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SUMMARY

The equations of motion for the longitudinal dynamics of a tilting
prop/rotor aircraft are developed. The analysis represents an extension
of the equations of motion developed in NASA TM X-62,369 to include the
effects of the longitudinal degrees-of-freedom of the body (pitch,
heave and horigontal velocity). The development and notation follow
that of NASA T X-62,369 such that, the effects of body freedom can
be added to the equations of motion for the flexible wing-propeller

combination.
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INTRONDUCTION

This report develops +the eguation of motion for the longitudinal
dynamics of a tilting prop rotor aircraft. The effects of wing and

prop rotor flexibility are included in the analysis as well as three

longitudinal body degrees-of-freedom. The notation and development

generally follows that of NASA T™ X-62,369 and is formulated in such
a way that it modifies that study to include the free longitudinal
motion of the complete airframe, such that, the influence of the
wing and prop rotor flexibility on the wvehicle dynamics, as related
to stabllity and control, can be examined.

The resulting equations of motion developed in NASA TM X-62,369

are expressed in matrix notation as follows:

Ap ¥p + Ay kg Ao Xg +'Ez &+ By &+ Koo = Bvg + Beg (1)
F=023&R+Cliﬂ+’COXR+62&'+E‘1&+60d+:DGg | (2)
@ = Cx (3)
ap ¥ +tay3 X +agx = byw + beg + @ F , (L)

where x, is the state vector of the rotor degrees-of-freeom; X is the
state vector of the wing degreeS—of-freedOm; Vg 1s the‘input control:
vector; and g, is the gusth input,véctor. F is a colum mabrix répre-~

senting the forces and moments produced by the prop rotor and o is a

~column matrix giving the linear and ahgular diSplacement of the prop ‘

rotor hub due to wing,tip motion.

The development here is concerned with adding the effects of



vehicle body mobion to these equations of motion. The following modi-
fications are developed. Equations (3) must be modified to include the
influence of body motion on rotor hub motion. Equations (1) and (2)

do not require modification owing to the way in which the equations
have been formulated. Equation (4), the wing equations of motion must
be modifiéd to account for the influence of fuselage motion and in
addition the fuselage motion equations must be devéloped. This report
therefqre, is concerned with two itéms: deVelopment of wing/body
equations of motion and incorporation of the body motion into the hub
displacément expressions;. The anaiysis of NASA ™ X-62,369 is not

discussed in detail in this report.



ANALYTICAL DEVELOPMENT

Geometry of Wing/Body Motion

A small disturbance approach ig used in developing the equations
of motion.  The center of gravity of the fuselage is taken as the
origin of the axis system. X and Z, in general, refer to geometric
distances measured along and perpendicular to the direction of the
initial flight velocity. The following specific distances are in-
volved in the formulation:

Xgs Zg distance from center of gravity of fuselage to

| spar location at wing root.
Xuyr > Zyy, distance from center of grévity of fuselage to
local effective elastic axis of wing section
in deflected position. |
Xuts Zyr distance from center of gravity of fuselage to
‘ ‘ wing tip effective elastic axis location in
deflectéd position.

Xp, 'ZP - distance from center of gravity of fuselage to

pylon center of gravity including wing deflection.
These distanées are’shown in figufe 1. o, 8 andﬁyoyare respectively
the trimmed flight angle of atback, pitch angle, and flight path angle
and Vy , is the trimmed flight Veloqitjl_ . : |

The Fuselage center of gravity motion is»specified~bytperturbation'

 velocibies % and % initially along and perpendicular to the trimmed

T T
flight velocity and the rotation of the fuselage is denoted by ef; -



‘Reference 1.

Xy and Z, are geometric distances,characteristic of the aircraft,
howvever, they do depend on the trim angle of attack of the aircraft as
shown in Figure 1.

All of the other quantities depend upon the wing bending and
torsional deflections. The wing Orientation with respect to the
fuselage is specified by three angles, 6w,, the dihedral, éw,, the
wing incidence plus body initial angle of attack (bw, = i, + @g) where
iy 1s the wing incidence with respect to the body reference, and wg
is the trimmed flight angle of attack, and 6w, the wing sweep angle.

In order to obtain results which are a modification of NASA T™ X-
62,369 the wing deflection is expressed in terms of an axis system
aligned with the wing.

Assuming that the angles 6wy, 8w, Swa are small, as is character-
istic of this aircraft, the relationship among distances in the fuselage

coordinate system and the wing coordinate system, where an effective

2.
7

) ¥ . £ R
~sweep angle 8wy, and effective dihedral angle §w, are introduced

- X ) 1 ok 6W3 ot 6W2 X
.XA A
vy} = |- 8wg 1 - 0wy Yu (5>
Z - dwy ot OWy L Zyg

The minus sign in front of x is required since x, is positive aft in

~

. K '
X = = Xw - 5W3 Iy = GWQVZw‘
. el ’ S ¥ o B S
¥y ==~ Xy 5W):\3 + Y -~ 5W~1 Z o ‘ o (6)
Z = = Xybwy + yyu 0wy + 2y

e Bt



.

61-1"';: and 6w§ are introduced at this point to reflect the fact that
although the wing is swept, the conter spar section is not swept as
described in Reference 2. 6W§ and 6w§ account for an effective
change in elastic axis position owing to the torsional deflection atb
the voot. As developed in Reference 2, it is possible to represent

this influence on the effective dihedral angle and effective sweep

angle of the elastic axis as

X
Sw

6w§

where Ewg is the torsional deflection at the point where the spar is

1l

AT (l - Ewg)

swy (1 - Ewg)

I

bent, i.e., at the wing root. Thus we have

X =

¥

Il

4

Therefore, the position of the local wing elastic axis with respect to

Xy = ¥y 8Wga (L - Ewg) - bwp Zy
Xy 8wy (l =~ EWB) + Yy = %y Owy (L - §Wa)

Xy 8wy + ¥y 8wy (1 - Ewg) + 3z

(7)

(8)

the fuselage center of gravity is expressed in terms of wing coordinates

measured in the wing axis system.

Xt

Ziyy

1l

Il

Il

Lg + %
Kg =~ Xy = ¥y 0wy (L -~ Bwg) - 8wy 7y

ZR t By =~ Xy dWs + vy, 6wy (1~ Ewg)

‘The Wing tip deflection'is expressed in terms of the same quantities

with the deflection measured at the tip

(9)

b



XWT = XR - XwT "~ YNT GW'B (l - gWB) - 6W2 ZWT

(10)
Zyr=Zg + Byt = Xy1 8w + yy1 8wy (1 - Ewg)
The pylon center of gravity is located at a fixed distance from
the wing tip effective elastic axis location, given by the following
distances
AXp = Zpea
(11)
AZP = 0
where Zpeg is the distance the pylon cenber of gravity is forward of
“he wing tip elastic axis measured along the wing reference system.
Consequently
Xp = Xy7 + &Ky
(12)
Zp = Zyq
This completes the expression for the linear displacements of various
locations of significance.  The hub position will be developed later.
Now the rotation of each point must be considered. The rotation
of the fuselage center of gravity is ef and consequently the rotation
of the wing root is also ef. Now thig rotation must be expressed in
terms of the wing coordinate system. This car be done by using the
Cinverse ©Of the transformation expressed by (5)
- Abye 1 - W - 8w, {o ;
, “ ) ; ;
DOy} = | bwg 1 6wy s s ; - (13)
Mg ) Léwg - 8wy 2oL 0
Therefore o
Adur = f'éwa.ef, : : 5 ' -
B B e L Ly
AY wL T T 6W1 ef

b by



‘points of interésf;ﬁ o

where @, vepresents a rolling of the wing section, and {,, represents
a yawing of the wing section. The effect of ¢, can be neglected by
assuning that the wing is thin.  The complete angular motion of the
wing section includes the torsional deflection, and is equal to

By = (Gf + 6)

At the tip of the wing the rotations are éxpressed back in the fuselage
reference frame. The wing tip rotation consists of torsional deflection

as well as rotation due to the bending slope. - Again using transformation

(5)

- G 1 1 5wy 5wy 2’
* * ‘ .
8874 = |- 6wy 1 - 8wy Our (19
AY 1 - bws bW 1 -z

where x; and z'; represents the rotation of the tip due to the bending

slope
ASp = - 2% - 8w 8y + 8w, x:
AB; = - bW mh + By, + oWy X% | ' (16)
Ayy = - 8wy 2t + 6w B,p - X

“These quantities are the roll angle, pitéh angle and yaw angle -of the

tip expressed in the fuselage axes system. - To this must be added the

rotation of the body ef s0 that

Br=6,-6wE 2, vewy xp o (17)

This is also the rotation of the pylon:center offgravity;' The above

expressions describe the linear and’angular’displacements of the various



Kinetic Energy

We now proceed to develop the equations of motion for the body-
wing-pylon combination using the Lagrangian approach to evaluate the
inertial terms.

a.) TFuselage

The kinetic energy of the fuselage can be expressed as
1

...g'_, * 2 2 2 = A2
KB, = 5 mg (:&f+zf)+21f 62 (18)

where & reference systemn travelling at the uniform velocity~vo is used.

b.) Wing

A section of the wing has the following kinetic energy

1 I Tw
KEy = 5 mdyy [(kp + % - 2y 8,)°
o] .
Y1
. . . ] 1 . -
(B 2+ Xy 6,)°) + 35 jo Iy (6o + 6y)° ay
R ALEE L ,
+5 d(’O T, (- 6w; ef)z dy _ (19)

where it has been assumed that the wing is thin such that the roll moment
of inertia of the wing section is‘négligible.
c.) Bylon |
The pylon kinetic energy is
KEp = %‘mv [(if t Xy - 7y éf>2
A X5 éf + A% Aér)? + (AX? Aj7)21
. ‘l. ‘ :

+ + 08,02 F = ngi(Aﬁf}a‘ (20)

nojH

] *
J‘Py<ef 2

wheré I93r and Iégc‘are the pylon piteh and;fdll moments of inertia with-

: Out'the rotor measured with respect to the pylén céntervéfvgraVity,



| axis location. The pylon inertia in roll is neglected.

Owing to the mammer in whiech the equations were formulated (Fguations
() theongh (1)) the rotor efffeebs are included by doberminingg Lhe offeebs
- of body mobion on rotor hub motion. Thus, to determine the equabions of

- mobion Tor the wing-body combination the kinetic energy of the system is

KE = KEf +. KE, + KE,
Wow the modified equations of motion can be developed with the geo-
- metrical considerations described above. Prior to developing these egquations
the modified hub mobion eguations are developed.
- Hub Motion

The hub position with respect to the wing tip effective elastic axis
ig expressed by AXy, AZ, again measured in the fuselage reference coordinate
system. . Thig is the hub location with respect to the fuselage center of

pravity. The total hub displacement with respect to the center of gravity

of the fuselage is

Xy = Xyr + 0Ky
(21)
Zy = Zyy + ALy
where ;
AXy=[hC - (n - hea)] -[-Z,+n S] 8wy (22)
AZy=[nC - (n- hea)] swp + [~z + 18]
where ‘

C =cos (8p - bwg)

S = sin (8, - 8wp)



and (b - hgq) and Zeu represent the displacement of the elastic axis
from the wing tip location forward and up due to sweep and dihedral.
Since (h - hea> and 7 are proportional to 6w, and 8wy these distances

are approximately given by

i

AX [he - (h- hea)] - h S 8wy

(23)

R

AZy %[nC)owy+ [- Z_ +h 8]

The rotation of the hub due to the bending and torsional deflection of
the wing tip is giﬁen by Equation (16) plus the rotation of the body Gf.
The hub displacements arising from these rotations in the direction of
the body reference system are

ZSZH/g = = Zy 8, - AZy A6y

bDzyk = Xy Bg + AXy A8 | S (24)

1

EH/R oz D7 = AKXy DYy
And in addition.we havevthe’center of gravity displacémenté, AXT’ Az
with respcct'to the trévélling refefence syStem, and the wing tip dis-
placements measured in the body cooréinate system direction Axwﬁ@k,
AZy /s -

The total hﬁb displacements are

proa—_—"}

Axy

1l

Axf

+ Ax gy Dy e"f - AZy, AB g |
AYy = AZy A3y - Xy Oy o o (29)
My = Az + Bzy gt Xy 8, + AXy £8;

These must now be resolved intd'ﬁhe‘hub direction, il.e., alohg and

”fperpéndicular to the shaft.

10



In order to rcmain consistant with the previous development Axy

and Azy arce first resolved to the wing direction

Axpyy = Axy + bWy Azy

(26)
AZyy = Azy - by _A—}EH
and then resolved through the angle the prop rotor shaft makes with the

wing (6, - 8wy)

i .

Xy = Axyy O Azyy S

Fus = + A%y A8y - DXy Ay ; (27)

Zys = EHW C - EHW S
The rotations also must be expreséed in terms of the shaft axes. Again

first resolving to the wing direction

Agy = A + Al bwy
, (28)
- DYy =AY - Agp Bwg ‘
and then in the notation of Reference 1
T Afry C = A8y S
| @y = 8o+ 6y R (29

o, = Mgy C+ Mgy S

Bquations (27) and (29) express the motion of the hub in terms of 'wihg-
“motion and bbdy‘m‘o‘t‘ion:. ' |

' The rotation angles of the wing can now be eicpréséed as, negleéting :

a1



products of the wing geometric angles 8w,, §wy, 6wz, using Equation (16)

in Equation (29).

%)
i1

2% S - x50+ (swy C + 6w 8) By,

= 0p - oS 2+ SWh %1 + By, (30)

Q2
If

@, = - 27C - x{ 8 +(6w} 8 - 6w% C) 8y

The displacement of the hub can be expressed as, using the relationghips
from Reference 2, pp. 113, for the displacement of the effective elastic
axis from the tip elastic axis.
Zea = - YTW 6Wl
B- b, = Yy bvg

and noting a change in axes such that

Xy = Zys
Zy = Xyss o - TH = Yys
'XH = <AZ - 5W2Axf) g + (— Axf - Azf 6W2> S

£

-+

Zyr O+ xy7 8+ [(Xy +8WaZ ) C + (zy ~Bwp Xy) S] e

-+

[ b+ (n- hea) ¢ -z, S] &y + 1 [k— swy 2 + 5W1' %+ ]

Yy =h S’ZTI - Yy 0Wy Z{ + 00 X7~ Yoy bWg Xy
+ 8y (- nC 8wy - nS8ows) ‘ : ‘ (31)

Ty = (Axf + 8wy Azf) C o+ (A'zf - bWy Axf) 8

s (- By Ky bwp) C (X + Zy 8wp) ST 6,

| - Xy1 C+ z‘WT s+lz, cC+ (hea,- h) §) Oy 1

12
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Again these agree with the formulation of Reference 1, with additional
terms for the effect of fuselage displacement and robation.
These results can be expressed in matrix notation as follows,

¢ =cxy+dx

T
where
(%)
Ip
J #n 3 L , “p i
o = X .}' =% x —
= i W : -
e d Qwa ) £ Zp
G"y Py Bf
kcz
L, 2 )
where
Zyt =V Qu1
Xt = V1w 'Q"wz
Our = Pw
and

Zut = Mo (¥ru) Qi

Xw{—, = 'nv:<y"rw) qwz

| The elements of the matrix C are given on page 127 of Reference 1.

Assuming that 6w, is a small angle as hag been done in the devélopmenﬁ s
gome -of the terms above can be simplified., The matrix d which expresyses

the contribution of the fuselage motion to the hub motion is

ILSV‘ ,



HMVE#L} ku.hu.}
G
Xf N G4
<1 < @

A

Xy cos 8p
- ZH Sin 6?
- Zy cos &p
0
0
1
0

Xy sin 8

cos &p
sin &,
0
0
0
0

- sin 6,
i cos 6p
0
0
0
0

PR LA KR

¥
4

= *= b 4 B N
b >3 ] >3 o] fe]
Mo < 1 s’

ot
<]
&

1




Inertial Forces and Moments
The kinetic energy of the fuéelage, pylon and wing can be expressed
as | |
KB = &, (%2 +22) + 31,63
| N Y . - . . © g
“‘Tz‘j de[(Xf"'x'ZWL ef) +(Zf+'Z+XwLef)]
¥t :
N %IYT r, (ef . éw)z ay
s
+2 [Fmp [(%p + %1 - 2p 6,)°
. + (g, + 2 +'Xpéf+AXpAéT)2]
2 mp AXG (A‘x’}r/n )2+ % np AX% (A‘I;T/ﬂg
2 [ 3 Iy <éf + AéT)?] + & Tex (A\‘}T/R )?
+ % Ipx (A\‘:’T/_ )2
' The influence of the left and right‘ wings have been included. 'rrit is
7 assumed ’that the only wing motion is symmebtrical such that R
T}L = Mg . |
ML=
Dy = Py
and |
Cobwyy = - &Wyg
‘SWQL = 8Wgg
bwg = - BWVSR
- It ’can be seen from Equatién (16) Jdlaﬁs;
| LTV

15’

g S



and that

M= - Bdr gy
Therefore as can be seen from the kinetic energy expression, the effect
of both wings is simply to double the pylon and wing terms.

The generalizad coordinates to be used are the motion of the fuselage
méasured at its center of gravity'xf, Zos ef and the wing deflection modes
in two directiong qwi;and Guz and the wing torsion p,. These quanﬁities
are related to wing deflection by

Zy =Ty du1

Xy = M Quz

O =84 Dy
where the mode shapes T, and Sy have been normalized, such that, at the
tip Myr = vy and €, = 1. The reiationship between the wing deflection
coordinates x and’z are given by Equation (8) and the relationships
between pylon angular motion AB;, AY; and A$y and the wing deflection and’
torsion are given by Equation (16). Precisely speaking, the distances
XWL,‘ZWL and Xp and Zp ‘are functions of the coordinates, that is the

wing deflection, however, they can be considered constant, equal to their

trimmed flight value in the following development since. the variation in
- these terms will not contribute any linear terms in the final development.

For reference the time derivatives of Equation (8) and (16) are repsated here.

o= -, dyz = 5Wa,ﬂw A ;
S A AT 8)

2= =My Qyp 6Wa + My Gy ‘ :
v is assumed to be conStant‘and‘doesfnot contribute

“to the kinetic energy



%; and 2; are found by replacing Ty by ¥y in the above.
The rotation rates are

? . * » 7 -
Ay = = Nygg Quy - 6Wa Gy Dy + 6Wa Tyt duz

¥ ol s . ¥ md 4
§wa T]w'r Gyl + ng Py + 8wy nHT quz

>

@,
-

i

Afp = 8wy Tyt Qur + 8wy By Pu - Tt Quz

and

8y =&y Dy

The terms of the equabions of motion are now evaluated by calculating

a
at (a:r 3% etc.

The resulting ternis in the equat‘ions of motion are listed on the
 following pages in matrix form. The following definitions are émp,loyed
*) = quantity_normalized by total aircraft mass, M

*
() quantity normallzed by 5 Iy

Therefore,
' i B mf + 2m, + 2mp
fwe M
& =
pZ M
Yrw o
M " 'J‘O 10 ZNL dyw
m =
Wz M
=
PX» M
T
. f m Xy Ay,
My F M

AT



g e e e T

1%
wEy

Sh‘

2

12

pf

Tur

.X-
Lwaz

¥
Tugx

N
Tyt

YTu
X m Xy a¥y

o e—— i

M

mp erw
= -1—\]_-——-'"""

2 1o

(j' ndy) Yru
- e —

N
7 v

z Pea,
= m;; Vru

Le

M vy

2
Tpy +mp (X5 + 27)

M vE,

IIW Ayt Xm (Xvﬁ. + ZN2L> dy,

MY R

jmﬂ 7yt de
AR,

N
2%

jm’ﬂ XWL dyw .

I S
EI"
2 b
Xiwgwdyw

18




qH

*
Tex

*
LTeu

M

Jm2 ay,

N
7 Iy

The fuselage X and Z force equations have been divided by the quantity

M2®R where M is the aircraft mass. The pitching moment equation has been

divided by M yTQW and the wing equations have been divided by g I

b

The resulting equations of motion for the wing, body are of the

form

L l'l" hd “. "
Dz X, Dy X, +D

where

0

XV’= va ~+ E g

8

19
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where Dy has been developed above. Note that in terms of the Nomencla-

ture of Reference 1,

where a, was developed in Reference 1. D, is given on the accompanying

vage. The following section develops the aerodynamic force and moment

contributions to the matrices D, and D,.

In addition, the influence of the rotor forces and moments must be

added to the body equations. The final eguations including effects of wing,

fuselage and rotor are

D252V+D1>': + Dy x

: y = B+ Eg + Hy T+ Hp xy

o

ao

where

&

AP et AL ST S0 "!w:i:*mﬁng;‘_‘

@ is developed in Reference 1 and G, and G4 are deVelopea in a

following section..
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Wing Aerodynamic Forces and Moments

This section develops the wing forces and moments to be added to

the wing and fuselage equations of motion. The formulation is compli-

cated by the fact that the wing has a sweep angle dws. The geometry

of the wing is shown in Figure 4. The 1ift, drag and pitching moment

on the wing section

L =

I=h|
f

m =
ea

’

can be expressed as

Yo Gad

1 - -

Zp VW ¢ (Coo+Cpya)
Xhw

L 2 =2 _ \

z 9P Vi ¢ (Cymac ——Cw. C_L)

The total 1ift , drag and pitching moment acting on the wing is

M

1l

The normel and chordwise forces, n and ¢ are

A=
T =
The exciting forces

equations are

N =
¢ =
M o=

es)

-1 @

and moments for the wing bending and torsion

[rne

J@-Tayna

k T I“ﬂea .

0o

e bt



Now, noting from Figure 4 that

c =oc¢ cos A
- _ dy
dy = cos A

We can write

L =% o) T2 ay

D =%p e V2 (Cpot C &) dy
Fan
M =%p cheos A P (Cppe = o Cu) dy

W

and

=
li
Vi
o

cay [ WP day

C =39 CwI W (Cpe - (Cy - Cop) @) M ay

nojE

| x_
M o=3%p & cos AJ VP (Cmac—%ww—cL)gdy

These last three expressions are nondimensionalized by dividing by
Y 1% Ib’ wihich yields
: ~ 2 - 1 dy
Mguwi = #ip ay [W & '

3
Yru

o . ‘ 3 d
Myyz =612 [ V(Cho = (CL - Gyg) &) ﬂy A

TH
2 xaw dy
Mp =@ cos AIVN <C1mac: T ey Cu) § if—;\l
where n -
S Fru
¢ = .

Tnm 7’nga
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Note that ¢, and yy, have been nondimensionalized by the rotor
radius R, similarly L, D, and M are normalized by M»®R and M .VTFz Qz

to yicld I, D¥, and MX.

. . d
¥ = ﬁ*%s Ay f W a e

V1w
. — dy
¥ o= L V.2 + b
D M-x~¢‘ls IVN (CD.O Coa@) ITw
M-X-=1,¢2J cos A [ & (c L ) &
M FRl N Mmac ey M vy

From the geometry of the figure, assuming that the inflow angle, @;, is

small, the velocity normal to the wing leading edge is:

p) cos A - (?.Cw“‘*' Zy 5w‘a) = Zyy Opd

and the angle of attack of the section is

Vp osin ¢y - [2, + By - ?.Cw__éwzj -"‘XwL.ef .

a"=ew -+

VN
where
A = bys +.;x'
Pu =.(§wz +0,) sin A - z’
By = (Bug * 85) cos A+ o

Vi= (V% + %) sin A
 Since many of these quantities are perturbation quantities we may express

the angle of attack as, retaining only linear: terms

o



Oy + @

cos A

b e

T

+ Eyp - Zlﬁwa - {

A i3

There are in addition, effects of angular rates, & and éf accounted for

with the following increments to C

AC&

and

L

ay Cy

and C
m

6

3 Fau R
7o b &b+ o)

(—==)2] [&D + ]

X,y
W cos A

We can now determine the terms in the six equations of motion by taking

derivatives of the above oxpressions. Denoting the derivatives by

The following

Cq1

Cq1

oMy

Copm 5o =
ax B
’:E‘ oxf

expressions result:

i

e

}.{f ¢12‘ kQCLO VO el = quu
éf ="'¢13 VO aw;el-':"cqw.
g, 2 g

- L0

g1 = ®s (- Volay +2 é‘“)) €2

ge =-ba Vo CLo ep

qr = - $p V& By By €3

gz = = s CLo V5 bya ez

; 3 Xaw . .

b = ¢ag vaw [E + —C_w-] Vo €4

po=0, Vég ay €4



qu Gf = iz V3 ay ey
5 Zar L 3  *a
Cq, %2 a2 Vo (- 2C, f"é‘;‘”“aw [+ 5 +—=1)
The chordwisve equation terms are:
C . = 2V c - C e =
4z %, ¢z o (Cpho Lo 5w?) 1 c -
g
C . = Vo (C - 2C €1 = = :
ds o Gz o( e LO) 1 qu W
g
¢ .
dg 41 = - g Vg (C;o/‘ 2Cq) ep
qu dp =ts Vo (-2009 + G Bug) €2
C . 2 :
9z 41 == Bp Vg (Coy = Cio) Bya €g
C — 2 1
dz A2 = =~ g Vg 8ys [2C 0 8yl
- : 1 Xaw 1
ani) = sz V[(g‘*"a‘) (CD'Q'ECL0>‘ECL0] €4
- 2
cqz D “‘ $a Vo <Coa"' QCL0> Ca
_ s ‘ .
; an ef = G2 Vg (CDQ/ - 2C1) ey
| S Zwt ; | L i :
qu ef = foz Vo,[—g‘ C (Co - (G0 _‘CD‘oz> Sz )
| Xy p ST S
aW 1
+—=—Cio *+ (Cp =~ Cyg) ( - "'?w"g)]gel
The torsion equation terms are:
SRt o= |
Cp}'cf = b1 2V, (C - oy Cio) f1 = Cou
B  Xay o
Cpgf =l Vo o B Ty = - pr,g~



C..
ba,
C_.
Pd g
P@.g
C
bd o

C_.
pp

il

Lo u Cio Xau
= ¢gz [Vo _E:'; a - 2V, '_'é‘";d' (Cmac - _C—N— CLO)] €q
Xaw
oo [ 2o C__ + Vo —— O] &4
X{,:N -
s .
b2 Vs Cppe T2 * 821 V5 ay 8us N fs

~$z V7 0o B - oy Vo bys [- 2C .

= ¢31 (’é"")%

o Xa
V —
Cu

- &
- Pas

2
VO

'¢31 (’38:"")%

X

X

Lo W Xam,

ay Ta
f‘1
aw  Xauw
=, T
W W

) &y fa

ay Ty

These are the terms in the wing equations of motion.

Ko w

+aC]f
c"'fé'w_LG 5

For the body eqtia_tions of motion, the 1ift terms will be similar

to. the normal foyr‘ce terms applied'to the wing with the mode shape not

present-in the integral. TFollowing a ysimilar notation

1l

Il

)

¢13 20&.0 Vo

- s Vo ay

¢13 ‘(" Vo (ﬁaw +2

i

5
';;;)) €1
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C
%Q.q

Zq p

!

- $a Vo Co ey

- o Voz ay dys

it

- s Co VB by eg

1

Xaw

Paz &y [)% i+ "5‘;] Vo £

i

Z 2
=G V5 ay

Ly Tyl x
— ' 3 al
= ¢op Vo [- 20, » +ay, ( p + If + cw)]

The terms in the x force equation do not involve quite the same terms as

the chordwise wing terms since the resolution is along the fuselage axes

which are initially aligned with the wind.,

..

X%

Cxq,

o
- XQg

C.... '

@
X0 -

=@ 2V, Coo =C

xu
g

|

XwW

$ra Vo (ng -Cg) =-C
: : ; o

1

- s Vo (Cq - Clo +2Cq by) ey
= @13 ’Vb [-2C,o + Sz (Coa' - CL'O)J €,

= ¢12 Vo _(CLO = CDQ’) Suz

= - ¢z V5 83 (ecp_o T (Coq - CLno) Suz )
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Cx}fv = Pop Vo [(Cpg = CLo) (Xaw”"’le'%)] £
Cxp T He V§ (Coo - CLo) £
C:{S =y Vo2 <CDQ"'CL0)
£
. ZuL Ly Xaw
Ci, ez Vo [-2 =0 Coot (ero Opg) b = == - 2)]

The pitching moment about the fuselage center of gravity is

Myg =M, + T Xyp + D Zyy

The nondimensionalized coefficients are

. XWL ZNL
“ney Ty T %0 H T %0

that is
Xou Ky, oy
C . =@ 2V, (C - —C)+*C , — +( ., — =¢C
nx., mac C L oeXe ey o TxEL ooy mu
b v Xau o X Ly, o
C . = o T a + . Eonaan R o C . p—— S -
mz, 2 0 ey W 224 Cy xk, cy L
c Ko w “Co Haw :
miy Bon [V _c— ay - 2V ;;““ (Cmao - ) CLO} e
Xy, Ly,
+C . = o
zdqy  Cy xq, ey
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Xau Kyt Zyy

= - Y, — Q0 — .
md bon [~ 2Vg Chae T Vo o Clol e Czqg cy Cqu »
= c fo + 2 X—-—aw + X————WL + —-—ZwL
Cmql "* ¢1P" Vo mac 8 ¢21 VO &w 6w3 Cw VA Cu Cxq_l Cu
Law
c == Bp V& Cg f5 = g VG 64ys [-2C_ _ +—2Cy]
mas 2 Vo LLo 15 1. Vo Ous mac T o, -0
X1, Zyy,
+ — +C —
Zdp Cy Xqo Cy
X X X Z
1 an aw (A" Wi
o =oa =4 22— g (= R _—
mp ; $a1 (8 I e, ( c, %) ay £y + Czp Cy * Cxp cy
. . Zawu X Dy
Cmp T % Vo SR T Oy T O o
' : 6. 3 Xau P Xy, . Zyt
= - a
me . 2170 ¢ W z29 cy X0, cy
K . b'e x X Z
1 3 Xaw au, o ‘ Wi WL
== e g (F oA B e— (e H O e _
C’me ' Gay (8 Loe, <Cw )%) 2y Czef'cw Cxéf Cy

The various integrals involved in these equations are:

, e Ay 1

: el, = . . 'nw —-—-; =‘ —3—
o Yt

B ITu s dyw":l

es =) 0 —=3
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and

€4

eg

nm

1l

V1w dyy 1

j‘ T T 3

° ITw

Yy dyw 3

.110 My S i
Iym Ay -

'ﬂw - =

Ve Yru

JYTW . Cdyy o1

0 W V1w 2 v

yTW‘ ‘ l

j‘ Eu TM' ) (Fra = Ya)
o

YTW g.z dyw ~ L

‘ro L 3

Yro dyy o1 [(on)
IYH " Yru T2 Flyry
e 2

0 Y7 3

YTy b,]_ .
J‘ n’ (E) (vrw = W )2
O .

n.m

Cu. Vi

TO a
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Thus the control matrix is

(Vs )

The control terms for the wing body equations of motion at this point

involve only the effect of flap delfection.

The wing equation terms were given in Reference 1 as

Cq15 = 15 V§ CLo Cls e5
Cos = %a Vs (Cgq + Cor = Cuo) Cls) o5
Xaw
= - g2 (S0 % %
Cog o1 W (G Cpy - Opg) Cuo T

The terms. in the body equations of motion are

o 2 ok (y%o Y
- V o — ov——
5 = e Vo G Gs (Er - o
o , 2 g (y?o‘ Y%x)
= 'V — - —
X6 bz Vg pd Tra Yy
. Xa .
= 2 * C
Copg = = %1 V5 (T Q% - Ch) Cg (
o Xy Ly,
+ —_— + 0 —
'Czs CX6

¥Cy

v»32‘

Yro

Y1y

V¥ i

B

Vi
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The input matrices E and Eg are modified as follows, Since only

longitudinal motion is being considered , lateral gust terms are

B =
g by

This matrix is gilven on the accompanying pages.

not included.

Because of the normalization pro@edure, in the wing equation the
derivatives appear multiplied by vy and in the body equations by’%*.
Since there are two wings all of the wing terms in the body equations
appear multiplied by 2. This completes the devélopment of the aero-
dynamic contributions of the matrices D, and D, from the wing. Thae
wing stiffness terms carry over directly from Reference 1 along with
the structural damping and the influence of rotor thrust.

To be added to these matrices are the influence of the horizontal

tail, fuselage; gravity forces.
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Rotor Force and Moment Contributions

The Gontributions of the rotor forces and moments to the body
equations of motion are calculated. The rotor forces and moments
are formulated in a shaft axis system and so the deflections of the
wing tip must be included in the effect of the rotor forces on the
body. Linear deflections of the tip are assumed to have a negligible
effect, however, the influence of the rotation of the tip of the wing
is included.

The rotatien of the rotor shaft in terms of the torsional de-
flection of the wing tip and the bending slopes of the wing can be -

expressed as follows:

@ 'S - 1’c §,C + 655

« ! Yy
mt ) 7 i
Qy = - N 85 T8y 1 F Qyp
e, -1 - 1's 6,8 - 82C | Dy
or
o = Ry
where

]

‘This relatioﬁship is that given by Equation (30) without the influence

'oflbody attitude, since the forces and moments are being calculated'in a

' body’axis system.

- Forces and moments in the undeflected system (the ‘body axis system)

37
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- are related to forces and moments in the shaft system which is rotated

by @, &y, and o by the following relationship

' -
X 1 o, ay xg
4 —1 -
Y @, 1 dx Vg
7
Z - uy QX 1 Zg
where X “may be interpreted as [H z
Vg ¥
Z T ’
S
or as
M
X
M
¥
- Q

The forces and moments relevant to the_longitudinal dynamics are

expressed in terms of the rotor forces in the deflected position as

X =H-oY+alT
. z -y
7/ = -a H+a Y+ T

vy X

.VM, P

-az M& -+ My + uxQ'

where M& is méasured abouﬁ’the’rotor hub. »The'foréeé arg‘now resélved’
in thé,body axis directions,fparaiiel and perpendicﬁlar,t@rﬁhe’initiél'
Velocity!direction, and ‘the moment isrexpréSSed_abéﬁt the:fuséiage

center of gravity | e
4

X =12 cos 6, - x! sin 8p
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z =z’ sin 8, + X' cos 8p
’ /
M=My+tz-sz’

Now perturbation equations are formulated for the variations in X,

Z and M.  For example

8X = 62’ cos 6, - 56X  sin &

where

I

/ 87 = - s — SH+ 60 Y, +a Y + T
yH° gyo x"0 Xy 6

and.

’

6X' =6H - 6a Y -~a 8Y + 6o T, +a 6T
z Zg v Yo

where (), indicates an equilibrium flight value. Proceeding with this
development the force and moment perturbations applied to the vehicle
by the rotor can be expressed as:

Fg =Gy T+ Gy ap

where
)
oa
(QC ao
X
go -2¢
i 2¢ §f ag Q.
o /
= ——— P o=
'ecM’ ag
\ 20 J QCmy
ao
-QCMX .
\ w5

39



&y is related to the wing deflection as given above

-~

ar = R xy

therefore
Fg =Gy F + Gy xy
when
: w1
Gp = Gg R and x, = | qyp
Py

The matrices G, and Ga' are given on the accompanying pages. The following
notation is used

CI

1l

cos 8p

s’ = sin 6,

and the subscript zero is dropped with the understanding that all matrix

‘elements are evaluated at the trim flight condition. Both rotors are

accounted for in the matrix elements.

bo
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Gravity Terms

Also the effect of the weight of the aircraft must be added in

the fuselage equations. The forces and moments to be added are

Z

I

- W cos (vo +’ef)

i

X =Wsin (y, + ef)
M =W [Zeg sin (yo + ef) - Xz cos (yo + B'f)

whére v, is the initial flight path angle and Xgg, Zeg 1s the location
of the total alrcraft center of gravity from the fuselage center of
gravity. Assuming that © f ig a small angle these forces and moments

can be writbten in perturbation form a,,sb

A

1l

- W cos vy + W sin vy, ef

il

X =Wsinvwyg + Wcos vy 6,

M=W (Zg sin vo - Xeg COS Yo )

+ W (Zeg cos yo + Xgg 5invyy) €5

Fus elage Aerodynamics

The fuselage is assumed to experlence only a drag force and a

pltchlng momen‘c wh:.ch can be expressed in normal:.zed form as
%Y 2w
M, = Y.vn Sf Mo V}O Cm

e T £

. The peruurbatlon terms for the equatlons of motlon Would, be :

Y

67]3*’-’~ W f¢og Vo, Df5V+M* f¢oz Vo‘pf;y5°‘

6M*=YS¢1VC'6V-YS¢ V2o, ba
e P10 o Onr © M*f1°°:mf'~

o

w3
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and

Horizontal Tail Aerodynamics

The horizontal tail is taken to be located a distance 4; behind

the fuselage center of gravity and a distance Z,; above the fuselage
7 : .

center of gravity. .Only the 1ift of the horizontal tail is considered

- as contributing to the motion equations. The drag of the tall surfaces

is included with the drag of the fuselage. The contributions to the

vertical force and the pitching mpment are
Zyr = Ly
MHT == ,’f/TLHT

The 1ift of the horiZontal,tail suitably normalized may be ex?ressed as

Y 2 s . 2
Ly = ﬂh-sr¢bngaT,<lj + o f e + ef - W
4_fii£ - fl,@i @ - fﬁ‘) +1 8
Yy Vo do £ ‘VBV : e

The next to the last term accounts for the downwésh lag at the tail,

and T is the elevator effectiveness.  As a*conseQuepCe'we have the

following terms in perturbation form,

N . P de
(C.zef) = ﬁ* St Gop Vo ar (1 - P
HT . . e A

o



e g i v e

Coso ) - o~ Y _
g wnur
Y , de
(sz ) B " St Pog Vo ar (L - EE)
e
Y- de
(Czé ) = g L1581 Poz Vo ar (1 - EE)
de
(Czi ) = ﬁy,¢bz Vo S ag aa
£yt .
!
(CZ6 ) = 1\%.)( ST ¢02 VOB ar T
€Hr :

- The pitching moment derivatives follow directly from these expressions.

The pitching moment derivatives are related to the 1ift derivatives by

€ /") “oey
c = - — (C
n()) 2 %=0)

The trim bail 1ift coefficient is

Corg =ar(i T -+ §e°)

The downwash model used here is satisfactory for forward flight but is

,probably oo simple for the'lbw speed condition where the dowhwash con~

ditions at the tail are quite complex.
The matrix terms comprising AD;, ADg and AE.g are given on: the

following pageé. (Gég\) contributes to the matrix D.
. aer H'T :
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TQUATTIONS OF MOTION

~The final form of the wing body equations of motion are

X l 4 4 ‘
+ + = B3 3
Dy X +Dq X Dy X% E(W+Egg,+E66e+H1F+H2x

The matrices I{, Dé and. Eé include the effects of the fuselage, hori-
zontal tail, and the gravity forces and moments. Eé 1s the influence

of the elevator. Thus

; ‘ "D} =Dy + AD,
Dz = Dg + AD,
E' =E_+AF
g g Ag
and .
/xf“i_
zf
Jef {\« H qu H [Gg]
X, = 1= - 2 ol
v Y f L&J 0
Qw;
Az
-
\

' The matrices ADi_;ADé andvAEgyarevgiven on ‘the accompanying pages.
 The equations relating hub motion ¢ to wing motion x, and Xo are
@ =c X4+t d Xo

These two equations replace the lower two sets of equations given
on page 141 of Referende l,for'the dynamic.motion of the vehicle

’With the fuselage free to move in the longifudinal plane.

L6

b



/\-«
.
i
—
—
[—

The complete set of equations of motion are:
Ag Xg + Ay Xg + Ag Xg +RAp @+ AL & +hoa =By +Rg

F =CpXg +Cy kg +Co Xg +Cp @ +Cy &+ Coa + 8

o 7 s ’ .
Dy ¥, + Dy X+ D5 x, =y, +Egé+Eeée+H1F+H2xwv

7
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TRIM CALCULATIONS

The equabions which determine the equilibrium flight condition of

the aircraft in normalized form may be written as follows:

o . ~
- sinyo + Gy Bz Vo (85 Cort 2 8 Cou)

PR
2c; 2c;,
+2%4'-*(Eg—cosé,> -gosingy) = 0
. ,
-"’2‘ COS Yo +%%* Gz V& (81 Cup +2 8 Cuy)
QR
20; 2c}’C
+21\:/£1~X< ('é-&— sin &p +E5;"COS 6?) = 0
Zee Keg L1 Sy
"'%‘ (— siny, - — cos Yo ) +§* (B0 8p Cpp = — ¢ Cur
Q"R ¥ru 1w ' 1w
. Xawc +~XWL Zyy,
4 — i ———— - ———
2 8y $o (Cp . o Cuw o G - g Cou))
2y ecn: 2c; 2cx’
tiw (e T w) T O
where
oc! 20y 2¢ 20;
) =ac—dzac v &0
oc ! 20y ec_ 2C;
e R e e PO .
ao v aco X a&o a o
2¢ ac 2c 2Cq
. = @ A - i
ao z &g - aoc X acg
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Cuw = ay <(3w +ag) cos A+ (Eyp - 27 6y5) cos® /\>

Cor =ar(iy +ag -e + 7 58)
= +
Couf Cmfo Cmfa, %o
CLw
C

ow = Qowy T TR
6p, =1, + i, +a

If; the equilibrium deflections of the wing are included in the
triﬁ calculation then the solution for trim becomes quite complex. Tt
seems unlikely that the equilibrum deflections will have a significant ‘
influence on the trim of the aircraft and therefore they will be neglected

in the solution for trim. With this assumption,

ec.! 2c,
X 7
ag ao
!
ec ) 20,
ao ac
oc’ 20
m._ " my
a o .50
Cow =2y (iy +o0)

The ,simplest trim problem is the case in which the rotor shaft is
aligned with the initial vélocity, that is, when 8, = 0, or in otherk
words when i, = - (i; + & ). In this case, it is further asstmed that
cyclic piteh is not used for con‘erl such that also in t'rim 91}c' and 91s‘= 0

then the rotor trim condition is a perfectly axisymmetric case and
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-_—= 0 and

Given the geometry of the aircraft, and selecting the initial
flight velocity V, (actually the advance ratio) and the flight path
angle y,, the three equilibrium equations may be solved to determine

the trim values of the airplane angle of attack o, the elevator angle
2C;
6 , and the rotor thrust, —.
e .aco
For the more general case in which §p 1is not equal to zero, but
, : .

- is still a small angle, that is, when‘airplane flight is being

considered, linearized expressions are employed to caiculate the rotor
inplane force and the rotor pitching moment.

For this more complex cagse in which the blades are assumed
to be torsionally'rigid and no cyclic is applied for control, the

following equations are involved. The gimbal motion is determined from

(Ty (O = 1) + Koy Mpi) Boc =¥y Boc + yMy Bes

¥ )
(Ip (v - 1) + Kpy Mpi) Bge = YMé Bac f'YN% Pes *y A Nh 6p

- IF (V- 1) Bec

]

1l

+ + - wHe = :
ag =Y A (%i Ep> 8p (v RB YHE YKp Rei) Bac
4‘@%*W"‘Y&’mi)%s
The aerodynamic derivatives in the above expressions do depend upon the a

trim thrust to some degree. However, it would be expected that the effects

of rotor inplane force have dnly a small effect on thé force equilibrium.
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The solution for trim can therefore proceed ag in the purely axial
flow case with the selcted small incidence of the ghaft. Once the
angle of attack of the aircraft is computed such that an initial
value of 6p is obtained, the flapping coefficients can be calculated
and consequently the equilibrium values of the inplane force and the
hub moment can be calculated and the trim calculation repeated to
account for these effects.

Once this procedure is completed, expressions from Reference 1
can be{used to calculate the trim values of the remaining rotor forces
and moments which are used in the equations of motibn.

If rotor cyclic is introduced into the trim calculation, then the

relationship between cyclic and elevator angle must be selected.
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