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Symbol Definition

A surface area of spherical drop

C 1 1 C2 quantities defined by equation (5)

c specific heat coefficient

H hA/ me

H H/K
0 0

h total convective heat transfer coefficient

i

K EAa / me
0

k 1 , k2 quantities defined by equation (6)

m mass

r1, r2 , r3 roots of equation (3)

T temperature

t time
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TECHNICAL MEMORANDUM X-73323

SOLUTION TO THE DIFFERENTIAL EQUATION FOR COMBINED

RADIATIVE AND CONVECTIVE COOLING FOR A HEATED SPHERE

INTRODUCTION

The simulation of space processing (i. e. , low gravity) cooling of metal
droplets in free fall leads to a differential equation of heat transfer that has
apparently not been solved in closed form [1]. Consider a small heated sphere or
droplet falling vertically through a large diameter tube in which it is subjected to
simultaneous cooling by radiation to the tube walls and forced convection to a
gaseous medium. It is required that the time to reach a specific (cooler) tem-
perature be explicitly determined. This will be done by solving the differential
equation for time as a function of temperature.

SOLUTION

Let T denote the temperature of the sphere at any time t. The energy
balance relating the heat transfer from the droplet by radiation and convection
is expressed by

	

me dT = -EAa(T4 - T 4 ) - hA(T - T)	 (la)dt	 o	 0

or

dT =_K ( T4 - T 4 ) - 11(T - T)	 (lb)dt	 o	 0	 0

The first term on the right expresses the Stefan-Boltzmann law of thermal
radiation; the second is the forced convection term. It is assumed that the
coefficients do not vary during the short time of fall involved in the drop tube,
which, in effect, constrains the problem to the class: slow cooling. Thus,
K

0 
= EA:r / me and H = hA/mc. In addition, the droplet is considered so

small that any thermal lag between its center and surface may be neglected.

-



The differential equation may be written in integral form as

L	 K	 (T - T )(T +T T 2 +T 2T+T +H) + const. 	 (2)
0	 0	 0	 0	 0	 0

where H
0 

= 11/ K 
0 . 

Consider the cubic equation which may be formed from the

cubic polynomial in the denominator

T3 + T0 T2 + T 0	 02T + T 3 + H 0 = 0	 (3)

The three roots of this equation are:

T
r 1 = - 3 (1 + C1)

 )T [(
rz = 3 2 - 1 . i^( 2

r3 = 30 t 2 - 1
J
 - ice( Z/

\	 \

with

C = Yk ^ k + 3 k1--Z
1	 2	 2

3 k,+ ky _ 3 k,, k2
C =	 2	 2

(4)

0

(5)
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1	 _	 -

and

H
k l = 20 + 27

o	 (g)

k2 =	 ( k 1 ) 2 + 32

The single fraction of equation (2) may now be broken into four fractions
using the quantities r 1 , r2 , and r3:

t - 1	 r A dT +	 B dT + r C dT + r D dT
K

0	 0
T - T	 T - r l	1 T-r2	1 T-r3

+ const.	 (7)

where, B, C, and D are constants that are functions of T , r l , r2 , and r3.
Integration of equation (7) yields 	 o

t = - K [Afn(T-T
0

+ BFn(T-r j) + Cin(T-r2)
o

+ D p n (T - r3)I + const.	 (H)

Using standard techniques from the theory of rational fractions, the constants
,,, B, C, and D are evaluated:

1

(To - r,) ( To - r2) (To - r3)

1
B =

(r l	o) ( ri - r2) ( r l - r3)- 1

f	 --



C —	
1

 ( r2 - T0) ( r2 - r i) ( r2 - r3)

1
D - ( r3 - To ) ( r3 - r j) ( r3 - r2)	

(9)

Substituting the system, equation (9), into equation (8) yields

1	 )

t = K0(To - r i) ( To - r2) (To
 - r3) -f n ( T - To

 [

(T - r2)( To - r3)	 (T - r i)( T - r3)

+ (r,- r2)( ri r3) 
In 

(T - 
ri) + (

r2 - r i)( r2
 - r3) In (T - r2)

(T - r i)( T - r2)

+ (s - 1) ( 3 - 2) In (T - rg)	 + const.	 (10)r r r r

Substituting the roots, equation (4), for the coefficients in equation (10) results
in

(T 
0- 

rl)(T 
0- 

r2)(T 
0- 

r3) = 4(T 
0 )

3 + H 
0	

(11)

( To - r2)( To - r3) _ ( C&- 4 	22	
(12)

( r t - r2) ( r I - r3)	 3[ (C1)	 +2]

( To - r i) ( To - r3) _ ( C L+ 4 ) IC9(Ci - 2) - 2NF73i(C 1 + 1) l
( r2 - r 1) ( r2 - r3)	 3C21( CI) + 21	 (13)



t =

(To - r i) ( TD - r2) 	 (C1+ 4)f c2(c1- 2) + 2 Ti(c t + 1 )l
( r3 - r1)( r3 - r2)	 3C2[(Ci) + 21	

(11)

The roots r2 and r3 are complex conjugates, as are the coefficents of equations
(13) and (14) . From complex number theory, the following formula will be
used to evaluate the last two terms of equation (10) which have conjugate
coefficients and arguments, respectively:

(u + iv)In (z + iy) + (u - iv) In (z - iy) = u In ( z2 + y2 ) - 2v tan-' z

(15)

The conjugate roots are used to form

C2
T - r2 =

[T.
 - To CL - 1	 - J.

TOC	
(16)

3 \ 2	 /	 24

C2
T - r3 = T - To C1 - 1)

	 2-1-3
+ i ToC

3	 2	
(17)

\ 

Using equations (13) through (17) , the following identifications of real and
imaginary components are made:

_ C +4 C -2U
3[ (C l)' + 2]

-2(C1+ 1)(C 1 + 4)
V =

1 C2[( 
CI) z + 21

T
Z = T - 3 ( 2 - 1^

-T C2

2
:i

r



Since the identifications, equation (18) , and equation (15) fit the form of the
last two terms of equation (10) , proper substitution of the rosults of equation
(11) through (18) yields for equation (10) :

2 _1	 C	 4C + 22
t = K0[4(To) + Ho]	 - In (T - To) +	

3[(Ci) + 2]	 In
'

	 T

2

+ To (C1+1)+ C +4(Cl-2 In T - Ta ^-1+ 21	 3 ( 2	 )

(To)2(C2)2	 4(Cl4	 T	 30 \ 2 - 1/+	 C+ ( 1 + 1 )-^ tan-1

	

12	
^C2[(Ct)2 + 2]	

ToC2

2,,73

+ const.	 (19)

This is the desired solution for the cooling time required to reach a
specific temperature, T. The constant is evaluated in the usual way by using
the initial temperature T i at t = 0, where, in general, Ti > T > To.

hor the case of radiative cooling only, the forced convection constant

11 - 0, so that C 1 = 2 and C 2 = f2 ^_3, and equation (19) yields

T + T
t = }K—;r-+' In T _ To + 2 tan-1 T—T	 + const.	 (20)

	

0 0	 0	 0 )

This is the same solution that the integration of equation (1b) gives with I1 = 0,
thus affording; a check of the solution, equation (19) , for a simpler well-known
case. However, if in the solution, equation (19) , we allow T 0 -- 0, then the
time for cooling is given by a limiting process as

t = 311In Ko + 11 + const.	 (21)

G

a V



T	 '

This same result is obtained if at the outset in equation (lb) we :.et T
0 

= 0,

forming the Bernoulli [2] differential equation for this case whose solution also
yields equation (21). This affords another check of the solution.

CONCLUSIONS

The solution to this differential equation will be applied as a guideline
In the physics and engineering analysis of the cooling of small metal droplets
u' ►.er solidification from molten metal as they fall freely down a tube. Such a
fr 3,i fall will simulate for a few seconds the process of forming such droplets
iii a space laboratory. There are perhaps other physical processes in which the
solution to such a differential equation could be useful.
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