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SUMMARY
 

Recent NASA studies have been conducted to determine
 
the feasibility of-imaging the Venusian surface using an
 
orbiting synthetic aperture radar (SAR).
 

The earliest studies on orbital radar imaging have
 
emphasized mapping from a circular orbit. 
This method sim­
plifies the radar system since processing parameters-remain
 
constant. However,-because of spacecraft propulsion constraints,
 

and data transfer considerations, it-can be advantageous to
 
operate from an elliptical orbit.
 

Significant problems associated with SAR imaging.from
 
a highly elliptical orbit include the compensation for a
 
large, varying, time delay and radial-velocity-induced Doppler
 
frequency shift; transmit-receive interlacing over a large change
 
in slant range; 
and large change in azimuth focal parameters.
 
However, these problems are reduced by using a batch processing
 
mode.
 

Previous studies utilized a three-axis stabilized
 
spacecraft. A planned Pioneer Venus Orbiter mission uses a
 
less expensive spin-stabilized spacecraft for altimetry
 
and coarse resolution imaging. The purpose of this study
 
is to determine the feasibility of obtaining improved resolution
 
on the order of 100 meters from a spin-stabilized Pioneer class
 
spacecraft. 
This report begins with a review of.imaging radar
 
fundamentals, and proceeds to discuss restrictions encountered
 
with a spinning spacecraft.
 

For coherent radars, range resolution is determined by
 
RF bandwidth, and azimuth resolution is determined by the
 
coherent integration time or synthetic aperture length. 
The
 
coherent integration time can correspond to a single pulse,
 
or to the total interval covered by a number of pulses processed
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for unfocused or focused synthetic aperture radars. In the
 

later case, the total synthetic aperture length is limited
 

by the target illumination time, which is equal to the
 

transit time through the real antenna beam for a 3-axis
 

stabilized spacecraft, or is equal to the time-on-target during
 

a scan for a spin-stabilized spacecraft.
 

When operating from an elliptical orbit with a limited
 

antenna aperture, delay-Doppler ambiguity constraints limit
 

coverage at the higher altitudes and shallow grazing angles.
 

Power requirements may also limit coverage at the higher
 

altitudes.
 

Because the data is collected in bursts, batch mode
 

processing will be required. On-board processing will be
 

limited to Doppler tracking, which will be required to com­

pensate for the change in instantaneous Doppler center fre­

quency due to antenna scanning and spacecraft radial velocity,
 

and PRF buffering. For 6 bit quantization, the telemetry
 

data rate is approximately 180 kbps. The PRF buffer storage
 

is 3 kbits and the total buffer storage for a spin cycle is
 

3 Mbits.
 

Azimuth correlation would be done with a ground based
 

digital processor. Range pulse compression would be done
 

either in the spacecraft or with the ground processor.
 

Performance results are given for three principle spin
 

axis orientations: 1) in the orbital plane, 2) normal
 

to the orbital plane, and 3) a third general orientation.
 

A computer program was developed which calculates the mapping
 

parameters, the power requirements, and the surface longitude
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and latitude of the target point for a given circular antenna
 

aperture diameter, antenna mounting angle and a spin vector.
 

A modified version calculates the same parameters when the
 

angular orientation of the antenna is continuously directed
 
toward the direction of maximum grazing angle. Sinc, the
 

optimal mapping parameters and minimum power requirement
 

occur at the direction of maximum grazing angle, the modified
 
version generates the envelope for the curves generated during
 

individual spin cycles.
 

The results obtained from this study indicate that by
 
placing the spin axis normal to the orbital plane and the
 

antenna mounting angle such that the boresight is 10 to
 

15 degrees off nadir, complete planet coverage at 30 to
 

160 meter azimuth resolution is attainable. The average
 

operating transmitter power required for a SNR of 10 dB is 10
 

to 200 watts during a nominal 120 msec mapping interval once
 

per spin cycle. The average power over a 12 second spin cycle
 

is 0.1 to 2 watts.
 

The results of this study demonstrate mission feasi­
bility. A baseline design study is recommended to optimize
 

the selection of orbital and radar parameters and to in­

vestigate processing algorithms in detail.
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GLOSSARY
 

A 	 antenna area
 

a(e) 	 two-way antenna voltage gain
 

B 	 Rf bandwidth
 

B Doppler frequency to first null of antenna azimuth
 

pattern
 

B azimuth Doppler bandwidth
 
a 

Doppler filter bandwidth
BD 


c velocity of propagation
 

azimuth compression ratio
CA 


range compression ratio
CR 


d 	 antenna diameter
 

antenna azimuth aperture dimension
d 
a 

de 	 antenna elevation aperture dimension
 

e 	 orbit eccentricity
 

fD 	 Doppler frequency
 

h radar altitude
 

k Boltzmann constant
 

L RF and propagation losses
 

LA synthetic aperture length
 

number of 	pulses per synthetic aperture interval
NA 


NB 	 Buffer storage for a spin cycle
 

Buffer storage for pulse repetition period
NpRF 


P average transmitter power
 

q quantized word size
 

R slant range
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RAVE average video data rate
 

RB buffered video data rate
 

R minimum video data rate

min 

RV raw video data rate 

s(e) processed signal
 

S spacecraft spin rate
 

SNR signal-to-noise ratio
 

T coded pulse length
 

T Delay to first null of antenna elevation pattern
 

T Length of video return
 

TA coherent integration time
 

TM mapping time interval
 

TB time-bandwidth product
 

T effective receiver temperature

e 

V radar velocity
 

VN radar velocity component normal to the line of
 
sight
 

p radar velocity vector at periapsis
 

W azimuth patch length
 

x radar position along synthetic array
 

x position of radar at n-th pulse 

Ba azimuth beamwidth a 

Belevation beamwidth
e 

AfD Doppler bandwidth
 

AR slant range interval
 

AT uncoded pulse length
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AT' compressed pulse length 

Ax azimuth spatial sampling interval 

Ae angular azimuth resolution 

T1 antenna aperture efficiency 

received phase of n-th pulse 

angle between the projection of the spin vectoron the orbit plane and the radial position of the 
spacecraft at periapsis 

0A angular synthetic aperture interval 

om angle between antenna boresight and spin axis 

pP angle between velocity vector and antenna boresight 

0sangle between spin vector and orbit plane 

eT angle between velocity vector and target line-of­
sight 

x RF wavelength 

Pa azimuth resolution 

Pg 'ground resolution
 

po azimuth resolution for a non-spinning spacecraft
 

@r slant range resolution
 

abackscatter coefficient
0 

*grazing angle
 

Op angular velocity of the antenna
 

angular velocity of the target line-of-sight
T 
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1 

INTRODUCTION
 

Recent achievements in planetary exploration have in­

cluded the collection of fine resolution visual imagery of
 
the planets Mars and Mercury from various Mariner spacecraft.
 
However, the cloud covered surface of the Earth's nearest
 
neighbor planet, Venus, defies visual imaging systems.
 

Earth-based radar astronomy has permitted us to deter­
mine the rotation rate of Venus, and has also yielded coarse
 
resolution radar reflectivity maps of the planet surface.
 
Recent upgrading of the Arecibo radar site is expected to
 

permit resolutions of 1 to 2 km near the subradar point at
 
inferior conjunction. However, the Mercury imaging missions
 

have demonstrated that surface resolutions of 100 m or less
 
are required to identify important geological features. Hence,
 
recent NASA studies [1-.] have been conducted to determine
 

the feasibility of imaging the Venusian surface using an
 
orbiting synthetic aperture radar (SAR).
 

The JPL studies [2] on orbital imaging radar
 
have emphasized mapping from a circular orbit. This method
 
simplifies the radar system since processing parameters remain
 
constant. However, a circular orbit is not necessary, since,
 
unlike visual imaging systems, SAR resolution can be made
 
independent of range. In addition, due to spacecraft pro­
pulsion constraints and data transfer considerations, it can be
 
advantageous to operate from an elliptical orbit.
 

Significant problems associated with SAR imaging from
 
a highly elliptical orbit include the compensation for a large
 

varying radial-velocity-induced Doppler frequency shift; transmit­
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receive interlacing over a large change in slant range; and large
 

change in azimuth focal parameters. The Martin-Marietta-ERIM
 

study [4] demonstrated that these problems could be easily
 

handled by using a batch processing mode, since PRF, range
 

gating and other radar parameters can be changed at discrete
 

intervals as required.
 

Previous studies [l-4] utilized a three-axis stabilized
 

spacecraft. A planned Pioneer Venus Orbiter mission [5] uses
 

a less expensive spin-stabilized spacecraft for altimetry and
 

coarse resolution imaging. The purpose of this study is to
 

determine the feasibility of obtaining improved resolution on
 

the order of 100 meters from a spin-stabilized Pioneer class
 

spacecraft.
 

Nominal parameters used in this study are listed
 

below: 

orbit eccentricity: 0.2 

periapsis altitude: 500 km 

maximum antenna diameter: 3 meters 

spin rate: 2 to 30 rpm 

wavelength: 10 cm 

Orbit and spacecraft constraints were given by the Advanced
 

Missions Office, NASA Ames Research Center. The wavelength
 

was the same used in previous Martin-Marietta-ERIM studies
 

[3,4] .
 

This report begins with a review of imaging radar fun­

damentals, and proceeds through a discussion of restrictions
 

encountered with a spinning spacecraft. Performance results
 

are given for three principle spin axis orientations: 1) in
 

the orbital plane, 2) normal to the orbital plane and 3) a
 

third general orientation.
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2 
IMAGING RADAR FUNDAMENTALS 

2.1 INTRODUCTION
 

The principal imaging radar system is the sidelooking
 

airborne radar (SLAR) which obtains along-beam or range
 

resolution by measuring time delay between returns from
 

image elements; and obtains cross-beam or azimuth reso­

lution by using a real aperture (narrow beam) antenna, or a
 

synthetic aperture (Doppler signal processing) technique.
 

Most SLAR systems operate at broadside in which the an­

tenna is directed normal to the radar velocity vector, and
 

consequently, range resolution is cross-track and azimuth
 

resolution is along-track. This is not a fundamental re­

quirement, since these radars can attain the same resolu­

tion at any squint angle that is not coincident with the
 

velocity vector.
 

A second class of imaging radars is the microwave
 

hologram radar (HR) which attains cross-track resolution
 

using real aperture phased array techniques, and along
 

track resolution using synthetic array techniques. These
 

radars can image along and to both sides of the ground
 

track using an unmodulated (CW) signal. However, in order
 

to obtain fine cross-track resolution, the radar must be
 

operated at low altitude, or at moderate altitudes using
 

the shortest possible wavelength and largest possible
 

antenna aperture. Such a system would not be practical
 

for the Venus mapping mission, but is listed here for
 

completeness. Additional discussions on MHR systems are
 

given in References [6-f­
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In the following two'sub-sections, range and azimuth
 

resolution for imaging radars are discussed from the point of
 

.view of temporal signal processing and filtering theory.
 

In Section 3 of this report, SAR azimuth resolution is
 

further considered from the point of view of linear antenna
 

array theory.
 

2.2 RANGE RESOLUTION
 

The nominal slant range resolution attainable using
 

an uncoded rectangular pulse of length AT is
 

c AT (1)
 

where c is the velocity of propagation. The required RF
 

bandwidth is
 

BET (2)
 

The output signal-to-noise ratio (SNR) of any radar system is
 

proportional to the energy in the radar pulse. Consequently,
 

the required peak transmitted power for a specified signal-to­

noise ratio is inversely proportional to pulse length. For a
 

fine resolution radar, the peak power requirements become
 

excessive if a simple rectangular pulse is used. Hence, a
 

longer coded pulse of length T and bandwidth B is used. By
 

processing the received signal with the appropriate matched
 

filter, the pulse can be compressed to an effective length of
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1 
AT' - B (3) 

Then the effective slant range resolution is
 

C 

Pr = (4)
 

The pulse compression ratio is
 

CR A T = TBRTT~(5) 

The detailed structure of the compressed waveform
 

depends on both the waveform modulation and Doppler shift
 

of the return. This structure is usually given by the radar
 

ambiguity function which describes the interfering power
 

from targets at other ranges and Doppler shifts which
 

are present at the output of the filter matched to a speci­

fied range and Doppler shift.
 

The most common types of coded waveforms used for pulse
 

compression are linear FM (chirp) signals and binary
 

phase codes. These signals can be generated and compressed
 

both actively and passively at RF, IF or video frequencies.
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Slant range resolution is the projection of the ground 

range resolution cell normal to the line of sight. Thus 

pr = pg cos ~ 
r g C(6)
 

where ' is the grazing angle. Substituting Eq. (4) in (6),
 

the ground resolution can be expressed in terms of RF band­

width and grazing angle as
 

pg = sec'p (7) 

2.3 AZIMUTH RESOLUTION -

Azimuth resolution is defined in the mapping plane
 

determined by the radar velocity vector and the radar line­

of-sight, and is measured normal to the radar line of sight.
 

Ground resolution is determined by the projection of the
 

azimuth resolution element along lines of constant Doppler
 

frequency, which are cones concentric with the radar velocity
 

vector.
 

2.3.1 NONCOHERENT IMAGING RADAR
 

In a noncoherent SLAR, the phase of the returned pulse
 

is not available, or is not used. In such a system, the
 

azimuth resolution is determined by the real aperture beam­

width.
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In this case
 

Pa R~a
 

-Ax
 
RwU
 

a (8)
 

where S is the azimuth beamwidth and d is the azimuth
 
a a
 

aperture dimension. Operational radars of this type are the
 

Motorola AN/APS-94 and the Westinghouse AN/APQ-97 imaging radars.
 

2.3.2 SINGLE PULSE DOPPLER BEAM SHARPENING
 

For the case of single pulse Doppler beam sharpening,
 

such as proposed for the planned Pioneer Venus Orbiter Radar
 

Mapper [5], the radar is required to be-coherent over the
 

length of the transmitted pulse. The spectrum of the returned
 

pulse is broadened by the Doppler spread of the illuminated
 

terrain. Azimuth resolution (Doppler beam sharpening) is
 

improved by filtering the returned signal prior to detection.
 

The azimuth resolution is determined by the bandwidth of the
 

Doppler filter.
 

The instantaneous Doppler frequency of a target at an
 

angle e from the vehicle velocity vector is
 

2V
 
D - cose (9)
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For small angles, the Doppler bandwidth is given by
 

M2VN
Af D -= A0 (10)
 
D (10
 

where
 

VN = V sin 8 (11) 

is the radar velocity normal to the target line-of-sight.
 

The Doppler spread from homogeneous terrain for a radar
 

with azimuth beamwidth a is then
 

2VN
 
a x a (12) 

By processing the returned pulse with a Doppler filter of
 

bandwidth BD ' with BD < Ba, the angular resolution can be
 

improved to
 

AG V ED (13) 
N
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The minimum attainable Doppler resolution is equal to the
 
reciprocal of the pulse length T. Then
 

?e> 

N (14) 

From Eqs. (13) or (14), the azimuth resolution is
 

Pa - 2VN D
 

> RX
 

NT (15)
 

Note that VNT is the distance the radar travels normal to the
 
line-of-sight during the Doppler processing time.
 

In order to improve the azimuth resolution by Doppler
 

filtering, the pulse length must satisfy the inequality
 

VNT > da/2 (16)
 

that is, the "effective" aperture must be greater than half
 

the real aperture.
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If an uncoded pulse is used, the slant range resolution is
 

cT
 
Pr = (17)
 

Then
 

RXc
Pa 
 r
 

and the best attainable areal resolution is
 

pp = papr sec 

RX 	c sec
 
4VN (19)
 

For the nominal parameters considered in this study, the
 

attainable resolution is on the order of 50 km by 50 km.
 

-By using a parallel bank of Doppler filters and a
 

sufficiently long pulse, the real azimuth beam can be sub­

.divided into several resolvable synthetic beams, and a coarse
 

resolution radar image can be generated from the return of.a
 

single pulse. However, from Eq. (19), we note that resolution
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is proportional to RX/VN' hence, this type of imaging is
 

attractive only for short range, short wave-length, high
 

velocity radars.
 

2.3.3 COHERENT PULSED DOPPLER RADARS
 

In a coherent pulsed Doppler radar, the radar is coherent
 

over several transmissions. The phase of the returned pulse is
 

measured with respect to that of a stable oscillator. In
 

this manner, successive returns may be processed coherently
 

in order to attain finer Doppler resolution. A synthetic
 

aperture radar is a member of this class.
 

By interpreting N successive pulses as a single coded
 

transmitted signal, the azimuth resolution can be determined
 

in the same manner as the noncoherent imaging radar. If TA
 

is the time interval for NA pulses,
 

NA
 

T A 
A PRF (20)
 

then the attainable azimuth resolution is
 

RX
 

a 2TAVN (21)
 

Now, because the angle to a target changes with time, the
 

returned signal does not remain in the pass-band of the
 

Doppler filter indefinitely; hence, the integration time
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TA is limited. The change in Doppler frequency with time is
 

2
 
Af 2 Vit
 

AfD =XY-R (22)
 

where t is reasured from the center of the aperture. Then
 

at t = + TA/2, the Doppler frequency shift should-be no more 

than hialf the Doppler resolution attainable with a filter 

integration length equal to TA. This requires 

2V2TA
2k
 

S2- - 2TA (23) 

or
 

A V N2- (24)
 

Then
 

AN (25)
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A system of this type is an unfocused synthetic-aper­
ture radar. Note that resolution is independent of beam­
width and radar velocity, and is proportional to the square
 
root of range.
 

The integration time can be extended by compensating
 
for the change in Doppler frequency during the data pro­
cessing interval. This means that the received signal must
 
be mixed with a linearly changing reference frequency which
 
matches the Doppler rate. Then the coherent integration in­
terval is equal to the length of time the antenna illuminates
 
the target. This is given by
 

T R
 

A a
N 


R X
 

VN da 
 (26)
 

Then the attainable resolution is
 

d 
PA 2TAVN = 2 (27) 

which is the limiting resolution for a fixed antenna SAR.
 

2.4 SYNTHETIC APERTURE RADAR
 

A synthetic aperture radar (SAR) is a coherent pulsed
 
Doppler SLAR which employs a relatively small antenna to
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synthesize, in effect, an aperture many times larger than the
 

actual'antenna by utilizing the relative motion of the trans­

port vehicle. The radar echo is stored and processed by a
 

computer (digital or optical) to produce a detailed strip map
 

of the terrain. The azimuth resolution can be made indepen­

dent of range by "focusing" simultaneously at all ranges in
 

the processing.
 

Basic signal processing concepts are identical to those
 

discussed in the previous section. A different approach will
 

be presented in Section 3.
 

Historically, most SAR's have operated in a non-real­

time mode in which the return is coherently recorded as a
 

two-dimensional signal history on photographic film and then
 

processed in a coherent optical processor. Recent advances
 

in digital circuit technology now permit real-time processing
 

for moderate scene sizes and resolutions. Whenever complete
 

on-board processing is not feasible, such as aboard a light-.
 

weight spacecraft, digital preprocessing techniques can be
 

used to minimize data storage or data link bandwidth require­

ments for the non-redundant video data.
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3
 
SYNTHETIC APERTURE RADAR
 

RESOLUTION THEORY
 

3.1 INTRODUCTION
 

In the previous section, an expression for the azimuth
 

resolution of a SAR was given based on Doppler filtering of
 

the coherent returned signal history. In this section, a
 

brief derivation of the achievable resolution will be given
 

in terms of linear antenna array theory.
 

3.2 ANGULAR RESOLUTION OF A SYNTHETIC ARRAY
 

Let x denote the position of the radar along the syn­

thetic array shown in Figure 3-1. Let
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igure 3-1: Synthetic Array Geometry
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where the two-way phase
 

n-47 nAxCoe
= A COS (30) 

is measured with respect to the phase of the first return,
 

and the amplitude a(O) is proportional to the two-way vol­

tage gain of the radar antenna in the direction e.
 

Then, for a uniformly weighted synthetic array, the
 

response in the direction eo is proportional to
 

S N-1
 

ja(0)NRI exp {- 4,i n (cos 0 -cos 80o

n0
 
n==O f~ff 

= Ia(e) 2 sin2 [2 N kcos 6 - cos e0 )] 

N2 sin 2 [2F Ax (cos e cos e 

.2 rLA sine 0 

2 s l 20 

sin 2 [27Fx sin 0 - o (31) 

The angular resolution to the first null of the synthetic pattern
 

is
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x 

2LA sin 60 (32) 

and the corresponding azimuth resolution at slant range R
 

is
 

= RAG
a
 

RX
 
2LA sin Go (33)
 

which is identical to Eq. (21) if we make the substitution
 

LA sin 0o = VNTA 
 (34)
 

If R >> LA, the angular synthetic aperture interval is given
 

by
 

LA sin o
 
A R (35)
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in which 0A is the total angular change during processing.
 

Then the expression for azimuth resolution is conveniently
 

written as
 

P , << 1 (36)
a 
 2 0eA 

3.3 UNFOCUSED SYNTHETIC APERTURE
 

Equations (28) through (31) strictly apply only if the
 

target is in the far field of the synthetic pattern. The
 

limiting aperture length is usually defined by the maxi­

mum length over which the two-way quadratic phase error is
 

less than z/2. The maximum array length is then
 

LA sin eo = /RX (37)
 

Then the azimuth resolution for an unfocused synthetic array
 

is bounded by
 

p > 
a - 2LA sin 0 2 (38) 

which differs from Eq. (25) by a factor of 0.7. (Equation
 

(25) is more conservative in that it allows a maximum
 

quadratic phase error of ir/4.)
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3.4 FOCUSED SYNTHETIC APERTURE
 

If finer resolution is required, the synthetic aperture
 

length must be increased beyond that given by Eq. (37). Then
 

the quadratic (and higher) phase terms must be matched over
 

It can be shown that the two-way
the processing aperture. 


change in phase over the synthetic array is approximately
 

4(x) - 4r co x2 2
 
(xCos 6 - sin 0) (39)
 

where 6 is the angle to the target and R is the range.
 

Unfocused processing compensates for the first term in
 

Eq. (39). Focused processing compensates for the first
 

and second. The limiting aperture length is determined
 

by the real antenna illumination and is nominally
 

-
= R = 
L sin 0 

Aa (40)
 

The limiting resolution is da/2 or X/(2 a) which can be
 

obtained by substitution of Eq. (40) into (33). This result
 

is identical to (27).
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A measure of the azimuth processing complexity is
 
-ithe azimuth compression ratio which is
 

LA sin e 
A - Pa
 

RX
22
 
2pa (41)
 

It can be shown that the memory requirement for digital
 
processing of the synthetic array data is proportional to
 
CA For an unfocused SAR system, the best resolution is
 
achieved for CA = 2 if equations (37) and (38) are used to
 
define array length and resolution.
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4 
SAR AMBIGUITY CONSTRAINTS
 

4.1 INTRODUCTION
 

The pulse repetition frequency (PRF) of a SAR must be
 

high enough to sample the received Doppler spectrum, and
 

simultaneously, be low enough to prevent confusion with
 

second-time-around (STA) echoes. For a given PRF, squint
 

angle and target grazing angle, the ambiguity constraints
 

lead to antenna beamwidth constraints and corresponding
 

target coverage constraints.
 

4.2 AZIMUTH APERTURE CONSTRAINT
 

The Doppler bandwidth to the first null corresponding
 
to a uniformly illuminated rectangular aperture is
 

2V 
-B- i
 

a (42) 

where VN is the radar velocity normal to the line-of-sight,
 

and da is the azimuth aperture length. It is shown in Ref.
 

[8]that azimuth ambiguities are negligible if the two way
 

antenna gain is down by at least 16 dB at the Doppler cone
 

angle corresponding to the PRF. Hence*
 

PRF > 1.356 B
 

N
> 2.712 
a (43) 

*Complex sampling, or range offset video is assumed,
 
otherwise, the PRF constraint must be doubled.
 

35 

PRMThfING PAGE BLANK NOT FILMED 



IjRIM 
 FORM RLY WILLOW RUN LAOORArORES.TME UNIVERSITY OF MICHIGAN 

This leads to a nominal azimuth aperture constraint of
 

2.712 VN
 

a- PRF (44)
 

4.3 ELEVATION BEAMWIDTH CONSTRAINT
 

The two-way echo delay to the first hull over the 

illuminated swath is given by ­

2RX
T (5c de tan (45) 

where de is the elevation aperture height, and ' is the 

grazing angle at the target patch. To eliminate STA echo 

ambiguities, the PRF must satisfy the constraint [8] 

1

PRF < 

c de tan 

- 2.712KVR(46.) 
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This requires an elevation aperture constraint of
 

d > 2.712 RX PRF
 
e -c tan ' (47) 

4.4 PRF AND TIME BANDWIDTH CONSTRAINT
 

Combining Eqs. (43) and (46) we get the PRF constraint
 

1
 
1.356 B < PRF <
 

1.356 T (48)
 

In order to satisfy Eq. (48), the time-bandwidth product
 

(TB) of the illuminated swath must satisfy the constraint
 

TB < (1.356)-2 = 0.54 (49)
 

If TB > 1, then coherent pulse Doppler imaging, or
 

even range pulse compression cannot be used due to the self
 

clutter induced by Doppler ambiguities. In this case, simple
 

single pulse radar imaging is required with the resulting
 

resolution constraint given in Eq. (19).
 

If TB < 1 then synthetic array techniques can be used.
 

To realize a signal-to-ambiguity ratio of about 20 dB re­

quires that TB < 0.54. For larger values of TB, the self
 

clutter level due to delay-Doppler ambiguities will increase
 

at the edge of the scene, gradually moving toward the center
 

as TB 1. Thus, the system essentially fails gracefully.
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5 
SAR POWER REQUIREMENTS
 

Signal-to-noise ratio (SNR) is the ratio of the average
 

clutter energy to average radar noise energy in an image
 

resolution cell. One convenient formulation for the case
 

of a limited antenna aperture is
 

2
SNRP n A c a 0 7T/2 

16ikTeBL R3 x VN cos ' (50) 

where
 

P = average transmitted power
 

n = antenna aperture efficiency
 

A = antenna area
 

c = velocity of propagation
 

a = surface backscatter coefficient per unit area
 

k = Boltzman's constant
 

Te = effective receiver temperature
 

B = RF bandwidth
 

L = RF and propagation losses
 

R = slant range
 

x = radar wavelength
 

V = radar velocity normal to the line of sight 

= grazing angle at the surface
 

Note that the SNR is independent of azimuth resolution.
 

This is due to the fact that the image clutter return is
 

noise-like, and as the azimuth integration time is increased
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in order to improve azimuth resolution, signal and noise
 

energy both increase at the same rate.
 

For this study, the following fixed parameter values
 

were assumed: 

T 700 0K X = 10 cm 
e 

3= 3MHzf 
= 0.85 

L 10 dB 

The model for the surface backscatter coefficient as
 

a function of grazing angle was taken from Ref [5]:
 

0.0133 
sin

0 * + 0.1 sin 7(cos p) (51)
 

and is plotted in Figure 5-1..
 

(50) and (51), SNR is a function
According to eqs. 


of RF bandwidth and grazing angle. When mapping near nadir,
 

planet curvature can be neglected, and slant range can be
 

approximated by
 

hR 
 (52)sin i 

where h is the radar altitude. Then from Eqs. (50-52), SNR
 

can be-expressed in terms of velocity,, surface grazing angle
 

and bandwidth as
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7 <0.0133.sin 'P
SNR = K sin3 c 
)3VN TB cos (cos i + 0.1 sin Z 

(53)
 

where K contains all other constant terms of Eq. (50). The
 

second factor in Eq. (53) is the ground range resolution
 

pg given by Eq. (7), and is plotted in Figure 5-2 for
 

B = 3 MHz. (N'te that Eqs. (50) and (53) are invalid at
 

900 grazing angle for which the ground resolution approaches
 

the limit, 2i/hc/B.)
 

From Eq. (53), we then observe that for a fixed band­

width, SNR is maximized when operating at the largest possible
 

grazing angle. However, from Figure 5.2, we note that
 

ground resolution degrades rapidly at large grazing angles.
 

In addition, radar layover is emphasized at steep grazing
 

angles when imaging terrain features-have significant
 

elevation relief. For the study, grazing angles were
 

therefore kept to 800 or less.
 

By increasing the RF bandwidth at large grazing angles,
 

ground resolution can be held constant. However, in this
 

case, the loss in SNR due to increased noise bandwidth is
 

more than overcome by the increased backscatter coefficient,
 

and SNR is still maximized when operating at maximum grazing
 

angle.
 

Previous Venus Mapper studies [2-4] have emphasized
 

mapping at steep grazing angles (on the order of 800),
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Figure 5-1. Terrain Backscatter Coefficient
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Figure 5-2. Ground Resolution
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primarily due to SNR considerations based on the backscatter
 

model given in Eq. (51). However, no significant amount of
 

radar imagery is available at steep grazing angles to assist
 

in evaluating its utility. Verification of utility as well
 

as the backscatter model at steep grazing angles is required
 

to add confidence to mission feasibility.
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6 
SAR DATA PROCESSING
 

6.1 INTRODUCTION
 

In this section we will briefly describe two approaches
 
to SAR azimuth data processing. More detailed descriptions 

are available in Refs. [9 and 10] . It will be assumed that 

range compression, if required, is done first at RF, IF, 
or video frequencies. The radar azimuth data is sampled 
at the PRF rate. It will be assumed that the data is also
 

sampled in range. Processing algorithms will be described
 
for a single range bin. Similar processing will be required
 
simultaneously for all range bins in the image, where, in
 
general, processing parameters are a slowly varying function
 

of range.
 

6.2 CONTINUOUS PROCESSING
 

In the continuous or linezby-line processing mode, a
 
single azimuth image element is generated at each range
 
interval each time the radar moves a distance equal to the
 
azimuth resolution cellwidth. This is illustrated in
 
Figure 6-1. In this mode, the required radar spatial
 
sampling interval is equal to the desired azimuth resolution
 
cell width. The minimum number of azimuth samples required
 
is equal to tle azimuth compression ratio given by Eq. (41).
 

For focused SAR processing, the azimuth compression ratio
 

is greater than 1, hence the synthetic aperture length is
 
greater than the resolution cell size.
 

If the PRF corresponds to a finer azimuth sampling rate
 
than required, then the data is presummed or prefiltered
 
before azimuth compression. Presumming removes excess
 
Doppler information from the azimuth signal, which then
 
permits resampling at the lower rate.
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Figure 6-1. Continuous Processing
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Figure 6-2. Batch Processing with Nonoverlapping Apertures
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Note that the minimum PRF required to satisfy the
 

azimuth ambiguity constaints is determined by the radar
 

antenna. For a Venus Mapper mission, an antenna aperture
 

of the order of 2 to 3 meters is assumed. Eq. (43)
 

demonstrates that this will require a spatial sampling
 

interval on the order of 1 meter. The desired azimuth,
 

resolution is on the order of 100 meters. Thus, presumming
 

can result in a 00 to.1 reduction in data rate to the
 

azimuth processor.
 

Continuous processing can only be conveniently accomplished
 

for broadside mapping (00 = 900). This is the normal t6de
 

for current airborne SAR'-s using coherent optical processors.
 

It is an efficient method when all of the available Doppler
 

bandwidth is used to obtain an azimuth resolution less than
 

the antenna aperture. However, when much coarser resolution
 

is acceptable, such as a Venus mapping mission, the batch
 

mode of processing can result in a much more efficient radar
 

system.
 

6.3 BATCH PROCESSING
 

In the batch processing mode, several azimuth image
 

elements are generated at each range interval each time
 

the radar moves a distance equal to the synthetic array
 

length, as illustrated in Figure 6-2. In this mode, the
 

required radar spatial sampling interval is finer than the
 

azimuth resolution and is determined by the angular extent
 

of the scene. Batch processing enables all points illuminated
 

.by the radar during the synthetic array interval to be
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processed. Then, if the synthetic array length LA is less
 

than the azimuth extent.ofithe--illuminated patch W, the
 

processing apertures are non-overlapping. This means that
 

the radar.can be turned-off-between processing intervals,.
 

thus conserving power without sacrificing SNR or resolution.
 

Batch pcrocessiig -an be used-when mapping away from
 

broadside and, hence, is m6re'l&xiblethancontinus' -­

processing. It can also iake efficient-use'of'fast Fourier
 

transform processing algorithms>that are easily matched to
 

the phase modulation induced by the Doppler signal-history.
 

6". 4 DATA RATES 

The requirgd ra qvideo sampling rate is equal to twice
 

the RF bandwidth, or 

RV 2B (54) 

The length of the video return is
 

2AR
T - o (55) 

qhwereAR is-the mapped slant'range target depth. From-am­
-
biguity constraints; thiszmu tbe less than the pulse tepeti­

Vt*6h interval. By buffering the sampled video, the signal
 

can be s rethedto fill the entire interpulse period. Then
 

the average video data rate becomes
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RB = 2B -T - PRF
 

= 2B 2AR . PRF
C 

2AR 
Pr PRF (56) 

The minimum PRF is determined from ambiguity constraints
 
given in Section 4. However, an additional data rate reduc­

tion can be obtained by presumming for continuous line7by­
line processing; or by azimuth data buffering for batch
 

processing.
 

For continuous processing the azimuth data can be low­
pass filtered to a Doppler bandwidth of
 

B VN
 

D Pa 
 (57)
 

This corresponds to the minimum PRF if range offset or com­
plex video is used. Then the minimum data rate is
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R. = = -r " BDRmin 2AR 

2 AR VN 

PrPa 
 (58) 

which is equal to twice the number of resolution cells
 

mapped per unit *time.
 

For batch processing, we recognize that the illhminated
 

azimuth patch is much greater than the required synthetic
 

aperture length if a partially focused syntheti& aperture
 

is used. The illuminated patch width is
 

RA 

a (59)
 

The required synthetic aperture length is
 

2RX
 pa (60)
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Then to map the azimuth patch given by Eq. (59), the radar
 
data need only be collected for the distance given by Eq. (60).
 
This results in an average data rate of
 

2AR LA
 
AVE Pr PRF
 

-AR PRF 
- d 
a 

PrPa. 
 (61)
 

Substituting Eq. (43) for the minimum PRF, we get the
 
result
 

2.7 AR VN
 
m. 	 ­
mnn 

PrPa 
 (62)
 

By including Doppler prefiltering, the mapped azimuth swath
 
W and the Doppler bandwidth are both reduced, and the numer­
ical factor of 2.7 in Eq. (62) can be reduced to 2.0, as it
 
is in Eq. (58).
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7 
ELLIPTICAL ORBIT CONSIDERATIONS
 

7.1 INTRODUCTION
 

The simplest analytical approach to planetary radar
 
mapping is to consider a circular orbit, which results in
 
essentially the same design equations and well known pro­

cessing concepts that apply to the straight flight path
 
aircraft case. When mapping from an elliptical orbit, the
 
radar system must compensate for changing altitude and
 
radial velocity. An additional consequence is the change
 
in grazing angle due to changes in slant range when mapping
 
with fixed squint and depression angles. Several reasonable
 
mapping strategies for SAR operation in an elliptical orbit
 
are given in Refs. [3 and 4] . Some of the results of these
 

studies are reviewed here.
 

7.2 RESOLUTION
 

Since attainable azimuth resolution is independent of
 
range, a 3-axis stabilized spacecraft can achieve the same
 
resolution in an elliptical or circular orbit. However,
 
since the required synthetic aperture length and azimuth
 

compression ratio is proportional to range, processing com­
plexity is increased. However, by preprocessing the data
 
on board the spacecraft, the data link requirements are
 

essentially unchanged.
 

7.3 AMBIGUITY CONSTRAINTS
 

The PRF and azimuth aperture constraints for an ellipti­
cal orbit are only slightly affected by the small changes in
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velocity and squint angle. However, the range ambiguity and
 
elevation aperture constraint are significantly affected by
 
increasing range and decreasing grazing angle. To obtain
 
adequate coverage at periapsis while satisfying ambiguity
 
constraints at radar locations away from periapsis a multi­
beamwidth elevation antenna pattern may be required.
 

7.4 POWER REQUIREMENT
 

-From Eq. (50), the average power requirements are pro­
portional to the cube of slant range. Hence, for highly
 
elliptical orbits, SNR may limit coverage away from periap­
sis. For the backscatter model given by Eq. (51), the de­
crease in a with decreasing grazing angle for certain mapping
 
strategies may also limit coverage due to inadequate SNR.
 

7.5 DATA PROCESSING
 

Due to the continuously changing range and-the neces­
sity for frequent alterations in the PRF required to pre­
vent transmit-receive interference when mapping from an
 
elliptical orbit, a perpetual line-by-line mode of pro­
cessing may not be feasible. However, it has been shown
 
[41 that a batch mode processor can easily'be used, and in
 
fact, is also recommended for circular orbit mapping.
 

Hence, data processing does not have a significant impact
 

on orbit selection.
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8 
SPINNING SPACECRAFT CONSIDERATIONS
 

8.1 INTRODUCTION
 

When mapping from a spin-stabilized spacecraft, the
 
illuminated patch and available synthetic aperture length
 

are restricted by the scanning motion of the antenna rather
 

than by the orbital motion of'the spacecraft. Depending on
 

spin axis orientation and antenna mounting angle, this may
 

significantly restrict coverage and/or resolution.
 

8.2 RESOLUTION
 

We will first consider a simplified geometry in which
 
the spin axis is normal to both the radar velocity vector
 

and the instantaneous antenna boresight direction. This is
 

illustrated in Figure 8-1.
 

Let 0T be the instantaneous angle between the velocity
 

vector and a point target at range R. Let 0 be the instan­

taneous angle between the velocity vector and the antenna
 

boresight. Let time be referred to the center of the syn­

thetic aperture at which time p (0) = aT(0 ) . Then the
 

antenna boresight direction during the synthetic aperture
 

interval is
 

p(t) = ep(0) + 2 t (63) 

where Q is the antenna or spacecraft spin rate in rad/sec.
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(Spin Axis Normal to Page)
 

RADAR VELOCITY
 

VT
 

DIRECTION
 

IRCTION 

Figure 8-1. 	 Planar Synthetic Array Geometry for a Spinning
 
Spacecraft.
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During the same interval, the angle to the target is given by
 

the two-term Taylor Series expansion:
 

6T(t) = 0 T(0) + 0T t (64) 

where
 

T =eV sin 6T T R (65)
 

is the instantaneous rotation rate of the target line-of­

sight at the center of the synthetic aperture. Then, the
 

total synthetic aperture length is determined by the length
 

of time the target is within the antenna beamwidth a' This
 

is given implicity by
 

TA'/2T IQT - Qp dt = a (66)
 

-TA/2 

or, approximately, if the beamwidth is small by
 

TA Q aTA- iP T (67)
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Then the synthetic aperture length is
 

LA 
 V TA
 

V Ba 

l0P - QTi (68) 

Then from Eq. (33), the azimuth resolution is
 

RXI2p -T[ 

Pa = I2 VV'sin e 
a 0 

x IQpP TI 
-2- a 1 TI 

2Q - aTI 

P0 h(69) 

where
 

po = 2a 
(70)
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is the azimuth resolution attainable in the absence of antenna
 

scanning.
 

In general, P-P>> QT' then
 

AR P
Pa 2 Sa V sine 

a 0 

R da __p 

2 V sin 6 o (71) 

and, hence, azimuth resolution is proportional to range,
 
aperture size and rotation rate, and inversely proportional
 

to radar velocity.
 

For the general case of nonplanar geometry, the respec­
tive angular rates are given by
 

P R (72)
 

and
 

x2R
T R (73)
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where S is the spin vector, R is the instantaneous antenna. 

boresight, V is the radar velocity vector, and R = ilj is 

the slant range. 

8.3 AMBIGUITY CONSTRAINTS
 

The radar ambiguity constraints are determined by the
 

instantaneous boresight direction, slant range and grazing
 

angle and are given in Section 4. The most significant
 

factor affecting the radar ambiguity constraint is grazing
 

angle which changes rapidly during the antenna scan cycle.
 

Thus, coverage may be limited by ambiguity constraints.
 

8.4 POWER REQUIREMENT
 

SNR and power requilements are independent of azimuth
 

resolution and arie given by Eq. (50) which applies to the
 

spinning or boresight stabilized spacecraft. However, the
 

average power in Eq. (50) represents the transmitter power
 

averaged over one pulse repetition interval. When mapping
 

from a spinning spacecraft, the radar transmitter can be
 

turned off during the interval in which the ground is not
 

illuminated or the ambiguity constraints cannot be satis­

fied. For the parameters considered in this study, the
 

radar will be on for about 0.1 seconds over a 12 second
 

spin cycle. Hence, the prime power requirements may be
 

much less than predicted from Eq. (50).
 

8.5 DATA PROCESSING
 

Because the data is collected in bursts, a batch mode
 
processing will be required. On-board processing will be
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limited to Doppler tracking, which will be required to com­
pensate for the change in instantaneous Doppler center fre­
quency due to antenna scanning and spacecraft radial velocity,
 

and PRF buffering.
 

The required data rates and data volume depend on orbit
 
eccentricity and spin parameters. However, an estimate of the
 
data handling requirements can be made by assuming the following
 
nominal parameters:
 

Wavelength: A = 10 cm
 
RF Bandwidth: B = 3 MHz
 

* = 780
Grazing Angle: 


Slant Range: R = 1000 km
 

Velocity: VN = 6 km/sec
 

Antenna Diameter: d = 2 m
 

Spin Rate: S = 5 rpm
 

Mapping Interval: = 120 msec
TM 

Quantization: q = 6 bits
 
Returned data length: T = 70 psec
 

Then from Eq. (54), the nominal sampling rate is 6 MHz;
 
from Eq. (45), the nominal two-way echo delay of the video
 
return is 70 psec; and from Eq. (43), the nominal PRF is
 

8 kHz. Then from Eq. (56), the buffered data rate is 3.4 MHz.
 

The spin period is 12 seconds. The video data is re­
ceived for 120 msec. Hence, the average data rate over the
 
spin cycle is approximately 30 kHz. This is the telemetry
 
rate required to transmit the data in real time. For 6 bit
 

quantization, the telemetry data rate is approximately
 
180 kbps. The PRF -buffer storage is
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NPRF 	 2 B T q
 

3 kbits (74)
 

The total .buffer storage for a spin cycle is
 

NB = NpRF *PRF • TM
 

3 Mbits 	 (75)
 

Azimuth correlation would be done with a ground based
 
digital processor. Range pulse compression would be done
 

either in the spacecraft or the ground processor.
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9
COMPARISON OF THREE-AXIS STABILIZED SPACECRAFT
 
AND SPINNING SPACECRAFT IMAGING CAPABILITIES
 

9.1 INTRODUCTION
 

Mapping from a spinning spacecraft represents a radical
 
departure from conventional SAR techniques. However, if the
 
required azimuth resolution is considerably coarser than the
 
real-antenna azimuth aperture, then a short synthetic aperture
 
time is required to obtain that resolution. If the space­
craft spin rate is slow enough to permit illumination of a
 
target patch for the required interval, then a spinning
 
spacecraft can provide the required resolution at the same
 
power levels as a 3-axis stabilized spacecraft.
 

9.2 RESOLUTION
 

For a 3-axis stabilized spacecraft, the limiting azimuth
 
resolution is equal to half the antenna aperture, and is in­
dependent of range, velocity and wavelength. For a spinning
 
spacecraft and a narrow antenna beam, the azimuth resolution
 

is given by
 

d iP­
a-T' 
 (76)
 

where d is the antenna diameter, p is the instantaneous
 
angular velocity of the antenna boresight, and T is the
 

rotation rate of the line-of-sight between the radar and a 
target. For the cases of interest, F~pi >> [QT 1 then 
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d l pl
 
Pa -Y 

d R S sin e 
2 VN (77) 

where
 

"* = S sin e 
mn (78)
 

IQI =V
 
R (79)
 

and S is the spacecraft spin rateOm is the.mounting angle
 

(half cone angle) between the antenna boresight and the spin
 

axis, VN is the radar velocity component normal to this in­
stantaneous boresight direction, and R is the slant range to
 

the illuminated target.
 

9.3 MBIGUITY CONSTRAINTS
 

PRF ambiguity constraints are a function of antenna
 
size, slant range, and instantaneous squint and grazing
 
angles. For a 3-axis stabilized-spacecraft in an ellipti­
cal orbit the squint and grazing angles are either controlled
 

or slowly varying parameters, and-any resulting ambiguity
 

constraints tend to limit the angular mapping distance from
 

peridpsis.­
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For a spinning spacecraft, the grazing angle changes
 

rapidly during the spin angle, and ambiguity constraints
 

limit the coverage during a spin cycle. The result is that
 
mapping will then be confined to that portion of the antenna
 

scan which is closest to the spacecraft ground track. As a
 
result, the operating duty cycle of the radar will be on the
 
order of the antenna beamwidth divided by 27.
 

9.4 POWER REQUIREMENTS
 

Power requirements for a specified range resolution,
 
SNR, wavelength, orbital parameters, and terrain backscatter
 

coefficients are a function of effective antenna aperture area
 
only, as given in Eq. (50). Required antenna size is similar
 

for the two cases. Hence, the scanning motion of the antenna
 
is irrelevant with regard to power requirements or SNR.
 

9.5 DATA PROCESSING
 

Continuous or line-by-line processing can be used for the
 
3-axis stabilized spacecraft. Batch processing is required
 

for the spin stabilized spacecraft. Since batch mode pro­
cessing can be more efficient for coarse resolution radars,
 

it may be preferred even for the 3-axis stabilized space­

craft in a circular orbit. Processing details for the
 
spinning spacecraft are less conventional, and should be
 
examined in more detail, yet no new techniques are required
 

that are not already in use for other coherent pulsed
 

Doppler radars.
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10
 
RECOMMENDED SPIN PARAMETERS
 

10.1 INTRODUCTION
 

The principle parameters affecting the coverage pattern
 

are the spin axis orientation at periapsis and the antenna
 

boresight mounting angle with respect to the spin axis.
 

Spin rate and antenna diameter affect swath width, resolution,
 

and power requirements according to previously given equations.
 

The rectangular, planet-centered, coordinate system
 

used in this study is shown in Figure 10-1. The positive
 

z-axis is in the direction of periapsis, the positive
 

x-axis is parallel to the spacecraft velocity vector at
 

p-eriapsis, and the y-axis is normal to the orbit plane.
 

The spin vector is defined by its magnitude, the
 

angle 0 between the spin vector and the orbit plane,
s 

and the angle 4s between the spacecraft radius vector at
 

periapsis and the projection of the spin vector on the
 

orbit plane. The angle 0s is positive when the y-compo­

nent of spin is negative and is measured from the nega­s 


tive z axis.in the clockwise direction as shown in Figure
 

10-1.
 

10.2 EFFECT OF 's
 

To simplify the argument, let us first consider a
 
circular orbit. Given a fixed value of 8s, an antenna
 

mounting angle 0 with respect to the spin axis, and
m 


s, the intersection of the antenna line of sight with the
 

planet surface will define some track. Along this track,
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Figure 10-1. Coordinate System (at Periapsis)
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the maximum grazing angle obtainable at a given position on 

the orbit occurs when the antenna axis, the spin vector, 

and the line from the radar to the center of the planet 

are all in the same plane. The peak grazing angle over the 

orbital period occurs when the component of the spin vector 

in the orbit plane points toward the center of the planet. 

For the case of = -0, the planet surface covered by the 

track is symmetric around periapsis. Since the spin axis 

is inertially fixed, the range to the mapped region will 

gradually increase, the'maximum grazing angle will decrease
 

and the contours bounding the mapping region will diverge
 

as the spacecraft position departs from periapsis. Even­

tually the antenna boresight will completely miss the planet.
 

Values of 0s other than zero will merely cause this same
 

track to be shifted on the planet surface. The new track
 

can be visualized by rotating all points of the track cor­

responding to 0s = 0 through an angle 'p around the positive
s 


y-axis in Figure 10-1. Mapping parameters at a given point
 

on the rotated track such as resolution, power, and so forth,
 

will have the same values as those of the corresponding
 
point on the 's = 0 track. The surface coordinates of a
 

point on the rotated track relate to those of the corres­

ponding point on the 's = 0 track by the matrix of axes
 

rotations through an angle 'ps around the positive y-axis.
 

Based on the above discussion, the choice of 'ps mainly
 

determines the region of coverage on the planet surface.
 

The shape of this region and the mapping parameters are
 

symmetric around the point of peak grazing angle.
 

The basic concept holds for elliptical orbits except
 

that the vehicle altitude gradually increases from periapsis
 

and the symmetry around the point of peak grazing angle.
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is generally destroyed (except for s = 0 where the altitude
 

changes symmetrically on either side of periapsis).
 

10.3 EFFECT OF es 

The combination of es and 0m determines the maximum 

grazing angle, the resolution and the shape of the antenna 

trace-on the planet surface. 

Neglecting the surface curvature, the peak grazing
 

angle realized during the orbit equals the magnitude of
 

the difference between 0 and 0m . This occurs when the
 
s m 

component of the spin in the orbit plane points toward the
 

center of the planet. The grazing angle is the single most
 

important parameter that-affects power requirements and
 

the time-bandwidth product of-the radar signal. Minimum
 

power requirement is realized at the peak grazing angle
 

because the highest radar cross section.and the minimum
 

range to the mapped region occur at maximum grazing angle.
 

The minimum time-bandwidth product also occurs at the
 

peak-grazing angle.
 

10.4 SIMULATION
 

A computer program was developed which calculates, the
 

mapping parameters, the power requirements,-and the surface
 

longitude and latitude of the target point for a given cir­

cular antenna aperture diameter, antenna mounting angle and
 

a spin vector. A modified version of this program was de­

veloped which calculates the same parameters at the poin.tof
 

maximum grazing angle for each point on the orbit during the
 

spin cycle.
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The first version calculates the point-by-point parameters
 
as the vehicle moves on orbit and the antenna spins around
 

the spin axis. The modified version calculates the same
 

parameters assuming the angular orientation of the antenna
 

has been chosen such that the antenna is currently directed
 

toward the maximum grazing direction at any point on orbit.
 

The results obtained from the modified version clarify the
 

effects of spin axis orientation and mounting angle on the
 

mapping parameters. The percentage of coverage and the degree
 

of overlap of the mappable region between consecutive cycles
 

of spin are determined from the results of the original
 

version.
 

Results of the modified simulations are given in the
 

next three sections. For all cases, orbit eccentricity is
 

0.2, periapsis altitude is 500 km, antenna diameter is 2
 

meters, spin rate is 5 rpm, and the slant range resolution is
 

50 meters. Periapsis is assumed to be located at the equator.
 

Azimuth resolution, time-bandwidth product and average trans­
mitted power requirements for unity (0 dB)* SNR are plotted
 

as a function of target latitude. Fixed radar parameters
 

used for the power calculations are given in Section 5.
 

10.5 SPIN AXIS IN THE ORBIT PLANE
 

In this-configuration, the spin axis is in the orbital
 

plane, parallel to the planet surface at periapsis (4s =90o,
 

as = 00). This mode corresponds to the Pioneer Venus alti­

meter experiment which uses a continuously variable antenna
 

mounting angle[51.
 

Figures 10-2 through 10-4 show resolution, time-band­

*This value is convenient for scaling although a nominal
 
10 dB is considered necessary for adequate radar opertion.
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width product and power requirements for different values of
 
the antenna mounting angle 0 . (Note that these curves 
reverse direction as the boresight passes over the point of
 
maximum Latitude.) The case of 0m = 900 results in symmetri­
cal coverage about periapsis. As the mounting angle is
 

decreased, higher latitudes are favored at the expense of
 
the lower hemisphere. For a fixed antenna mounting angle,
 
coverage is limited by ambiguity constraints (via the time­
bandwidth product) and power requirements. However, if the
 
antenna mounting angle can be changed continuously during
 

the orbit, the resulting performance is given by the lower
 
envelope of the curves shown in Figures 10-2 through 10-4.
 

Figure 10-5 shows the ground track of the antenna
 
boresight near periapsis for a 900 mounting angle. This
 
represents the worst case coverage for a fixed antenna
 

beamwidth. For the assumed 2 meter antenna, surface coverage
 

is approximately 0.24 degrees of latitude or longitude at
 
periapsis and steep grazing angles. Planet rotation is
 
approximately 0.14 degrees longitude per orbit. Hence
 

there is considerable cross-track overlap available if mapping
 
is done on every orbit, but along-track coverage is inadequate.
 
Since it does not seem practical to use successive orbits to
 
fill the coverage gaps, this mode of operation does not seem
 

useful.
 

10.6 SPIN AXIS NORMAL TO ORBIT PLANE
 

In this configuration, the spin axis is normal to the
 
orbital plane and remains parallel to the planet surface at
 
the nadir point during the entire orbit (es = 900). Coverage
 
and power requirements are determined by the antenna mounting
 
angle, which determines the grazing angle at the planet
 

surface.
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-Figures 10-6 through 10-8 show resolution, time band­

width product and power requirements for different values of
 

antenna mounting angle. Note that for this case, all results
 

are symmetric about periapsis.
 

Except for the fact that azimuth resolution is limited
 

by the target dwell time, this case corresponds to a 3-axis
 

stabilized spacecraft. In particular, ambiguity constraints
 

and power requirements are identical for the two spacecraft.
 

Azimuth resolution is proportional to slant range, and
 

hence varies only slightly with antenna mounting angle. How­

ever, time-bandwidth product and power requirements are very
 

sensitive to grazing angle, and therefore vary significantly
 

over small changes in mounting angle for angles near 800
 

(corresponding to a sidelook angle of 100 off nadir). In
 

this case, improved performance might be achieved by incor­

porating a small (+50) change in antenna mounting angle. This
 

could improve coverage by operating at a shallower grazing
 

angle at periapsis, and still permit adequate SNR by using a
 

steeper grazing angle at higher latitudes.
 

Coverage for an antenna mounting angle of 800 is indi­
cated in Figure 10-9. Only the portion of the spin cycle for
 

which the time-bandwidth product is less than unity is shown.
 

In this case cross-track coverage is approximately 0.20
 

plus 0.240 due to antenna beamwidth, or approximately three
 

times the plant rotation interval per orbit. Figure 10-9
 

also indicates considerable overlap in the along-track
 

direction. Since the illuminated patch size increases away
 

from periapsis, this mode of operation can give complete
 

planet coverage.
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10.7 GENERAL SPIN AXIS ORIENTATION
 

By orienting the spin axis just off the nadir point at
 

periapsis and using a small antenna mounting angle, the ground
 

track of the antenna boresight will trace a nominal spiral
 

patch near the spacecraft ground track. As the antenna
 

mounting angle approaches zero, the achievable azimuth reso­

lution approaches half the antenna diameter. However, it is
 

easy to show that this mode of operation will permit mapping
 

only near periapsis since the grazing angle will decrease
 

rapidly as the spacecraft departs from periapsis. This will
 

quickly lead to a time-bandwidth product greater than unity
 

which will render the system ambiguous.
 

Another approach to the general case is to consider a
 

slight modification from mapping normal to the orbital plane.
 

By decreasing the angle of the spin axis from the
 

orbital plane, the spin component normal to the line-of­

sight can be reduced, thus improving azimuth resolution.
 

By increasing the angle s from zero, the latitude corres­

ponding to the peak grazing angle can be increased.
 

Figures 10-10 through 10-13 show results for a spin
 

axis 150 from the normal to the orbit plane (9s = 750 
) and
 

an antenna mounting angle of 650, with the orientation of
 

the spin axis in the orbit plane (4s) as a parameter.
 

As ds is increased from 00 (normal to planet surface at
 

periapsis), the position of the peak grazing angle travels
 

toward the planet pole, so does the position of minimum power
 

and time-bandwidth product. The antenna mounting angle is
 

650 from the spin axis, leaving a maximum possible grazing
 

angle of 100.
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Comparing these graphs to Figures 10-6 through 10-8, 

we find-that on the power and time-bandwidth product plots 

the curve corresponding toe = 90
0 

and e = 800 forms the 
s m 

envelope to the minima on the corresponding curves for 

6s , 75 and e = 65° . This is expected0 since in all cases 

the-maximum possible grazing angle is 800. In the case of 

the spin axis normal to orbit plane the spin component in 

the orbit plane is zero and there is no preferred orienta­

tion, that is,the maximum possible grazing angle can be
 

real-ized at any point on the orbit. In contrast, when the
 

spin axis is not normal to the orbit plane the peak grazing
 

angle will occur when the component of the spin in the orbit
 

plane points toward the center of the planet. This condition
 

is met at only one point on the orbit. At other positions
 

the grazing angle will have a local maximum less than 800.
 

This coincides with the argument given above on the effect
 

of -as 

Comparing the curves for resolution we find that some
 

gain is achieved when the antenna is tilted from the normal
 

to the orbit plane and the mounting angle is readjusted to
 

realize the same maximum grazing angle. This is mainly due
 

to the reduced component of the spin normal to the antenna
 

axis as discussed in Section 10.3.
 

Figure 10-13 shows the ground track of the antenna
 

bor-esight for as = 750 and s = 900. This orientation
 

increases the cross-track coverage, but introduces some
 

gaps in the along-track coverage near periapsis.
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10.8 EFFECTS OF PARAMETER VARIATIONS
 

Figure 10-2 through 10-13 arebased on an antenna diam
 

eter of 2 meters and a spin rate of 5 rpm. Some simple
 

adjustments can be made for variations in these parameters.
 

Increasing antenna diameter by a factor, k, increases
 

azimuth resolution cell size by k, decreases the time-band­

width product by k2"and decreases the power requirement by
 

k4 . Increasing the spin rate by a factor, k, increases
 

azimuth resolution cell size by k and leaves time-bandwidth
 

product and power requirements unchanged. Coverage is
 

affected by the corresponding changes in beamwidth and scan
 

rate.
 

10.9 CONCLUSIONS
 

By placing the spin axis normal to the orbital plane
 

and the antenna mounting angle such that the boresight is
 

10 to 15 degrees off nadir, complete planet coverage at
 

30 to 160 meter azimuth resolution is attainable. The
 

average transmitter power required for a SNR of 10 dB is
 

10-to 200 watts during a nominal 120 msec mapping interval
 

once per spin cycle. The average power over a 12 second
 

spin cycle is 0.1 to 2 watts. By allowing a small adjust­

ment in antenna mounting angle during the orbit, the surface
 

grazing angle can be held constant at 72 to 78 degrees, thus
 

providing a large value of backscatter coefficient, permitting
 

mapping at reasonable average power levels.
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EXTENSIONS
 

11.1 POST-DETECTION INTEGRATION
 

Results of the previous sections apply to single-look
 

imagery. The mean intensity of the resulting imagery will
 

correspond to the actual surface cross-section; however due
 

to random phases of the terrain return, the variance of the
 
image intensity will be equal to the mean, and will be inde­

pendent from cell to cell. The result is the typical speckle
 

pattern associated with coherent imaging systems.
 

If excess Rf or Doppler bandwidth is available, this
 

speckle can be reduced by post-detection integration, in which
 

the additional data is noncoherently added after linear or
 

square law detection. This is generally refered to as
 

mixed integration, or multi-look processing.
 

By averaging N independently obtained image samples
 

corresponding to the same pixel, the image variance to mean
 

square ratio is reduced to 1/N. Independent samples are
 

obtained by either frequency diversity (increased RF band­

width) or angle diversity (increased Doppler bandwidth).
 

For a spinning spacecraft, diversity may be attained by
 

tising overlapping images gathered on successive spin cycles.
 

This is a form of angle diversity.
 

In order to obtain an image intensity estimated with
 

a standard deviation equal to 10 percent of the mean, 100
 
independent samples must be noncoherently averaged. For the
 

case of a spinning spacecraft, only a few (less than 10) looks
 
at any target area can be obtained when operating at the
 

best available resolution. Additional noncoherdnt integration
 

can be obtained only by sacrificing resolution. However, it
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has not been shown that the resulting decrease in image
 

variability offsets the loss in resolution. Hence, a minimal
 

amount of noncoherent integration, determined by overlapping
 

coverage, is likely to be attained.
 

11.2 STEREO
 

When mapping with the spin axis normal to the orbit plane,
 

images from successive spin cycles may have a sufficient
 

angular displacement to permit stereo viewing. -At periapsis,
 

the distance between image frames is approximately 100 km
 

corresponding to an angular separation of about 110 which
 

corresponds to normal stereo viewing angles.
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