General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA -CR-137855

Princeton University

THE LONGITUDINAL EQUATIONS OF MOTION OF A TIIT PROP/ROTOR AIRCRAFI INCIUDING THE EFFECTS OF WTNG AND PROP/ROTOR
BLADE FLEXIBILITY
by
H. C. Curtiss, Jr.
Technical Report 1273
Princeton University
Department of Aerospace and Mechanical Sciences

SUMMARY

The equations of motion for the longitudinal dynamics of a tilting prop/rotor aircraft are developed. The analysis represents an extension of the equations of motion developed in NASA TM X-62,369 to include the effects of the longitudinal degrees-of-freedom of the body (pitch, heave and horizontal velocity). The development and notation follow that of NASA TM X-62,369 such that, the effects of body freedorn can be added to the equations of motion for the flexible wing-propeller combination.

TABLE OF CONTENTS

Page
INTRODUCTION 1
ANALYTICAL DEVELOPMENT 3
Geometry of Wing/Body Motion 3
Kinetic Energy 8
a.) Fuselage 8
b.) Wing. 8
c.) Pylon 8
Hub Motion 9
Inertial Forces and Moments 15
Wing Aerodynamic Forces and Moments 22
Rotor Force and Moment Contributions 37
Gravity Terms 43
Fuselage Aerodynamics 43
Horizontol Tail Aerodynamics 44
RQUATIONS OT MOTION 46
TRTM CALCUAATIONS 51
FIGURLS 55

TNTRODUCTION

This report develops the equation of motion for the lonefiturdinal dynamics of a tilting prop rotor aircraft. The effects of wing and prop rotor flexibility are included in the analysis as well as three longitudinal body degrees-of-freedom. The notation and development generally follows that of NASA TM X-62,369 and is formulated in such a way that it modifies that study to include the free longitudinal motion of the complete airframe, such that, the influence of the wing and prop rotor flexibility on the vehicle dynamics, as related to stability and control, can be examined.

The resulting equations of motion developed in NASA TM X-62,369 are expressed in matrix notation as follows:

$$
\begin{align*}
& A_{2} \ddot{x}_{R}+A_{1} \dot{x}_{R}+A_{0} X_{R}+\tilde{A}_{2} \ddot{\alpha}+\tilde{A}_{1} \dot{\alpha}+\tilde{A}_{0} \alpha=B V_{R}+B_{G} g \tag{1}\\
& F=C_{R} \ddot{x}_{R}+C_{1} \dot{x}_{R}+C_{0} x_{R}+\tilde{C}_{2} \ddot{\alpha}+\tilde{C}_{1} \dot{\alpha}+\tilde{C}_{0} \alpha+D_{G} \tag{2}\\
& \alpha=C x_{W} \tag{3}\\
& a_{2} \ddot{x}_{W}+a_{1} \dot{x}_{W}+a_{0} x_{W}=b v_{W}+b_{G}+\tilde{\alpha} F \tag{4}
\end{align*}
$$

Where X_{B} is the state vector of the rotor degrees-of-freeom; x_{W} is the state vector of the wing degrees-of-freedom; v_{k} is the input control vector; and g, is the gust input vector. F is a column matrix representing the forces and moments produced by the prop rotor and α is a column matrix giving the linear and angular displacement of the prop rotor hub due to wing tip motion.

The development here is concerned with adding the effects of
velicicle body motion to these equations of motion. The following modifications are developed. Equations (3) must be modified to include the influence of body motion on rotor hub motion. Equations (1) and (2) do not require modification owing to the way in which the equations have been formulated. Equation (4), the wing equations of motion must be modified to account for the influence of fuselage motion and in addition the fuselage motion equations must be developed. This report therefore, is concerned with two items: development of wing/body equations of motion and incorporation of the body motion into the hub displacement expressions. The analysis of NASA TM X-62,369 is not discussed in detail in this report.

ANATYTICAL DEVELORMENT

Geonetry of Wing/Body Motion

A small disturbance approach is used in developing the equations of motion. The center of gravity of the fuselage is taken as the origin of the axis system. X and Z , in general, refer to geometric distances measured along and perpendicular to the direction of the initial flight velocity. The following specific distances are involved in the formulation:
$X_{R}, Z_{R} \quad$ distance from center of gravity of fuselage to spar location at wing root.
$X_{W L}, Z_{W L}$ distance from center of gravity of fuselage to local effective elastic axis of wing section in deflected position.
$X_{W T}, Z_{W T}$ distance from center of gravity of fuselage to wing tip effective elastic axis location in deflected position.
$X_{p}, Z_{p} \quad$ distance from center of gravity of fuselage to pylon center of gravity including wing deflection. These distances are shown in Figure 1. α_{0}, θ_{0} and γ_{0} are respectively the trimmed flight angle of attack, pitch angle, and flight path angle and V_{0}, is the trinmed flight velocity.

The fuselage center of gravity motion is specified by perturbation velocities \dot{x}_{f} and z_{f} initially along and perpendicular to the trimmed flight velocity and the rotation of the fuselage is denoted by θ_{f}.
X_{R} and Z_{R} are geometric distances, characteristic of the aircrart, however, they do depend on the trim angle of attack of the aircraft as shown in Figure 1.

All of the other quantities depend upon the wing bending and torsional deflections. The wing orientation with respect to the fuselage is specified by three angles, δw_{1}, the dihedral, δw_{2}, the wing incidence plus body initial angle of attack ($\delta \mathrm{w}_{2}=i_{w}+\alpha_{0}$) where i_{w} is the wing incidence with respect to the body reference, and α_{0} is the trimned flight angle of attack, and $\delta \mathrm{w}_{3}$ the wing sweep angle. In order to obtain results which are a modification of NASA TM X62,369 the wing deflection is expressed in terms of an axis system aligned with the wing.

Assuming that the angles $\delta \mathrm{w}_{1}, \delta \mathrm{w}_{2}, \delta \mathrm{w}_{3}$ are small, as is characteristic of this aircraft, the relationship among distances in the fuselage coordinate system and the wing coordinate system, where an effective sweep angle δW_{3}^{*}, and effective dihedral angle δW_{1}^{*} are introduced

$$
\left\{\begin{array}{c}
-\mathrm{x} \tag{5}\\
\mathrm{y} \\
\mathrm{z}
\end{array}\right\}=\left[\begin{array}{ccc}
1 & +\delta w_{3}^{*} & +\delta w_{2} \\
-\delta w_{3}^{*} & 1 & -\delta w_{1} \\
-\delta w_{z} & +\delta w_{1}^{*} & 1
\end{array}\right] \quad\left\{\begin{array}{l}
x_{W} \\
y_{W} \\
z_{W}
\end{array}\right\}
$$

The minus sign in front of x is required since x_{W} is positive aft in Reference 1.

$$
\begin{align*}
& x=-x_{W}-\delta w_{3} y_{w}-\delta w_{z} z_{W} \\
& y=-x_{W} \delta w_{3}^{*}+y_{W}-\delta w_{1}^{*} z_{W} \tag{6}\\
& z=-x_{W} \delta w_{2}+y_{w} \delta w_{1}^{*}+z_{W}
\end{align*}
$$

δW_{1}^{*} and δW_{3}^{*} are introduced at this point to reflect the fact thet al, though the wing is swept, the center spar section is not swept as described in Reference 2. δW_{1}^{*} and δW_{3}^{*} account for an effective change in elastic axis position owing to the torsional deflection at the root. As developed in Reference 2, it is possible to represent this influence on the effective dihedral angle and effective sweep angle of the elastic axis as

$$
\begin{align*}
& \delta w_{3}^{*}=\delta w_{3}\left(1-5 w_{B}\right) \\
& \delta w_{1}^{*}=\delta w_{1}\left(1-5 w_{B}\right) \tag{7}
\end{align*}
$$

Where $\xi_{W_{B}}$ is the torsional deflection at the point where the spar is bent, i.e., at the wing root. Thus we have

$$
\begin{align*}
& x=-x_{W}-y_{W} \delta w_{3}\left(1-\xi W_{B}\right)-\delta w_{2} z_{W} \\
& y=x_{W} \delta w_{3}\left(1-\xi w_{B}\right)+y_{W}-z_{W} \delta w_{1}\left(1-\xi w_{B}\right) \tag{8}\\
& z=-x_{W} \delta w_{2}+y_{W} \delta w_{1}\left(1-\xi W_{B}\right)+z_{W}
\end{align*}
$$

Therefore, the position of the local wing elastic axis with respect to the fuselage center of gravity is expressed in terms of wing coordinates measured in the wing axis system. -

$$
\begin{align*}
X_{W L} & =X_{R}+x \\
& =X_{B}-x_{W}-y_{W} \delta W_{B}\left(1-\xi_{W B}\right)-\delta W_{z} z_{W} \tag{9}\\
z_{W L} & =z_{R}+z \\
& =z_{R}+z_{W}-x_{W} \delta W_{z}+y_{W} \delta W_{1}\left(1-\xi_{B}\right)
\end{align*}
$$

The wing tip deflection is expressed in terms of the same quantities with the deflection measured at the tip

$$
\begin{align*}
& x_{W T}=x_{R}-x_{W T}-y_{W T} \delta W_{3}\left(1-\xi W_{B}\right)-\delta W_{Z} z_{W T} \tag{10}\\
& z_{W T}=z_{R}+z_{W T}-x_{W T} \delta W_{2}+y_{W T} \delta W_{1}\left(1-\xi_{W}\right)
\end{align*}
$$

The pylon center of gravity is located at a fixed distance from the wing tip effective elastic axis location, given by the following distances

$$
\begin{align*}
& \Delta X_{p}=Z_{p e a} \tag{II}\\
& \Delta Z_{p}=0
\end{align*}
$$

where $Z_{\text {pea }}$ is the distance the pylon center of gravity is forward of the wing tip elastic axis measured along the wing reference system. Consequently

$$
\begin{align*}
& X_{p}=X_{W T}+\Delta X_{p} \tag{12}\\
& Z_{p}=Z_{W T}
\end{align*}
$$

This completes the expression for the linear displacements of various locations of significance, The hub position will be developed later.

Now the rotation of each point must be considered. The rotation of the fuselage center of gravity is θ_{f} and consequently the rotation of the wing root is also θ_{f}. Now this rotation must be expressed in terms of the wing coordinate system. This car be done by using the inverse of the transformation expressed by (5)

$$
\left(\begin{array}{r}
-\Delta \phi_{W L} \tag{13}\\
\Delta \theta_{W L} \\
\Delta W_{W L}
\end{array}\right)=\left[\begin{array}{ccc}
1 & -\delta w_{3}^{*} & -\delta w_{2} \\
\delta w_{3}^{*} & 1 & \delta w_{1}^{*} \\
\delta w_{2} & -\delta w_{1}^{*} & 1
\end{array}\right] \quad\left\{\begin{array}{l}
0 \\
\theta_{f} \\
0
\end{array}\right\}
$$

Therefore

$$
\begin{align*}
& \Delta \phi_{W L}=\delta W_{3}^{*} \theta_{\mathrm{f}} \\
& \Delta \theta_{\mathrm{WL}}=\theta_{\mathrm{I}} \tag{14}\\
& \Delta U_{\mathrm{WL}}=-\delta \mathrm{W}_{1}^{*} \theta_{\mathrm{f}}
\end{align*}
$$

where $\phi_{W L}$ represents a rolling of the wing section, and HWL represents a yawing of the wing section. The effect of $\phi_{\text {wl }}$ can be neglected by assuming that the wing is thin. The complete angular motion of the wing section includes the torsional deflection, and is equal to

$$
\theta_{W L}=\left(\theta_{f}+\theta_{W}\right)
$$

At the tip of the wing the rotations are expressed back in the fuselage reference trame. The wing tip rotation consists of torsional deflection as well as rotation due to the bending slope. Again using transformation (5)

$$
\left\{\begin{array}{c}
-\Delta \Phi_{T} \tag{15}\\
\Delta \theta_{T} \\
\Delta \psi_{T}
\end{array}\right\}=\left[\begin{array}{ccc}
1 & \delta w_{3}^{*} & \delta w_{2} \\
-\delta w_{3}^{*} & 1 & -\delta w_{2}^{*} \\
-\delta w_{2} & \delta w_{1}^{*} & 1
\end{array}\right]\left\{\begin{array}{r}
z_{T}^{\prime} \\
\theta_{W T} \\
-x_{T}^{\prime}
\end{array}\right\}
$$

where x_{T}^{\prime} and z_{T}^{\prime} represents the rotation of the tip due to the bending slope

$$
\begin{align*}
& \Delta \Phi_{T}=-z_{T}^{\prime}-\delta W_{3}^{*} \theta_{W T}+\delta W_{2} x_{T}^{\prime} \\
& \Delta \theta_{T}=-\delta W_{3}^{*} z_{T}^{\prime}+\theta_{W T}+\delta W_{I}^{*} x_{T}^{\prime} \tag{I6}\\
& \Delta \psi_{T}=-\delta W_{2} z_{T}^{\prime}+\delta W_{1}^{*} \theta_{W T}-x_{T}^{\prime}
\end{align*}
$$

These quantities are the roll angle, pitch angle and yaw angle of the tip expressed in the fuselage axes system. To this must be added the rotation of the body θ_{f} so that

$$
\begin{equation*}
\theta_{T}=\theta_{\mathrm{I}}-\delta \mathrm{w}_{3}^{*} \quad \mathrm{z}_{\mathrm{T}}^{\prime}+\theta_{W T}+\delta \mathrm{w}_{1}^{*} \quad \mathrm{x}_{\mathrm{T}}^{\prime} \tag{17}
\end{equation*}
$$

This is also the rotation of the pylon center of gravity. The above expressions describe the linear and angular displacements of the various points of interest.

Kinctic Energy

We now proceed to develop the equations of motion for the body-wing-pylon combination using the Lagrangian approach to evaluate the inertial terms.
a.) Fuselage

The kinetic energy of the fuselage can be expressed as

$$
\begin{equation*}
K E_{f}=\frac{I}{2} m_{f}\left(\dot{x}_{f}^{2}+\dot{z}_{f}^{2}\right)+\frac{I}{2} I_{f} \dot{\theta}_{f}^{2} \tag{18}
\end{equation*}
$$

Where a reference system travelling at the uniform velocity V_{0} is used.
b.) Wing

A section of the wing has the following kinetic energy

$$
\begin{align*}
K E_{W}= & \frac{I}{2} \int_{0}^{y T W} \operatorname{mdy}_{W}\left[\left(\dot{x}_{f}+\dot{x}-z_{W L} \dot{\theta}_{f}\right)^{2}\right. \\
& \left.+\left(\dot{z}_{f}+\dot{z}+X_{W L} \dot{\theta}_{f}\right)^{2}\right]+\frac{1}{2} \int_{0}^{y T} I_{W}\left(\dot{\theta}_{f}+\dot{\theta}_{W}\right)^{2} d y \\
& +\frac{I}{2} \int_{0}^{y T W} I_{W}\left(-\hat{0} W_{I}^{*} \dot{\theta}_{f}\right)^{2} d y \tag{19}
\end{align*}
$$

where it has been assumed that the wing is thin such that the roll moment of inertia of the wing section is negligible.
c.) Pylon

The pylon kinetic energy is

$$
\begin{align*}
K E_{p}= & \frac{1}{2} m_{p}\left[\left(\dot{x}_{f}+\dot{x}_{T}-z_{p} \dot{\theta}_{f}\right)^{2}\right. \\
& \left.+\left(\dot{z}_{f}+\dot{z}_{T}+X_{p} \dot{\theta}_{f}+\Delta X_{p} \Delta \dot{\theta}_{T}\right)^{2}+\left(\Delta X_{p} \Delta \dot{U}_{T}\right)^{2}\right] \\
& +\frac{1}{2} I_{p}^{\prime}\left(\dot{\theta}_{f}+\Delta \dot{\theta}_{T}\right)^{2}+\frac{1}{2} I_{p}^{\prime}\left(\Delta \dot{\Psi}_{T}\right)^{2} \tag{20}
\end{align*}
$$

Where $I_{P}^{\prime} y$ and I_{P}^{\prime}, are the pylon pitch and roll moments of inertia without the rotor measured with respect to the pylon center of gravity
axis location. The pylon inertia in roll is neglected.
Owing to the manner in which the equations were formulated (Finations
 oi' boay motion on rotor hub motion. Thus, to determine the equations of motion for the wing-body combination the kinetic energy of the system is

$$
K E=K E_{f}+K E_{W}+K E_{p}
$$

Now the modified equations of motion can be developed with the geometrical considerations described above. Prior to developing these equations the modified hub motion equations are developed.

Hub Motion

The hub position with respect to the wing tip effective elastic axis is expressed by $\Delta X_{H}, \Delta Z_{H}$ again measured in the fuselage reference coordinate system. This is the hub location with respect to the fuselage center of gravity. The total hub displacement with respect to the center of gravity of the fuselage is

$$
\begin{align*}
& X_{H}=X_{W T}+\Delta X_{H} \tag{21}\\
& Z_{H}=z_{W T}+\Delta z_{H}
\end{align*}
$$

where

$$
\begin{align*}
& \Delta X_{H}=\left[h C-\left(h-h_{e a}\right)\right]-\left[-Z_{e a}+h S\right] \delta w_{a} \tag{22}\\
& \Delta z_{H}=\left[h C-\left(h-h_{e a}\right)\right] \delta w_{z}+\left[-Z_{e a}+h S\right]
\end{align*}
$$

where

$$
\begin{aligned}
& C=\cos \left(\delta_{p}-\delta w_{z}\right) \\
& S=\sin \left(\delta_{p}-\delta w_{z}\right)
\end{aligned}
$$

and ($h-h_{\text {ca }}$) and $Z_{\text {ea }}$ represent the displacement of the elastic axis from the wing tip location forward and up due to sweep and dihedral. Since $\left(h-h_{e a}\right)$ and $Z_{\text {ea }}$ are proportional to δw_{1} and δw_{3} these distances are approximately given by

$$
\begin{align*}
& \Delta X_{H} \cong\left[h C-\left(h-h_{e a}\right)\right]-h s \delta w_{2} \tag{23}\\
& \Delta Z_{H} \cong[h c] \delta w_{z}+\left[-z_{e a}+h s\right]
\end{align*}
$$

The rotation of the hub due to the bending and torsional deflection of the wing tip is given by Equation (16) plus the rotation of the body θ_{f}. The hub displacements arising fron these rotations in the direction of the body reference system are

$$
\begin{align*}
& \overline{\Delta x}_{H / R}=-Z_{H} \theta_{\mathrm{P}}-\Delta Z_{H} \Delta \theta_{T} \\
& \overline{\Delta z}_{H / R}=\mathrm{X}_{H} \theta_{\mathrm{I}}+\Delta \mathrm{X}_{H} \Delta \theta_{T} \tag{24}\\
& \overline{\Delta y}_{H / R}=+\Delta Z_{H} \Delta \Phi_{T}-\Delta X_{H} \Delta H T
\end{align*}
$$

And in addition we have the center of gravity displacements, $\Delta x_{f}, \Delta z_{T}$ With respect to the travelling reference system, and the wing tip displacements measured in the body coordinate system direction $\Delta x_{W T / B}$, $\Delta Z_{W T / B}$.

The total hub displacements are

$$
\begin{align*}
& \overline{\Delta x}_{H}=\Delta x_{f}+\Delta x_{W T / G}-z_{H} \theta_{f}-\Delta z_{H} \Delta \theta_{\mathrm{f}} \\
& \overline{\Delta y}_{H}=\Delta z_{H} \Delta \Phi_{T}-\Delta x_{H} \Delta \psi_{T} \tag{25}\\
& \overline{\Delta z}_{H}=\Delta z_{f}+\Delta z_{W T / G}+x_{H} \theta_{f}+\Delta x_{H} \Delta \theta_{T}
\end{align*}
$$

These must now be resolved into the nub direction, i.e., along and perpencicular to the shaft.

In order to remain consistent with the previous development Δx_{H} and Δz_{H} arc first resolved to the wing direction

$$
\begin{align*}
& \overline{\Delta x}_{H W}=\overline{\Delta x}_{H}+\delta W_{2} \overline{\Delta z}_{H} \tag{26}\\
& \overline{\Delta z}_{H W}=\overline{\Delta z}_{H}-\delta W_{z} \overline{\Delta x}_{H}
\end{align*}
$$

and then resolved through the angle the prop rotor shaft makes with the wing $\left(\delta_{p}-\delta w_{z}\right)$

$$
\begin{align*}
& \bar{X}_{H S}=\overline{\Delta x}_{H W} C+\overline{\Delta z}_{H W} S \\
& \overline{\mathrm{y}}_{\mathrm{HS}}=+\Delta Z_{H} \Delta \Phi_{T}-\Delta X_{H} \Delta \Psi T \tag{27}\\
& \bar{z}_{H S}=\overline{\Delta z}_{H W} C-\overline{\Delta x}_{H W} S
\end{align*}
$$

The rotations also must be expressed in terms of the shaft axes. Again first resolving to the wing direction

$$
\begin{align*}
& \Delta \underline{Q}_{T W}=\Delta \Phi_{T}+\Delta \psi_{T} \delta W_{2} \tag{28}\\
& \Delta \Psi_{T W}=\Delta \psi_{T}-\Delta \Phi_{T} \delta W_{Z}
\end{align*}
$$

and then in the notation of Reference 1

$$
\begin{align*}
& \alpha_{x}=\Delta \psi_{T W} C-\Delta \Phi_{T W} S \\
& \alpha_{y}=\theta_{f}+\Delta \theta_{T} \tag{29}\\
& \alpha_{z}=\Delta \Phi_{T W} C+\Delta \psi_{T W} S
\end{align*}
$$

Equations (27) and (29) express the motion of the hub in terms of wing motion and body motion.

The rotation angles of the wing can now be expressed as, neglecting

Again these agree with the formulation of Reference 1 , with additional terms for the effect of fuselage displacement and rotation. These results can be expressed in matrix notation as follows,

$$
\alpha=c x_{w}+d x_{f}
$$

where

$$
\alpha=\left|\begin{array}{l}
x_{n} \\
y_{n} \\
z_{n} \\
\alpha_{x} \\
\alpha_{y} \\
\alpha_{z}
\end{array}\right|
$$

$$
x_{w}=\left\{\begin{array}{l}
q_{w 1} \\
q_{w 2} \\
p_{w}
\end{array}\right\}
$$

$$
x_{f}=\left\{\begin{array}{c}
x_{f} \\
z_{f} \\
\theta_{f}
\end{array}\right\}
$$

where

$$
\begin{aligned}
& z_{W T}=y_{T W} \quad q_{W I} \\
& x_{W T}=y_{T W} \quad q_{W 2} \\
& \theta_{W T}=p_{W}
\end{aligned}
$$

and

$$
\begin{aligned}
& z_{W}^{\prime}=\eta_{W}^{\prime}\left(y_{T W}\right) q_{W I} \\
& x_{W T}=\eta_{W}^{\prime}\left(y_{T W}\right) q_{W 2}
\end{aligned}
$$

The elements of the matrix C are given on page 127 of Reference 1 . Assuming that $\delta \mathrm{w}_{2}$ is a small angle as has been done in the development, some of the terms above can be simplified. The matrix a which expresses the contribution of the fuselage motion to the hub motion is

Inertial Forces and Moments

The kinetic energy of the fuselage, pylon and wing can be expressed as

$$
\begin{aligned}
& K E=\frac{1}{2} m_{f}\left(\dot{x}_{f}^{2}+\dot{z}_{f}^{z}\right)+\frac{1}{2} I_{f} \dot{\theta}_{f}^{z} \\
& +\frac{2}{2} \int_{-y_{T}}^{y_{T}} m a y\left[\left(\dot{x}_{f}+\dot{x}-z_{W L} \dot{\theta}_{f}\right)^{2}+\left(\dot{z}_{f}+\dot{z}+X_{W L} \dot{\theta}_{f}\right)^{2}\right] \\
& +\frac{1}{2} \int_{-V_{T}}^{y_{T}} I_{W}\left(\dot{\theta}_{f}+\dot{\theta}_{W}\right)^{2} d y \\
& +2\left[\frac { 1 } { 2 } m _ { P } \left[\left(\dot{x}_{f}+\dot{x}_{T}-z_{P} \dot{\theta}_{f}\right)^{2}\right.\right. \\
& \left.\quad+\left(\dot{z}_{f}+\dot{z}_{f}+X_{P} \dot{\theta}_{f}+\Delta X_{P} \Delta \dot{\theta}_{T}\right)^{2}\right] \\
& \\
& \quad \frac{1}{2} m_{P} \Delta X_{P}^{2}\left(\Delta \dot{\psi}_{T} / R\right)^{2}+\frac{1}{2} m_{P} \Delta X_{P}^{2}\left(\Delta \dot{Y}_{T / L}\right)^{2} \\
& \\
& 2\left[\frac{1}{2} I_{P Y}\left(\dot{\theta}_{f}+\Delta \dot{\theta}_{T}\right)^{2}\right]+\frac{1}{2} I_{P X}\left(\Delta \dot{U}_{T} / R\right)^{2} \\
& +\frac{1}{2} I_{P X}\left(\Delta \dot{Y}_{T} / L\right)^{2}
\end{aligned}
$$

The influence of the left and right wings have been included. It is assumed that the only wing motion is symmetrical such that

$$
\begin{aligned}
& \eta_{L}=n_{R} \\
& n_{L}^{\prime}=-n_{R}^{\prime} \\
& p_{L}=p_{R}
\end{aligned}
$$

and

$$
\begin{aligned}
& \delta W_{1 L}=-\delta w_{1 R} \\
& \delta w_{2 L}=\delta W_{2 R} \\
& \delta W_{3 L}=-\delta W_{3 R}
\end{aligned}
$$

It can be seen from Equation (16) that

$$
\Delta \dot{\theta}_{T} / 1=\Delta \dot{\theta}_{T / R}
$$

nd that

$$
\Delta \dot{\psi}_{\mathrm{T}} / \mathrm{A}=-\Delta \dot{\psi}_{\mathrm{T}} / \mathrm{B}
$$

Therefore as can be seen from the kinetic energy expression, the effect of both wings is simply to double the pylon and wing terms.

The generaliced coordinates to be used are the motion of the fuselage measured at its center of gravity x_{f}, z_{f}, θ_{f} and the wing deflection modes in two directions $q_{W 1}$ and $q_{W z}$ and the wing torsion p_{W}. These quantities are related to wing deflection by

$$
\begin{aligned}
& z_{W}=\eta_{W} q_{W I} \\
& x_{W}=\eta_{W} q_{W 2} \\
& \theta_{W}=\xi_{W} p_{W}
\end{aligned}
$$

where the mode shapes η_{W} and \bar{S}_{W} have been normalized, such that, at the tip $\eta_{W T}=y_{T W}$ and $\xi_{W T}=1$. The relationship between the wing deflection coordinates x and z are given by Equation (8) and the relationships between pylon angular motion $\Delta \theta_{T}, \Delta \psi_{T}$ and $\Delta \phi_{T}$ and the wing deflection and torsion are given by Equation (16). Precisely speaking, the distances $X_{W L}, Z_{W L}$ and X_{P} and Z_{p} are functions of the coordinates, that is the wing deflection, however, they can be considered constant, equal to their trimmed flight value in the following development since the variation in these terms will not contribute any linear terms in the final development. For reference the time derivatives of Equation (8) and (16) are repeated here.

$$
\begin{align*}
& \dot{x}=-\eta_{W} \dot{q}_{W 2}-\delta W_{z} \eta_{W} \dot{q}_{W 1} \\
& \dot{z}=-\eta_{W} \dot{q}_{W 2} \delta W_{2}+\eta_{W} \dot{q}_{W 1} \tag{8}
\end{align*}
$$

y is assumed to be constant and does not contribute to the kinetic energy
\dot{x}_{T} and \dot{z}_{T} are found by replacing η_{W} by $y_{T W}$ in the above.
The rotation rates are

$$
\begin{aligned}
& \Delta \dot{W}_{T}=-\eta_{W T}^{\prime} \dot{q}_{W 1}-\delta W_{3}^{*} \xi_{W T} \dot{p}_{W}+\delta W_{2} \eta_{W T}^{\prime} \dot{q}_{W 2} \\
& \Delta \dot{\theta}_{T}=\delta W_{3}^{*} \eta_{W T}^{\prime} \dot{q}_{W 1}+\xi_{W T} \dot{p}_{W}+\delta W_{I}^{*} \eta_{W T}^{\prime} \dot{q}_{W 2} \\
& \Delta \dot{\psi}_{T}=\delta W_{2} \eta_{W T}^{\prime} \dot{q}_{W 1}+\delta W_{1}^{*} \xi_{W T} \dot{p}_{W}-\eta_{W T}^{\prime} \dot{q}_{W 2}
\end{aligned}
$$

and

$$
\dot{\theta}_{W}=\xi_{W} \dot{p}_{W}
$$

The terms of the equations of motion are now evaluated by calculating

$$
\frac{\alpha}{d t}\left(\frac{\partial K P}{\partial \dot{x}_{f}}\right) \text {, etc. }
$$

The resulting terms in the equations of motion are listed on the following pages in matrix form. The foillowing definitions are employed
$(\wedge)=$ quantity normalized by total aircraft mass, M
()* quantity normalized by $\frac{N}{2} I_{b}$

Therefore,

$$
\begin{aligned}
& \hat{m}_{f W P}=\frac{m_{f}+2 m_{p}+2 m_{p}}{M} \\
& \hat{m}_{\rho Z}=\frac{m_{P} Z_{p}}{M} \\
& \hat{\mathrm{~m}}_{W Z}=\frac{\int_{0}^{y_{T} W_{n} z_{W L} d y_{W}}}{M} \\
& \hat{\mathrm{~m}}_{P X}=\frac{m_{P} X_{P}}{M} \\
& \hat{\mathrm{~m}}_{W X}=\frac{\int^{T_{T W}} X_{W L} d y_{W}}{M}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{m}_{W x}=\frac{\int^{y_{T} w} m x_{W L} d y_{W}}{M} \\
& m_{p}^{*_{p}}=\frac{m_{p} y_{T W}^{2}}{\frac{N}{2} I_{b}} \\
& \mathrm{~m}_{\mathrm{qw}}^{*}=\frac{\left(\int \mathrm{m} / \mathrm{dy}\right) \mathrm{yT}_{\mathrm{w}}}{\frac{\mathrm{~N}}{2} \mathrm{I}_{\mathrm{b}}} \\
& S_{W}^{*}=m_{p}^{*} \frac{Z_{P_{e a}}}{Y_{T W}} \\
& \hat{I}_{f}=\frac{I_{f}}{M y_{W}^{2}} \\
& \hat{I}_{P f}=\frac{I_{P Y}+m_{p}\left(X_{P}^{2}+Z_{p}^{2}\right)}{M Y_{W}^{2}} \\
& \hat{I}_{W f}=\frac{\int I_{W} d y_{W}+\int m\left(X_{W L}^{2}+Z_{W L}^{2}\right) d y_{W}}{M y_{T W}^{2}} \\
& I_{W q Z}^{*}=\frac{\int m \eta Z_{W h} d y_{W}}{\frac{N}{2} I_{b}} \\
& I_{W Q X}^{*}=\frac{\int m \not X_{W L} d y_{W}}{\frac{N}{2} I_{b}} \\
& I_{w}^{*} \zeta=\frac{\int I_{W} \xi_{w} d y_{w}}{\frac{N}{2} I_{b}} \\
& I_{p y}^{*}=\frac{I_{p y}^{\prime}+m_{p} \Delta X_{p}^{2}}{\frac{N}{2} I_{b}}
\end{aligned}
$$

$$
\begin{aligned}
I_{q}^{*} & =\frac{\int m_{n}^{2} d y_{W}}{\frac{N}{2} I_{b}} \\
I_{P X}^{*} & =\frac{I_{P X}^{\prime}+m_{P} \Delta X_{P}^{2}}{\frac{N}{2} I_{b}} \\
I_{P W}^{*} & =\frac{\int m \xi_{W}^{2} d y_{W}}{\frac{N}{2} I_{b}} \\
N_{1}^{*} & =\frac{M Y_{T W}^{2}}{\frac{N}{2} I_{b}}
\end{aligned}
$$

The fuselage X and Z force equations have been divided by the quantity $M^{2} R$ where M is the aircraft mass. The pitching moment equation has been divided by $M y_{T}^{2}$ and the wing equations have been divided by $\frac{N}{2} I_{b}$.

The resulting equations of motion for the wing, body are of the form

$$
D_{2} \ddot{x}_{v}+D_{1} \dot{x}_{v}+D_{0} x_{v}=D v_{w}+L_{g}
$$

where

$$
\left.x_{V}=\left.\right|_{x_{W}} ^{x_{B}}\right\}^{x_{f}}\left|\begin{array}{l}
x_{f} \\
z_{f} \\
q_{f} \\
q_{W I} \mid \\
q_{W 2} \\
p_{W}
\end{array}\right|
$$

Where D_{2} has been developed above. Note that in terms of the Nomenclatore of Reference 1 ,

$$
D_{2}=\left[\begin{array}{c:c}
d_{11} & a_{12} \\
\hdashline d_{21} & a_{2}
\end{array}\right]
$$

where a_{2} was developed in Reference 1. D_{2} is given on the accompanying page. The following section develops the aerodynamic force and moment contributions to the matrices D_{1} and D_{0}.

In addition, the influence of the rotor forces and moments must be added to the body equations. The final equations including effects of wing, fuselage and rotor are

$$
D_{2} \ddot{x}_{v}+D_{I} \dot{x}_{v}+D_{0} x_{v}=E v_{W}+E_{g} g+H_{1} F+H_{2} x_{W}
$$

where

$$
\left.\begin{array}{r}
\left|\frac{C_{T}}{a \sigma}\right| \\
\left.\frac{2 C_{H}}{a \sigma} \right\rvert\, \\
\left.\frac{2 C_{Y}}{a \sigma} \right\rvert\, \\
\frac{C_{Q}}{a \sigma} \\
\frac{2 C_{m y}}{2 \sigma} \\
-\frac{2 C_{m x}}{2 \sigma}
\end{array}\right)
$$

$$
\text { and } H_{1}-\left\{\frac{G_{1}}{\tilde{\alpha}}\right\} \quad H_{2}=\left\{\frac{G_{2}^{\prime}}{0}\right\}
$$

$\tilde{\alpha}$ is developed in Reference 1 and G_{1} and G_{2}^{\prime} are developed in a following section.

Wing Aerodynamic Forces and Moments

This section develops the wing forces and moments to be added to the wing and fuselage equations of motion. The formulation is complicated by the fact that the wing has a sweep angle $\delta \mathrm{w}_{3}$. The geometry or the wing is shown in Figure 4. The lift, drag and pitching moment on the wing section can be expressed as

$$
\begin{aligned}
& \bar{l}=\frac{1}{2} \rho V_{N}^{2} \bar{c} a \bar{\alpha} \\
& \bar{d}=\frac{1}{2} \rho V_{N}^{2} \bar{c}\left(C_{D O}+C_{\alpha \alpha} \bar{\alpha}\right) \\
& \bar{m}_{e a}=\frac{1}{2} \rho V_{N}^{a} \bar{c}^{2}\left(C_{\text {mac }}-\frac{x_{A W}}{c_{W}} C_{L}\right)
\end{aligned}
$$

The total lift, drag and pitching moment acting on the wing is

$$
\begin{aligned}
& I=\int \bar{l} d \bar{y} \\
& D=\int \bar{d} d \bar{y} \\
& M=\int \bar{m}_{\text {ea }} d \bar{y}
\end{aligned}
$$

The normal and chordwise forces, \bar{n} and \bar{c} are

$$
\begin{aligned}
& \bar{n} \cong \bar{l} \\
& \bar{c}=\bar{\alpha}-\bar{l} \bar{\alpha}
\end{aligned}
$$

The exciting forces and moments for the wing bending and torsion equations are

$$
\begin{aligned}
& N=\int \bar{l} \eta d \bar{y} \\
& C=\int\left(\bar{\alpha}-\bar{l} \overline{\alpha^{\prime}}\right) \eta d \bar{y} \\
& M=\int \bar{m}_{\mathrm{ea}} \overline{\mathrm{~F}} \mathrm{~d} \bar{y}
\end{aligned}
$$

Now, noting from Figure 4 that

$$
\begin{aligned}
& \bar{c}=c \cos \Lambda \\
& d \bar{y}=\frac{d y}{\cos \Lambda}
\end{aligned}
$$

We can write

$$
\begin{aligned}
& I=\frac{1}{2} \rho c_{W} a_{W} \int \bar{V}_{N}^{2} \bar{\alpha} d y \\
& D=\frac{1}{2} \rho c W \int V_{N}^{2}\left(C_{D O}+C_{D Q} \bar{\alpha}\right) d y \\
& M=\frac{1}{2} \rho c_{W} c_{W} \cos \Lambda \int V_{N}^{2}\left(C_{\operatorname{mac}}-\frac{x_{W N}}{c_{W}} C_{L}\right) d y
\end{aligned}
$$

and

$$
\begin{aligned}
& N=\frac{1}{2} \rho c_{W} a_{W} \int V_{N}^{2} \alpha \eta d y \\
& C=\frac{1}{2} \rho c_{W} \int V_{N}^{2}\left(c_{D O}-\left(c_{L}-c_{D \alpha}\right) \alpha\right) \eta d y \\
& M=\frac{1}{2} \rho c^{2} \cos \Lambda \int V_{N}^{2}\left(c_{m a c}-\frac{x_{a N}}{c_{W}} c_{L}\right) \xi d y
\end{aligned}
$$

These last three expressions are nondimensionalized by dividing by $\gamma \frac{N}{2} I_{b}$, which yields

$$
\begin{aligned}
& M_{q W I}=\phi_{12} a_{W} \int V_{N}^{2} \bar{\alpha} \frac{\eta d y}{y_{T W}^{2}} \\
& M_{q W 2}=\phi_{12} \int V_{N}^{2}\left(C_{D D}-\left(c_{L}-C_{D \alpha}\right) \alpha\right) \frac{\eta d y}{y_{T W}^{2}} \\
& M_{P}=\phi_{21} \cos \Lambda \int V_{N}^{2}\left(C_{\text {mac }}-\frac{x_{a_{N}}}{c_{W}} C_{L}\right) \xi \frac{d y}{y_{T W}}
\end{aligned}
$$

where

$$
\phi_{\mathrm{m}}=\frac{c^{\mathrm{n}} \mathrm{y}_{\mathrm{T}} \mathrm{~m}^{\mathrm{m}}}{\pi \sigma a}
$$

Note that c_{W} and $y_{T w}$ have been nondimensionalized by the rotor redius R, similarly L, D, and M are normalized by $M \Omega^{2} R$ and $M y_{T F}{ }^{2} \Omega^{2}$ to yjeld T^{*}, D^{*}, and M^{*}.

$$
\begin{aligned}
& L^{*}=\frac{\gamma}{M^{*} \phi_{13}} a_{W} \int V_{N}^{2} \alpha^{2} \frac{d y}{y_{T W}} \\
& D^{*}=\frac{Y}{M^{*}} \phi_{23} \int V_{N}^{2}\left(C_{D 0}+C_{D \alpha} \bar{\alpha}\right) \frac{d y}{y_{T W}} \\
& M^{*}=\frac{Y}{M^{*}} \phi_{21} \cos \Lambda \int V_{N}^{2}\left(C_{m a c}-\frac{x_{a W}}{c_{W}} C_{L}\right) \frac{d y}{y_{T W}}
\end{aligned}
$$

From the geometry of the figure, assuming that the inflow angle, ϕ_{1}, is small, the velocity normal to the wing leading edge is

$$
V_{N}=\left[\left(V_{0}+\dot{x}_{f}\right) \cos \Lambda-\left(\dot{x}_{W}+\dot{z}_{W} \delta_{W 2}\right)-z_{W L} \dot{\theta}_{f^{\prime}}\right]
$$

and the angle of attack of the section is

$$
\alpha=\theta_{W}+\frac{V_{T} \sin \phi_{W}-\left[\dot{z}_{f}+\dot{z}_{W}-\dot{x}_{W} \delta_{W Z}\right]-X_{W L} \dot{\theta}_{f}}{V_{W}}
$$

where

$$
\begin{aligned}
& \Lambda=\delta_{W 3}+x^{\prime} \\
& \phi_{W}=\left(\delta_{W a}+\theta_{f}\right) \sin \Lambda-z^{\prime} \\
& \theta_{W}=\left(\delta_{W a}+\theta_{f}\right) \cos \Lambda+\xi_{W} p \\
& V_{T}=\left(V_{0}+\dot{x}_{f}\right) \sin \Lambda
\end{aligned}
$$

Since many of these quantities are perturbation quantities we may express the angle of attack as, retaining only linear terms

$$
\bar{\alpha}^{\prime}=\frac{\delta_{W 2}+\theta_{f}}{\cos \Lambda}+\xi_{w} p-z^{\prime} \delta_{W 3}-\left\{\frac{\dot{z}_{f}+\dot{z}_{W}-\dot{x}_{W} \delta_{W 2}-X_{W L} \dot{\theta}_{f}}{V_{0}}\right\}
$$

There are in addition, effects of angular rates, $\dot{\alpha}$ and $\dot{\theta}_{f}$ accounted for with the following increments to C_{l} and C_{m}

$$
\Delta C_{l}=\frac{a_{w} c_{W}}{v_{0}}\left[\frac{3}{4}+\frac{x_{a w}}{c_{w}}\right]\left(\xi_{w} \dot{p}+\frac{\dot{\theta}_{q}}{\cos \Lambda}\right)
$$

and

$$
\Delta c_{m}=\frac{a_{W} c_{W}}{v_{N}}\left[-\frac{1}{8}-\frac{3}{4} \frac{x_{a w}}{c_{W}}-\left(\frac{x_{a W}}{c_{W}}\right)^{2}\right]\left[\xi_{W} \dot{p}+\frac{\dot{\theta}_{f}}{\cos \Lambda}\right]
$$

We can now determine the terms in the six equations of motion by taking derivatives of the above expressions. Denoting the derivatives by

$$
\mathrm{C}_{\mathrm{q} 1} \dot{\mathrm{x}}_{\mathrm{f}}=\frac{\partial \mathrm{M}_{\mathrm{q} 1}}{\partial \dot{\mathrm{x}}_{\mathrm{f}}}
$$

The following expressions result:

$$
\begin{aligned}
& C_{q I} \dot{x}_{f}=\phi_{12} 2 C_{L 0} V_{0} e_{1}=C_{q_{1} u} \\
& C_{q_{1}} \dot{z}_{f}=-\phi_{1 a} V_{0} a_{w} e_{I}=-C_{q_{2}} w_{g} \\
& C_{q_{1} q_{1}}=\phi_{13}\left(-V_{0}\left(a_{W}+2 \frac{C_{L}{ }^{2} q_{1}{ }^{W} g}{a_{W}}\right)\right) e_{z} \\
& C_{q I} q_{2}=-\phi_{13} V_{0} C_{10} e_{z} \\
& C_{q_{1} q 1}=-\phi_{12} V_{0}^{2} a_{w} \delta_{W i s} e_{3} \\
& C_{q 1} q_{2}=-\phi_{12} C_{L O} V_{0}^{2} \delta_{W 3} e_{2} \\
& c_{q_{1}} \dot{p}=\phi_{22} a_{w}\left[\frac{3}{4}+\frac{x_{a_{w}}}{c_{w}}\right] v_{0} e_{4} \\
& C_{q 1} p=\phi_{12} V_{0}^{2} a_{w} e_{4}
\end{aligned}
$$

$$
\begin{aligned}
& C_{q_{1}} \theta_{f}=\phi_{12} V_{0}^{2} a_{W} e_{1} \\
& C_{q_{1}} \dot{\theta}_{f}=\phi_{22} V_{0}\left(-2 C_{L 0} \frac{Z_{W L}}{c_{1}}+a_{W}\left[\frac{X_{W L}}{c_{W}}+\frac{3}{4}+\frac{x_{a_{W}}}{c}\right]\right)
\end{aligned}
$$

The chordwise equation terms are:

$$
\begin{aligned}
& C_{q_{2}} \dot{x}_{f}=\phi_{12} 2 V_{0}\left(C_{D O}-C_{L_{0}} \delta_{W 2}\right) e_{I}=C_{q_{2}} u_{g} \\
& C_{q_{2}} \dot{z}_{f}=\phi_{I 2} V_{0}\left(C_{D} \alpha-2 C_{L 0}\right) e_{I}=-C_{q_{2} W_{g}} \\
& C_{q_{2} \dot{q}_{2}}=-\phi_{13} V_{0}\left(C_{\infty \alpha}-2 C_{L 0}\right) e_{2} \\
& C_{q_{2} \dot{q}_{2}}=\phi_{13} V_{0}\left(-2 C_{D}+C_{D \alpha} \delta_{W 2}\right) e_{z} \\
& { }^{C_{q_{2}} q_{1}=-\phi_{12} V_{0}^{2}\left(C_{0 \alpha}-C_{L 0}\right) \delta_{W 3} e_{3}, ~} \\
& C_{q_{2}} q_{2}=-\phi_{12} V_{0}^{2} \delta_{W 3}\left[2 C_{D} \alpha \delta_{W 3}\right] \\
& C_{q_{2}} \dot{p}=\phi_{22} V\left[\left(\frac{1}{2}+\frac{x_{a w}}{C_{W}}\right)\left(C_{D \alpha}-2 C_{L 0}\right)-\frac{1}{4} C_{L 0}\right] e_{4} \\
& C_{q_{2} p}=\phi_{12} V_{0}^{2}\left(C_{D \alpha}-2 C_{L 0}\right) e_{2} \\
& { }^{C} q_{2} \theta_{f}=\phi_{12} V_{0}^{2}\left(C_{D \alpha}-2 C_{L 0}\right) e_{1} \\
& C_{q_{2}} \dot{\theta}_{f}=\phi_{22} V_{0}\left[-2 \frac{z_{W L}}{c_{W}}\left(c_{D D}-\left(c_{L},-c_{D \alpha}\right) \delta_{W 2}\right)\right. \\
& \left.+\frac{x_{W L}}{c_{W}} C_{L O}+\left(c_{L}-C_{D \alpha}\right)\left(\frac{x_{W L}}{c_{W}}-\frac{x_{\alpha W}}{c_{W}}-\frac{1}{2}\right)\right] e_{1}
\end{aligned}
$$

The torsion equation terms are:

$$
\begin{aligned}
& C_{p \dot{x}_{f}}=\phi_{21} 2 v_{0}\left(c_{m a c}-\frac{x_{a w}}{c_{w}} c_{L 0}\right) f_{1}=c_{p u_{g}} \\
& C_{p z_{f}}=\phi_{21} v_{0} \frac{x_{a w}}{c_{w}} a_{w} f_{1}=-C_{p w_{g}}
\end{aligned}
$$

$$
\begin{aligned}
& C_{p q_{1}}=\phi_{22}\left[V_{0} \frac{x_{a w}}{C_{w}} a-2 V_{0} \frac{C_{L o}}{a_{w}}\left(C_{\operatorname{mac}}-\frac{x_{a w}}{c_{w}} C_{L o}\right)\right] e_{s} \\
& C_{p \dot{q}_{2}}=\phi_{22}\left[-2 V_{0} C_{m a c}+V_{0} \frac{x_{a w}}{c_{w}} C_{L_{0}}\right] e_{4} \\
& C_{p q_{2}}=\phi_{12} V_{0}^{2} C_{m a c} f_{2}+\phi_{21} V_{0}^{2} a_{W} \delta_{W 3} \frac{x_{1} W}{c_{W}} f_{5} \\
& C_{p q_{2}}=-\phi_{12} V^{2} C_{L o} I_{2}-\phi_{21} V_{0}^{2} \delta_{W 3}\left[-2 C_{m a c}+\frac{x_{a w}}{c_{W}} C_{L 0}\right] f_{5} \\
& C_{p \dot{p}}=-\phi_{31}\left(\frac{1}{8}+\frac{3}{4} \frac{x_{a w}}{c_{w}}+\left(\frac{x_{a w}}{2}\right)^{2}\right) a_{w} f_{3} \\
& c_{p p}=-\phi_{21} V_{0}^{2} \frac{x_{a w}}{c_{w}} a_{w} f_{3} \\
& C_{p \theta_{f}}=-\phi_{21} V_{0}^{2} \frac{x_{a w}}{c_{W}} a \quad f_{1} \\
& C_{p} \dot{\theta}_{f}=-\phi_{31}\left(\frac{1}{8}+\frac{3}{4} \frac{x_{a w}}{c_{w}}+\left(\frac{x_{a w}}{c_{w}}\right)^{2}\right) a_{w} f_{1}
\end{aligned}
$$

These are the terms in the wing equations of motion.
For the body equations of motion, the lift terms will be similar to the normal force terms applied to the wing with the mode shape not present in the integral. Following a similar notation

$$
\begin{aligned}
& C_{z \dot{x}_{f}}=\phi_{12} 2 C_{L_{0}} v_{0}=C_{z u_{g}} \\
& C_{z z_{f}}=-\phi_{12} v_{0} a_{w}=-C_{z W} \\
& C_{g} \\
& C_{z q_{1}}=\phi_{13}\left(-v_{0}\left(a_{w}+2 \frac{C_{L}^{2}}{a_{w}}\right)\right) e_{1}
\end{aligned}
$$

$$
\begin{aligned}
& C_{z \dot{q}_{2}}=-\phi_{13} V_{0} C_{L 0} e_{I} \\
& C_{z q_{1}}=-\phi_{12} V_{0}^{2} a_{W} \delta_{W B} \\
& C_{z q_{2}}=-\phi_{12} C_{L 0} V_{0}^{2} \delta_{W 3} e_{1} \\
& C_{z \dot{p}}=\phi_{22} a_{W}\left[\frac{3}{4}+\frac{x_{a W}}{c_{W}} V_{0} f_{1}\right. \\
& C_{z \theta_{f}}=\phi_{12} V_{0}^{2} a_{W} \\
& C_{z \dot{\theta}}^{f}=\phi_{22} V_{0}\left[-2 C_{L 0} \frac{z_{W L}}{c_{W}}+a_{W}\left(\frac{x_{W L}}{c_{W}}+\frac{3}{4}+\frac{x_{a W}}{c_{W}}\right)\right]
\end{aligned}
$$

The terms in the x force equation do not involve quite the same terms as the chordwise wing terms since the resolution is along the fuselage axes which are initially aligned with the wind.

$$
\begin{aligned}
& C_{X \dot{X}_{f}}=\phi_{12} 2 V_{0} C_{D O}=C_{X u} \\
& C_{X \dot{Z}_{f}}=\phi_{12} V_{0}\left(C_{D \alpha}-C_{L O}\right)=-C_{X W_{g}} \\
& C x \dot{q}_{1}=-\phi_{13} V_{0}\left(C_{D \alpha}-C_{L O}+2 C_{D 0} \delta_{W 2}\right) e_{1} \\
& C_{x \dot{q}_{2}}=\phi_{13} V_{0}\left[-2 C_{00}+\delta_{W 2}\left(C_{0 \alpha}-C_{L O}\right)\right] e_{1} \\
& C_{X q_{1}}=\phi_{12} V_{0}\left(C_{L O}-C_{D \alpha}\right) \delta_{W 3} \\
& C_{X q_{2}}=-\phi_{12} V_{0}^{2} \delta_{W 3}\left(2 C_{D O}-\left(C_{D \alpha}-C_{L O}\right) \delta_{W 2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& C_{x p}=\phi_{22} V_{0}\left[\left(C_{D \alpha}-C_{L O}\right)\left(x_{2 W}+\frac{1}{2} q_{W}\right)\right] f_{1} \\
& C_{x p}=\phi_{12} V_{0}^{2}\left(C_{D \alpha}-C_{L O}\right) f_{1} \\
& C_{x \theta_{f}}=\phi_{12} V_{0}^{2}\left(C_{D Q}-C_{L O}\right) \\
& C_{x \theta_{f}}=\phi_{22} V_{0}\left[-2 \frac{Z_{W L}}{C_{W}} C_{D O}+\left(c_{L O}-C_{D \alpha}\right)\left(\frac{X_{W L}}{c_{W}}-\frac{x_{W W}}{C_{W}}-\frac{1}{2}\right)\right]
\end{aligned}
$$

The pitching moment about the fuselage center of gravity is

$$
M_{C G}=M_{e a}+L X_{W L}+D Z_{W L}
$$

The nondinensionalized coefficients are

$$
c_{m}()=c_{m_{e a}()}+c_{z()} \frac{x_{W L}}{c_{W}}+c_{x()} \frac{z_{W L}}{c_{W}}
$$

that is

$$
\begin{aligned}
& C_{m *_{I}}=\phi_{21} 2 V_{0}\left(C_{m a c}-\frac{x_{a W}}{c_{W}} C_{L 0}\right)+C_{z \dot{x}_{f}} \frac{X_{W L}}{c_{W}}+C_{x \dot{x}_{f}} \frac{Z_{W L}}{c_{W}}=C_{m u} \\
& C_{m \dot{z}_{f}}=\phi_{z 2} V_{0} \frac{x_{a w}}{c_{W}} a_{w}+C_{z \dot{z}_{f}} \frac{x_{W L}}{c_{W}}+C_{x \dot{x}_{f}} \frac{Z_{W L}}{c_{W}}=-c_{r m} \\
& C_{m \dot{q}_{1}}=\phi_{22}\left[v_{0} \frac{x_{a w}}{c} a_{w}-2 v_{0} \frac{c_{L 0}}{a_{w}}\left(c_{m a c}-\frac{x_{a w}}{c_{w}} c_{L 0}\right) e_{1}\right. \\
& +c_{z \dot{q}_{1}} \frac{X_{W L}}{c_{W}}+c_{X \dot{q}_{1}} \frac{z_{W L}}{c_{W}}
\end{aligned}
$$

$$
\begin{aligned}
& C_{m q_{2}}=\phi_{22}\left[-2 V_{0} C_{m a c}+V_{0} \frac{x_{2 W}}{c_{W}} C_{L 0}\right] e_{1}+C_{z \dot{q}_{2}} \frac{X_{W L}}{c_{W}}+c_{x \dot{q}_{I}} \frac{Z_{W L}}{c_{W}} \\
& C_{m q_{1}}=\phi_{12} V_{0} C_{m a c} f_{G}+\phi_{21} V_{0}^{2} a_{W} \delta_{W 3} \frac{x_{a W}}{c_{W}}+C_{z q_{1}} \frac{X_{W L}}{c_{W}}+c_{x q_{1}} \frac{Z_{W L}}{c_{W}} \\
& C_{m q_{2}}=-\phi_{2} V_{0}^{2} C_{L 0} f_{0}-\phi_{21} V_{0}^{2} \delta_{W 3}\left[-2 C_{m a c}+\frac{x_{a W}}{c_{W}} C_{L O}\right] \\
& +C_{z q_{2}} \frac{X_{W L}}{c_{W}}+C_{x_{q_{2}}} \frac{Z_{W L}}{c_{W}} \\
& C_{m p}=-\phi_{31}\left(\frac{1}{8}+\frac{3}{4} \frac{x_{a w}}{c_{w}}+\left(\frac{x_{a w}}{c_{w}}\right)^{2}\right) a_{w} f_{1}+c_{z_{p}} \frac{X_{w L}}{c_{W}}+c_{x_{p}} \frac{Z_{w L}}{c_{L}} \\
& c_{m p}=-\phi_{z 1} v_{0}^{2} \frac{x_{a w}}{c_{W}} a_{W} f_{1}+c_{z p} \frac{X_{W L}}{c_{W}}+c_{x p} \frac{Z_{W L}}{c_{W}} \\
& C_{m \theta_{f}}=-\phi_{21} V_{0}^{2} \frac{x_{a W}}{c_{W}} a_{W}+C_{z \theta_{f}} \frac{X_{W L}}{c_{W}}+C_{x \theta_{f}} \frac{Z_{W L}}{c_{W}} \\
& c_{m \theta_{f}}=-\phi_{S_{1}}\left(\frac{1}{8}+\frac{3}{4} \frac{x_{a w}}{c_{w}}+\left(\frac{x_{W}}{c_{W}}\right)^{2}\right) a_{w}+c_{z \theta_{f}} \frac{x_{w L}}{c_{w}}+c_{x \theta_{f}} \frac{z_{w L}}{c_{W}}
\end{aligned}
$$

The various integrals involved in these equations are:

$$
\begin{aligned}
& e_{1}=\int_{0}^{y_{T}} \eta_{W} \frac{d y_{W}}{y_{T}^{2}} \cong \frac{1}{3} \\
& e_{3}=\int_{0}^{y_{T W}} \eta_{W}^{2} \frac{d y_{W}}{y_{T W}^{2}} \cong \frac{1}{5}
\end{aligned}
$$

$$
\begin{aligned}
& e_{3}=\int_{0}^{y_{T W}} \eta_{W} \eta_{W}^{\prime} \frac{d y_{W}}{y_{T W}} \cong \frac{1}{2} \\
& e_{4}=\int_{0}^{V_{T}} \eta_{W} \xi_{W} \frac{d y_{W}}{y_{T W}} \cong \frac{1}{4} \\
& e_{5}=\int_{Y_{F I}}^{y_{F O}} \eta_{W} \frac{d y_{W}}{y_{T W}} \cong \frac{1}{3}\left[\left(\frac{y_{F O}}{y_{T W}}\right)^{3}-\left(\frac{y_{F}}{y_{T W}}\right)^{2}\right] \\
& f_{1}=\int_{0}^{y_{T W}} \xi_{W} \frac{d y_{W}}{y_{T W}} \cong \frac{1}{2} \\
& e_{z}=\int_{0}^{y_{T W}} \xi_{W} \eta_{W}^{\prime \prime} \frac{1}{2}\left(y_{T W}-y_{W}\right)^{2} \frac{d y_{W}}{y_{T W}} \cong \frac{1}{12} \\
& f_{3}=\int_{0}^{y_{T W}} \xi_{W}^{2} \frac{d y_{W}}{y_{T W}} \cong \frac{1}{3} \\
& f_{4}=\int_{\mathrm{y}_{F} 1}^{\mathrm{y}_{F} 0} \xi_{W} \frac{\mathrm{~d} \mathrm{y}_{W}}{\mathrm{y}_{T W}} \cong \frac{1}{2}\left[\left(\frac{\mathrm{y}_{F 0}}{\mathrm{y}_{T W}}\right)^{2}-\left(\frac{\mathrm{y}_{F 1}}{\mathrm{y}_{T W}}\right)^{2}\right] \\
& f_{5}=\int_{0}^{y_{T W}} \xi \eta^{\prime} \frac{d y}{y_{T W}}=\frac{2}{3} \\
& \mathrm{I}_{6}=\int_{0}^{\mathrm{V}_{W}} \eta^{\prime \prime}\left(\frac{1}{2}\right)\left(y_{T W}-y_{W}\right)^{2} \frac{d y_{W}}{\mathrm{VTW}^{2}}=\frac{1}{3}
\end{aligned}
$$

and

$$
\phi_{\mathrm{nm}}=\frac{c_{1}^{\mathrm{n}} \mathrm{y}_{\mathrm{rw}}}{\pi \mathrm{~m}_{\mathrm{a}}}
$$

The control terms for the wing body equations of motion at this point involve only the effect of flap delfection.

The wing equation terms were given in Reference 1 as

$$
\begin{aligned}
& C_{q_{1} \delta}=\phi_{12} V_{0}^{2} C_{L \alpha} C_{L \delta}^{*} e_{5} \\
& \left.C_{q_{2} \delta}=\phi_{12} V_{0}^{2}\left(C_{d \delta}+C_{D \alpha}-C_{L 0}\right) C_{L \delta}^{*}\right) e_{5} \\
& C_{p \delta}=-\phi_{2 I} V_{0}^{2}\left(\frac{x_{a W}}{c_{W}} C_{i \delta}^{*}-C_{m \delta}^{*}\right) C_{L \alpha} f_{4}
\end{aligned}
$$

The terms in the body equations of motion are

$$
\begin{aligned}
C_{\mathrm{Z} \delta}= & \phi_{12} V_{0}^{2} C_{L \alpha} C_{L \delta}^{*}\left(\frac{y_{F O}}{y_{T W}}-\frac{y_{F 1}}{y_{T W}}\right) \\
C_{x \delta}= & \phi_{12} V_{0}^{2} C_{D \delta}\left(\frac{y_{F O}}{y_{T W}}-\frac{y_{F 1}}{y_{T W}}\right) \\
C_{m \delta}= & -\phi_{21} V_{0}^{2}\left(\frac{x_{W W}}{c_{W}} C_{L \delta}^{*}-C_{m \delta}^{*}\right) C_{L \alpha}\left(\frac{y_{F O}}{y_{T W}}-\frac{y_{F I}}{y_{T W}}\right) \\
& +C_{z \delta} \frac{X_{W L}}{c_{W}}+C_{x \delta} \frac{Z_{W L}}{c_{W}}
\end{aligned}
$$

Thus the control matrix is

The input matrices E and E_{g} are modified as follows. Since only longitudinal motion is being considered, lateral gust terms are not included.

$$
\mathrm{E}_{\mathrm{g}}=\left[\frac{\mathrm{h}_{\mathrm{g}}}{\mathrm{~b}_{\mathrm{g}}}\right]
$$

This matrix is given on the accompanying pages.
Because of the normalization procedure, in the wing equation the derivatives appear multiplied by γ and in the body equations by $\frac{Y}{M^{*}}$. Since there are two wings all of the wing terms in the body equations appear multiplied by 2. This completes the development of the aerodynamic contributions of the matrices D_{1} and D_{0} from the wing. The wing stiffness terms carry over directly from Reference 1 along with the structural damping and the influence of rotor thrust.

To be added to these matrices are the influence of the horizontal tail, fuselage, gravity forces.

$$
D_{1}=
$$

$$
D_{0}=
$$

$$
E_{g}=
$$

are related to forces and moments in the shaft system which is rotated by $\alpha_{x}, \bar{\alpha}_{y}$, and α_{z} by the following relationship

$$
\left\{\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right\}=\left[\begin{array}{ccc}
1 & -\alpha_{z} & \alpha_{y} \\
\alpha_{z} & 1 & -\alpha_{x} \\
-\alpha_{y} & \alpha_{x} & 1
\end{array}\right] \quad\left(\begin{array}{l}
x_{s} \\
y_{s} \\
z_{s}
\end{array}\right)
$$

where

$$
\left\{\begin{array}{l}
x_{s} \\
y_{s} \\
z_{s}
\end{array}\right\} \quad \text { may be interpreted as }\left(\begin{array}{l}
H \\
Y \\
T
\end{array}\right\}
$$

or as

$$
\left\{\begin{array}{c}
M_{x} \\
M_{y} \\
-Q
\end{array}\right\}
$$

The forces and moments relevant to the longitudinal dynamics are expressed in terms of the rotor forces in the deflected position as

$$
\begin{aligned}
& X^{\prime}=H-\alpha_{z} Y+\alpha_{y^{\prime}} \\
& Z^{\prime}=-\alpha_{y} H+\alpha_{X} Y+T \\
& M^{\prime}=\alpha_{z} M_{X}+M_{y}+\alpha_{x} Q
\end{aligned}
$$

where M_{y} is measured about the rotor hub. The forces are now resolved in the body axis directions, parallel and perpendicular to the initial velocity direction, and the moment is expressed about the fuselage center of gravity

$$
x=z^{\prime} \cos \delta_{p}-x^{\prime} \sin \delta_{p}
$$

$$
\begin{aligned}
& Z=Z^{\prime} \sin \delta_{p}+X^{\prime} \cos \delta_{p} \\
& M^{\prime}=M_{Y}+X_{H} Z^{\prime}-Z_{H} X^{\prime}
\end{aligned}
$$

Now perturbation equations are formulated for the variations in X, Z and M. For example

$$
\delta X=\delta Z^{\prime} \cos \delta_{p}-\delta X^{\prime} \sin \delta_{p}
$$

where

$$
\delta Z^{\prime}=-\delta \alpha_{y} H_{0}-\alpha_{y_{0}} \delta H+\delta \alpha_{x} Y_{0}+\alpha_{x_{0}} \delta Y+\delta T
$$

and

$$
\delta X^{\prime}=\delta H-\delta \alpha_{z} Y_{0}-\alpha_{z_{0}} \delta Y+\delta \alpha_{y} T_{0}+\alpha_{y_{0}} \delta T
$$

Where ($)_{0}$ indicates an equilibrium flight value. Proceeding with this development the force and moment perturbations applied to the vehicle by the rotor can be expressed as:

$$
F_{B}=G_{1} F+G_{2} \alpha_{R}
$$

where

1
and $\alpha_{R}=\left\{\begin{array}{c}\alpha_{x} \\ \alpha_{y} \\ \alpha_{z}\end{array}\right\}$
α_{R} is related to the wing deflection as given above

$$
\alpha_{R}=R x_{W}
$$

therefore

$$
\mathrm{F}_{\mathrm{B}}=\mathrm{G}_{I} \mathrm{~F}+\mathrm{G}_{2}^{\prime} \mathrm{X}_{W}
$$

when

$$
G_{2}^{\prime}=G_{2} R \text { and } x_{W}=\left\{\begin{array}{l}
q_{W 1} \\
q_{W 2} \\
p_{W}
\end{array}\right\}
$$

The matrices G_{1} and G_{2} ' are given on the accompanying pages. The following notation is used

$$
\begin{aligned}
& C^{\prime}=\cos \delta_{P} \\
& S^{\prime}=\sin \delta_{p}
\end{aligned}
$$

and the subscript zero is dropped with the understanding that all matrix elements are evaluated at the trim flight condition. Both rotors are accounted for in the matrix elenents.

$$
G_{1}=
$$

$$
G_{2}^{\prime}=
$$

Gravity Terms

Also the effect of the weight of the aircraft must be added in the fuselage equations. The forces ard moments to be added are

$$
\begin{aligned}
& Z=-W \cos \left(\gamma_{0}+\theta_{f}\right) \\
& X=W \sin \left(\gamma_{0}+\theta_{f}\right) \\
& M=W\left[Z_{C G} \sin \left(\gamma_{0}+\theta_{f}\right)-X_{C G} \cos \left(\gamma_{0}+\theta_{f}\right)\right.
\end{aligned}
$$

where γ_{0} is the initial flight path angle and $X_{C G}, Z_{C G}$ is the location of the total aircraft center of gravity from the fuselage center of gravity. Assuming that θ_{f} is a small angle these forces and moments can be written in perturbation form as

$$
\begin{aligned}
Z= & -W \cos \gamma_{0}+W \sin \gamma_{0} \theta_{f} \\
X= & W \sin \gamma_{0}+W \cos \gamma_{0} \theta_{f} \\
M= & W\left(Z_{C G} \sin \gamma_{0}-X_{C G} \cos \gamma_{0}\right) \\
& +W\left(Z_{C G} \cos \gamma_{0}+X_{C G} \sin \gamma_{0}\right) \theta_{f}
\end{aligned}
$$

Fuselage Aerodynamics

The fuselage is assumed to experience only a drag force and a pitching moment which can be expressed in normalized form as

$$
\begin{aligned}
& D^{*}=\frac{Y}{M^{*}} S_{f} \phi_{0 _} V_{0}^{2} C_{D f} \\
& M_{f}^{*}=\frac{Y}{M^{*}} S_{f} \phi_{10} V_{0}^{2} C_{m f}
\end{aligned}
$$

The perturbation terms for the equations of motion would be

$$
\begin{aligned}
& \delta D^{*}=2 \frac{Y}{M^{*}} S_{f} \phi_{02} V_{0} C_{D f} \delta V+\frac{Y}{M^{*}} S_{f} \phi_{02} V_{0}^{2} C_{D} f_{\alpha} \delta \alpha \\
& \delta M^{*}=2 \frac{Y}{M^{*}} S_{f} \phi_{10} V_{0} C_{m f} \delta V+\frac{Y}{M^{*}} S_{f} \phi_{10} V_{0}^{2} C_{m f} \delta \alpha
\end{aligned}
$$

and

$$
\begin{aligned}
& \delta V=\dot{x}_{f} \\
& \delta \alpha=\theta_{f}-\frac{\dot{z}_{f}}{V_{0}}
\end{aligned}
$$

Horizontal Tail Aerodynamics

The horizontal tail is taken to be located a distance l_{T} behind the fuselage center of gravity and a distance $Z_{H T}$ above the fuselage center of gravity. Only the lift of the horizontal tail is considered as contributing to the motion equations. The drag of the tail surfaces is included with the drag of the fuselage. The contributions to the vertical force and the pitching moment are

$$
\begin{aligned}
& Z_{\mathrm{HT}}=L_{\mathrm{HT}} \\
& M_{\mathrm{HT}}=-\ell_{T} L_{\mathrm{HT}}
\end{aligned}
$$

The lift of the horizontal tail suitably normalized may be expressed as

$$
\begin{aligned}
I_{H T}^{*}= & \frac{\gamma}{M^{*}} S_{T} \phi_{O L} V_{0}^{2} a_{T}\left(i_{T}+\alpha_{0}-\varepsilon+\theta_{f}-\frac{\dot{z}_{f}}{V_{0}}\right. \\
& \left.+\frac{l_{T} \theta_{f}}{V_{0}}-\frac{l_{T}}{V_{0}} \frac{d \varepsilon}{d \alpha}\left(\dot{\theta}_{f}-\frac{\ddot{z}_{f}}{V_{0}}\right)+\tau \delta_{e}\right)
\end{aligned}
$$

The next to the last term accounts for the downwash lag at the tail, and T is the elevator effectiveness. As a consequence we have the following terms in perturbation form,

$$
\left(C_{z \theta_{f}}\right)_{H T}=\frac{Y}{M^{*}} S_{T} \phi_{O} V_{O}^{2} a_{T}\left(1-\frac{d \epsilon}{d \alpha}\right)
$$

$$
\begin{aligned}
& \left(C_{Z \dot{X}_{P}}\right)=2 \frac{Y}{M^{-x}} S_{T} \phi_{O Z} V_{0} C_{L T_{0}}=\left(C_{Z U_{G}}\right) \\
& \left(C_{Z \dot{Z} \mathcal{P}_{H T}}\right)=-\frac{Y}{M^{*}} S_{T} \phi_{D 2} V_{0} \text { at }\left(I-\frac{d \varepsilon}{d \alpha}\right) \\
& \left(C_{z \dot{\theta}_{f}}\right)=\frac{Y}{M^{*}} \ell_{T} S_{T} \phi_{0 Z} V_{0} a_{T}\left(1-\frac{d \epsilon}{d \alpha}\right) \\
& \left(C_{Z \ddot{z}_{f T}}\right)=\frac{Y}{M^{*}} \phi_{O L} V_{0} S_{T} a_{T} \frac{d \varepsilon}{d \alpha} \\
& \left(C_{z \delta_{e}}\right)=\frac{Y}{M *} S_{T} \phi_{0 Z} V_{0}^{2} a_{T} T
\end{aligned}
$$

The pitching moment derivatives follow directly from these expressions. The pitching moment derivatives are related to the lift derivatives by

$$
\left(\mathrm{C}_{\mathrm{m}}()_{H T}=-\frac{\ell_{T}}{\mathrm{y}_{T}^{2}}\left(\mathrm{C}_{\mathrm{Z}}()\right)_{H T}\right.
$$

The trim tail lift coefficient is

$$
C_{L T_{0}}=a_{T}\left(i_{T}+\alpha_{0}-c+T \delta_{e_{0}}\right)
$$

The downwash model used here is satisfactory for forward flight but is probably too simple for the low speed condition where the downwash conditions at the tail are quite complex.

The matrix terms comprising $\Delta D_{1}, \Delta D_{0}$ and $\Delta \mathrm{E}_{\mathrm{g}}$ are given on the following pages. $\left(C_{Z \ddot{z}_{f}^{f}}\right)$ contributes to the matrix D_{2}.

EQUATIONS OF MOTION

The final form of the wing body equations of motion are

$$
D_{2} \ddot{x}_{V}+D_{1}^{\prime} \dot{x}_{v}+D_{0}^{\prime} x_{v}=E V_{W}+E_{g}^{\prime} g+E_{\delta} \delta_{e}+H_{1} F+H_{2} x_{W}
$$

The matrices $D_{1}^{\prime}, D_{0}^{\prime}$ and E_{g}^{\prime} include the effects of the fuselage, horizontal tail, and the qravity forces and moments. E_{6} is the influence of the elevator. Thus

$$
\begin{aligned}
& D_{1}^{\prime}=D_{1}+\Delta D_{1} \\
& D_{2}^{\prime}=D_{2}+\Delta D_{2} \\
& E_{g}^{\prime}=E_{g}+\Delta E_{g}
\end{aligned}
$$

and

The matrices $\Delta \mathrm{D}_{1}, \Delta \mathrm{D}_{2}$ and $\Delta \mathrm{E}_{\mathrm{g}}$ are given on the accompanying pages. The equations relating hub motion a to wing motion x_{w} and x_{f} are

$$
\alpha=c x_{W}+d x_{f}
$$

These two equations replace the lower two sets of equations given on page 141 of Reference 1 for the dynamic motion of the venicle With the fuselage free to move in the longitudinal plane.

The complete set of equations of motion are:

$$
\begin{aligned}
& A_{2} \ddot{x}_{R}+A_{1} \dot{x}_{R}+A_{0} x_{R}+\tilde{A}_{2} \ddot{\alpha}+\tilde{A}_{1} \dot{\alpha}+\tilde{A}_{0} \alpha=B_{R}+B_{G} g \\
& F=C_{2} \ddot{x}_{R}+C_{1} \dot{x}_{R}+C_{0} x_{R}+\tilde{C}_{2} \ddot{\alpha}+\tilde{C}_{1} \dot{\alpha}+\tilde{C}_{0} \alpha+D_{0} g \\
& \alpha=c x_{W}+d x_{f} \\
& D_{2} \ddot{x}_{V}+D_{1}^{\prime} \dot{x}_{V}+D_{0}^{\prime} x_{V}=E V_{W}+E E_{g}^{g}+E_{e} \delta e+H_{1} F+H_{2} x_{W}
\end{aligned}
$$

$$
N D_{1}=
$$

$$
\Delta D_{0}=
$$

$\Delta E_{g}=$

$$
E_{\delta}=
$$

$\frac{\gamma}{M^{\top}} s_{T} \varphi_{02} V_{0}^{2} a_{T} \tau$
$\frac{\gamma}{N^{2}} \frac{l_{T}}{\gamma_{T i}^{2}} s_{T} \varphi_{02} V_{0}^{2} a_{T} \tau$

TRIM CALCULATIONS

The equations which determine the equilibrium flight condition of the aircraft in normalized form may be written as follows:

$$
\begin{aligned}
& \frac{g}{\Omega^{2} R} \sin \gamma_{0}+\frac{\gamma}{M^{*}} \phi_{O Z} V_{0}^{2}\left(S_{f} C_{D f}+2 S_{W} C_{D W}\right) \\
& +2 \frac{\gamma}{M^{*}}\left(\frac{2 C_{Z}^{\prime}}{\partial \sigma} \cos \delta_{p}-\frac{2 C_{X}^{\prime}}{a \sigma} \sin \delta_{p}\right)=0 \\
& -\frac{g_{-}}{\Omega^{2} R} \cos \gamma_{0}+\frac{\gamma}{M^{*}} \phi_{02} V_{0}^{2}\left(S_{T} C_{L T}+2 S_{W} C_{L W}\right) \\
& +2 \frac{\gamma}{M^{*}}\left(\frac{2 C_{z}^{\prime}}{a \sigma} \sin \delta_{p}+\frac{2 C_{x}^{\prime}}{a_{\sigma}} \cos \delta_{p}\right)=0 \\
& \frac{g}{\Omega^{2} R}\left(\frac{Z_{C G}}{y_{T} w^{2}} \sin \gamma_{0}-\frac{X_{C G}}{y_{T} W^{2}} \cos \gamma_{0}\right)+\frac{\gamma}{M^{*}}\left(\phi_{I O} S_{f} C_{m f}-\frac{l_{T} S_{T}}{y_{T W^{2}}} \phi_{20} C_{L T}\right. \\
& \left.+2 s_{W} \phi_{10}\left(c_{m a c}-\frac{x_{a W}}{c_{W}} c_{W}+\frac{X_{W L}}{c_{W}} C_{L W}-\frac{Z_{W L}}{c_{W}} C_{D W}\right)\right) \\
& +\frac{2 Y}{M^{*}}\left(\frac{2 C_{n}^{\prime}}{2 \sigma}+x_{H} \frac{2 C_{z}^{\prime}}{2 \sigma}-z_{H} \frac{2 C_{x}^{\prime}}{a \sigma}\right)=0
\end{aligned}
$$

where

$$
\begin{aligned}
& \frac{2 C_{x}^{\prime}}{a \sigma}=\frac{2 C_{H}}{a \sigma}-\alpha_{z} \frac{2 C_{y}}{a \sigma}+\alpha_{y} \frac{2 C_{T}}{a \sigma} \\
& \frac{2 C_{z}^{\prime}}{a \sigma}=-\alpha \frac{2 C_{H}}{a \sigma}+\alpha_{x} \frac{2 C_{y}}{a \sigma}+\frac{2 C_{T}}{a \sigma} \\
& \frac{2 C_{m}^{\prime}}{a \sigma}=\alpha_{z} \frac{2 C_{m x}}{a \sigma}+\frac{2 C_{m y}}{a \sigma}+\alpha_{x} \frac{2 C_{Q}}{a \sigma}
\end{aligned}
$$

$$
\begin{aligned}
& C_{L W}=a_{W}\left(\left(i_{W}+\alpha_{0}\right) \cos \Lambda+\left(\delta_{W} p-Z^{\prime} \delta_{W 3}\right) \cos ^{2} \Lambda\right) \\
& C_{L T}=a_{T}\left(i_{T}+\alpha_{0}-\varepsilon+T \delta_{e}\right) \\
& C_{m f}=C_{m f_{0}}+C_{m f_{\alpha}} \alpha_{O} \\
& C_{D W}=C_{D W O}+\frac{C_{L W}^{2}}{\pi R e} \\
& \delta_{P}=i_{P}+i_{W}+\alpha_{0}
\end{aligned}
$$

If, the equilibrium deflections of the wing are included in the trim calculation then the solution for trim becomes quite complex. It seems unlikely that the equilibrum deflections will have a significant influence on the trim of the aircraft and therefore they will be neglected in the solution for trim. With this assumption,

$$
\begin{aligned}
& \frac{2 C_{X}^{\prime}}{a \sigma} \cong \frac{2 C_{H}}{2 \sigma} \\
& \frac{2 C_{z}^{\prime}}{a \sigma}=\frac{2 C_{T}}{a \sigma} \\
& \frac{2 C_{m}^{\prime}}{a \sigma}=\frac{2 C_{m y}}{a \sigma} \\
& C_{W W} \cong a_{W}\left(i_{W}+\alpha_{0}\right)
\end{aligned}
$$

The simplest trim problem is the case in which the rotor shaft is aligned with the initial velocity, that is, when $\delta_{p}=0$, or in other words when $i_{P}=-\left(i_{W}+\alpha_{0}\right)$. In this case, it is further assumed that cyclic pitch is not used for control such that also in trim $\theta_{1 c}$ and $\theta_{1 s}=0$ then the rotor trim condition is a perfectly axisymmetric case and

$$
\frac{2 C_{H}}{a \sigma}=0 \quad \text { and } \quad \frac{2 C_{m}}{a \sigma}=0 .
$$

Given the geometry of the aircraft, and selecting the initial flight velocity V_{0} (actually the advance ratio) and the flight path angle γ_{0}, the three equilibrium equations may be solved to determine the trim values of the airplane angle of attack α_{0}, the elevator angle δ_{e}, and the rotor thrust, $\frac{2 \mathrm{C}_{T}}{a \sigma}$.

For the more general case in which δ_{p} is not equal to zero, but is still a small angle, that is, when airplane flight is being considered, linearized expressions are employed to calculate the rotor inplane force and the rotor pitching moment.

For this more complex case in which the blades are assumed to be torsionally rigid and no cyclic is applied for control, the following equations are involved. The gimbal motion is determined from

$$
\begin{aligned}
& \left(I_{0}^{*}\left(\nu_{G}^{2}-I\right)+K_{P} \gamma M_{P} i\right) \beta_{G C}=\gamma M_{\beta} \beta_{G C}+\gamma M_{\beta} \beta_{G S} \\
& \left(I_{0}^{*}\left(\nu_{G}^{2}-I\right)+K_{p} \gamma M_{p i}\right) \beta_{G C}=\gamma M_{\beta} \beta_{G C}+\gamma M_{\beta} \beta_{G S}+\gamma \lambda M_{\mu} \delta_{p} \\
& \frac{2 C_{m}}{a \sigma}=-I_{0}^{*}\left(\nu_{G}^{2}-I\right) \beta_{G C} \\
& \frac{2 C_{H}}{a \sigma}=\gamma \lambda\left(H_{\mu}+R_{\mu}\right) \delta_{p}+\left(\gamma R_{\beta}-\gamma H_{\dot{\beta}}-\gamma K_{p} R_{P i}\right) \beta_{G C} \\
& \quad+\left(\gamma H_{\beta}+\gamma R_{\dot{B}}-\gamma K_{p} H_{p i}\right) \beta_{G S}
\end{aligned}
$$

The aerodynamic derivatives in the above expressions do depend upon the trim thrust to some degree. However, it would be expected that the effects of rotor inplane force have only a small effect on the force equilibrium.

The solution for trim can therefore proceed as in the purely axial flow case with the selcted small incidence of the shaft. Once the angle of attach of the aircraft is computed such that an initial value of δ_{p} is obtained, the flapping coefficients can be calculated and consequently the equilibrium values of the inplane force and the hub moment can be calculated and the trim calculation repeated to account for these effects.

Once this procedure is completed, expressions from Reference 1 1
can be used to calculate the trim values of the remaining rotor forces and moments which are used in the equations of motion.

If rotor cyclic is introduced into the trim calculation, then the relationship between cyclic and elevator angle must be selected.

FIGURE 1: AXIS SYSTEM FOR VEHICLE DYNAMICS

Flgure 2: Definmion of Various geometicic distañces. (NOTE THAT THE VARIIOUS DISTANCES IN VOLVE)
THE TRIMMED FLIGIT ANGLE OF ATTACK.)

Figure 1:

FIGURE 3 : $\ddagger U B$ GEOMETRY AND ELASTIC AXIS LOCATION.

Pylon Center of Gravity Location

M
angular rotmion shewn as vector quantities since angles assumbo small

$$
\Delta \phi_{\omega L}=-\delta_{\omega_{3}}^{*} \theta_{f}
$$

pRoration DUE TO Flatwise Bending SLOPE

FIGure 4: ROTATION AT wING TIP AND at section

Si DIHEDRAL Sw incidence δw_{3}^{*} sweep angles shown positive

Yo Lies along effective elastic axis.

FIGURE 5 WINg COORDINATE SYSTEM.

