X
I

Q

I

F'

C9

w

x 10
0

X 2.0
0

no

C7
2

m
(D
z

8
CD

co M	
1.5

cu
d

2	 6

w
p

z
o
CL a

1.0

4

0.5

2

0	 0

5.0
24 r-

22 1--	 4.5

POINT DESIGN 40322

TOTAL

UPPER SURFACE

LOWER SURFACE

SPAR WEBS

SPAR CAPS

RIB CAPS

RIB WEBS

NON OPT

20	 30	 40

SPAR SPACING - inch
^	

1	
^

.50	 .75	 1.00

SPAR SPACING -- meter

Figure 12-^2. Optimum Spar Spacing for the Monocoque Welded - Tubular
Insert Arrangemert , Point Design Region 40322

]2-115



3	 _f

44 8.0

TOTAL

42

8.5

40
POINT DESIGN 40236

8.0

CV
16

.a

3.0 LOWER SURFACE

cn 14

Q
P. UPPER SURFACE

Q X
p0 m 2.5

12 0z
z
c? ẑ
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curve for this region is shown in Figure 12--42 and indicate a minimum-weight design

occurring for a spar spacing between 20- and 30-inches,

Mechanically Fastened-Densified Core - The detail freight statements for this

arrangement are presented in `fables 12-40 through 12-41. Similar to the ether

arrangements, the weight data for this arrangement are also shown graphically in

Figures 12--48 through 12-53. No readily discernable optimum designs are noted,

but the total freights curves for regions 40322, 40236, 41316, and 411,48 indicate

the likelihood of the lowest spar spacing design (20-inch) investigated being an

inflection point.

For summary purposes, the unit wing box weights for each of the candidate wing

arrangements are presented in Table 12-42. This data represents the unit freights

for the 20-inch spar spacing designs normalized to the weight of the least-weight

arrangement. With reference to this table, the mechanically fastened-densified

core arrangement is the minimum-weight monocoque arrangement with the welded-tubular

and mechanically fastened-tubular arrangements ranked second and third, respectively.

Comparing the mechanically fastened--densified core arrangement (least-weight) to

the welded--tubular arrangement, a minimum weight savings of 3-percent is noted for

regions 40236 and 40536; while region 40322 affords a maximum weight saving of

9-percent. Similarly, the least--weight arrangement indicates minimum and maximum

weight savings of 4-percent and 13-percent, respectively, as compared to the

heaviest-weight mechanically fastened - tubular arrangement.

In conclusions, based on the results of the relatively extensive Task I analysis

the mechanically fastened-densified core arrangement was selected as the most-

promising monocoque arrangement.

CO24POSITE REINFORCED WING ARRANGEMENT - TASK I

The Task I analysis included a relatively comprehensive study on the application of

composite to the arrow-wing primary structure. This study was based an near-term

technology and limited the use of composite to reinforcing; the titanium primary

structure on the chordwise wing arrangement. Those structural components presenting

ok"i
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TABLE 12-40. DETAIL WING WEIGHTS FOR THE MONOCOQUE MECHAP1ICALLY
FASTENED - DENSIFIED CORE ARRANGEMENT

POINT DESIGN 40322 41316 41348REGION

SPAR SPAC (IN) 20 30 40 20 30 40 20 30 40

PANELS
UPPER 1.144 1.308 1.608 2.710 2.957 3.189 2.018 2.310 2.469
LOWER 0.980 1.125 1.445 3.143 3.150 3.174 2.241 2.224 2.288

(2.124) (2.434) (3.053) (5.853) (6.107) (6.363) (4.259) (4.534) (4,757)

RIB WEBS
BULKHEAD 0.241 0.241 0.241 0.187 0.187 0.187 0.100 0.100 0.100
TRUSS 0.198 0.198 0.198

F, (0.439) (0.439) (0.439) (0.187) (0.187) (0.187) (0.100) (0.100) (0.100)

SPAR WEBS
BULKHEAD 0.355 0.343 0.352 0.289 0.229 0.190 0.401 0.301 0.251
TRUSS 0.339 0.194 0.121

(0.694) (0.537) (0.473) (0,289) (0,229) (0.190) (0.401) (0.301) (0.251)

RIB CAPS
UPPER 0.069 0.074 0.06E 0.070 0.077 0.077 0.077 0.079 0.084
LOWER 0.062 0.072 0.066 0.057 0.067 0.067 0.082 0.087 0.103

E (0.131) (0.146) (0.134) (0.137) (0.144) (0.144) (0.159) (0.166) (0.187)

SPAR CAPS
UPPER 0.235 0.163 0.127 0.232 0.165 0.115 0.227 0.156 0.124
LOWER 0,214 0.168 0.113 0.224 0.149 0.101 0.240 0.170 0.153

(0.449) (0.331) (0.240) (0.456) (0,314) (0.216) (0.467) (0.326) (0.277)

NON-OPTIMUM
MECH. FAST. 0.050 0.040 0.03 0.050 0.040 0.030 0.05 0.04 0.03
WEB INTERS. 0.113 0.098 0.091 0.048 0.042 0.030 0.050 0.04 0.035

(0.163) (0.138) (0.121) (0.098) (0.082) (0.060) (0.10) (0.08) (0.065)

POINT
DESIGN LB 4.00 4.025 4.46 7.02 7.063 7.16 5.486 5.507 5.637
WEIGHT FT Z

k
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TABLE 12-41. DETAIL WING WEIGHTS FOR THE MONOCOQUE MECHANICALLY
FASTENED - DENSIFIED CORE ARRANGEMENT

POINT DESIGN
40236 40536 41036

REGION

SPAR SPAC (IN) 20 30 40 20 30 40 20 30 40

PANELS
UPPER 2.511 2.817 3.109 2.918 3.489 3.772 1.869 2.090 2.246
LOWER 2.910 2.960 3.030 3.302 3.377 3.458 1.944 2.041 2.071

(5.421) (5.777) 16.139) (6,220) (6.866) (7.230) (3.813) (4.131) (4.317)

RIB WEBS
BULKHEAD 0.329 0.329 0.329 0.244 0.244 0.244 0.126 0.126 0.126
TRUSS 0.396 0.396 0.396 0.229 0.229 0.229 0.111 0.111 0.111

(0.725) (0.725) (0.725) (0.473) (0.473) (0.473) (0.237) (0.237) (0.237)

SPAR WEBS
BULKHEAD 0,367 0.422 0.463 0.245 0.285 0.321 0.096 0.114 0.130
TRUSS 0.877 0,706 0.514 0.590 0.389 0.326 0,188 0.183 0.165

(1.244) (1.128) (0.977) (0.835) (0.674) (0.647) (0.284) (0.297) (0,295)

RIB CAPS
UPPER 0.073 0.073 0.075 0.071 0.083 0.090 0.076 0.079 0.080
LOWER 0.073 0.073 0.083 0.071 0.073 0.081 0.069 0.074 0.075

(0.146) (0.146) (0.158) (0.142) (0.156) (0.171) (0.145) (0.153) (0.155)

SPAR CAPS
UPPER 0,241 0.164 0.130 0.239 0.181 0.144 0.250 0.169 0.122
LOWER 0.241 0.164 0.126 0.239 0.163 0.136 0.250 0.169 0.117

F, (0.482) (0.328) (0.256) (0.478) (0.344) (0.280) (0,471) (0.329) (0.239)

NON-OPTIMUM
MECH. FAST. 0.050 0.040 0.030 0.050 0.04 0.03 0.050 0.040 0.030
WEB INTERS. 0.197 0.185 0.170 0.131 0.115 0.112 0.052 0.053 0.054

(0,247) (0.225) (0.200) (0.181) (0.155) (0.142) (0.102) (0.093) (0.084)

POINT
DESIGN LB 8,265 8.239 8.455 8.329 8.668 8.943 5.052 5.24 5.327
WEIGHT FT2

f
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TABLE 12-42. I•1ETGHT COMPARISON OF THE TASK 1 MONOCOQUE 1-111IG ARRANGMMO

i
w0

UNIT WING BOX WEIGHTS

MINIMUM -( 1) NORMALIZED VALUES(2)
POINT SPAR WEIGHT

DESIGN SPACING ARRANGEMENT MECH. FAST. - WELDED 
-

MECH. EAST. -
REGIONS (IN.) (LB./S(2. FT.) TUBULAR TUBULAR DENSIFIED CORE

40322 20.0 4.00 1.13 1.09 1.00

40236 20.0 8.26 N.A.(3) 1.03 1A0

40536 20.0 8.33 1.04 1.03 1.00

41036 20.0 5.05 N.A. (3) 1.04. 1.00

4131.6 20.0 7.02 N.A.(3) 1.05 1.00

41348 20.0 5.49 1.05 1.06 1.00

1.	 MINIMUM WEIGHT ARRANGEMENT , MECHANICALLY FASTENED - DENSIFIED CORE

2.	 ALL VALUES NORMALIZED TO THE MINIMUM-WEIGHT ARRANGEMENT

3.	 WEIGHT DATA NOT AVAILABLE (N.A.)



the greatest weight-saving potential were the metallic surface panels and

submerged spar caps. Figure 12--54 shows these components and a typical wing box

segment for a chordi-rise wing arrangement.

The composite reinforced designs were analyzed for the same point design environ-

ment as defined for the metallic chordwise wing arrangement. Table 12-2 contains

the critical surface panel load-temperature environment. 'The composite reinforced

concepts were subjected to the same combinations of load as the metallic concepts

and sized for equal or greater strength. For the design loads the ultimate strength

of the composite and titanium elements were not exceeded. For the tension condition,

the ultimate tensile stress in the titanium substrate dil not exceed the fatigue

allowable. Under the application of the design loads the combined structure

experience neither general instability nor local instability failures. The effect

of thermal curing stresses and thermal gradients on the strength of the reinforced

element was also evaluated.

The composite reinforced concepts were designed to have equal or greater stiffness

than the representative metallic concepts used in the chordwise structural model..

This criteria applies to both the shear stiffness (Gt) and axial stiffness (Et) of

the section in the principal stiffness direction.

The reinforced concepts were sized for the sane panel proportion (rib/spar spacing)

studiea for the chordi-rise metallic panels and the resulting least-weight panel

geometry and associated rib/spar spacing were defined.

Composite Wing Surface panels

A systematic approach was used to evaluate the application of composite to the

chordwise stiffened wing panels. The.initial task involved screening the composite

material system and selecting the most promising material for a more in-devth study.

Those materials considered were: Graphite/polyimide (Gr/PT)., Boron/polyimide (B/PT)

and Boron/aluminum (B/Al), Upon selecting the material system, a weight-strength

analysis was conducted with variable spar spacing to define the panel proportions

which exhibit the largest potential weight saving over the metallic design. Then

using these panel proportions, the detail panel geometry was determined at each

of the six point design regions.

1
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Material System Trade-off Study - The three candidate composite material systems

evaluated were MODMOR II/Skybond 703 Graphite/polyimide (Gr/PI), Boron/Skybond 703

(B/Pl), and 5.6 Boron/1100 Aluminum with titanium interleaves (B/Al). The static

material properties for these materials are presented in Section 7 and are based

on currently published (1970-1972 technology) data which have minimal statistical

basis.

Comparative weight-strength studies were performed using the hat-stiffened concept

to assess the relative weight of these candidate composite materials. This study

included sizing both upper and lower surface panels for spar spacings of 20-, 30-,

and 40-Inches. A sample of these results are presented in Figure 12-55 for the

hat-stif'f'ened concept reinforced with each of the candidate composite materials.

This data is for 20--inch spar spacing at point-design reg i on 40536 with the least-

weight metallic chordwise design, convex-beaded concept, included for comparison

purposes. These panel weight results indicated the following ranking for the candi-

date composite materials: (1) Graphite/polyimide, (2) Boron/polyimide, and

(3) Boron/aluminum. The Graphite/polyimide reinforced design is the least-weight

composite concept (3.21 lb/sq.ft.) indicating approximately 3-percent and 11-percent

weight savings over the Boron/polyimide and Boron/aluminum designs, respectively.

The metallic design, which weighs 2.94 lb/sq.ft., is approximately 8-percent lighter

than the minimum weight (Gr/PI) composite reinforced design.

Based on the results of the material trade-off study the Graphite/polyimide material

system was selected as the most promising composite material for application to the

surface panels.

Detail Panel Analysis - The Graphite/polyimide panel design was subjected to further
analysis to ascertain the panel dimensions (rib/spar spacing) affording the greatest

weight savings potential over the minimum-weight metallic design. Table 12-43

summarizes these results for point design regions 40536 and 41348 and includes the

panel cross-section dimensions, unit weights, and critical design conditions for

both upper and lower surface panels. The surface panel unit weight from this table

ar,e graphically displayed in Figure 12-56 with the corresponding data for the light-

est weight metallic concept (convex-beaded). With regard to this figure, the weight

of the composite reinforced panels are almost invariant with respect to spar

spacing e.g., only a six-percent weight increase is indicated when the spacing is
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TABLE 12--43. PANEL, GEOMETRY AND tir1EIGHT FOR THE GR/PI
COMPOSITE REINFORCEn PANEL CONCEPT

POINT DESIGN
REGION 40536 41348

SURFACE UPPER LOWER UPPER LOWER

SPAR SPACING
(IN.) 20 30	 1 40 20 30 40 20 30 40 20	 1 30 40

DIMENSIONS:

is 	(IN.) 0.052 0.052 0.052 0.042 0.042 0.042 0.056 0.054 0.054 0.045 0.045 0.045

bs	 (IN.) 3.200 3.300 3.100 3.100 2.900 2.500 3.300 3.300 3.100 3.200 3.100 3.300

b{	 (IN.) 0,400 0,400 0.400 0.400 0,400 0.400 0.400 0.400 0.400 0.400 0.400 0.400

bw	 (IN.) 0.640 0.880 0.850 0.600 0.600 1.080 0.650 0.850 0.600 0.600 0.600 1.040

bu	 (I N.) 1.500 1.550 1.450 1.450 1.350 1.150 1.550 1.550 1.450 1.500 1.450 1.550

tf	 (IN.) 0.018 0.018 0.015 0.015 0.015 0.017 0.019 0.018 0.015 0.015 0.015 0.018

tw	 (IN.) 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015

tc	 (IN.) 0.055 0.065 0.070 0.015 0.030 0.040 0.055 0.065 0.070 0.025 0.030 0.040

MASS DATA:

W	 (LB./FT.2) 1.806 1.886 1.958 1.402 1.469 1.536 1.831 1.903 1.978 1.491 1.515 1.539

CRITICAL
31 31 31 31 31 31 31 31 31 31 31 31

CONDITION

bc^ GrlPl I00 PLIES)

- -

bf
bw

tw t

to

I

f

^b6
t6
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increased from 20-inches to 40-inches at point design region 41348. Relative to

the weight of the metallic panel designs, the composite reinforced panels are

heavier for the 2a-inch spar spacing designs, show no definitive weight trend for

the 30-inch design, and indicate a decisive weight advantage for the 40-inch

design. A weight savings of approximately 8-percent and 16-percent are noted for

the 40-inch composite reinforced designs for regions 41348 and 40536, respectively.

Since the largest freight savings are indicated for the larger spar spacings, the

panel cross-section dimensions and unit weights for the 40-inch spar spacing are

shown in Table 12-44 for all six wing point design regions.

Composite Substructure

Similar to the philosophy adopted for the composite surface panel, the application

of composites to the substructure was restricted to reinforcing metallic designs.

The major weight components were reviewed and the component exhibiting the greatest

potential freight saving was selected for investigation; namely, the submerged spar

caps of Vne chordwrise wing arrangement e.g., the weight of the metallic spar ceps

for 20-inch spacing at region 40536 are approximately 60-percent of the total box

weight.

For the Task I composite substructure analysis, only metallic spar caps with Boron/

polyimide ' reinforeement were considered. Methods used to conduct the analysis and

the results of the analysis are presented in the following sect_.on.

Methods - For the analysis of the composite reinforced metallic spar caps, allowable

tension and compressive strength curves were defined. The basic material properties
of the 6A1V Titanium alloy and the Boron/polyimide reinforcement are presented in
Section 7, Table 7-3. The laminate (combined titanium and B/PI) tensile and com-

pression stress-strain curves are presented in Figure 12 -57 and 12-58 for various

proportions (by cross-sectional area) of unidirectional Boron/polyimide. A curing

thermal differential temperature of 300 OF was assumed.

Figure 12-59 presents the allowable laminate tensile stress developed from the

tensile stress-strain curves at the fatigue cutoff strength of the titanium alloy,

90,000 psi. For the allowable laminate compressive stress, the fiber failure point

12-137



TABLE I2--44. PANEL GEOMETRY AND 4TETGHT FOR THE GR/PI
COMPOSITE REINFORCED PANELS

Wco

POINT DESIGN
REGION 40322 40236 40536 41036 41316 41348

SURFACE UP LOW UP LOW UP LOW UP LOW UP LOW UP LOW

RIB SPACING
(IN.) 40 40 40 40 40 40 40 40 40 40 40 40

DIMENSIONS:

t5	 (IN.) 0.026 0.031 0.036 0.048 0.052 0.042 0.053 0.046 0.078 0.096 0.054 0.045

b$ 	(IN.) 1.500 1.900 2.300 2.900 3.100 2.500 3.400 3.600 3.600 4.800 3.100 3.300

bf	 (IN.) 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0,400

bw	 (IN.) 0.670 0.940 0.610 0.930 0.850 1.080 0.960 0.690 0.610 0.850 0.600 1.040

bc	 (IN.) 0,650 0.850 1.030 1.350 1.450 1.150 1.600 1.700 1.700 2.300 1.450 1.550

tf	 (IN.) 0.015 0.015 0.015 0.015 0.015 0.017 0.018 0.015 0.015 0.015 0.015 0.018

tW	(IN.) 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015

to	 (IN.) 0.035 0,045 0.050 0.070 0.070 0.040 0.065 0.035 0.045 0.045 0.070 0.040

MASS DATA:

W	 (LB./FT,2) 1.341 1.497 1.464 1.829 1.958 1.536 1.900 1.549 2.305 2.120 1.978 1.539

CRITICAL 20 31 31 31 31 31 31 31 31 31 31 31
CONDITION
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defines the maximum compressive stress for each proportion of Boron/polyimide.

These stress levels are the terminus point of the stress-strain curves shown in

Figure 12-58. These compressive allowables are superposed on the same figure used

to present the tension allowables, Figure 12-59.

Composite Spar Cap Analysis - A sample of stress analysis performed on the B/PT

reinforced spar caps at regions 40322, 40536, and 41348 are shown in Table 12-45.

The same loads were used as for the metallic spar caps of the chordwrise wind:

arrangement. Using these design loads (Table 12-11), the area of the , petal and

Boron/polyimide components were determined by using the allowable curves oia Fig-

ure 12-59. Using a minimum design area for the titanium substrate, the percentage

of B/PI (by cross-sectional area) was varied until the applied stress (fC,T = pULT/Am)

approached the allowable stress (FCIT ). The resulting margins of safety are

included on Table 12-45.

From the gross area proportions determined from tie stress analysis, care was

exercised in the distribution of this area into realistic dimensions to preclude

any local or general instability failures. Tables 12-46 and 12-47 contain the spar

,-cap  dimensions for the six wring point design regions. In addition to presenting

the area and dimensions, the equivalent surface panel unit weights are shown for

each design, and the equations used for these calculations are presented in the

footnotes of these tables.

The results of the composite reinforced spar cap analysis are summarized in

Table 12-48 for each of t:.e ,ring point design regions. Included on thin table

are the corresponding weights of the metallic design caps and the percentage

weight saving afforded by the application of composite reinforcement to the spar

caps. In general, large weight saving are indicated for the composite reinforced

designs in the highly loaded wing regions i.e., aft box and wing tip. A minimum

weight savin.-s of 52-percent is noted for the upper surface cap at point design

region 41036 and a maximun, weight sa ying of 69-percent for the upper surface cap

at region 41346. For the lightly loaded forward wring box region (40322),  no

appreciable weight saving over the all metal titanium design was noted for the

20-inch design caps; whereas, the composite reinforced designs for the 4C-inch spar

spacing offers a 28-percent and 44-percent weight saving fiver the corresponding

upper and lower surface caps of the titanium design.

ORro,	 12-142
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TABLE 12-45. COMPOSITE (B/PI) REINFORCED SPAR CAP ANALYSIS

N

w

APPLIED
LOAD( 1 ) AREA{2)

POINT
DESIGN

SPAR
SPACING fC,T(3) % FCT{4}COND. PULT

REGION SURFACE (1N.) NO. (KIPS) AM AC AT (KSI) COMPOSITE (KSI) M.S.(5)

40322 UPPER 7D 9 -27.4 0.21 - 0.21 -131.1 -- -131.0 0.00
40 9 -56.0 0.24 0.96 0.40 -140.0 40 -151.0 0.08

LOWER 20 9 27.4 0.30 - 0.30 90.0 -- 90.0 0.00
40 9 56.0 0.24 0.25 0.49 114.3 51 120.0 0.05

40536 UPPER 20 31 -307.4 0.45 1.20 1.65 -186.3 73 -193.0 0.04
40 31 -656.6 0.45 2.78 3.23 -203.3 86 -208.0 0.02

LOWER 20 31 307.4 0.45 1.96 2.41 +127.6 81 136.0 0.06
40 31 656.6 0.45 4.71 5.16 +127.2 91 141.0 0.11

41348 UPPER 20 31 -272.2 0.45 1.04 1.49 -182.7 70 -188.0 0.03
40 31 -632.0 0.45 2.60 3.05 -207.2 85 -207.0 0.00

LOWER 20 31 272.2 0.45 1,68 2.13 127.8 79 136.0 0.06
40 31 632.0 0.45 4.41 4.86 130.0 91 141.0 0.08

1.	 ULTIMATE LOADS PER TABLE 12-11.

2.	 CAP AREAS:

AM = METALLIC AREA

AC = COMPOSITE AREA

A T = TOTAL ARC

S.	 APPLIED STRESS (ULT.) f C.T = PULT./AT

4.	 ALLOWABLE STRESS PER FIGURE 12-59

5.	 MARGIN 0F SAFETY (M.S.) _ (i:C,T/fC,T) - 1



TABLE 12-46. GEOMETRY AND NIGHT OF THE COMPOSITE (R/PI)
REINFORCED SPAR CAPS

UNIT

POINT
SPAR CAF' DIMENSIONS AREAS WEIGHT

DESIGN SPACING h b H W t1 t2 AM AC w
REGION SURFACE (IN.) (IN.) (IN.) (1N.) (1N.) (IN.) (IN.) (INA (IN. 2) (LB./SQ.FT.)

40322 UPPER 20 --- -- -- -- -- -- -- -- --
i 40 0.08 0.50 1,00 1 1.50 0.09 0.11 0.24 0.16 0.18

LOWER 20 - - -- -- --- --- -- -- -_ --
40 0.12 0.50 1.00 1.50 0.09 0.11 0.24 0.25 0.20

40536 UPPER 20 0.30 1.00 1.20 2.50 0.12 0.13 0.45 1.20 1.14
40 G56 1.25 1.20 3.00 0.10 0.13 ..45 2,78 0.98

LOWER 20 0.49 1.00 1.20 2.50 0.12 0.13 0.45 1.96 1.53
40 0.67 1.75 1.20 4.00 0.08

1
0.13 0.45 4.71 1.48

41348 UPPER 20 0.26 1.00 1.20 2.50 0.12 0.13 0.45 1.04 1.06
40 0,52 1.25 1.20 3.00 0.10 0.13 0.45 2.G0 0.94

LOWER 20 0.42 1.00 1.20 2.50 0.12 0.13 0.45 1.68 1.3G
40 0.63 1.75 1.20 4.00 0.08 0.13 0.45 4.41 1.41

w = EQUIVALENT UNIT SURFACE PANEL
WEIGHT

14-;2

811`1 COMPOSITE

REINFORCEMENT

T1

= (P MAM + PCAC) x 144/a; LB./S Q. FT.)

WHERE

w h PM = METAL DENSITY (ti6A1-4V)
= 0.16 LB.IIN.

3

[4-b
W	 6AL•4V (Ann.) TITANIUM

AM = METAL AREA
= (H-t1)t2 + Wt1;1N.2

PC = COMPOSITE DENSITY (B/Pl)
= 0.072 LB./1N.3

AC = COMPOSITE AREA = b x h x 4,1N.2

a = SPAR SPACING
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TABLE 12-47. GEOMETRY AND WEIGHT OF THE COMPOSITE (B/PI)
REINFORCED SPAR CAPS

UNIT

POINT SPAR
SPAR CAP DIMENSIONS AREAS WEIGHT

h b H W t1 t2 AM AC wDESIGN SPACING
REGION SURFACE (IN.) (1N.) (IN.) (IN.) (IN .1 (IN.) (IN.) (IN.2) (IN. 2) (La/SQ. FT.)

40236 UPPER 20 0.35 1.00 1.20 2.50 0.12 0.13 0.45 1.40 1.24
40 0.64 1.25 1.20 3.00 0.10 0.13 0.45 3.20 1.07

LOWER 20 0.59 1.00 1.20 2.50 0.12 0.13 0.45 2.36 1.74
40. 0.79 1.75 1.20 4.00 0.08 0.13 0.45 5.53 1.70

41036 - UPPER 20 0.18 1.00 1.20 2.50 0.12 0.13 0.45 0.72 0.90
40 0.38 1.25 1.20 3.00 0.10 0.13 0.45 1.90 0.75

LOWER 20 0.29 'IAO 1.20 2.50 0.12 0.13 0.45 1.16 1.12
40 0.45 1.75 1.20 4.00 0.08 0.13 0.45 3.15 1.07

41316 UPPER 20 0.44 1.00 1.20 2.50 0.12 0.13 0.45 1.76 1.44
40 0.87 1.25 1.20 3.00 0.10 0.13 0.45 4.35 1.38

LOWER 20 0.74 1.00 1.20 2.50 0.12 0.13 0.45 2.96 2.05
40 1.07 1.75 1.20 4.00 0.08 0.13 0.45 7.49 2.20

w= EQUIVALENT UNIT SURFACE PANEL
WEIGHT

= (PMAM + P CAC) x 144/a; LB .ISQ .FT.
BjPI

--►^ 14-t2	 T
1

COMPOSITE
REINFORC5MENT WHERE:

h

PM = METAL DENSITY (Ti6A1-4V)
-- 0.16 LB./IN.

--t-----
-b

AM = METAL AREA
= (H - t1)t2 + Wt1 ; IN.2

6AL-4V (Ann.) TITANIUM PC = COMPOSITE DENSITY ON
= 0.072 LB.I1N.3

AC = COMPOSITE AREA = b x h x 4; IN.2

a = SPAR SPACING
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TABLE 12-48. WEIGHT COMPARISON OF THE METALLIC AND
COMPOSITE REINFORCED SPAR CAPS

SPAR CAP DESIGN

COMPOSITE AL-
REINFORCED METAL

SPAR CAP
POINT SPAR UNIT UNIT WEIGHT

DESIGN SPACING WEIGHT PERCENT WEIGHT SAVING
REGION SURFACE (IN.) (LB.1SQ. FT.) COMPOSITE (LB./SQ. FT.) (PERCENT)

40322 UPPER 20 - - 0.24 -
40 0.18 23 0.25 28

LOWER 20 - - 0.35 -
40 0.20 32 0.36 44

40236 UPPER 20 1.24 58 3.16 61
40 1.07 78 3.31 68

LOWER 20 1.74 70 4.75 63
40 1.70 84 4.97 66

40536 UPPER 20 1.14 54 2.71 58
40 0.98 74 2.89 66

LOWER 20 1.53 41 3.95 52
40 1.48 82 4.19 U5

41036 UPPER 20 0.90 41 1.87 52
40 0.75 66 2.08 64

LOWER 20 1.12 54 2.71 59

40 1.07 76 3,02 64

41316 UPPER 20 1.44 63 3.92 63
40 1.38 82 4.50 69

LOWER 20 2.05 75 5.73 64
40 2.20 88 6.55 66

41348 UPPER 20 1.06 51 2.41 56
40 0.94 72 2.78 66

LOWER 20 1.38 63 3.48 60

40 1.41 81 4.06 65
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Composite Wing Box

Wing box weights for the chordwise arrangement were investigated for the application

of composite to both panels (Gr/PI) and spar caps (B/Pi), and for spar caps only.

For both applications the remaining structural weights corresponded to the metal

designs as previously discussed for . the chordwise tiring arrangement.

A comparison of the box weights of the two composite arrangements with the least-

weight metallic arrangement is presented in Figure 12-60 for point design region

40535. Both composite designs, composite reinforced panels and spar caps and the

application of composites to the spar caps only, affc._3ed weight saving of approxi-

mately 35 percent over the all metallic designs for comparable spar spacings.

With respect to the composite reinforced arrangements, the arrangement which in-

corporated the composites reinforced spar caps was least Freight for the 20-inch spar

spacing; whereas, the arrangement which incorporated both reinforced panels and spars

afforded the least-weight design for the larger 40-inch spar spacing. Detail weight

statements for these two composite reinforced arrangements are shown in 'fables 12-49

and 12-50. The detail weights for the metallic components were as present in the

chordwise arrangement analysis; whereas, the detail component weights for the com-

posite reinforced structure were as presented in Tables 12--44 and 12 -48.

FUSELAGE STRUCTURAL ARRANGERMT - TASK I

The major fuselage structural components (panels ane frame:) were subjected to point

design analysis commensurate with the stages of design incorporated in the Task I

analytical design studies, these stages were:

Initial Screening -- A preliminary parametric frame spacing study to ascer-

tain the spacing associated with minimum weight design; then using this

spacing, a structural analysis was performed to screen the fuselage panel

candidates to determine the most promising concept or combination of concepts

for further evaluation.

• Detailed Concept Analysis - A detail analysis of the surviving concept(s)

from the Initial Screening analysis.
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TABLE 12-49. DETAIL WING WEIGHTS FOR.THE CHORDWISE ARRANGEMENT
WITH COMPOSITE REINFORCED SPAR CAPS

POINT DESIGN
REGION 40322 40236 40536 41036 41316 41348

SPAR SPAC (IN.) 20 20 20 20 20 20

PANELS

UPPER 0.825 1.032 1.609 1.452 2.571 1.632
LOWER 0.942 1.279 1.335 1.320 2.007 1.366

E (1.767) (2.311) (2.944) (2.772) (4.578) (2.998)

RIB WEBS

BULKHEAD 0.298 0.279 0.238 0.111 0.270 0.106
TRUSS 0.074 0.237 0.228 0.060 -- -

F (0.372) (0.516) (0.466) (0.171) (0,270) (0,106)

SPAR WEBS

BULKHEAD 0.336 0.361 0.270. 0.109 0.439 0.291
TRUSS 0.301 0.544 0.490 .0.359 - --

(0.637) (0.905) (0.760) (0.468) (0.439) (0.291)

Ri g CAPS

UPPER 0.058 0.070. 0.116 0.093 0.1.60 0.103
LOWER 0.065 0.083 0.086 0.087 0.126 0.074

(0.123) (0.153) (0.202) (0,180) (0.286). (0.177)

SPAR CAPS

UPPER 0.241 1.240 1.140 0.900 1.440 1.060
LOWER 0.350 1.740 1.530 1,120 2.050 1.380

(0.591) (2.980) (2.670) (2.020) (3.490) (2.440)

NON-OPTIMUM

MECH. FAST. 0.180 0.200 0.200 0.200 0.200 0.200
WEB INTERS. 0.120 0.120 0.120 0.120 0.120 0.120

(0,300) (0.320) (0.320) (0.320) (0.320) (0.320)

POINT L
DESIGN F'i 3.790 7.'180 7.360 5.930 9.380 6,330
MASS
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TABLE 12--50. DETAIL WING WEIGHTS FOR THE CHORDWISE ARRANGMMT WITH
COMPOSITE REINFORCED SHRPACE PANELS AND SPAR CAP

POINT DESIGN
REGION 40322 40236 40536 41036 41316 41348

SPAR SPAC (IN.) 40 40 40 40 40 40

PANELS

UPPER 1.341 1.464 1.958 1.900 2.305 1,978

LOWER 1.497 1.829 1.536 1.549 2.120 1.539

F (2.838) (3.293) (3.494) (3.449) (4.425) (3.517)

RIB WEBS

BULKHEAD 0.298 0.279 0.238 0.111 0.270 0.106

TRUSS 0.074 0.237 0.228 0.060 - -
F (0.372) (0,516) (0.466) (0.171) (0.270) (0.106)

SPAR WEBS

BULKHEAD 0.336 0.451 0.375 0.151 0.288 0.192

TRUSS 0.153 0.323 0.325 0.201 --- -
E (0.489) (0.774) (0.700) (0.352) (0.288) (0.192)

RIB CAPS

UPPER 0.097 0.099 0.130 0.120 0.167 0.129

LOWER 0.073 0.112 0.116 0.091 6.141 0.088

F (0.170) (0.211) (0.246) (0.211) (0.308) (0.217)

SPAR CAPS

UPPER 0.180 1.070 0.980 0.750 1.380 0.940

LOWER 0.200 1.700 1,480 1.070 2.200 1.410

F (0.380) (2.770) (2.460) (1.820) (3.580) (2.350)

NON-OPTIMUM

MECH. FAST. 0.160 0.180 0.180 0.180 0.180 0.180

WEB INTERS. 0.100 0.100 0.100 0.100 0.100 0.100

(0;260) (0.280) (0:280) (0,280) (0.280.) (0.280)

POINT
LDESIGN 2 4.510 7.840 7.650 6.280 9.150 6.660

MASS FT

i
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For these design studies, analyses were conducted on a point design basis at four

discrete fuselage locations. These locations are shown in Figure 12 -4 overlayed on

a planform view of the arrow-wing configuration and included fuselage stations 750,

2000, 2500., and 3000.

The structural arrangements investigated in the 'Task I studies included conventional

skin-stringer and frame designs. For the panels, zee-and hat-stiffened concepts

were investigated, with both open and closed designs considered for the hat-stiffened

concept. A floating frame with skin shear-ties was the only candidate considered

for frame design. These candidate concepts were previously shown in Figure 12-2.

Point design analyses were conducted for both the Initial Screening and Detailed

Concept Analyses on the aforementioned structural concepts at the selected fuselage

regions. The specific load/temperature environment, methods, and analysis are in-

cluded in the discussion for each stage of design.

As specified in the point design environment (Section 11), since the 'Task I struc-

tural model, contained a coarse fuselage model, all Task I internal loads were based

on existing loads from references 4 and 5. These external loads are presented in

Figures 12-61 and 12-62 where the maximum point design values for FS 2000, FS 2500,

and FS 3000 are:

FS	 BENDING MOMENT IN-LBS	 SHEAR (LB)

2000	 150 x 106	300 x 103

2500	 200 x 106	350 x 103

3000	 150 x 106	300 x 103

Internal loads were defined for each stage of the Ta.:k I analyses using the above

applied loads and theoretical bending (MC/1) and shear (VQ/I) distributions.

Frame Spacing Study

A study was conducted to define the frame spacing associated with minimum-weight

fuselage design. For this study, a simplified weight-strength analysis was con-

ducted on each of the three panel candidates to establish their weight trend as a

function of frame spacing. The single frame design was included in this analysis

and was invariant for all panel concepts.

R
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Panel Sizing - The panel inplane loads were determined using the applied bending
moments and shears as previously specified in Figures 12-61 and 12-6_'. Table 12-51

contains a summary of the internal forces resulting using; the theoretical TIC/1- and

VQ/T distributions. A maximum axial load of 17,600 Ib/in. occurs at the extreme

fibers of FS 2500 where the-corresponding maximum shear flog on the side panel is

2100 lb/in. Discrete panels at each cross-section were analyzed for failure under

combined, compression (tension) and shear loadings. The maximum normal strt>sses, (f )
n

were calculated using the principal stress equation:

ff
f -	 x ±	 x + f
n - 2	 2	 xy

where the axial stress (fx ) and shear stress (fxy ) represents the stress intensity

normal and parallel to ­'.e surface, respectively.

The panel margins of safety Caere determined by comparing the stresseo calculated by
the above equation with the appropriate allowable stress.

The allowable compressive stresses and corresponding panel. geometry Caere determined

by the theory defined by Fmero and Spunt in Reference 2, i.e., wide column allowa,bles.

For fuselage bending material., the ultimate design gross area stress in tension was

limited to 90,000 psi, see fuselage fatigue analysis, Section 13. For this tension

condition, the principal stresses were calculated using the optimum panel cross-

section geometry for compression design panels. An example of the results of this

analysis s,-e shown in fable 12--52. This table summarizes the results of the hat-

stiffened panel analysis at FS 2500, and includes the equivalent panel thicknesses

for frame spacings of 10-, 20-, and 30-inches. For the maximum tension loads, upper

location, a constant panel thickness of 0.196-inch is noted, whereas, for the rr.a.xi-

mum compression loaded fibers the. thicknesses range from 0.155- to 0.187-inch for

the three frame spacings investigated.

A comparison of the panel thicknesses for the candidate concepts at each of the

three point design region are shown in Table 12-53. The hat-stiffened concepts

(open and closed) have approximately the same weight which is lighter (approxi-

mately five-percent) than the zee-stiffened designs all point design regions.

i
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TABLE 12-51. FUSELAGE PANEL LOAD INTENSITIES,

FRAME SPACING STUDY - TASK T

FUSELAGE PANEL LOAD INTENSITIES (ULT.), LEAN
LOCATION

DIRECTION FS 2000 FS 2500 FS 3000

Nx 13200 17600 13200

UPPER PANEL
Nxy 170 255 170

Nx 0 0 0

SIDE PANEL
Nxy 1400 2100 1400

Nx -13200 -17600 -13200
LOWER PANEL

Nxy 170 255 170

FABLE 12-52. RESULTS OF FUSELAGE PANEL ANALYSTS AT FS 2500

EQUIVALENT PANEL THICK.
APPLIED LOADS (ULT.) (IN.21iN.)

POINT
DESIGN CIRCUM Nx Nxxyy L = 10 L = 20 L = 30
REGION LOCATION (LBAN.) (LB.IIN.) (IN.) (IN.) (IN.)

FS 2500 UPPER 17,600 255 .196 .196 .196
UP - 450 10,000 1,680 .129 .129 .129
N.A. 0 2,100 .051 .072 .089
LOW -- 450 -10,000 1,680 .092 .121 .150
LOWER -17.600 255 .155 .158 .187

AVERAGE T .112 .125 .140

LOCATION 5	 5
UPPER

_
AVERAGE t

_
=	 Cit	 T	 Ci

NA	 ---^--- L =	 FRAME SPACING

Nx = AXIAL LOAD

LOWER Nxy = SHEAR LOAD
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Frame Sizing - The sizing of the frames for this parametric study were based on the

theory derived by Shanley in Reference 6, which is premised on providing sufficient

frame stiffness to preventing general instability of the shell in bending. Shanley's

expression for the required frame stiffness is:

2
( EI ) = C

f M

This expression, relates the frame stiffness (ET) to the applied shell bending mo-

ment (M), shell diameter (D) and the frame spacing W. In addition, the r-com-

mended value of 1/16 x 10 3 was used for the frame stiffness coefficient (C f ). For

this parametric study a constant thickness channel section frame 3.0 inches deep

with constant width flanges of 1.0-inch was evaluated. For this cross section, a

simplified expression was determined which relates the frame area to the frame

moment of inertia, A = 0.741. Using the above expression for frame stiffness

with the assumed cross section relationship the required area, as a function of

frame spacing, was defined for each point design region. Table 12-54 presents the

results of this analysis conducted at FS 2500. For this point design region, the

equivalent panel thickness of the frame ranged from 0.10+-inch for a spacing of

10-inches to a 0.012-inch thickness for the 30-inch frame spacing.

A comparison of frame equivalent panel thickness at each point design region is

shown in Table 12-55. In general, the frame equivalent thicknesses for the 30-inch

frame spacing are approximately 10-percent of the thickness values for the 10--inch

spacing. The equivalent panel thickness for 20-inc':: frame spacing is .020-inch at

FS 2000 and F5 3000, and .026-inch at FS 2500.

Results - The results of the panel and frame analyses were combined to indicate the

fuselage weight trends at the three paint design regions investigated. Figures 12-63

and 12-64 present this data for FS 2500, and FS 2000 and 3000,. respectively. These

figures present the component weights (panel and frame) and total weight, expressed

as equivalent panel thickness, of the fuselage as a function of frame sparing.

Figure 12-63 indicates a minimum weight design of approximately .15-inch is attain-

able for the hat-stiffened design at frame spacing betwoen 20- to 25--inches. The

corresponding minimum weight design, hat-stiffened panel concept, at FS 2000 and

FS 3000 is approximately .12-inch for frame spacings between 20- and 30-inches.

ORIGINAL "PQD ^19	 1.2-155
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TABLE 12-53. WEIGHT COMPARISON OF THE CANDIDATE FUSELAGE PANEL CONCEPTS

POINT
DESI GN
REGION

PANEL
CONCEPT

EQUIVALENT THICKNESS, t

L=10 L=20 L-30

FS 2000 HAT-STIFF 0.083 0.099 0.112
ZEE-STIFF 0.087 0.103 0.117

FS 2500 NAT-STI FF 0.112 0.125 0.140
ZEE-STIFF 0.116 0.130 0.145

FS 3000 HAT-STIFF 0.083 0.099 0.112
ZEE-STIFF 0.087 0.103 0.117

TABLE 12-54. RESULTS OF FUSELAGE FRAME AYALYSIS AT FS 2500

POINT
DESIGN
REGION

FUSELAGE
BENDING
MOMENT

M, (IN-LBS)

SHELL
DIAMETER

D, (I W.)

FRAME
MODULUS

E, (PSI)

FRAME
STIFFNESS

PARAMETER
Cf

FRAME
SPACING

L, (IN.)

FRAME
AREA

A, (IN.)

EQUIV.
PANEL

THICKNESS
#, (M2/I19.)

FS 2500 200 X 106 134.0 16 X 106 1/16000 10 1.04 0.104
200 X 106 134.0 16 X 106 1/16000 15 0.69 0.046
200 X 106 134.0 16 X 10 6 1/16000 20 0.52 0.026
200 X 106 134.0 16 X 106 1/16000 25 0.42 0.017
200 X 106 134.0 16 X 10 6 1/16000 30 0.35 0.012

EQUATIONS:

(EI) = Cf MAL

FOR A/I = 0.74 (SEE ASSUMED CROSS SECTION)

A = 0.74 (EI)

TABLE 12-55, FUSELAGE FRAME WEIGHTS, TASK I FRAME SPACING S'T'UDY

POINT
DESIGN
REGION

BENDING
MOMENT
M, (IN-LS)

SHELL
DIAMETER

D, (IN.)

EQUIVALENT P. • r'cL THICKNESS (IN2/IN)

L=10 L=20 L=30

FS 2000 150 X 106 134.0 0.078 0.020 0.009
FS 2500 200 X106 134.0 0.104 0.026 0.012
FS 3000 150 X 106 134.0 0.078 0.020 .0.009
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The results of the frame spacing study indicated frame spacings between 20- and

25-inches offer minimum-weight design. When these results are reviewed in conjunc-

tion with the results of the wing study, the lower bound value (20.0-inches) appears

to be the most realistic spacing. Table 12-56 contains a weight comparison of the

zee-and hat-stiffened designs for 20-inch frame spacing. The minimum-weight design

hat-stiffened concept weighs 2.74 lb/sq.ft. at FS 2000 and FS 3000, and 3.48 lb/sq.ft.
at FS 2500. The corresponding values for the zee-stiffened concept are approxi-

mately 3-percent higher.

Fuselage Initial Screening;

To screen the fuselage panel concepts, a weight-strength analysis was conducted at

the four point design region usin tho results of the prior frame spacing study,

i.e., minimum-weight fuselage designs were indicated for 20-inch frame spacing.

Fuselage parcel load intensities, axial load and shear flow, were calculated using

the theoretical bending and shear distributions as previously discussed. For these

calculations, the design .loads (bending moment and shear) shown in Figures 12-61

and 12-62 were used in combination with the section properties defined in the frame

spacing study. The point design environment included only the inplane load resulting

from the fuselage bending and shear loads, internal pressure and temperatures were

not considered for this screening investigation. 'fable 12-57 presents a summary of

the fuselage panel load intensities at Fuselage Stations 2000, 2500, and 3000 for

the maximum compression (lower panel), maximum shear (side panel), and the maximum

tension (upper panel) panel locations.

For the stress analyses, the initial step was obtaining the gross area section prop-

erties and stresses, and the resulting load intensities. This data waz -djusted

until realistic stress levels were obtained. For example, when the tensile stress

exceeded the fatigue allowable (90,000 psi), the equivalent panel thickness was in-

creased until the stress level was equal to or lower than the allowable. These re-

sulting load intensities were used for the detail stress analysis. For this analysis,

the principal stress was calculated and compared to the applicable tension or com-

pression allowable stress.

For the tension condition, the principal. stress was compared to a gross area . fatigue

allowable stress of 90,000 psi. Similarly, the principal compressive stress was

12--158



FUSELAGE PANEL LOAD INTENSITIES (ULT.), LB/IN

FS 2000, FS 3000 FS 2500LOCATION
DIRECTION

v JZ. Z ^Lf- ...(-1_ --L

UPPER PANEL NX 11600 11700 11600 15700 14600 15690

NxY 412 417 413 629 597 629

SIDE PANEL NX 377 406 300 422 545 416

NXY 1361 1357 1330 2025 2000 1998

LOWER PANEL NX -11700 -11650 -12000 -'16100 -16800 15900

NxY 415 412 426 645 670 633

12-1.59

i	 !	 I	 I

TABLE 12-56. ;?EIGHT COMPARISON OF THE CANDIDATE FUSELAGE ARRANGEMENTS,
TASIC I FRAME SPACING STUDY

HAT-STIFF CONCEPTS ZEE-STIFF CONCEPT

FRAME TOTAL TOTAL FRAME TOTAL TOTALPOINT
DESIGN
REGION

SPACING
( IN.)

t
(IN.2/IN.)

W
(LB/SQ. FT)

SPACING
(I N.)

T
(IN.2/IN.)

W
(LB/SQ. FT)

FS 2000 20.0 0,119 2.74 20.0 0.123 2.83

FS 2500 20.0 0.151 3.48 20.0 0.156 3.59

FS 3000 20.0 0.119 2.74 20.0 0.123 2.83

l. 'f = EQUIVALENT PANEL THICKNESS;! * (FRAME) +t (PANEL)

2. W = EQUIVALENT PANEL WEIGHT; 23.04 X TOTAL t

TABLE 12-57. FUSELAGE PANEL LOAD INTENSITIES, TASK I INITIAL SCREENING



compared to the most critical instability failure mode, i.e., either local or general

instability. Figure 12-65 shows the allowable loads for a specific geometry hat-
stiffened panel which has a constant stiffener geometry and thickness, and a variable

skin thickness.

Table 12-58 contains a sample of the stress analysis conducted at the fuselage aft-
body region, FS 3000. This table presents the panel cross section geometry, the

applied and allowable stresses, and the margin of safety. The footnotes contain a

sketch showing the circumferential Location of the panels. A comparison of panel

geometry is shown in Table 12-59 for each of the panel concepts. This geometry and

freight comparison is made on the uppermost circumferential panels at each point

design region.

The average panel weights for each Fuselage region are shown in `fable 12-60. The

zee-stiffened concept is the lightest weight concept at FS 750 with an average weight

of 1.31 lb/sq.ft. For the higher loaded regions - FS 2000, 2500, and 3000, the re-

sults of the analysis provided the following ranking of the panel concepts: closed

hat-stiffened concept, open hat-stiffened concept and the zee-stiffened concept.

This ranking was invariant at each of the regions with unit weights of 2.80 lb/sq.ft.

and 3.18 lb/sq.ft. indicated for the least-weight closed hat--stiffened concept at

FS 2000 and 3000, and FS 2500, respectively.

The fuselage component weights, frames and panels, and total weights are presented

in Table 12-61 for each of candidate panel concepts. This data reflects the minimum-

weight frame spacing of 20-inches and the frame weights (Table 12-55) ascertained

in the previously described frame spacing study. Since the frame weights were in--

variant with each panel concept, the total weight (frame plus panel) reflects the

same weight trend and hence have the same ranking as previously described when com-

prxing the panel weights. The least weight fuselage concept, closed-hat stiffened

concept, has a total unit weight of 3.26, 3.7 8, and 3.26 lb/sq.ft. at FS 2000, 2500,

and 3000, respectively. The minimum total unit weight at F'S 750 is 1.56 lb/sq.ft.

for the zee-stiffened concept.

Fuselage Detailed Concept Analysis

The most promising structural concepts surviving the initial screening analysis

were subjected to a more detailed analysis to refine the weight of the major
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1

rn
ro

.TABLE 12-58. RESULTS OF THE FUSELAGE PANEL ANALYSTS AT FS 3000,
TASK I INITIAL SCREENING

APPLIED

POINT	
FUSELAGE PANEL DIMENSIONS	 STRESS	

ALLOWABLE
DESIGN	 PANEL	 bs	 is	 c	 f	 h	 tst	 t	 fX	 fxy	 STRESS
REGION	 CONCEPT	 LOCATION (IN.) 	 (IN.) (IN.)	 (IN.)	 (IN.)	 (IN.) (IN.2JIN.) (KSI)	 (KSI)	 F (KSI)	 M.S.

FS 3000 CLOSED HAT	 1	 6.00 .080 1.50	 .80	 1.25 .063	 .142	 81.7	 5.2	 90.0	 0.10
2	 6.00 .070 1.50	 .75	 1.25 .050	 .120	 71.9	 7.6	 90.0	 0.24
3	 6.00	 .063 1.50	 .75	 1.25	 .040	 .100	 43.1	 17.9	 90.0	 0.81
4	 6.00 .063 1.50	 .75	 1.25 .04{}	 .100	 3.8	 21.6	 90.0	 LARGE
5	 5.00	 .070 1.50	 .75	 1.25	 .050	 .120	 -35.5	 19.0	 -55.2	 0.26
6	 6.00	 .080 1.50	 .80	 1.25	 .063	 .142	 -64.3	 16.2	 -75.7	 0.11
7	 6.00 .090 1.50	 .90	 1.25	 .070	 .159	 -73.6	 4.6	 -76.0	 0.03

	

PANEL LOCATION	 PANEL CROSS SECTION	 MARGIN OF SAFETY (M.S.)
1

2	 bs M5 
f
F -1

	

I	 WHERE:
4

I	 is	 fn = PRINCIPALSTRESS
i

5

fx	 fX 2	
112

+ fxy22	 [(2}	 1
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TABLE 12-59. GEOMETRY COMPARISON OF THE CANDIDATE FUSELAGE PANEL CONCEPT'S
AT SELECTIVE LOCATIONS, TASK I INITIAL SCREENING

POINT FUSELAGE PANEL DIMENSION
bs is C f h tst tDE51GN PANEL

REGION LOCATION CONCEPT ( IN.) (IN.) (IN.) (IN.) ( IN.) (IN.) (IN.)

FS 2000 TOP ZEE STIFF 4 .00 .100 0.75 1 .00 1.25 0.90 .160
AND OPEN HAT 5.00 .080 1.25 .80 1.25 .063 .151

FS 3000 CLOSED HAT 6.00 .080 1.50 ..80 1.25 1	 .063 .142

FS 2500 TOP ZEE STIFF 4.00 .100 0.75 1 .00 1.25 .110 .190

OPEN HAT 5.00 .080 1.25 .80 1.25 .070 .159
CLOSED HAT 6.00 .080 1.50 .80 1.25 .080 .159.

is

t-L

	 y^it^`S

_^ Cf ^--	 tst
ZEE-STIFFENED	 HAT-STIFFENED (OPEN)	 HAT-STIFFENED (CLOSED)

CONCEPT	 CONCEPT	 CONCEPT

TABLE 12--6o. WEIGHT COMPARISON OF THE CANDIDATE FUSELAGE PANEL
CONCEPTS, TASK I INITIAL SCREENING

POINT AVERAGE PANEL. WEIGHT ( B/SQ. FT)
DESIGN _ -
REGION

J-1-

FS 750

- [-- 1 1 3;^

FS 2000 2.98

FS 2500 3.35 38

qm
3.52

FS 3000 2.98 2.80'^^ 3.01

NOTES:

1. CONSTANT FRAME SPACING = 20.0 INCHES

i

1p-i63

d



components prior to estimating the total fuselage weight, Section 15. Those least

weight concepts investigated were the zee-stiffened panel concept at FS 750 and the

closed hat-stiffened concept at FS 2000, 2500, and 3000. All designs incorporated

the floating frame design with skin shear clips and a minimum-weight frame spacing

of 20-inches. In review, the point design locations are presented in Figure 12 -4

and the minimum-weight.panel and frame concepts are displayed among the list of

concepts shoran in Figure 12-2.

As with the prior fuselage studies, the shear.and bending moment diagrams shown. in

Figures 12-61 and 12=62 were the basin for defining the point design environment.

The panel load intensities used for this analysis were the same theoretical distri-

butions as calculated for the Initial Screening, Table 12 -57.

Unlike the previous fuselage analysis, the cabin pressure and thermal environment

were included in the definition of the point design environments. Tables 12 -62

and 12-63 contain the detail data related to these components. A summary of the

point design environment which includes the inplane loads, normal loads (pressure),

and thermal components is presented in Table 12 -64 for the start-of-cruise design

condition.

The fuselage shell was analyzed for its most critical flight condition, the ultimate

load condition at start-of-cruise. For this analysis, the biaxial stress state

was defined at each point design region by superposing the airloaul and pressure

membrane stresses. The airload membrane forces (N and N xy ) are contained in the

point design environment specified in Table 12-64, and the pressure forces (Nx

and Ne) are defined in Table 12--65. Using these biaxial forces and the initial panel

geometry, the biaxial stress state and resulting ---rincipal stress are calculated and

compared to the applicable allowable stress (tension or compression). This process

is repeated until reasonable convergence is attained between the principal and allow-

able stresses, i.e., positive margin of safety. Table 12 -66 presents a summary of

the stress levels obtained on the most critical panels at each point design region.

In addition to the membrane analysis conducted on the shell, which is applicable for

the shell structure at a reasonable distance from the frame attachment, a disconti-

nuity analysis was conducted at the frame/shell interface to assess the total stress

state for both shell and frame. This analysis was performed using the theory pre-

sented by Flugge in Reference 7. For this analysis, the membrane stresses due to
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TABLE 12-61. WEIGHT COMPARISON OF THE CANDIDATE FUSELAGE ARRANGEi+hENTS,
TASK I INITIAL SCREENING

FUSELAGE UNIT WEIGHTS ( LB/SQ FT)
FRAME

POINT UNIT OPEN-HAT CLOSED-HAT ZEE-STIFF
DESIGN WEIGHT
REGION (LBISQ FT) PANEL TOTAL PANEL TOTAL PANEL TOTAL

FS 750 0.25 - - -- - 1.31 1.56
FS 2000 0.46 2.98 3.44 2.80 3.26 3.01 3.47
FS 2500 0.60 3.35 3.95 3.18 3.78 3.52 4.12
FS 3000 0.46 2.98 3.44 2.80 3.26 3.01 3,47

TABLE 12-62. FUSELAGE CABIN PRESSURES

LOAD CABIN(l)
CONDITION

W3,
X 10"	 LBS

MACH
NO.

FACTOR
K X 10-

3T.
 FT. PRESSURE

zn

ea 

s (pSi)

START-OF-CRUISE 660 2.7 2.5 460 61.5 17.55

TRANSONIC 690 1.2 2.5 372 38.2 17,55
DESCENT AT
M1.2

1. ULTIMATE p = 1.5 X LIMIT p

12-x.65



NOTES:

1. BASED ON HOT DAY (STD+8K)
4200 n.mi. FLIGHT PROFILE.

2. HAT-STIFFENED PANELS,
EXCEPT ZEE-STI FFENED
AT FS 750.

3. 'TOP', 'BOTTOM' AT
'SIDE' AT 900 OR ABOV E
WING.

TEMPERATURES IN F

PANEL SCHEMATIC

a

INSULATION

-^^//

T i STIFFENER CROWN

T^- -F-L-
To EXTERIOR SKIN

TABLE 12-63, TEMPERATURE AND GRADIENTS FOR ?FUSELAGE
SKIN PANELS -- TASIC T

FLIGHT CONDITION

START OF CRUISE MACH 1.2 DESCENTLOCATION

Ti-To TAVG Ti-'To TAVG

TOP

FS 750 -105 342 +111 114
2000 -175 295 +171 144

2500 -186 281 +181 156

3000 -174 292 +170 145

SIDE

FS 750 -106 332 +109 108

2000 -157 324 +156 129

2500 -171 311 +170 139

3000 -147 301 +142 122

BOTTOM

FS 750 -106 333 +109 109

3000 -177 278 +171 141
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TABLE 12-64. FUSELAGE POINT DESIGN ENVIRONMENT, DETAILED CONCEPT ANALYSTS

tii

START OF CRUISE; MACH NO. 2.7; n,=2.5

ITEM UNITS

FS 750 FS 2000 FS 2500 FS 3000

UPPER SIDE LOWER UPPER SIDE LOWER UPPER SIDE LOWER UPPER SIDE LOWER
PANEL PANEL PANEL PANEL PANEL PANEL PANEL PANEL PANEL PANEL PANEL PANEL

NX LB/IN 1580 200 -1580 11630 1230 — 15730 1230 — 11630 1230 -11670

Nxy LEAN 50 250 50 412 1360 - 629 2025 - 412 1360 415

INTERNAL PSI 17.55 17.55 17.55 17.55 17.55 - 17.55 17.55 - 17.55 17.55 17.55
PRESSURE

TAVG OF 342 332 333 295 324 - 281 311 - 292 301 278

AT OF -105 -106 -106 -175 -157 - -186 -171 - -174	 1 -147 •177



TABLE 12-65 • FUSMGE SHELF, DffZIBRANE FORCES DUE TO INTERNAL PRESSURIZATION

wro
Nrnm

POINT
DESIGN
REGION

R

in.

A

in. 
2

C

in.

UNIT
NX
(Iblin.)

PRE SURE)

p(PSI)

TOTAL
NX
(lb/in.)

HOOP
N8

(lb/in.)

750 72.0 11,761 411 28.6 17.55 502 1264
2000 68.0 10,787 394 27.4 17.55 480 1193
2500 68.0 10,787 394 27.4 17.55 480 1193
3000 61.0 11,690 383 30.5 17.55 535 1070

1.	 NOMENCLATURE 2. ULTIMATE DESIGN PRESSURE
R = SHELL RADIUS, in. FOR START-OF-CRUISE FLIGHT
A= ENCLOSED PRESSURIZED AREA, in. 2 CONDITION
C W SHELL CIRCUMFERENCE, in.
UNIT NX = A/C, lb/in. per psi 3. PRESSURIZED REGION

TOTAL NX = px(UNIT NX); Win.

N B = p x R	 r"- _	 -,..,r`1^1 
L"INOSE

GEAR
WHEEL
WELL

I	 }

FS 75-0'	 FS 2000

WING BOX

1	 i

FS 3000
FS 2500
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TABLE 12--66. SU18JARY OF FUSELAGE SHELL, STRESS LEVELS

w
w

PANEL
LOAD INTENSITY (ULT.), LB./IN. (1) GEOMETRY(2) STRESS LEVEL (ULT.), PSI(3)

AXIAL LOAD, Nx
POINT HOOP SHEAR

DESIGN PANEL AIR PRESS. TOTAL LOAD FLOW t is
REGION LOCATION LOAD LOAD LOAD. P.,a Nxy IN?/IN. IN. fx f9 fxy fn

FS 750 UPPER 1,580 502 2,082 1,264 50 0.056 0.036 37,200 35,100 1,400 37,900

SIDE 200 502 702 1,264 250 0.056 0.036 12,500 35,100 6,900 37,000

LOWER -1,580 502 -1,078 1,264 50 0.056 0.035 -19,300 35,100 1,400 35,100

FS 2000 UPPER 11,600 480 12,080 1,193 412 0.145 0.080 83,300 '14,900 5,200 83,700

SIDE 377 480 857 1,193 1,361 0.099 0.063 8,700 18,900 21,600 36,000

FS 2500 UPPER 15,700 480 16,180 1,193 629 0.184 0.100 87,900 11,900 6,300 88,400

SIDE 422 480 902 1,193 2,025 0.109 0.063 8,300 18,900 32,100 45,800

FS 3000 UPPER 11,600 335 12,135 1,070 412 0.145 0.080 83,700 13,400 5,200 84,100

SIDE 377 535 912 1,070 1,361 0.099 !1.063 9,200 17,000 21,600 35,000

LOWER -11,700 1	 535 -11,165 1,070 415 0.177 0.090	 1 -63,190 1	 11,900 4,600 -63,400

1.	 LOAD INTENSITIES PER POINT [DESIGN ENVIRONMENT 4.	 SIGN CONVENTION:
AND PRESSURE PONCE TABLES POSITIVE = TENSION

2.	 PANEL GEOMETRY: NEGATIVE = COMPRESSION

T= EQUIVALENT PANEL THICKNESS

is = SKIN THICKNESS

3.	 STRESS LEVEL:

fx = Nx(TOTALNt

ff) = Ng Its

fxy = Nxylts

Lx	 rf fx - fe-+ f 112
fn =	 2	 ±

 L
4	 2

2	 2]
fXy
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the airload and internal pressure are superposed upon the discontinuity stresses

(bending and shear stresses) caused by the .pressure and thermal gradients between

the shell and frame. Typical results of this analysis are shown in Figures 12-66

and 12-67. These figares display the shell hoop stresses and the stringer bending

moment caused by the pressure and thermal environment during the operating condi-

tion (mid-cruise, limit one--g condition). The hoop stresses shown in Figure 12-66

are compared to the operating fatigue allowable of 25,000 psi.

As a result of the preceding analyses, the fuselage shell and frames were sized for

their critical failure mode at each point design region. Table 12-67 shows the

fuselage shell geometry at the most critical circumferential locations for each

region; whereas, Table 12-68 displays the circumferential variation in the panel

geometry at one point design region, FS 2500. Similarly, the frame equivalent thick-

nesses are shown in Table 12-69 and includes the component (frame and shear tie)

and total thicknesses requirements at specific circumferential locations, and the

average equivalent panel thickness for the frame at each point design region.

In conclusion, Table 12-70 summarizes the component thicknesses, total equivalent

thickness for each point design region, and the corresponding unit weights. A maxi--

mum weight of 3.53 lb/sq.ft. is indicated for the maximum fuselage bending region

at FS 2500; whereas, the corresponding panel at the lightly loaded forebody region

(FS 750) has a weight that is approximately 45-percent lighter, i.e., 1.54 Ib/sq.ft.

Unit weights of 3.27 lb/sq.ft.. and 3.43 lb/sq.ft. are indicated for FS 2000 and

FS 3000, respectively. These unit weights are used as the basis for predicting the

total weight of the fuselage. The Mass Section of this report (Section 15) describes

the methods and results obtained Pram extrapolating these weights to total fuselage

weight.

CHORDWISE STIFFENED WING ARRANGEMENT - TASK IIA

Modification of the Task I Baseline airplane was required prior to commencing the

Task TI detailed engineering studies. These modifications encompassed shortening

the fuselage forebody; changing the sweep-angle on the wing tip leading edge and

relocating some of the fuel tanks. A more detailed description of these changes

are presented in Section 2.

GRXRIl L PAGE IS
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Figure 12-66. Shelf. Hoop Stresses due to Discontinuity Forces,
Point Design Region FS 750

12--171



200

160

120

c

1 Y

80

LU
F

O

v

40
WM

WMM

LU/^
C9Z

VI

.4Q

TOTAL
BENDING
MOMENT

OPERATING COND. (LIMIT)
MID-CRUISE, nz 1-g.

PRESSURE

THERMAL

TOTAL

-80
0	 .3	 ,4	 .5

FRAME	 x1R
	

MID-BAY

Figure 12-67. Stringer Bending Moments due to Discontinuity
Forces, Point Design Region FS 750

12--1.72
a

y



FABLE 12--67. COMPARISON OF FUSELAGE PANEL GEOMETRY -
DETA= CONCEPT ANALYSTS

N
J

POINT FUSELAGE PANEL DIMENSION
DESIGN PANEL LOCATION

bs is C f h tst t
REGION CONCEPT (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.)

FS 750 ZEE- TOP 4.0 .036 .55 .75 1.00 .036 :056
STIFFENED SIDE 4.0 .036 .55 .75 1.00 :036 .056

BOTTOM 4.0 .036 .55 .75 1.00 .036 .056

FS 2000 HAT TOP 6.0 .080 1.5 .80 1.25 .070 .145
STIFFENED SIDE 6.0 .063 1.5 .75 1.25 .040 .099

FS 2500 HAT- TOP 6.0 .100 1.5 .80 1.25 .090 .184
STIFFENED SIDE 6.0 .063 1.5 .75 1.25 .050 .109

FS 3000 HAT TOP 6.0 .080 1.5 .80 1.25 .070 .145
STIFFENED SIDE 6.0 .063 1.5 .75 1.25 .040 .099

BOTTOM 6.0 .090 1.5 .90 1.25 .090 .177

f 	 I}s	 -^^ bs ^- C	 #

rl h
is  is

^

T

f
C-----^-

► tst
ZEE-STIFFENED CONCEPT HAT-STIFFENED CONCEPT



I FUSELAGE PANEL DIMENSIONS
POINT PANEL. CIRCUM.

5s ts. C f h tst t

DESIGN
DESIGN
REGION LOCATION

(IN) (IN) (IN) (IN) {IN) (IN) (IN)

.FS 2500 HAT- 1	 (TOP) 6.0 .100 1.50 .80 1.25 .090 0.184

STIFFENED
2 6.0 .070 1.50 .75 1.25 .070 0.134

3 6.0 .063 1.50. .75 1.25 .063 0.121

4	 (SIDE) 6.0 .063 1.50 .75 1.25 .050 0.109

5 6.0 1070 1.50 .75 1.26 .063 0.128

CIRCUMFERENTIAL LOCATIONS: PANEL DIMENSIONS:
1

2 bs C 

4
ts

tst

M	 f

TABLE 12-68. FUSELAGE PANEL GEOMETRY AT FS 2500,
DETAILED CONCEPT ANALYSIS
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TABLE 2.2-69. FUSELAGE FRAME WEIGHTS, DETAILED CONCEPT ANALYSIS

POINT
DESIGN
REGION

CIRCUM.
LOCATION

FRAME
SPACING

(IN.)

EQUIVALENT PANEL THICKNESS an,

SHEAR
FRAME	 TIE	 TOTAL

IN.211N.

AVERAGE

FS 750 ALL 20.0 .007 .004 .011 (.011)
FS 2000 UPPER 20.0 .018 .006 •024 (.023)

SIDE 20.0 .016 .006 .022

FS 2500 UPPER 20.0 .016 .006 .022 (.022)
SIDE 20.0 .016 .006 .022

FS 3000 UPPER 20.0 .018 .006 .024
SIDE 20.0 .015 .006 .021 (.023)
LOWER 20.0 .019 .007 .026

t(TOTAL)	 t(FRAME fi t(SHEAR TIE)

FRAME GEOMETRY

l

^l
SWEAR

TIE

.75

TABLE I2-70. FUSELAGE WEIGHT SUMMARY, DETAILED CONCEPT ANALYSTS

POINT
DESIGN PANEL

EQUIV. PANEL THICKNESS (IN . 2/1N.? UNIT
WEIGHT

WFRAME PANEL TOTAL
REGION CONCEPT t t T ( LB/SQ. FT)

FS 750 ZEE-STIFF. 0.011 0.056 0.067 1.54

FS 2000 HAT-STIFF. 0.023 0.119 0.142 3.27

FS 2500 HAT-STIFF. 0.022 0.131 0.153 3.53

FS 3000 HAT-STIFF. 0.023 0.126 0.149 3.43



To assess the results of these modifications on structural weight, an investigation

was conducted using the Task I chordwise finite-element 2-D model and included:

• Obtaining the structural influence coefficients (SIC) with the revised fuse-

lage and wing tip. The wing and fuselage flexibilities (section properties)

were held constant for this solution.

• Modifying the net aeroelastic loads for a critical Task I load condition to

reflect the changes in the aerodynamic and inertia load components.

e Conducting a design loads run to obtain new internal loads using the stiff-

ness of the modified structural, model and the revised net aeroelastic loads.

• Performing a weight-strength analysis on the major wing structural components

at selective locations using the revised load intensities and comparing

these results with those of the Task I analysis.

Point Design Environment

As the basis for the structural analysis the point design environment was defined

for a critical flight condition at several wing point design regions. The regions

selected for analysis were the forward wing box region 40322 and the aft wing box

region 40535. The flight condition selected was the flutter critical Mach 0.9 sub-

sohic flight condition and included the following load factors; positive 1.0-g, a

positive 2.5-9 steady-state maneuver, a positive 2.5-9 transient maneuver, and a

negative 1.0-g flight attitude.

Using this Load condition, the in-plane loads were determined by performing a

NASTRAN static solution with the modified 2-D structural model. A summary of these

wing surface load intensities results are presented in Table 12-71 along with the

results of the Task I analysis for comparison purposes.

The point design environment at regions 40322 and 40536 were defined using the new

surface panel load intensities resulting from the NASTRAN solution, with the same

pressure and temperature components derived during the Task I.analysis. A compar -.

son of the Tas4 I and Task IIA point design environment at regions 40322 and 40536

are shown i Tables 12-72 and 12-73. ^`he critical Task I and Tac k -rTa desl¢n

conditions are presented in the footnotes of these tables.
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TABLE 12=71. COMPARISON OF TASK I AND TASK TIA WING LOAD
INTENSITIES, MACH 0.90 LOAD CONDITION

ro

*LOAD INTENSITY (ULTIMATE), LBSIIN.

PANEL IDENTIFICATION TASK f I€IA

REGION NUMBER DIRECTION CHORDWISE SPANWISE MONOCOCzIJE Gl^?RRfISO

WING- 40322 Nx —	 10 — 148 — 199 8
FORWARD Ny —1145 —1155 —595 1120

Nxy 201 275 211 (43

40236 Nx 188 122 —925 377...
Ny 10846 —12181 —8102 --'11A7
Nxy 418 1181 858

WING- 40536 Nx 85 — 132 —1483 47
AFT BOX Ny 10680 —12318 —8763 »^1207

Nxy 1118 2288 2521 Id09

41036 Nx — 274 —	 36 —1094 567
Ny —6570 —6876 —4544 70413
Nxy 1369 2027 19495$:'

WING- 41316 Nx 701 298 — 932a...
TIP Ny —11655 --12546 —8268 ^2IAI

Nxy 3492 3240 2528 3773

41348 Nx --	 719 — 574 —605 10.
Ny —6293 —5886 —4731 fi402
Nxy 1535 1797 21329[3

*LOAD CONDITIONS:
TASK I CONDITION 12: MACH 0 .90, nz = 2.5,W=700,000 LB, Ve = 325 KEAS
TASK I IA CONDITION 9: MACH 0. 90, nz = 2 .5, W = 700,000 LB, Ve - 325 KEAS



Ta' LE 12-72. TASK IIA WING POINT DESIGN ENVIRONMENT,
MACH 0.90 LOAD C0ITDITIONS

SYMMETRICAL FLIGHT. STEADY MANEUVER AT MACH 0.90 (V,2)

ULTIMATE.
DESIGN
LOADS ITEM UNITS

POINT DESIGN REGION

40322 40536

UPPER
SURFACE

LOWER
SURFACE

UPPER
SURFACE

LOWER
SURFACE

AIR LOADS
Nx LB/IN 4207 1207 .471 471
Ny LBIIN 4081 1081 41207 11207
Nxy LB/IN 176 176 1409 1409

THERMAL
STRAIN

Ex INIIN - - - -
Ey INIIN -- - -
Exy INIIN - - -

PRESSURE
AERO PSI -1.40 =0.30 -1.35 40.49
FUEL PSI -6.74 -8.96 -5.63 7.91
NET PSI -8.14 -9.26 .6.98 -8.40

TEMPERATURE TAV °F 50 53 52 54

AT OF 132 38 29 32

NOTES: (1)	 A 1.25 FACTOR HAS BEEN APPLIED TO "HE THERMAL STRAIN WHEN THE SIGN IS SAME AS THE AIRLOAD
SIGN, OTHERWISE NO FACTOR APPLIED.

(2)	 PRESSURE SIGN CONVENTION: NEGATIVE=SUCTION
(3)	 DESIGN CONDITIONS: REGION 40322 - COND. 10, REGION 40536 - COND. 9

TALE 12-73. TASK I WING. POM DESIGN ENVIRONMENT,
MACH 0.90 LOAD CONDITION

SYMMETRICAL FLIGHT, STEADY MANEUVER AT MACH 0.9 (V„)

ULTIMATE
DESIGN
LOADS ITEM UNITS

POINT DESIGN REGION

40322 40536

UPPER
SURFACE

LOWER
SURFACE

UPPER
SURFACE

LOWER
SURFACE

IAR LOADS
Nx LBIIN •531 531 85 -271

Ny LB/IN -1115 1115 10680 9777

Nxy LB/IN -236 236 7718 778

THERMALSTRAIN
STRAIN

E x INIIN - - - -
E Y IN/IN -
Exy INIIN - - - -

PRESSURE
AERO PSI -1.40 -0.30 -1.35 -0.49

FUEL PSI -6.74 -8.96 -5.63 -7.97

NET PSI -8.14 -9.26 -6.98 -8.40

TEMPERATURE
TAV of 50 53 52 54

AT
--- OF 132 38 29 32

NOTES: (1)	 A 1.25 FACTOR HAS BEEN APPLIED TO THE THERMAL STRAIN WHEN THE SIGN IS SAME AS THE AIRLOADS
SIGN, OTHERWISE NO FACTOR APPLIED.

(2)	 PRESSURE SIGN . CONVENTION , NEGATIVE=SUCTION
(3)	 DESIGN CONDi T iONS:. REGION 40322 AND LOWER SURFACE AT 40536 - COND. 13, UPPER SURFACE AT

REGION 40533- COND. 12

POOP, QUALrkZ	 12--178
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Weight/Strength Analysis

To assess the results cf the airplane configuration modification on structural weight,

the major weight components of the chordwise wing arrangement were analyzed for the

modified Task IIA point design environments. For comparison purposes, the same

components were reanalyzed using the Task I load/temperature environment correspond-

ing to the si n'le flight condition investigated for Task IIA. These components in-
cluded the upper and sower surface panels (circular are convex beaded concept) ant.

spar caps. A comparison of the Task I and Task IIA panel results at regions 40322

and 40536 are shown in Table 12-74 and includes the panel cross-sectional dimensions

and weight data for the 20-inch spar spacing designs. In general for these two

regions, the Task. IIA panel designs are heavier than the corresponding Task I de-

signs with a maximum weight increase of 23-percent noted for the Task IIA upper

surface panel at region 40322. The exception being the Task IIA lower surface panel

at region 40322 which is approximately 3-percent lighter than the Task T design.

A comparison of the panel weight/strength analysis results are presented in

Table 12--75 and includes the unit weights for the surface panels and the panel

relative weight factor, i.e., weight of the Task IIA panel divided by the weight

of the Task I panel.

For the chordwise wing arrangement the spar caps are major weight components, these

spar caps are uniaxially loaded by the spanwise bending loads; . hence, the cap weights

are directly proportional to the spanwise surface load intensities. Table 1.2-76 con-

tains a comparison of the spanwise load intensities (Ny ) for the two point design

regions and the relative weight factor of the Task IIA spar caps.

The results of this analysis reflect the strength-sizing of the major chordwise wing

components for a flutter critical flight, condition (Mach-.9 symmetric flight condition).

Since the resulting panel and spar cap weights do not necessarily reflect the most

critical static strength condition, the relative weight of the components were used

for comparing unit box weights.

A comparison of the Task I and Task IIA unit box weights for regions 40322 and +0536

are shown in Table 12-77. The Task I values reflect the results of the previously

conducted analysis on the chordwise wing arrangement (sized for the most critical

flight condition); whereas, the Task IIA values reflect the flask I weights multi--

plied by the relative weight factors presented in Tables 12-75 and 12-76. With
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POINT DESIGN
REGION 40322 40536

TASK 1 IIA l IIA

SURFACE UPPER LOWER UPPER LOWER UPPER LOWER UPPER LOWER

SPAR SPACING 20 20 20 20 20 20 20 20(IN.)

DIMENSIONS:

t^	 (IN.) .015 .013 .018 .012 .018 .017 .020 019

to	 (IN.) .015 .020 .019 .020 .020 .020 .024 .020

RR	 (IN.) .900 .800 1.000 1.000 .800 .800 .800 .700

8	 (DEG.) 87.000 87.000 87.000 87.000 87.000 87.000 87.000 87.000

b	 (IN.) .750 .750 .750 .750 .750 .750 .750 .750

MASS DATA:

(IN.) .036 .038 .044 .037 .045 .043 .052 .046.

w	 (LB. f FT 2) .825 .875 1.018 .851 1.031 1.000 1.187 1.055

CRITICAL
CONDITION

13 13 10 10 12 13 9 9

PANEL CONCEPT:	 c

CIRCULAR ARC -- CONVEX
BEADED SKIN (hlc = 0.10)

to	 8^t^

b/2

Ni
Y
co0

E
E

TABLE 12-74. COMPARISON OF TASK I AND TASK IIA WING
PANEL GEOMETRY AND WEIGHT



TABLE 12--75• COMPARISON OF TASK I AND TASK IIA
SURFACE PANEL WEIGHTS

TASK NO. I IIA

RELATIVEPOINT
DESIGN PANEL WEIGHT WEIGHT
REGION SURFACE (LB/SQ. FT) FACTOR

40322 UPPER 0.825 1.018 1.23

LOWER 0.875 0.851 0.97

40536 UPPER 1.031 1.187 1.15

LOWER 1.000 1.055 1.06

TABLE 12-76. COMPARISON OF TASK I AND TASK IIA
SPAR CAP LOADS

TASK NO. I IIA

RELATIVEPOINT
DESIGN SPANWISE LOAD WEIGHT
REGION SURFACE INTENSITY (LB/IN.) FACTOR

40322 UPPER -1,115 -1,081 0.97

LOWER 1,115 1,081 0.97

40536 UPPER -10,680 -11,207 1.05

LOWER 10,680 11,207 1.05
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TABLE 12--77. COMPARISON OF THE DETAIL WING WEIGHTS FOR THE TASK I KWD
TASK IIA CHORDWISE STI FF ENED WING ARRANGEMENTS

POINT DESIGN
REGION 40322 40536

TASK NO. I IIA I IIA
RELATIVE RELATIVE

SPAR SPAC (IN.) 20 20 WEIGHT 20 20 WEIGHT

PANELS

UPPER 0.825 1.015 1.23 1.609 1.850 1.15

LOWER 0.942 0.914 0.97 1.335 1.415 1.06

E (1.767) (1.929) (1.09) (2.944) (3.265) (1111)

RIB WEBS

BULKHEAD 0.298 0.298 1.00 0.238 0.238 1.00

TRUSS 0.074 0.074 1.00 0.228 0.228 1.00

(0.372) (0.372) (1.00) (0.466) (0.466) (1.00)

SPAR WEBS

BULKHEAD 0.336 0.336 1.00 0.270 0.270 1.00

TRUSS 0.301 0.301 1.00 0.490 0.490 1.00

F (0.637) (0.637) (1.00) (0.760) (0.760) (1.00)

RIB CAPS

UPPER 0.058 0.058 1.00 0.116 0.116 1.00

LOWER 0.065 0.065 1.00 0.086 0.086 1.00

F, (0.123) (1.00) (0.202) (0.203) (1.00)

SPAR CAPS

UPPER 0.241 0.234 0.97 2.710 2.846 1.05

LOWER 0.350 0.340 0.97 3.950 4.148 1.05

F (0.591) (0.574) (0.97) (6.660) (6.994) (1.05)

NON-OPTIMUM

MECH. FAST. 0.180 0.180 1.00 0.200 0.200 1.00

WEB INTERS. 0.120 0.120 1.00 0.120 0.120 1.00

(0.300) (0.300) (1.00) (0.320) (0.320) (1.00)

POINT
DESIGN PTZ3 .790 3.935 1.04 11.352 12.007 1.06
MASS
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respect to Table 12-77, the detail weight statements includes the surface panels,

rib webs, spar webs, rib caps, spar caps, and the non-optimum weights. Only the

weights of the Task IIA panels and spar caps were altered, the remaining components

were taken directly From the Task T analysis. In addition to the components weight,

the relative weight factors are shown. Region 40322 indicates the 'Task ITA config-

uration has heavier panels (approximately 9-percent), lighter spar caps (approxi-
mately 3-percent), and a unit weight that is 4-percent heavier. For region 40536,

the Task TTA panels are 11 percent heavier, spar caps are 5-percent heavier, and

the emit weight is 6 percent . heavier.

WING STRUCTURAL ARRANGEMENT - TASK IIB

The wing structural arrangement selected for evaluation in the Task II Detailed

Engineering Study was comprised of the most promising structural-material concepts

surviving the Task I Analytical Design Studies. In review, the Task I`analysis

resulted in the selection of the least-weight arrangements from each basic type of

wing load-carrying structure (chordwise, spanwise, and monocaque). Those five

arrangements selected for the final Task I detail evaluation with respect to weight,

cost, performance, and risk included:

a The two chordwise arrangements corresponding to the least weight metallic

and composite reinforced designs. Both designs incorporated the least-

weight metallic panel_ concept (circular-arc convex-beaded design). For

the substructure the metallic design employs all titanium alloy spar caps,

and the composite reinforced design employs a titanium alloy spar cap

reinforced with unidirectional Boron/polyimide (B/PI).

a The least-weight spanwise arrangement, metallic hat-stiffened skin panels

with representative substructure,

The two monocoque arrange.Yients, which are characterized by their respective

panel-to-substructure attachment design, tubular insert-welded and

densified core - mechanically fastened. Bot?, concepts incorporated alumi-

num brazed honeycomb-core sandwich panels.

The complete results of this detail evaluation are described in the section entitled

Concept Evaluation and Selection, Section 17• For summary.purpo:ses,.the results of

the weight evaluation are repeated in Table 12-78 which lists the variable and fixed

weights for each arrangement. furthermore, the variable weight is defined for the
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TABLE 12.-78, WING WEIGHTS FOR STRUCTURAL ARRANGEMENTS

i
CD

STRUCTI)RAL ARRANGEMENT

CHORDWISE . SPANWISE MONOCOQUE MONOCOQUE CHORDWISE
WING
WEIGHT AND
SEGMENT

WELD BOND WELD BOND ALUM BRAZED ALUM BRAZED COMP. REINF.

Î

MECH. FASTEN. r-4ECH. FASTEN. MECH. FASTEN. WELDED SPARS ONLY

VARIABLE WEIGHT 64,658 63,482 50,978 53,794 48,082

• FWD. BOX (22,090) (25,364) (21,982) (24,057) (20,580)

• AFT BOX (29,016) (25,242) (19,692) (20,153) (17,384)

• TIP (13,,552) (12,876) (9,304) (9;584) (10,118)

FIXED WEIGHT 41,352 41,352 41,352 41,352 41,352

2 TOTAL- LB 106,010 104,834 92,330. 95,146 89,434



major wing areas, i.e., forward box, aft box, and wing tip. From a review of these

variable weights, it can be seen that a structural arrangement composed of the

lowest-weight designs for each area would afford the minimum-weigr c overall. design.

Based on this premise, the structural approach selected for further evaluation in

the Task II Detail Engineering Studies was a hybrid structural, arrangement consist-

ing of a combination of the chordwise-stiffened and monocoque arrangements as shown

in Figure 12-68.

Point Design Environment

Similar to the Task I analyses, the hybrid wing structural arrangement was subjected

to point design analysis at discrete wing Locations (regions).. These wing locations,

point design regions, are shown in Figure 12-3. The structural, definition at each

of these regions is in agreement with the combination of structural concepts

included in the overall wing structural arrangement, with the load/temperature

environment based on the internal load resulting from the NASTRAN static solution

using a 3--D finite-element model.

These point design environments were defined for the hybrid wing structural, arrange-

:.ient for both the strength design and strength/stiffness design phases. Examples

of these environments are contained in the following text within the discussion for

each specific design phase.

Strength Design

The strength design airframe, as characterized by the element properties contained

in the finite-element structural model, was developed for the hybrid wing structural

arrangement using the results of the Task I analysis. More specifically, the section

properties resulting for the Task . I strength analysis conducted on the selected

chordwise and monocoque concepts were combined to define the total wing stiffness

for the finite element model.

Using this strength design model, an internal load solution was obtained using the

static aeroelastic loads. These internal loads, in combination with the pressure

and temperature components defined in Task 1, were used to define the specific point

design environments for the structural analysis. Table 12--79 contains the wing

point design environment. for the symmetrical flight conditions at Mach 0.90 and

Mach 1.25.
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FABLE 12-79. WING POINT DrSIGN 21VIROMENT, STRENGTH DESIGN -
`IASK IIB, MACH 0.90 (VC ) AND 1.25 (vs ) LOAD CONDITIONS

CONDITIONn WEIGHT-700,000 L0..; MACH 190;h- 30,600FT.;V-„ 325 keel

ULTIMATE
RESIGN
LOADS

-
1784.

_
UNITS

POINT DESIGN REG10N

.40236 4Q536 41036 40322 41316 413 46

UPPER
SURFACE

LOG.ZA
SURFACE

UPPER
SURFACE

LOWER
SURFACE

UPPER
SURFACE

LOWER
SURFACE

UPPER
SURFACE

LOWER
SURFACE

UPPER
SURFACE

LOWER
SURFACE

UPPER
SUM CE

LOWER
SURFACE

N. L1311N +	 179 750 -	 458 -	 592 -1,052 606 - 122 +	 649 -1,226 -1,ORU -	 877 +	 989
AIR LOADS NY L911N -13,568 -12,680 12,871 -3,522 -3,074 -11109	 - +1.350 -9,504 -8,546 -5,148 +4,867

Nxy LB11N -	 2 32 -1,068 + 1,256 +1,593 +1,542 +	 112 +	 233 +3,696 -3,062 +2,290 -2,414
Ex INIIN 0 0 0 0 0 0 O 0 0 0THERMAL

STRAIN Ey INIIN

-12,71

.,9,9

0 D A 0 0 0 0 0 0 0 0
INIIN 0 0 0 0 0 0 0 0 0 0 0

AFRO PSI - -	 0.44 -	 1.35 -	 0.49 -	 2.10 -	 0.36 -	 1.40 a-.30 -	 6.75 -	 3.76 -	 3.68 0.30
PRESSURE FUEL PSI -	 5.01- -	 9.24 -	 4.50 -	 4.50 0 0 -	 4.91 8.70 1	 0 0 0 0

NET PSI 6.00 -	 9,08 -	 5.85 -	 4.99 -	 2.10 -	 0.36 -	 6.31 -	 9.00 -	 6.75 -	 3.76 -	 3.68 -	 0.30

TEMPERATURE TAV OF 47 53 45 45 48 41 47 52 48 41 44 33
AT or «	 37 +	 40 +	 30 +	 36 +	 27 +	 15 +	 37 +	 41 +	 27 +	 15 +	 20 +	 8

CONDITION 12	 WEIGHT-590,WQLB.; MACK 1,29;h-4$000FT.;V.-2SUkeas

ULTIMATE
DESIGN
LOADS

ITEM UNITS

-

POINT DESIGN REGION.

40236 40536 410A 40722 41316 4134

UPPER
SURFACE

LOWER
SURFACE

UPPER
SURFACE

LOWER
SURFACE

UPPER
SURFACE

- LOWER
SURFACE

DPP:"
SURFACE

LOWER
SURFACE

UPPER
SURFACE

LOWER
SURFACE

UPPER
SURFACE

LOWER
SURFACE

NR	 - LEAN -	 67 246 - 1,073 - 1,099 -1,812 *1,297 -	 151 +	 597 - 1,638 - 1,409 -„,207 +11379
AIR LOADS my	 -- L91114 -1.4,650 +15,197 -14,303 +14,014 -4,220 -3,567 -1,106 +1,400 -12.,4D7	 . +11,188 -6,897 +6,657

NRy LWIN -	 453 +	 367 - 1,495 + 1.599 -2,106 +1,909 130 215 « 4,DO9 - 2,990 +2,284 -2,281

THERMAL
Ex INIIN 0 0 0 0 0 0 0 0 0 0 Q O

STRAIN Ey INmu 0 0 0 0 0 0 0 0 0 0 0 -	 0
Exy 1N1IN 0 0 0 0 } 0 0 0 0 0 0 0.
AERO PSI 3.03 1.20 -	 1.27 .26 -	 1.27 -	 .11 -	 1.47 .06 -	 4.98 .26 -	 5.07 .96

PRESSURE FUEL PSI 5.08 -	 9.31 -	 4.50 -	 4.50. 0 0 -	 4.97 8.69 0 0 0 0
NET PSI Bal 10.51 5.77 4.76 3..27 .11 6.44 -	 8.83_ 4.98 .26 5.07 .96

TAV OF 0 0 0 0 0 0 0 0 0 O 0 0
TEMPERATURE

AT OF 0 0 0 0 0 0 0 0 0 0 0 O
NOTES; (11 A l-Z FACTOR HAS BEEN APPLIED TO THE THERMAL STRAIN WHEN THE SIGN IS SAME AS THE AIRLOAD

MGM, OTHERWISE NO FACTOR APPLIED.
121 PRESSUFS SIGN CONVENTIDdk NEGATIVE-SUCTION



A strength sizing analysis was conducted on both panels and substructure to assess

the weight trends and verify the airframe stiff'nesses contained in structural model.
While this analysis was being conducted, the vibration and flutter analysis way
initiated using the mass and stiffness matrices associated with the strength design

airframe. The results of these analyses (flitter and strength) are combined to
develop the strength/stiffness airframe design which is discussed in the next

section. The results of the strength analysis are discussed in the following text.

Franel Analysis - The panel concepts and their applicable point design regions are

shown in Table 12-80 for the hybrid.arrangement. These panels were analyzed using

the computerized methods previously discussed in Task I and the new point design

environment based on the NASTRAN static solution using the 3-D structural model..

The results of this strength analysis are shown in Tables 12-81 and 12-82 for the

chordwise and monocoque panel concepts, respectively.

With reference to the chordwise panels, circular-arc convex beaded concept,

Table 12-81 indicates the foreign object damage (F.O.D.) constraint on the exposed

surface bead was active for each point design region with the exception of upper

surface panel at Region 10536 (tu < 0.015). The unit weights ranged from a minimum

weight of 0.76 lb/sq.ft for the upper surface panel at Region 1 0322 to a maximum

weight of 1.34 lb/sq.ft for the upper surface panel at Region 40536.

The results of the strength analysis conducted on the honeycomb sandwich panels are

shown in Table 12-82 for Regions 41036, 11316, and 413 1 8. No thickness constraints
were active for the face sheets of these .designs which indicated a minimum-weight of

1,20 lb/sq.ft occurring at Region 41036 for both upper and lower surface panels.

TABLE 12-80. SURFACE PANEL CONCEPTS FOR TASK TI

STRUCTURAL POINT DESIGN
ARRANGEMENT REGIONS PANEL CONCEPT GEOMETRY

CHOR.DWISE 40322, 40236, CIRCULAR-ARC/CONVEX
STIFFENED 40536 BEADED SKIN

MONOCOQUE 41036, 41316, HONEYCOMB SANDWICH -
41348 ALUMINUM BRAZED Ma
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POINT DESIGN REGIONS
40322. 40236 40536

UPPER LOWER UPPER LOWER UPPER LOWERDESIGN DATA

SPACING, in.

RIB 60.0 60.0 60.0 60.0 60.0 60.0
SPAR 22.7 22.7 21.2 21.2 21.2 21.2

DIMENSIONS

tL, in, .013 1015 .015 .020 .023 .019
tn , in. .015 .020 .015 .020 .026 .020
R L , in. .80 1.00 .80 1.00 .90 .70
6, degrees 87 87 87 87 87 87
h, in. ,75 .75 .75 .75 .75 .75
pitch, in. 2.35 2:75 2,35 2.75 2.55 2,15

WEIGHT DATA
t, in, .033 .041 .036 .048 .058 .046
W, lb,/sq.ft. .760 .945 .829 1.; .E 1.34 1.05

CRITICAL DESIGN COND. 12 20 16 16 12 12

DIMENSIONS:

^.--- PITCH,
to

74^
9

L 6 -+-	 tL

H
N

1
t3
Co
w

TABLE 12--81. PANEL GEOMETRY AND WEIGHT FOR THE CHORDWISE STIFFENED PANELS -- TASK 11B



TABLE 12--82. PA14EL GEMIETRY AND IdEIGHT FOR THE MONOCOQUE PAISELS -`BASK IlB

i

0

POINT DESIGN REGIONS

41036 41316 41348
DESIGN DATA UPPER LOWER UPPER LOWER UPPER LOWER

SPACING, in.
RIB 60.0 60.0 40.0 40.0 40.0 40.0
SPAR 21.2 21.2 40.0 40.0 30.0 30.0

DIMENSIONS

H, in. .642 .202 1.243 .485 .967 .236
t1 , in. .026 .023 .056 .062 .037 .042
t2, .in. .018 .028 .053 .068 .027 .039
tG; in. .002 .002 .002 .002 _002 .002
S, in. .275 ..500 .298 .500 .326 .500

WEIGHT DATA

t, in. .052 .052 .124 .133 .075 .082
W, Iblsq. ft. 1.20 1.20 2.850 3.070 1.73 1.89

CRITICAL DESIGN COND. 12 12 12 12 12 12

t2

DIMENSIONS EXTERIOR SU RFACE

S= CELL SIZE
H tc= CORE FOIL

THICKNESS

T
t1



f

I	 ^	 ^

Conversely, a maximum-weight of 3.07 lb/sq.ft was noted for the lower surface panel

at Region 41316. In addition to the panel geometry and weight data, the critical

design condition is also specified for each of the point design regions.

Substructure Analysis - The results of the Task 1 substructure analysis conducted

on the chordwise and monocoque arrangements were incorporated into the element defi-

nition of the strength design structural model. This data represented typical sub-

structure for each arrangement and included spar caps, spar webs, rib caps, and rib

webs. For the chordwise substructure, the spar caps and truss webs are primarily

the only load dependent components with the bulkhead webs predominately designed by

fuel pressure and the rib caps are minimum design caps. For the monocoque sub-

structure, almost all. components were based on minimum design geometry with the

exception of the inboard region of the wing tip were the high load intensities

dictated greater web thicknesses and cap areas.

No discrete point design weights were defined for the strength designed substructure,

but a relatively comprehensive stress analysis was conducted at the model element

level using the internal stresses from the strength design run with conservative

gross area allowables.

Strength/Stiffness Design

The results of the vibration and flutter anlysis of the strength sized airplane

indicated a deficiency in flutter speed for the Mach 0.9 flight condition. This

condition is displayed in Figure 12-r69 where a flutter speed of 310 KEAS was

obtained as compared to the 1.2 VD criteria of 468 KEAS. Because of this deficiency,

a flutter optimization analysis (described in the analytical method section of

section 10) was conducted which was focused on incrementing the stiffness of the

most efficient wing tip regions. Figure 12-70 presents the five wing tip regions

used for the flutter optimization analysis overlayed on the wing tip of the

structural model.

The wing tip panel thicknesses used in the definition of the strength design finite

element model: are shown in Figure 12 -71 and represent the thicknesses for both upper

and lower surface panels, and the front and rear beam webs. The corresponding wing

tip thicknesses resulting from the flutter optimization process (flutter speed

equivalent to 1.2 VD) are shown in Figure 12-72. From a comparison of these two
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Figure 12-69. Flutter Speeds for Symmetric Bending and Torsion. Mode -
Task TI Strength Design
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Figure 12--70. Flutter Optimization Design Regions
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XXX . UPPER SURFACE EFFECTIVE THICKNESS (IN)
(XXX( - LOWER SURFACE EFFECTIVE THICKNESS (IN)

Figure 12-72. Surface Panel. Thickness - Stiffness Requirements

i.

NOTE:

XXX w UPPER SURFACE EFFECTIVE THICKNESS (IN)
(XXX) - LOWER SURFACE EFFECTIVE THICKNESS (IN)

Figure 12-71. Surface Panel Thickness -- Strength Design
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figures, it can be seen that the outermost regions (Regions 1, 2, and 3 of

Figure 12-70) require the greatest change in thickness with Region 1 requiring the

maximum change, i.e., an approximate 400-percent increase in surface panel thickmess.

Since these flutter optimization results, added wing tip stiffnesses, were generated

by incrementing the stiffness matrix from the strength design model, an update in the

model section properties was required to obtain a new base stiffness matrix and

verify the finding of the flutter optimization process. Thus, the element properties

of the 3-b finite element model were revised to rf:flect the stiffnesses .dictated by

the flutter analysis with a more favorable material distribution from a design and

fabrication standpoint. This task was accomplished by using the basic geometric

data (number of elements and their corresponding coordinates) contained in the 3-D

structural model, adjusting the section properties of these elements, and calculating

the cross-sectional properties (area, center of gravity, and moments of inertia).

This process was repeated until the cross sectional properties were equivalent to

those required by the flutter optimization analysis. The wing tip panel thicknesses

that correspond to the equivalent cross sections are shown in Figure 12-73 and

reflect a more favorable material distribution from a design and fabrication

standpoint.

A comparison of the panel thicknesses required for the strength, stiffness, and

final designs are shown in Figure 12-74 for a wing tip cross section at Region 2

(see Figure 12-70 for location). With reference to this figure, the final design

panel thicknesses reflect a uniform distribution of material with the most forward

panel on the upper surface indicating .a 400-percent increase over the strength

design. Similarly, a minimum ^'jarse of approximately 200-percent is noted for

the lower surface most aftward located panel. The stiffness design reflects a non-

uniform material distribution consistent with the methods employed in the flutter

optimization process, i.e., incrementing the stiffness matrix of the strength

design airplane.

A comparison of the wing tip cross sectional properties for the three designs are

shown in Figure 12-75 through 12-78. Figure 12-75 contains a comparison of the

centroidal distances along the X-axis, and Figures 12-76 and 12-77 display a com-

parison of the bending stiffnesses (EI) about the X- and Z-axes, respectively. The

final figure (Figure 12-78) presents .a comparison of the wing tip torsional stiffness

(GJ) for the three designs.
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Point Design Environment - Since the basis for the definition of the loads/

temperature environment is the internal loads resulting from the NASTRAN static

solution, the section properties for the 3-D structural model were revisea to

reflect the final design stiffnesses and rerun to obtain the corresponding internal

loads. A comparison of the wing surfaces load intensities for the strength and

final design airplanes are shown in Table 12 -83 for the six wing point design

regions. These results are for a symmetrical flight condition at Mach 1.25 and

correspond to the static aeroelastic loads analysis conducted using each of the

structural. models. In addition, the reader should review this table with the

specific structural arrangement incorporated in the Task 11 baseline airplane in

mind, i.e., the chordwise stiffened panel concept employed at point design regions

40322, 40236, and 40536, and the honeycomb sandwich concept at regions 41036,

1 1316, and 41348.

Tn general, the chordwise panel inplane load intensities (Nx and Nxy) are greater

for the strength design than those of the final design; whereas, the final design

airplane experiences the higher spar cap loads (Ny). For the regions which

incorporate the honeycomb sandwich surface panels, the combined loads (Nx, Ny, and

Nxy) are generally higher for the final design with the exception of slightly lower

shear values experienced by the inboard panels ( 1 1036 and 11316).

The point design environments (airloads, thermal strains, pressures, and tempera-

tures) for the final design airplane were identical to those reported for the

strength design except for the airloads which reflected the additional NASTRAN

internal load run. An example of this environment is presented in Table 12 -84 for

the symmetrical flight conditions at Mach 0.90 and Mach 1.25. A detail description

of the point design environments for the final design airplane is contained in

Section 11 of this report.

Panel Analysis -- The wing panel geometry calculated for the strength sized airplane
were reviewed with respect to the results of the flutter optimization study and the

ensuing internal .loads run. The results of this review indicated the chordwise

panel concepts (circular-arc convex--beaded concept), which are predominately

designed by normal pressure, experienced a relatively slight decrease in inplane

loads due to the change in airframe stiffness; thus, it was felt no additional

analysis was warranted and the strength-size panel geometry was incorporated into

the final design airplane.

i
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TABLE 12-83. COMPARISON OF 11ING SURFACE LOAD INTENSITIES -
TASK IIB, MACH 1..25 LOAD CONDITION

*'LOAD INTENSITY (ULTIMATE), LBS/IN.

HYBRID HYBRID
PANEL IDENTIFICATION

DIRECTION

(STRENGTH) (FINAL)

REGION NUMBER UPPER LOWER UPPER LOWER

WING- 40322 Nx -151 597 -242 434
FORWARD Ny -1106 1400 -1032 1425

Nxy 130 215 102 166

40236 Nx -67 246 -183 62
Ny -14650 15196 -16456 16622
Nxy 453 367	 1 491 781

40536 Nx
Ny

-1073
-143[,3

1099
14014

•831
•16372

699
15508WING-

AFT BOX
Nxy 1495 1599 1615 1646

41036 Nx -1812 1297 -2464 1898
Ny -4220 3588 -5645 4697
Nxy 2106 1909 1915 1812

41316 Nx -1638 1405 -1931 1656
Ny -12407 11188 -13240 11333
Nxy 4009 2990 4072 2739

WING TIP
41348 Nx -1207 1379 -1200 1431

Ny -6897 6657 -9006 8090
Nxy 2284 2281 2666 2556

*LOAD CONDITIONS:
TASK 11-13 CONDITION 12: MACH 1.25, nz = 2.5, W = 690,000 L
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TABLE 12-84. WING POINT DESIGN ENVIRONMENT, FINAL DESIGN -
TASK IIB, MACH 0.90 (V G ) AND 1.25 (VS ) LOAD CONDITIONS

ULTIMATE
DESIGN
LOADS

ITEM UNITS

POINT DESIGN REGION

40 41316 41348 40236 40536 47036

.UPPER
SURFACE

_

LOWER
SURFACE

UPPER
SURFACE

LOWER
SURFACE

UPPER
SURFACE

-	 LOWER
SURFACE

UPPER
SURFACE

LOWER
SURFACE

UPPER
SURFACE

LOWER
SURFACE

UPPER
SURFACE

LOWER
SURFACE

Nx LWIN -	 219 +	 409 - 1,478 *x,237 -	 656 -1,028 15 451 -	 315 +	 279 -1,562 +1,0183
AIR LOADS NY LBAN -1,049 41,381 -10 106 •8.620 -f5, 913 .2,562 -14,311 -&,762- -14,410 -14x55 -4 +4

Nxv LB/IN 75 . 166 1,730 2.842 ?.Coe 2.6L1 I	 2? 470 1 159 1 4

Eft INIIN 0 O 0 0 0 0 0 1	 0 0 0.
THERMAL
STRAIN £y INIIN 0 0 0 0 0 0 0 0 0 .0 4

Exy INlIN 0 0 0 0 0 0 0 0 0 0 0

AERO PSI 1.4, 0.30 6•75 3.7t 3.1`-6 -	 0.30 -	 0.22 0.44 -	 1-35 -	 0.4 2.10 -	 0-16
PRESSURE FUEL PSI 4. 8.70 0 6 1	 0 5.01 9.24 -	 4.50 -	 4.5o

NET PSI 6.31 9.00 -	 6.75 -	 3.76 -	 3 .68 -	 3.30 -	 15.00 -	 9.69 -	 5.85 -	 4.99 -	 2.10

TAI OF 47 52 49 41 44 33 47 53 1+5 45 48 41
TEMPERATURE

AT °p 3' 41 27 15 -	 20 -	 ? 37 -	 >+•> 30 315 27 15

CONDITION 1721 SYMMETRICAL FLIGHT. STEADY MANEUVER AT MACH 1.25IV,1. n.^2.5

ULTIMATE
DESIGN
LOADS

ITEM UNITS

POINT DESIGN REGION

40322 41316 41348 40236 4053: 41036

UPPER
SURFACE

LOWER
SURFACE

UPPER
SURFACE

LOWER
SURFACE

UPPER
SURFACE

LOWER
SURFACE

UPPER
SURFACE

LOWER
SURFACE

UPPER
SURFACE

LOWER
SURFACE

UPPER
SURFACE

LOWER
SURFACE

Nx LBrIN -	 242 +	 434 - 1,931 - 1.r5" -1,200 •1,431 133 62 631 G -2.46. +1 B 9
AIR LOADS Ny LEAN -1,03? .1.4x5 -13,240 '11,333 -9,000 '3.190 -16,45E -IE,622 -15.372 -15,508 -5,645 '1+ 6

Nxy -	 LBIIN 102 16E %..D72 2,739 2,6615 2.55E 491 791. 1,615 1,646 2,334 L 012

THERMAL
STRAIN

Cx INIIN 0 0 0 0 0 O -	 0 0 0 0

ey iNi,k 0 0 0 0 0 1	 0 0 0 D O 0 0

Cxy INiIN 0 0 0 0 0 0 O O

HERO PSI 1.47 0.06 4.92 0.2E 5.0' °.9E 3.03 1.20 1.27 0.215 1.27 0.11

PRESSURE FUEL PSI 4.97 9.0 0 0 0 5.06 9.31 -	 4.51'1 4.5a_ 0

NET PSI '.44 - 4-q3 J.?( .0 8.11 10. 1 547 -	 4.? -

TAV
OF - R3 ar: _.- T,7

TEMPERATURE
AT OF O' J u 0 0 0 0

NOTES: p l A 1.25 FACTOR HAS BEEN APPLIED TO THE THERMAL STRAIN WHEN THE SIGN IS SAME AS.THE AIRLOAD
SIGN, OTHERWISE NO FACTOR APPLIED.

121 PRESSURE SIGN CONVENTION: NEGATIVE-SUCTION

}	 -COWDI-nQN0 SYMMETRICAL FLIGHT, STEADY MANEUVER AT MACH D.90(VCI,n=-ZS



The point design regions utilizing the honeycomb sandwich concept (regions 111036,

11316, and 41348) experienced relatively large changes in inplane loads due to the
modification of the airframe stiffness. For regions 111316 and 1113118 the increased

panel thickness required to meet the flutter speed was much greater than the

corresponding change in internal loads due to the aeroelastic effect, e.g., for the

upper surface at region 11348, the thickness increased 112-percent while the

inplane loads, as characterized by the spanwise load (Ny), increased only

30--percent. Hence the surface panels at regions 111316 and 1113118 are stiffness

designed and their panel geometry and weight data are presented in Table 12-85. For
the honeycomb sandwich panel at region 41036, located inboard of the wing tip, the

fail-safe criteria required major changes in the panel proportions, i.e., 50-- and

61-percent changes in race sheet thickness over the strength design for the upper and

lower panels, respectively. Section 13 presents the analysis and required panel

geometry for this region.

Substructure Analysis -- Typical substructure was .investigated for application to the

structural arrangement of the final design airplanes. This substructure included:

rib caps, rib webs, spar caps, and spar webs. In addition, nonoptimum factors

applicable to each concept were added. The strength design geometry and weights

were used for those substructure components experiencing slight or no change in

applied load.

The major weight components for the substructure are the spar caps and these results

are presented in this section. As with the strength design, the chordwise point

design regions (40322, 40236, and 110536) incorporate submerged metallic spar caps

with B/PI reinforcement; whereas, the monocoque regions ( 111036, 1 1316, and 1113+8)

use an all metal design incorporating a densified core insert with mechanical

fasteners for attachment to the surface panels.

For the composite reinforced spar caps, the maximum spanwise tension and.compression

loads intensities are shown in Table 12 -86. In addition, the total load on the caps
(NY times b) are defined at each point design region: The stress analysis was con-

ducted using the same methods and allowables as defined for the Task I composite

substructure analysis and is shown in Table 12 -87. Figure 12 -59 presented the

allowable axial stress (tension-or compression) for the B/PI reinforced caps. As

a result of the stress analysis, the spar cap geometry and corresponding weight are

shown in Table 12-88. The weight of the composite reinforced spar caps ranged from

12--201
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POINT DESIGN REGIONS

41316 41348

UPPER LOWER UPPER LOWER

SPACING, in.

RIB 40.0 40.0 40.0 40.0

SPAR 40.0 40.0 30.0 30.0

DIMENSIONS

H, in.
1.00 .500 1.00 .500

t1 , in.
.062 .075 .068 .058

fit, in.
.062 .075 .068 .068
.002 .002 .002 .002

t,, n
.500 .500 .500 .500

S, in..

WEIGHT DATA
t, in. .131 .153 .143 .139

W, lb./sq. ft. 3.02 3.52 3.29 3.20

CRITICAL DESIGN COND. FLUTTER FLUTTER FLUTTER FLUTTER

t2

DIMENSIONS	 EXTERIOR SURFACE

S= CELL SIZE

H tc CORE FOIL
THICKNESS

t1

H
ro
i
0

/I----

FABLE 12--85. PANEL GEOMETRY AND 11EIGHT DATA FOR THE FINAL DESIGN MONOCOQUE PANELS -- TASK IIB



MAXIMUM SPANUUISE (11 MAXIMUM SPANWISE(1}
TENSION LOAD COMPRESSION LOAD DESIGN LOADS CULT.)

POINT SPAR
DESIGN WING SPACING NY P N  YPTT PC
REGION SURFACE b, (in.) COND. (iblin.) (kips)2 COND. (lb/in) (kip )(2) FACTOR (3) (kips)( 4) (kips)(q}

UPPER 22.7 14 400 9.1 15 -1,100 -25.0 1.1 10.040322
LOWER 22.7 12 1,400 31.8 14 -600 -13.6 1.1 -15.0

40236 UPPER 21.2 14 8,100 171.4 12 -16,400 -348.9 1.1 190.2

LOWER 21.2 12 16,600 352.4 14 -7,800 -164.4 1.1 -182.5

UPPER .21.2 14 7,500 158.8 12 -16,400 -347.1 1.1 17 6. 340536
LOWER 21.2 12 15,500 328.8 14 -6,600 -140.2 1.1 -155.6

UPPER 21.2 14 2,500 53.7 12 -5,600 -119.7 1.2 62.3 W//47036
LOWER 21.2 12 4,700 99.6 14 -2,000 -42.9 1.2 -49.8

1. CONDITION DESCRIPTION AND LOAD INTENSITIES PER SECTION 11

2. CAP LOAD (Py) = N Y x b

3. CORRECTION FACTOR TO ACCOUNT FOR SUBMERGED CAPS

4. PT = MAXIMUM TENSILE LOAD

PC = MAXIMUM COMPRESSIVE LOAD

A
N
O
W

TABLE 12--86. SPAR CAP APPLIED LOADS FOR THE BASIC WING REGIONS, TASK IIB
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TABLE 12-87. SPAR CAP STRESS ANALYSIS FOR THE BASIC WING REGIONS, TASK IIB

P

0

DESIGN LOAD AREA
POINT SPAR % MARGIN

COND. PULT AM AC ATDESIGN SPACING fC'T COMPOSITE Fy'T OF
REGION SURFACE (in.) NO. (kips) (in 2} (in.2) (in 2} &A (ACIAT) (Ksi) SAFETY

UPPER 22.7 15 -27.5 0.24 0.24 -114.6 - -131.0 0.14
40322

LOWER 22.7 12 35.0 0.40 - 0.40 87.5 - 90.0 0.03

UPPER 21.2 12 -387.3 0.45 1.51 1.96 -197.6 77 -198.0 0.00
40236

LOWER 21.2 12. 391.2 0.45 2.50 2.95 132.6 85 139.0 0.05

UPPER 21.2 12 -385.3 0.45 1.50 1.95 -197.6 77 -198.0 0.00
40536

LOWER 21.2 12 364.9 0.45 2.30 2.75 13.7 84 138.0 0.04

UPPER 21.2 12 -138.8 0.45 0.41 0.86 -161.4 48 -162.0 0.00
41036

LOWER 21.2 12 115.5 0.45 0.50 0.95 121.6 53 122.0 0.00

NOTES:
CT

1.	 fy	 PULT -AT

2.	 ALLOWABLE STRESSES (FY'T} PER FIGURE 12-59

3.	 MARGIN OF SAFETY = (F CT . fCT) - 1.0



TABU 12--88. SPAR CAP GEOMETRY FOR THE BASIC WING REGIONS, TASK IIB

UN IT
SPAR CAP DIMENSIONS	 AREA	 WEIGHT

POINT	 SPAR
DESIGN	 SPACING	 h	 b	 H	 W	 t1	 t2	 AM	 AC	 w
REGION	 ( in.)	 (in.)	 (in.)	 (in.)	 ( in.)	 (in.)	 (in.)	 (in.2)	 ( in?)	 (Ib/sq.ft)

40322

UPPER	 22.7	 -	 -	 -	 1.50	 .16	 -	 0.24	 --	 0.24

LOWER	 22.7	 -	 -	 -	 1.50	 .27	 --	 0.40	 --	 0.41

40236

UPPER	 21.2	 .38	 1.00	 1.20	 2.50	 .12	 .12	 0.45	 1.51	 1.23

LOWER	 21.2	 .62	 1.00	 1.20	 2.50	 .12	 .12	 0.45	 2.50	 1.71

40536

UPPER	 21.2	 .38	 1.00	 1.20	 2.50	 .12	 .12	 0.45	 1.50	 1.22

LOWER	 21.2	 .58	 1.00	 1.20	 2.50	 .12	 .12	 0.45	 2.30	 1.61

41036

UPPER	 21.2	 .10	 1.00	 1.20	 2.50	 .12	 .12	 0.45	 0.41	 0.69

LOWER	 .21.2	 .12	 1.00	 1.20	 2.50	 .12	 .12	 0.45	 0.50'	 0.73

B/PI COMPOSITE REINFORCEMENT	
w = EQUIVALENT UNIT PANEL WEIGHT, Ib/sq.ft.

t2	 ti	 = (PM x AM +Pc x Ac) x 144/SPAR SPACING

	

l	 WHERE:

h	 PM = TITANIUM DENSITY = 0.160 Ib/in 3

b ---	 AM = TITANIUM AREA = (H-t1)t2+Wxt1

PC = BORON/POLYIMIDE DENSITY = 0.072 Ib/in.3

A C = BORON/POLYIMIDE AREA = 4x b x h
GAL-4V IANN.) TITANIUM

r^
su
i

0
Ln



a minimum of 0.024 lb/sq,ft for the upper cap at region 10322 to a maximum of

1.23 lb/sq.ft for the corresponding; cap at region 40236.

The spar cap geometry and weight for the honeycomb sandwich panels at regions 41316

and 41348 are shown in Table 12-89 and a sketch of this design was previously pre-

sented in Figure 12-38. Thi.rl table displays the crass-sectional area of each of

the spar cap components (doublers, densified core, and web attachment) as well as

the total weight. A minimum "eight of 0.12 lb/sq..ft is indicated for the spar caps

at region 41316 with a maximum weight of 0.16 lb/sq.ft noted for the upper spar

caps at region 41348.

A summary table of wing spar cap results is shown in Table 12-90 for the six wing

point design regions. This table summarizes the material, system, panel dimensions,

cap areas, and unit weights for each regions.

In addition to the primary Boron/pc^lyimide (B/PI) material system used in the

design of the chordwiBe spar caps are alternate Boron/aluminum (B/A1) design was

evaluated for back-up purposes. The :pars at region 40536 were selected for this

investigatio- due to the relatively high spanwise Loading.

The results of the weight/strength analysis conducted on the B/Al spar caps are

shown in Table 12-91 and includes the corresponding 13/PI design data for comparison
purposes. Similar to the B/PI design, a minimum area titanium substrate of 0.45 in.2

was considered in the stress analysis. The B/Al allowable stresses (tension and

compression), and the modulus and density are presented in Figure 12-79 as a func-

tion of the Boron/Aluminum fraction of total area. With reference to the tension

allowable, no . pertinent fatigue data was found concerning the fatigue life of the

combined B/Al and titanium material system. Thus, the tension cut--off stress for

the combined system was based on the fatigue allowable of the Boron/Aluminum mate-

rial obtained from data published in References 8 and 9. The B/Al tension cutoff

stress used for this investigation corresponding to a stress ratio (R) of 0.4.

In conclusion,. the B/Al design for the upper spar caps show a 7-percent weight sav-

ings over the B/PI design. Conversely, the B/Al material is the heaviest design for

the lower surface caps indicating a weight penalty of 30-percent. Combining this

data results in an overall weight penalty of approximately 14-percent for the alter-

nate B/Al spar cap design.

12206
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TABLE 12-89. SPAR CAP GEOMETRY FOR THE I gING TIP REGIONS, TACK IIB

>v
i

-^1

SPAR DOUBLER WEB ATTACH CORE
POINT SPACING

DESIGN WING b tdo td i AD AB Al AW h tc SD SP T W
REGION SURFACE (in.) (in.) (in.) (in .2 ) (in 2) (in.2) (in.2) (in.) (in.) (in.) (in.) AA (in.2/in. (Iblsq.ft.)

UPPER 40.0 .023 .020 .086 .08 .08 .08 .853 .002 .12 .50 .043 .005 .975
41316

LOWER 40.0 .024 .,020 .088 .08 .09 .08 .326 .002 .12 .50 .016 .005 .975

UPPER 30.0 .023 .020 .086 .08 .08 .08 .841 .002 .12 .50 .043 .007 .161
41348

LOWER 30.0 .023 .020 .086 .08 .08 .08 .341 .002 .12 .50 .U17 .006 .138

• DOUBLER AREA (A D ) r DENSIFiED CORE INSERT

AD = 200 No t tdi) AA = 4.0 h A (tdS)

tdo = OUTER SKIN DOUBLER h = CORE HEIGHT

tdi = INNER SKIN DOUBLER tc = CORE FOILTHICK

S = CELL SIZE
• WEB ATTACHMENT AREA (AW)

{VS = INSERT (tc/S) - PANEL (t,/S)
AW = (AB -I- Al) x 112 = .90 in.2

AB = BULKHEAD ATTACHMENT = .08 in.2 • EQUIVALENT PANEL VALUES

AI = INTERMEDIATE SPAR ATTACH = .12 in. 2 . T = 1/b (AD +AW + AA)

W = 23.84 x t

R
'i



SPAR CAP

POINT SPACING CAP AREA (in 2) WEIGHT,

DESIGN CAP b W

REGION LOCATION CAP DESIGN (in.) AC AM ATOTAL (Ib./sq.ft.)

40322 UPPER ALL METAL 22.7 -- 0.24 0.24 0.24

LOWER 6AI-4V Ti 22.7 - 0.40 0,40 0.41

CAP

40236 UPPER 6AI-4V Ti CAP 21.2 1.51 0.45 1.96 1.23

LOWER WITH B/PI REINF 21.2 2.50 0.45 2.95 1.71

40536 UPPER 6AI-4V Ti CAP 21.2 1.50 0.45 1.95 1.22

LOWER WITH B/PI REINF. 21.2 2.30 0.45 2.75 1.61

41036 UPPER 6AI-4V Ti CAP 21.2 0.41 0.45 0.86 0.69.

LOWER WITH S&Pi 21,2 0.50 0.45 0.95 0.73
REINFORCEMENT

41916 UPPER ALL METAL 40.0 - 0.21 0.21 0,12

LOWER 6AI-4V Ti CAP 40.0 - 0.18 0.18 0.12

41348 UPPER ALL METAL 30.0 - 0.21 0,21 0.16

LOWER 6AI-4V Ti. CAP 30.0 -- 0.18 0.18 0.14

NOTES:

A C = COMPOSITE AREA	 PC = COMPOSITE (B/PI) DENSITY;.0721bAO

AM = METAL AREA	 PM = METAL (6AI-4V) DENSITY; .160 Ib/in 3

ATOTAL = AC +AM	 b = SPAR SPACING

W = EGUIVALENT SURFACE PANEL WEIGHT,
Ib/sq.ft.;144 (Ac RC + AM AM)/b

r-j

ro0
co

TABLE 12-90. SUMMARY OF WING SPAR CAI':' RESULTS, TASK IIB



F

TABLE 12-91. WEIGHT COMPARISON OF THE ALTERNATE COMPOSITE REINFORCED SPAR CAP DESIGN, TASK IIB

p
ris

a

DESIGN
LOADS AREA UNIT

POINT SPAR C 1 C T MARGIN WEIGHT
DESIGN SPACING SPAR COND. PULT AN; AC AT fy' t Fy. OF w
REGION SURFACE (in.) DESIGN NO. (kips) (in.2) {in.2) (in 2) (ksi) COMPOSITE (ksi) SAFETY (lb.N.ft)

40536 UPPER 21.2 I3/PI 12 -385.3. 0.45 4.50 1.95 -197.6 77 -198.0 0.00 1.22

LOWER 21.2 REINF. 12 364.9 O.A5 230 2.75 132.7 84 138.0 0.04 7.61

UPPER 21.2 B/AI 12 -385.3 0.455 0.95 1.40 -275.0 68 -275.0 0.00 1.13

LOWER 21.2 REINF. 72 364.9 0.45 2.38 2.83 129.0 84 129.0 0.00 2.09

w = EQUIVALENT SURFACE PANEL UNIT WEIGHT, Ib./sq.ft
S/PI OR B/AL COMPOSITE
REINFORCEMENT = (P CAC+P MAM) x 144/SPAR SPACING

WHERE:

PC = COMPOSITE DENSITY = .099 Ib./in 3(B /Al)

= .072 lb./in.3(B/Pl)

"".61A L-4V (ANN.) TITANIUM PM = TITANIUM DENSITY = .160 Ib./in 3

AM,A C = AREA, in.2
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Figure 12-79. Strength, Stiffness and Density of Titanium
Reinforced with Boron-Aluminum
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LTing Box Unit Weights -- A compilation of the component and total wing box unit

weights are shown in fable 12-92 for the Task II hybrid structural arrangement.

These weights reflect the results of the iterative design cycle conducted on the

strength and strength/stiffness designs. The weight penalties associated with the

remaining disciplines included in the structural. analysis (fail-safe, sonic fatigue,

eta.) are reported in their respective sections and are not reflected in the detail

weights of Table 12-92.

For the chordwise design regions W)322, 40236, and 40536), a minimum-weight of

3.80 lb/sq.ft occurs at region 40322 and a maximum--weight of 6.99 lb/sq.ft is

noted at region 40536. The remaining chordwise region at 40236 has a unit weight
of 6.79 lb/sq.ft.

With respect to the regions which incorporate the monocoque design (41036, 11316,

and 41348), region 1 1036 is the minimum-weight region with a unit weight of

1.60 lb/sq. ft followed by regions 41316 and 413 1 8 which nave weights of 7.37 lb/
sq.ft and 7.44 lb/sq.ft, respectively.

FUSELAGE STRUCTURAL ARRANGEMENT - TASK IIB

The Task II fuselage analysis was conducted using the most promising fuselage con-

cepts surviving the Task I Analytical. Design Studies. These concepts included both

the zee-stiffened and closed hat-stiffened panel configurations. The zee-stiffened

configuration is applicable in the lightly loaded forebody region and the hat-

stiffened concept is used for the higher loaded midboay and aftboay regions. Float-

ing zee-shaped frames with skin shear ties were the frame concept considered. These

structural concepts are shown in Figure 12-80. In addition, the panel configurations

were investigated for both metallic and composite reinforced material systems..

Similar to Task I, the analysis was conducted at four fuselage point design regions

using the internal- loads resulting from the 3-D structural model redundant analysis.

Section 9 contains a detail description of the model, model innut data, and the
resultant load intensities.
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TABLE 12-92. DETAIL WING WEIGHTS FOR THE TASK II HYBRID STRUCTURAL ARRANGEMENT

POINT DESIGN
REGION 40322 40236 40536 41036 41316 41348

SPACING (in.)

SPAR 22.70 21.20 21.20 21.20 40.00 30.00

RIB 60.00 60.00 60.00 60.00 40.00 40.00

PANELS

UPPER 0.76 0.83 1.34 1.20 3.02 3.29

LOWER 0.95 1.11 1.05 1.20 3.52 3.20

(1.71) (1.94) (2.39) A2.40) (fi:54) (6.49)

RIB WEBS

BULKHEAD 0.30 0.28 0.24 0.13 0.19 0.10

TRUSS 0.07 0.24 0.23 0.11 - -

(0.37) (0.52) (0.47) (0.24) (0.19) (0.10)

SPAR WEBS

BULKHEAD 0.34 0.36 0.28 0.10 0.19 0.30

TRUSS 0.30 0.54 0.49 0119 --

(0.64) (0.90) (0.77) (0.29) (0.19) (0.30)

RIB CAPS

UPPER 0.06 0.08 0.12 0.08 0.08 0.08

LOWER 0.07 0.09. 0.09 0.07 0.07 0.09

(0.13) (0.17) (0.21) (0.15) (0:15) (0.17)

SPAR CAPS

UPPER 0.24 1.23 1.22 0.69 0.12 0.16

LOWER 0.41 1.71 1.61 0.73 0.12 0.14

(0.65) (2.94) (2.83) (1.42) (0.24) (0.30)

NON-OPTUMUM

MECH. FAST. 0.18 0.20 0.20 0.05 0.03 0.04

WEB INTERS. 0.12 0.12 .0.12 0.05 0.03 0.04

(0.30) (0.32) (0,32) (0.10) (4.06) (0.08)

POINT
LBF DESIGN 3.80 6.79 6.99 4.60 7.37 7.44

WEIGHT FT2
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For the near-term conventional design, titanium. alloy Ti--6Al -4v (annealed) material
was used for the fuselage structural arrangement, i.e., panel and frame concepts.

In addition to the conventional design, the potential weight savings associated

with using composite reinforced panels was investigated. For this study Graphite/

polyimide, Boron /polyimide, and Boron/aluminum material systems were investigated
for reinforcing the crown of the metallic hat-stiffened panel concept.

Fuselage Point Design Regions

The four. point design regions selected for analysis were FS 900, FS 1910, FS 2525,
and FS 2900. These regions which are representative of the three general regions

of a fuselage are shown in Figure 12--81 and includes one region on the fuselage

forebody, two regions on the fuselage mi.dbody (wing/fuselage interface), and an

aftbody region.

In . addition to the planform view, Figure 12--81 contains cross-sections indicative

of the modeling technique employed to represent the frames in the 3-D structural
model. The panel and frame element identification for these regions are shown in

Figure 12-82. This identification system is used throughout the panel and frame

analyses and is identical to that used to specify the elements in the 3-D structur.il

model.

Fuselage Panel Analysis

The fuselage panel concepts were analyzed using both the conventional and composite

reinforced material systems. This analysis was conducted at the four point design

regions using the most critical point design environment for each region.

The results of this analysis are presented in the following tent and included:

(1) a section describing the methods of analysis, (2) the results of the metallic

panel analysis, and (3) the results of the composite reinforced panel analysis.

Fuselage Panel Method - The fuselage panels were analyzed to determine the minimum

weight design for each of the structural--material concepts and are discussed in the

following paragraphs entitled: (1) panel. loading, (2) stress analysis, and

(3) allowables stress levels.
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Panel Loading -- The total inplane loads acting on the stiffened panels were defined

by the point design environment and includes:

N  
r Nx,air + Nx,thr

Nxy = Nxy.,air + Nxy,thr

N = N
y	 y, air

where Ny=air is equal to the hoop pressure force (N Q = pr), and Nx,air' Nx,thr'

Nxy,air' and	 thr are the air load and thermal load intensities as derived from

the NASTRAN redundant Structural Analysis using the 3-D structural model.. The

meridional pressure Force N^ was conservatively neglected when the air load

component (Nx ) was compression.

The Point Design Environment for all the flight conditions investigated are defined

in Section 11 with the loads for the most critical flight condition repeated in

Table 12--93.

Stress Analysis - `The applied stresses on the panel are:

N
f - x
X t

N
f = XY
XY t

N
f = Y
y t

Where t is the extensional thickness of the panel in tnp x-»di.rection and t is the

effective shear and membrane thickness.
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TALE I2-93. FUSELAGE POINT DESIGN ENVIRONMENT - TASK II$,
MACH 2.7 START--OF--CRUISE CONDITION

CONDITION 20 SYMMETRIC MANEUVER AT MACH 2.70 (START-OF-CRUISE), WEIGHT- 66D.D00 LB., n j - 2.5

ITEM UNITS
FS 900 (23XXXX) FS 1910 {23XXXX)

3301 3302 3303 3304 3305 3306 3307 3308 3309 41D1 4102 4103 4104 4105 4106

NX L811N -55 -37 -8 -5 -37 -2 -13 •30 +72 -8618 •6284 3779 -1885 550 +511

NXy LBIIN -- -7 -27 -44 -45 -27 -44 -7 +8 +358 +890 +1110 +1135 +1088 +1025

NX. TH LBIIN •22 -9 +12 +25 +26 +29 +16 +1 •11 +155 .11 -255 -498 738 -23

NXT• TH LBIIN - +4 +7 +4 +1 - -9 -7 -10 .13 -32 -40 -42 -37 -27

AERO PRESS. PS[

INTERNAL PRESS. PSI 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55

NETPRESS. PSI 17.55 17.55 17.55 17.55 17155 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55

TAVG OF 342 339 336 334 332 333 333 333 333 295 300 305

1

312 320 324

AT OF -105 -105 •106 -106 -106 -106 -106 -105 -106 -175 -170 •168 -162 -159 -157

ITEM UNITS
FS 2525 (23XXXX) FS 2900 (23XXXX)

4801 4802 48D3 4804 4805 4806 5101 5102 5103 5104 5105 5106 5107 5106 5109
i

NX LBIIN -12413 •7932 A066 -1222 +664 +2319 -10441 -7108 •3674 -1071 +785 +2403 +4822 +7934 +11862

NXy LBIIN +67 +I? t5 •59 -120 -187 -110 -358 564 .676 -695 •697 -927 -387 -338

NX. TH LOAN +329 +57 -301 -646 -785 -272 +177 +37 -124 -261 -301 -375 •501 -220 +518

NXT. TH LBIIN +5 +14 +26 +24 +14 -10 +10 +21 +17 +7 .8 -22 +16 •99 -8

AFRO PRESS. PSI - - - - - -
I

- - - .- - -- - - --

INTERNAL PRESS. PSI 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 1755 17,55 17.55 1745 17.55 17.35 17.55

NET PRESS. PSI 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55

TA VG. OF 281 287 293 300 307 311 292 295 298 300 301 295 288 283 278

AT QF -186 -18L 180 -177 -173 -171 174 -165 -156 •149 147 15D 157 -767 -777



The combined stresses were calculated using the following equations. For comp-

ression, the Octahedral Shear Stress Theory was used to calculate the equivalent

stress

` 1/2

feq = (fx 2 - f  y + f 
y2 + 3fXy2 )

whereas, the combined tensile stresses were calculated using an equivalent stress

of:

feq = f 2 + fxfy + f2 + f x}r2

.Allowable Stresses - For the compression stress state both column buckling and

crippling were considered. For a simply supported beam, the wide column theory for

compressive duckling

2
N	 =Tr E2

	x,cr	 2
h

where

D2 = T E I

in which

= plasticity correction factor

T = area moment of inertia per unit width

The crippling strength of the stiffener and effective skin were determined using

the theory and method presented in Reference 10. In this reference, the crippling

stress is calculated for the stiffener (hat-section) by dividing the shape into its

component flat and curved elements. Using these elements the cri ppling strength

for each element is obtained and the average crippling strength of the section is

determined.

TIP	 An

	

I ( avg =	 can
c c	

)	 Y, An
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stringers, respectively.
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For the tension condition, the ultimate design gross area stress is limited to

90,000 psi for symmetrical flight and ground conditions. Section 13 contains the

fatigue analyses conducted to establish this design stress level.

Using the theory previously discussed, allowable curves were generated to facilitate

the fuselage structural analyses. An example of the fuselage allowable loads are

presented in Figure 12-83.

Metallic Panels - The conventional fuselage panels, Ti6Al -4V (ann.) material, were

analyzed using the internal loads shown in Table 12-93.with the methods previously

discussed. Table 12-94 contains the results of this analysis at each of the four

point design regions.

The forward point design region at FS 900 is design by the operating condition,

i.e., applied 1-g stresses at the mid-cruise condition compared to an operating

design allowable stress of 25,000 psi. This condition resulted in a 0.036--inch

thick zee-stiffener and skin being the least-weight concept.

The remaining three point design regions are designed for the design ultimate loads

for the start-of-cruise condition. The closed hat--stiffened concept was analyzed

keeping a constant 6.0 inch pitch, a crown width of 1.5 inches, and a height of

1.25 inches. Fixing these dimensions facilitates splicing and allows the use of a

standard shear tie with on1y the thickness variable. The results of the analysis

using these constraints are shown in Table 12 -94 with the panel locations being

defined in Figure 12-82. With reference to point design region FS 1910, the skin

thickness i s varied from 0.04-- to 0.07-inch with the stringer thickness ranging

from 0.03- to 0.06-inch. The equivalent panel thickness t ranged from a minimum

of 0.069-inch on the side panel (234104) to a maximum thickness of 0.129-inch for

the upper panel. Region F'S 2525 has skin thicknesses ranging from 0.04-inch to

0.07-inch and-stringer thicknesses varying from 0.03-inch to 0.08 inch. A maximum

t of 0.149-inch occurs at the uppermost panel at FS 2525 and at the lowest panel

at point design region FS 2900. For these four regions, the thicknesses ranged

from 0.04-inch to 0.07-inch and from 0.03-inch to 0.08-inch for the skins and
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TABLE, 12--94. FUSELAGE,  PANEL GEOMETRY - TASK 1T

FUSELAGE PANEL DIMENSIONS
POINT

DESIGN PANEL CIRCUMF. bs is C f h tsC f
REGION CONCEPT LOCATION ( in.) (in.) (in.) (in.) ( in.) (in.) (in.)

FS 900 ZEE- 233301- 4.0 .036 .55 0.75 1.00 .036 .056
STIFFENED 233307

FS 1910 HAT- 234101 6.0 .07 1.5 0.80 1.25 .06 .129
STIFFENED 234102 6.0 .06 1.5 0.80 .1.25 .05 .109

234103 6.0 .04 1.5 0.80 1.25 .04 .079
234104 6.0 .04 1.5 0.80 1.25 .03 .069
234105 6.0 .05 1.5 0.80 1.25 .05 .099
234106 6.0 .06 1.5 0.80 1.25 .06 1 .119

FS 2525 HAT- 234,801 6.0 .07 1.5 0.80 1.25 .08 .149
STIFFENED 234802 6.0 .06 1.5 0.80 1.25 .06 .119

234803 6.0 .05 1.5 0.80 1.25 .05 .099
234804 6.0 .04 1.5 0.80 1.25 .03 .069
234805 6.0 .04 1.5 0.80 1.25 .03 .069
234806 6.0 .04 1.5 0.80 1.25 .04 1 .079

FS 2900 HAT- 235101 6.0 .07 1.5 0.80 1.25 .07 .139
STIFFENED 235102 6.0 .05 1.5 0.80 1.25 .06 .109

235103 6.0 .05 1.5 0.80 1.25 .04 .089
235104 6.0 .04 1.5 0.80 1.25 .03 .069
235105 6.0 .04 1.5 0.80 1.25 .03 .069
235106 6.0 .04 1.5 0.80 1.25 .03 .069
235107 6.0 .05 1.5 0.80 1.25 .04 .089
235108 6.0 .05 1.5 0.80 1.25 .06 .109
235109 6.0 1 .07 1.5 0.80 1.25 1 .08 .149

PANEL DIMENSIONS:

f	 I	 bs	 bs	 ^- C	 f

I

h	
h

F--
is	 }	 is

C----- -•--^
tst	 tt

s

ZEE-ST1 FFENED CONCEPT	 HAT-STIFFENED CONCEPT
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The average panel thickness (t) and unit weight (w) were calculated at each of the

four point design regions. An example of the technique: used to calculate these

average thicknesses is shown in Table 12-95 for FS 2565. These results are sum-

marized in Table 12-96 for each of the regions.

A maximum value of approximately 2.5 lb/sq.ft is noted for regions FS 2565 and

FS 2900, with the forebody region (FS 900) have a minimum-weight of approximately

1.3 lb/sq.ft. A value of 2.40 lb/sq.ft is noted for region FS 1910.

Composite Reinforced Panels -- An initial trade-off study was performed to assess

the merits of reinforcing the crown of the hat-stiffener with Graphite/polyimide,

Boron/polyimide, and Boron/aluminum composites. This study was conducted on the

uppermost panels (maximum compressive loaded panel) at FS 1910, FS 2525, and

FS 2900. The crown reinforcement and the metal hat were optimized for the applied

compressive loads except for the constraint of a 6.0 inch stringer pitch. Skin

failure was limited to the initial buckling strergth.

The results of this study are shown in Table 12--97 and indicate for these high

compressive loaded panels the Boron/polyimide reinforcement affords the least-weight

design at each of the three pointy design regions. In general, the Graphite/polyimide

and Boron/aluminum designs had almost equal weights which are approximately

0.05 lb/sq.ft heavier than the least-weight Boron/polyimide design. The Boron/

polyimide design at FS 2525 exhibits the largest percentage weight savings over the

homogeneous metal design, approximately 16-percent.

The second step in the composite reinforced study was a more detailed investigation

of the lightest-weight reinforcement (Boron/polyimide) determined from the initial

trade--off study. 'fable 12-98 summarizes the results of this investigation. This

analysis was conducted at FS 2900 using Boron /po lyimi de reinforced stringers at each

circumferential panel locations and included both constrained and non--constrained

geometries. For the non-constrained geometry designs, only the pitch was held con-

stant at 6.0-inches, the average unit weight of the panels at FS 2900 was 2.21 lb/

sq.ft. The corresponding weight for the constrained Boron/polyimide reinforced hat-

stiffened panel was 2.35 lb/sq.ft. These weights when compared to the all titanium

design, unit weight of 2.56 lb/sq.ft, indicate a weight savings of approximately

8-percent and 1 1+-percent for the constrained and unconstrained Boron/polyimide

reinforced design, respectively.
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TABLE 12-95. AVERAGE PANEL THICKNESS FOR FS2565 — TASK SIB

POINT
DESIGN PANEL PANEL ti Ci
REGION CONCEPT ELEMENT (in z/in.) (in.)

FS 2565 HAT 234801 0.149 39.64
STIFFENED 234802 0..119 29.72

234803 0.099 23.68

234804 0.069 17.86

234805 0.069 11.82

234806 0.079 11.90

AVG. VALUES t = .1098 in 2/in.; W = 2.53 ib./sq.ft.

6	 6

t — Y %iti l Ci
M	 i=1

W = 23.04xt

TABLE 12-96. FUSELAGE PANEL WEIGHT'S — TASK IIB

POINT
DESIGN PANEL t w
REGION CONCEPT (In.2/in.) (ib./sq.ft)

FS 900 ZEE- 0.056 1.29=
STIFFENED

FS 1910 HAT. 0.104 2.40
STIFFENED

FS 2565 HAT. 0.110 2.53
STIFFENED

FS 2900 HAT- 0.111 2.56
STIFFENED

t	 AVERAGE EQUIVALENT PANEL THICKNESS

w = AVERAGE PANEL UNIT WEIGHT
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TABLE 12-97. WEIGHT COMPARISON OF COMPOSITE REINFORCED PANEL CONCEPTS

UNIT WEIGHT (w), Ib/sq.ft.
AND PERCENTAGE WEIGHT SAVING(1)

STRINGER REINFORCEMENT MAT'L
POINT

NONEDESIGN
REGION (ALL TITANIUM) GRIPI s/PI B/AI

FS 1910 2.97 2.80 2.73 2.77

- 5.7% 8.1% 7.2%

FS 2525 3.44 2.94 2.90 2.96

- 14.5% 15.7% 13.9%

FS 2900 3.20 2.83 2.77 2.83

- 11.6% 13.470 11.6%

NOTE:

1.	 PERCENTAGE WT, SAVING OVER THE ALL METALLIC
DESIGN.

TABLE 12-98. WEIGHT COMPARISON OF B/PI REINFORCED PANEL CONCEPTS

UNIT WEIGHT (2), Ib./sq.ft

STRINGER DESIGNPANEL
POINT

WIDTH ALL TITANIUM B/PI REINF. B/PI REINF.DESIGN PANEL
REGION CONCEPT ID (in.) (CONSTRAINED) (OPTIMUM) (CONSTRAINED)

FS 2900 HAT- 235101 39.70 3.20 Z77 2.78
STIFFENED 235102 28.36 2.51 2.13 2.46

235103 22.70 2.05 1.86 2.01

235104 17.00 1.59 1.42 1.53.

235105 11.36 1.59 1.42 1.53

235106 11.32 1.59 1.42 1.53

235107 17.04 2.05 1.86 2.01

235108 17.00 2.51 2.19 2.36

235109 39.71 3.43 2.85 2.98

n
2.56 2.21 2.35AVG. w, lb./sq.. t. _	 Ciwl	 Cl =

i=4	 i=1

AVG. %WT. SAVING - 13.7 8.20
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Fuselage Frame Analysis

The fuselage circumferential frame elements at each point design region were

analyzed to define the frame weight-strength relationship. The typical frame con-

struction is shown in Figure 12-84 and includes views of the frame construction

between panel stiffeners and at the stiffeners. The typical frame is of sheet
metal construction and is 4.0 inches deep with a flange width of 0.75 inch. The

frames are constructed to allow a 1.25--inch opening for the stringer run-through

with skin Fhear ties provided between stiffeners..

The methods used for analyzing the frames axe outlined in Figure 12 -85. This figure
presents the approach which includes the frame section properties, applied stress

equation, and the frame allowable stresses. The applied frame loads (axial force,

transverse shear, and bending moment) were obtained from the results of the NASTRAN

redundant structure analysis solution using the 3--D structural model. An example

of these model frame loads are presented in Figures 12-86 and 12--87 for point design
region FS 2525. These model frame loads reflect the maximum frame bending moments
and corresponding axial loads for the positive and negative gust conditions, condi-

tions 23 and 24, respectively.

Since the structure model reflect lumped section properties (i.e., one model frame

represents more than one actual frame) the model loads have to be reduced to reflect

a unit frame. Figure 12-88 presents the relationship between actual frames and

model frames with the model frame at FS 3000 having the highest ratio (ten-to-one)

of the four point design regions. The midbody regions (FS 1955 and FS 2565) and

the forebcdy regions (FS 1000) have ratios of four-to-one and seven-to-one, respec-

tively. Generally the actual frames lumped into any specific model frame represent

a small enough region to conclude that each frame has approximately equal axial and

bending stiffness and a linear delumping of model loads (model loads divided by

number of actual frames) can be conducted without significant error. Frame stress

analyses were conducted at each of the four point design regions using the method

outlined in Figure 12-85 and the applied loads determined from the 3-D structural
model. An example of this analysis is presented in Table 12 -99 for point design

region FS 2565. With reference to this table, the frme element identification
number coincides with tie identification system used for the 3-D structural model.

In addition, the number of actual frames lumped into the model frame are specified.
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Figure 12-86. Model Frame Loads for FS 2565, Condition 23,
Static Gust (Positive) at Mach 0.90

-17.
R 224903

ALL VALUES
04 ARE Ib x 103

224904
05

-49.3	 ..... ... L.	 224905
06 224906

-63.4
0238	 1%01389

/ 023A—
—	

F 

0139,11-4k -%,el



LA)
Q

+M	
TYPICAL
GRID
POINT

224901 01 NUMBER

+M	 CONVENTION 02
+17.5

-77.4•24902
03

ALL VALUES

	

-108.2	
224903	 ARE in. Ib x 103

224904

05

224905	 -	 +121.5
06

224906	 '`::	
F389.9 l

X013911IT

+P	
TYPICAL
GRID

	

-4.6	 POINT
224901 NUMBER

, 02/SI SIGN
+p CONVENTION,

224902	 +1.0

03	 ALL VALUE
ARE lb x 10fl

2249 3
+12.4

04

224904	 +27.8

w
224905 '-: ..............•. +42.2

(06)6 +55.8
2-24905

-- 1 3 — — -- 	-401381

-10239I-

0139,

AXIAL LOAD	 BENDING MOMENT

	

FIGURE 12-87a	 FIGURE 12-87b

Figure 12-87. Model Frame Loads for FS 2565, Condition 24,
Static Gust (Negative) at Mach 0.90
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MAXIMUM NEGATIVE MOMENT CONDITION MAXIMUM POSITIVE MOMENT CONDITION

LOAD REQUIRED LOAD REQUIRED
NO. INTENSITY THICKNESS INTENSITY THICKNESS

ACT. ML M PL P Mk^ sm PL P
NIN NOUT tIN LOUT N 1N NOUT 2 IN LOUTFRAME FR. BEAM CONK. x103 x103 x103 x103 COND. x14 x103 x103 x103

ELEMENT n END NO. ( in.-lb) fin.-lb) jib) fib) (lb/in.) (lb./in.) ( in.) (in.) NO. OnAb) (In:lb) (lb.) (1b) (lb/in .) (Iblin.) (in.) ( in.)

A -115.0 82.9 (MIN)
224901 4 23 (-66.7} -16.7 6.40 1.60 3,200 2,600 .036 \S2 24 (50.21 12.5 -4.f0 -1.15 2,420 2,000 .069 .030

B -18.4 17.5

A +17.5 (MIN) 18.4 (MIN)
224902 4 24 (-29.9) 7.5 1.02 0.26 1,400 -1,300 .030 .047 23 145.71 11.4 -2.45 1 .0.61 .2,120 1,900 .030

B -77.4 109.7

A -77.4 109.7
224903 4 24 1•92.81 -23.2 12.4 3.10 4,650 -3,520 .052 .083 23 (122.7) 30.7 -17.1 -4.27 -6,180 4,620 .051

B -108.2 135.6 m
A -108.2 135.8 (MIN)

224904 4 24 (-66.9) -16.7 27.B 6.90 4,210 -1,680 .047 .057 23 (77.2) 19.3 -34.1 .8.52 .4,950 1,840 .030
B -25.8 18.5

A 18.5 (MIN) 25.8 (MIN)

224905 4 23 (-75.5) -18.9 -49.3 -12.3 1,080 -5,560 .030 24 (47.81 12.0 42.2 10.6 -180 4,020 .030 .045
B -169.6 121.5

A -169.6 121.5

224906 4 23 (-333.4) •83.4 -63.4 45.9 11,780 -17,560 .131 .146 24 (255.7) 632 55.8 13.9 -8,710 13,800 .107
B -497.3 389 9

1. NOMENCLATURE	 Ni = 0.182 P }0.176M 	 2. SIGN CONVENTION.

ML = MODEL LUMPED MOMENT 	 ti = Ni/F	 +M

/
+P

M = MOMENT PER FRAME = M L(AVG)/n	 F =ALLOWABLE TENSION /COMPRESSION STRESS 

PL = MODEL LUMPED AXIAL LOAD	 n = NUMBER OF ACTUAL FRAMES

P = AXIAL LOAD PER FRAME - PL/n

Ni	 FLANGE LOAD INTENSITY (lb/in.) +M	 P
TI = REQUIRED FLANGE THICKNESS 	 MOMENT	 AXIAL LOAD

r+

I
SU
w

F

TABLE 12--99. FUSELAGE FRAME ANALYSIS AT POINT DESIGN REGION FS2565



The identification system and frame lumping ratios are shown in Figures 12-82 and

12-88. Ends A and B refer to the ends of the bar element used in modeling the frame.

As a result of the redundant structural analysis the model frame loads are available

for all flight conditions. These frame loads (axial load, transverse shear, and

bending moment) are scanned to define the most critical loads for each frame circum-

ferential element at the point design regions. For design region FS 2525 the maxi-

mum positive and negative bending moments (M L) and the corresponding axial load (Ph)

are listed for the critical flight conditions. These loads occur for the positive

and negative gust flight conditions, conditions 23 and 24, respectively. In addi-

tion, the average moment of each element, which is used in the analysis, is dis-

played in parenthesis on the referenced table. The unit frame loads (M and P) are

determined by dividing the model loads (ML and Ph ) by the number of actual frames.

For the specified frame shown in Figure 12 -85a the maximum fiber load intensities

are calculated for the inner and outer flanges using the equation specified in

Figure 12-85. The required frame thicknesses ( tin and tout ) are calculated for the

tension and compression conditions using allowable curve similar to those specified

in Figure 12-85. Having obtained these thicknesses, the maximum values noted on

Table 12-99, define the final frame thickness.

The results of the point design stress analysis are used to calculate the equivalent

panel thickness (t) and unit weight (w) of the frames which are shown in

Tables 12-100 and 12-101 for the four point design regions. These tables contain

the individual frame element properties as well as the average equivalent panel

thickness and unit weight. The nomenclature and equations for calculating these

values are defined in the footnotes. For clarity, the results of these calculations

are summarized in Table 12-102. A maximum unit weight of 0.51 lb/sq.ft is noted

for point design region FS 2525 with regions FS 900 and FS 2900 having approximately

equal values of 0.20 lb/sq.ft. A value of 0.46 lb/sq.ft is indicated for ID'S 1910.

Fuselage Results

The results of the panel and frame analyses were combined to establish the weight

trends of the major fuselage components. These values (sum of panel and frame

weight) are used as the basis for extrapolating to the total fuselage weight as

explained in the Mass Section, Section 15.
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TABLE 12--100. FRAME GEOMETRY AND WEIGHT DATA FOR POINT DESIGN
REGIONS FS900 AND FS1910

FUSELAGE FRAME PROPERTIES
POINT

DESIGN FRAME t A b ti Ci
REGION ELEMENT (in.) (in.2) (in.) (in.2An.) (in.)

FS 900 223401 .039 .214 21.21 .0101 39.19

223402 .030 .165 21.21 .0078 31.35

223403 .047 .258 21.21 .0122 25.09

223404 .039 .214 21.21 .0101 18.84

223405 .030 .165 21.21 .0078 12.55

223406 .045 .248 21.21 .0117 12.55

223407 .041 .226 21.21 .0106 16.91

223408 .030 .165 21.21 .0078 16.91

223409 .032 .176 21.21 .0083 21.12

223410 .030 .165 21.21 .0078 43.95

AVG. VALUES t = .0093 in.2/in.; W = 0.21 Ib.Csq.ft.

FS 1910 224201 .088 .484 23.23 .0208 39.64

224202 .065 .358 23.23 .0154 29.72

224203 .096 .528 23.23 .0227 23.68

224204 .090 .495 23.23 .0213 17.86

224205 .064 .352 23.23 .0152 11.82

224206 .114 .627 23.23 .0270 11.90

AVG. VALUES t = .020 in?/in.; W = 0.46 Ib./sq.ft.

FRAME DIMENSIONS: t = FRAM E THICKNESS

A = FRAME AREA; 5.50 x t

b = FRAME SPACING

4.00
TYP ti	 A/b

t
Ci = FRAME CIRCUMFERENCE

^r l TYP ^
n	 n

t(AVG.) _	 Citi 	 Ci
i=1	 i=1

W(AVG.) = 23.04 x t(AVG.)
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FABLE 12-101. FRAME GEOMETRY AND WEIGHT DATA FOR POINT DESIGN
REGIONS FS2525 AND FS2900

FUSELAGE FRAME PROPERTIES
POINT.

DESIGN FRAME t A b ti Ci
REGION ELEMENT (in.) (in2) (in.) (in.2/in.) (in.)

FS 2525 224901 .073 .402 21.25 .0189 39.64

224902 .065 .358 21.25 .0168 29.72

224903 .096 .528 21.25 .0248 23.68

224904 .090 .495 21.25 .0233 17.86

224905 .092 .506 21.25 .0238 11.82

224906 .153 .842 21.25	 j .0396 1	 11.90

AVG. VALUES t = .0223 in.211n.; w = 0.51 Ib./sq.ft.

FS 2900 225201 .035 .192 21.00 .0092 39.70

225202 .035 .192 21.00 .0092 28.36

225203 .033 .182 21.00 .0086 22.70

225204 .030 .165 21.00 .0079 17.00

225205 .030 .165 21.00 .0079 11.35

225206 .030 .165 21.00 .0079 11.32

225207 .030 .165 21.00 .0079 17.04

225208 .035 .192 21.00 .0092 17.00

225209 .030 .165 21.00 ,0079 39.71

AVG. VALUES t = .0085 in.2/in.; w = 0.20. Ib./sq.ft.

FRAME DIMENSIONS:
t ° FRAME THICKNESS

A = FRAME AREA; 5.50 x t

b = FRAME SPACING

4.00 t; = A/b
TYP

t Ci = FRAME CIRCUMFERENCE

-^^ 75
TYP ^

n	 n

t(AVG.) _ 2 	 C i-ti 	 Ci
i=1	 i=1

w(AVG.) = 2.304 x t(AVG.)
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The unit weights of the metallic fuselage design are summarized in Table 12-103.

This table Lists the unit weight of each component (panel and frame), and the com-

bined total weight at each point design region. The heaviest-weight region is

FS 2525 which has a total unit weight of 3.04 lb/sq.ft with the panel and frame

components weighing 2.53 lb/sq.ft and 0.51 lb/sq.ft, respectively. Conversely,

F5 900 has the least unit weight, 1.51 lb/sq.ft, which is composed of 1.29 lb/sq.ft..

for the panel and 0.22 lb/sq.ft for the frame.

i	 1
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TABLE 12-102. SUMMARY OF FRA14E GEOMETRY AND WEIGHT

FUSELAGE FRAM2 PROPERTIES

POINT FRAME
DESIGN SPACING, b AREA A t w
REGION (in.) (In 2i (in.2/in.) (lb./sq.ft.)

FS 900 21.21 0.197 .0093 .21

FS 1910 23.23 0.465 .0200 .46

FS 2525 21.25 0.474 .0223 .51

FS 2900 21.00 0.178 .0085 .20

A - AVERAGE FRAME AREA, in2.

n	 nI CIA i	 Ci
i=1	 iT1

T = EQUIVALENT SURFACE PANEL AREA, in.2/in.

= A/b

w = EQUIVALENT SURFACE PANEL WEIGHT, lb./sq. ft.

= 23.04 x t

TABLE 12-103. DETAIL FUSELAGE WEIGHTS FOR THE'TASK II STRUCTURAL ARRANGEb:ENT

POINT
DESIGN

FUSELAGE UNIT WEIGHTS (Ib./sq.ft.)

PANEL FRAME TOTAL
REGION WEIGHT WEIGHT WEIGHT

FS 900 1.29 0.22 4.51

FS 1910 2.40 0.46 2.86

FS 2525 2.53 0.51 3.04

FS 2900 2.56 0.20 2.76

}
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APPENDIX A

HONEYCOMB SANDWICH FUSELAGE ASSESSMENT

INTRODUCTION

Preliminary structural analysis was performed to determine the applicability of a

honeycomb sandwich shell to a near-term Mach 2.7 supersonic cruise aircraft fuse-

lage design. This .investigation included sizing of the honeycomb shell. a% d.iacrete

regions for the design bending moments and shears, and also for the discontinuity

stresses caused by the pressure and temperature differential between shell, and

frame at the operational condition. The resulting weight trends of the sandwich

shell were identified and compared to the conventional skin--stringer construction.

POINT DESIGN REGIONS

For the structural--material investigation of the honeycomb sandwich fuselage design,

selective regions of the airplane were chosen for analysis and definition of the

load-temperature environment. Four point design regions were selected and are

shown in Figure A-r1 superimposed on the airplane configuration. Those regions se-

lected were located at fuselage stations 750, 2000, 2500 and 3000 "Id were consid-

ered as typical of the critical design regions on the fuselage and, in general,

classified as follows:

• Fuselage Forebody (FS 750) - Generally characterized as fatigue-designed

structure with low load intensitie p due to fuselage bending.

• Fuselage Centerbody (FS 2000 and 2500) - Wing/fuselage regions subjected

to maximum body bending and wing spanwise Loads.

o Fuselage Aftbody (FS 3000) - High 'body bending and torsion loads with

regions subjected tia a high acoustic environment.

PRECEDING PAGE BLANK NOT FUMM
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Figure A--1. Definition of Fuselage Point Design Regions

POINT DESIGN ENVIRONME7T

The load--temperature environment was defined at each of the aforementioned point

design regions to provide the foundation for the structural analysis and included:

a The load intensities due to the applied fuselage shear and bending

moments.

• The normal loads acting on the shell due to internal pressure.

• The average component temperatures and gradients associated with the

sandwich design.

The internal loads due to the fuselage shear and bending moments were calculated

using the external loads reported in Reference A-1. These external loads are

presented in Figures A-2 and A-3, with the following maximum point design values

for FS 2000, FS 2500 and FS 3000.
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Figure A-2. Fuselage Shear Diagram
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Ultimate
Benling Ultimate

Fuselage Moment Shear
Station (in-lbs) (lb)

2000 150 x 106 300 x 103

2500 200 x 106 450 x 103

3000 150 x 106 300 x 103

The corresponding internal loads were defined using the above applied Loads and

theoretical bending (MC/I) and shear (VQ,/I) distribution.

Pressurized cabin loads criteria for design differential pressures comply with

FAR 25.365 and were taken from Reference A-2. Design pressures are based on pro-
viding a 6000 ft. cabin altitude at a flight altitude of 70,000 feet. These con-

ditions produce a nominal cabin pressure of 11.8 psis, which combined with the

ambient, pressure at 70,000 ft. altitude of 0.6 psia results in a nominal differen-
tial pressure of 11.2 psi.

Maximum design differential pressure includes a tolerance which accounts for vari-

ations in static reference, a regulator valve tolerance, and relief valve toler-

ances as illustrated in Figure A -4.

An envelope of differential pressure values used to determine loads on the pressur-

ized cabin is shown on Figure A-5• The limits for structural design range from
-0.4 psi to 11.7 psi, with intermediate values between sea level and 38,000 feet.
The variation is established by considering a cabin pressure equal to sea level

pressure as a limiting value.

A differential pressure varying from -0..4 psi to the appropriate maximum differen-

tial pressure for a particular altitude, consistent with the design envelope shown

on Figure A-5, is combined with the external air loads and other appropriate struc-
tural loads due to maneuvers or gusts. For the operational condition (cruise), a

nominal differential pressure of 11.7 psi was used in combination with the thermal

environment for evaluating the fatigue strength. The maximum fuselage shell mem-

brane forces (ultimate) due to the internal pressurization are shown in 'Fable A-1.

This table contains both the meridional and hoop forces for each of the point de-

sign regions.
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Established Limit Design Differential Pressure
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TABLE A-1. FUSELAGE SHELL MEMBRANE FORCES DUE TO INTERNAL PRESSURIZATION

	POINT	 R	 A	 C	 UNIT	
DESIGN (E	 TOTAL HOOP

REGION	 2E	 X	 X	 $DESIGN	 in.	 in.	 in,	 (lb/in.)	 {PSI}	 (lb/in.)	 (Ib /in.}

	750	 72.0	 11,761	 411	 28.6	 17.55	 502	 1264

	

2000	 68.0	 10,787	 394	 27.4	 17.55	 480	 1193

	

2500	 68.0	 10,787	 394	 27.4	 17.55	 480	 1193

	

3000	 61.0	 11,690	 383	 30.5	 17.55	 535	 1070

1. NOMENCLATURE	 2. ULTIMATE DESIGN PRESSURE
R = SHELL RADIUS, in. 	 FOR START-OF-CRUISE FLIGHT
A= ENCLOSED PRESSURIZED AREA, in. 2	CONDITION
C = SHELL CIRCUMFERENCE, in.
UNIT NX = A/C, lb/in. Per psi 	 3. PRESSURIZED REGION
TOTAL N X = px(UNIT NX); lb/in.
N 9 = p x

 F
rillZZI-4111111

NOSE

	

GEAR	 WING BOX
WHEEL
WELL

FS 3.000

	

FS 750	 FS 2000	 FS 2500
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Temperature variations through the sandwich shell and frames were calculated using

the mission profiles defined in Reference A-2. These data are shown in `able A-2

for the maximum heating climb and maximum cooling descent condition for various

core thicknesses.

A summary of the point design environment which includes the inplane loads, normal

pressure, and temperatures is presented in Table A-3 for the start-of-cruise

condition.

TABLE A-2. FUSELAGE TEMPERATURES, HONEYCOMB SANDWICH DESIGN

0.5-in. CORE: 0.5 X 0.005 X 3/16 HEX, tf = 0.04-1n.

1.0-in. CORE: 1.0 X 0.0015 X 3/16 HEX, t f = 0.04-1n.

1.5-in. CORE:	 1.5 X 0.002 X 3/16 HEX, tf = 0.03-In.

LOCATION

MAX. HEATING CLIMB

MAX. O F END OF CLIMB

MAX. COOLING DESCENT

MAX. o f DURING DESCENT

thorn	 -	 0.5 1.0 1.5 torre	 =	 0.5 1.0 1.5

Ti 425 440 438 -31 -28 -27

T2 408 343 324 -21 22 33

T11 370 414 407

T12 336 264 239

T14 86 80 80
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TABLE A-3. FUSELAGE POINT DESIGN ENVIRONMENT, HONEYCOMB SANDWICH DESIGN

START OF CRUISE; MACH NO. 23, n,.-2.5

ITEM UNITS

FS 750 FS 2000 FS 2500 FS 3000

UPPER SIDE LOWER UPPER SIDE LOWER UPPER SIDE LOWER UPPER SIDE LOWER
PANEL PANEL PANEL PANEL PANEL PANEL PANEL PANEL PANEL PANEL PANEL PANEL

Nx LBIIN 1580 200 -1580 11630 1230 — 15730 1230 — 11630 1230 -11670

Nxy LB/IN 50 250 50 412 1360 — 629 2025 — 412 1360 415

INTERNAL PSI 17.55 17.55 17.55 17.55 17.55 — 17.55 17.55 — 17.55 17.55 17.55
PRESSURE

TAVG(1) OF 416 416 416 390 390 — 390 390 — 390 390 390

AT(2) °F 20 20 20 100 100 — 100 100 — 100 100 100

to	 NOTES:

^'	 1. AVERAGE FACE SHEET TEMPERATURE ATMIDBAYoa
2. TEMPERATURE DIFFERENCE BETWEEN FACE SHEETS AT MIDBAY

,f
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DESIGN ALLOWABLES

The tension allowables established to meet the fatigue and fail-safe requirements

of Reference A-2 were used for this structural. investigation. These requirements

were achieved by limiting the gross--area tension stresses for both the ultimate

and operational design conditions. For fuselage bending material, the ultimate

design gross area tension stress was limited to 90,000 psi, whereas, for the opera-

tional condition, the gross area tension stresses were limited to 25,000 psi for

the fuselage shell and 35,000 psi for the substructure.

The tension and shear stresses were combined using the principal stress equation

and compared to the appropriate gross area tension allowable. The principal stress

equation is

2	
1/2

fx + fe
	 [(,x	

+f2

fn	 2 	 2 1 	 xy

where the biaxial stress state is defined by the tension stresses in the axial (f X )

and hoop direction (f 0), and the shear stress fxy.

Allowable stresses were calculated for both the bending and shear general insta-

bility failure modes. The buckling equations and curves defined in Reference A-3

were used to predict the allowable load of the sandwich shell in bending. For the

torsional, buckling allowable, Reference A -4 was used to define the allowable shear

flow.

The interaction formula used to combine the compression and shear loads was the

conservative straight-line equation

Rb + Rt W I

where the quantities Rb and Rt are, respectively the bending and torsion load

ratios.
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FUSELAGE WEIGHT COMPARISONS

Weight comparisons are shown for the honeycomb sandwich fuselage design and the

conventional skin/stringer design. Both were sized using a common design criteria.

Honeycomb Sandwich Resign - A summary of the shell geometry and panel data for this

design is shown in Table A-4 with the panel data reflecting the upper shell require-
ments. Face sheet thickness ranged from a minimum of 0.020 inches at FS 750 to a
maximum of 0.092 inches at FS 2500. Identical race sheet thicknesses of 0.070 are

noted for FS 2000 and FS 3000. At the centerbody and aft body regions, core height and

cell size were held constant at values of 0.75 inches and 0.25 inches, respectively.

At the forebody region, FS 750, a core height of 0.500 inches and a cell size of
0.187 inches were used for the design.

A weight summary of the complete panel at each station are shown in Table A-5 and
contains the weight attributed to the core, brazing material, and the basic face

TABLE A-4;  FRJSELAGE PANEL GEOMETRY, HONEYCOMB SANDWICH DESIGN

POINT DESIGN REGION FS 750 FS 2000 FS 2500 FS 3000

SHELL GEOiViETRY

RADIUS (in.) 72.0 68.0 68.0 61.0
FRAME SPACING (in.) 40.0 40.0 40.0 40.0

PANEL DATA

HEIGHT, h (in.) 0.500 0.75 0.75 0.75
FACE SHT. THK., t (in.) 0.020 0.070 0.092 0.070
CELL SIZE (in.) 0.187 0.250 0.250 0.250

t

i
h

j
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TABLE A-5. SUMMARY OF FUSELAGE PANEL WEIGHTS, HONEYCOMB SANDWICH DESIGN

EQUIVALENT PANEL THICKNESSES

FACE SHEET BRAZE CORE TOTAL.CELL
POINT HEIGHT SIZE

DESIGN h S t tF WR tB PC to t
REGION (in.) (in.) (in.) (in.) (lbfft2) (in.) (lblft3) (in.) (in.)

FS 750 0.50 0.187 0.020 0.040 0.22 0.010 8.2 0.014 0.064

F$ 2000 0.75 0.250 0.070 0.144 0.20 0.009 8.2 0.020 0.169

FS 2500 0.75 0.250 0.092 0.184 0.20 0.009 8.2 0.020 0.213

FS 3000 0.75 0.250 0.070 0.140 0.20 0.009 8.2 0.020 0.169

t (TOTAL)	 tF+tB+tC

where.

tF	 =	 2t, in. Wb =	 BRAZE WEIGHT,lblft2

`B	 144 PF
PC =	 CORE DENSITY, II, O

PF = FACE SHEET MATERIAL DENSITY, lblin3

tC. —	
1728	

h t	
h =	 SANDWICH HEIGHT, in.

PF

t =	 FACE SHEET THK., in.
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sheets. The weight data for the 3003 aluminum braze alloy used for panel

fabrication was obtained from empirical data reported in Reference A-5. A core

density of 8.2 lb/ft3 was maintained for all panel designs to preclude any Local

failuxe modes (intracell bucUi.ng ,, face wrinkling) or an interaction of these modes

with the cylinder-buckling mode. This core density meets the core design criterion,

b ?.03, recommended in Reference A-3; where, b is the ratio of core density to face

sheet density.

With reference to the panel weights displayed in Table A -5, the formulas used for

computing the equivalent thicknesses (t) and unit weights are shown in the

footnotes.

The frame weights for the honeycomb sandwich design are shown in Table A-6  and re-

flects the equivalent panel thicknesses of the frames for a spacing of 40.0 inches.

Conventional Fuselage Design - The conventional Fuselage design was subjected to

point design analysis at the same regions using the identical design criteria as

used in the sandwich fuselage investigation.

Table A-7 snows the structural concept and corresponding panel dimension for shell

design at the most critical circumferential location for each point design region.

Equivalent panel thicknesses ranged from 0.056 inches for the zee-stiffened design

at FS 750 to 0.184 inches for the hat-stiffened concept at FS 2500. Similarly, the

frame equivalent thicknesses are shown in Table A-8 and includes the component

(frame and shear-tie) and total thicknesses required at each station.

Table A-9 summarizes the component thicknesses, the total equivalent thickness for

eecai point design region, and the corresponding unit weights for the conventional

fuselage design. A maximum weight of 1.75 lb/sq. ft. is indicated for the upper

panel at FS 2500; whereas, the similarly located panel at FS 750 weighs 1.54 lb/

sq. ft.

Design Comparisons -- Table A-10 summarizes the panel and total weight, frame and

panel, for both designs. The honeycomb design is heavier than the conventional

design at all fuselage stations investigated, with a maximum weight increase of

6-percent noted at FS 2500. This weight increment is attributed directly to the

panel weight as the weight of the frame for the conventional design are heavier

than those used in the sandwich fuselage design. It is further noted from a

12252



TABLE A-6. FUSELAGE FRAME WEIGHTS, HONEYCOMB SANDWICH DESIGN

POINT
DESIGN
REGION

CIRCUM.
LOCATION

FRAME
SPACING

L, (in.)

FRAME
AREA
A, (in 2)

EQUIVALENT
PANEL THICKNESS

FS 750 UPPER 40.0 0.20 0.005

FIBERS

FS 2000 UPPER 40.0 0.20 0.005

FIBERS

FS 2500 UPPER 40.0 0.20 0.005

FIBERS

FS 3000 UPPER 40,0 0.20 0.005

FIBERS

comparison of the basic panel data for each design, Tables A--S and A-7, that the

sum of the face sheets thicknesses for the sandwich design are equal to or less than

the corresponding equivalent thicknesses of the skin-stringer design. Hence the

parasitic weight of the core and braze alloy overcome any strength/weight advantage

of sandwich design, e.g., at FS 2500 equal thickness designs are noted prior to

inclusion of the parasitic weight to the sandwich design; whereas, after these

items are added to the sandwich design an increase of approximately 16--percent is

noted.
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POINT FUSELAGE PANEL DIMENSION
DESIGN PANEL LOCATION bs is C f h tst t
REGION CONCEPT (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.)

FS 750 ZEE- TOP 4.0 .036 .55 .75 1.00 .036 .056
STIFFENED SIDE 4.0 .036 .55 .75 1.00 .036 .056

BOTTOM 4.0 .036 .55 .75 1.00 .036 .056

FS 2000 HAT- TOP 6.0 .080 1.5 .80 1.25 .070 .145
STIFFENED SIDE 6.0 .063 1.5 .75 1.25 .040 .099

FS 2500 HAT- TOP 6.0 .100 1.5 .80 1.25 .090 .184
STIFFENED SIDE 6.0 .063 1.5 .75 1.25 .050 .109

FS 3000 HAT- TOP 6.0 .080 1.5 .80 1.25 .070 .145
STIFFENED SIDE 6.0 .063 1.5 .75 1.25 .040 .099

BOTTOM 6.0 .090 1.5 .90 1.25 .090 .177

f

'^

b bs ►- C	 f

I I E ^ ^

t5

h
is

C
tst tst

ZEE-STIFFENED CONCEPT HAT-STIFFENED CONCEPT

ro
Ev
Vn-p-

k	 ,

4

TABLE A-7. FUSELAGE PANEL GEOMETRY -- COTXMTTIONAL DESIGN

-
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TABLE A-8. FUSELAGE FRAME ZMIGHTS, CONVEliTTONAL DESIGN

POINT FRAME EQUIVALENT PANEL THICKNESS (t), IN.2/IN.

SHEARDESIGN CIRCUM, EP,%ING
REGION LOCATION (IN.) FRAME TIE TOTAL AVERAGE

FS 750 ALL 20,0 .007 .004 ,011 (.011)

FS 2000 UPPER 20.0 .018 1006 .024
(.023)

5110E 20.0 .016 .006 .022

FS 2500 UPPER 20.0 .016 .006 .022 (.022)
SIDE 20.0 .016 .006 .022

FS 3000 UPPER 20,0 .018 .006 .024
SIDE 20.0 .015 .006 .021 (.023)
LOWER 20.0 .019 .007 ,026

!(TOTAL) = ! ( FRAME + ! ( SHEAR TIE)

FRAME GEOMETRY

_4► .15

3.i5

SHEAR
TIE

^.75^

TABLE A-9. FUSELAGE SdEIGTJT SUMMARY, CONVENTIONAL DESIGN

POINT
DESIGN PANEL

EQUIV. PANEL THICKNESS (IN 2/IN.) UNIT
WEIGHT

WFRAME PANEL TOTAL
REGION CONCEPT t t t (LBISQ. FT)

FS 750 ZEE-STIFF. 0.011 0,056 ri...+7 1.54

FS 2000 HAT-STIFF. 0.024 0.145 0.169 3.89

FS 2500 HAT-STIFF. 0.022 0.184 0.206 4.75

FS 3000 HAT-STIFF. 0.024 0.145 0.169 3.89

NOTE: THICKNESS AT UPPER CIRCUMFERENTIAL LOCATION SHOWN

W = '144 X P XT (Iblft2)

WHERE: A= U.1701b/in3

1.2 -255
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TABLE A-10. COMPARISON OF FUSELAGE SHELL WEIGHTS, CONVENTIONAL AND
HONEYCOMB SANDWICH DESIGNS

FUSELAGE SHELL WEIGHT, lb. sq. ft.

CONVENTIONAL HONEYCOMB SANDWICH
POINT DESIGN

REGION PANEL TOTAL PANEL TOTAL

FS 750 1.29 1.54 1.47 1.59

FS 2090 3.34 3.89 3.89 4.01

FS 2500 4.24 4.75 4.91 5.02

FS 3000 3.34 3.89 3.89 4.01
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SECTION 13

FATIGUE AND FAIL-SAFE ANALYSIS

INTRODUCTION

Analyses were conducted to establish design stress levels for fatigue and fail-safe

evaluation of structural design concepts for an arrow-wing supersonic cruise air-

craft configuration. The primary structure was evaluated to meet the specific ser-
vice life of 50,000 flight hours and to support the fail-safe design load of 100 per-

cent limit load. Related design criteria as specified in the Federal Aviation Agency

FAR 25, Airworthiness Standards and the supplemental tentative Airworthiness

Standard for Supersonic Transports were used as the basis for this evaluation.

A description of design criteria, and the results of the fatigue, crack growth, and

fail-safe analyses are presented in the following text.

DESIGN CRITERIA

All commercial aircraft must be designed to meet Federal Aviation Agency FAR 25,

Airworthiness Standards: Transport Category Airplanes. For an advanced supersonic

transport, additional special provisions, similar to the tentative Airworthiness

Standards for the Supersonic Transport, will be specified prior to the design of

such an aircraft. These criteria specify that the flight structure whose failure

could result in catastrophic failure of the airplane must be evaluated to meet either

the fatigue strength requirement, Section 25.571(b), or the fail-safe strength

requirement, Section 25.572(c). The wing, fuselage and empennage structure of all
commercial aircraft are generally designed to comply with Section 25.571(c) and

therefore fatigue substantiation according to Section 25.571(b) is not required.

However, the structure is designed and generally fatigue tested to demonstrate to

the customers (airlines) that no major fatigue problems will - occur during the service

life of the aircraft. Therefore, in this study the various design concepts were

sized to meet both fatigue and fail--safe strength requirements.

'r
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No requirements are currently specified for crack growth. However, crack growth

analyses were conducted to show that small cracks that are likely to be missed on

a given inspection vrill not growr to catastrophic failure before the next inspection

period which is of the order of 8,000-12,000 flight hours.

Fatigue Design Criteria

The basic fatigue design criteria for this program is to provide a structure tb.at

wrill be good for a service life of 50,000 flight hours. Appropriate multiplying

factors are applied to the design life for use in establishing allowable design

stresses as discussed in Section 4. For structure subjecte d to spectra loading,

the allowables are selected using a factor of 2 times the service life of

50,000 hours. For areas of the fuselage structure subjected to constant amplitude

loading the allowable stresses are selected for 200,000 flight hours (50,000 x 4).

A larger factor is applied to constant amplitude loading because the scatter in

fatigue test data is larger for this type of loading.

Fail-Safe Design Criteria

Fail-safe designs are employed for the wing and fuselage structures which must be

capable of supporting the fail-safe design load of 100 percent Limit Load, as

defined in the tentative Airworthiness Standards for SST, for the damage cases

summarized below.

General

r Any single member completely severed. For fail-safe purposes, a single

member is any redundant structural member, or that part of any member, of

several elements where the remaining part can be shown to have a high

probability of remaining intact in the event of the assumed failure. It

must be demonstrated that the damage to the assumed severed part can be

discoverable by normal inspection methods.

r Extensive structure severed between the boundaries of effective crack

barriers. A mechanical splice (not welded) or major structural members

(frame, fail.-safe straps or stringers) which are mechanically

13-2
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fastened to the skin are considered to be effective crack barriers. Tests

must be conducted to demonstrate that bonded or brazed reinforcements are

effective crack barriers.

• In extensively stiffened skin structure, a major structural member, attached

directly and continuously to the skin, fractured, together with the skin

between adjacent crack barriers.

• For skin surfaces with no effective crack barriers (splices, stringers,

fail-safe straps, etc.), the structure must be capable of supporting the

fail-safe load with a 20 inch skin crack using "B Basis" fracture toughness

allowables for appropriate temperatures, grain direction and material

thickness.

• Welded and laminated skin structure must be considered monolithic for the

purpose of fail-safe design. Welded ,joints cannot be considered as crack

stoppers.

• All fail.-safe joints and skin splices shall be designed to have sufficient

shear lag to distribute loads from the failed section. This can be

achieved by:

(a) Designing the joint to be bearing critical,.

(b) Providing sufficient margin in fastener shear strength so that

progressive failure of the fasteners will not occur prior to

skin and reinforcement failure.

Wing Structure - The wing structure is designed to meet 100 percent Limit Load
requirements in the presence of the damage conditions specified below:

• Completely failed shear web of a rib, a spar or a bull,,head.

• Any single member of a truss.

o Failed rib cap or any other element of the rib.

• Failed spar cap.

• For stiffened skin construction the following damage conditions shall apps;,

(a) one to three failed stringers together zri.th a skin crack between
adjacent intact stringers. The Dumber of failed stringers depends

13-3



on the Ltringer spacing. Skin crack sizes should be of the order

of 6-10 inches long.

(b) A spar cap or other spanwise reinforcing member, attached directly

and continuously to the skin.., completely severed with a chordrrise

skin crack between adjacent stringers.

(c) A chordwise reinforcing member, attached directly and continuously

to the skin, failed along with a 20 inch spanwise skin crack using

"B--Basis" allowables for the skin material. Members with flexible

attachments to the skin (through clip) need not be considered broken

with a skin crack.

s For sandwich-type construction (monocoque) the following shall apply:

(a) A major reinforcing element (fail-safe strap, stringer, =etc.)

attached directly and continuously to a sandwich skin surface, failed,

together with skin cracks in both skins between intact adjacent barriers.

Fuselage Structures - Fail-safe requirements for the fuselage structure are met

using normal relief valve pressure setting plus external air loads and fail-safe

limit design load for the following damage conditions:

• Any of the applicable General or Wing Structure conditions described above.

o For stiffened skin construction:

(a) A typical frame broken together with a longitudinal skin crack

between adjacent fail-safe straps.

(b) A fail.-F.afe strap broken together with a longitudinal skin crack

between adjacent intact fram.:s.

(c) A single stringer failed along with a circumferential skin crack

between intact stringers.

• A main frame completely severed.

I
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FATIGUE ANALYSTS

Wing Structure

Preliminary fatigue lives were calculated for spanwise bending loads acting on the

wing structure. These lives are plotted on Figure 13--1 as a function of ultimate

design gross area stress and fatigue quality index. The curves on this figure are

developed using the concept of linearly cumulative damage with an average flight of

two and a half hours; a once-per--flight peak-to-peak ground-air-ground cycle; the

climb, cruise, descent and taxi loading of Spectra "C" (see Section 4); and the

standardized constant-life diagrams for axial loading of Ti 6Al-4V sheet and plate

shown on Figures 13-2 through 13-5.

The calculated lives shown on Figure 13-1 led to the selection of an ultimate design

gross area stress level of 90 ksi and a design fatigue quality index of K = 5.

This selection is somewhat more conservative than specified in Section i4, since the

calculated life equals or exceeds 45,000 flights or 112,500 flight hours rather than

100,000 flight hours as specified in Section 4. Curves showing ultimate design stress

versus fatigue quality are shown on Figure 13-6 and the fatigue quality and design

allowable stresses for the various design concepts are summarized on Table 13-1.

The ultimate design stresses shown on Figure 13-6 are applicable for general wing

structure subjected to spanwise bending and fuselage bending material.

Fuselage Structure

Figure 13--7 presents the relationship between fuselage circumferential design stress

and fatigue quality for 50,000 hours of service based on an average of two and a half

hours, one pressure cycle per flight and a life reduction factor or 4 which is

applicable for constant amplitude loading. In Figure 13-7, the maximum design ten-

sion stress corresponds to twice the value of the variable stress for a once-per-

flight peak ground-air-ground cycle, fvary(OPFP GAG)' for R=0 and R=100,000  cycles

to failure on S-N diagrams for Ti 6A1--4V (mill annealed) sheet and plate with

Ftu :__ 135-155 ksi..

The operational design gross-area tension stresses shown on Figure 13-7 commensurate

with a fatigue quality index (K^) of 5 were used for the fuselage analysis, i.e.,

25 ksi for fuselage skin circumferential stresses and 35 ksi for the substructure

(frame) stresses.
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TABLE 13-1. SUMMARY OF FATIGUE ALLOWABLES FOR WING STRJCTURE

KQ ULTHKATE DESIGN
STRESS, PSI

CHORDWISE STIFFENED

•	 PANELS WELD BOND 4 97,000

0	 JOINT-BOND
FEATHER EDGE OUTER SHT. 7 75'Doo

f	 (LOCALLY)

BOND .075 MIN.

w	 0	 SUBSTRUCTURE 5 90,000

•	 SPARS 5 90,000

SPANWISE STIFFENED

•	 CLEAN AREAS 4 97,000

MONOCOQUE

CLEAN PANEL AREA 4 97,000

•	 LOCAL MECH JOINT 5 90,000

•	 ALL WELDED

I

4 97,000
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Figure 13-7. Variation in Fuselage Circumferential
Design Stress with Fat:iGue Quality
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The allowable hoop stress for the skin is approximately 28-percent lower than the

frame allowable since the skin is subjected to biaxial stresses due to pressure and

thermal loads, whereas, the frames are primarily uniaxially loaded.

For fuselage bending material., the ultimate design gross area stress is limited to

90,000 ksi for a fatigue quality index of 5. This value is shown on Figure 13-1

and is applicable to both wing lifting surfaces and fuselage bending material.

Interaction Equations

For shell structure and other areas of the airframe subjected to biaxial and/or

shear loads, the Octahedral Shear Stress Theory is used to calculate the applied

stress level for fatigue analysis. In this theory, the equivalent axial stress

( Seq ) for a biaxial stress field in terms of the x and y stress components is as

follows:

1/2
Seq	 ( Sx Sy - SxSy 3 SXy )

where S  Sy are the direct stresses in the x and y directions, respectively and S
x

is
,Y

the shear stress in the x-y plane.

Or the equivalent stress may be stated in terms of the principal biaxial stresses

l/2

where the principal stresses (S1 and S2 ) are given by:

2	
1/2

S	
-Sx^SV+
	

Sx Sy	
^-S2

1,2 -
	 2	 _	 2	 )	 xy

For this analysis, the ultimate tensile stress calculated using; the Octahedral

Stress Stress Theory (S eq) was not allowed to exceed the maximum principal stress,.

max (S 
l' 

S2).
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Seq. s max (Sl , S2)

These equations have been visually displayed in Figure 13-8 in terms of interaction

equations. Quadrant 1 uisplays the stress state when-both principal stresses are

tension and the equivalent stress is constrained so as not to exceed the maximum

principal stress. For pure plane shear, mid-point of quadrant 2 and 3, the Octabedral

Shear Stress Theory predicts an equivalent stress that is equal to 58-percent of the

stress level for an unidirectioned axial load.

CRACK GROWTH ANALYSIS

A preliminary analysis was performed to investigate the fatigue crack growth rate

behavior of Ti 6Al-4V, mill-annealed plate when subjected to the Spectra C loading

history (reference Section 4). The analysis results reported indicate the effects
of design stress and environment on crack growth.

For crack growth prediction it must be possible to obtain an expression for the

stress intensity K which characterizes the severity of the local stresses and

deformations at the crack tip. For the present analysis, the configuration analyzed

was a standard through--thickness crack of length 2a in the center of a wide Flat

panel, subjected to a uniform gross area tension stress S. The stress intensity

for this configuration is given by;

K = S 7r a
	

(1)

For fatigue crack growth analysis, an effective cyclic stress can be defined

(Reference 1) to characterize the tendency of the fatigue cycle to cause crack

growth. For a fatigue cycle with a maximum tensile stress (S max ) and a minim-uu-

to-maximum stress ratio (R), the effective cyclic stress is given by (Reference 2)

6eye = (1 MAX (R, Rc )1m Smax
	 (2)

where m and A  are empirical constants and MAX (R,Rc ) takes the value of the larger

of its arguments. For Ti 6Al-4V, m = 0.75 and Be = -1.
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The crack growth resistance of the material is usually described by a functional

relationship between the crack growth per cycle and the effective cyclic stress

intensity From a constant amplitude fatigue test:

	

da/dN = f (K eye)
	

(3)

The effective cyclic stress intensity Kcyc can be calculated by using Seye from
Equation (2) in place of S in the stress intensity expression such as Equation M.

For a particular material, product form and thickness, grain direction, chemical

environment, cyclic frequency and temperature the function f in (3) is unique.

Table 13--2 lists points on a plot of da/ dN vs. Kcyc for mill annealed Ti 6A1-4V
thin sheet in laboratory air and 3.5 percent NaC1 solution for cyclic frequencies

of approximately 10 Hz. For any intermediate value of K oy the corresponding value
of da/dN can be found by linear interpolation on log (da/dN) vs. log (Kcyc).

A variable-amplitude sequence of cycles occurs for aircraft in service. If the

interaction between different loading cycles i^. the sequence is neglected the mere»

went of growth caused by the jth loading cycle is

	

( Aa ) i = f (Kcyc)J	
(4)

where f is the constant amplitude crack growth rate function, Equation (3), exem-

plified by Table 13-2.

For many loading spectra the loading cycles do interact. The major effect that has

been observed is retardation of crack growth following a high tensile loading.

Various investigations (References 3 and 4) have proposed simple retardation models

to include this effect in the crack growth calculation.

TABLE 13-2. CRACK GROWTH RATE, Ti 6A1-4v SKEET

Kcyc

CRACK GROWTH RATE, da/dN
(Microinch/Cycle)

NaCI Air
(ksi-	 inch) Environment Environment

30 85 32.5
40 100 54

56 130 130

75 370 370

95 3,500 3,500
115 34,000 34,000
140 600,000 600,000
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Figure 13 -9 shows a scaled sketch of the once-per-flight maximum cyclic stresses
during taxi, climb, cruise, and descent for Spectra "C" of Reference 5, for a 1-g

stress of 25 ksi. Note that the peak-to-peak GAG cycle is several times greater

in amplitude than any other cyclic loading that occurs within a flight. Therefore,

for expediency in this preliminary analysis all cycles were neglected except the

once per flight peak-to-peak GAG cycle. An approximate analysis has shown that $ of

the cycles given in Figure 13 -9, the GAG cycle causes about 95--percent of the calcu-

lated crack growth damage. It is unknown how much additional crack growth might be

caused by the very low amplitude gust cycles which would occur in large numbers in

service, but which were deleted From Figure 13--9 for analysis of fatigue crack initiation.

For an initial crack length of 2a = 0.25 inch the calculated crack, grc.wth lives

based on GAG cycles only are shown ir. Table 13-3. These calculated lives do not
reflect real--time, real-temperature effects on crack growth, except that the loading

spectrum contains thermally-induced stresses which contribute to the once-per-flight

peals stress.

FAIL-SAFE ANALYSIS

General

The objective of the damage tolerance analysis was to ensure that structures in the

presence of an assumed damage condition are capable of supporting the damage--

tolerance design Load of 100-percent limit load.

The analysis method used is presented in Reference 6. Figure 13-10 outlines the
method and available data used in determining the residual strength of damaged

reinforced structure. Figure 13-11 shows the idealized reinforced panels with two-

bay and multi-bay damages. Essentially the method provides reinforcement efficiency

for stiffened flat panels based on the given reinforcement spacing and area. A CPS

(conversational Programming System) program was used to facilitate the computational

procedure. In addition, the margin of safety is also calcti ated by the program

based on the applied design limit load. A resultant positive *argin of safety indi-
cates that the structure analyzed is capable of withstanding the imposed damage.

On the other hand, a negative margin of safety results in a corresponding weight

penalty. This is due to the additional reinforcing straps required for the
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TABLE 13-3. RESULTS OF PRELIMINARY CRACK GROWTH ANALYSIS

CRACK GROWTH
1-g STRESS LIFE, 110 = .25

(Ksi) ENVIRONMENT FLIGHTS	 HOURS

25 Lab. Air 4560	 11400
25 3.5% NaCI 5550	 8875
30 Lab. Air 2380	 5950
30 3.5% NaCI 2080	 85200

NOTE: INSPECTION INTERVAL. 8000-12000 FLIGHT HOURS
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particular structure to achieve an acceptable margin of safety. Weight penalties

are calculated in terms of equivalent surface panel weight. A significant weight

penalty trill affect the local stress distribution and a redesign might be

necessary.

The minimum damaged condition assumed for reinforced panels was at Least a two-bay

skin crack with a broken stiffener. A multiple-bay skin crack with broken intermediate

stiffeners was conservatively assumed for those design concepts having closely spaced

stiffeners (<4 inches). A multiple--bay skin crack was used for the purpose of obtain-

ing a reasonable crack Length to facilitate visual inspection.

For those regions that are subjected to extremely low load intensities, the use of

fail-safe straps is not required if the structure is capable of supporting limit

load with a 20 inch crack, as specified in the fail-safe cri:;eria. Figure 13-12

shows the allowable ultimate design tension stress for this damage condition.

The limit internal loads used in the damage-tolerance analysis were obtained from

the combined ultimate internal load calculations which included the effect of air

and inertia loads, local pressure loads, and thermal loads. The ultimate stresses

for each of the design concepts can be found in the following paragraphs. The

limit loads were taken to be two-thirds of the ultimate loads. Only the tensile

component acting perpendicular to the crack plane and the shear load were taken

into account. For the cases considered in this study, all compressive loads were

neglected and thus resulted in a conservative estimation on the residual strength

of damaged structure.

Fracture toughness properties of Ti 6A1-4V at room temperature was used in lieu of

established data at elevated temperature. A lower bound cut-off value of

0.015 inches on skin thickness was,used.

Fail-Safe Analysis - Task I

The Task z results are presented in the following sections according to the different

design concepts evaluated. Appropriate comments, conclusions and estimated weight

penalties, if any, are also included in the respective sections. Three wing point-.

design regions were selected for screening all the Task 1 panel concepts. These

regions were point-design regions 41348, 40536, and 40322. The locations of.these
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point-design regions are as indicated in Figure 13 -13. However, only those concepts

that appeared to be the most critical were studied. Furthermore, not every possible

dimensional variation of a design concept was analyzed. However, an adequate number

of possible variations within a particular design concept werb Selected for analysis

based on our experience with this design concept. The representativeness of con-

clusions reached is thus assured.

In summary, the following comments can be made concerning the damage tolerance of the

various design concepts considered. All the chordwise stiffened wing panel concepts

meet the fail-safe requirements. However, when the requirement of a broken spar cap

is considered, additional structure and its corresponding weight penalty are generally

required. For the spanwise stiffened panels, no weight penalty is required for the

panels or caps to meet the assumed fail-safe requirements. The composite reinforced

spar caps all meet the fail--safe requirements without additional weight penalty. A

weight penalty is generally required for the monocoque sandwich panels (honeycomb

and truss-core sandwich) except for design regions where low load intensities were

indicated. Finally, the metallic fuselage panel concepts considered are fail-safe

under the assumed damage condition except at a few isolated panel locations.

Chordwise Stiffened Wing. Panels - Four panel concepts were studied within the chord-

wise stiffened panel arrangement. These concepts are: (1) convex beaded, (2) con-

cave beaded, (3) trapezoidal corrugation-concave beaded, and (4) beaded trapezoidal

corrugation-concave beaded. The Structural Concept Analysis Section (Section 12)

contains the panel dimensions resulting from the strength analysis. The corre-

sponding skin stress state for these designs, which are used as the basis for the

fail-safe investigation, are contained in Table 13-4.

Due to relatively small stiffener spacing of the chordwise stiffened panels, a

damage condition of a three-pitch outer skin crack witb two broken reinforcing

stiffeners (inner bead) was 'selected. This resulted in a. crack size of 5 inches

to 13 inches, with the majority of the cracks having a crack length between

7-inches to 10 inches.

The outer skin was treated as a flat panel with the inner beaded skin considered

to be the reinforcement. The effective area, Ae, of a reinforcement was taken to

be one-third of the total area of the inner-bead between bond lines. The reduction

factor of 1/3 is selected based on past experience with various stiffened panel concepts.

1.3-20



FABLE 13-4. SiTi MRY OF WING PANEL S= STRESSES, CHORDWXSE ARRA MENT

HLA)i

POINT DESIGN ULTIMATE SKIN STRESS (1) (2) (3)

40322 40536 41348

UPPER LOWER UPPER LOWER UPPER LOWERPANEL SPAR
CONCEPT SPACING1 SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE

(IN)
fx fs fx fs fx fs fx fs fx fs fx f s
(ksi) (ksi) NO NO (ksi) (ksi) ( ksi) (ksi) (ksi) (ksi) (ksi) (ksi)

CONCAVE BEADED
20 - 3.35 - 3.44 -- 43.2 22.0 53.8 -- 44.6 24.3 54.3

-^--- 30 - 3.04 - 3.14 - 36.4 17.8 44.4 - 37.4 23.5 53.8
40 -- 2.45 - 2.89 -- 28.2 15.1 38.6 -- 29.4 21.1 48.1

CONVEX BEADED
20 -- 3.81 - 3.85 - 43.9 22.5 54.7 - 45.4 24.2 54.6

^L 30 -- 2.51 - 3.48 -- 38.1 19.1 47.4 - 40.5 24.9 55.1
40 - 2.11' - 2.80 - 34.1 15.5 38.7 - 36.2 20.4 45.0

TRAPEZOIDAL
CORRUGATION- 20 - 3.0.6 - 3.80 - 52.3 20.6 50.1 - 61.0 25.0 51.7
CONCAVE BEADED 30 - 2.80 -- 3.40 - 47.9 17.5 55.4 - 49.7 22.4 52.8
v 40 2.40 - 3.30 - 40.6 14.6 48.3 -- 47.8 19.8 50.7

BEADED TRAP.
CORRUGATION- 20 - 3.20 -- 3.40 - 59.4 21.1 55.3 - 61.2 23.5 52.2
CONCAVE BEADED 30 - 2.60 - 3.30 - 53.0 17.3 54.7 - 54.8 21.7 52.0

-1 40 - 2.40 --- 2.90 - 50.0 14.6 55.8 -- 52.6 19.0 52.9

(1) ULTIMATE SKIN STRESSES FOR TASK I LOAD CONDITION 31: 2.5 -g SYMMETRIC MANEUVER
AT MACH 1.25

(2) LIMIT STRESS = 213 ULTIMATE STRESS
(3) COMPRESSIVE STRESSES CONSERVATIVELY NEGLECTED FOR FAIL SAFE ANALYSIS



Values of fraction toughness were based on the thickness of the outer skin, and

were obtained from Figure 5•-7 of Reference 6 or FiLrure 13-10c. A, sample panel

fail-safe calculation is shown in Table 1:3-5 for the convex beaded concept at point

design region 40536. For visibility, the panel dimensions for this region are

shown in Table 13-6.

The damage-tolerance analysis results for the chordwise stiffened panel arrange-

ment are summarized in Table 13-7. No weight penalty was required for any r , P the

chordwise panel concepts analyzed.

In addition to the panel, analysis, a fail-safe analysis was also conducted for the

case of a broken spar cap. The severity of a broken spar cap is recognized due to

the fact that in the chordwise arrangement the spar caps carry the i-ri.ng spanrri.se

bending Loads.

A strength analysis was used to study a basic structural component, as sho Tem in

Figure 13-14, in the chordwise stiffened panel arrangement. The top spar cap in

Bay 1 was assumed to be broken. A load redistribution study was conducted for the

three spar spacings of 20, 30, and 40 inches. The convex beaded panel concept was

seLectcd for this analysis as being representative of the chordwise arrangement.

The shear clips, surface panels and spar webs were then resized to carry the

resultant loads under the damaged condition. The corresponding weight increase at

various spar spacings are presented in Table 13 -8• The component weight penalties

at point design region 40536 are presented in graphic.form in Figure 13-15•

Spanwi.se Stiffened Wing Panels - Two significantly different groups of design con-

cepts were studied for the Task S spanwise stiffened panel. arrangement. The first

group consists of panels with separate reinforcements and the second group consists

of integrally stiffened panels. The first group (non-integral stiffened) was ana-

lyzed using the method described for the chordwise stiffened panels. For the inte-

grally stiffened panels, a damage tolerance penalty is sometimes necessary due to

the lack of crack stoppers and a damage condition of complete fracture between

manufacturing splices is generally assumed. A discussion on integrally stiffened

panels is included in this section.
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TABLE 13-5. WING PANEL FAIL-SAFE ANALYSIS - CONNED BEADED CONCEPT

ITEM POINT DESIGN REGION 40536

UPPER SURFACE LOWER SURFACE

SPAR SPACING 120 30 40 20 30 40
Lp,X 1N.

DISTANCE BETWEEN 7.65 8.85 10.65 7.05 8.25 10.65
UNBROKEN BEADS (in.)

CRACK LENGTH (in.) 7.65 8.85 10.65 7.05 8.25 10.65

LIMIT STRESSES

fx,psi - - - 15000 12700 10300

fl, psi 29300 25400 22800 36500 31600 25800

EFFECTIVE AREA, (10. 2 ) 0.029 0.048 0,067 0.025 0.035 0.055
(113 X TOTAL AREA)

SKIN THICKNESS tu,in. 0.035 0.036 0.040 0.025 0.029 0.037

FRACTURE TOUGHNESS 108 109 113 94 100 110
ka, Ksi -- Vifr

REINFORCEMENT 1.26 1.31 1.36 1.29 1.33 1.38
EFFICIENCY, Y

SHEARCORRECTION 1.00 1 .00 1.00 0.38 0.37 0.37
FACTOR, It

MARGIN OF 0.68 0.90 1.0B 0.16 0136 0.68
SAFETY

TABLE 13-6. WANG PANE, GEOME'T'RY - CONVEX BEADED CONCEPT

DESIGN DATA

POINT DESIGN REGION 40536

UPPER SURFACE LOWER SURFACE

SPAR SPACING
Lp,x in. 20 30 40 20 30 40

DIMENSIONS
tL, in. .025 .035 .040 .024 .028 .033
tu, in. .035 1036 .040 .025 .029 .037
R L in. .9 1.1 1,4 .8 1.0 1.4

9 , degrees B7 87 87 87 87 87
b, in. 35 .75 ,75 .75 .75 .75
pitch, in. 2.55 2.95 3.55 2.35 2.75 3.55

WEIGHT DATA

T, in. .070 .085 ,097 .058 ,068 084
w, ]b/sq. ft. 1.61 1196 2.24 1.34 1.57 1.94

CRITICAL DESIGN COND, 31 37 37 31 31 31

DIMENSIONS:

I-+	 PITCH--tu
/l to

6

i	 b ^-	 tL

Op p() QUAG.E'il; 13-23



TABLE 13-7. SUMMARY OF WING PANEL FAIL --SAFL ANALYSIS - CHORDWISE ABRANGEMENT

w
i

iV

DESIGN
CONCEPTS

POINT
DESIGN
REGION

WING
SURFACE

SPAR
SPACING
(IN.)

CRACK
LENGTH, W.
(IN.)

EAelt
(IN.)

REIN-
FORCEMENT
EFFICIENCY

7

MARGIN
OF
SAFETY

WEIGHT
PENALTY

CONVEX BEADED 41348 UPPER 20
30
40

7.65
8.85

10.65

1.61
2.43
3.10

1.26
1.31
1.35

0.64
0.79
0.96

NONE

LOWER 20
30
40

6.45
7.05
7.65

1.57
1.43
1.39

1.26
1.26
1.27

0.23
0.19
0.54

NONE

40536 UPPER 20
30
40

7.65
8.85

10.65

1.66
2.67
3.35

1.26
1,31
1.36

0.68
0.90
1.08

NONE

LOWER 20 7.05 2.00 1.29 0.16 NONE
40322 UPPER 20

30
7.65
9.45

1.87
2.43.

1.27
1.31

HIGH
HIGH

NONE

LOWER 20 7.65 1.70 1.26 HIGH NONE

CONCAVE BEADED 41348 UPPER 20 8.25 2.03 1:28 0.62 NONE
LOWER 20 6.45 1.45 1.26. 0.25 NONE

40536 UPPER 20 8.25 2.21 1.29 0.64 NONE
LOWER 20 7.05 2.12 1.30 0.19 NONE

40322 UPPER 20 7.65 3.13 1.32 HIGH. NME

TRAPEZOIDAL
WITH NO BEAD
v-

41348 UPPER 20 5.25 1.87 1.24 0.32 NONE
LOWER 20 6.75 1.00 1.24 0.29 NONE

40536 UPPER 20 6.15 1.87 1.25 0.45
LOWER 20 6.75 1.29 1.25 0.42 NONE

40322 UPPER 20 6.75 2.25 1.27 HIGH NONE
TRAPEZOIDAL
WITH INNER BEAD

W

41348 LOWER 20 6.45 1.05 1.24 0.34 NONE
40536 LOWER 20 6.45 1.25 1,25 0.29 NONE

NOTE: (1) W= DISTANCE BETWEEN THE TWO UNBROKEN REINFORCEMENTS.
(2) EAe = SUM OF THE EFFECTIVE AREAS OF THE TWO INTACT REINFORCEMENTS.

.(3) t= SKIN THICKNESS OF THE OUTER SKIN.
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Figure 13-14. Basic Structural Component With a Damaged Spar
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The structural concepts and detailed panel dimensions are shown in Section 12.

The spanwise-stiffened panel concepts considered are: (1) Hat Section stiffened,

(2) Zee Section stiffened, (3) Zee Section Integrally Stiffened, and (4) basic

Integrally Stiffened.

Non--Integrally Stiffened Designs - For the Hat Section and Zee Section concepts

a two-pitch crack with a broken stiffener was used as the damage condition

wherever applicable. This assumption, except in one or two cases, resulted in

a satisfactory crack length for visual inspection purposes. The effective

area, Ae , was calculated using the formula:

EA = Ast

e (ylP)
2 * 1

Where Ast is the area of the stringer ( or reinforcement), y is the distance

from the inner surface of the sheet to the centroid of the reinforcement, and
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TABLE 13-8. POINT DESIGN WEIGHT PENALTIES FOR A DAMAGED
SPAR CAP-CHORDWISE ARRANGEMENT

POINT
DESIGN
REGION

WEIGHT PENALTY (L.B/SQ FT)
SPAR SPACING, IN.

20 30 40

40536 0.93 0.75 0.63

40322 0.10 0.20 0.27

40236 1.75 1.45 1.38

3.0

I--
a_
d
m
-^ 2.0

E--J
Q
z
as
a.

1.0
CD

E

0

CHORDWISE ARRANGEMENT
CONVEX-BEADEDPANEL
POINT DESIGN RE=GION 40536

CLIPS

TOTAL

PANELS
SPAR WEB

20
	

30
	

40

SPAR SPACING, IN.

Figure 13-15. Component Weight Penalties for a Damaged
Spar Cap -Chordwise .Arrangement
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p is the radius of gyration of the reinforcement. The spar spacing was

constant at 60 inches with variable rib spacings of 20 inches, 30 inches,

and 40 inches. A sample analysis is shown in Fable 13-9 and represents the

Hat Section stiffened concept at point design region 40536. The corresponding
panel geometry for this region is shown in Table 13-10. The skin stresses at

all point design regions for each of the spanwise panel concepts are displayed

in Table 1311.

A summary of the calculations for the spanVrise panel concepts with non-integral

stiffeners is shown in Table 13-12. No weight penalty is required for these

designs.

Integrally Stiffened Designs - The damage condition for integrally stiffened
panels was taken as a completely broken panel between skin splices. The

fabrication limits for the spanidse integrally stiffened panels allows a

maximum width of the extrusion before machining of 22 inches. Since the spar
spacing is set at 60 inches, the logical choice for plank spacing is 20 inches

(i.e., three planks per bay) with the rib spacing a variable.

Based on the above plank width and rib spacings, a damage-tolerant design can

be obtained utilizing the concept of longitudinal-spliced panels, Reference 6.
Suitable splices and attachments are used to allow the attachments to transfer

the cut load of the broken plank to the two neighboring planks. The two

neighboring planks are required to have sufficient effective width so that

each panel will support half of the cut load in addition to its normal fail-

safe load.

A summary of the fail-safe analysis conducted on the integral stiffened span-
wise concepts is shown in Table 13-13. For this analysis, the spar spacing (W)
and plank width (Wm) were 60.0 inches and 20.0 inches respectively. An effec-

tive . width (We ) of one-third the rib spacing was . conservatively selected and

the ratio of allowable stress (Fg) to the material ultimate tensile stress

(Ftus) was obtained from figure 4-20 of Reference 6. A positive margin of
safety is indicated for each of the critical. panel concepts with a minimum

margin of +0.24 occurring on the integral stiffened design at a rib spacing

of 30 inches. This critical design is located on the trine; lower surface at

point design region 40322.
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TABLE 13-9. WING PANEL FAIL-SAFE ANALYSIS - HAT SECTION STI FFENED CONCEIT

ITEM
POINT DESIGN REGION 40536

UPPER SURFACE LOWER SURFACF

RIBSPACING
LP,y,in. 20 30 40 20 30 40

DISTANCE BETWEEN
UNBROKEN REIN-
FORCEMENTS, in. 0.39 8.42 10.0 8.05 0.06 10,2

CRACK LENGTH, In. 6.39 8.42 10.0 8.05 a.98 10.2

LIMiTSTHESSES
fy, psi - - - 41,600 44,600 46,100

is, psi 36,200 31,000 27,200 25,500 26,800 26.400

q, lb/in. 2,780 2,781 2.702 2,782 2,782 2,762

EFFECTIVE AREA
AS , In .2 0.374 0.561 0.780 0.067 0.710 0.818
(7/0)2 + 1 2.772
Aa, In.? 0.135 0.202 M281 M241 0.256 0.295

SKIN THICKNESS, In. 0.077 0.087 0.102 0.109 0.104 0.105

FRACTURE TOUGHNESS
ko, ksi • 4 In. 132 135 137 138 137 137

REINFORCEMENT
EFFICIENCY,	 'r 11309 - - 1.454 1.557

y - - O.B15 0.826

MARGIN OF SAFETY 1.38 - 0 .75 - 0.54

FABLE 13-10. WING PANEL GEOMETRY - HAT SECTION STIFFENED CONCEPT

POINT DESIGN REGION 40536
DESIGN DATA UPPER SURFACE LOWER SURFACE

RIB SPACING Lp,y, in. 20 30 40 20 30 40

DIMENSIONS
ts, In. .077 .087 .102 .109 .104 .105
bs = bw = by, in. 1.60 2.11 2.51 2.01 2.24 2.55
tw = tf, In. .071 .081 .094 .101 ,096 .097
b f, in, .479 1605 .753 1600 .672 .765
be b f, in. 1.12 1.41 1.76 1.40 1.57 1.78
pitch, by k bs, in. 3.20 4.22 5.02 4.02 4,48 5.10

WEIGHT DATA
i, In. .194 .221 .258 .275. .262 .266
W, lb/sq, ft. 4.47 5.06 5.94 0.33 6.05 6.12

CRITICAL DESIGN COND. 31 31 31 31 31 31

Dl . E SIGNS
1-- ^pitch ts

b^

bf

L_	 L^bs 
bf	 I	 t+x

p^G	 y3-28
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FABLE 13-1.1. SiTNSMARY OF WM PANEL SIGN STRESSES, SPANUSE ARRANGMIENT

W
I
IU

POINT DESIGN SKIN STRESS (ULTIMATE) (1)(2)(3)
40322 40536 41348

PANEL RIB 5P AGING UPPER LOWER UPPER LOWER UPPER LOWER

CONCEP T (IA SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE

fy fs fy fs fy fs fy fs fy fs fy fs
(ksi) (ksi) (ksi) (ksi) {ksi} (ksi) fksi) (ksi) '(ksi) (ksi) (ksi) (ksi)

HAT
SECTION 20 -- 11.1 46.6 14.3 -- 54.2 62.4 38.3 - 51.2 61.1 43.8

30 - 8.2 65.0 14.3 - 47.7 66.9 40.1 -- 40.9 60.3 43.4

EE

F 40 - 6.6 84.0 13.9 - 40,9 67.7 39.6 - 34.7 60.9 44.0

ZEE_
SECTION 20 .- 9.2 48.4 14.5 - 45.1 68.4 41.1 -- 45.4 61.4 43.2

30 -- 6.7 66.3 14.3 -- 41.5 68.3 40.2 -- 36.4 60.7 42.9.
40 - 5.2 87.2 14.1 - 36.6 69.3 39.8 - 31.0 60.8 43.1

INTEGRAL
STIFFENED 20 - 7.4 56.2 14.2 - 41.5 63.6 07.4 - 37.9 55.9 38.7

30 - 5.3 81.8 14.2 -- 35.3 63.6 36.4 -- 30.0 56.1 39.2
40 -- 4.2 81.5 11.3 - 30.0 63.6 35.4 - 25.3 56.5 39.6

INTEGRAL
.ZEE 20 - 9.4 .54.7 14.4 - 43.1 61.6 34.4 - 45.3 58.6 38.3

30 - 6.8 77.6 74.4 -- 40.6 62.5 34.2 - 36.7  5 ^3 39.1
LL 40 - 5.4 83.5 12.2 - 36.7 65.9 35.1 - 31.1 55.7 39.3

(1) ULTIMATE SKIN STRESSES FOR TASK I LOAD CONDITION 31 : 2.5-g SYMMETRIC MANEUVER AT MACH 1.25
(2) LIMIT STRESS = 213 ULTIMATE STRESS
(3) COMPRESSIVE STRESSES CONSERVATIVELY NEGLECTED FOR PANEL FAIL SAFE ANALYSIS



DESIGN CONCEPTS
POINT
DESIGN
REGION

WING
SURFACE

SAAR
SPACING

(IN.)

CRACK
LENGTH

W

{IN,}

EA
(1N.}

elt REINFORCE-
MENT
EFFICIENCY

MARGIN
OF SAFETY

WEIGHT
PENALTY

HAT SECTION 441348 UPPER 20 5.15 2.81 1.27 1.51 NONE

STIFFENED LOWER 20 5.62 3.08 1.35 0.75 NONE
40 7.92 4.35 1.45 0.57

40536 UPPER 20 6.39 3.51 1.31 1.38 NONE

LOWER 20 8.05 4.43 1.46 0.75 NONE-1-F
40 10.2 5.60 1.56 0.54

40322 LOWER 20 3.16 1.80 1.27 1,26 NONE

40 4.53 2.48 1.34 0.16

ZEE SECTION
STIFFENED

41348 LOWER 20
40

6.52
9.16

1.75
2.47

1.31
1.39

0.57
0.42

NONE

40536 UPPER 20 8.27 2.24 1.29 1.56 NONE

LOWER 20
40

8.78
11.7

2.39
3.18

1.39
4.45

1.48
0.33

NONE

40322 LOWER 20 3.63 1.00 1.23 1.29 NONE

40 5.20 1.33 0.98 0.01

NOTES:
{1} W= DISTANCE BETWEEN TWO UNBROKEN STIFFENERS, ALSO CRACK LENGTH
{21	 ZAe = EFFECTIVE AREA OF THE TWO UNBROKEN STIFFENERS
(3)	 t=SKIN THICKNESS

c

TABLE 13--Z2. SL 24ARY OF WING PANEL FAIL-SAFE ANALYSES -
SPANWIISE ARRANGEMENT, NON-INTEGRAL STIFFENED DESIGNS

. --



TABLE 13--13. SUMMARY OF WING PANEL FAIZ,-SAFE ANALYSES -
SPAMSE ARRANGMMT, INTEGRAL STIFFEtaD DESIGNS

ALLOWABLE MAX.

SPAR
SPACING

W
(1N.)

PLANK
WIDTH'

Wm
(IN.)

NO.
OF

PLANKS
n

(IN.)

RIB
SPACING

L=LT
(IN.)

EFF
WIDTH,

We
(IN.)

(3
2We

W
FO Ftus

(KSi)

GROSS AREA
STRESS, KSi

APPLIED
STRESS,

ULT.
fif

(Ksi)

MIN.
MARGIN

OF SAFETY
MS

Ftas LIMIT	 ULT.
F9	 F9

60.0 20.0 3 20 6.67 .222 .40 135 54.0	 81.0 63.6• +0.27
30 10.00 .333 .50 135 67.5	 101.2 81.8 +0.24
40 13.33 .444 .57 135 77.0	 115.5 83.5 +0.38

NOTES:
(1) ANALYSIS REFERENCE 6.

(2) NOMENCLATURE:
LT= LENGTH REQUIRED FOR SPLICE ATTACHMENTS

TO TRANSFER THE LOAD; LT = L
We = EFFECTIVE WIDTH; We = LTf3
P = EFFECTIVE WIDTH PARAMETER, a = 2We/W

MS = F^Ify -1
Ftus = MATERIAL ULTIMATE TENSION STRENGTH

(3) MAXIMUM APPLIED STRESSES FOR THE INTEGRALLY
STIFFENED DESIGNS OCCUR ON THE LOWER WING
SURFACE AT POINT DESIGN REGIONS 40322 AND
40536, SEE TABLE 13-9.

wiwH
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The splice and fastener system were selected based on the following considerations.

The splice was selected with a thickness equal to or at most twice the satin thick-

ness and the fastener size and spacing selected such that an effective width of

1/3 m was obtained. Also the joint was designed to be bearing critical rather

than shear critical. Finally, the usual precautions pertaining to fatigue require-

ments of splice and attachment were observed. The structural integrity of the

joint design selected should be substantiated by a fail--safe test conducted on a

multi-bay panel with one plank broken.

An analysis similar to the case of the chordwise stiffened arrangement was con-

ducted for the damage condition of a broken rib cap. However, due to the rela-

tively small section of the rib cap and its direct attachment to the skin, this

damage condition was not critical for limit load. Consequently there is no weight

penalty.

Monocoque Wing Panels - The honeycomb sandwich and truss-core sandwich panel conceptf

were investigated during the Task I effort. Two types of panel inserts were con-

sidered for the monoeoque panel concepts; metallic and densified honeycomb inserts.

However, only densified core inserts were considered for the truss-core concept. See

Section 1, Structural Design Concepts, for descriptions of these concepts and

their close-out design.

As in the cases of other design concepts studied, three point design regions

(41348, 40322, 10536) were selected for preliminary screening purposes. For honey-

comb sandwich panels, the rib spacing was kept constant at 60 inches with the

exception of point design region 1 0322 where a 130 inch rib spacing was used. For

the truss-,core sandwich panels, core orientations in both the spanwi.se and chordwise

direction were considered. The spanwise core orientation proved to be the most,

efficient for point design re&ion 1 1348 and 10536 with a constant rib spacing of

60 inches, spar spacing being a variable. The chordwi.se core.orientation was used

at point design region 40322 with a constant rib spacing of 130 inches.

The assumed damage condition was a two-bay crack with a broken reinforcement (i.e.,

insert or panel closeout member) and both face skins damaged. See Figure 13-16
for a graphic display of the damaged condition.
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iTRAPS

SPAR
INSERTS

l
f

210.0

"^ 10A
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SPAR SPACING
30.0	 Y	 40.0

10.0	 '10.0
TYP I 	 TYP

T	 T	 T	 T
DAMAGE CONDITION:

• 2 BAY SKIN CRACK (UPPER AND LOWER SKINS)
• BROKEN INSERT OR STRAP

Figure 13-16. Monocoque Panel Damage Configurations

STRUCTU
DAMAGE

REINFORCEMENT DESIGN
REINFORCEMENT

AREA (ARMN
EFFECTIVE

AREA IA.), INx

SPAR INSERTS GENERAL EQUATION:
• METALLIC DESIGN

2.00	
t2.

I +--	 —^1
I	 I

ARi4t 
1" . tt2 + t111 + 4t

{1I MINIMUM DESIGN REQUIREMENTS: 

Ae n 0.65 AR

t	

^ 7

t	 2t	 H

SPAR	 THICKNESS
SPACING	 t	 AR

IIN3 	 IlN.f	 TINA
20	 .040	 0.181
30	 :oali	 0.299

 40	 .040	 0.262

t1 WEB CAP NEGLECTED

• DENSIFIED CORE DESIGN GENERAL EQUATION:
}+—	 2.00 Apt-4t

(1) MINIMUM DESIGN REQUIREMENTS; Ao' AR

T

t TYP.	 y

SPAR	 THICKNESS	 Aft
SPACING	 t

(IN1	 (IN-)	 (IN21
20	 .022	 9.086
30	 .OZZ	 0.068
49	 .025

V8 CELL X.002 FOIL
EGG

Qt:NSIFtED CORE AND WEB _ CAP N EGL ECTED

FAILSAFE
STRAP	 2.00	 —'-I

 
GENERAL EQUATION:

All - Q A0-AR

t{TYP.f	 H CORE NEGLECTED

{1} MINIMUM DESIGN INSERT REQUIREMENTS FOR POINT DESIGN REGION 40536, LOWER SURFACE.

Figure 13-17. Honeycomb Sandwich Insert Geometry and Data
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The broken reinforcement can either be an insert or a Fail.-safe strap. Effective

area (Ae) of the metallic inserts is assumed to be 85 percent of the total insert

area. In addition, all doublers were considered to be fully effective. For densi-

fied honeycomb inserts, the core was considered to be ineffective and only the area

of the doublers was considered for the fail-safe analysis.

Figure 13-17 shows the type of inserts and the effective area equations used in the

fail.-safe analysis of the honeycomb sandwich panels.

Since both face skins are damaged, only the in-plane membrane loads existing on the

damage area are considered redistributed to the adjacent structure. Table 13-14

contains a summary of inplane stresses (ultimate) yor the monocoque panel concepts.

Generally, the outer and the inner skins have similar thicknesses. One exception

is for the honeycomb sandwich panel arrangement with metallic inserts at point

design region 41348. The skin thickness for the outer skin is 0.020 inches while

the inner skin has a thickness of 0.070 inches. In tll cases, the sum of the
thicknesses of the outer and the .inner skins (tl + t2 are taken to be the skin

thickness (t) in calculating the ratio of E Ae/t. Critical fracture toughness

values were taken to be the lowest between that of the outer and the inner skin.

Table 13-15 contains the honeycomb sandwich panel geometry at point design

region 40536. In addition, the fail-safe analyses for the panels at this region

are shown in Table 13-16. For this analysis the required strap and spar areas have

been defined to obtain a zero margin of safety. The corresponding weight penalty

for the honeycomb sand-wich concept at point design region 40536 are shown in

Table 13-17. The weight penalties associated with both the metal and densi_fied

core inserts are presented.

A summary of the monocoque panel fail-safe results is presented in Tables 13-18 and

13-19 for the honeycomb sandwich and truss-core sandwich concepts respectively.

In general, a weight penalty is required for all lower surface wing panels at the

selected point design regions. One notable exception is the honeycomb sandwich

design (Table 13-18) at point design region 1 0322. The design loads at this region

are low and the structure is capable of withstanding a 20 inch crack without fail-

ure. The corresponding area for the truss-core concept exhibits a small weight

penalty.
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TABLE 13-14. SUMMARY OF WING PANEL SKCN STRESSES, MONOCOQUE ARRANGEIENT

Hw
T

W
^n

POINT DESIGN SKIN STRESS (ULT.) --- ksi(1)

40322 (2) 40536{2} 41348(2)

LOWER SURFACE LOWER SURFACE LOWER SURFACESPAR
PANEL SPACING

CONCEPT (1N.) fx fy fs fx fy fs fx fy fs

HONEYCOMB 20 18.6 28.4 4.64 25.5 81.3 33.7 16.6 76.1 36.2
SANDWICH

30 18.5 26.3 4.18 24.4 80.2 33.3 15.8 76.8 36.5

40 18.7 26.1 4.21 23.9 79.9 33.2 14.8 75.2 35.7

TRUSS-CORE 20 23.9 37.8 4.46 26.2 80.3 34.4 20.0 77.1 39.2
SANDWICH

30 26.3 43.2 4.32 25.8 81.0 34.0 17.3 77.5 38.5

40 17.9 46.4 3.99 25.7 81.0 33.8 17.0 75.2 38.0

fl1 I [MIT STRESS = 2 13 ULTIMATE STRESS

'ICAL DESIGN CONDITION:

POINT DES1GW REGION 40322-CONDITION 20 ,START-OF CRUISE.

POINT DESIGN REGION 40536 AND 41348- CONDITION 
@I 2.5-g SYMMETRIC MANEUVER AT M1.25
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TABLE 13-15. WING PANEL GEOME TRY - HONEYCOMB SANDWICH CONCEPT.'

DESIGN DATA

POINT DESIGN REGION 40536

UPPER SURFACE LOWER SURFACE

SPACING, IN.
RIB 60 60 60 60 60 60

SPAR 20 30 40 20 30 40

DIMENSIONS
H, IN. .837 1.27 1.48 .290 .454 .781
t1, IN. .053 .052 .050 .076 .076 .087
t2, IN. .052 .051 .050 .061 .063 .053
tG, IN. .002 .002 .002 .002 .002 .002
8, IN. .258 .185 .167 .500 .500 .500

WEIGHT DATA
T, I N. .117 .131 .139 .139 .142 .145
W, LB./SQ. FT. 2.69 3.02 3.21 3.20 3.28 3.35

CRITICAL DESIGN COND. 31 31 31 31 31 31

t2
DIMENSIONS

EXTERIOR SURFACE

H ^S = CELL SIZE

t1
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TALE 13. 16. WING PANEL FAIL-SAFE ANALYSIS - HONEYCOMB SANDWICH CONCH

ITEM
POINT DESIGN REGION 40536

LOWER SURFACE

SPAR SPACING, IN. 20 30 40'

PANEL DIMENSIONS

t2, IN. .061 .063 .053

t1 , IN. .076 .076 .087

H, IN. .290 .454 .781

REINFORCEMENT AREAS (AR)

SPAR CAP, IN2 .862 .785 .922

STRAP, IN2 .733 .667 .784

EFFECTIVE AREA

Ae, I N2 .733 .667 .784

LIMIT STRESSES

COND. NO. 31 31 31

fy , Psi 54,200 53,500 53,300

fs, Psi 22,500 22,200 22,100

FRACTURE TOUGHNESS
ko , Ksi -	 in.

ko (t1 ) 132 132 136

ko (t2) 126 128 122

CRACK LENGTH (L), in. 20 20 20

REINFORCEMENT EFFICIENCY

ly 2.16 2.10 2.19

0.89 0.89 0.89

MARGIN OF SAFETY 0.00 0.00 0.00

13-37
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TABLE 13-17. WING PANEL WEIGHS PENALTY - HONEYCOMB SANDWICH CONCEPT

POINT DESIGN REGION 40536 MINIMUM
DESIGN

REQUIRE-
FAIL SAFE"}

REQUIREMENTS
SPAR

SPACING,
MENTS
ASPAR

WEIGHT(2}
'SPAR

NO. CRACK
b ASTR) STRAPS WIDTH PENALTY, AW

DESIGN CONCEPTS (IN.) (1N2} 2)(1N (IN n (IN.). (LB.ISQ. FT.)

HONEYCOMB SANDWICH 20 .181 .862 .733 1 20 1.63
M ETAL I NSERTS 30 .209 .785 .667 2 20 1.47

40 .262 .922 .784 3 20 1.73

HONEYCOMB SANDWICH 20 .088 .733 .733 1 20 1.69
DENSIFIE© CORE 30 .088 .667 .667 2 20 1.47

40 .100 .784 .784 3 20 1.75

w	 NOTES:
Lo
co	 (1) ASPAR 1S 85% EFFECTIVE FOR THE METALLIC INSERT DESIGN; 100% EFFECTIVE FOR THE DENSIFIED

CORE DESIGN.

(2) WEIGHT PENALTY EQUATION (EQUIVALENT PANEL WEIGHT):

AW = 144P [(ASPAR, FS — ASPAR, MIN) f nASTRAPI 1 b

WHERE:

P = MATERIAL DENSITY, Ib.An3

ASPAR,FS = SPAR CAP AREA REQUIRED FOR FAIL SAFE

ASPAR,MIN = SPAR CAP AREA MINIMUM DESIGN REQUIREMENT

ASTRAP - STRAP AREA REQUIRED FOR FAIL-SAFE

n = NUMBER OF STRAPS REQUIRED

b = SPAR SPACING

LL



TABLE 13-1$. SUA+jlMY OF WING PABEL FAIL-SAFE ANALYSES - HONEYCOMB SANUITICH CONCEPT

liw
ww

REINFORCEMENT
WEIGHT(3)POINT SPAR CRACK EAe/t(1)(2) EFFICIENCIES MARGIN

DESIGN DESIGN WING SPACING LENGTH OF PENALTY
CONCEPTS REGION SURFACE (IN.) (IN.) (IN.) If 41 SAFETY (LB/SQ FT)

HONEYCOMB 40536 LOWER 20 20 10.70 2.16 0.89 +0.00 1.63
SANDWICH, 30 20 9.60 2.10 0.89 +0.00 1.47
METALLIC 40 20 11.20 2.19 0.89 +0.00 1.73

40322 LOWER 20 20 15.81 2.00+ 0.98 +0.31 NONEINSERTS

40 20 23.27 2.00+ 1	 0.98 +0.01 NONE

.41348 LOWER 20 20 12.74 2.00+ 0.87 +0.00 1.24
40. 20 13.66 2.00+ 0.87 +0.00 1.41

HONEYCOMB 40536 LOWER 20 20 10.70 2.16 0.89 +0.00 1.59
SANDWICH, 30 20 9.60 2.10 0.89 +0.00 1.47
DENSIFIED 40 20 11.20 2.19 0.89 +0.00 1.75
.CORE

O ERTS 40322 LOWER 20 20 15.81 2.00+ 0.98 +0.31 NONE
40 20 '	 23.27 2.00+ 0.98 +0.07 NONE

41348 LOWER 20 20 12.74 2.00+ 0.87 +0.00 1.23
40 20 13.66 2.00+ 0.87 +0.00 1.42

(1) EAe SUM OF THE EFFECTIVE AREAS

(2) t = SUM OF THE FACE SHEET THICKNESSES.

(3) WEIGHT PENALTY (STRAPS AND/OR ADDED SPAR CAP AREA) TRANSLATED
INTO EQUIVALENT SURFACE PANEL WEIGHT



TABLE 13-19. SUMMARY OF W7NC FANEN FAIN-SAFE ANALYSES - TRUSS-CORE SANDWICH CONCEPT

w

REINFORCEMENT (3)
POINT SPAR CRACK (1)(2) EFFICIENCIES MARGIN WEIGHT

DESIGN
CONCEPT

DESIGN
REGION

WING
SURFACE

SPACING
(IN.)

LENGTH
(IN.)

ZAelt
(IN.)

OF
SAFETY

PENALTY
(LB./SQ. FT.)7

TRUSS-CORE 40322 LOWER 20 20 1.40 1.45 0.97 +0.00 0.03
SANDWICH
DENSIFIED 30 20 2.90 1.63 0.99 +0.00 0.04
CORE
INSERTS 40 20 3.30 1.67 0.99 +0.00 0.04

40536 LOWER 20 20.2 9.75 2.11 0.89 +0.00 1.36

30 19.8 9.50 2.09 0.89 +0.00 1.43

40 19.9 9.35 2.08 0.89 +0.00 1.45

41348 LOWER 20 20.4 15.00 2.54 0.85 +0.00 1.24

30 20.6 15.00 2.57 0.86 +0.00 1.34

40 19.6 15.00 2.54 0.86 +0.00 1.35

(1) Z Ae = SUM OF THE EFFECTIVE AREAS

(2) t = SUM OF THE FACE SHEET THICKNESSES

(3) WEIGHT PENALTY (STRAPS AND/OR ADDED SPAR CAP AREA TRANSLATED INTO EQUIVALENT SURFACE
PANEL WEIGHT.
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In conclusion, sizeable weight penalties are required for both concepts in the

highly loaded regions of the aft box and wing tip.

Composite Reinforced Spar Cap - Composite reinforced spar caps were studieu for

possible weight saving advantages. From the point of view of damage-tolerance

design the multiple element characteristics (i.e., load redistributed to remaining

undamaged elements.) of the composite reinforced spar cap is very attractive. How-

ever, when other factors such as mEuiufacturing considerations, the possibility of

debonding due to shear deformation, and eccentricity due to a broken member are

taken into account, the choice becomes less clear-cut. Obviously, a more detailed

study is necessary before making a final selection. However, a simplified strength

analysis was conducted to indicate the damage tolerance trends for this type of

design.

The detail dimensions of the Boron/polyimid.e reinforced spar caps are shown in

Table 13-20 for the lower surface caps at point design regions 40322, 40536, and

41348.

The ultimate load carried. in each individual metal or composite element, as well as

the total ultimate -Load, was calculated at the above point design regions for

the spar spacing values of 20 and 40 inches. The exception is the lower surface.

spar caps for 20 inch spacing at point design region 40322. Composite reinforce-

ment was not used in this region due to the negligible weight saving indicated

over the homogeneous metal design. The fail-safe analysis results are presented in

Table 13-21. In review, all composite reinforced spar caps are damage-tolerant

under the damage condition of a single broken element. The exception being the

slightly negative margin (1-percent.) indicated for the spar caps With 40 inches

spacing at point design region 40322• No redesign of these caps was attempted since

the strength analysis indicated the smaller spar spacings, between 20 and 30 inches,

were also the least weight designs.

Fuselage Analysis - The Task S design effort consisted of two phases; first, an.

initial screening phase where the fuselage panel candidates were subjected to

structural analysis to select the most promising concept(s); then an-in-depth

structural: analysis of this (these) concept(s) to provide a sound basis for the

fuselage detail design studies of Task TIB.
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TABLE 13-20. SPAR CAP GEOMETRY - COMPOSITE REINFORCED CONCEPT

SPAR CAP DIMENSIONS
POINT SPAR

h b H W t1 t2DESIGN SPACING
REGION (IN.1 [IN.) 4IN.) (IN.) (IN.) (IN.) (IN.)

40322 200) - - - 1.56 .21 .05
LOWER
SURFACE 40 .12 .50 1.06 1.50 .09 .11

40536 -20 AS 1.00 1.20 2.50 .12 .13
LOWER
SURFACE 40 .67 1.76 1120 4.00 .08 .13

41348 20 .42 1.00 1.20 2.50 .12 .13
LOWER
SURFACE 46 .53 1.75 1.20 4.00 .08 .13

11) NO APPRECIABLE WEIGHT SAVINGS INDICATED, URED
ALL METAL SPAR CAPS.

t2	
81PI COMPOSITE REINFORCEMENT

t1

H
h

a  
7.

6ALAV (Ann.) TITANIUM

TABLE 13-21. SUMMARY OF SPAR CAP FAIL-SAFE ANALYSES -
COMPOSITE REMORCED CONCEPT

TOTAL(1)(2) ALLOWABLE(31 DAMAGED CAP{4)
APPLIED LOAD, MEMBER LOAD, ALLOWABLE LOAD

KIPS KIPS (PA), KIPS
METAL COMPOSITE BROKEN BROKENPOINT(1) SPAR MARGIN(5)

DESIGN SPACING ELEMENT ELEMENT METAL COMPOSITE OF
REGION (IN.) PULT. PLIMIT PM PC ELEMENT ELEMENT SAFETY

40322 4D 62 34.7 17,6 8.6 34A 43.4 A7

20 315 210 35.0 70.0 280.0 245.0 +.17
40535

40 673 449 33.0 160.0 640.0 513.0 +.14

20 271 180 3510 69.0 236.0 212.0 +.18
41346

40 .633 422 33.D 160.0 600.0 483.0 +.14

11) LOWER SURFACE SPAR CAPS, MAXIMUM TENSION LOADS.

1. 21 LIMIT LOAD - 3 X ULTIMATE LOAD

(3) COMPOSITE ELEMENT LOAD ARE UNIT VALUES,TOTAL LOAD SUSTAINED BY THE COMPOSITE
ELEMENTS 15 FOUR TIMES THE UNIT VALUES.

(4j DAMAGED CAP ALLOWABLES:
BROKEN METAL MEMBER	 BROKEN COMPOSITE MEMBER

PA . 4 X PG	PA - PM +3.X PC

(5)	 MARGIN OF SAFETY . 
MIN. 

PLIM
IT

IT _q
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Fail-safe analyses were conducted during each of the above phases to provide

credence to the selection procedure used to define the most promising fuselage

panel. candidate. The analytical method described in Figure 13-10 was used zrith

two types, of cracks being considered: (1) circumferential cracks, and (2) longi-

tudinal. cracks. For these two types of cracks in the fuselage, the methods of

analysis for flat shell structure apply with the exception of a 50 percent reduc-

tion in fracture toughness 
(ko) 

imposed on the cases involving longitudinal cracks.

This reduction is based on a conservative estimation of the effects of curvature of

the fuselage panels.

For circumferential cracks, a damage condition of a two-bay crack with one broken

stringer was considered. The corresponding damage condition for the longitudinal

cracks was a two-bay crack with the intermediate frame broken, i.e., a 40 inch

crack for a fuselage frame spacing of 20 inches.

The fuselage panel concepts analyzed in support of the initial screening effort

were the zee-stiffened concept, open hat-stiffened concept, and the closed hat-

stiffened concept. These concepts and their corresponding dimensions for the maxi-

mum tension case (top centerline panels) are shown in Table 13-22. 'These dimensions

were defined from the strength analysis (Section 12).

A total of four fuselage stations were examined for damage-tolerance analysis, i.e.,.
FS 750, FS 2000, FS 2500, and FS 3000 as indicated on Figure 13-18. Different

locations at each station were also examined. The fuselage maximum tension stresses

are shovm in Table 13-23 for each of the concepts investigated in the initial screen-
ing. Review of these stresses indicate areas that were designed up to the allowable

ultimate design gross area stress (90,000 psi) commensurate with the life and

assumed fatigue quality of the fuselage.

A sample of the fuselage fail-safe analysis is shovm in Table 13-24. This analysis
was conducted for each of the three candidate concepts at FS 2500. The panel

geometry and applied stress state reflect the top centerline panel location.

Positive margins of safety are indicated for each design for both the longitudinal
and circumferential crack damage conditions. The lowest margins of safety are

associated with the circumferential crack condition, with the minimum value

(positive 3-percent) occurring on the closed hat concept.
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TABLE 13-22. FUSELAGE PANEL GEOMETRY-INITIAL SCREENING

POINT FUSELAGE PANEL DIMENSION
bs is C f h tst tDESIGN PANEL

REGION LOCATION CONCEPT (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) ON.).

FS 2000 TOP ZEE STI FF 4.00 .100 0.75 1.00 1.25 0.90 .160
AND OPEN HAT 5.00 .080 1.25 .80 1.25 .063 .151
FS 3000 CLOSED HAT 6.00 .080 1.50 ..80 1.25 .063 .142
FS 2500 TOP ZEE STIFF 4.00 .100 0.75 1.00 1.25 .110 .190

OPEN HAT 5.00 .080 1.25 .80 1.25 .070 .159
CLOSED HAT 6.00 1	 1080 1.50 .80 1.25 X BO .159

is	 tst h	 is	 tst h	 is	 h

 ,
'–^ C
	 f ^—	 tst

	

ZEE•STiFFENED	 HAT-0I'IrFENED (OPEN)	 HAT-STIFFENED (CLOSED)
CONCEPT	 CONCEPT	 CONCEPT

vauwr	 1W.va	 ay.ov	 ua.w	 J	 76.20
(160)	 (750)	 (2000)	 (2500)	 _ (3000)

Figure 13-18. Definitibn of Fuselage Point Design Regions
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TABLE 13-23. STXMhRY OP FUSELAGE: PANEL STRESSES, INITIAL SCREENING

FUSELAGE SKIN STRESSES (ULT) -- KSP)

FS 2000 AND FS 300:7 FS 2500FUSELAGE
PANEL.

LOCATION CONCEPTS fx f$ fxY fx f8
f.,

TOP CL ZEE STIFF. 72.4 12.0 - 82.6 12.0 -
PANELS
(MAX. HAT STIFF. 77.3 15.0 - 90.0 15.0 -
TENSION) (OPEN)

HATSTIFF. 81.3 15.0 - 90.0 15.0 --
( CLOSED)

(1) LIMIT STRESS- 213 ULTIMATE STRESS

(2) LOAD CONDITION: START-OF-CRUISE

TABLE 13-24. FUSELAGE PANEL FAIL-SAFE ANALYSIS, INITIAL SCREENING

POINT DESIGN REGION- FS 2500

ZEE STIFF OPEN HAT CLOSED HATITEM

CRACK TYPE LONG. CIRCUM. LONG. CIRCUM. LONG. CIRCUM.

TOP rL PANEL. TOP rL PANEL TOP rL PANELLOCATION

PANEL GEOMETRY
ts, in. .10 .10 .08 .08 .08 .08

6y in. - 4.00 - 8.00 - 6.00

FRAME SPACING, IN. 20.0 - 20.0 - 20.0 -

REINF. PROP.

AREA (A8), In2
EAalt,, In.

.072
1.44

.130
2.60

.072
1.80

.128
3.20

.072
1.80

170
4.26

LIMIT STRESSES(2)

fx, ksl 55.1 65.1 60.0 60.0 60.0 60.0
is, ksi 8.0 8,0 10.0 10.0 10.0 10.0
fxy, ksi - - - - - -

FRACTURCTOUGH.
kq, ksl -Xn. 138 138 135 135 135 131,
112 k o, ksi - fn. 60 - 67.5 - 67.5 -

i
CRACK LENGTH

L, in. 40.0 8.0 40.0 10.0 40.0 12.0

REINF, EFFICIENCY

Y 1,63 1.40 1.71 1.48 1:71 1.68

ALLOW, STRESS{11
Fg, ksi 17.8 68.3 18.2 53.1 10.2 61.0

MARGIN OF SAFETY +1.22 40.24 {0.B2 *0.05 +0.82 +0.03

NOTES.
(1) ALLOWABLE FUSELAGE STRESS (F01 a -t (nkQll%/_L_

WHERE: n. Z, FOR CIRCUMFERENTIAL CRACKS
n = 1^2, FOR LONGITUDINAL CRACKS

(2) DESIGN LOAD CONDITION: START -OF-CRUISE
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A summary of the results of the fuselage fail-safe analysis conducted for the Task I

initial screening is shown in Table 13-25. Positive margins are indicated; hence,

there is no weight penalty associated with these designs.

The initial screening of the fuselage concepts resulted in the selection of a struc-

tural e.rral.:;ement composed-of the zee-stiffened and closed hat-stiffened panel con-

cepts. With the zee-stiffened concept employed for the fuselage forebody region

and the hat-stiffened design for the midbody and aftbody regions. The selection of

this arrangement was based on the results o,' strength analysis since no weight

penalties were associated with the fail-safe or sonic fatigue analyses.

The most promising fuselage arrangement surviving the initial screening was analyzed

in greater depth during the next Task I phase (Detailed Concept Analysis). The

strength analysis (Section 12) defined the internal forces/stresses and the required

panel dimensions. These dimensions are shown in Table 13-26 for the four point

design regions. A summary of the stress state at various circumferential locations

is shown in Table 13-27.

The fail-safe analysis conducted on the hat-stiffened concept at FS 2500 is shown

in Table 13-2$. Positive margins are indicated except for the side panel with a

circumferential. crack:. A negative margin of 55-percent is noted at this location,
the weight penalty associated vrith this location is shown on the following summary

table. Table 13--29 summarizes the results of the fail.--safe analysis conducted dur-

ing the Task I Detail Concept Analysis. Negative margins are indicated at each

point design region, with the maximum valve occurring at F5 2500 (negative

55-percent). These areas required additional structure to meet the fail-safe require-

ment, the weight pe,ialty associated with this structure is also shown on this table.
The wei,-ht penalty associated with the highest negative margin area (side panel

at FS 2500) is 1.x+3 lb/sq ft.
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TABLE 13-25. SUMRY OF FUSELAGE PANED FAIL-SAFE ANALYSE, INITIAL SCREENIM

POINT TYPE CRACK (1)(2) REINFORCEMENT MARGIN WEIGHT
DESIGN PANEL DESIGN OF LENGTH, EAalt EFFICIENCY OF PENALTY

CONCEPT LOCATION REGION CRACK (IN,) (IN.) Y SAFETY (L8/S0. FT)

ZEE-STIFF. TOP CL FS 2000 LONG. 40.0. 1.44 1.63 +1.22 NONE
CONCEPT PANEL AND 3000 CIRCUM. 8.0 .2.14 1.37 +0.38 NONE

(MAX.
TENSION) FS 2500 LONG, 40.0 1.44 1.63 +1.22 NONE

CIRCUM. 8.0 2.60 1.40 +0,24 NONE

HAT-STIFF. FS 2000 LONG. 40.0 1.80 1 171 +0.82 NONE
(OPEN) AND 3000 CIRCUM. 10.0 2.85 1.47 +0 .22 NONE
CONCEPT

FS 2500 LONG. 40,0 1.80 1.71 +0.82 NONE
CIRCUM. 10.0 3120 1	 1.48 +0.05 1	 NONE

HAT-STIFF. FS 2000 LONG. 40.0 1.80 1.71 +0.82 NONE
(CLOSED) AND 3000 CIRCUM. 1210 3.35 1.53 +0.10 NONE
CONCEPT

FS 2500 LONG. 40.0 1160 1.71 +0.82 NONE
CIRCUM. 12.0 4.25 1.58 +0103 NONE

(1) E Aa = SUM OF THE EFFECTIVE AREAS
(2) t=SKINTHICKNESS

TABLE 13-26. FUSELAGE PANEL GEOMETRY -- DETAILED CONCEPT ANALYSIS

POINT FUSELAGE PANEL DIMENSION
DESIGN

PANEL LOCATION bs is C f h tst t
REGION CONCEPT (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.)

FS 750 ZEE- TOP 4.0 .036 .55 .75 1.00 .036 .056
STIFFENED SIDE 4.0 .036 .55 .75 1.00 .036 .056

BOTTOM 4.0 .036 .55 .75 1.00 .936 .056

FS 2000 HAT- TOP 6.0 .080 1,5 ,80 1.25 .070 .145
STIFFENED SIDE 6.0 .063 1.5 .75 1.25 .040 .099

FS 2500 HAT• TOP 6.0 ,100 1.5 .80 1.25 ,090 .184
STIFFENED SIDE 6.0 .063 1.5 .75 1.25 .050 .109

FS 3000 HAT- TOP 6.0 .080 1.5 .80 1.25 .070 .145
STIFFENED SIDE 6.0 .063 1.5 .75 1.25 .040 .099

BOTTOM 6.0 .090 1.5 .90 1.25 .090 .177

f	 bs^ ^bs C 

h ts F__Lis l
C	 I tst tst

ZEE-STI FFENED CONCEPT HAT-STIFFENED CONCEPT
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TABLE 13-27. SUMMARY OF FUSELAGE PANEL STRESSES,
DETAILED CONCEPT ANALYSTS

FUSELAGE SKIN STRESSES (UL,T) -- KSIM

FS 750 FS 2000 FS 250ti FS 3000

(2) (3) (2) (2) (3 ) (2) (2) (3) (2) (2) (3) (2)
LOCATION fx fe fxy fx fe fxy fx fie fxy fx fe fxy

TOP 31.8 24.6 1.6 80.2 12.5 5.2 90.4 12.4 7.0 80.2 12.4 5.2

SIDE 12.4 15,7 21.6 11.3 15.9. 32.1 12.4 15.1 21.6

BOTTOM - - - - - - -65.9 11.2 4.6

(1) LIMIT STRESS= 2/3 ULTIMATE STRESS

(2) MAXIMUM AXIAL STRESS (fx) AND SHEAR STRESS (fxy ) CORRESPOND TO
START-OF-CRUISE CONDITION

(3) MAXIMUM HOOP STRESS (fe) CORRESPONDS TO M1.20 DESCENT CONDITION

TABLE 13-28. FUSELAGE PANEL PALL-s , ANALYSTS,
DETAILED CONCEPT ANALYSTS

ITEM POINT DESIGN REGION - FS 2500

CRACK TYPE LONGITUDINAL CIRCUMFERENTIAL

LOCATION TOP SIDE TOP SIDE

PANEL GEOMETRY

ts, in. .090 .063 .090 .063

bs, in. 6.00 6.00 6.00 6.00

REINFORCEMENT .036 .035 .175 .090
AREA (Ae), in2.

LIMIT STRESSES

fx	, ksi. - - 60.3 7.5

f0	 , ksi. 8.3 10.6 - --
fxy, ksi. - - 4.7 21.4

FRACTURE TOUGHNESS

ko, ksi -	 in. 136 128 136 128

1/2 ko, ksi -	 in. 68 64 -- -

CRACK LENGTH, )n. 40.0 40.0 12.0 12.0

REINFORCEMENT
EFFICIENCIES

7 1.52 1.58 1.58 1.52

0 -- - 1,00 0.34

ALLOWABLE STRESSES.

F8, ksi. 16.3 1610 61.8 19.1

Fs, ksi --- -- 30.9 9.5

MARGIN OF SAFETY +0.97 +0.51 +0.02 -0.55

I
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TABLE 13-29- SUMMARY OF FUSELAGE FANEL FAIL-SAFE ANALYSES, DETAILED CONCEPT ANALYSIS

w•

REINFORCEMENT

DESIGN
CONCEPT

POINT
DESIGN
REGION

PANEL
LOCATION

TYPE OF
CRACK

CRACK
LENGTH,

(IN.)
EAe/t (1)(2)

(1N.)

EFFICIENCIES MARGIN
OF

SAFETY

WEIGHT(3)
PENALTY
(LB/SQ FT)

ZEE-STIFF. FS 750 TOP LONG. 40.0 1.33 1.63 - -0.12 0.16
CONCEPT TOP CIRCUM. 12.0 2.00 1.42 1.00 +1.10 NONE

HAT-STIFF. FS 2000 TOP LONG. 40.0 0.98 1.55 - +0.97 NONE
CONCEPT SIDE LONG. 40.0 1.14 1.58 - +0.53 NONE

TOP CIRCUM. 12.0 3.38 1.54 1.00 +0.11 _ NONE
SIDE CIRCUM1. 12.0 2.28 1.45 0.49 -0.09 0.16

HAT-STIFF. FS 2500 TOP LONG. 40.0 0.84 1.52 - +0.97 NONE
CONCEPT SIDE LONG. 40.0 1.11 1.58 - +0.51 NONE

TOP CIRCUM. 12.0 3.89 1.58 1.00 +0.02 NONE
SIDE. CIRCUM. 12.0 2.86 1.52 0.34 -0.55 1.43

HAT-STIFF. FS 3000 TOP LONG. 40.0 0.98 1.55 - +0.99 NONE
CONCEPT SIDE LONG. 40.0 1.08 1.57 - +0.57 NONE

BOTTOM LONG. 40.0 0.91 1.54 - +1.23 NONE
TOP CIRCUM. 12.0 3.38 1.54 1.00 +0.11 NONE
SIDE CIRCUM. 12.0 2.79 1.51 0.49 -0.05 0.09
BOTTOM CIRCUM. 12.0 - - - +HIGH NONE

NOTES:

(1) ZAe = SUM OF EFFECTIVE AREAS

(2) t = SKIN TH ICKN ESS

(3) WEIGHT PENALTY (AW) = 23.04 At, FOR 6AL-4V TITANIUM; UNITS- LB/SQ FT
At' = tFS ` tSTR; UNITS - IN.



Fail,-Safe Analysis - Task II

The Task IIB results of the fail-safe analysis on the strength/stiffness airplane

are presented in the following sections. Fail-Safe analyses were not conducted

during the Task IIA configuration change investigation and only a cursory analysis,

indicative of that stage of design, was conducted on the strength design airplane

of Task IIB.

The structural approach incorporated on the Task IIB airplane was a hybridization of

the Task I Chordwise and Monocoque wing designs utilizing both metallic and composite

materials with the fuselage being conventional skin/stringer design. This hybrid

arrangement consists of the following concepts:

m Wing--forward and aft boxes: metallic chordwise stiffened wing panels,

convex beaded concept, with submerged titanium. and titanium/composite

reinforced spar caps.

* Wing tip: Monocoque wing panels, 6A1-4V titanium honeycomb sandwich panels

with aluminum brazed core,.with metallic substructure and embedded rib/spar

caps.

• Fuselage-shell: Conventional skin/stringer/frame design utilizing T1-6A1-4V

material.

Fail-safe analyses were conducted on t'iese above concepts at the six wing and four

fuselage point design regions. The wing locations are identical to the Task I loca-

tions shown in Figure 13--13; whereas, the fuselage locations were altered and are

presented in Figure 13-19.

The method of analysis and the available data used in determining the residual

strength is as,outlined in Figure 13--10.

Wing Panel Analysis - Each of the surface panel and spar cap concepts associated

with the point design regions were analyzed on the final design airplane (strength/

stiffness .). The convex-beaded concept was employed at point .design regions 40322,

40236 and 40536; with regions 41036, 41316, and 41348 being honeycomb sandwich panels.

In addition to a summary of the results,.the basic assumptions, geometry, stress

levels, and sample an•Ayses are included for the point design regions.
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The panel geometry for convex-beaded and honeycomb sandwich panels are shown in

Tables 13-30 and 13-31. These data reflect the results of the strength and stiff-

ness requirements imposed on the Final. Design airplane. All designs are strength

designs with the exception of the honeycomb sandwich panels at regions 41316 and

413+8 which are the stiffness designs resulting from the flutter optimization

investigation.

Preliminary fail--safe analyses of these designs indicated several panels were defi-

cient in meeting the fail.-safe criteria. For these deficient regions, 40536 and

41036, the panel geometry and associated stress level were adjusted with the new

panel geometry being shown in Table 13-32. The weight penalties associated with

these geometry changes and any added weight penalties associated with fail-safe

requirements are included in the final results. The flight conditions and stress

levels for the maximum tension condition are shown in Table 13-33. These skin

stresses are ultimate values and, after reduction to limit values, are used as the

basis for the fail-safe analysis. With reference to this table, Conditions 12 and

14 (M1.25 Climb condition at 2.5-g and --1-g) are the predominant tension conditions

for the lower and upper surface panels respectively. The exception being the maxi-

mum tension conditions for the upper and lower panels at point design region 40236

and the lower pF^nel at region 1 0322. The critical tension conditions for these regions
are the M 1.25 climb condition at VC and the start-of-cruise condition respectively.

For the convex-beaded surface panels, the outer skin was treated as a flat panel

with the inner beaded skin considered to be the reinforcement. The effective area

(Ae ) of the reinforcement was taken to be one-third of inner-bead with the reinforce-

ment parameter (EA e /t) equal to two-times the effective area divided by the outer

skin thickness.

A damaged condition of a three-pitch outer skin crack with two broken reinforcing

stiffeners (inner beads) was selected. This r-r­ilted in crack 3 ,̂ ngthe betweer ►
7-inches to 10-inches for the convex-beaded panels.

r	 ^	 ieThe outer skin fracture toughness value k o ), and the reinforcement effc ncy (Y)

and shear correction factor (0 were determined as outlined in Figure 13-.j.
ri
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TABLE 13-30. WING PANEL GEOMETRY - TASK ITB

CHORDITISE, CONVEX-BEADED PANELS

PO !NT DESIGN REGIONS
40322 40236 40536

UPPER LOWER UPPER LOWER UPPER LOWERDESIGN DATA

SPACING, in.
RIB 60.0 60.0 60.0 60:0 60.0 60.0
SPAR 22.7 22.7 21.2 21.2 21.2 21.2

DIMENSIONS
tL, in. .013 .015 .015 .020 .023 .019.
tn, in. .015 .020 .015 .020 .026 .020
R L, in. .80 1.00 .80 1.00 .90 .70
0, degrees 87 87 87 87 87 87
b, in. .75 .75 .75 .75 .75 .75
pitch, in. 2.35 2.75 2.35 2.75 2.55 2.15

WEIGHT DATA

t, in. .033 .041 .036 .048 .058 .046
W, Ib.lsq.ft. .760 .945 .829 1.11 1.34' 1.05

CRITICAL DESIGN COND. 12 20 16 16 12 12

DIMENSIONS:

-y-- PITCH--^I

/ to

A

R L  b-	 tL



TABLE 13-31. NING PANEL GEOMETRY -'BASK IIB
HONEYCOMB SANDI-ICH PANELS

w

POINT DESIGN REGIONS

41036 41316 41348

UPPER LOWER UPPER LOWER UPPER LOWERDESIGN DATA

SPACING, in.

RIB 60.0 60.0 40.0 40.0 40.0 40.0
SPAR 21.2 21.2 40.0 40.0 30.0 30.0

DIMENSIONS

H. in, .642 .202 1.00 .500 1.00 .500
t1 , in. .026 .023 .062 .075 .068 .068

t2, in.. .018 .028 .062 .075 .068 .068
t., in. .002 ..002 .002 .002 .002 .002
S, in. .Z75 .500 .500 .500 .500 .500

WEIGHT DATA

t, in. .052 .052 .131 .153 .143 .139
W, Ib.fsq.ft. 1.20 1.20 3.02 3.52 3.29 3.20

CRITICAL DESIGN COND. 12 12 FLUTTER FLUTTER FLUTTER FLUTTER

t2
DIMENSIONS EXTERIOR SURFACE

S = CELL SIZE
N tc CORE FOIL

THICKNESS

1
t1



CONVEX BEADED HONEYCOMB SANDWICH

40536 41036

DESIGN DATA DESIGN DATAUPPER LOWER UPPER LOWER

SPACING? in. SPACING, in.

RIB 60.0 60.0 RIB 60.0 60.0
SPAR 21 .2 21.2 SPAR 21.2 21.2

DIMENSIONS DIMENSIONS
tL, in. .025 .035 H, in 1.00 0.50
tn, in. .031 .060 t1, in. .033 .041
R L, in. .80 1.25 t2, in. .033 .041
0, deg, 87 87 try in. .002 .002
b, in. .75 .75 S, in. .500 .500
pitch, in. 2.35 3.25

WEIGHT DATA WEIGHT DATA

t, in. .065 .110 t, in. .073 .085
W, lb.lsq.ft. 1.50 2.53 W, Ib.lsq,ft. 1.68 1,96

DESIGN COND. FAIL-SAFE FAIL-SAFE DESIGN COND. FAIL-SAFE FAIL-SAFE

t2

Imo--PITCH---.-^. EXTERIOR SURFACE

T
$

_T_
H

R 	 _.► 	 b	 ^.—	 tL
^	 i

S = CELL SIZE	 t1
to ^ CORE FOIL THICKNESS

pLor

TABLE 13-32. REVISED NTNG PANEL GEOMETRY - TASTE IIB
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TABLE 13--33. SUMMARY OF WING PANEL, SKIN STRESSES -- TASK IIB

w

PANEL SKIN STRESSES (U LT.) - ksi. {1}
SPACING

POINT (ire.) UPPER SURFACE LOWER SURFACE
PANEL DESIGN

CONCEPT REGIONS SPAR RIB COND.{2} fx fy fxy COND.{2} fx fy fxy

CHORDWISE 40322 22.7 60.0 14 3.15 -- 1.20 20 24.20 -- 8.27
CONVEX-CON

ED 40236 21.2 60.0 16 14.58 - 9.55 16 52.95 - 18.42

40536 21.2 60.0 14 18.98 -- 22.95 12 10.00 -- 18.60

MONOCOQUE 41036 21.2 60.0 14 19.90	 35.40 20.90 12 16.40 41.40 23.30
HONEYCOMB
SANDWICH 41316 40.0 40.0 14 7.94	 52.20 16.65 12 9.30 72.70 19.80

41348 30.0 40.0 14 5.44	 26.53 9.50 12 11.30 48.40 16.80

1. LIMIT STRESS = 213 ULTIMATE STRESS

2. CRITICAL TENSION FLIGHT CONDITIONS, NASTRAN CONDITION NUMBERS



The detailed fail-safe calculations for the convex-beaded panels are presented in

Table 13-34 and indicated positive margins for all regions. A minimum positive

margin of 3-percent is noted on the upper surface panel at region 40536. The panel

geometry analyzed for region 40536 reflects the adjusted panel cross-sections shown

in Table 13-30. The weight penalty associated with this change is included in the

summary table of the wing panel results.

The honeycomb sandwich panels at point design regions 41036, 41316, and 413+8 were

analyzed on the Final Design airplane. The panel geometry and dimensions were'pre-

viously shown in Tables 13-31 and 13-32. These panels incorporated the densified

core design for attachment to rib and spar webs. Figure 13-20 presents the minimum

design requirements for these attachment areas.

The damaged condition was a two-bay crack with a broken reinforcement (strap or

spar/rib attachment) and both face sheets damaged. A maximum crack length of

20 inches was assumed.

The Task Z monocoque panel damage configurations shown in Figure 13-16 are appro-

priate for the Task 11 designs..

The effective area (Ae ) of the strap or densified core attachment, see Figure 13 -20,

was considered to be the area of the straps/doublers. For the densified core design

the core was considered to be ineffective.

For the three honeycomb panel regions the face sheet thicknesses were equal and the

sum of these thicknesses (t1 + t2 ) was taken to be the skin thickness (t) in calcu-

lating the ratio MAe/t. The fracture toughness values, and the parameters Y and L

were determined from Figure 13-10.

Table 13-35 presents the fail.--safe calculation for the honeycomb sandwich panels.

The panel geometry specified on this table for region 41036 reflects the adjusted

panel cross-sections defined in Table 13 -32. A minimum positive margin of safety

of 1-percent is shown for the lower surface panels at point design regions 41036

and 41316, all other margins range between 5-percent to 50-percent. For this

analysis the required strap area has been determined to obtain a positive margin

with a minimum strap area of 0.06 inches being defined.
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POINT DESIGN REGIONS

40322 40236 40536

UPPER LOWER UPPER LOWER UPPER LOWERITEM

SPACING, in.

SPAR 22.7 22.7 21.2 21.2 21.2 21.2

RIB 60.0 60.0 60.0 60.0 60.0 60.0

DISTANCE BETWEEN 7.05 8.25 7.05 8.25 7.05 9.75
UNBROKEN BEADS, in.

CRACK LENGTH (L), in. 7.05 8.25 7.05 8.25 7.05 9.75

L, Fin. 2.66 2.87 2.66 2.87 2.66 3.12

LIMIT STRESSES, Icsi

COND. N0. 14 20 16 16 14 12

fx 2.10 16.13 9.72 35.30 12.66 6.70

fxy
0.80 5.51 6.37 12.28 15.30 12.40

fxy/fx 0.38 0.34 0.66 0.35 1.21 1.85

EFFECTIVE AREA (Ae), in2 .014 .019 .016 .025 .026 .053

SKIN THICKNESS, in. .015 .020 .015 .020 .031 .060

EAe/t, in. 1.87 1.90 2.13 2.50 1.68 1.77

FRACTURE TOUGHNESS 80 84 80 84 104 127

kg, ksi - \/ in.

REINFORCEMENT EFF.

y 1.33 1.35 1.35 1.40 1.32 1.37

Lp
0.91 0.93 0.79 0.93 0.61 0.47

ALLOWABLE STRESSES, ksi

F9 M q Y ko/ VrEl 36.4 36.7 32.1 38.1 31.5 26.2

F s = 1/2 F9 18.2 18.4 16.1 19.1 15.6 13.1

MARGIN OF SAFETY HIGH +1.28 +1.52 +0.08 +0.03 +0.06

TABLE 13-34. WING PANEL FAIL-SAFE ANALYSIS - TASK IIB
CONVEX-BEADED PANELS
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\0

REINFORCEMENT Ae
REINFORCEMENT DESIGN AREA (AR), in2

ln2

• DENSI FIED CORE DESIGN EQUATION. AR = 2.00 No + tdi)
2.00 tdo

REGION	 SURF.	 Ido	 tdi AR

41036 UPPER .032	 .015 .094

t (TYP.)	 H
LOWER .022	 .015 .074

Ae	 AR
41316 UPPER .023	 .020 .086

LOWER .024	 .020 .088

41348	 UPPER	 .023	 .020 .086tdi t	 118 CELL X.002 FOIL
LOWER	 .023	 .020 .086

FAIL SAFE
STRAP	 2.00

EQUATION*

-,A AR = 4t Ae	 AR

CORE NEGLECTED

..........	 ..

t(TYP.)	 H

Figure 13-20. Honeycomb Sandwich Insert Geometry and Data - Task IIB



TABLE 13-35- WING PANEL FAIL-SAFE ANALYSIS - -`BASK IIB
HONEYCOMB SANDWICH PALLS

POINT DESIGN REGIONS

41036 41316 41348

UPPER LOWER UPPER LOWER UPPER LOWERITEM

SPACING, in.
SPAR 21.2 21.2 40.0 40.0 30.0 30.0

RIB 60.0 60.0 40.0 40.0 40.0 40.0

PANEL DIMENSIONS

t2, in. .033 .041 .062 .075 .068 .068

t1 , in. .033 .041 1062 .075 .068 .068

REINFORCEMENT AREA
SPAR CAP, in2 .094 .074 .086 .888 .086 .086

STRAP, in2 .060 .070 .060 .330 - .060

EFFECTIVE AREA
Ae, in2 .06 .07 .06 .33 0.0 0.06

E Ael(t 1 +t2), in. 1.82 1.71 1.00 4.4 0.0 0.88

LIMIT STRESSES, ksi
COND. NO. 14 12 14 12 14 12

fx 13.3 10.93 5.29 6.20 3.63 7.50

fy 23.6 27.60 34.80 48.47 17.70 32.30

fxy 13.9 15.50 11.10 13.20 6.33 11.20

fxylfy 0.59 0.56 0.32 0.27 0.36 0.35

FRACTURE TOUGHNESS

ko(tMIN), ksi -in. 106 114 128 132 130 130

CRACK GEOMETRY

DIRECTION CHORD CHORD CHORD CHORD CHORD CHORD

LENGTH (L), in. 20.0 20.0 20.0 20.0 20.0 20.0

i n. 4.47 4.47 4.47 4.47 4.47 4.47

REINFORCEMENT EFT.

Y 1.52 1.48 1.37 1.74 1.00 1.36

0.81 0.83 0.93 0.95 0.91 0.91

ALLOWABLE STRESSES, ksi
Fg = ► Y k olf 29.2 31.3 36.5 48.8 26.5 36.0

Fs = 112 F9 14.6 15.6 18.2 24.4 1.3.2 18.0

MARGIN OF SAFETY +0.05 +0.01 +0.05 +0.01 +0.50 +0.11
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The calculations of the weight penalties associated with the wing panel concepts

are shown in Table 13 -36. This includes both the convex beaded and honeycomb sand-

wich designs. This table includes the minimum design requirements (strength) and

the fail-safe requirements for the spar caps, straps, and panels. All honeycomb

panels require fail-safe straps at approximately 10-inch spacing. The exception

being the lower surface panel at point design region 41348 which is capable of

support limit load with a 20 inch crack and requires no additional reinforcement. The

convex-beaded panel concepts require no additional reinforcement other than the

panel geometry revi".ons for the upper and lower panels at region 10536.

A summary of the wing panel fail-safe results is presented in Table 13-37. This

table summarizes the, pertinent fail-safe data, margins of safety, and the corre-

sponding weight penalties. The largest weight penalty associated with the convex-

beaded concept is 1.47 pounds/square foot for the lower panel at region 40536.

Similarly, the maximum penalty for the honeycomb panel concept is 0.84 pounds/square

foot for the lower panel at region 41036. No added str- • ctural reinforcement (weight

penalty) is required on the convex-beaded concept at regions 40322 and 40236 or the

lower surface honeycomb sandwich panel at region 41348.

Wing Spar Analysis - The composite reinforced spar cap in the aft wing box were

analyzed to define their damage tolerance. This included the spar caps associated

with point design regions. 40236, 10536, and 41036.

The detail dimensions of these titanium caps reinforced with unidirectional Boron/

polyimide (B/PI) are shown in Table 13-38. These sections incorporated a constant

metal substrate with the area of the B/1'T reinforcement varied to meet the strength

requirements. A maximum composite thickness of approximately 0.60 inch was required

for the lower surface spars at regions 40236 and 1 0536. Conversely, the minimum

thicknesses occur on outboard region at 41036.

Similar to the analysis conducted in Task 1, a simplified strength analysis utilizing

the multiple element characteristics of these spars was conducted to define the

damage tolerance trends. Table 13-39 summarizes the results of this analysis. The

flight condition and corresponding loads for the maximum tensi,.)n case were defined

by scanning the final design load;, see Section 11, Point Design Environment. As in

the wing panel analysis, Conditions 12 and 14 were the most critical flight conditions.
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TABLE 13--36. I-TING PANEL ITE1GHT PENALTY - TASK TTB

w

N

PANEL MIN. DESIGN FAIL-SAFE REQUIREMENTS
DIMENSIONS REQUIREMENTS

SPAR RIB PANEL SPAR PANEL SPAR STRAPPOINT WEIGHT
DESIGN SPACING SPACING THK., t AREA, THK. AREA, AREA, NO. PENALTY
REGION DESIGN SURFACE b, (in.) a, (in.) (in.) (in2) (in.) (in2) (in2) STRAPS (lb./sq. ft.)

40322 CONVEX- UPPER 22.7 60.0 0.033 - - - - - NOME
BEADED LOWER 22.7 60.0 0.041 - - - -- --- NONE

40236 CONVEX- UPPER 21.2 60.0 0.036 - - - - -- NONE
BEADED LOWER 21.2 60.0 0.048 - - - - - NONE

40536 CONVEX- UPPER 21.2 60.0 0.058 - 0.065 - - - 0.16
BEADED LOWER 21.2 60.0 0.046 - 0.110 1	 -- - - 1.47

41036 HONEYCOMB UPPER 21.2 60.0 0.052 0.094 0.073 0.060 0.060 1 0.55

SANDWICH LOWER 21.2 60.0 0.052 0.074 0.085 0.070 0.070 1 0.84

41316 HONEYCOMB UPPER 40.0 40.0 0.131 0.086 -- 0.060 0.060 3 0.10
SANDWICH LOWER 40.0 40.0 0.153 0.088 1	 - 0.330 0.330 3 0.71

41348 HONEYCOMB UPPER 30.0 40.0 0.143 0.086 -- - - 2 NONE
SANDWICH LOWER 30.0 40.0 0.139 0.086 - 0.060 0.060 2 0.09

WEIGHT PENALTY EQUATION (EQUIVALENT PANEL WEIGHT)

&W = 144 P I (fPAN E L, FS-tPANEL,MIN) + (ASPAR, FS- ASPAR, MIN + n ASTRAP)1bl

WHERE;

P= MATERIAL DENSITY, 0.160 ib./in3 ASPAR, FS	 SPAR CAP AREA REQUIRED FOR FAIL-SAFE

VANEL, FS = PANEL THICKNESS REQUIRED FOR ASPAR, MIN = SPAR CAP AREA, MINIMUM DESIGN
FAIL-SAFE REQUIREMENT

*PANEL, MIN = PANEL THICKNESS, MINIMUM ASTRAP = STRAP AREA REQUIRED FOR
DESIGN REQUIREMENTS FAIL-SAFE

b = SPAR SPACING n= NUMBER STRAPS



l-T

`FABLE 13--37. SUMMARY OF IMIG PANEL FAIL--SAFE ANALYSIS HYBRID
ARRANGEMENT - TASK IIB

N
w

w

REINFORCE-
SPACING MENT

EFFICIENCY
POINT CRACK MARGIN WEIGHT

DESIGN
CONCEPT

DESIGN
REGION

WING
SURFACE

SPAR
(in.)

RIB
(in.)

LENGTH
(in.)

EAe/t
(in.) _y

OF
SAFETY

PENALTY
(lb./sq. ft.)

CONVEX-BEADED 40322 UPPER 22.7 60.0 7.05 1.87 1.33 0.91 LARGE NONE
PANELS LOWER 22.7 60.0 8.25 1.90 1.35 0.93 +1.28 NONE

40236 UPPER 21.2 60.0 7.05 2.13 1.35 0.79 +1.52 NONE
LOWER 21.2 60.0 8.25 2.50 1.40 0.93 +0.08 NONE

40536 UPPER 21.2 60.0 7.05 1.68 1.32 0.61 +0.03 0.16
LOWER 21.2 60.0 9.75 1.77 1.37 0.47 +0.06 1.47

HONEYCOMB- 41036 UPPER 21.2 60.0 20.0 1.82 1.52 0.81 +0.05 0.55
SANDWICH LOWER 21.2 60.0 20.0 1.71 1.48 0.83 +0.01 0.84
PANELS

41316 UPPER 40.0 40.0 20.0 1.00 1.37 0.93 +0.05 0.10
LOWER 40.0 40.0 20.0 4.40 1.74 0.95 +0.01 0.71

41348 UPPER 30.0 40.0 20.0 - 1.00 0.91 +0.50 NONE
LOWER 30.0 40.0 20.0 0.88 1.36 0.91 +0.11 0.09



TABLE 13--38. SPAR CAP GEOMETRY -- TASK IIB
COMPOSITE REINFORCE} CONCEPT

SPAR CAP DIMENSIONS
POINT SPAR

DESIGN SPACING h b H W t1 t2
REGION (in.) tin.? (in.) (in.) (in.) (in.) On.)

40236
UPPER 21.2 .38 1.00 1.20 2.50 .12 .12
LOWER 21.2 .62 1.00 1.20 2.50 .12 .12

40536
UPPER 21.2 .38 1.00 1.20 2.50 .12 .12
LOWER 21.2 .58 1.00 1.20 2.50 .12 .12

41036
UPPER 21.2 .10 1.00 1.20 2.50 .12 .12
LOWER 21.2 .12 1.00 1.20' 2.50 .12 .12

BIPI COMPOSITE REINFORCEMENT
t2

t1

H
h

b

VY	 _ I	 6AL-4V (Ann.) TITANIUM

i



TABLE 13-39 -M7NARY OF SPAR CAP FAIL-SAFE ANALYSES COMPOSITE
REINFORCED CONCEPT - TASK Tl"B

w
rrn

DAMAGED CAPM
TOTAL APPLIED (l ) (2) MEMBER ALLOWABLEO ALLOWABLE LOAD

LOAD, KIPS LOAD, KIPS (PA), KIPS

METAL COMPOSITE BROKEN BROKENPOINT SPAR MARGIN(5)
DESIGN SPACING COND ELEMENT ELEMENT METAL COMPOSITE OF
REGION (in.) NO. PULT PLIMIT PM PC ELM. ELM. SAFETY

40236
UPPER 21.2 14 190.2 126.8 35.5 55.9 223.6 203.2 +0.60
LOWER 21.2 12 391.2 260.8 33.6 89.4 357.6 301.8 +0.16

40536
UPPER 21.2 14 176.3 117.5 35.5 55.5 222.0 202.0 +0.72
LOWER 21.2 12 364.9 243.3 34.5 82.6 330.4 282.3 +0.16

41036
UPPER 21.2 14 62.3 41.5 37.5 16.0 64.0 85.5 +0.54
LOWER 21.2 12 115.5 77.0 37.1 19.6 78.4 95.9 x-0.02

1. MAXIMUM TENSION LOADS
2. LIMIT LOAD = 213 ULTIMATE LOAD

3. COMPOSITE ELEMENT LOAD ARE UNIT VALUES, TOTAL LOAD SUSTAINED BY THE COMPOSITE ELEMENTS
1S FOUR TIMES THE UNIT VALUES.

4. DAMAGED CAP ALLOWABLE&

BROKEN METAL MEMBER	 BROKEN COMPOSITE MEMBER

PA = 4 X PC	 PA = PM + 3 X PC

MIN. PA
5. MARGIN OF SAFETY =	 - 1

PLIMIT



From the strength analysis, the ultimate load carrying capability of each member

of the cross-section was defined. For example with reference to 'Table 13--39, the

metallic substrate of the upper spar caps at point design region 40236 has an

allowable of 35 . 5 kips and each of the four composite members are capable of with-

standing a load cf 55.9 kips.

A damage condition of a single broken member (composite or metal substrate) with

the applied limit load redistributed to the remaining undamaged members was con-

sidered. The allowable loads for the damaged conditions and margins of safety are

also included on Table 1339. In summary, all composite reinforced caps are fail-

safe with a minimum punitive margin of 2--percent existing on the lower spar cap at

point design region 11036.

Fuselage Analysis -- The Task I1 fuselage fail-safe analyses were conducted to define

the damage-tolerance capability of the strength design fuselage and assess the

weigiFt penalties associated with meeting the fail-safe requirements.

The analytical method outlined in Figure 13-10 was used with two types of cracks

being considered: Circumferential and longitudinal cracks. Similarly to Task 1, a

50-percent reduction in fracture toughness (Ko ) was iruposed on the Task II analyses

involving ongitudinal cracks, with no reduction in K  for the circumferential crack

conditions.

The assumed fuselage damage configurations are presented in Figure 13-21. For the

circumferential crack condition, a damage condition of a t'ao-pitch skin crack with

the intermediate stringer broken was considered. This damage condition results in

crack lengths from 8 inches to 12 inches. This figure also represents the damage

condition for the longitudinal cracks, which is a two-bay crack with the inter-

mediate frame or fail-safe strap broken. As shown on this figure, the most critical

damage condition is a longitudinal skin crack under the hat-stiffener. This

condition is the most severe since manufacturing difficulties preclude adding

straps at the fuselage frame under the het-stiffeners. Therefore for this condi-

tion crack lengths equal to two--full frame spacings, approximately 40 inches, were

considered.
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FRAME
REGION SPACING

OW
FS 900 21.50
FS 1910 22-67
FS 2525 21.25
FS 2900 21.00

Nw

SECTION A-A
CIRCUMFERENTIAL CRACK

L

\\ FAIL-SAFE	 FLOATING
STRAPS	 FRAMES
(WELD-BOND)

SECTION B-B
LONGITUDINAL SKIN CRACK UNDER
FIAT STIFFENERS

L

ell

SECTION &S
LONGITUDINAL SKIN CRACK BETWEEN
HAT STIFFENERS

Figure 13-21. Fuselage Panel Damage Configuration - Tasli ITB



Four fuselage point design regions were analyzed in support of the detail engineering

studies. The final design fuselage incorporates the zee-stiffened panel concept at

FS 750, and the hat-stiffened concept at FS 1910, 2525, and 2900. The panel geometry
for each of these stations are shown in fable 13µ40. "he circumferential location

is identified by the equivalent NASTRAN model panel identification number as shown

on Figure 13-22.

The fail-safe analysis indicated the locations where basic panel geometry changes were re-

quired. As a result, panels 23+103 and 234104 at FS 1910 and panels 234805 and 234806 at FS 2525

were amended. The revised section properties for these panels are shown in Table 13-41.

A summary of the maximum tension stresses for selective locations at the point

design regions is presented in Table 13-42 and includes the adjusted stresses levels

for the revised panels. The critical tension stresses are specified for the crack

condition being investigated, i.e., maximum hoop stress for longitudinal cracks and

maximum axial (meridional) stress for the circumferential crack condition. For

ease in reporting, selective panels at each point design region have been redefined

as top, side, and bottom panels. With reference to Figure 13-22, the tour definition

refers to the upper-most panel at each region, i.e., the panels with the NASTRAN

identification numbers (six digit number) ending with the digits 01. Similarly,

side and bottom refers to the panels ending with the 06 and 09 digits, respectively.

Hereafter, this terminology is used for the fuselage analysis.

The fuselage was subjected to a comprehensive fail-safe analysis which included all

circumferential panels at each of the point design regions. A sample of the fuse-

lage analysis is shown in Table 13-43 for the top and side locations at point design

region 2525. This example covers both the longitudinal and circumferential crack

conditions. Positive margins are noted for each location, with a minimum margin of

1-percent noted at the side panel for the circumferential crack condition. All

other margins are 50-percent or higher. These calculations reflect reinforcement

straps for . the longitudinal crack analysis and the revised side panel geometry pre-

viously discussed and presented in Table 13-41.

A sample of the weight penalty calculations are presented in Table 13-44 for point
design region FS 2525. This table indicates the weight parameters (panel thickness
and strap area) associated with the individual panel meeting the fail-safe require--

meets. In addition, the average equivalent panel thickness (T) and unit weight (w)
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TABLE 13-4o. FUSELAGE PANEL GEOMETRY - TASK IIB

FUSELAGE PANEL DIMENSIONS

POINT
DESIGN PANEL CIRCUMF. l's is C f h fist t
REGION CONCEPT LOCATION (in.) (in.) (in.) (in.) ( in.) (in.) (in.)

FS 900 ZEE- 233301- 4.0 .036 .55 0.75 1.00 .036 .056
STIFFENED 233307

FS 1910 HAT 234101 6.0 .07 1.5 0.80 1.25 .06 .129
STIFFENED 234102 6.0 .06 1.5 0.80 1.25 .05 .109

234103 6.0 .04 1.5 0.80 1.25 .04 .079
234104 6.0 .04 1.5 0.80 1.25 .03 .069
234105 6.0 .05 1.5 0.80 1.25 .05 .099
234106 6.0 .06 1.5 0.80 1.25 .06 .11.9

FS 2525 HAT 234801 6.0 .07 1.5 0.80 1.25 .08 .149
STIFFENED 234802 6.0 .06 1.5 0.80 1.25 .06 .119

234803 6.0 .05 1.5 0.80 1.25 .05 .099
234804 6.0 .04 1.5 0.80 1.25 .03 .069
234805 6.0 .04 1.5 0.80 1.25 .03 .069
234806 6.0 .04 1.5 1 0.80 1.25 .04 .079

FS 2900 HAT- 235101 6.0 .07 1.5 0.80 1.25 .07 .139
STIFFENED 235102 6.0 .05 1.5 0.80 1.25 .06 .109

235103 6.0 .05 1.5 0.80 1.25 .04 .089
235104 6.0 .04 1.5 0.80 1.25 .03 .069
235105 6.0 .04 1.5 0.80 1.25 .03 .069
235106 6.0 .04 1.5 0.80 1.25 .03 .069
235107 6.0 .05 1.5 0.80 1.25 .04 .089
235108 6.0 .05 1.5 0.80 1.25 .06 .109
235109 6.0 .07 1.5 0.80 1.25 A8 .149

PANEL DIMENSIONS:

f	 bs	
5S	 ^- C	 f

`^

h	 h

t5t	 tst

ZEE-STIFFENED CONCEPT	 HAT-STIFFENED CONCEPT
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FS 2900

Z

FS 2525

X
AFT

Nx	
y

Lgure 13-22. Fuselage Panel Identificaticn -- Task IIB
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TABLE 13-41. REVISED FUSELAGE,  PAIIEL GEOMETRY -- TASK TIE

FUSELAGE PANEL DIMENSIONS
POINT

DESIGN PANEL bs is C f h tst t
REGION CONCEPT LOCATION (in.) (in.) (in.) (in.) (in.) (in.) (in.)

FS 900 ZEE- — NO CHANGES
STIFF.

FS 1910 HAT- 234103 6.0 .05 1.5 0.8 1.25 .04 .089
STIFF. 234104 6.0 .05 1.5 0.8 1.25 .03 .079

FS 2525 HAT- 234805 6.0 .08 1.5 0.8 1.25 .08 .159
STIFF. 234806 6.0 .10 1.5 0.8 1.25 .08 .179

FS 2900 HAT- — NO CHANGES
STIFF.

f	 bs bs C	 f
l

is	

h
^ 	} is

{

C
tst tst

ZEE-STIFFENED CONCEPT HAT-STIFFENED CONCEPT
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TABLE 13-42. SUMMARY OF FUSELAGE PANEL STRESSES - TASK IIB

F^wi
N

FUSELAGF•, SKIN STRESS (ULT.) - ksi(1)

FS 900 FS 1910 FS 2525 FS 2900
TYPE OF

LOCATION CRACK COND fx fe fxy COND fx. f8 fxR7 COND fx fe fxy COND fx fe fxy

TOP Cl RCUM. .25 34.8 - 1.77 .28 57.6 - 1.14 26 52.1 - 0.53 26 39.2 -- 1.61

LONG. 22 - 34.3 -- 20 - 17.1 3.23 20 - 17.1 1.17 20 -- 17.1 1.19

SIDE CIRCUM. 24 12.1 - 1.70 22 6.0 - 8.00 24 5.15 - 18.3 20 30.8 - 14.3

LONG. 20 - 34.3 1.22 20 - 19.9 12.3 20 - 12.0 2.20 20 -- 29.8 14.3

BOTTOM CIRCUKI. - - - - -- -- - - - - - - 20 71.4 - 4.18

LONG. - - - - -- - - - - - - - 20 -- 17.1 4.18

1.	 LIMIT STRESS = 213 ULTIMATE STRESS

2.	 SEE SECTION 11, TABLE 11 -38 FOR DEFINITION OF LOAD CONDITIONS



TABLE 13-43. FUSELAGE. PANEL FAIL--SAFE ANALYSIS-
TASK IIB, POINT-DESIGN REGION FS 2525

ITEM POINT DESIGN REGION FS2525

CRACK TYPE LONGITUDINAL CIRCUMFERENTIAL

LOCATION TOP SIDE TOP SIDE

PANEL GEOMETRY
ts, in. .070 .100 .070 .100
bs,in. -- - 6.0 6.0

b (frame spacing), in. 21.25 1	 21.25 - -
REIN FO9CEMENT AREA (fail-safe strap) (panel stiffener)

Ae, in. .06 .06 .161 .161
EAe/ts, in. 1.71 1 . 20 4.6 3.2

LIMIT STRESSES
COND. NO. 20 20 26 24
fx, ksi. - - 34.7 3.44
fg, ksi. 11.4 8.0 - --
fxy, ksi. 0.78 1.47 0.35 12.2

FRACTURE TOUGHNESS
k0, ksi -in. - -- 130 138
1/2 ko, ksi - vfin. 65 69 -- -

CRACK GEOMETRY I
LENGTH (L), in. 42.5 42.5 12.0 12.0

L,	 in. 6.5^ 6.52 3.46 3.46
REINFORCEMENT EFF.

Y 1.75 1.70 1.61 1.53
0.99 0.97 1.00 0.40

ALLOWABLE STRESSES
Fg = Y^ Ro/vIL-1 17.3 17.4 60.4 24.4
Fs = 1/2 Fg 8.64 8.73 30.2 12.3

MARGINS OF SAFETY
Axial (MS = Fg/f- 1) +0.52 +1.18 +0.74 +HIGH
Shear +HIGH +HIGH +HIGH +0.01

f
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TABLE 13-44. +"USELAGE PANE, FAIL--SAFE WEIGHT PENALTY -- TASK IIB,
POINT DESIGN REGION FS 2525

w

FAIL-SAFE REQUIREMENTS

STRAP PANEL
PANEL. CIRCUM

PANEL t A b t E Cl
REGION/CONCEPT LOCATION (in.) 0A (in.) (in.) (in.) (in.)

FS 2525 234801 0.060 21.25 0.0028 0.0028 39.64
(TOP)

HAT-STIFFENED
PANEL CONCEPT 234802 — 0.060 21.25 0.0028 0.0028 29.72

234803 — 0.060 21.25 0.0028 0.0028 23.68

234804 — 0.140 21.25 0.0066 0.0066 17.86
234805 0.090 0.060 21.25 0.0028 0.0928 11.82

234806 0.100 0.060 21.25 0.0028 0.1028 11.90
(SIDE)

AVERAGE VALUES t= 0.020 in.;	 W - 0.46 lb./sq. ft.

NOMENCLATURE-

t = EQUIVALENT SURFACE PANEL THICKNESS	 z	 = t (PANEL) +T (STRAP)
A = AREA OF FAIL-SAFE STRAP	 Ci = PANEL CIRCUMFERENCE

b = FRAME SPACING	 66
t (AVG) =	 Z	 Citi / E	 Ci

A/b — ti {STRAP}	 i =1	 I i =1
W (AVG) = 25.04 X t (AVG)



are calculated for the entire point design region, the respective values for FS 2525
are 0.020 inches and 0.46 lb/sq ft. The added panel thickness requirements reflect
the revised geometry shown in Table 13-41. Table 13--45 summarizes the results of the

Task 1T fuselage fail-safe analyses. This table presents a summary of the pertinent

data derived from the detail calculations, indicates the margin of safety and weight .
penalty associated with the specific panels, and the average weight penalty for the

entire point design region. All regions required additional structure to meet the

fail-safe requirements. The highest weight penalty, 0.46 lb/sq. ft., was associated
with the mid-body region at FS 2525. The aftbody region at FS 2900 exhibited the

highest fail-safe capability i.e., lowest weight penalty, 0.10 lb/sq. ft.

in general, selective panel stiffening was required to meet the circumferential
crack criteria; whereas, all regions required circumferential fail-safe straps to
attain the longitudinal crack criteria.



H
W

5

TABLE 13-45.	 SUMMARY OF FUSELAGE FAIL--SAFE ANALYSES - TASK TTB

REINFORCE-
MENT WEIGHT PAN ELTY (AW)

POINT CRACK EFFICIENCIES MARGIN (IbjE q.. ft.)

DESIGN DESIGN PANEL TYPE OF LENGTH M Ae/t(1)(2) OF POINT DESIGN
CONCEPT REGION LOCATION CRACK (in.) (in.) Y l SAFETY PANEL REGION

ZEE-STIFF. FS 900 TOP CIRCUM 8.0 2.0 1.36 1.00 +1.25 NONE
SIDE CIRCUM 8.0 2.0 1.36 0.98 +HIGH NONE

(0.25)
TOP LONG 21.5 7.2 1.97 1.00 +0.01 0.25
SIDE LONG 21.5 7.2 1.97 0.99 +0.01 0.25

HATSTIFF.	 FS 1910	 TOP	 cvRCUM	 12.0	 3.5	 1.55	 1.00	 +0.51	 NONE
CONCEPT	 SIDE	 CIRCUM	 12.0	 4.1	 1.57	 0.58 +2.11 NOME

(0.22)
TOP	 LONG	 44.3	 1.7	 1.75	 0.97 -5.0.46 0.06
SIDE	 LONG	 44.3	 5.0	 2.20	 0.80 +0.02 0.15

HAT STI FF.	 FS 2525	 TOP	 CIRCUM	 12.0	 4.6	 1.61	 1.00 +0.74 NONE
CONCEPT	 SIDE	 CIRCUM	 12.0	 3.2	 1.53	 0.40 +0.01 2.34

(0,46)
TOP	 LONG	 42.5	 1.7	 1.75	 0.99 +0.52 0.06
SIDE	 LONG	 42.5	 1.2	 1.70	 0.97 +1.18 0.06

HAT-STIFF.	 FS 2900	 TOP	 CIRCUM	 12.0	 4.1	 1.58	 1.00 +1.27 NONE
CONCEPT	 SIDE	 CIRCUM	 12.0	 3.2	 1.53	 0.87 +1.11 NONE

BOTTOM	 CIRCUM	 12.0	 4.6	 1.60	 0.99 +0.25 NONE
(0.10)

TOP	 LOMG	 42.0	 1.7	 1.70	 1.00 +0.50 0.07
SIDE	 LONG	 42.0	 10.0	 2.77	 0.86 -10.04 0.22
BOTTOM	 LONG	 42.0	 1.7	 1.70	 0.96 +0.44 0.07

NOTES:

1. EAe = SUM OF EFFECTIVE AREAS

2.	 t = SKIN THICKNESS

3. PANEL WEIGHT PENALTY	 POINT DESIGN REGION WEIGHT PENALTY

,6ti = AtPANEL +ASTRAP/h	At-AVG. _	 T-CiAtilECi

A Wi = 144 pAti = 23.04 Ati	 AW = 23.04 ,6:tAVG.

WHERE:	 Ati = EQUIVALENT SURFACE PANEL THICKNESS OF i th PANEL

AtAVG = AVERAGE SURFACE PANEL THICKNESS OF FUSELAGE CROSS-SUCTION

Ci = CIRCUMFERENCE OF ith SURFACE PANEL

AtPANEL = ADDITIONAL THICKNESS OF ith PANEL FOR FAIL-SAFE

ASTRAP = STRAP AREA OF ith PANEL FOR FAI L-SAFE

b = FRAME SPACING
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SECTION 14

ACOUSTICS

INTRODUCTION

Experience gained in the development of aircraft structural design has demonstrated

the importance of a coordinated design program in which sonic fatigue prevention

plays an integral. part.

The principal components of any sonic fatigue prevention program are: (1) a

definition of the aircraft's acoustic environment; and (2) the design of structure

which will withstand the acoustically induced loads without fatigue cracking.

Each of these aspects involves a combined analytical and experimental approach.

Due to the preliminary nature of this investigation, only a preliminary assessment

of the sonic fatigue capability of the structural configurations could be ascer-

tained for the supersonic cruise aircraft. This assessment was conducted in the

following steps:

• The acoustic environment was estimated for the baseline airplane during

take-off.

• The methods of analysis and associated design charts were defined for use

in the detail analysis.

• Selective wing and fuselage surface panels were analyzed to assess the

relative merit of the structural concepts.

The results of this assessment are reported in the following text under the

titles: sonic environment, methods, and analysis. For continuity, the results

of the Task I analysis (wing and fuselage) are presented in their entirety

followed by the results of the Task II analysis.

SONIC ENVIRONMENT

The acoustic environment to which the baseline airplane is subjected during

takeoff was estimated from empirical free field acoustic levels generated by an

existing turbojet engine. The engine selected for the supersonic cruise airplane

study is a Mach 2.7 duct burning turbofan engine, designated the BSTF 2.7-2.

l
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A schematic drawing of this engine is shown in Figure 14-1 with the engine

parameters listed in Table 14--1. The acoustic environment generated by the

baseline turbofan engine was estimated by adjusting the empirical acoustic levels

to account for the differences in the geometric characteristics of the engines,

the operating parameters and the presence of structure within the acoustic field..

In support of the Propulsion-Airframe Integration Study, reported in Section 19,

the acoustic environment in terms of overall sound pressure levels (OASPL) -nd

octave band levels was defined for the same engine mounted further forward than

the baseline location. The engine location for these two designs are presented

in Figure 14--2.

Reference Contours

The acoustic environment is based on jet: near-field noise prediction methods given

by Franken and Kerwin in Reference 1. The basis for the noise contours of this

study was the acoustic levels defined by the above investigators for an existing
turbojet engine, Figure 14-3. These data reflect a circular nozzle with an exhaust

area of 0.66 sq. ft. and an exhaust velocity of 1850 ft. per sec. These referenced
contours were extrapolated and scaled to the baseline airplane dimensions,

Figure 19»1. The scaled contours were then adjusted to reflect the differences in:

• Engine geometric characteristics.

• Operating parameters.

• Presence of structure within the acoustic field.

14-2
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CONCEPTUAL GAS PATH SCHEMA T IC
FAN PRESSURE RATI0 = 3.0

ronKrr	 RFAR

Figure 14-1. Duct Burning Turbofan Engine -- Mach 2.7

TABLE 14-1. PROPULSION SYSTEM PARAMETERS

Engine: BSTF 2.7-2 duct burning turbofan
Number of engines: 4

Noise suppression: FAR 36-5
Inlet/nozzle: Axisymmetrie/variable convergent-divergent
Thrust/weight -- (lift off): 0.36
Lift off Speed: Mach 0.30

Scale Factor: 1.0 (Ref.) 1.147

Net thrust, lb.	 (A) 78,000 89,466
Engine weight, lb. (*B) 11,143 12,781
ACAP, ft2 33.1 38.0
DMAX, in. 90 96.4
DCOMP, in. 79.4 85.0
DNOZ, in. g0 96.4
LEND, in. 255 267.5
LINLET, in. 189.3 203.9

Study Application Task I Task 11

(A) SLS, Max. Power, uninstalled
(B} Includes reverser and suppressor

14-3
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Engine Characteristics

The following table defines the engine nozzle area and exhaust velocity of the

referenced engine and the turbofan engine used for the study.

NOZZLE PARAMETERS

Exhaust Area Exhaust Velocity
ENGINE (Ft.2) (Ft/See.)

Referenced turbo3et 0.66 1850

Duct burning turbofan 21.4 2370

Using these dat9, the values for the referenced contours were scaled to account for

the difference in nozzle area and velocity. The nozzle area relationship is directly

proportional to the area ratio; whereas, the velocity relationship is proportional

to the velocity ratio to the eighth power. The change in the noise contours

attributed to the di•fferences.in exhaust velocity was calculated as follows:

AdB = 80 10910 1850 - 8.64 dB

In addition, the noise suppressor attentuation was estimated from the predicted

values given by General Electric for their AST engine, Refevence 2. For the

BSTF .2.7-2 duct burning turbofan with 2+00 ft. per see. exhaust velocities the

estimated noise attenuation is 14.5 dB. In summary, the incremental changes

attributed to the e..gine geometry and noise suppressor are shown in the following

table.

ITEM
Changes Over

Reference Engine No ise Contours

Nozzle area k 15.12 dB

Velocity ratio + 8.64 dB

Noise suppressor - 1+.50. dB

AdB + 9.26 aB

From these results, 10 dB were added to each contour shown in Figure 14-3.
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Addition of Noise

The noise contours for each engine overlapped the noise of the other engines.

Therefore, the noise at a given point was determined by adding the noise in pairs.

To expedite these logarithmic calculations Table 14-2 was used. An explanation of
the use and the limiting'conditions are included on this table.

Structure Within the Field

To account for the presence of structure within the acoustic field, the reflected

acoustic wave was assumed to cause a pressure doubling near aircraft surfaces.

Therefore, 6 dB was added to the noise at each point.

lsointensity Contours

The OASPL was determined using the reference contours (Figure 14-3) and the calcu-

lated incremental changes associated with the AST design. Tsointensity contours

were defined for each of the engine locations (Figure 14-2) after OASPL had been
defined at sufficient points. Figure 14-4 displays the isointensity contours for
the baseline engine location and Figure 14-5 presents the corresponding contours for
the forward mounted engine.

The peak frequency was.determined by consideration of the Strouhal number,

(Sn - fD/V). Assuming a Strouhal number of 0.3 ;, commensurate with a supersonic jet

with a 54 tube nozzle, and solving the equation Explicitly for the frequency f,

a peak frequency of 995 Hz is obtained. The calculations are as follows:

lu-6



TABLE 14-2. COMBINING SOUND PRESSURE LEVELS IN DB'S

LIMIYATIONS: USE OF THIS TABLE LIMITED TO THE TWO FOLLOW- EXPLANATION OF TABLE: THE GROUP OF NUMBERS BENEATH THE
ING CONDITIONS: BOLD NUMERAL AT THE TOP OF EACH BOX, REPRESENTS THE

A. COMBINATIONS OF SINE WAVES NO TWO OF WHICH HAVE THE DIFFERENCE IN DB, BETWEEN ANY TWO SOUND PRESSURE LEVELS,

SAME FREQUENCY. Ll & L2. (Ll	L2)

B. ANY COMBINATION OF RANDOM NOISE SOURCES, WITH OR THE VALUES IN THE RIGHT HAND COLUMN OF EACH BOX ARE THE
WITHOUT COMBINATIONS OF SINE WAVES. NUMBER OF DB TO BE ADDED TO L7 TO OBTAIN THE RESULTANT

OFLq&L2INDB.

0 1 2 3 4 5 6 7

0.0 1.0 2.0 3.0	 1.8 4.0	 1.5 5.0 6.0 7.0
3.0

2 '
5 1.2 1.0

0.1 ?.1 2.y	 2.1 3.1 4.1 5.1 6.1 7.1	 0.8

0.2 1.2 2.2 3.2	 1.7 4.2	 1.4 5.2 6.2 7.2
2 ' 90.3 1.3 2.4	 2.3 3.3 4.3 5.3 6.3 7.3

2.0
0.4 1.4 2.4 3.4 4.4 5.4	 1.1 6.4	 0.9 7.4
0.5 1.5 2.5 3.5	 1.6 4.5 5.5 6.5 7.5

2.3 1.3
0 6 2.6	 1.9 3.6 4.6 5.6 6.6 7.6	 0.7;-	

2.7
	 [1.6

0.7 1.7 2.7 3.7 4.7 5,7 6.7 7.7
0.8 1.8 2.2	 2.8 3.8	 1.5 4.8 5.8	 1.0 6.8	 0.8 7.8

2.B 1 ' 8 1 '20.9 1.9 2.9 4.9 5.9 6.9 7.9

8 9 10 11 12 13 14 15

8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0
8.1 9.1 10.1 11.1 12.1 13.1 14.1 15.1

0'38.2 9.2 10.2 11.2 12.2 13.2 14.2 15.20.5 0.2

8.3	 0.6 9.3 10.3 11.3 12.3 13.3 14.3 15.3

8.44 9.4 i0.4	
0.4

11.4 12.4 13.4 14.4 15.4
0.3 0'2 0`18.5 9.5 10.5 11.5 '12.5 13.5 14.5 15.5

8.6 9.6 10.6 11.6 12.6 13.6 14.6 15.6L
0 '28.7 9.7 10.7 11.7 12.7 13.7 14.7 15.7

8.8	 0.5 9.8
0.4	

10,8 11.8 12.8 13.8 14.8	
0.1 15.8

8.9 9.9
0.310.9 11,9 12.9 13,9 14.9 15.9
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Figure 14-4. Overall Sound Pressure Level - Baseline Engine Location
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Figure 14--5. Overall Sound Pressure Level — Forward Mounted Engine



Tube area = 254 - 0.396 ft2

Tube Diameter = x	 = 0.712 ft.
3.14

and from the Strouhal number equation

f	 .30 x 2370 = 995 
Hz.712

The spectrum shape 'was then determined by comparison.of spectra from several

suppressor nozzles and is shown in Figure 14-6. The octave band noisF contours at

the center frequency were determined by subtracting the values shown in Figure 14 -6

from the OASPL displayed in Figures 14 -4 and 14--5. In tabular form these values

are:

FREQUENCY (Hz) A dB

63 .-15
125 -14
250 -12
500 -10

1000 - 6

Figures 14-7 through 14-11 present the noise contours for the baseline engine

placement for octave band Levels with 63, 125, 250, 500, and 1000 Hz center

frequencies respectively. Figure 14-12 through 14-16 give the corresponding

noise contours for the forward mounted engine.

METHOD OF ANALYSIS

The two most important properties of structure from the s;,-.ndpoint of sonic

fatigue resistance Fire: (1) its resonant frequencies; a..d (2) its "quality of

detail design".

Tne first of these is important because excitation of a structure at its resonant

frequency can induce stresses in the structure on the order of 50 times as great

as those which would result from the same load applied statically.
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FigurA i ll-6. Exhaust Noise Spectra
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Figure 14-7. 63 Hz. Octave Band Pressure Levels — Baseline Engine Location
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Figure 14-8, 125 Hz. Octave Band Pressure Levels - Baseline Engine Location
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Figure 14-9.. 250 Hz. Octave Band Pressure Levels - Baseline Engine Location
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Figure 14-10. 500 Hz. Octave Band Pressure Levels - Baseline Engine location
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Figure 14-11. 1000 Hz. Octave Band Pressure Levels - Baseline Engine Location
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Figure 14-12. 63 Hz. Octave Band Pressure Levels - Forward Mounted Engine
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Figure 1$--13. 125 Hz. Octave Band Pressure Levels - Forward Mounted Engine



Figure 14-14. 250 Hz. octave Band Pressure Levels - Forward Mounted Engine
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For structure which must withstand broadband random noise, the resonant condition

cannot be avoided. 'Therefore adequate stiffness must be designed into the

structure to keep the acoustically induced stresses sufficiently low to avoid

fatigue cracking.

The amplitude of vibratory response which the structure can withstand for a

satisfactory period of time without fatigue cracking is highly sensitive to the

" quality of detail design", the second property mentioned above. This is a

consequence of the fact that it is not the average or "nominal" value but the

"maximum" value of the vibratory stresses which limits the fatigue life of a

structure. Therefore, it is important to give careful attention to the details of

design in order to avoid high concentrations of stresses in localized areas.

Because of the dependency of fatigue resistance on the quality of detail design, it

is not possible to predict the fatigue life of a panel by analysis alone. There--

fore design charts were used which are based on the analysis of the response of

structure to broadband random excitation for which fatigue allowables are chosen

to be consistent with fatigue test data for typical aircraft structure. These

charts were determined by the analytical and empirical approaches of References 3

and 4.

For the analysis, design charts were used for three different types of panels;

they were:

e Qrthtropic panels which have unequal stiffness properties along the two

principal axes, e.g., convex-beaded and hat--stiffened wing panel concepts.

• Monocoque panels which exhibit appreciable stiffness in both axes and

plate theory is applicable, e.g. ; honeycomb sandwich panels.

• Unstiffened skin panels for analysis of the skin vibrating as a plate

between stiffeners.

The series of design charts used to analyze the orthotropic panel concepts were
obtained from Reference 3 and are shown in Figure 14-17. This figure outlines the

design charts used for determining the allowable spectrum level and natural fre-

quency of the panel, Figure 14-17a and 14-17b, respectively. In addition for com-

pleteness, the applied sound spectrum level is shown in Figure 14-17c.

3-4-22
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Fi oxre 14-17. Orthotropic Panel Sonic Fatigue Design Chart
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The monocoque concepts, honeycomb sandwich wing panels were analyzed for both

face sheet and edge failure modes. Design charts based on the empirical equations

presented in Reference 4 were used in the analysis of these concepts. A sample
design chart for determining the face sheet allowable sound spectrum level is shown

in Figure 14-18. The corresponding honeycomb sandwich design chart for the edge

capability is presented in Figure 83 of Reference 4. The fundamental frequency was
calculated using the method presented in the above reference and is shown in

Figure 14-19.

The skin panel charts of Figure 14-20 outline the method-used to determine the
capability of the skin between stiffeners. The natural frequency and allowable sound

spectrum level are found from Figures 14-20a and 14-20b, respectively. The applied
sound spectrum level is included as Figure 14-20c.

Sonic fatigue analyses require that the applied acoustic environment be defined in

terms of sound spectrum levels (db/Hz). The sound spectr-in levels are a measure of

the acoustic energy contained in a one Hertz bandwidth centered at a specified fre-

quency. The sound spectrum levels were defined for the wing and fuselage point

design regions for frequencies of 63, 125, 250, 500, and 1000 Hz. Figures 14-21
and 14-22 present the wing and fuselage sound spectrum levels, respectively. A

smooth curve was constructed through the sound spectrum levels at these frequencies

to approximate the spectral distribution of the acoustic environment.

The above sound spectrum levels were determined for the baseline airplane by reducing

the octave band noise Level contours presented in Figures 14-7 through 14-11 to one

Hertz bands. This was accomplished by subtracting the following values from the

contour levels given in these figures.

Frequency (HZ) AdB

63 16.5
125 19.5
250 22.5
500 25.5

1000 28.5

As a relative merit of each structural concept a sonic fatigue margin was calcul

This margin, allowable panel sound spectrum level minus the applied sound spectr

level, allows the reader to numerically assess the capability of each concept.

14-24
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Figure 14--20. Skin Panel Sonic Fatigue Design Chart
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SONIC FATIGUE ANALYSIS - TASK I

In conjunction with the mask I analytical studies, the most promising wing and

fuselage structural candidates surviving the initial screening were subjected to

sonic fatigue evaluation. The wing candidates evaluated were the least weight

concept representative of each of the three general types of load carrying

structure, i.e., chordwise, spanwise, and monocogue. Similarily, the fuselage

arrangement analyzed represented the combination of structural concept which

afforded the minimum weight fuselage design.

Wing Analysis

Sonic fatigue analyses are conducted on each of the wing concepts at the six point

design regions. The upper and lower surface panels were analyzed at each point design

region. Figure 14-23 presents these point design regions overlayed on the structu-

ral model planform.

The general types of wing structure and the most promising surface panel concept

fog, each type were:

Chordwise Circular arc convex-beaded concept.

• Spanwise Hat-stiffened concept.

• Monocoque - Honeycomb sandwich concept.

The panel cross-sectional properties for the convex-beaded concept (chordwise

arrangement) are shown in Tables 14-3 and 14-4. These data reflect the results

of the strength analysis conducted to define the minimum weight design and the

associated spar spacing. For the minimum weight chordwise design, convex-beaded

concept, a spar spacing of approximately 20 inches resulted in the least weight

design. The sonic fatigue capability of the surface panels for this configuration

were evaluated at the six point design regions.

The surface panel geometry for the least weight spanwise arrangement, hat-

stiffened concept, is shown in Tables 14-5 and 14-6. The minimum weight rib

spacing for this concept is approximately 30 inches.

Similarly, the panel geometry for the honeycomb sandwich concept, least weight

monocoque concept, is shown in Tables 14-7 and 14-8. The minimum weight panel

dimensions are 20 inches by 60 inches, spar and rib spacing respectively.

14-34
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PANEL CONCEPT:

CIRCULAR ARC--CONVEX
BEADED SKIN (hlt:= 0.10)

TALE 14-3. WING PANEL GE010TRY, TASK T CHORDWISE ARRANGalENT -- CONVEX BEADED CONCEPT

H

w
N

POINT DESIGN
REGION 40322 40535 41348

SURFACE UPPER LOWER UPPER LOWER UPPER LOWER

SPAR	 (m) : 5 F .70 1.02 L51..' .76 1.Q2^ 76 1 02 ] .76 1.02 5i . ..76 1.D2  .76 1.02
SPACING i

([n) > 20 ;, 30 40Q 30 40 ;rte 30 40 2G 30 40 2a . .' 30 40 2I} 30 40

DIMENSIONS

tk (in) 0I 021 .031 ,Q)5:.020 .025 02 .035 040 11#; .428 .033 .415 .033 .038 .020 .023

to	 (in) Q1	 :.025 .026 a#52I'.020 .U25 Q35': .036 040 05' .029 .Q37 I .037 .041 .42^ .030 .038

R	 (in) 0 1.2 149 1.4 1.8 f1! 7.1 14 fl8; 1.0 1.4 11' 1.1 1.4 Q7 0.8 0.9

B	 (deg) i $7 87 87 1# 87 87 17 : 87 $7 7 : 87 87 87 : 87 87 137 87 87

b	 (tn) =s x7 .75 .75 -',; .75 .75 .75 .75 75 T.. .75 .75 7	 .' .75 .75
A.

.75 .75

MASS DATA:

(in) Q3&", .055 .070 t#	 1; .049 .061 .tl (3 '085 097 05513. <, .068 .084 . .084 .095 ,D59 ; .058 .070

w	 (1b/ft2) s)$2 1.263 1.619 ; 42 1.1201.413 I;Q^ 1.965 2 241 t;33I': 1.570 1.943 15321.925 1'1 366 1.328 1.616

CRITICAL 20 20 31 31 31 3 31 31 31 31 31 31 r^3919 $^ 31 31
CONDITION ''

.:
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TABU 14-4. WING PANEL GEOME'T'RY, TASK I CHORDWISE ARRANGII 4MT - CONVEX BEADED CONCEPT
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TABLE 14--5. WING PANEL GEOMETRY, TASK I SPAMTISE ARRANGEMENT-FLAT STIFFENED CONCEPT
/I--

'^ d

tag

F-'

1

W

POINT DESIGN REGION 40322 40536 41348

SURFACE UPPER LOWER UPPER LOWER UPPER LOWER

RIB [m) 0.51 R 7fi	 .; 1.02 0.51 1	 7	 .:; 7.02 0.51 b7& ::, 7.02 0.57 .1;6. 1.02 0151 OZS,	 ;': 1.02 057 0 7a	 :' 902
SPACING (in•} 20 $Q 40 20 30- 40 20 30. 40 20 30 40 20 30 40 20 3d 40

DIMENSIONS:

is fool 0.0660 0 0890 0.1110 0,0520 €52p : 0.0530 0.2260 b2390 .11 0.2590 0.277D b	 id0 0.2570 0-1480 D 1710: 0.2010 0.1600 b 4fi10 : 0.7610
Onj 0.0260 0 . 035W 09440 0.0200 u0240" 0.0210 0 .0890 xEI}5 (i 0.1020 0.1090 . {t.1474SE> 0.1050 0.0580 ,'i1tl	 :' 0.0792 MOM V, 630! O.0640

bs= bw	 br ( cm) 2.2800 3 2400:: 4.1706 2.0100 4000'. 2.8800 . 4.4600 535Q0 ; 6.3700 5.1100 5#i9GR;.', 5.4700 3.4100 ad800,< . 5.6100 35700 PQ:.:: 5.0200
(in.i 0.8960 4 7S - 1.6420 0.7910 9 >3Ti50; 1.1330 1.7570 ,.2107!3:; 2.5090 2. 1120 2.241#:: 2.5490 1.3440 .7753x , ;- 2.2090 1.4050 7?^^¢. 1.9799

tw 	 tf (cm) 0.0610 p. 0>>30;:`. 0 .1030 0 .0480 8 tf9Bq 0 .0490 0 2090 il?ztff: 0.2390 0.2550 D441x 0.2460 0.1360 b1077#: 0.76G0 0.1470 b.l4110'% 0.1490
(in.} 0.0240 0 032{1 0.0400 0.0794 11? 0.0190 0.0820 b O83Q ` 0.0940 0.1000 0 49613,1 0.0970 . 0.0540 C 0620„ 0.0730 0.0580 011580 0.0590

bf (cm) 0.6830 ff	 0',' 7 .25110 0.6020 07390;, 0.8640 7.3400 ^r	 , > 1.9706 1,5200 $7.	 ': 1.9400 1.0200 till':.' 1.6800 7.0700 7.3000; 1.5100
(in.} 0,2690 03630 >; 0.4930 0.2370 ItZ9IEF,! 0.3400 0.5270 ff6320'? 0.7530 0.6000 . Q,^72i3>: 0.7650 0.4030 D ra29#;', 0.6630 0.4210 -006 :: : 05940

bs•bl Icm1 1 .5900 22704,'; 29200 7 .4100 372QR?: 20700 31200 375U(F< 4.4500 35600 39500':: 45300 23900 3I301k::; 39300 25000 3.0400;' 35200
(in.} 0.6270 9139	 .. 1.1560 0.5540 057$0<; 0.7930 1.2300 3&	 1#;' 1.7570 1.4010 .15if312 1.7840 0.9410 7,2^40<? 1.5470 0.9830 :1IQBt}> 13860

MASS DATA:

i (cml 0.1669 132	 3. 0.2804 0.1302 01	 2,, 0.1335 0.5715 06i)W O.fi544 0.6981 §15.::]. 0.6749 0.3735 X4306, - 05074 0,4025 0.4072
(40 00657 Dt>$$7.'' 0.1104 0.0512 p A^^12'::: 0.0526 0.2250 11;1377> 0.2577 0.2748 .7.4211"̂4.. : 0.2657 0,1470 . , p :T695, 0.1998 0.1584 .3	 597 0.1603

w (k41m21 73900 ff9$00: 12.420D 5.7700 57700.; 5.9700 25.3200 274b0; 28.9900 30.9000 2952 ;f29.£900 16.5400 1# 0704; 224700 I7.820D Ifb!#	 .' 18.0406
(lblR2] 15140 , Vp044T, : 2.5430 . 7.1816 3;1.&tk.'': 7.2170 5.T850 1%47fiR;' 5.9370 0.3300 G(1''; 51220 33880 8:gppp 4.6020 3.5510 .3,6790,;: 35946

CRITICAL CONDITION 31 94'	 ;; 31 31 „3(,.,.; 31 31 3	 ;', 33 31 ,,,I; 37 31 1:	 ,'; 37 31 34	 >, 37

b1 -^E	 tw

^bf	 t bw	 tf

is
HATS ECTION STIFFEN"



...........
POINT DESIGN REGIONS 40236 41036 41316

SURFACE UPPER LOWER UPPER LOWER UPPER LOWER

,

77777^

RIB 05 1 1.02 0-51 MX:: 1.02 0.51 1.02 0-51 um 0.5, 1,02 0.51 1.02

SPACING {in.] 40 20 40 20 M 40 20 40 20 40 20 40

DIMENSIONS.,
(cm) 0.2090 0.2650 0.2260 . 2256.m 0.2300 0.1600 0.1960 0.1850 0-18110 02490 : : .02W 0.2730 0.2760 if 0.2730

(in.) 0,0820 9, O.ID40 0.0890 ^^Q 0.0910
O'cloc,

947pp . 00770- 0.073D 0.0710 0.0980 6,1060 0.1090 07080

bs -b,-I,, lcrn l 4.2400 ' .r i2 -Q 0,4400 4A600 M: 0.0000 3.5700 5.5400 3.9100 5.3100 4.7400 _X V 65490. E 0800 1 : . 000.0Z 6.5400

(in.) 1.6680 ?-MM 1.7570 23640 1.4050 2.1800 1-5400 7-0900 1.8670 : lAio 25750 20020 25750

tl,V 	 tT lcm) 0.193G 0.2440 0.2090 02150 0.1470 AA.M olBla 0.1700 ' 67a.: 0.1660 D M@o ().?520 02S50. ;241 W. 025211

On.) 0.0760 0.0960 0.0870 0.0840 0.0580 0.0710 0.0670 0.0660
0.0900

OM 0.0990 0,1000
......	 .....

0.0990

bf 1,2700
-'XXX

1.930D 1 .3400 1 .8044 1.0700 bd" 1.6600 1.1700 1" 1.5900 1.4 200 I.DMO 1.5200 WO: 1.9110 0

0.5000 0.7010 4.5270 0.7090 0.4210 0,6540 0.4620 0 0.6270 0.561 0.7730 0.6000 0.7730

bs - b lem) 2.13700 4.5100 3.1200 4.2400 2-5000 3.8300 2.740a 3.7200 3.3200 MVM,:: 4480D 3.5600 4 1100 s 4,E800

(in.) 1.1680 1.7750 1.2300
o^4

1-II55D
0.9830

.1 1,5260 1.0780 1.4630 1.3070 1.8030 11.4010 1,8030

MASS DATA:

gem) 0.5277 0.7389 0,5716 0.5808 0 .4025 0 45fF 0.49400 0,4659 fl AS x6 DA539 0.6273 11A409. : :' MGM 0.6981 0.6889

0.2079 0.2941 0.2250 0.2287 0.1584 x11 7 2. 0.1945 0,1834 0.1787 0.2470 0.2712 0.2748 4.27 l 0.2712

lkjm2 l 23.3700 33,0800 25.3240 4 25.7200 17.8200 iii. ............... 21.8800 20.6300 70 E 20 .1100 27.7800 z839g6 30.5100 30.9000 w. 345700

(lb/ft2 l 4.7900 5.1800 5.2700 3.6500 4010W .' : 4.4800 4.2300
A 4.1200 5.6900 6.25()0 6.3300 6.M a

CRITICAL CONDITION 31 31 31 31 31 31
,

31
3

31 31 31 31
31

O

0
w
110cl

/-I-
TABLE 14-6. WING PANEL GEOMETRY, TASK I SPAMfISE ARRANGEMENT - FIAT STIFFENED CONCEPT

b -bf

12'^	
^w

b, P_ 7
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TABLE 14-7. WING PANEL GEOMETRY, TASK I MONOCOQUE ARRANGEMENT -- HONEYCOMB SANDWICH CONCEPT

t
W
O\

POINT DESIGN REGION 40322 40536 41348

SURFACE UPPER LOWER UPPER LOWER UPPER LOWER

SPAR 1mJ 0 51 0:76 1.02 0 51 0.76 1.02 i31 ':: 0.76 1.02 0 0.76 1.02 5 0.76 1,02 tT.53 0.76 1.02
SPACING Gn•} ? 3D 40 2t3 30 40 ?Jt1' 30 AO 20 30 40 : 3D 40 20 30 40

RIB , {m} 330 ; 3.30 330 3 30 3.30 3.30 T.52 1.52 1.52 # 62 1.52 1 52 ;:.1	 ' 1.52 1 52 152 7.52 7.52
SPACING (in.J 10':: 130 130 130'' 130 730 Ei{J, 60 60 60 60 60! i. 60 60 ip', 60 60

ASPECT RATIO lI	 E	 -'. 0. 23 0.31 D 7^1' 0.23 0.37 f333. 0.5b D 67 033 0.50 0 67 f#33 ' 0.50 067 0 33 >. 0.50 0.67

DIMENSIONS:

M (cm) FlAVY; 2.530 3.713 21Q7 , 2.652 5.184 2 725. 3,233 3.762 1.IT7 7, 1.153 1.984 -': 19" 26: 2.647 3.279 0 S6#: 0.917 1.156
(in.) MOAZ 0.995 1.462 1382T: 1.044 2.041 0 8 1.273 1.487 z,, t♦ 	 } 0.454 0.781 O.T^ 1.042 7 291 17 227: 0.361 0.455

t1 {cm} 0:619: 0.046 0.058 fl f328 0.036 0.038 i1 X35 0:132 0.727 > f#J931 0.193 0.221 ; 0 089 0.091
0.099

17179: 0.778 0.737
p.018 0.023 t# (?	 [ 0.9.75 0.015 4.052 0.050 : D iJi 0.07Q 0.087 ; 0 035 0.036 0.039 `Sf 047 0.070 0.054

t2 {cm} 01	 8;: 0.03B 0.038 005 ( O,D51 0.051 R T 2 0 .130 0 .127 D 155,- 0.1$4 Q 135 D 097 0.097 Q 102 .0 y1 0.057 0.099
(in.} fl fl18: 1015 0.075 . 4 {}24` 0,020 0.020 0 02 0.051 0.050 .. O,Ds; ¥; 0.063 D 053 <	 0 #13'', 0.038 0 040 . O.DA+S' 0.020 O.D39

tc (cm) !f #	 : 0.005 OA05 p DOS' 0.005 0.005 {3 O{3 0.005 0.005 0 405< 0.005 0.005 b i305: 0.005 3 005 ._b,DOs 0.005 0.005
fin.) O DU2: 0.002 0.002 , D OOZs 0.002 0 .002 0 [ # 0.002 0.002 4 002,' 0.002 0 OD2 '. D 002? 0.402 0.002 ',!1 b02 ;; 0.002 0.002

S Icm} A697:: 0.716 0.795 1 27i}_' 1.270 7.270 f^ fi55 . 0.470 0.424 k 270::; 1.27Q 7 270 -`: Q1 M̂ 0 . 655 Q 737 1 Z7b." 1.270 7.270
(in.) Q Z3ri :	 0.282 0.313 0 5Q(3; 0.500 0.500 i7.2^8: 0.185 0.167 0 sW 0.500 0.500 :0318' 0.258 0.290 rOt : 0.500 0.500

MASS DATA:
.?

t (cm) 0. (D2; 0,119 0.742 .. 09 0.109 0.130 {t 297 0.333 0.353 tk353' 0.367 0 368 2p8 0.226 0.244 '0.234. 0.234 0.241
(in.) 0 04t? p.047 4.056 p f 0.043 p.057 Q 1 T7.: p.137 0.139 "9 : 0.142 0 745 0 082: 0.089 0.096 :9 092,: 0.092 0.095

W [kg - M-21 4.511' 5.263 6-289. 4, 4 4.863 5.737 1311 24 14.740 15.682 'E5 634 16.000 113.346 10.009 10.785 X0..5: 10.370 10.658
lb . ft-2} 1} 924 1.078 1.288 0 870;: 0.996 1.175 2 813$ 3.019 3.212: 201 3.277 3.348 ^ t 878: 2.050 Z 209 IT 2.124 2.183

we (kg - m•2} 1040:; 1.538 2.051 0 718; 0.908 1.850 t 279 3.095 4.458 : p 137': 0.283 0 576 0 913: 7.694 1 8$0 Q 117 0.24+1 0.327
(lb - ft-2) t3:2J3 : 0.315 0.420 0147: 0.186 0.379 ., M262 0.634 0.913 :..0,023 : : 0.058 0.116 :	 i0.187.; 0.347 0.385 i? 024: 0.050 0.067

PC (t<g - m-3 ) 7a^ 4 T : 62 824 56.641 3a 433 35.433 35.433 OS $861 104.25 127.12 35 433: 3SA33 35 433 :55 632 68.863 61.062  35.433 35.433
(lb • ft-3) 4 3.922 3.536 2 Z1 2.212 2.212 4	 Oi , 6.508 7.936 2 212; 2.212 2.212  473 4.299 3.812 `2.292 2.212 2.212

CRITICAL CONDIT I ON 20 >, 20 20 213	 :! 20 20T,':: 31 37 37 31 3
1

31 31 37 3T	 :? 31 31

NOTE: (1) ASPECT RATIO = Lp,K/Lp,y
121 BRAZE MATERIAL NOT INCLUDED



POINT DESIGN REGION 40236 41036 413316

SURFACE UPPER LOWER UPPER LOWER UPPER LOWER

SPAR {rn} 0t 1 0.76 1.02 f1	 i 0.76 1.02 0 57 0.76 1.02 ?	 ii	 ; 0.76 1 02 < 0 51 :' 0.76 1.02 i 51 : 036 1.02
SPACING (in.} 2Q -'. 30 40 20 30 40 ZSk _': 30 40 - 30 40 20	 i< 30 40 ' x0	 '; 30 40

RIB {m} 12 1.52 1.52 1a^2 1.52 1.52 1,5z. 1.52 1.52 2 1.52 1 52 ` 1 82 : 1.52 1 52 1 52 . 7.52 1152
SPACING ( in.} 60 60 60 6Q	 _<'. 60 60 S1k	 --,' 60 60 60	 ;: 60 60 60 60 60 760 lo 60 60

ASPECT RATIO 0 33	 _ 0.50 0.67 1133 .:: 0:50 0.67 i3_ " 0.50 067 A3 0 50 D 67k 3	 .' 0.50 0 67 R 35 .. ; 0.50 0.67

DIMENSIONS:

H (cm) i, 5$" 2.883 3.818 #059` 1.412 2.360 1 7Gt1. 2525 3.254 < O.fi5Er; 0.848 ' 3 e, # 04; 2.545 3.409 .0 4OR: 0.622 0.808
(in.) 4^1:.: 7.135 7.503 D 417> 0.556 0.926 D 893 0.994 7 287 ':	 t1 0.334 0 431 :€1722: 1.002 1342 11152: 0.245 0.318,i

ti (cm) 17,1 t9 0 .122 0.730 4 X34 0.188 0 .147 0 fll 0.084 0.091 tl,# } 0.727 0.114 <p #$ 0.137 q 745 .1.178; 0.173 0.173
(in.) {# 114T.;' 0.048 0.051 119,2;: 0.074 0.058 D 1133 0.033 0.036 ': 0 Odd 0.050 0.045 2' 0.054 0.067 X 070 0.068 0.068

t2 (cm} t} 1 4 0.127 0.130 Q QW.. 0.117 0.157 CD04` 0.094 0.094 0. 	 i s 0.081 0.0!37
XX

? 0135` 0.137 0.135 I# 157. 9.163 0.16'3
(in.) 649 0.050 0.051 0 03b 0.046 0.062 W033: 0.037 0.037 0.032 0.038 ;i3 053 0.054 0.053 03162? 0.064 0.064

tc (cm) fl 00ra : 0.005 0.005 0 OOHS; 0.005 0.005 #1.005- 0.005 0.005 0 OQS 0.005 0.o05 D Q05,; 0.005 0.005 005' 0.005 0.005
(in.) tl L1fS 0.002 0. 002 0 0702 0.002 0 . 002 51.3102 0 .002 1002 < Q.QD2 0 .002 0.002 0 002; 0 .002 0.002

..
:}7 OIY1; 0.002 U.002

S (cm) 0 947.:' 0.744 0.729 E,	 74<: 1.270 1.270 517 7` 0.767 0.752 ' i 270: 1.270 7 270 0 925.' 0.831 0 726 75! 1.270 1.270
(in.) 11373;; 0.293 0.287 0 9 0.500 0.500 !^#_ 0.302 0.296 05D0;: 0.500 D.500 's 0364 0 327 D 286 ) 5d11, 0.500 0.500

MASS DATA:

# {cm}. Q,.2.64 0.284 0.370 0X70:'; 0.315 0.323 11.101E 0.208 0.226 1621 0.213 0.21 d 284:: 0.302 0 323 O. .M: 0.335 0.338
{{n.} 0 !,Q?i:< q.112 (1122 4 122 0.124 0.127 Qt10: 0.082 OA89 ' S)i?S4 0.084 0.086 1 }# 0.119 0.127 {} Y33. 0.732 O.i33

W (kg	 m -2} # 1.	 C: 12.631 13.715 73i?x0' 13.964 74.305 _ $39;3 9.228 9.989 '_ 9 443> 9.477 9.623 32.597 13.412 14.252 14.8'57:_ 14.891 15.009
jib ; #r2) 2,331. 2.587 2.809 2$#U 2.860 2.930 14719 1.890 2.046 ',	 i	 :' 1.941 1 .971 2 5H13: 2.747 2.919 P 043; 3.050 3.074

we (kg - m -2 1 t3 s1S 1.5192 2.192 1?.2$3 ,	 0.391 0.723 OAU 1.377 1.836 11.166; 0.225 0,312 ' 11762` 1.230 1.938 31054: 0.103 0.766
(Ih • ft 2) 161 ,' 0.326 0.440 0.05S1x55:; 0.080 0.148 fl )97 0.282 0.376 : 31(132': 0 .04r, 0 .064 : 51 15B 0.252 0 397 <510€ 0.027 0.034

PC (kg ..m•3) 47887.:69.390 61.655 354	 :,:35,433 35.433 W.277 58.724 59.861 35d33ss 35.433 35.433 4sz76: 54.174 61,959 35.433 35.433
Vb - fr3 ) 2977' 3.770 3 .849 21 2.212 2.212 3 3.666 . 3.737 2 272. 2.212 2.212 : 3036: 3.382 3 .868 :.Z21^ 2.212 2.212

CRITICAL CONDITION J.37	 `, 37 31! ..',,: 37 37 3# 31a 31 31 31 37 3T	 :: 31 31 : 3V.: 31 31

!
r-r

N

H
4=1
W

ro00

6

TABLE 14- 8. WING PANEL GEOMETRY, TASK T MONOCOQUE ARRANGEMENT - HONEYCOMB SANDWICH CONCEPT

NOTE: (1} ASPECT RATIO = LpXILp.y
(2) BRAZE MATERIAL NOT INCLUDED



The exception being the lightly loaded point design region 40322 where a spar/rib

spacing of 20 inches and 130 inches resulted in the Least weight design.

Chordwise Arrangement - The convex-beaded concept was analyzed using the methods

and resulting design charts described in the methods section. A summary of the

sonic Fatigue results is presented in Table 14-9. With reference to this table,

the moment of inertia (1), area (A), and extreme fiber distance (Z) were calculated

for these orthotropic panels and used in conjunction with the length to determine

the allowable spectrum level., Figure 14-17A. In addition, the applicable frequency

chart (Figure 14-17B) was used to define the resonant frequency of each panel.

The corresponding environmental spectrum levels for these resonant frequencies

were determined from Figure 14-17C or 14-21.

A summary of the sonic fatigue margins, difference between the allowable and

environmental spectrum levels, are included in Table 14-9. A minimum margin of

x-9.4 dB/Hz is noted for the upper surface panel at point design region 41036.

Spanwise Arrangement - The least weight spanwise concept (hat-stiffened) was

analyzed similar to the method used for the chordwise arrangement. The panel

properties (A, I, and Z) were calculated using the panel geometry defined in

Tables 14-5 and 14-6 for the 30 inch rib spacing and 60 inch spar spacing design.

A summary of the spanwise wing panel analyses is presented in Table 14-10. The

allowable spectrum level, panel natural frequency, and the applied environmental

spectrum level were determined using the same design charts as described for the

chordvise analysis. In conclusion, positive sonic fatigue.margins exist on the

spanwise concept at all point design regions with a minimum margin of x-28.1 dB/Hz

occuring on the lower surface panel at point design 41348.

Monocoque Arrangement - The honeycomb sandwich panels were analyzed using the

methods and resulting design charts described in the methods section. Using these

charts the allowable spectrum levels were determined for the panel edge and facing

sheets.

'fable 14-11 summarizes the results of the Task I honeycomb panel analysis..

Included on this table are the pertinent panel properties, natural frequency,

allowable spectrum Levels, and the applied environmental spectrum level. In

addition the sonic fatigue margins are listed and indicated the strength require-

ments are also adequate for sonic fatigue purposes.

X4-38



TABU 14--9. SWTARY OF WING PANEL SONIC FATIGUE ANALYSES - TASK T CHORDTTISE ARRANGIItiIMT -- CONVEX BEADED CONCEPT

F-'

w

SPACING PANEL PROPERTIES{1) SPECTRUM LEVEL (3)(4) SONIC(5)
POINT (in.) NATURAL{21 (dB/Hz) FATIGUE

DESIGN WING z .. A I FREQ. (f) MARGIN
REGION SURFACE a b (in.) (in 2/in.) Un.4/in.) (Hz) ALLOW. ENVIR. (dB/Hz)

40322 UPPER 20 60 0.644 0.036 0.0018 171.5 115.5 90.5 +25.0
LOWER 20 60 0.681 0.041 0.0019 167.7 115.9 90.6 +25.3

40236 UPPER 20 60 0.514 0.045 0.0015 142.0 117.0 101.5 +15.5
LOWER 20 60 0.662 0.056 0.0027 170.1 119.0 101.2 +17.8

40536 UPPER 20 60 0.687 0.070 0.0033 166.8 120.4 101.6 +18.8
LOWER 20 60 0.583 0.058 0.0024 156.8 119.4 101.8 +17.6

41036 UPPER 20 60 0.604 0.063 0.0025 154.5 111.6 102.2 +9.4
LOWER 20 60 0.550 0.057 0.0018 135.3 118.0 102.4 +15.6

41316 UPPER 20 60 0.764 0.112 0.0043 151.4 122.3 1052 +17.1
LOWER 20 60 0.653 0.087 0.0031 145.5 121.0 105.3 +15.7

41348 UPPER 20 60 0.691 0.071 0.0033 166.3 120.5 106.1 +14.4
LOWER 20 60 0.530 0.059 0.0019 139.6 118.9 106.4 +12.5

NO'T'ES:	 1. PANEL PROPERTIES
Z = DISTANCE FROM NEUTRAL AXIS TO EXTREME FIBER, in.
A = CROSS-SECTION AREA PER UNIT WIDTH, in.2/in.
I = MOMENT OF INERTIA PER UNIT WIDTH, in.4/in.

2. NATURAL FRE(2uENCY PER FIGURE 14-17B
3. ALLOWABLE SOUND LEVEL PER FIGURE 14-17A
4. APPLIED SOUND LEVEL. (ENVIRONMENT) PER FIGURE 14-21
5. SONIC FATIGUE MARGIN = (ALLOWABLE dB/Hz-ENVIRONMENT dB/Hz)



SPACING PANEL PROPERTIES (7) SPECTRUMLEVEL(3)(4) SONIC(5)
POINT (in.) NATURAL(2) (dslHz) FATIGUE

DESIGN WING z A I FRED. (f) MARGIN
REGION SURFACE a b (in.) (in.2/in.) (in4lin.) (Hz) ALLOW. ENVIR. (dB/Hz)

40322 UPPER 60 30 0.894 0.088 0.0216 169.7 127.4 90.6 +36.8
. LOWER 60 30 0.676 0.051 0.0072 129.3 121.5 91.0 +30.5

40236 UPPER 60 30 1.455 0.224 0.1410 272.2 137.5 100.5 +37.0
LOWER 60 30 1.440 0.221 0.1360 269.6 137.3 100.5 +36.8

40536 UPPER 60 30 1.493 0.234 0.1550 279.2 137.9 100.8 +37.1
LOWER 60 30 1.590 0.258 0.1930 296.8 139.0 100.7 +38.3

41036 UPPER 60 30 1.273 0.175 0.0852 239.2 134.8 101.6 +33.2
LOWER 60 30 1.281 0.177 0.0871 240.5 134.9 101.6 +33.3

41316 UPPER 60 30 1.550 0.248 0.1770 289.5 138.6 104.3 +34.3
LOWER 60 30 1.638 0.271 0.2150 305.7 139.6 104.2 +35.4

41348 UPPER 60 30 1.244 0.167 0.0779 234.0 134.3 105.6 +28.7
LOWER 60 30 1.207 0.158 0.0692 227.2 133.7 105.6 +281

NOTES:	 1. PANEL PROPERTIES
Z = DISTANCE FROM NEUTRAL AXIS TO EXTREME FIBER, in.
A = CROSS-SECTION AREA PER UNIT WIDTH, in 2/in.
I = MOMENT OF INERTIA PER UNIT WIDTH, in.4/in.

2. NATURAL FREQUENCY PER FIGURE 14-17B
3. ALLOWABLE SOUND LEVEL PER FIGURE 14-17A
4. APPLIED SOUND LEVEL (ENVIRONMENT) PER FIGURE 14-21
5. SONIC FATIGUE MARGIN = (ALLOWABLE dB/Hz -ENVIRONMENT dB/Hz)

N

v

TABLE 14-10. SUMMARY OF WING PANEL SONIC FATIGUE ANALYSES - TASK I SPANWI:SE AR ANGE14ENT - HAT STIFFENED CONCEPT



TABLE 14-11. SUMMY OF WING PANEL SONIC FATIGUE ANALYSIS - TASK 1 MONOCOQUE ARMIGE4ENT - HONEYCOMB SAND[TICH CONCEPT

SPECTRUM LEVEL (3)(4) MINIMUM(5)
SPACING PANEL PROPERTIES {1} (dB/Hz) SONIC

POINT NATURALM FATIGUE
DESIGN WING a 5 t1 t2 to h FREQUENCY FACE EDGE MARGIN
REGION SURFACE (in.) (in.) (in.) (in.) (in.) (in.) f, (Hz) ALLOW. ALLOW. ENVIR. (dB/Hz)

40322 UPPER 20 130 0.015 0.015 0.066 0.591 165.7 131.4 131.7 90.6 +40.8
LOWER 20 130 0.011 0.020 0.078 0.796 230.6 132.2 132.2 90.2 +42.0

40236 UPPER 20 60 0.047 0.049 0.144 0.675 304.6 139.7 140.5 100.2 +39.5
LOWER 20 60 0.092 0.027 0.119 0.298 154.6 139.4 141.6 101.3 +38.1

40536 UPPER 20 60 0.053 0.052 0.158 0.732 325.6 140.4 141.3 100.6 +39.8
LOWER 20 60 0.076 0.061 0.103 0.153 96.3 138.9 142.5 '!02.6 +36.3

41036 UPPER 20 60 0.033 0.033 0.116 0.627 278.6 137.1 137.9 101.ti +35.7
LOWER 20 60 0.047 0.036 0.083 0.175 93.8 136.0 139.2 103.2 +32.8

41316 UPPER 20 60 0.052 0.053 0.158 0.617 283.5 140.1 142.1 104.3 +35.8
LOWER 20 60 0.070 0.062 0.066 0.060 54.9 136.8 140.8 107.0 +29.8

41348 UPPER 20 60 0.035 0.038 0.128 0.646 282.9 137.8 139.1 105.3 -132.5
LOWER 20 60 0.047 0.044 0.068 0.130 75.8 136.0 137.9 108.0 +28.0

NOTES:	 1. PANEL, PROPERTIES
t1 = INTERIOR FACE SHEETTHICKNESS, in.
t2 = EXTERIOR FACE SHEET THICKNESS, in.
to = EDGE THICKNESS, in.
h = PANEL HEIGHT, in.

2. NATURAL FREQUENCY PER FIGURE 14-19
3. ALLOWABLE SOUND LEVELS PER FIGURE 1418
4. APPLIED SOUND LEVEL (ENVIRONMENT) PER FIGURE 14-21
5. SONIC FATIGUE MARGIN: (ALLOWABLE dB/Hz -- ENVIRONMENT dB/Hz)

t



Fuselage Analysis

Sonic fatigue analyses were conducted on the most promising combination of fuselage

concepts during the Task I detailed concept analysis. No sonic fatigue analyses

were conducted during the initial screening phase of Task 1.

The analysis was conducted on the least weight concept for each of the four point

design regions. The locations of the point design regions are presented in

Figures 14--24, the associated structural concepts for these regions are:

• FS 750 - Zee stiffened concept

• FS 2000, 2500, and 3000 - hat stiffened concept

The corresponding panel dimensions and equivalent thicknesses for these concepts

are displayed in 'Table 14-12. A study was conducted to compare the capability of

the entire panel between points of attachment and the skin between stiffeners to

resist sonic fatigue. The results of this study, which was conducted at FS 3000,

are summarized in Table 14--13 and include the spectrum levels and natural

frequencies of both components. With reference to this table, the skin afforded

a higher resistance to sonic fatigue than the panels (i.e., skin allowable spectrum

levels were approximately 2-- to 3-percent higher than the panel values) and as a

result the panel allowable spectrum levels were used in all further analysis.

Periodically checks were conducted to insure this relationship held for all regions.

A summary of the results of the fuselage sonic fatigue analyses is shown in

Table 14-14. 'These calcW:,ti-.-3n were determined using the same methods and design

charts used for the wing orthotropic panel analyses. The panel properties, natural

frequencies, and the allowable and applied spectrum levels are displayed on this

table. All Fuselage regions have a positive sonic fatigue margin with the minimum

margin (+16 dB/Hz) occuring on the side panel at FS3000.

In conclusion, positive sonic fatigue margins exist on the Task I fuselage structure

at all point design regions and no additional stiffness or associated weight penalty

was required to meet the sonic fatigue requirements.

14-42
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Figure 14-24. Definition of Fuselage Point Design Regions - Task I

TABLE 14-12. FUSELAGE PANEL GEOMETRY - TASK I DETAILED CONCEPT ANALYSIS

POINT FUSELAGE PANEL DIMENSION
DESIGN PANEL. LOCATION bs is C f h tst i
REGION CONCEPT (IN.) (IN.1 (IN.) (IN.) (IN.) (IN.) (IN.)

FS 750 ZEE- TOP 4.0 .036 .55 .75 1.00 .036 .055
STIFFENED SIDE 4.0 .036 .55 .75 1,00 1036 .056

BOTTOM 4.0 .036 .55 .75 1.00 .036 .056
FS 2000 MAT- TOP 6.0 OBO 1.5 .80 1.25 .070 .145

STIFFENED SIDE 6,0 063 1.5 .75 1.25 .040 .099
FS 2500 HAT- TOP 6.0 .090 1.5 .80 1.25 .090 .174

STIFFENED SIDE 6.0 .063 1.5 .75 1.25 ,050 .109
FS 3000 HAT- TOP 6,0 .080 1.5 .80 1.25 .070 .145

STIFFENED SIDE 6.0 .063 1.5 .75 1.25 .040 .099
BOTTOM 6.0 ,090 1.5 .90 1.25 .090 .177

f	
bs r.

--bs C f
l

r	 r	 r
11

l ,
l

1

h is h
is

.^

C	 tst tst
ZEE•STI FFENED CONCEPT HAT STIFFENED CONCEPT



SKIN VALUES (21 PANEL VALUES(3]

FREQUENCY,
SPECTRUM

LEVEL
t

FREQUENGY,
SPECTRUM

LEVEL
POINT

DESIGW . CIRCUMFERENTIAL (' )
REGION LOCATION f, (Hz) W1311-14 f, {Hz} (dB/Hz)

FS 3000 1 325.9 137.1 362.7 133.6

2 706.7 134.9 364.7 132.7

3 636.0 133.3 357.1 130.8

4 636.0 133.3 357.4 132.2

5 706.7 134.9 350.8 131.0

6 825.9 137.1 362.7 133.6

7 97262 139.2 367,4 135.6

NOTES:	 1. CIRCUMFERENTIAL LOCATION 2. VALUES OF THE SKIN BETWEEN STIFFENERS
3. VALUES OF THE PANEL, INCLUDES STIFFNESS

i OF SKIN AND STRINGER.

t

TABLE 14-13. COMPARISON OF FUSELAGE COMPONENT SONIC FkTIGUE ALLOWABLES —TASK I
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TABLE A--14. SUIR24ARY OF FUSELAGE SONIC FATIGUE ANALYSES, DETAILED CONCEPT ANALYSTS - TASK I

N

SPACING, PANEL PROPERT € ES{1I SPECTRUM LEVEL (3 M SONIC(5)
POINT (in.) NATURAL (2) (dB/Hz) FATIGUE

DESIGNA .-PANEL z A 1 FREQUENCY MARGIN
R EG I 9N -,-CONCEPT LOCATION a bs (in.) (in.2/in .) On-4/in.) f, (Hz) ALLOW. ENVIR. (dB/Hz)

FS 750 ZEE- TOP 20 4.0 0.848 0.056 0.0063 270.0 121 .5 83.5 +38.0
` STIFFENED SIDE 20 4.0 0.848 0.055 0.0063 270.0 121.5 83.5 +38.0

BOTTOM 20 4.0 0.848 0.056 0.0063 270.0 121.5 83.5 +38.0

FS 2000 HAT TOP 20 6.0 0.993 0.144 0.0318 362.7 133.6 91.2 +42.4
STIFFENED SIDE 20 6.0 1.039 0.099 0.0195 342.0 129.2 91.1 +38.1

FS 2500 HAT: TOP 20 6.0 0.950 0.161 0.0330 374.4 135.4 99.0 +36.4
STIFFENED SIDE 20 6.0 1.003 0.108 0.0231 357.1 130.8 99.2 +31.6

FS 3000 HAT TOP 20 6.0 0,993 0.144 0.0318 362.7 133.6 116.0 +17.6
STIFFENED SIDE 20 6 .0 01973 0.117 0.0265 367.4 132.2 116.0 +16.2

BOTTOM 20 6.0 0.977 0.174 0.0395 367.4 135.6 116.0 +19.6

NOTES-	 1. PANEL PROPERTIES
Z = DISTANCE FROM NEUTRAL AXIS TO EXTREME FIBER, in.
A = CROSS-SECTION AREA PER UNIT WIDTH, in 21in.
I = MOMENT OF INERTIA PER UNIT WIDTH, in.4/in.

2. NATURAL FREQUENCY PER FIGURE 14-17B
3. ALLOWABLE SOUND LEVEL PER FIGURE 14-17A
4. APPLIED SOUND LEVEL (ENVIRONMENT) PER FIGURE 14-21
5. SONIC FATIGUE MARGIN = (ALLOWABLE dB/Hz- ENVIRONMENT dB!Hz)
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SONIC FATIGUE ANALYSIS -- TASK II

For the Task TI Detail Engineering Studies, the final wing and fuselage: structural

arrangement was subjected to a detail sonic satigue analysis. Similar to the

Task I effort, this analysis was restricted to evaluating the surface panels capa-

bility only.

Wing Analysis

Analyses were conducted on the upper and lower surface panels at the six wing

point design regions. The wing point design locations pre ys-%,usly displayed in

Figure 14-23 are also appropriate for the Task II effort.

The Final Design airplane incorporates both the chordwise convex-beaded and the

monocoque honeycomb sandwich surface panel designs. With reference to Figure 14 -23,

the convex-beaded concept is utilized at point design regions 40322, 40236, and
40536 and the honeycomb sandwich concept at regions 41036, 41316, and 41348.

Chordwise Arrangement -- The surface panel geometry for the convex-beaded concept

is presented in Table 14-15 and reflects the results of the strength analysis.

These data include the minimum weight panel proportions (rib/spar spacing), cross-

sectional dimensions, panel weight data, and the critical design condition used

for the strength analysis.

The convex-beaded panels were analyzed using the previously described methods and

the design charts outlined in Figure 14-17. 'fable 14-.16 contains a summary of the
analysis results, which include the panel properties and the applied and allowable

sonic spectrum levels. A minimum sonic fatigue margin of x-12.0 dB/Hz is indicated

for the lower surface panel at point design region 40536. Conversely, the max"
margin occurs on the lower panel at region 40322, +24.2 dB/Hz.

Monocoque Arrangement -- The honeycomb sandwich panels were analyzed at regions

41036, 41316, and 41348. The panel geometry associated with these regions are
presented in Table 14-17. The geometry associated with regions 41316 and 4134
reflect the stiffness required to meet the flutter criteria; whereas, regi,.,

is strength designed.

The design charts presented in Figure 14--18 and 14-9 were used to define the p

face sheet allowable and natural frequency respectively. The panel edge allow+

was defined from the design chart in Figure 83 of Reference 4. The applied

y4-46
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TABLE I4-15. WING PANEL GEOMETRY - TASK IIB, CONVEX BEADED PANELS
/

Fj

POINT DESIGN REGIONS
40322 40236 40536

UPPER LOWER UPPER LOWER UPPER LOWERDESIGN DATA

SPACING, in.
RIB 60.0 60.0 60.0 60.0 60.0 60.0
SPAR 22.7 22.7 21.2 21.2 21.2 21.2

DIMENSIONS
tL, in. .013 .015 .015 .020 .023 .019
tu , in. .015 .020 Ala .020 .026 .020
R L , in. .80 1.00 .80 1.00 .90 .70
6, degrees 87 87 87 87 87 87
h, in. .75 .75 .75 .75 .75 .75
pitch, in. 2.35 2.75 2.35 2.75 2:95 2.15

WEIGHT DATA
t, in. .033 .041 .036 .048 .058 .046
W, lb.lsq.ft. .760 .945 .829 1.111 1.34 1.05

CRITICAL DESIGN COND. 12 20 16 16 12 12

DIMENSIONS:

^--- PITCH-
to

' T

IR

B

L. -^ h ^--	 tL

r



SPACING PANEL PROPERTIES (' ) SPECTRUMLEVEL(3}(4) SONIC(5)
POINT (in.) NATURALM (dB/Hz) FATIGUE

DESIGN WING Z A I FREQ. (f) MARGIN
REGION SURFACE a b (in.) (in 2/in.) (in4/in.) (Hz) ALLOW. ENV1R. (dB/Hz)

40322 UPPER 22.7 60.0 0.594 0.033 0.00133 120.4 110.0 91.0 +19.0
LOWER 22.7 60.0 0.751 0.041 0.04226 140.8 115.0 90.8 +24.2

40236 UPPER 21.2 60.0 0.578 0.036 0.00147 138.9 114.0 101.6 +12.4
LOWER 21.2 60.0 0.710 0.048 0.00275 164.5 118.0 101.2 +16.8

40536 UPPER 21.2 60.0 0.660 0.058 0.00281 151.3 120.0 101.8 +18,2

LOWER 21.2 60.0 0.516 0.046 0.00153 125.4 114.0 102.0 +12.0

NOTES: 1. PANEL PROPERTIES
Z = DISTANCE FROM NEUTRAL AXIS'li O EXTREME FIBER, in.
A = CROSS-SECTION AREA PER UNIT WIDTH, in?/in.
I = MOMENT OF INERTIA PER UNIT WIDTH, in 4/in.

2 NATURAL FREQUENCY PER FIGURE 14-178
3. ALLOWABLE SOUND LEVEL PER FIGURE 14-17A
4. APPLIED SOUND LEVEL (ENVIRONMENT) PER FIGURE 14.21
5. SONIC FATIGUE MARGIN = (ALLOWABLE d6/Hz -ENVIRONMENT dB/Hz)

i

TABLE 111-1.6. SUMMARY OF WING CONVEX BEADED PANEL ANALYSES - TASK IIB



POINT DESIGN REGIONS

41036 41316 41348

UPPER LOWER UPPER LOWER UPPER LOWERDESIGN DATA

SPACING, in.

RIB 60.0 60.0 40.0 40,0 40.0 40.0
SPAR 21.2 21.2 40.0 40.0 30.0 30.0

DIMENSIONS

H. in. .642 .202 1.00 .500 1.00 .500
t1 , in. .026 .023 .062 .075 .068 .068
t2. in. .018 .023 .062 .075 .068 .068
t., in. .002 .002 .002 .002 .002 .002
S, in. .275 .500 .500 .500 .500 .500

WEIGHT DATA

t, in. .052 .052 .131 .153 .143 .139 .
W, lb.Jsq.ft. 1.20 1.20 3.02 3.52 3.29 3.20

CRITICAL DESIGN COND. 12 12 FLUTTER FLUTTER FLUTTER FLUTTER

t2
DIMENSIONS

EXTERIOR SURFACE

S = CELL SIZE H

to CORE FOIL
THICKNESS

t1

N

TABLE 14-17. WING PANEL GE014ETRY - TASK IIB, HONEYCO14B SANDWICH PA11ELS



14-50

noise levels are shown in Figure 14-21. A summary of the results is displayed in

'fable 14--18 with positive sonic fatigue margins indicated for all regions.

A minimum margin of +30 dB/Hz occurs on the lower surface at point design region

41036. No adjustment in panel proportions was required to meet the acoustic

criteria;. hence, no weight penalties were required.

Fuselage Analysis

Sonic fatigue analyses were conducted on the fuselage concepts of the final design

airplane at the four fuselage point design regions, Figure 14-25 displays the

locations of the fuselage point design regions.

The structural concepts for each fuselage region were identical to those specified

for the Task T fuselage and are repeated here for completeness; they are: zee-

stiffened concept at FS 900 and the hat-stiffened concept at regions FS 1910,

FS 2525, and FS 2900.

The panel geometry associated with the above concepts is presented in Table 14-19

which includes the geometry for all circumferential locations, from the uppermost

panel (top) to the lowest panel. (bottom). The panel identification system corre-

sponds to that used for the NASTRAN model element identification and is shown in

Figure 14--26. For ease in reporting, only the upper, side and-bottom panels are

presented. With respect to Figure 14-26, these panels are identified by the last

two digits of the NASTRAN element number: 01, 06, and f9 respectively.

A summary of the results of the fuselage analysis is presented in Table 14-20

This analysis was conducted using the design charts displayed in Figure 14-17 with

the pertinent section properties in the above Tabi e. The resulting natural fre-

quencies and allowable spectrum levels obtained from these charts were compared

to the environmental levels determined from Figure 14-22, With reference to

Table 14--20, positive sonic fatigue margins are indicated with a minimum margin

of +9.$ dB/Hz occuring on the side panel at F5 2900.

Y



TABLE 14-18. SUMMARY OF WING HONEYCQMB SANDWICH PANEL ANALYSES - TASK IIB

	 -/.--^.,-

F-'

s
^n

SPECTRUM LEVEL(3){4}

SPACING PANEL PROPERTIES" )
(dB/Hz) MINIMUM(5)

SONIC
FACEPOINT NATURAL(2) FATIGUE

DESIGN WING a b t1 t2 to h FREQUENCY SHT. EDGE MARGIN
REGION SURFACE (in.) (in.) (in.) (in.) (in.) (in.} f, (Hz) ALLOW. ALLOW. ENVIR. (d$/Hz)

41036 UPPER 21.2 60.0 0.026 0.018 0.091 0.598 234 137.9 139.3 101.6 +36.3
LOWER 21.2 60.0 0.023 0.028 0.088 0.151 66 136.2 144.8 106.0 +30.2

41316 UPPER 40.0 40.0 0.062 0.062 0.167 0.876 175 146.6 146.0 105.0 -141.6
LOWER 40.0 40.0 0.075 0.075 0.194 0.350 79 146.0 151.9 106.8 +39.2

41348 UPPER 30.0 40.0 0.068 0.068 0.179 0.864 264 146.7 146.3 105.4 +41.3

LOWER 30.0 40.0 0.068 0.068 0.179 0.364 122 145.0 150.0 106.6 +38.4

NOTES; 1. PANEL PROPERTIES

t1 = INTERIOR FACE SHEET THICKNESS, in.

t2 = EXTERIOR FACE SHEET THICKNESS, in.

to = EDGE THICKNESS, in.
h = CORE HEIGHT, in.

2. NATURAL FREQUENCY PER FIGURE 14-19

3. ALLOWABLE SOUND LEVELS PER FIGURE 14-18

4. APPLIED SOUND LEVEL (ENVIRONMENTI PER FIGURE 1421

5. SONIC FATIGUE MARGIN: (ALLOWABLE dB/Hz) -- ENVIRONMENT dB/Hz)
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TABLE 14-19. FUSELAGE PANEL GEOMETRY - TASK 11B

FUSELAGE PANEL DIMENSIONS
POINT

DESIGN PANEL CIRCUMF. bs is C f h tst t
REGION CONCEPT LOCATION (in.) (in.) (in.) (in.) (in.) (in.) (in.)

FS 900 ZEE- 233301- 4.0 .036 .55 0.75 1.00	 1 .036 .056
STIFFENED 233307

FS 1910 HAT- 234101 6.0 .07 1.5 0.80 1.25 .06 .129
STIFFENED 234102 6.0 .06 1.5 0.80 1.25 .05 .109

234103 6.0 .04 1.5 0.80 1.25 .04 .079
234104 6.0 .04 1.5 0.80 1.25 .03 .069
234105 6.0 .05 1.5 0.80 1.25 .05 .099
234106 6.0 .06 1.5 0.80 1.25 .06 .119

FS 2525 HAT- 234801 6.0 .07 1.5 0.80 1.25 .08 .149
STIFFENED 234802 6.0 .06 1.5 0.80 1.25 .06 .119

234803 6.0 .05 1.5 0.80 1.25 .05 .099
234804 6.0 .04 1.5 0.80 1.25 .03 .069
234805 6.0 .04 1.5 0.80 1.25 .03 .069
234806 6.0 .04 1.5 0.80 1.25 .04 .079

FS 2900 HAT- 235101 6.0 .07 1.5 0.80 1.25 .07 .139
STIFFENED 235102 6 . 0 .05 1 . 5 0.80 1 .25 .06 .109

235103 6.0 .05 1.5 0.80 1.25 .04 .089
235104 6.0 .04 1.5 0.80 1.25 .03 .069
235105 6.0 .04 1.5 0.80 1.25 .03 .069
235106 6.0 .04 1.5. 0.80 1.25 .03 .069
235107 6.0 .05 1.5 0.80 1.25 A4 .089
235108 6.0 .05 1.5 0.80 1.25 .06 .109
235109 6.0 .07 1.5 0.80 1.25 .08 .149

PANEL DIMENSIONS:

f	 b	 bs	 ^-- C	 f
s ``^

is	

J_	

t5

F--t-
C	 I

tst	 tSt

ZEE-STIFFENED CONCEPT	 HAT-STIFFENED CONCEPT

14-53
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TABLE 14--20. SUMMAMY OF FUSELAGE PANELS SONIC FATIGUE ANALYSES - TASK IIB

N

POINT
SPACING,

(in.)
PANEL PROPERTIES (' )

NATURAL(2(
SPECTRUM LEVEL (3)(4)

(dB/Hz)
SONIC(5)
FATIGUE

DESIGN
REGION

PANEL
CONCEPT LOCATION

Z
(in.)

A
(in.2lin.)

I
(in.4/in.)

FREQUENCY
f, (Hz)

MARGIN
(dB/Hz)_:_1 bs ALLOW. ENVIR.

FS 900 ZEE- TOP 20.9 4.0 0.848 0.055 0.0063 245.0 121.0 84.0 +37.0

STIFFENED SIDE 20.9 4.0 0.848 0.056 0.0053 245.0 121.0 84.0 +37.0

BOTTOM 20.9 4.0 0.848 0.056 0.0063 245.0 121.0 84.0 +37.0

FS 1910 HAT- TOP 22.7 6.0 0.994 0.129 0.0281 255.0 131.0 92.0 +39.0

STIFFENED SIDE 22.7 6.0 0.966 0.119 0.0270 255.0 130.5 910 +38.5

FS 2525 HAT TOP 21.2 6.0 0.946 0.149 0.0351 350.0 134.0 99.4 +34.6

STIFFENED SIDE 21.2 6.0 0.948 0.079 0.0182 330.0 128.0 99.6 +28.4

FS 2900 HAT TOP 21.0 6.0 0.968 0.139 0.0317 340.0 132.0 116.2 +15.8

STIFFENED SIDE 21.0 6.0 1.000 0.069 0.0142 300.0 126.0 116.2 +9.8

BOTTOM 21.0 6.0 0.946 0.149 0.0351 350.0 134.0 116.1 +17.9

NOTES:	 1. PANEL PROPERTIES
Z = DISTANCE FROM NEUTRAL AXIS TO EXTREME FIBER, in.
A =. CROSS-SECTION AREA PER UNIT WIDTH, in.211n.
1 = MOMENT OF INERTIA PER UNIT WIDTH, in.4rn.

2. NATURAL FREQUENCY PER FIGURE 14-17B
3. ALLOWABLE SOUND LEVEL PER FIGURE 14-17A
4. APPLIED SOUND LEVEL (ENVIRONMENT) PER FIGURE 14-21
S. SONIC FATIGUE MARGIN = (ALLOWABLE dB/Hz-'ENVIRONMENT dB/Hz)
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