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SUMMARY

The equations of motion for the longitudinal dynamics of a tilting

prop/rotor aircraft are developed. The analysis represents an extension

of the equations of motion developed in NASA TM X- 62,369 to include the

effects of the longitudinal degrees-of-freedom of the body (pitch,

heave and horizontal velocity). The development and notation follow

j	 that of NASA TM X-62,369 such that, the effects of body freedom can

be added to the equations of motion for the flexible wring-propeller

i	 combination.
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INTRODUCTION

I	 This report develops the equation of motion for the lonf,iturlinal

dynamics of a tilting prop rotor aircraft. The effects of wing and
I

prop rotor flexibility are included in the analysis as well as three

longitudinal body degrees-of-freedom. The notation and development

_generally follows that of NASA TM X- 62,369 and is formulated in such

a tray that it modifies that study to include the free longitudinal

motion -of -the complete airframe, such that, the influence of the

wing and prop rotor flexibility on the vehicle dynamics, as related

to stability and control, can be examined.

The resulting equations of motion developed in NASA TM X-62,369

are _expressed in matrix notation as follows:

A 2 KR + A, k R + A 0 XR + 2 Zc + A l a + g o d' = BV R + Dcg 	(1)

F - C 2 x  ,+ C 1 ^'R + C o X  + G 2 a + C Z a + C o a + D cg	 (2)

=Cw	 (3)
a 2 x +al x +a,x	 by +bcg+aF	 (4)

w	 w	 w	 w

where x R is the state vector of the rotor degrees-of-freeom; w is the

state vector of the wing degrees-of-freedom; v  is the input control

vector; and g, is the gust input vector. F is a column matrix repre

senting the forces and moments produced by the prop rotor and a! is a
s	 ,

column matrix giving' the linear and angular displacement of the prop 	 a

rotor hub due to wing tip motion. -,j

The development here is concerned with adding the effects of

l
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	 vehicle body motion to these Equations of motion. The following; modi-

fications are developed. Equations (3) must be modified to include the

influence of body motion on rotor hub motion. Equations (1) and (2)

ido not require modification owing to the gray in which the equations

have been formulated. Equation (4), the wing equations- of motion must

l
be modified to account for the influence of fuselage motion and in

j

addition the fuselage motion equations must be developed. This report

therefore, is concerned with two items: development of wing/body
A

equations of motion and incorporation of the body motion into the hub

displacement expressions.. The analysis of NASA TM X- 62,369 is not i

discussed in detail in this report.

k

i

E

u

3

i 	

^7]
J

M

4
i 	 a
k	 2

L



ANALYTICAL AEVELORENT

Geometry of Wind;/Body motion

A small disturbance approach is used in' developing the equation-,

of motion, The center of gravity of the fuselage is taken as the 	 A
1

origin of the axis system.. X and Z, in general, refer to geometric j

distances measured along and perpendicular to the direction of the

initial flight velocity. The following specific distances are in- 	 a

volved in the formulation: i
X R ; Z R 	distance from center of gravity of fuselage to

spar location at wing root.

X WL ; Z W L	 distance from center of gravity of fuselage to

local effective elastic axis of wing section

in deflected position.

}
XW T , Z W T	 distance from center of gravity of fuselage to

*

	

	 wing tip effective elastic axis location in

deflected position.

. X P , Z P	 distance from center of gravity of fuselage to

pylon center of gravity including wing deflection.
f

j These distances are shown in Figure 1. a'o , 0. and yo are respectively

the trimmed flight angle of attack, pitch angle, and flight path angle

and V05 is the trimmed flight velocity.

h The fuselage center of gravity- motion is specified by perturbation

velocities f
 and zf init ially along and perpendicular to the trimmed

flight velocity and the rotation of the fuselage is denoted by 8z,.

e

f
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3R	 and Z R are geometric distances,characteristic of the aircraft,

however, they do depend on the trim angle of attack of the aircraft as

shown in Figure 1.

All of the other quantities depend upon the wing bending and

torsional deflections. 	 The wing orientation with respect to the

fuselage is specified by three angles, '8w 1 , the dihedral, 8w 27 the

wing incidence plus body initial angle of attack (8w 2 = i W _+ ao) where

i,4 is the Wing incidence with respect to the body reference, and Cep

is the trimmed flight angle of attack, and 8w 3 the wing seep angle.	 i

In order to obtain results which are a modification of NASA TM X-

62; Q69 the wing deflection is expressed in terms of an axis system

aligned with the Wing,
`I

' Assuming that the angles 8wl, 8w 2; 6ws are small, as is character-

istic of this aircraft, the relationship among distances in the fuselage

coordinate system and the wing coordinate 'system, where an effective

sweep angle 8wa, and effective dihedral angle 8w1 	 are introduced

k

xa
- x	 1	 + 8 W '3	 + 8w2 	 X

x	
^)

y	 _	 - 8ws	 1	 - 8w 1	YEr

z	 - 8W2	 + 8Wi	 1	 ZW
J

The minus sign in front of x is required since xW is positive aft in
3

Reference 1.	 j

E
.x

X - xW -BwsYW-8W2,ZW	 j

S''	 xW 8W3 + y W - 8W I ZW	 1^)

'

1 

Z = - X W 8W 2 + y W 8W 1 + ZW

"	 L

r



k

8Wk old Swg are introduced at this point to reflect the fact the

although the wing is swept, the center spar section is not swep-

described an Reference 2. 	 &w'i and 5w3 account for an effective

change in elastic axis position owing to the torsional deflection at

the toot.	 As developed in Reference 2, it is possible to represent

this influence on the effective dihedral angle and effective sweep

angle of the elastic axis as

8w3	 =	 8W 3 ( 1 - ^WB)

b 1	 =	 54J1 (l _wB)

where ^w B is the torsional deflection at the point where the spar is

bent, i.e., at the wing -root. 	 Thus we have

X = - X W - yW 8w 3 (1 - §WB) - 8W 2 ZW
i

Y _	 XW 8w 3 (1 - ^W B) + YW - Z W 8w 1 (l - §w s) (8);

Z	 - XW 8W 2 + yW 8w 1 (1 - ewe) + ZW

Therefore, the position of the local wing elastic axis with respect to

the fuselage center of gravity is expressed in terms of wing coordinates
E

y measured in the wing axis system.

X W J	 -- X R + X
i

= X R - X W - y W 8W 3 (1 - ^WB) - 8W 2 2W

' ZWL= ZR+ Z j
t'

F: = Z R + Z W - X W 8W 2 + y W B T U (1 - ^WB)
1

The wing tip deflection is expressed in terms of the same quantities

fl
P

with the deflection measured at the tip

tC

3

i

P

^

l
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XWT = X F 	 XWT - yWT 5vl 3 (1 - ^W 6) - 8W 2 ZWT

(l0)

Z ;,r = Z R + Z WT - XWT 8W2 + yWT 8W 1 (l - vra)

The pylon center of gravity is located at a fixed distance from

the wing tip effective elastic axis location, given by the folloYrring

distances

AX P = ZPea
(ll-)

6Z P = 0

where ZPea is the distance the pylon center of ,gravity is forward of

'`he wing tip elastic axis measured along the wing reference system.
{

Consequently a

X P = XW T + AXP
(12)

Z P = ZW T

This completes the expression for the linear displacements of various

locations of significance. The hub position will be developed later.

s

	

	 Now the rotation of each point must be considered. The rotation

of the fuselage center of gravity is 8
f 

and consequently the -rotation

of the wing root is also 8 f , Now this rotation must be expressed in

terms of the wing coordinate system. This car. be done by usingthe

inverse of the transformation expressed by (5)

A¢WL	 1	 - $w3	 - 8w2	 0

A8 WL = 8wa	 1	 8w1	 0f	 (l3)

0w	 8w2 -6 	 1	 0

Therefore

H OWL =	 6w3 8F

Ae ^L _,
	 6	 (l )f

i OW L _ - 6  of

6	
S

i

1

j
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Where OWL represents a rolling of the wing section, and VWLrepresents

a ya,Wing of the wing section The effect of qIL can be neglected by

a.sswili.ng that the wing is thin. The complete angular motion of the

ruing section includes the torsional deflection, and is equal to

9 WL ^ (g f + OW)

At the tip of the wing the rotations are expressed back in the fuselage
i

reference frame. The Ding tip rotation consists of torsional deflection

as well as rotation due to the bending slope Again using transformation

(5)

	

- A, T	 l	 8vr3	 Sw?	 Z 

	

A8 T	 -
'Sw3	 l	 - Swl	 8WT	

(^ i

	

AY , T	 6W2	 sw,	 1	 - X T

where xT_ and zT -represents- the rotation of the tip due to the bending
slope

`	 A8  = - ZT - 8wS 811T + 8W2 XT

+k	

A8 T = - 8- 3 z T + OW T + SW 1 X 
T	 (l6 ^

`i}	 OT - 6W2 Z T + SW? OW  XT

}
These quantities are the roll angle, pitch angle and yaw angle of the

tip expressed in the fuselage axes system. To this must be added the

rotation of the. body 8 f 
so that

8 T = 6 f - bw^ z T + 8w T + Swi xT	 (17)

This is also the rotation of the pylon center of gravity. The above

expressions describe the linear and angular displacements of the various

j	 points of interest.

7
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Kinetic Energy

We now proceed to develop to equations of motion for the I

wing-pylon combination using the Lagrangian approach to evaluate

inertial terms

a.) Fuselage

The kinetic energy of the fuselage can be expressed as

EEf = mf ( Ĉ 2 + z 2 ) + 2 If 6f	 (la)
..	 a

where a reference system travelling at the uniform velocity Vo is used.

b.) Wing	 i

A section of the wing has the following kinetic energy

YTw^	
l	

)2KEwmdy= 2 f	 w	 +	 Z[(Xf x - w^ 9 f
_o

YT
+(zf + Z + XwL 6 f) 2] + 2 ,^	 Iw ( 9

f 
+ 6 W)2

 dy
0

YTw
+	 iW (- 6w? 0 f ) 2 dy	 (19)

_	
o

where it has been assumed that the wing is thin such that the roll moment
1

of inertia of the wing section is negligible.

i

C. Pylon
1

The pylon kinetic energy is

P = 2 Ttlp ^(gf XT _ ZP 6f)2

i

+ (z f +, z T + Xp 8 + AX p^ T ) + (OX P' ^YT )2^

+ 2 1 py ( 8 f + p T )
2 

+ 2 Ie (aYT )2	 (20)

where I p  anal p x 
are the pylon pitch and roll moments of inertia with

out the rotor measured with -respect to the pyloncenter of gravity



C	

` II,

r
U

arts location. The pylon inertia in roll is neglected.

Owing to the imanuer in which the equations were foimulatorl (Equations

T 1 It'll I-oll,;lt ( )1)) Lim I^rAor . o11'V(a('1;,, r4.eo	 by (N., Lr:rrlu l.ri.i.Tlf; {,ir r . ^.^ ` l f :Lf;

of body Motion oil rotor hub motion. 'Thus, to determine the equations of

motion for the wing-body combination the kinetic energy of the system is

y^E KE f + Kp 61 
+ RE 

P

Now the modified equations of motion can be developed with the geo-

metrical considerations described above. Prior to developing these equations

the modified hub motion equations are developed,

Hub Motion

The hub position with respect to the wing tip effective elastic axis

is expressed by AX H , AZ H again measured In the fuselage -reference coordinate

system. This is the hub location with respect to the fuselage center of

gravity. The total hub displacement with respect to the center of gravity

of the fuselage is l
X  = XWT + pXH

(21)
Z H = Z W r + QZH	 !

where

AX  = [h C - (h - hea)]	 [ ea + h S] 8w2
(22)

oZH = [h C - (h - 
hea )] 5w2 + [- zea + h S];

where

C	 cos (8 P	 8w2)

S- = Sin (8 P	 8w2)

 
Q

i



and (h - h	 and Z	 represent the displacement of the elastic axis

Irom the wing tip location forward and up due to sweep and dihedral.

Since (h - h	 ) and Z	 are proportional to 8w.,	 and 6w, these distancesea	 ea

are approximately given by

AX H	[h C - (h - h	 h S 6w2
ea (23)

AZ H	 [h C] 8w 2 + [- Z	 + h S]
ea

The rotation of the hub due to the bending and torsional deflection of

the wing tip is given by Equation (16) plus the rotation of the body 0,.

The hub displacements arising from these rotations in the direction of

the body reference system are

Ax fl/R	 ZH Of - 
AZ H AO T

Z H/R	 XH 0	 + AX H AOT	 (24)
f

AYH/R	 + AZ H A^T	 AX H 	 T

And in addition we have the center of gravity displacements, Ax f 	Azf

with respect to the travelling reference system, and the wing tip dis-

placements measured in the body coordinate system direction Ax. 
T/11

AZWT

The total hub displacements are

AXH	 AXf + AX WT/S -ZH Of	 AZH AO T

AYH	 AZH A^T	 - 'AXH A*T	 (25)

Z—Z '	Az	 + AZ W ^6 .^	 + I^x
f	 XH O f	 H I^OT

These must now be resolved into the hub direction, i.e., along and

perpendicular to the shaft.

10
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Tn order to remain consistant with the previous development Ax8
3

and pz H arc first resolved to the wing direction

AX HW = QX H + 6W 2 AZH
(26)

( AZHW = AZ H - SW 2 Ax

,
and then resolved through the angle the prop rotor shaft makes with the

1

z

wing ( S P	 - 6W2)

X HS ° AX H W C + -AZ HW S 3

YHS = + AZH AST - AX H AVT	 (^7) 1

i

ZH5 = AZHW C - AX HW S

The rotations also must be expressed in terms of the shaft axes. 	 Again

first resolving to the wing direction

AQ TW = A6T + AVT 8W2
(28)

AVTW = A*T - MT 8W2

and then in the notation of Reference l

j a	 - AVTW C
	 A^TW S

X

C1gf + Q8 T 	 (29)

ClZ	 A^TW`C + A*TW

Equations (27) and (29) express the motion of the hub in terms of wing

motion and body motion.

i The rotation angles of the wing can now be expressed as 	 neglecting

tl

;	 E
i

i



products of the wing geometric angles Swl , 8w2, 8w31 using equation (16)

in Equation (29).

CV	 = Z 	 S- X' 'C + (6wi C + 6W3 S) OW 

a
y 

= 6 f
 - 6W3	 Z T + 6Wi XT + OWT	 (30)

f,

j CkZ = - Z T C - x , 	S +(8w l S - 6W3 C) %T

The displacement of the hub can be expressed as, using the relationships

from Reference 2, pp: 113, for the displacement of the effective elastic'

axis from the tip elastic axis.

Zea	- Y TW SwI

h - h	 _	
YTA, 6W3ea

and noting a change in axes such that

>!,r
XH 	

ZHS

^f

R	 ,, ZH - XHS ^ 	 YH - YHS

XH = (AZf - 8w 2 Axf ) C + (- Axf - pzf 5w2) S

a

+ 
Z WT C 

+ XWT'S +	 (XH 1 6W2,Z H) C + (ZH -6W2 XH) 'S1 Qf

-F [ h + (h - hea ) C -Zea S] 84a T +h ^- Swa z' + 5w	 x T/ ]

y H 	 = h S ZT - ^TT W 6W 1 ZT	 + h C X T _ YTW 6W3 XT

+" OW 	 (- h C 6w'	 h S 6w	 (31)
k'

zH = (Axf + 6w	 pzf ) C + (pzf - 8w;'pxf).S

+ f (-	 ZH + X H 6w2) C + (X H - Z H 8W2) S] 6 f

- X W T C + ZWT S +	 Zea	 + (hea	 h) S] OW T,C

12
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Again these agree with the formulation of deference 1, with additional

terms for the effect of
i

fuselage displacement and rotation.

These results can be expressed in matrixnotation as follows,

aCxW +dxf

where
i	

h
X j

Yh

zh q Wi	 xf
a	 ?`

^^
X W —	 x	 =

q 2	 z

c,
Y p W	 6 f

where

.	 ZWT = YTW	 qWl

C WT

—

YTW	 %12

1I
8 ld T

E
= pW

and

ZWT_ _ ^W (YTW) 'CIWl

x WT — 'IW \YTO qW2

The elements of the matrix C are given on page 127 of Reference 1.

{	 Assuming that 5w 2	is a
f

small`' angle as has been done in the development,

some of the terms above can be simplified.	 The matrix d which expresses

the contribution of the
l

fuselage motion_ to the hub motion is

E^

13
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- sin Sp cos Sp xH Cos Op

+ Z. sin Sp

X H COS by sin 6p xH S"" Sp AX,
y - Z H Cos by N

YH
0 0 -

QZ
L1H

f

a 0 0 8
f

yy

3	 Y

o l

cx 0 p 0

I

w

j

Y

i

i

l

i
r

7

{

k^	 ^
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and that

Therefore as can be seen from the kinetic energy expression, the effect

-	 of both sings is simply to double the pylon and wing terms.
i

The generaliz--d coordinates to be used are the motion of the Fuselage

'	 measured at its center of gravity xf , zf, 8 f and the wing deflection modes

in two directions qw	 and q W 2	 and the wing torsionThesep 4^ • 	quantities

are related towing deflection by

z w	 9-WI

X W =	 W qW2
3

8W = 9W pW

where the mode shapes T^W and gW have been normalized, such that, at the

tip %T = y TW and 9w T , = 1. The relationship between the wingdeflection

coordinates x and z are given by Equation (8) and the relationships

between pylon angular motion AOT, AVT and A¢T and the wing deflection and

torsion are given by Equation (16). 	 Precisely speaking, the distances

XWO ZWL	 and Xp	 and zp	 are functions of the coordinates, that is the
a

wing deflection, however, they can be considered constant, equal to their

trimmed flight value in the following development since the variation in
s

i
j

these terms will not contribute any linear terms in the final development.

For reference the time derivatives of Equation ,(8) and (16) are repeated here.

x=-W	 g WI 2	 - 8w2 ^y w1

4 W2 6w 2 + ^lw 4WI

y is assumed to be constant and does not contribute

to the kinetic energy

j

16
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c T	 and z T	 are :Found by replacing	 by y TW in the above.

The rotation rates are

QT	 =	 IWT 4W1	 8W3WT p W + SW 2 ' IWT qW2

p8T = 8W3	 WT 4W-1 + ^W T p W + bWi	 T	 C14d2

PVT = 8W2 ^W T 	 4W1 + 8W1 §W T p W 	 T 4W2

and

I
6W	 gW pW

The terms of the equations of motion are now evaluated by calculating
i

d	 (aKE ), etc.,

i

dt	 2ixf

The -resulting terms in the equations of motion are listed on the

i

following pagesin matrix form.	 The following definitions are employed
I

("^	 = quantity normalized by total aircraft mass, M

'	 i (	 quantity normalized by 2 Ib

e
Therefore,

mf+2m,-t-2mP
mfW. P	

M

m P ZP
r =	 iIri PZ_	

M

'YT W
I

YO	 T11 ZW4 d'yW

wz
	

M

m P XP
f _m Pg M

i
w^YT

m X W 4 dyW

M

17
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I	 i	 I
where D2 has been developed above. Note that in terms of the Nomencla-

ture of Reference 1,

Ii

d11	 d12
D 2 = -+------

d21	 ;	 az

{ i where a 2 was developed in _Reference 1.	 D 2 	 is given on the accompanying

page.	 The following section develops the aerodynamic force and moment

} contributions to the matrices D 1 and Do.

In addition, the influence of the rotor forces and moments must be

added to the body equations. 	 The final equations including effects of tiring,

I	 ,

fuselage and rotor are

z D2xV+D1	 Do xV	 Evw +Fgg	 H 1 F+Rsxw

'
J

where	 C j

k	 a6

2

a6

2C
3

t CTS
G2a 6	

-
F =	 and Hl	-	 H2	 -

a - 0 
C q

E 2Cmy

i au

2C
mx

s a o-

I,
Fe is developed in Reference 1 and G,, 	 and G2	 are developed in a

following section.

20

a



1
a

^	 h	 -.... Y

t•	 wt{+	 i

+y	
i•	 xM

Y

S^^	

f^l	 fitti 

^i^^,^7 ^	 2 ^t='^ax ^ :? r ^^	 tai ^	 i3t"'	 (^ in
Sup

" lYa	
^.1`^?x	 r},11t u7X	

i	
- 2r,	

r 

M.	 -	
` 

}' 	-? tl1{t^^	
i	

-	 ^ ^ H wy;	 t^^^^ `	 'y^;. "`^^'
	 Pn^ \ ^ Y.^;;; ^ ^ .," ►^ z. +*	 ^,°;^	 1

	

t	 „ ; n	 S	
1

S 5a	 c^;	 (^.,
	

li-o1
fi	 r .xi. ..1.1 ^^	 ^1'. ».?w ^^J	 •^1yt ^.-	 .`tt`..^....,y7'	 e+^

Nl^J^a	
i mp -5 S5ti^jQ^	 j-^w	 y	 ^^tY^^	 ^t`'' ( l̂ S43Lt	

Sua
^	 l





c-	 -c cos h

dy
dY	

cos

We can write

2 P CW_EkI J VN ix dy

D	 =2Pewf VN (Coo+Coct)dY

M' 2 P ewcos_ A Y VN (C_
mac

-	 2,4	
C L) dY	

1

cW

and

N_2PcwaW	
VN dy.

C	 = 2P CWY VN (C D0- (C L 	- C 0."P)	 aY

N = 2 P c2 cos A Y V2
( Cmac

x
^W C,)	 dY

w

These last three expressions are nondimensionalized by dividing by

N 1Y 2	 _b' -which Yields

Mg W 1 _	
01	

a W	 STN
2 	 ^ I a2Y^1

YT W

MgWS - ¢12 f 
V2 (

Co o ' (C L - Co a)
11 aY

«)	 2
YTU,

mp _ 021 Cos A ^ V,2 (C
x

-	 12.4 Y
CL^ 	 ^maC CW YTW

where
n	 T11c
w YT W

nm_ TTi C a

N

f
k 23



. 	 M

Note that Cw	 and yTW have been nondimens onalized by the rotor

radius R, similarly L, D, and M are normalized by M 2 R and_M yTF2 02

to yield Tik , D*, and Mx-.

Lx 'M 3 aW ,J UN ^ a_ yT w

^ _ 
Y-	

2 ('	 _) dY
D	 j7N	 c	 + C a«_ Mx3	 D	 D yTW

xaw	 d
Mh = M;0.1	 cos A S VN (Cmac	 C ' }c w	 YT w

From the geometry of the figure, assuming that the inflow angle, (tw, is

small, the velocity normal to the tiling leading edge is

_ VN 	 = [ (VO + kf ) cos n - (kW + ZW 5 W 2) - Z WL 6f 

and the angle of attack of the section is

VT	 sin ¢w - [ zf + zw - x w 8 1,1 2 1	- X wL Of
E, 	Ow 	

VN

where

A	 sw3 + x

w = (6 w2 + ef) sin A, -z

9w = (sw	 + 8 f ) cos n + ^w p

V T = (Vo + xf ) sin

Since many of these quantities are perturbation quantities we may express

the angle of attack as, retaining only linear terms
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V, 8wSCos n	 VO

There are in addition, effects of angular rates, a and8f accounted for

with the following increments toC^ and Cm
a

- 
a w c iti	 + xaW7	 ^f

DC	
[3	

^Wp +
i - -VO	 cw	 cos n

and
aw cw	 1	 3'xaw	

xaw 6
ACm	 v	 t	 )2^8	 1	 c -	 c	 WP +

i^	 N	 W	 w cos A^

We can now determine the terms in the six equations of motion by taking

J	 derivatives of the above expressions. 	 Denoting the derivatives by

o^ l
Cg1Xf	 6SC

The Following expressions result:

j	 Cql x f	 =	 012 2C L 0 V. e l	 = Cg1u
g

Cg1 z 	-'012 VO awe1=-,=

CLO	 g 3

/Cq l ( I	 - 013	 \- VO ( a W + 2 e2
aw

Gq1 ^2	 — - 013 VO C 4 0	 e2

fi
Cq1 ql	 - 012 V0 	a 	 8 W13	 e3

3
jj

I	
Cq1 q2	 - 012 C L 0 VO2 8 W3	 e2

'3

s

J	
x a w

Cq1 p.
	

^22 a w 	 +	 VO e,

a

cf	 W

f

Cq 1 p ` 412 V0 a w e 4
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cql 
o f -	 01 2 Vo aw el

Cq l of

Z

- 22 o (- 2C LO 	cL + aw	 c2 +	 + cw])
I	

w

The chordwise,equation terms are:

C
q 2 x

= 0,12	 2 VO	 (C o0 - C L° SW 2 ) e l 	 = Cf
.u9

q2

C
Cl 2 z

_ 012. VO, (C O « -- 2C LO	 e 3.	 _ - C
 q2 VTg

C
Cl 2 q l = ` 013	 VO 	(C- 2C` LO ) e2

C
Cl 2 q2

= ¢1 3 VO 	(- 2 C OO	 + Co a s W 2^ e z

Cq a g l _ _12 VO (CD a - C Lo^ sw3	 es

cq2 g.2
i

5`] 2 VO 8 W3 C2C0Q 8W  J_

n

Cq2 P

1	 aW	 l
02 2 	 V I 2 +	 (CD Cl, - 2C LO) -	 C to	 e4

CW

c
C1.2 P

^

= 01 2 V0 ( COQr - 2C LO 	 e4

s

ceq2	 f
- 012 

V02 (C D
U 	2CL0) e1	 1

ZwL

cq2 8 
f

_ 022 VO 	 C-2 CW (c°0 - ( CL0	 - CDGY^ .8W2

XWL	 XWL	 x aw+	 CE O 	+ (CL 	- CO^)	 - 2^^ 'el
i

c w 	 cW	 c`a

The torsion equat_on terms are:	 <	
9

_
CPx

xaw

X21 2 V°	 c(C	 CL o) f 1	 =_mac	 c W	
Pu

f -9

xa ,w 	a
CPz

f
1 VO	 eW a w	 f 1 = - CPw

g
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xaw	 o	 xa w
C - 02 	 [Vo	 a - 2Vo	 (C	 -	 CEO	 e4

.pql cw_	 aw	 mac	 cw

xaw	
3

Cp 42	 [- 2VO 
Cmac + VO
	 CL O ] e4l

e W

Cpg3
X, , w	 j

012 VO CmaC f 2 + 21 VO a w SW3	 f5

^
CW

a

Cpg2 xaw

= --'	 2 V2 CL0 f2	 - 0z Vo SW3	 [- 2C	 +	 CI.01 fsmac	 cW

CpP = - ^31	 O8 + 1 xeww + ( x2 w
)

2	 aw f,9
W

xaw
Cpp =-	 1 V0 	 aw f3c W

xaw
Cpl

f
=-021 V0	 c

w

a	 f 

C 9
p

= - 3z	 ^8 + 
I xew 

+ ^xc ) 2 ^	 aw f1
f w

These are the terms in the wing equations of motion.

For the body equations of motion, the lift terms will be similar

to the normal force terms applied to the wing with the mode shape not

present in the integral.	 Following'a similar notation

— 0i2 2CL 
0 VO	 _ CzuC zx

f g

C'zzf
= -012 VO aw=

-Czwg
i

C 2CZg1
_ ,,//
_" 013	 ^- VO	 ( a w + 2	 /	 e1

i

a 

W -
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h
r

x wa
,X	

Z wtwt
I C = 022	 [- 2V° C	 + V0	 Cto7 e 1 + C	 + 

C

mq 2 mac	 Cw zq2 c w	 x 	 cw

Cmq 1
^1? v0 Gmac f6 + 0621 Vo aw s w3 Caw + Cz	

Cwt + Cx
	

Cht

w	 q 1	 aJ	 C.1	 W

i

C IT1C1 2 2 VO Gt 0	 f6	 ^'d 1	 VO sW 3-

x
2C

maC + C a 

W 

Gt 0

r
X^L	 ZWt-

'
+ c	 + C

Zqa C 	 xq2 c 

Cmp = - 031

1	 3 xaw	 xa w 2_ 
+	 ) a wO8 + cw	 cw)f1-

Xwt	 ZWt
+ Gzp + Cxp

C w	 c

i
i xaw	 XWt ZW,t	 i

Cm
P

= - 021 V0	 C	
a w f1 + C Z	 c--

w	 P	 w
+ C x

P,C w

xaw	 XWL ; ZWt	 '.

,,.;Y
Cme f

^_ X21 Vo	 c w	 a w+ GzA	 c w	 + Cxe
f 

c W

C •mAf __ 531
l	 3 xaw	 x a w

-- 2
^8 + 4 cw	 + ^ c w ) 	) aw

xwt	 ZWL
-

+ CzA f Cw	
+ CAf 

c 

` The various integrals involved in these equations are:

YT w	 aYta	 l

J 0	 2	 3
YT w

YTw	 aYw	 .l

YTw

t:

f
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e s	 °J

rYrW

^a
, dyw	 1

^1 w 	-2
o

2
yT w

YT w dYw	 l

e 4

j

J ^lw
^w yTW	

-

I
I	 _,

r
YFo

^W

dyw	 1	 yFO 
s

YFa	 a
e5 J YTw	 3	 YTW ^YTW

YF i

Yr w aY w	 1
f	

_

1 0 W

' _ 2

YTw

f	 _ YT^o

^W
t1
	

)2

IW ' 	^YTW	 - YW 

dyw

i
2 ,

YT	
1

W

r13	 °W
YTw 2 dyw	 1 

  -
o YT	 .3

w	 .
_fg

YF o
('

o-r
aYw	 YF o

—^ 2
YF t 2^

YF t yr w	 2	 YT w YT 

^I

f	

_

s
YT , dy	 _	 2

TI
p YT 	 3

f6 P
Yr w ^^^

1	 2^2^ (Yrw	 - Yw

dyw	 1
-

t o _ YTw_ _	 3

and
n , m

C^l	 YT 

¢nm 6 aTT

E'

f 1

i
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The control terms for the wing body equations of motion at this point

involve, only the effect of flap delfection.

The wing equation terms were given in Reference l as
i

C	 =
0'1;3 Vo	 n« 

C' S	 es

Cg26 012 V02^CdS + C DU - Coo	 C*	 e5

C p&	 _

xa w

- ¢21 U0	 CAS - CmS	 C LU f4c W

The terms in the
I

body equations of motion are

C AS	 -

YF 0 	 Yr t

012 V° C« CLS _^YTw	 YT 

YF 0	 YF i

CX8 2

I 

Vo	
Cab	

^YTW	 YT 	 7

C
TT]B

xa W	 YF 0	 YIF
_	 V2 /_ C	 _ C3f	 C	 _

1	
0	

c	
L S	 m8	 aW	 YT W	 YT W

I

X WL	 ZWl	 1

Cz&	 cW	CxS	 cW

Thus the control matrix is
R	 ;

YCx8

YCzS

Y Cm8Eg
YCg1 S

YCq2S

I YCpS
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I

The input- matrices E and E  are modified as follows Since only

longitudinal motion is being considered, lateral gust terms are

not included.

h

E  =	 '
b

[ 9 1

This matrix is given on the accompanying pages.

Because of the normalization procedure, in the wing equation the

derivatives appear multiplied by^y and in the body equations by Mx••

Since there are two wings all of the wing terms in the body equations 	 9

appear multiplied by 2. This completes the development of the aero-

dynamic contributions of the matrices D l and Do from the wing. The

wing stiffness terms carry over directly from Reference 1 along with

the structural damping and the influence of rotor thrust.

To be added to these matrices are the influence of the horizontal

tail, fuselage, gravity forces.

Iy
i

3

i
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Rotor Force and Moment Contributions

The contributions of the rotor forces and moments to the body

equations of motion are calculated. The rotor forces and moments

are formulated in a shaft axis system and so the deflections of the

wing tip must be included in the effect of the rotor forces on the

body. Linear deflections of the tip are assumed to have a negligible

effect, however, the influence of the rotation of the tip of the wing

is included.

The rotation of the rotor shaft in terms of the torsional de-

flection of the wingtip and the bending slopes of the wing can be

expressed as follows:3

ax	S	 ^C	 81C-+ 83 S	 ( q1
F

az	 S	 81S _ 
83C	 pw

or

= "XW

where

C = cos (8W P	 8 w2 )

S = sin ( 8wP - d ws )

This relationship is that given by Equation (30) without the influence

of body attitude, since the forces and moments are being' calculated in a

body axis system.

Forces and moments in the undeflected system (the-body axis system)

Ii
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are related to forces and moments in the shaft system which is rotated

by ax ay, and 
a  

by the following relationship

X^	
1	

-	 c^	 xz	 y	 s_

Y^	 a,z	 l	 ^x	 ys

Z	 - ay	 Ox	 1	 z s

where `	xs	 may be interpreted as

Ys	 Y

z 	 T

or as

M
x

M
Y

The 'forces and moments relevant to the longitudinal dynamics are

r	 expressed in germs of the rotor forces in the deflected position as

E	

X' - HcxzY + a T

Z'cxyH+a Y+ T

E M 	 ^Z x +M +axQ

where M r is measured about the rotor hub. The forces are no g* resolved

in the body axis directions, parallel and perpendicular to the initial

4	
velocity direction, and the moment is expressed about the fuselage

center of gravity

X = Z^ COs b P	 X^ =sin by
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Z = Z sin 8 P + X/ COs 8P

M-- Y + XH Z' 
Z  X'

Now perturbation equations are formulated for the variations in

Z and M. For example

8X ° 6z	 cos 8,	 - 8X' sin bP

where

8Z/ =-8a	 Ho -ty 6H+8xYo + 6Y+8T
Y YO X0

and

8X'	 8H-BaYO 	-a 8Y+8a	 To +a	 8Tz Zo	
y

Yo

where ()o indicates an equilibrium flight value. Proceeding with this

development the force and moment perturbations applied to the vehicle

by the rotor can be expressed as

F e	 _ G1 F i G2 «R

where

C
T

as

2CH
2CX a 6

i
a6-

2Cy

2C a 6
Fg	

^
adZ

^ _	 ^I C
4

2CM a

a a 2C
MY
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j Gravity Terms

Also the effect of the weight of the airc ,-aft must be added in

the ,fuselage equations. 	 The forces and moments to be added are 	 a

Z=-W Cos ,(yo +0f)

X = W sin ('Yo + 0 f )	 a
i

_	
M = W IZcG	 sin ('Yo	 + 0 f 	 - `X cG	 cos (^(a	 + 6 f

where yo is the initial flight path angle and XcG , Zc G is the location
I

{ of the total aircraft center of gravity from the fuselage center of
i

gravity.	 Assuming that 8 f is a small angle these forces and moments
l

j

can be written in perturbation form as

Z = - W cos yo -+ W sin "Yo 8f

X = W sin yo +_W cos 'yo 
0f

_y M =`W ( Z CG	 sin Yo	 _ Xcc cos YO

+ W (ZcG	 cos yo + Xc G 	sin 'Yo	 6f
E

;j
Fuselage Aerodynamics

{ 1
The fuselage is assumed to experience only a drag force and a

1 ^

_pitching moment which can be expressed in normalized form as

D_ YS	 f 00 2 Vo CD f
s

Mf 	Sf Rio Vo cmf
M^

{ The perturbation terms for the equations of motion would be 	 a

a

SDI = 2 M	 S f 00 2 Vo' C o f b V +Mgt S f duo 2 Vo C D	 8(X

f(
C

6M* 	 S	 V	 8V +	 S	 vo	 VCY*	 2	 ^M*	 f	 o	 o C mf	 M*	 f	 i o	 Co	 mf«	J

4	
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The complete set of equations of motion are:
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' TRIM CALCULATIONS

The equations which determine the equilibrium flight condition of

j
the aircraft in normalized form may be written as follows:

f'
sin yo + Mx ^o a V,,2 ( f C p f + 2 Sw Co w

i
2Ci	 2Ci

2 y 	( a^ cos dp -	 sin 8p	 = 0ao,

/_ — COS 1/0 f yx (^b2 Vo	 (ST CL T + 2 Sw CL 

S^ s R

2CT	 2CT
+ 2	 ,x (a^ sin 6p + a^ cos dp)	 = 0

Zcc

i
Sr

- sin	
-cc	

cos	 + 1.	 {	 C	 -T1'0	 1!0 /	 M	 o	 f	 mf 010 C LT

Q2 	 yTW YT YT w

' haw	 XWL

1

zw^

+ 2 SW 010 
	 (Cmac	

^ C U4 +	
Gm 

CL w -
w 

Cc w
a
e

' 2C	 2C	 2C

+ Mn	 ao.	 H a6 	"	 ao
i

where

2  2C H	 2C	 2CT
—^+^ 3

i a^ ^xZ_aa•	 a 6	 y aa'

2C 2CH	 2C	 2CT

^
a

6
- - cx	 a

6 + x a s + a6
y

2CM 2CT	 22Cq

A

t

a
- Cmy +

= C'z ,	 au	 a6	 ^x acr

-3

I
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G

CL 14 a  	 (1W + C"o COs h + (^W p - Z ' 6W3^ COS 2 /1l
r	 //

CL T = a T ( iT + a°	 e + T 6 e^

Cmf = Cmfo Cmfa a0

cL 

2
W

Co W	
Co W 0 + TTY e

6 P	 iP + iW + a°

if the equilibrium deflections of the wing are included in the1

trim calculation then the ,solution for trim becomes quite complex. It

seems unlikely that the equilibrum deflections will have a significant

influence on the trim of the aircraft and therefore they will be neglected

in the solution for trim. With this assumption,

2CX 2CH

a6 ao

2C 7 2CT
as =a

2Cni 2Cmy

a -o _ au

CtW	 au (1W +(yo}

`	 The simplest trim problem is the case in which the rotor shaft is

f	 aligned with the initial velocity, that is, when 6p 	 0, or in other

words when iP =	 (i, + a° ). In this case, it is further assumed that

cyclic pitch is not used for control such that also in trim 81c and els = 0

then the rotor trim condition is a perfectly axisymmetric case and
f
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2CH	 2C

m
ao=0
	 and	 ao0 .

Ip

Given the geometry of the aircraft, and selecting the initial
ii

flight velocity V. (actually the advance ratio) and the flight path

angle yo, the three equilibrium equations may be solved to determine

the trim values of the airplane angle of attack cep, the elevator angle
2CT

S e , and the rotor. thrust, a 6

For the more general case in which SP is not equal to zero, but

is still a small angle, that is, when airplane flight is being

considered, linearized expressions are employed to 'calculate the rotor

inplane force and the rotor pitching moment.

For this more _complex case in-which-the blades are assumed

to be torsionally rigid and no cyclic is applied for control, the

following equations are involved. The gimbal motion is determined from

(,To (vc _ 1) + K P y M1 i) pG C = YM' PG C + Ym^ Go a S

i	
//	 M	 pp

GS + Y	
w 

S P\10 (VG - 
l) + K P' y M Pi) OGC - YMR PGC + Y14-N

i	 r

2Cm = Io (v^ - 1) OGca p

2CH	

g,
a 6 - Y X (w + R) 8 P + ('Y 4^	

yH^ ' yKP RP i) PG C

4

(1i5 + ^(	 - 'Y KP HP i) RG S

The aerodynamic derivatives in the above expressions do depend upon the

trim thrust to some degree. However, it would be expected that the effects
i

of rotor inplane_force have only a small effect on the force equilibrium.
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The solution for trim can therefore proceed as in the purely axial

flow case with the selcted small incidence of the shaft. Once the

angle of attack of the aircraft is computed such that an initial

value of 6p is obtained, the flapping coefficients can be calculated

and consequently the equilibrium values of the inplane force and the

hub moment can be calculated and the trim calculation repeated to

account for these effects.

Once thisrocedure is completed, expressions from Reference 1p	 P 

can be used to calculate the trim values of the remaining rotor forces

and moments which are used in the equations of motion.

If rotor cyclic is introduced into the trim calculation, then the
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