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Abstract

Laser-based spectrophotometric methods which have been proposed for

the detection of trace concentrations of gaseous contaminants include

Raman backscatteririg (LIDAR) and passive radiometry (LOPAIR). In this

.report, we discuss remote sensing techniques using^lase'r^spectrometry,

and in particular a simple long-path laser absorption method (LOLA),,

which is capable of resolving complex mixtures of closely related trace

contaminants at ppm levels.

A number of species were selected for study which are representative

of those most likely to accumulate in,closed environments, such as submarines

or long-duration manned space flights. Absorption coefficients at CO™ laser

wavelengths were measured to an accuracy of + 1% or better, for each of

these species. This data base was then used to determine the presence and

concentration of the contaminants in prepared mixtures of twelve to fifteen

gases. Computer programs have been developed which will permit a real-time

analysis of the monitored atmosphere. Minimum detectable concentrations for

individual species are generally in the ppm range, and are not seriously
V

degraded by interferences even in complex mixtures. Estimates of the dynamic

range of this monitoring technique for various system configurations, and

comparison with other methods of analysis, are also given.
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I CURRENT MONITORING TECHNIQUES

A. Background

Pollution is not merely the addition of substances to the air as a

result of man's activities. Most of the substances considered to be

pollutants are already present in the environment from many natural

processes. There does exist, however, an assimilation capacity of the

environment (ACE),1 which through dilution is able to maintain a

balance. The ACE is fairly substantial for most substances but not

infinite. If the addition of substances to the environment is below

the ACE, the effect is not noticeable, and no "pollution" results. In
' t

the last century the growth in population, along with a corresponding

increase in wealth and consumption, has resulted in Increased waste per

capita, which is severely straining the ACE, especially in urban areas.

Common property resources (air, water, public recreational facilities)

are saturated. In addition, present industrial technology is moving

toward use of non-biodegradable substances (ACE is very low or zero for

aluminum beer cans) or substances like pesticides which are cumulative

in organisms high in food chains.

The air and water are viewed as free, and consequently these resources

are wastefully used. Until some value is placed on these environmental

2resources, the present misuse will continue. The social costs of
••» '

pollution include maintenance and cleaning costs, loss of recreational

facilities, and the ultimate consideration, effects on health and

mortality. These will be discussed further below.

Changes can only be brought about by placing a value on clean air.

Suggested methods include:
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1. Incentive pricing by means of graduated fines, redistribu-

tion of the burden of paying for pollution, and adjustments to receptors;

2. Federal subsidizing to help industry change generating proc-

esses, encourage recycling, and to provide tax incentives for complying

corporations; and

3. Regulation through use of large fines 'and strict non-beneficial

enforcement.

Regional management is needed for complete control of problems. A program

combining all three approaches would be best. An integral part of such

a program would be an accurate monitoring scheme both to force compliance

to the law and to permit the study of pollution dispersion and thus the

program's effectiveness.
3-5

The sources of various atmospheric pollutants have been listed often.

However, their physiological effects have not received as much publicity.

In order to form a basis for understanding the toxicity of polluted atmos-

pheres, we will consider the effect of pollution on human health next.

' Effects of individual pollutants are relatively easy to assign. Carbon

monoxide bonds with hemoglobin 210 times more readily than 0-, and thus

requires lungs and heartto work faster. At levels presently found in

downtown areas, sensory response is impaired. At higher concentrations

symptoms include headache and nausea. There appears to be no threshold

below which symptoms are not in evidence. SC^ affects the upper

respiratory tract, constricting airways and slowing mucous flow, permitting

bacteria to have longer residence time in the lung. NO destroys alveoli

(which permit gaseous exchange between the blood and air) and destroys

lower lung cilia, which sweep bacteria and particles out of the lungs,

thus lowering resistance to pneumonia. A secondary effect of N02 (and

-3-



chlorofluoromethanes) pollution might be the destruction of the ozone

layer, permitting solar ultraviolet radiation.to reach the surface of

the earth with a resultant increase in the incidence of skin cancer.

Chlorofluoromethanes are relatively non-toxic and are widely used as

refrigerants and propellents. It must be said, however, that the

actual effect of chlorofluoromethanes on the upper atmosphere is still

a matter of considerable uncertainty and controversy. Ozone disrupts

the cell membranes, causing fluid leaks into the lungs, and lowers

the diffusion of gases in the alveoli. At high concentrations, headaches
. o . ,

and lethargy are symptoms. Fortunately, 0̂  concentrations inside buildings

are usually much lower than outdoors, due to the rapid first-order decay

8of 0, on rubber, plastic, or textile surfaces.

Hydrocarbons generally are -not toxic in the concentrations present

in most polluted atmospheres, but participate as reactants in photo-
g

chemical smog, forming peroxyacylnitrates (PAN) and other carcinogens.

Some widely used commercial substances are also suspected of causing

cancer. These include CCl̂  (liver, kidney), CHCl-j (heart, liver, kidney),

and vinyl chloride (liver, .kidney, lung, spleen, bone marrow).

The threshold limiting values (TLV's) set for several common pollutants

for work room air are listed in Table I. Table II shows concentrations

12
found in "clean" air in urban environments and the level set by the

Environmental Protection Agency (EPA) in 1971. Many feel that the EPA

permitted levels are too high. A consideration of the levels during

past pollution episodes will provide a perspective.

In London in 1952, a four-day fog claimed an increased fatality

count of over 4,000 people, mostly the old and the very young. Pollution
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Table I

Compound Work Room Air
(8 hour exposure) in ppm1^

acetaldehyde

acetone

acetonltrite

ammonia

benzene

t-butanol

2-butenone

carbon monoxide

cyclohexane

o- di chlorob enzene

Freon 12

Freon 113

1 , 2-dichloroe thane

ethyl acetate

ethanol

furan

isopropanol"

methanol

methylchloroform

nitric oxide

nitrogendioxide

ozone

sulfur dioxide

100

1000

40

25

10

100

200

50

300

50

1000 .

50

400

1000

400

200

350

25

5

0.1

5

Ambient Level Extended.
Period - 6 months20 in ppm

10

300

— 1
25

1

40

20

15

60

5

100

50

10

50

50

0.04

40

40

50

0.5

1
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Table II

Pollutant Concentrations in Atmosphere in pptn

Compound

S02

N02

CO

°3 fe:
CH4

Hydrocarbons
other than CB4

* The mt

12 12
Background Urban

(annual mean)

2-4

1-3

1 x

1 x

1-1.

1 x

^̂ p̂ TTJIITt]

x 10"4

x 10" 3

10-1

io-2

5

10-3

i values

3 x IO"2

5 x 10~2

4

3 x IO"2

2

5 x 10"1

are permitted only

EPA

3 x

1.4

5 x

9

35

8 x

2.4

once

Standards*

10 annual mean

x ID'1

10"2

8 hour

1 hour

ID"2 1

24 hour max.

max.

max.

hour max.

x 10 3 hour max.

each year.

in London is primarily S02 based (stationary source combustion) 3 and
1 - ' ?

yet the highest daily averages were 1.35 ppm (parts per million) S02

on the last two days of the fog. This level is only ten times the EPA

level, and thousands of deaths occurred. In New York City in

1966, a three-day eposide resulted in 168 extra deaths and the hourly

S02 levels remained between 0.3 and 0.7 ppm with only two readings at

1.0 ppm. This episode had pollution in excess of EPA standards by a

factor of only 3 or 4. Although some of the people who died during

these acute episodes may have been more sensitive than the general

population, "it seems more likely that they succunbed to the combined

effects of sulfur dioxide and other pollutants that simultaneously

accumulated during the episode."0 This is further substantiated by

the Donora, Pennsylvania incident in 1948 when 40% of the populace

was affected and 10% had severe respiratory difficulties that per-

sisted for up to a year. Some of the fatalities had no history of
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chronic disease. It is fair to state that smokers and those with a

chronic cough, as well as the very young, are likely to suffer most

during these episodes.

Controlled studies on the effects of mixtures of air pollutants are

rare, but in general show a reduced tolerance, especially among the
1 / • •*-̂ i"" •

sensitive. Consider an example of cumulative effects: NC^ irritates

the lungs, reducing pulmonary efficiency, 03 interferes with the trans-

port of 02 from the blood to the tissues, S02 increases airways'
«•

resistance, hindering breathing, CO binds with the blood preventing

Q£ transfer, and Pb prevents the synthesis of new blood, all resulting

in a serious oxygen deprivation problem. Thus, realistic standards for

mixtures cannot be set by the current technique of partial threshold, °

and thorough investigation of possible synergistic effects of mixtures

should be carried out. However poorly defined these standards, pollution

must be held to these levels. The resulting need for monitoring devices

for atmospheric study, for enforcement, and as a warning device provides an

impetus for much current research.

B. Monitoring Networks

Although many types of monitoring schemes have been proposed, they

may all be classified as either point sampling monitors or remote monitors.

To date almost all data gathered about ambient air quality has been through

the use of point sampling networks. This type of monitoring network pro-

vides information only about the conditions in the immediate vicinity of

the sampler. Strategies must then be devised to guess conditions at all

other locations between sampling stations. Obviously, point sampling
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data may provide an accurate measure of the ambient pollution in a given

area, especially in submarines and future spacecraft where good central

ventilation performs thorough mixing and to a lesser extent in factories

and tunnels, where there is good interior mixing, but poor exchange for

fresh air. Point sampling of specific sources, such as smokestacks, is

another important application. The capability for remote monitoring

adds an additional dimension to a network. It can provide air quality

information at many specific urban areas or sources, as well as vertical

pollution profiles and averaged pollution concentration over general

downtown areas. This information is necessary to validate pollution

dispersion models and the effects of individual sources on general

air quality. The remote techniques.all rely on the interaction of

radiation with the pollutants.

Point sampling techniques used in situ provide information of the

air quality where people are working or spending a lot of time. It is

relatively inexpensive to collect remote samples (in canisters, bottles,

or bags) and analyze them all at a central location, using accurate

sensitive techniques capable of detecting a variety of contaminants.

Such a program would be unable to provide real-time information about

air quality, thus providing no warning when emergency situations exist.

A remote monitoring .network would not suffer this limitation because- the

signal may be processed as soon as it is received. Unfortunately, unlike

the point sampling schemes for which widely applicable analyzers exist,

most remote methods at present have been able to provide information
i

about only a few species, and sensitivities and reliability have not yet
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reached the level attained by the best point sampling techniques. However,

these limitations are technological, not fundamental, in nature and the

present experimental work is directed toward solution of these short-

comings.

Real-time information is vitally important in the closed environments

found on long-duration manned missions, as in spacecraft or submarines,

where sudden contaminant level changes due to leaks or breaks are

quickly spread through the entire environment. In addition, because the

concentration of substances which are ordinarily present in harmless trace

amounts can slowly accumulate to toxic levels, the monitoring system must

be able to simultaneously detect levels of many contaminants over a

range of concentrations.

In these closed systems where the primary sources of contaminants

are outgassing of non-metals, metabolic byproducts, and fluid leaks, ^

the problem of altered toxicity due to the presence of many other contami-

nants is serious. Present point sampling monitors for these environments

involve the use of charcoal canisters with analysis following the mission.

Canisters flown aboard the Apollo and Skylab missions yielded over 300

16-18
compounds upon desorption. The quantities of some typical sub-

stances found in the canisters are given in Table III. However, there

exists no simple relation between these measurements and the actual

ambient level of the compound at any given time; even the relative values

are misleading due to differing adsorption coefficients' for the different

compounds. A striking example of the need for real-time Information was

the contaminant leak on descent during the recent Apollo-Soyuz mission,

19
where ignorance of the irritant hindered medical treatment.
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Table III

Maximum Contaminant Level Found upon Analysis in any

17 18Canister on Manned Missions, in yg/g Charcoal '

Contaminant

ace tonit rile

benzene

tert-butanol

cyclohexane

1,2 dichloro-
e thane

o-dichloro-
benzene

ethyl acetate

Freon 12

Freon 113

fur an

isopropanol

methyl
chloroform

methylethyl-
ketone

vinyl
chloride

VII

0.97

0.6

0.61

14.3

0.008

8.3

125*

1300

—
19.2

4.55

7.2

0.13

Apollo Missions
VIII IX X

3

2.2

0.5

0.0

0.02

17

83*

328

0.8

3.8

2.0

5.4

- —

0.15

6.19

0.18

5.35

0.002

6.22

412*

276

0.57

30.2

0.66

1.7

;

0.33

2.29

0.00

2.27

0.0012

2.47

91.3*

353

0.33

3.4

0.31

0.16

___ .

XI

0.78

5.59

0.079

4.82

•

4.87

3.03

160

1.04

1.06

5.89

0.25

XII 3

— ' °-

5.06 0.

1.2 0.

5.67 0.

0.

0.

4.56 5.

1.02 0.

214 3.

1.31 1.

Skylab
mid 3

0

0018

0

11

0

0

5

30

6

3

19.2 61.

602. —

1.74 0.

0.

-

0

0

0.

0.

0.

0.

0.

0.

3.

0.

0.

0.

17

—

0.

0.

Missions
end 4 mid

0

072

0

075

0

0

4

49

97

075

•

-

0

0

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

12

0.

0.

20

0068

0

03

0

0

20

12

28

058

•

0

0

* Figures for Freons 12 and 22.

Freon 12 is dichlorodifluoromethane; Freon 113 is trichlorotrifluoro-

ethane; Freon 22 is chlorodifluoromethahe.
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C. Point Monitoring Techniques

The original point sampling standard techniques involved stoichiometric '

reaction of preconcentrated samples of each pollutant, and although these

methods are very accurate and sensitive, they require many reagents, a

trained technician for analysis, and a long collection period of one
*~a==r-'-i 21

hour to one day, thus destroying real-time fluctuations. There has

been a constant trend toward more mechanized analysis methods requiring
12

fewer support chemicals and allowing more routine analysis.

Gas chromatography offers both sensitivity and the ability to monitor

a great many species after calibration. Detection limits are in the ppm

to sub-ppb (parts per billion) range, depending on the detector used at

4 21
the output to the column. ' Although a carrier gas and preconcentration

are needed, analysis is routine for expected compounds, and this technique

is vastly superior to the wet chemical methods previously used. Urban

real-time observations are further prevented by the necessity of collecting

samples peripherally for -later central analysis. It would not be economi-

cally feasible to locate a gas chromatograph at every monitoring station.

Presently, non-uniformities, degradation of the column material, and

clogging of the preconcentration beds, as well as the necessity of complex

flow controls, diminish this system's reliability and reduce its desira-

bility for submarines and spacecraft. The need for a carrier gas also

limits operation time, although progress has been made by attempts to

22
use H- or air as a carrier. Recent advances in column composition and

23 24
calibration methods have been reviewed by Villalobos and Burchfield.

Mass spectrometers represent a further advance toward mechanization.

This method can provide great mass resplution, high sensitivities, or
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rapid responses, but not all these characteristics can be found in a

single spectrometer. The necessity of carefully monitoring mass peak

distributions requires a stable calibration. Analysis may be performed

real-time, although sensitivity is much greater if preconcentration is

used. Analysis is becoming more routine as the library of catalogued

25mass spectra grows and better search-and-compare computer programs are

26created to make full use of this collection. Because normal air con-

stituents are detected along with the trace components, mass fragment

coincidences with components, such as CO and ethylene, prevent detection

of these trace species. The efficiency of operation is low because only

a small part of the information gathered concerns the trace species; this

must be compared to the spectrophotometric techniques, where all the

collected information is due to the contaminant species alone. Preferential

diffusion through membranes or ultrafine porous fretted tubes has resulted

24
in some sample enrichment. The monitoring of less volatile pollutants

has been achieved through the use of integrated ion-current mass spec-
27

trometers. Here again, sample analysis would have to be performed at

a central location for urban monitoring networks. Extension to operation

in isolated' closed environments is hindered by calibration drift problems

for the more complex mass spectrometers resulting in poor stability. One

28mass spectrometer system for naval applications had to restrict its

operation to 10 ppm sensitivity for only four or five contaminants to

meet the stability and dependability requirements.

The use of a gas chromatograph as the first stage with mass spectro-

scoplc detection, simplifies the total mass peak intensity pattern and

15 25
permits sensitive detection, * but real-time capabilities are lost
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and the overall complexity and support requirements (weight, power) of

the system are considerably Increased. One experimental model was

capable of detecting halocarbons at the 5 parts per trillion level

29with a general accuracy of + 5%.

The unique spectral patterns absorbed or emitted by each species

have been utilized as a further step toward completely mechanized

detection. The only requirement is the need for frequency discrimination

in the signal. Over 90% of all molecules have some absorption between

30
2y and 15y in the infrared. Atoms and homonuclear diatomics, the major

components of air, do not absorb in this region. Electronic absorption

bands in the visible or ultraviolet may also be used to identify molecules,

31although the spectra are more complicated and overlaps frequently occur.

Techniques using grating monochomators for frequency dispersion of

broadband source radiation may require non-routine analysis of the absorp-

tion patterns. In addition, throughput is small unless resolution is

poor. Analysis is real-time, only seconds being required for a spectral

scan. If no interferences between absorbers exist, minimum detectable

concentrations (MDC's) in the 1-1000 ppm range are possible, depending

32 33
on absorption intensity. ' The use of masks at the output of the

monochromator to check for spectral similarity between the monitored

signal and the pattern for a species molecule permits analysis, but only

one or two species may be simultaneously detected. Interference with other

34 -"*•—
absorbers is practically eliminated. These correlation spectrometers

have found wide use, especially in the ultraviolet region, when only a

few species are to be monitored. These, instruments, requiring frequency

-13-



dispersing elements for use with remote sources or blackbody radiators,

are subject to mechanical instabilities and are generally too massive

for spacecraft use. In addition, because of low throughput, sensitivity

35is poor. Good resolution and mechanical stability has been achieved

36
by a Fourier transform spectrometer. Single pass absorption yields

3710 ppm sensitivity. These spectrometers combine the properties of

good throughput, wide spectral range, high resolution, and rapid scan

times. In addition, signal to noise may be increased by averaging a number

of scans. Limitations are imposed on sensitivity by the maximum size of

38
the mirror and on resolution by the .distance the mirror can move. Both

39 40 36
urban point sampling ' and air-borne instruments have performed well.

Use of a multipass White cell permits effective path lengths of several

39hundred meters and a proportional increase in sensitivity.

Various schemes have been attempted to try to avoid the necessity

of a monchromator for frequency discrimination. Filters generally have

too broad a band pass for good discrimination. The use of a Fabry-

Perot with high finesse 2 has resulted in very good resolution and it

is tunable over 5.2-6.4U m of the infrared. NO, tK̂ , CH^, and l^O all

have significant absorption in this region. Gas filter non-dispersive

infrared techniques (NDIR) have been recently reviewed. ' ' In a

comparison of NDIR with two wet chemical techniques for NOX detection,

NDIR had similar sensitivity but was simpler and faster, required much

less complex analytical techniques, and could give measurements every 2-4
45

seconds. Although NDIR is widely applicable, mechanized detection is

limited to 3 or 4 species because a reference cell of each gas to be

46monitored is required. Sensitivities are in the 0.1-100 ppm range.
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Broadband sources may be eliminated if emission from a reference hot

gas is used as a species-specific line source. Detection may be by

monitoring absorption, fluorescence, or thermal heating of the

44gas. The reliability and sensitivity of the best of these systems

make them good candidates for monitoring the few species unable to

be detected by more versatile methods.

47Chemilumlnescent monitors also obviate light sources. Their

48extreme sensitivity (ppb. range), rapid response (10 seconds or less)

are largely counterbalanced by their need for reagents and frequent

calibration for quantitative detection. Their non-specificity, responding

49to an entire class of reagents, such as NO., FAN, nitrates, and nitrites,

also hinders quantitative analysis. In addition, only a single compound

or class of compounds may be detected in each reaction chamber. Although

designs for multiple chamber chemiluminescent monitors exist, complexity

is increased greatly. It is unlikely that chemiluminescent methods will

find wide application. Other techniques involving photodissociation

51 52with conductivity detection or magnetic tuning are generally good for

only a single species and not widely applicable. Lasers suggest them-

selves as radiation sources because of their extremely high spectral

53brightness. By embodying the frequency discrimination in the source,

only simple broadband detection is needed. Absorption lines are collision

broadened to about 0.1 cm in an atmosphere of air. Pressure broadening

and absorption llneshapes will be considered later'in the thesis. The

spectrophotometric techniques discussed above were able to achieve resolu-

tions of 0.2-0.5 cm at best, and much potentially useful spectroscopic

information is lost. The spectral bandwidths of lasers can be orders of
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magnitude narrower than this, and thus they are capable of resolving

absorption lines of different species, which would otherwise overlap

and lead to a loss of sensitivity due to interferences. The resolution

may be further increased through reduction of sample pressure and

hence broadening. Gas filter NDIR methods are the only other spectrophoto-

metric technique which similarly increases in resolution at lower pres-

40sures. Absorption peak intensity is not decreased, and the sharper

absorption lines result in excellent discrimination. Linewidths con-

tinue to decrease until the Doppler broadened limit is reached.

Typical Doppler linewidths are on the order of 10 cm . It should

be noted that if the molecular line density is such that the lines are

-3 -l
less than 10 cm apart, individual lines are not resolvable at any

44pressure and no gain in sensitivity results from pressure reduction.

Laser Raman methods rely on the inelastic scattering from atmos-

pheric components being shifted from the laser frequency by an amount

characteristic of each molecule and proportional to the energy separation

between the ground and excited states. All atmospheric constituents are

54 ^thus detectable by this method. Efficiency of operation is low due to

the very small scattering cross sections resulting in most of the laser

light being wasted. Also, a monochromator is needed for discrimination

of the multi-frequency scattered signal. Weight, stability, and effi-

ciency considerations preclude use of this technique in extraterrestrial

applications. Sensitivities in the 10-100 ppm range have been achieved

in point sampling applications. The application of Raman LIBAR for

remote sensing of pollutants is discussed in a later section of this

chapter.
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The observation of fluorescence by the gas following an absorption

of a photon at a particular resonant frequency has also been attempted.

The reemission of light is not instantaneous, but occurs after a mean

delay, T , called the radiative lifetime of the level. The utilization

of the large absorption cross sections in the visible-ultraviolet and in

the infrared make this approach seem promising. Unfortunately, rapid

internal energy redistribution occurs among molecular energy levels,

and the radiated emission occurs over a wide frequency bandwidth, typically

tens of nanometers in the visible. In addition, collisions occurring

during the lifetime of the excited state may result in loss of excitation

non-radiatively. This process is called quenching of the excited

molecule. The rate of quenching collisions is given by

Q = Jl N (<J*/ Z ) v (1)

where N is the density of the quenching gas in molecules/cm , Q2 the

kinetic collision cross section, and v the average molecular velocity.

Z is the average number of gas collisions required to quench the excited

19 -3*species. In air at standard temperature and pressure (N= 2.58 x 10 cm ;,

9 -1the rate of gas-kinetic collisions (Z = 1) is approximately 5 x 10 sec .

The quantum yield of fluorescence is given by

4> - ( 1 + QTP'1 C23

where Tr is the radiative lifetime. If the quenching rate is much

greater than the fluorescence decay rate, very little isotropic emission

will be observed. For electronic transitions in the visible part of

—5 —8 56 58
the spectrum, Tr is typically in the 10 to 10 second range. '

Quenching efficiencies have been measured for a number of common pollutant
59

species, including NO, NH~, and SO-. These quantities can show large
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variations, but most systems of interest have Z's on the order of 1 - 10.

<v -5
For the particular case of optically excited N0?, Tr = 4 x 10 sec

and Z for N_ quenching is approximately 8, so that <j> = 4 x 10 . Values

of quantum yields and effective emission cross-sections for several

atmospheric contaminants are listed in Table IV. These values are

for quenching by an atmosphere of ambient air. These cross-sections

-22 -27 2 -1are in the 10 -10 cm sr range. Fluorescent pollution detection

is thus several orders of magnitude more efficient than Raman scattering,

whi?ch has a cross-section of 10 cm sr~ typically. One elaborate

scheme using many optical filters was able to detect 0.6 ppb NCL by its

fluorescence in the red.

Table IV

Fluorescence Quantum Yields for Some Pollutant Molecules

Molecule Excitation Wavelength Quantum Yield Effective Cross-Section
in nm <j> aeff ̂  cm^ 8r~̂

so2

N02

°3
NO

OH

300

400-500

260

227

308

1.6

1

1

3

1.6

x 10-5

xlO-7

x 10"6

x 10~3

x 10~4

2xlO- 2 4

2 x ID'27

1 x 10-24

3 x 10-22

2x lO- 2 2

For vibrational fluorescence in the infrared, Tr is generally 0.01

to 1.0 second. Quenching by collisional deactivation has been measured

62 63for a number of small polyatomic species, ' for which Z varies between

2 4 ^ f e10 and 10 . Water vapor is notoriously efficient in quenching vibrational

excitation. A reasonable estimate for Q for infrared fluorescence

-18-



would be 5 x 10 sec , and a quantum yield not much greater than

-5 -5 -42 x 10 should be expected. Values of 10 and 4 x 10 have been

estimated for NO fluorescence around its fundamental at 5 um. '

Thus the signal for fluorescent processes may be quite small and laser

light sources will be required. Power requirements are not as severe as

for Raman scattering detection, and filters may be used in place of a

monochromator. Unfortunately, regions must be found where only, a single

pollutant absorbs or fluoresces strongly. The necessary diversity of

laser wavelengths may not be available with a single tunable laser, and

the desirability of the technique is decreased, especially for spacecraft

and submarine operation. In addition, quenching strongly depends on

the concentrations of various quenchers present and quantitative con-

centration determination may be difficult. Sample dilution with a gas

having a small quenching cross-section provides a. reduction of the effect

of other quenchers present.

The energy not reemitted by fluorescence is degraded to thermal energy

of the molecules. As we have seen, this may be nearly 100% of the absorbed

energy. Detection methods measuring the increased pressure (due to tempera-

ture rise) in a sample were proposed originally using broadband sources in

non-dispersive configurations. Use of these spectrophones with laser light

sources has resulted in tremendously Increased sensitivity and specificity.

Detection of concentrations at 0.1-10 ppb level has been achieved using

high power gas lasers. Early predictions claimed that microphone
<->

Johnston noise or Brownian motion in the gas cell would be the limiting

69
factor and sub-parts per trillion sensitivities would be possible, but

the presence of atmospheric absorbers, such as water, tends to limit the
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ultimate sensitivity. Even if no spectral overlap exists, window and

wall absorption would give rise to a larger signal than Brovnian

72motion in the microphone. The ultimate sensitivity of the method

has been predicted to be 0.1 ppb for air pollutants with strong absorp-

tion in a region where water absorption is weak. Use of an acoustically

resonant cavity with a feedback loop slaving chopping frequency to a

72 74resonant frequency of the absorption cell has been attempted. *

72Dewey envisions a system which would achieve the same sensitivity as

Kreuzer, but with the use of much weaker laser sources, thus opening

the way for the implementation of tunable sources. The resonant enhance-

ment results in an increase in system complexity and a large decrease

in reliability. Non-resonant schemes must rely on chance overlaps of

strong pollutant absorption with fixed-frequency high power sources.

Heterodyne detection has also been proposed as a method for

improving detection system sensitivity. A laser is required to act as

a stable frequency local oscillator. The signal, thermal emission lines

from hot pollutant gases, and the local oscillator beam are both

incident on an infrared detector such as copper-doped germanium. The

detector acts as a mixer and in its output there exists a frequency com-

ponent at the difference frequency between the laser and molecular line

centers. The amplitude of this component is linearly proportional to the

signal from the gas. If this intermediate frequency (IP) is limited

to frequencies less than 1 GHz by the IF amplifier, a single molecular

line (at most) may be observed. This IF bandwidth is on the order of

the molecular linewidth at atmospheric. If the laser local oscillator

is alternately operated at two different frequencies, on and off resonance
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with the molecular species, background may be eliminated because the

difference in the signals at the two frequencies will be proportional

to the molecular concentration. Interference with water vapor emission

lines and other species would tend to be the limiting factor in detec-

tion sensitivity. Detection of fluorescence using heterodyne detection

suffers greatly from the narrow IF bandwidth. Only a single line in

the entire fluorescence band may be observed resulting in utilization

of only 2% of the fluorescence signal. The noise equivalent power

of this infrared heterodyne radiometer is given by the formula

N.E.P. = 2 (hv/n) (Btf/T) ** (3)

where v is the detection frequency, n is the quantum efficiency of the

mixer (which may be as high as 0.5), B.~ is the IF bandwidth, and T

is the postdetection integration time. At 10 pm for B.f » 1 MHz,

T a 0.1 seconds, and n= 0.5, N.E.P. » 2.5 x 10~ W. The N.E.P. of the

heterodyne detection method is actually greater than for the ideal direct

detection for equal integration times because of the large value of B.f,

but in the infrared the N.E.P. for the direct detectors is very much

greater than ideal due to thermal noise in the detector or circuitry.

The N.E.P. for heterodyne detection is on the same order as for photon

counting systems in the ultraviolet. As a result, in the infrared a

heterodyne detection system may be four to five orders of magnitude more

78sensitive than an optimized direct detection system. Experimental

Investigations were able to achieve detection within an order of

magnitude of the theoretical limit. Fifty ppm of S0? at 390° K was .

detectable in a meter long path. This method has been adapted as

a remote source monitor for smokestacks and other thermal sources when
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in the passive mode. Although ambient temperature detection is possible,

the method is not as sensitive as NDIR techniques. Applications using

a second laser and active monitoring of remote ambient concentrations

will be discussed in the next section.

Both opto-acoustic and heterodyne detection schemes are more sensi-

tive than direct detection, but heterodyne methods do not lend themselves

well to point sampling and opto-acoustic detection has neither the

79reliability, stability, nor rapid response of the direct detection schemes

and as a result, the detection scheme chosen would depend on the applica-

tion. For long duration missions, where reliability is essential, a direct

detection system is obviously preferred.

Many other proposed detection schemes have severe limitations.

Microwave rotational spectroscopy requires low pressures to remove pressure

80broadening and large amounts of electrical power. Detection limits are

in the ppm range. Use of an absorption cell in the laser results in

sensitive (sub-ppm) detection, but this process is severely non-linear

81in absorber concentration and analysis is difficult.
3 82 83Magnetic tuning of molecules or of the laser and Stark tuning

84of vinyl chloride has resulted in ppm sensitivities, but these schemes,

in addition to requiring electromagnets or parallel electric plates,

are not widely applicable and are generally too complex to warrant their

implementation as a single gas detector when NDIR techniques have comparable

sensitivity.

Laser methods offer significant improvements over blackbody spectro-

photometrie techniques for both absorption (because of the additional spec-

tral information available) and fluorescence. A direct detection method
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to measure the differential absorption of laser emission at many frequen-

cies appears to be very promising both from the standpoint of sensitivity

and the possibility of application for monitoring of many pollution

species. We will return to considerations of laser detection capabilities

when we discuss remote monitoring applications below.

The final point sampling technique that will be considered is a hybrid

method involving spectrophotometry and mass spectrometry. Most mass spec-

trometers rely on an electron beam colliding with the sample and ionizing

it. The fragments are detected by their mass/charge ratio after suitable

focusing by magnetic or electric fields. If, however, photolonlzation

is used, frequencies may be selected which do not result in the ionization

of the major atmospheric constituents. Such a scheme has obtained ppm

sensitivities, and envisions ppb MDC levels with ionization frequency

85maximization.

The use of two-step photoionization involving a tunable infrared

photon and an ultraviolet photon not individually capable of Ionization

86
has been suggested. Tuning of the infrared frequency would result in

changing mass peak patterns in the mass spectrometer output. This two-

dimensional variability could be used to distinguish substances with

nearly Identical mass peak patterns, but different infrared absorption

spectra.

D. Remote Monitoring Techniques

Remote monitoring schemes must be based on spectrophotometric

methods. Extension of these methods, however, is not straightforward.

Broadband incoherent sources soon meet intensity limitations. Substitution
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of solar or sky background radiation as a light source has had mixed
i

87—91success. Unfortunately, with these light sources, operation is

restricted to daylight hours, and performance is severely hampered by

87rapid changes in sky brightness. In addition, dispersive instruments,

with their low throughput, are confined to low resolution work to gain

88sufficient signal intensity. If direct solar radiation is used, the
on

system's spatial variability is destroyed. Nonetheless, sensitivities

- 89—91
in the parts per billion range are achieved for many substances,

and light source improvement is the obvious remedial action. Here, as

in the point sampling applications, the narrow frequency bandwidth, high

intensity, and easy beam collimation recommend the use of laser light

sources. All the proposed monitoring systems rely on atmospheric

attenuation of the beam giving rise to frequency discrimination. Atmos-

92
pheric attenuation may be simply described by the Lambert relation

I/IQ - exp {- /JaCx) dx } (4)

where a(x) is the local attenuation coefficient per unit length and

I/I is the fraction of radiation remaining in the beam at distance L.

Atmospheric attenuation has three major sources: Elastic scattering by

atmospheric gases, elastic scattering by aerosols, and absorption by

gaseous constituents in beam path. Inelastic Raman scattering by

molecules gives rise to a small attenuation also.

The atmospheric elastic scattering .component due to scatterers

much smaller than the wavelength of the incident radiation is called

Rayleigh scattering. It is primarily attributed to scattering by
93

atmospheric gaseous constituents, and is given by the formula:
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a.CX)- * -- (5)
R 3 a)* e2 m2 X*o o e

where u is the center frequency of the nearest resonance, q is the
o

charge of the electron, m is its mass, and £Q is the free space permit-

tivity. Rayleigh scattering is most important in the ultraviolet due to

its inverse X1* dependence. Values for the Rayleigh elastic scattering

coefficients, <* (X) , at different wavelengths are given in Table V.&

-
Table V

Rayleigh and Mie Scattering Coefficients

X
(micron)

0.2

0.3 '

0.4

0.6

0.8

1.0

5.0

10.0

(km'1)

0.70

0.14

0.044

0.0083

0.0026

0.0006

0.000001

0.00000006

V-l km

7.0

5.6

4.7

3.7

3.1

2.8

1.1

0.72

(km-1)
V»5 km

2.2

1.4

1.1

0.72

0.54

0.43

0.086

0.043

V=10 km

1.4

0.84

0.58

0.35

0.24

0.18

0.024

0.010

The elastic scattering by particles or droplets of size comparable

to the wavelength of light is called Mie scattering. Because a complex

size distribution exists for particles between 0.1 and 10 Um, use is

made of an approximate formula relating the Mie elastic scattering

94coefficient, ot ̂  (X), to the visual range
0.585 V1/3

3.91 0.55 km"1 (6)
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V is the visual range in kilometers and X is the wavelength in microns.

Mie scattering is much less wavelength dependent than Rayleigh scattering.

In contrast, Mie scattering is much more a function of changing atmos-

pheric-conditions than Rayleigh scattering. Mie elastic scattering

coefficients, a (X), are also given in Table V for different X and V
M*->

values. The combined atmospheric elastic scattering coefficient, a g(X),

o^CX) » otyCX) + aR(X) (7)

is plotted as a function of wavelength for various visibilities in
95Figure 1.

Atmospheric attenuation due to absorption of radiation is related to

92the concentration of the absorber present by Beer's Law

(8)^ - exp [- /£a(X) Ndxj - ex? [-/Je(X)c dx]
JL * * •

where I/I is the fraction of light remaining at distance L, a ( X ) is

2the absorption cross-section (cm ) , N is the number of absorbers present
•i

per cm , £ (A ) is the molar absorption coefficient per unit concen-

tration per unit length, and c is the molar concentration. The elastic

scattering processes have a much more slowly varying frequency dependence

than the absorption cross-sections, and thus it is possible to tune

across several absorption features maintaining the same elastic back-

ground attenuation. However, overlap may exist and several species may

absorb radiation of the same wavelength. Infrared monitoring is limited

to spectral regions where absorption due to the natural atmospheric

constituents CO- and H.O is small. Below 250 nm in the ultraviolet 0«

absorption becomes severe and limits operation distances. Atmospheric
/ / Q Q

constituent absorption interferences are shown in Figure 2. *
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Figure JL: Atmospheric Scattering as a Function

.of Wavelength and Meteorological Visibility for a

Number of Different Wavelengths (from Ref. 95)

Figure 2: Atmospheric Constituent Interferences

and Atmospheric Transmission Windows (from Ref. 58)

Figure 3i Background Sky Radiance as a Function

of Wavelength (taken from Reference 58)
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Both single and double-ended absorption monitors have been proposed.

Singlê ended operation relying on remote reflectors is preferred because

only a single detection system is required. Spatial inhomogeneities are

not detected, only the average concentration in the absorption .path is

monitored. Thus we have for this monitoring system

'eff ""- °ia) *iC - '*.££ «*-*• VX)C

with

Ief£ = IQ f exp (-2 <*„( A)L | (10)

where I. . is the measured intensity of the returned light, L is the_ _

distance to the reflector, N. is the average concentration (cm ) of

absorber i, a ,( A) is the wavelength dependent absorption cross-section

for species i, I ... accounts for the reduction of signal due to atmospheric

elastic scattering and loss at the remote reflector, f being the fraction
T

of incident intensity returned by the reflector, and C is a collection

efficiency factor dependent on beam spread and detector size and efficiency.

The wavelength dependence of cr( A) will be different for each absorber,

and by tuning across a sufficieitly wide wavelength region, individual species

would be identifiable. Proper choice of wavelength would minimize or remove

absorption overlap simplifying detection of that species. Placement or

choice of reflectors at radially increasing distances from the monitoring

96
station would permit spatial resolution. Objects such as trees and

97buildings have been used as remote reflectors for laser beams. Reflec-

tivities of over ten percent have been achieved using these non-cooperative'

reflectors. Because absorption cross-sections are large, 10 - 10

2 112cm , this method should have good sensitivity even for low laser powers.
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Before an evaluation of the limitations of this method, laser backscatter

techniques will be considered.

Monitoring schemes which rely on atmospheric attenuation to provide

intensity which is scattered back in the direction of the detector have

been widely proposed. For this situation, the measured intensity of the

returned light, I . is given by
Slg

where now

jL back C

Ieff - 0j(X) D IQ e*p(-{aE(X) + aA(X)} l)0ttt (12)

I -- is the total intensity of the backscattered radiation, and is
eff

dependent on the amount of intensity reaching the sampled region

(1 exp I I ) , on the length of the sampled region (0) and on the

magnitude of the scattering process ( a .( X ) ). .Once the radiation

is scattered, further atmospheric attenuation, both elastic and absorp-

tion, occurs between the scattering region and the detector. Because

the radiation is scattered isotropically, the factor C is introduced,

which takes into account the solid angle subtended by the detector and the

detector efficiency. Range resolution is possible by gating the detection

electronics to monitor the backscattered signal at varying delays

after the laser pulse. Three different LIDAR approaches to remote

monitoring exist: Raman, fluorescence, and differential absorption.

The Raman Inelastic scattering cross-section is .extremely small,
3

typically 10 less than Rayleigh cross-sections, and thus Raman processes

were not considered to give rise to significant attentuation of the

beam. Like Rayleigh scattering, Raman backs cat tering has an inverse
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X dependence:

f\ \ - { 32 Tf3 1 (v - AV)** h g x( A ; - T O C - : r *
1 1J:> -' { 1 - exp (-he Av/kT)}cAv

[ 45 ( a')2 + 7 ( Y* )2 ] P (13)

where v is the wavenumber of the exciting beam, Av> is the Raman wavenumber

shift, g is the degeneracy, h and k are the Planck and Boltzmann constants,
? ' ' • ' • . ' • '

T is the temperature of the molecules, a is the isotropic part of the

derivative of the polarizability tensor and y is the anisotropic part of

that derivative. P is the incident laser power..

Thus,

a,(A) - a_(X) N (14)
3 K
!_.. . ^^ o '

in equation (12), where N is the average concentration (cm ) in the sampled

region. The X value used in equation (12) is the laser wavelength. The

wavelength .of the backscafctered sradiation ?in .equation i(ll<) is tthe ishi'f-ted

wavelength, the shift being characteristic of each atmospheric constituent

present. Some molecular absorption, <* ̂  (X ) , of the backscattered

radiation may occur in addition to atmospheric elastic scattering, further

complicating determination of pollutant concentrations. Use of a mono-

chromator or filters at the central detection location would allow possible

54detection of all trace species. Because tunability is not necessary,

more powerful fixed frequency lasers can be used. The v1* dependence

favors work in the ultraviolet. If .an electronic transition of one of

the gaseous pollutants happens to be nearly resonant with the laser

-32-



frequency, an enhancement of the scattering cross-section of several

orders of magnitude can occur. ' The Raman cross-sections of

several gases at different wavelengths are given in Table VI. Resonant

Raman cross-sections are also shown to demonstrate the enhancement.

Unfortunately, the resonant enhancement would be in effect for only, at

most, a few species for any given wavelength, and a tunable source,

which has lower power levels, would be needed. Because Raman processes

121are instantaneous, the laser pulse width alone determines the limit

of depth resolution by this method. The overlapping of the Raman

spectra from various molecules results in loss of some sensitivity. Use

of the rotational Raman effect, which has a cross-section a factor of 100

larger than the vibrational Raman effect, has been suggested as possible

through use of a Fabry-Perot filter to eliminate pump laser light and much

of the background. No monochromator would be needed. The free spectral

range of the etalon would be the rotational line separation. A different

122etalon would be required for each species to be detected.

The remote monitoring of resonant fluorescence emission has also

been suggested. Here H.O and particulate quenchers cannot be removed,

and in addition, the fluorescent emission bandwidth requires a wide

receiver bandwidth, making background intensity more of a consideration.

For fluorescence monitoring a (A) in equation (12) is

Oj (A) - <r (A ) <fr N (15)

where (j(A) is the species absorption cross-section'at the laser

wavelength, <j> is the quantum yield defined in equation (2) and N is the
3

average density of the monitored species in molecules/cm . For this

-33-



Table VI

Raman and Resonance Raman Cross-sections

Molecule Raman Cross-section
t 2 ~1\(cm sr )

-30
0. 2.5 x 10 •

3.0 xlO-30

2 x 10-31

N0 3.0 x 10~3°
* -30

2.5 x 10

1.9 x 10~31

H,0 9.5 x 10"3°
-30

6-8 x 10

N02

NO 0.2-1.0 x 10~3°

1-5.5 x 10~ZS

CO

SO, 1.3 x 10"29

-31
3,0 x 10 Ji

4.8 x 10~29

NH3 1.0 x 10~29

C2H6 1.4 x 10~29

CO, 5.5 x 10~29

' * — ^n
3-4.5 x 10 J0

7.3 x 10"31

N20 7.3 x 10~3°

Wavelength

(nm)

347.1

347.1

694.3

347.1

347.1

694.3

347.1

347.1

347.1

337.1

347.1

694.3

337.1

347.1

347.1

337.1

347.1

694.3

347.1

119Ref. Res. Raman Cross- Wavelength
2 - 1

section (cm sr ) (nm)

123

124

115

123

124

115

123

124

5.6 x 10~27 454.7

124 1.3 x 10"23 226.2

56

4.5 x 10"3° 206.3

124 1.0 x 10~25 300.0

115

56

124

124

56

124

115

124
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method X In equation (12) is the laser wavelength and X in equation (11)

is the wavelength band of the output fluorescence. Molecular absorption

in equation (11) by species present, including the fluorescing one, could

give rise to too low remote concentration estimates. Elastic scattering

losses also reduce the returned signal. Laser wavelength constraints are

the same as for absorption, a frequency must be found which has a signifi-

cant absorption cross-section. Excited state lifetimes, even with the

64presence of quenching collisions, are several microseconds in the infrared,

limiting range resolution to 1 km or more. In the ultraviolet, lifetimes

are shorter and resolution may be limited to laser pulse duration or

electronics gating interval.

The differential absorption technique relies on atmospheric elastic

scattering to provide a remote light source which is relatively constant

over a range of wavelengths. The differential molecular absorption of this

returned signal is then used to determine the average concentration of
i

the absorbing species between the observed scattered region and the detector.

Thus

a (X) = a£ (X) (16)

and the laser and backscattered intensities are at the same wavelength.

Elastic scattering occurs instantaneously and the depth resolution is limited

only by the laser pulse width. By varying the gating delay, different

atmospheric regions are used as the remote source and a radial map of

absorber concentrations can be constructed. Here again a tunable source

is required and monitoring must be performed in a region where there is

a structured absorption pattern. The sensitivity of the method is increased
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as the difference in absorption crass-sections between two nearby wave-

lengths increases. Substituting in equations (11) and (12) for two

wavelengths X and X1 and ratioing the results, we see

-iifC-l.ê
W*'

[-2 (a1- a ) N L1 (17)

if only a single species absorbs ^ and X . Even if several species

absorb, monitoring of a sufficient number of frequencies should allow

determination of all absorbers present. The value of I ff may be

small on clear days or at larger distances on foggy days, resulting in

a low signal level returned to the detector. As in the absorption .

method, the returned signal is at the laser frequency and narrow band-

width detection is possible.

We now have a sufficient basis for comparing the remote detection

. „ . , , , . , 56,58,62,125,126schemes. Many comparisons have been performed previously,

but none considered all of these methods together or attempted to compare

them with as few variables as here. Rewriting the equations for each

of the proposed monitoring schemes yields

I . - I exp{-2 a.,L} f C' exp {-2 a L} Absorption-with reflector
SXg O r* I A J

Igig.» IQ exp{-2a£L} f C'(.05) exp{-2 c^LH Absorption with
*• - ' cooperati. _

Ig . »'I exp{-2aEL} DC exp{-a L} a ( X ) ( j ) N Fluorescence
*• out J backscatter

I . « I exp{-2 a_L} D C (^(X) N Raman backscattersig o l E J ( R J

I -• " I exp{-2 a L} JD C exp{-2 a L} a (X) Differential absorptimi
S 8 ° . K • I A E J backscatter

non-
cooperative target

Henceforth, we let S « ( 'I-

-36-



The assumptions that have been made are:

1. a (X) = BO (^ )v i, f°r Raman and fluorescenceE out Lt ' oacK , .• backscatter.

2. a (X ) • a. (X ), ,=0 for Raman backscatter.
A out A back

3. o (X). ,=0 for fluorescence backscatter.
A • back

4. A 5% reflectivity from the non-cooperative, .remote reflector.

Assumptions 2 and 3 would give rise to a larger return signal than would

be the case if atmospheric absorption was not zero. The factor

I exp {-2 a E (X)L} is common to all schemes and will be neglected

temporarily. Let us now determine the relative returned signal from

a pollutant present at low concentrations, 1 km distant. Range resolution

will only be 300m, finer resolution will result in proportionally

—28 2decreased signals. The value of a (X ) is chosen as 10 cm ?
R

—1 —1 —19 2 58molecule steradian , a (A) as 3 x 10 cm / molecule steradian,
—2 —6

and $ as 10 to 10 . Values of the terms compared, S, are given in

Table VII for 1 ppm and 10 ppb average pollution concentrations, and for

different remote distances from the detector. Use of 10cm radius

collection optics and 10% photon to signal efficiency gives

-9 'C = 1 x 10 at 1 km. fC has been previously estimated as less than

-410 , depending on beam collimation and reflector size, using a

similar scheme to that above.

As expected, the return signal for absorption is many orders of

magnitude greater than the rest. For all the absorption schemes, not

the total signal returned, but the change in signal as a function

of wavelength is important. Thus, if a 1% change in signal is Just

barely detectable, and the change in absorption coefficient in
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Table VII

Comparison of Remote Monitoring Techniques

Method Concentration Values of S for Remote Ranges, L, of .

10 km 1 km 100 m 10 a

Absorption 1 ppm 1.7 xlO"12 2.1 xio"5 8.6 xlO~4 9.8 x!0~3

with Reflector 10 ppb 8.6 xlO"6 9.8 xio"5 1.0 xlO~3 1.0 xlO~2

Absorption with , „ • _ • ,rt-14 , , ,n-6 . , ,_-5 . n , n-4v 1 ppm 8.5 xlO 1.1 xlO 4.3 xlO 4.9 xlO
Topographical • • , , .
Reflector 10 ppb 4.3X10"' 4.9 x!0"° 5.0x10 5.0x10

Raman

Backscatter

1 ppm

10 ppb

7.8 xlO

— 2&
7.8 xlO

-20
7.8 xlO 2.6 x

-22
7.8 xlO 2.6 x

IO"18 2.6. xio'16

20 18
10 2.6 xlO

Fluorescent 1 ppm l̂O"6 9.7xlO~22 1.1 xlO"16 2.2 x!0~14 2.3 xlO"12

Backscatter l ppm 4>=10"2 9.7xlO"18 1.1 xlO"12 2.2 xlO"10 2.3xlO"3oacttscatter , _.. . „ - - - ,
lOppb <j>»10 2.2 xlO u 2.3x10 2.4 xlO 2.4 xlO'A

lOppb <})»10-2 2.2 xlO"16 2.3 xlO"14 2.4 xlO"12 2.4 xlO~10

Differential 1 ppm 5.0xlO~19V 6.3xloTI:LV 8.7xlO~9V 9.7xlo"?7

Absorption 10 ppb 2.6xlO~12V 2.9xlO"10V 1.0xlO~8V

of Backscatter where V » 5.1 for visibility of 1 km at 400 nm.

V = 1.5 for visibility of 5 km at 400 nm.

V - 0.043 for visibility of 5 km at 10 ym.
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-19 2equation (17) is 1.5 x 10 cm /molecule, steradian, we have

sig
(X)

exp{-2( a'(X) - a (X)) NLJ (17)

min

ln(0.99) - -2(1.5 x 10~19) cm2/molec.-str (NL)

OttOmin » 1.2 x 103 ppm-cm (18)

and if a minimum range resolution of 300m is desired, "0.041 ppm is the

minimum detectable concentration for this resolution for any distance

where I ( X ) is significantly above background,sig

As a comparison, the standard wet chemical Saltzman method would require

six hours of preconcentration .in order to achieve this sensitivity. The

sensitivities of various methods for detection of NO. are presented in

Table VIII. The remote methods are all listed for 300m range resolution.

It is seen that the differential absorption method provides comparable

or superior sensitivity to the other remote monitoring schemes, and is

capable of detecting ambient NCL at a level below the EPA Maximum Exposure

.Level for this resolution. Point sampling methods are currently more

sensitive, but if remote monitors are capable of sufficient sensitivity

to monitor ambient concentrations, a single remote probe will obviate an

entire network of local point samplers. Currently, equivalency standards

between path and point monitors are being set. Once these relations

are established, remote monitors may be used to establish the adequacy of

a point monitor to represent the ambient conditions in its local area.

We will now consider the range capabilities of the various remote detection

schemes.

Photon limited detectors in the visible have minimum detectable powers

of 9 x 10~ W, if background radiation power is comparable or smaller in
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Method

Table VIII

Detection Capabilities for NO for Various Techniques

Detection Limit in ppm Reference

Point Sampling:

Saltzman (colorimetric) Method

with 1 hour preconcentration

Phenoldisulfonic Acid

Derivative Absorption Spectros-

copy with multipass cell

Differential Absorption of Back-

scattered Radiation (visible)

Differential Absorption of Back-

scattered Radiation with Hetero-

dyne Detection (infrared)

Absorption

0.24

10

0.01

0.15

0.2

0.04

45,127,129

128

33

Chemilntni nescence

Fluorescence

Optoacoustic

Remote Monitoring:

Non-dispersive Infrared

Fluorescence

0.01

0.001

0.0001

10

1

48

61

67

-

90b

60

145

78

Predicted,

this work.
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magnitude. /See Appendix T.J The background power received at the

detector for an extended source filling the receiver field of view is

background " «*H VX) + aA(X))Ll AX V A N(X> (19)

where AX is the optical bandwidth of the system, V is the field of

view of the collection optics, and N(X-) is the spectral radiance of

the background source. The spectral radiance of the sky under clear

58daytime conditions is shown in Figure 3. In the visible
_2 _2 —1 —i

N (X)= 10 watts cm pm steradian . For the absorption schemes

the optical bandpass may be very narrow (10 ym) and for 1 field of

view and for a 1 ysecond gate time (300m resolution),

L , . = 1.5 x 10"11 WBackground

for 5cm radius collection optics, and these methods are not background

limited. Assuming a 100 KW, 1 ysecond tunable laser in a wavelength

region where significant absorption changes occur we have, substituting

in equations (11) and (12) using Table VII, for absorption using the

atmospheric attenuation coefficients in Table V

zo^ (X) = 105 W x 4.6 x 10~2 x 2.1 x 10~5 - 9.7 x XT2!* for 1 ppm V=5kmsig

= 4.5 x ICT̂ W for lOppb V=5km

for Ikm.I . (A) values for absorption, and differential absorption ofsig

backscattering are given in Table IX for various distances and visibilities.

Note that I . = I, , _, at much smaller distances for the backscatteredsig Tiackground

signal. Note also that both methods are useful at greater distances in

the infrared. This calculation does not take into account atmospheric

absorption by atmospheric gases in the infrared where total atmospheric

131-133attenuation is about 1% per kilometer and poses no serious
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Table IX

Comparison of Absorption and Differential Backscatter Methods

Method

Absorption

with

Reflectors

Visibility
(km)

10

5

1

10

5

1

Differential 10

Absorption

Backscatter

of 5

1

10

5

1

Wavelength
(Urn)

0.4

0.4

0.4

10

10

10

0.4

0.4

0.4

10

10

10

Signal in Watts
Concentration
10 km

1.8 x 10~9

0

0

7.0 x 10'1

3.6 x Kf1

4.8 x 10~7

5.4 x 10~16

0

0

2.1 x 10"9

4.7 x 10"9

1.0 x 10~13

for lOppb Pollutant
over Ranges of

1 km

1.3

4.5 x 10" l

3.4 x 10"4

9.6

8.9

2.3

3.9 x 10"6

2.0 x 10"6

5.1 x 10~9

2.8 x 10"7

1.1 x 10~6

4.9 x 10"6

limitation to beam transmission.

Using a similar laser to detect fluorescence backscattering yields

=935.1 x 10 for Ippm V=5km

=H.5.1 x 10 for lOppb V=5km

5 -2I (X )=• 10 W x 4.6 x 10 x 1.1 x 10

However, for fluorescent reemission a broader observation bandwidth is neces-

sary, unless much of the signal is to be lost. Using a 50nm bandwidth

in equation (18) yields I. . , » 7.5 x 10 W/ Usecond. Limitation

of the gate width to 1 ysecond may also result in the loss of some signal

intensity. It is seen that although a single pulse may be able to detect

1 ppm (S/N a 1) , 10 pulses, at least, and signal averaging are needed for
j *"•

10 ppb sensitivity, and real-time aspect may be lost.
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Raman backscatter may make use of a fixed frequency laser having a

10 MW, 100 ysecond pulse. Then

I (X)= (107W)x4.6xlO~2x7.8xlO~2° = 3.6xlO~14W for 1 ppm V'.- 5fcasig

Increasing size of the collection optics will result in an increase in

background radiation also. By increasing collection optics size to

o -450 cm radius, while decreasing field of view to 0.01 (2 x 10

steradian) the background radiation power may be held constant while

2 3I . is increased by 10 . Nevertheless, 10 pulses are required tosig .

achieve 1 ppm sensitivity, 10 pulses for 10 ppb sensitivity. All real-

time information would be lost in the time required for this large

number of pulses of these low repetition rate lasers. It has, in

addition, been assumed that all background interference by elastic

atmospheric scattering was removed by the monochromator or filter.

Because elastic scattering cross-sections are 10 larger than Raman cross-

sections, and the Raman signal arises from only 10 of the molecules
9

present (1 ppm), the elastic signal may be 10 larger and not be com- ..

58pletely removed by frequency filtering. The resulting sensitivity

increase for resonance Raman scattering is at least partially canceled

2
by 10 lower assumed power for a tunable laser. Raman schemes have had

some success at detecting remote sources of pollution up to a kilometer

distant with sensitivities in the 0.1 - 100 ppm range depending on the

134-139complexity of optical detection system.

A few fluorescence backscattering schemes have been proposed, ' '

but none as yet has been implemented. Differential absorption techniques

have been optimistically touted as a method providing range resolution
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with large return signal levels. ' * Several experimental investi-

gations using tunable visible lasers have resulted in 0.1 - 1 ppm detection

144 145-147
limits for 300m resolution for S02 and 0 and NO- Alternate

operation at two wavelengths was used for differential absorption. Simul-

taneous operation on two different wavelengths 1.3 run apart has been

. achieved through use of an intra-cavity Glan-Thompson prism and two different

97gratings. In this configuration, atmospheric turbulence effects, as well

as attenuation effects, are minimi zed. Nevertheless, because of the rela-

tively small backscattered signal, workers using this method required 11

hours to map the concentration of NO- in a 300m x 400m area, 750m distant,

with a 100m resolution. Over 4 x 10 laser pulses were required. Obvi-

ously, mapping time could be decreased by technological improvements giving

rise to a faster pulse repetition rate, but this method currently seems far

removed from a city-wide monitoring network using a visible laser. With

the application of heterodyne detection techniques, detection quantum effi-

ciencies in the infrared approach those of visible detectors. -Here again

minimum detectable concentrations of pollutants are expected to be in the

0.1 ppm range. ' In the infrared interference from water vapor lines

tends to limit the sensitivity of the method since atmospheric scintilla-

149tion is much less than in the visible. In view of this, several authors

have claimed ultimate sensitivities in the 10 ppb range for regions free

of interference.150'151

Use of heterodyne detection for passive remote monitoring has been pro-

152 153posed ' and results in a sensitivity of 0.1 - 10 ppm. A similar

increase in range and sensitivity would result if heterodyne detection were
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used in a differential absorption monitor. The additional expense and

increase in complexity is probably not warranted for this technique, which

already has excellent capabilities in both these areas.

E. Conclusions

It has been demonstrated that absorption methods are capable of sensi-

tivities comparable or greater than other remote monitoring schemes, while

having a much larger signal returned to the detector. Sensitivity is

39 44increased with distance sampled. The use of multipass cells ' should

permit similar sensitivities for point sampling applications. In this

situation where background may be neglected, low power cw lasers may be

used. The low power requirements of the absorption techniques make it

especially desirable. Eye safety maximum permissible exposure (MPE) set

-7 -2by the American National Standards Institute are 5 x 10 J cm in the

\, —2 62
visible, and 0.56t J cm in the infrared. The MPE value in the

visible will severely restrict use of high energy pulse lasers in urban

applications. The IR standard may be easily met for both pulsed and cw

operation.

Because the absorption technique appears promising both for point as<f

remote monitoring, and because the minimum absorption requirements are ruvt

stringent, there exists the possibility of being able to use a single

laser source to simultaneously detect many atmospheric contaminants. 2ap3*r:L-

mental work has been undertaken in order to further evaluate the desiraaiiity

of this method.
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II MONITORING COMPLEX MIXTURES OF TRACE CONTAMINANTS

A. Introduction

It was seen in the previous chapter that a laser monitoring scheme

which is capable of detecting a single substance with no interference*

from other pollutants present may be desirable as a species-specific

detector, but such a scheme would require a complex monitoring network

of many different lasers to adequately monitor ambient air quality.

A necessary consequence of the versatility to be gained by operation in

the infrared is the possibility of spectral overlap between different

absorbing species. Due to spectral complexity, a reference frequency

marker is needed to insure reproducibility and accuracy if a continuously

tunable laser source is used. All other frequency measurements could

then be made with reference to this frequency. On the other hand, if a

line-tunable CO. laser is used, the laser lines may be carefully stabilized

to the zero velocity molecular transition frequency, and reproducibility

ensured. Knowledge of the absorption coefficients of each gas a.t

selected laser frequencies will permit the absorption of a mixture of

these gases to be assigned to the relative abundance of each absorber,

provided a sufficient number of frequencies are used.

This project was to determine the feasibility of using a frequency

stabilized CO. laser for the detection of each trace component in a

mixture of absorbers and to find the number of frequencies required for

sensitive reproducible detection. The experimental work consisted of

three parts:

1. Frequency stabilization of the CO. flowing gas laser;

-46-



2. Setting up a detection system capable of detecting a wide

range of attenuations to permit accurate absorption coefficient determina-

tion for a number of likely contaminants;

3. Analysis of mixtures of these gases to test the detection

capabilities of this absorption method.

A CO- laser was chosen because the laser frequencies, which span the

929 cm to 1082 cm" region of the infrared, are in an atmospheric

transmission window. Water vapor absorption is insignificant for short

path lengths. Molecular oxygen and nitrogen do not absorb anywhere

in the infrared. Thus, absorption will be due solely to atmospheric con-

taminants, providing high information content in the detected signal.

217
Because over 100 laser transitions have been observed for the CO- laser,

there is a large degree of freedom in number and choice of wavelengths

to be used for mixture monitoring.

B. Laser and Detection System

The CO2 laser gain medium was a water-cooled low pressure flowing

gas electrical discharge sustained by a current regulated 10 kV power

supply. The laser cavity is composed of a curved mirror (f = 5m) with

a centered output hole and a grating blazed for lOym (Bausch and Lomb).

An intracavity iris diaphragm near the front mirror confines lasing to

the TEM mode on a single transition and controls output power levels.
•

Instabilities in the laser frequency and intensity arise from linear

expansion of the aluminum support girder due to thermal fluctuations.

As a result, the frequency of the cavity modes are shifted. The

resultant laser frequency is pulled off the peak of the gain curve
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to a frequency intermediate to the frequencies of peak gain in the laser

medium and cavity gain. To insure that the C0? laser frequency is stable,

the maximum of a cavity mode is kept centered on the gain distribution

of the medium. This is done by mounting the cavity mirror on a

piezoelectric transducer. A reference sine wave is generated by a

lock-in amplifier (PAR Model 120), is then amplified by a KEPCO OPS 2000

Op-Amp and applied to the transducer. The resultant mechanical oscilla-

tions of the mirror produce synchronous fluctuations in the laser

intensity as the cavity mode, (and hence the laser frequency) is swept

across a small part of the medium's gain curve. The laser intensity

fluctuations are monitored by an InSb detector (Opto-electronics Mullard

type ORP-10) looking at the laser output off the normal to the grating.

The AC part of the detector signal is proportional to the slope of the

gain curve and is smallest when the oscillation of the mirror is cen-

tered on the maximum of the gain curve, which corresponds to the zero

velocity molecular transition frequency. The magnitude of this AC

signal is the output of the lock-in amplifier when the detector signal

is the input. The output of the lock-in is introduced in the high

voltage KEPCO Op-Amp to produce a bias voltage on the transducer suffi-

cient to center the mirror on the maximum of the gain curve.

218
This circuit was originally implemented by Novak, but it was

discovered that the Spectra-Physics 510 Transducer used in his set-up

was designed for positive voltage. The KEPCO supply is capable of

producing negative high voltage only. It is doubtful that the crystal

ever responded correctly to voltage of the wrong polarity. A new

transducer (Burleigh Model PZ-90) which was compatible with the supply
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was ordered. It was then discovered that the supply was capable of

outputting up to a 3 K7 transient when turned off or to 2 KV if driven

by sufficient input. The transducer was designed for 1250 7 maxlrmni,

either polarity. Thus it was necessary to set up a network which would,

limit the ma-iHmmn output voltage and allow the contribution from each of

the inputs to the Op-Amp to be of the correct magnitude. The circuit is

shown in Figure 11. The voltage divider at the output prohibits the

voltage seen by the transducer from exceeding 1130 V for a 2000 V maxi-

mum output. These resistors permitted, at most, 2 ma to flow out of

Op-Amp and do not seriously load the Kepco amplifier or hamper its

frequency response. The gain of the Op-Amp for each of the inputs

219could be calculated using the relation

G - Rf / R± . (22)

where R, is the total resistance at the output of the Op-Amp, and R.

is the effective input series resistance. The response of the transducer

was 8 jjm/1000 V. A 5 ym mirror translation would result in an Integral

218change in the number of wavelengths in the cavity. Allowing the lock-in

output to cause, at most, a shift of half this amount would-permit maximum

compensation capabilities while ensuring the two cavity modes would not

be simultaneously competing. A series resistance of 16.56 Kft was intro-

duced into this input to the Op-Amp and correspondingly the Tnayfrmna high

voltage output that could arise from the lock-in signal was 310 V (2.5 jam

translation). The sine-wave reference signal was amplified to give rise

to a 0.5̂ m peak to peak oscillation of the mirror at the reference fre-

quency. The magnitude of the amplified signal from the manual voltage
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Figure 11; Frequency Stabilization Network

Figure 12: Lock-In Amplifier Sensitivity Scale

Gain Calibration Network
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offset was adjusted to permit maximum flexibility while maintaining a safe

operating environment for the crystal. A manual offset of 6.8ym was pos-

sible, insuring that a cavity mode would always be within the biasing

range. A pair of General Electric Metal Oxide Varistors (V420PA406 Power

MOV) were connected across the output in parallel to the transducer. These

devices have essentially infinite resistance below a 1000 V input and a

rapidly decreasing resistance above this value.With these MOV in the circuit,

voltage spikes were prevented from harming the transducer. With these

adjustments, the transducer was capable of following cavity length fluctua-

tions for periods of 1/4 - 2 hours without manual adjustment. This period

is exclusively a function of the room temperature fluctuations. The only

remaining frequency instability is due to the oscillation introduced by the

reference sine wave. This results in a +• 4 MHz oscillation about the center

of the gain curve.

Cavity alignment procedure was as follows: -

1. A helium-neon laser was positioned so that it passed through

the mirror hole and was incident on the grating. The laser plasma tube was

centered around this optic axis.

2. The zeroth order reflection off the grating was found by

manually rotating the grating around the optic axis and locating a spot

which did not rotate.

3. With the reflected orders off the grating all lying in a

horizontal plane, the 17th order spot was sent back down the optic axis

and through the hole in the front mirror. Due to mode impurities, not all -

the laser light passes out of cavity.
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4. The ring of reflected light off the front mirror was then

positioned along the optic axis by adjusting the front mirror.

5. The Brewster angle window holders were secured to the end of

the glass tube, and slight readjustments of optical mounts were aade to

align cavity exactly. The laser light was introduced into a monochoaator
eg, .am-

using a f = 4 cm Ge focusing lens. Resolution of the monochromator was

sufficient; observed slitwidths were five or six times less than the line

separations. Lasing on a single line was observed for each laser grating

setting. If more than one line is lasing, the intensity of the adjacent

lines is less than 1.5% of the major laser line.

Because a low maintenance system is desired, pyroelectric detectors

which operate at ambient temperatures were chosen. These Barnes T-301

2Detectors were 1 mm in area and capable of handling up to 1 W cv.

Responsivity was 1.5 ya/W for chopping frequencies below 500 Hz. These

detectors were found to be susceptible to electrical noise and thermal

fluctuations in the room. Accordingly, they were shielded and enclosed as

completely as possible. To insure that all of the laser beam was incident

on the small detector elements, a pair of 1" f/1 Irtran lenses were used

to focus the light onto the detectors. These lenses also helped insulate

the detectors from air currents. The signals from these detectors are put

into a pair of PAR lock-in amplifiers. With this configuration the meas-

ured laser intensity was stable to 0.2% over a few minutes and 0.7% stable

over the period between manual adjustment of the voltage bias offset. Thus

the stabilization of the frequency, as expected, results in a stabilization

of the laser intensity as well. The dual channel detection scheme was

implemented to eliminate errors due to short term intensity fluctuations.
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The lock-in amplifier's gain may be calibrated for the least sensitive

scale, but the error in the accuracy of the gain for the more sensitive

220scales may be + 5%. To permit accurate readings of the detector's

signal for high attenuations (small, signals), a set of multi-turn poten-

tiometers were Inserted in parallel with the gain trim resistor of each

lock-in. With proper switching, these resistors permitted accurate cali-

bration of each sensitivity scale ranging over a factor of 50. This

circuit is shown schematically in Figure 12. Calibration was performed

using a voltage divider network and the internal reference frequency sine

wave of each lock-in. One sensitivity scale was calibrated against the

next, and interscale gain errors were reduced to a negligible magnitude

in this manner. Any nonlinearities in response should be due to detector

limitations and not detection circuit errors.

A current-buffered analog divider network was constructed to permit

ratioing of the two signal channels. An Intronics M 506 Multiplier and

904'Analog Devices Power Supply were used ̂ see Figurel3̂  Because the

integrated cirucit was designed for multiplication, the division becomes

unstable for small denominators. Since interscale switching errors had

been eliminated, the input signals into the divider need never be less than

4V. The output of the divider network is given by

Y - 10 Z/X (23)

where Y is the ratio in volts, Z the signal from the sample channel lock-in,

and X is the signal from the reference channel lock-in. X must be negative

in sign. The terminals are labeled in the circuit diagram. Calibration

of the divider network was performed using stable voltage sources
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Figure 13; Dual-Beam Divider Network

The 741C chips act as current buffers for

analog divider network. X and Out Trim

permit zeroing and calibration, Z is the numer-

ator, X is the denominator and Y is the output

ratio. 15 Voltages (+ and -) must be

supplied.

-55-



•H5 -15 NUMERATOR DENOMINATOR
POUT

M COM *

506 - i s «

FIGURE 13
B

-56-



(Heathklt IP 18) and a 4% digit digital multimeter (Data Precision Model

245). After the output trim potentiometer was zeroed for zero input

numerator, the trim pots for the numerator and denominator were adjusted

to minimize the error for all inputs between four and ten volts,
ca-n.

| Z | < I X |. In this manner the error in the divider network could be

kept to less than 0.7% for all input signals, and less than 0.2% for

denominators larger than 8.5 V. The ratio of the laser signal in the

two beams displayed on the digital multimeter was found to be stable to

+ 0.8% and reproducible from day to day to greater than 2%. Because

of the day to day variation, all measurements were made cell in - cell put.
9

Variable density beam attenuators (polyethylene film) were used to adjust

for intensity variation in the different laser lines. These permitted

the reference channel lock-in to observe a nearly full scale signal at

each frequency, and as a result, divider circuit errors were minimized.

The cell used for the absorption measurements was 50 cm long,

5 cm in diameter, and was fitted with NaCl windows. In this detection

scheme, all laser output frequencies are collinear and no variation of

the ratio of the two channels with frequency was expected or observed.

The absorption of the empty cell was measured at each wavelength. The

measurements were found to have a standard deviation of 1.5% (108 values).

Some attenuation variation with frequency was observed, and remains unex-

plained. Great care was taken to reposition the absorption cell con-

sistently. It has since been learned that the pyroelectric detectors

exhibit a non-linear response acorss the face of the detector, and that

slight variations in angle and position of the beam incident on the
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focusing lens might result in signal variations. This change could

result from thermal expansion of the steel beam supporting the detector or

slight changes in the spatial position of the laser beam.

C. Absorption Coefficient Detent nations
i

Absorption coefficients were determined from equation (21):

ONL - £CL • A = -fin (I/I ) ,.' . -In(I/I ) ..{
( o'cell & sample o cell)

The reproducibility in A values is listed in Table XIII for various amounts

of attenuation by the sample. It is seen that large attenuations give rise

Table. XIII

Data

I/I * No.o

0.5-0.3

0.15-0.11

0.07-0.04

0.025-0.007

* I/I -(1

** a- [t

Precision

of Points

27

33

72

13

C/I ) ,o7 sample

&l*l\*
i •'

for Various Sample Attenuations

a**

.013

.013

.03

.03

4&

& cell /

Typical A with 95% Confidence
Limits for Normal Distribution

(2 a )

2.00 ± .

4.00 ± ,

6.00 ± .

9.00 ± .

(I/I )
o cell

026 (1.3%)

026 (0.7%)

06 (1.0%)

06 (0.7%)

to A values which are more reproducible than small attenuations. For small

at t enuatlons the two terms in parentheses are of comparable magnitude and

the uncertainties in each contribute to the uncertainties in A, while for

larger attenuations the first term will be dominant and the errors in A

will be due exclusively to that term alone. For very small attenuations

the uncertainties in the two ratios are on the order of their difference
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and A is completely uncertain. Because the gain of each sensitivity scale

of the lock-in was calibrated, little loss of accuracy occurred for small

signals. Thus an effort was made to obtain large attenuations for as many

laser wavelengths as possible for each gas,, in order to achieve n>a~rimm

accuracy and precision. The uncertainty in A was estimated to be 3Z for

1/1 between 0.5 and 0.9.o

Reagent grade chemicals were used whenever possible for these deter-

minations. All samples were further purified by a freeze-pump-thaw

cycle repeated several times before use. All pressures were measured on

a dibutyl phthalate vacuum manometer. Readings were taken with a

cathetometer and are accurate to + 1.5% or 0.04 Torr, whichever is

greater. The manometer response was found to linear and accurate when

compared with a Hg McLeod gauge. Absorption in the manometer was found

to be negligible during pressure measurements, and the manometer was

pumped on thoroughly after each use. Pressures up to 35 Torr could be

measured using the manometer ( p» 1.046 g/cc, 25°c). The absorption

coefficients of the fifteen gases listed in Table XIV were measured

at the 52 strongest lines of the CO- laser. These are the P(6) - P(36)

and R(6) - R(32) lines of the 00°1 - 10°0 transition and the

P(8) - P(34) and R(10) - R(24) lines of the 00°1 - 02°0 transition.

Measurements were made both on the low pressure gas sample alone,

and on the atmospheric pressure mixture with air. A few minutes were

allowed for mixing of the gas with the air. ./A rough calculation shows

this to be sufficient; see Appendix 11̂ 7 These coefficients are

presented graphically in Figures 14-19. Table XV lists the absorption
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Figure14; Laser line absorption coefficients for

low pressure trace contaminants; acetonitrile

(34.8 Torr); benzene (16.4 Torr); cyclohexane

(34.7 Torr); 1,2-dichloroethane (28.9 Torr);

and ortho-dichlorobenzene (0.4 Torr). Values

in meters/Newton ( 1 m/N» 1.33322 Torr"" cat ).

Figure 15; Laser line absorption coefficients

as in Figure 14 for ethyl acetate (5 Torr);

Freon-12 (0.8 Torr); Freon-113 (3 Torr); furan

(4 Torr); and isopropanol (10.6 Torr). • •

Figure 16; Laser line absorption coefficients

as in Figure 14 for methyl chloroform (3.36 Torr);

methyl ethyl ketone (29.4 Torr); £-butanol

(4 Torr); vinyl chloride (.(-•)• 4-1 Torr; (+) 4.1

Torr& 756 Torr air); and iodopropane (12.3 Torr).
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.Figure 17: Laser line absorption coefficients

for trace contaminants in a mixture with air.

The partial pressures of contaminant gases

are the same as in Figures 14-16; the total

pressure is 1 atm. Acetonitrile; benzene;

cyclohexane; 1,2-dichloroethane; and ethyl

acetate.

Figure 18: Laser line absorption coefficients

as in Figure 17 for Freon-12; Freon-113; furan;

and isopropanol.

Figure 19; Laser line absorption coefficients

as in Figure 17 for methyl chloroform; methyl

.ethyl ketone; J:-,b,u;tanpl;; -\Yiny-l ̂ cblflr.ide iftC-j) 4..;1

Torr alone .and (+) 4.1 Torr + 756 Torr air);

and iodppropane.
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coefficients of the gas alone. Table XVI gives the atmospheric mixture

absorption coefficient values. An uncertainty of + 3% (95% confidence

limits) exists for all values of absorption coefficients greater than

4 x 10 m/N, This is due to the combined errors in A and the concentra-

tion measurements. It was experimentally determined that fluctuations in

the value of the ratio give rise to an uncertainty in e of 1 x 10 m/N,

when A is small even for large concentrations over 30 Torr. (See equation

(21).)

It must be noted that the self-broadening of these gases will present

a problem, possibly even in the atmospheric mixture. Thus, even though

the absorption coefficients were determined over a range of pressures for

each gas in order to obtain good accuracy for both strong and weak extinc-

tion coefficients, the low pressure measurements were used whenever possible.

High pressure of the sample gas was needed only for frequencies at which

there was weak attenuation. Self-broadening values have been determined

221for some molecules and are larger than air broadening values. Care must

be exercised because self broadening could result in overestimation of the

absorption coefficients and, consequently, underestimation of trace con-

taminant concentrations. This problem could have been circumvented if a

longer cell or multiple-pass cell were used for these measurements. A more

systematic study of the pressure broadening in these gases would be desir-

able, and these concerns form the basis for the next chapter. For such

studies, a broadly tunable laser source is preferable to a line-tunable

222
C02.laser.

It was hoped that use of absorption coefficients taken with low sample
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Table XV

Absorption Coefficients of Trace Gases at Low Pressure (m/N)*

Laser
Line

R(24)

R(22)

R(20)

R(18)

R(16)

R(14)

R(12)

R(10)

1 P( 8)

» P(10)

| P(12)

^ P(14)

o° P(16)

7 P(18)

o-i P(20)

OP (22)

P(24)

P(26)

P(28)

P(30)

P(32)

P(34)

•• R(32)

R(30)

R(28)

R(26)

aceto-
nitrile

.000074

.000099

.000117

.000077

.000662

.000090

.000076

.000087

.000066

.000125

.000126

.000103

.000112

.000075

.000109

.000080

.000088

.000114

.000110

.000113

.000082

.000070

benzene

.000018

.000016 '

.000019

.000017

.000009

.000010

.000006

.000021

.000431

.000670

.000470

.000458

.000520

.00118

.000359

.000355

.000241

.000308

.00126

.00217

.00150

.000474

.000006

.000007

.000006

.000008

cyclo-
hexane

.000008

.000000

.000001

.000002

i 000005

.000000

.000004

.000008

.000069

.000078

.000109

.000135

: 000125
.000104

.000071

.000095

.000146

.000140

.000293

.000239

.000181

.000147

.000006

.000003

.000005

.000000

ethyl
acetate

.00276

.00309

.00314

.00341

.00368

.00408

.00454

.00530

.0123

.0120

.0119

.0116

.0112

.0104

.00940

.00830

.00720

.00580

.00475

.00380 '

.00296

.00227

.000278

.000257

.000240

.000215

Freon 12

.00730

.00690

.00470

.00353

.00347

.00261

.00222

.00161

.00023

.00018

.00021

.00022

.00019

.00019

.00018

.00015

;.00013'

.00009

.00020

.00011

.00010

.00008

.00011

.00004

.00005

=00009

Freon 113

.00068

.00066

.00064

.00063

.00064

.00077

.00099

.00106

.0107

.0119

.0141

.0159

.0177

.0189

.0187

.0174

.0192

.0200 :

.0167

.0133

.0108

.0089

.000468

.000505

.000535

,000530

* 1 m/N » 1.33322 torr̂ cm"1 4.1 x 10
"17

25°C.
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Table XV

Absorption Coefficients of Trace Gases at Low Pressures (m/N)

Laser
Line

R(24)

R(22)

R(20)

R(18)

R(16)

R(14)

R(12)

R(10)

R( 8)

§ R( 6)
•rl

3 PC 6)

§P( 8)

P̂(IO)

0°PC12)

i

°gP(18)

~P(20)

P(22)

P(24)

PC26)

P(28)

POO)

P(32)

PC34)

PC36)

benzene

.000010

.000005

.000007

.000010

.000009

.000006

.000009

.000005

.000002

.000002

.000000

.000002

.000003

.000006

.000005

.000007

.000002

.000011

.000003

.000010

.000006

.000006

.000009

.000007

.000003

.000000

cyclo—
hexane

.000002

.000005

.000000

.000001

.000000

.000000

.000000

.000001

.000001

.000003

.000003

.000003

.000002

.000005

.000020

.000011

.000014

.000005

.000006

,000003

.000008

.000009

.000008

.000011

.000017

.000024

ethyl
acetate

.000208

.000187

.000181

.000166

.000158

.000142

- -.000140

.000133

.000128

.000120

.000142

.000169

.000223

.000304

.000430

.000590

.000700

.000730

.000650

.000660

.000800

.000740

.000840

.000950

.000980

.000960

Freon 12

.00005

.00004_

.00004

.00005

.00010

.00005

.00013

.00007

.00010

.00000

.00000

.00010

.00006

.00009

.00013

.00016

.00020

.00033

.00055

.00138

.00365

.0125

.0250

.0220

.0580

.0810

Freon 113

.000570

.000560

.000570

.000550

.000540

.000540

.000510

.000483

.000457

.000357

.000259

.000257

.000257

.000277

.000298

.000326

.000356

.000440

.000580

.000870

.00144

.00224

.00311

.00402

.00560

.00660
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Table XV

Absorption Coefficients of Trace Gases at Low Pressure in (m/N)

Laser
Line

R(24)

R(22)

R(20)

R(18)

R(16)

R(14)

R(12)

RUO)

c P( 8)o
£ P(10)

|P (12)

H P(14)

oP(16)

°g P(18)

I P(20)

c£p<22)

*̂

P(26)

P(28)

P(30)

P(32)

P(34)

R(32)

R(30)

R(28)

R(26)

furan

.000900

.000800

.000970

.000520

.000725

.000680

.00114

.000840

.00119

.00118

.000796

.00122

.000774

.000699

.000422

.000920

.000255

.000200

.000182

.000200

.000152

.000157

.0055

.0046

.00157

.00185

isopro-
panol

.00275

.00275

.00270

.00279

.00282

.00282

.00298

.00278

.00175

.00150

.00137

.00121

.00105

.000890

.000770

.000645;

.000530

.000442

.000376

.000311

.000272

.000235

.000440

.000515

.000620

.000750

iodo-
propane

.000274

.000264

.000239

.000250

.000259

.000242

.000250

.000245

.-i 0000 71

.000068

.000050

.000102

.000054

.000040

.000055

.00004$

.000069

.000062

.000044

.000088

.000092

.000107

.000040

.000024

.000042

.000025

methyl
chloro-
form

.00980

.00820

.00668

.00521

.00422

.00580

.00467

.00476

.000870

.000712

.000546

.000449

.000296

.000222

.000180

.000170?

.000133

.000102

.000099

.000093

.000084

.000070

.000050

.000034 •

.000026

.000039

methyl
ethyl
ketone

.000463

.000472

.000424

.000431

.000400

.000390

.000377

.000375

.000270

.000248

.000231

.000271

.000223

.̂000219

.000193

.000205

.000167

.000171

.000157

.000149

.000121

.000163

.000354

.000379'

.000388

.000370

tert-
butanol

.000178

.000188

.000177

.000188

.000176

.000181

.000184

.000169

.000188

.000185

.000183

.000221

.000195

.000216

.000222

..000252'

.000266

.000304

.000345

.000388

.000427

.000482

.000125

.000133

.000132

.000105

vinyl
chloride

.00048

.00043

.00036

.00027

.00034

.00030

.00025

.00023

.00022

"' .00031

.00028

.00031

.00090

<• .00181

.00293

.00128

.00166

.00041

.00145

.00105

.00288

.00041

.00020

.00029

.00119

.00203
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Table XV

Absorption Coefficients of Trace Gases at Low Pressure (o/N)

• •̂ J.-— •

g
•H

i
14

x-\

0°

°
1

ooo
~

Laser
Line

R(24)

R(22)

R(20)

R(18)

R(16)

R(14)

R(12)

R(l.O)

R( 8)

R( 6)

PC 6)

P( 8)

P(10)

P(12)

P(14)

P(16)

P(18)

P(20)

P(22)

P(24)

P(26)

P(28)

P(30)

P(32)

P(34)

P(36)

f uran

.00298

.00108

.00225

.00160

.00090

.00156

.00131

.00126

.000920

.000836

.000074

.000054

.000034

.000009

.000020

.000017

.000012

.000010

.000006

.000005

.000004

.000010

.000009

.000000

.000003

.000000

isopro-
panol

.000930

.00116

.00140

.00165

.00203

.00234

.00263

.00286

.00310

.00316

.00348

.00372

.00374

.00361

.00343

.00316

.00337

.00308

.00314

.00274

.00267

.00227

.00196

.00167

.00136

.00113

iodo-
propane

.000028

.000026

.000022

.000026

.000014

.000007

.000014

.000015

.000012

.000007

.000008

.000009

.000005

.000016

.000011

.000026

.000015

.000023

.000012

.000006

.000011

.000036

.000045

.000004

.000019

.000017

methyl
chloro-
form

.000031

.000039

.000035

.000052

.000050

.000060

.000061

.000056

.000051

.000072

.000080

.000068

.000056

,000057

.000054

.000039

.000047

.000033

.000038

.000022

.000023

.000030

.000025

,000019

.000028

.000034

methyl
ethyl
ketone

.000396°

.000379

.000402

.000385

.000417

.000414

.000418

.000455

.000490

.000515

.000890

.000970

.00106

.00109

.00114

.00118

.00115

.00121

.00118

.00119

.00114

.00111

.00111

.00105

.000970

.000885

tert-
butanol

.000125

.000113

.000110

.000098

.000109

.000094

.000083

.000103

.000110

.000101

.000104

.000128

.000153

.000169

.000225

.000317

.000450

.000668

.001000

.00137

.00208

.00255

.00305

.00363

.00370

.00347

vinyl
chloride

.00055

.00051

.00085

.00139

.00051

.00062

.00148

.00110

.00053

.00284

.00116

.00033

.00053

.00065

.00136

.00220

.00107

.00143

.00814

.00160

.00175

.00102

.00310

.00166

.00499

.00880
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Table XVI

Absorption Coefficients of Trace Gases in an Atm. Mixture with Air (n/H)

Laser
Line

R(24)

R(22>

R(20)

R(18)

R(16)

R(14)

R(12)

R(10)

P( 8)

g PUO)

S P(12)
a
3 P(14)
M
* P(16)

o® PU8)
C«4
0 P(20)
i

-rt P(22<)
0
§ P(24)
>i*X

P<26)

P(28)

P(30)

P(32)

P<34)

~ R(32)

°o R(30)

i R(28>o
§ R(26)

aceto-
nitrile

.000073

.000075

.000100

.000075

.000412

,000084

.000081

.000092

.000091

.000122

.000128

.000116

.000148

.000097

.000119

..000097

.000114

.000127

.000096

.000114

.000104

.000095

.000022

.000014

SQQQQ15

.000012

benzene

.000024

.000018

.000024

.000022

.000006

.000001

.000011

.000014

.000438

.000510

.000600

.000660

.000680

.000660

.000580

,.000460

.000372

.000400

.00102

.00210

.00111

.00069

.000017

.000009

• WWWO

.000010

cyclo-
bexane

.000005

.000000

.000000

.000002

.000009

.000000

.000003

.000000

.000071

.000086

.000102

.000113

.000110

.000106

.000082

,*000.0-79

.000139

.000150

.000411

.000253

.000153

.000123

.000008

.000006

.000004

.000008

1,2-di-
cfaloro-
ethane

.000004

.000011

.000003

.000012

.000005

.000009

.000008

.000004

.000009

.000013

.000015

.000030

.000022

.000019

.000031

,.000018

.000041

.000035

.000034

.000057

.000077

.000088

.000065

.000056

.000058

.000054

ortho-
dichloro-
benzene

.0002

.0002

.0000

.0002

.0000

.0000

.0000

.0000

.0004

.0006

.0009

.0035

.0037

.0059

.0026

.0076

.0067

.0056

.0076

.0074

.0064

.0054

.0002

.0000

.0002

.0000

ethyl
acetate

.00273

.00306

.00313

.00338

.00365

.00402

.00450

.00530

.0122

.0120

.0118

.0117

.0111

.0104

.00940

/00830

.00700

.00590

.00470

.00375

.00296

.00227

.000277

.000254

.000237

.000216
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Table XVI

Absorption Coefficients of Trace Gases in Atm. Mixture with Air (m/N)

Laser
Line

R(24)

— R(22)

R(20)

R(18)

R(16)

R(14)

R(12)

R(10)

R( 8)

§R( 6)
•H

4J ^

§P( 8)

P̂(IO)

0° P(12)

S p(14)

H P(16>
°§P(18)

P̂(20)

P(22)

P(24)

P(26)

P(28)

POO)

P(32)

P(34)

P(36)

aceto-
nitrile

.000019

.000009

.000016

.000002

.000009

.000004

.000000

.000008

.000012

.000012

.000001

.000009

.000011

.000002

.000013

.000023

.000025

.000045

.000048

.000058

.000085

.000090

.000098

.000116

.000099

.000106

benzene

.000012

.000009

.000010

.000010

.000013

.000008

.000015

.000008

.000007

.000000

.000000

.000003

.000007

.000006

.000008

.000001

.000008

.000006

.000012

.000005

.000007

.000015

.000006

.000006

.000000

.000005

cyclo-
hexane

.000006

.000007

.000003

.00005

.000004

.000002

.000004

.000006

.000001

.000003

.000004

.000004

.000008

.000013

.000019

.000013

.000010

.000004

.000009

.000008

.000009

.000011

.000011

.000012

.000016

.000020

1,2-di-
chloro-
e thane

. .000047

.00004.4__

.000048

.000039

.000045

.000050

.000050

.000064

.000081

.000089

.000197

.000215

.000218

.000203

.000175

.000171

.000173

.000200

.000208

.000204

.000197

.000187

.000163

.000129

.000118 • - '

.000100

ortho-
dichloro-
benzene

.0000

0̂000

.0003

.0000

.0000

.0000

.0000

.0000

.0005

.0004

.0000

.0001

.0003

.0000

.0003

.0006

.0000

.0006

.0000

.0006

.0002

.0006

.0004

.0002

.0000

.0002

ethyl
acetate

.000205

.000194

.000175

.000161

.000160

.000142

.000140

.000131

.000126

.000120

.000162

.000174

.000217

.000302

.000428

.000580

.000700

.000730

.000650

.000660

.000790

.000740

.000840

.000950

.000970

.000950
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Table XVI

Absorption Coefficients of Trace Gases in an Ata. Mixture with Air (m/N)

Laser
Line

R(24)

R(22)

R(20)

R(18)

R(16)

R(14)

R(12)

R(10)

g P( 8)

2 PO-0)

S P(12)

H P(14)
^̂

°S P(18)

• P(20)

°o P(22)

S P'(24)>

P(26)

P(28)

P(30)

P(32)

P(34)

s R(32)

°o R(30)

2 R(28)

°§ R(26)

Freon 12

.00820

.00670

.00510

.00401

.00352

.00289

.00209

.00165

.00033

.00023

.00029

.00029

.00036 .

.00020

.00019

.00024

.00016

.00019

.00016

.00010

.00013

.00008

.00009

.00009

.00002

.00006

Freon 113

.000680

.000680

.000640

.000640

.000640

.000780

.001000

.00106

.0108

.0120

.0137

.0162

.0178

.0190

.0189

.0175

.0195

.0202

.0169

.0134

.0109

.0088

.000468

.000497

.000535

.000556

furan

.00111

.00116

.00121

.00124

.00117

.00108

.00109

.000950

.00121

.00118

.00111

.00107

.000880

.000760

.000562

.000452

.000336

.000241

.000182

.000153

.000134

.000129

.00393

.00413

.00407

.00369

isopro-
panol

.00273

.00274

.00277

.00278

.00277

.00284 -

.00297

.00284

.00176

.00155

.00137

.00123

.00107

.00092

.00077

.00065

.00054

.000458

.000388

.000329

.000282

.000250

.000440

.000520

.000630

.000770

methyl
chloro-
form

.00980

.00830

.00680

.00531

.00434

.00593

.00472

.00494

.000915

.000630

.000528

.000441

.000299

.000224

.000182

.000168

.000138

.000104

.000116

.000097

.000090

.000073

.000050

.000035

.000024

.000036

methyl
ethyl
ketone

.000469

.000478

.000519

.000436

.000397

.000401

.000384

.000377

.000277

.000254

.000226

.000268

.000223

.000220

.000199

.000204

.000165

.000172

".000161

.000148

.000120

.000155

.000353

.000381

.000389

.000368
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Table XVI

Absorption Coefficients of Trace Gases in Atm. Mixture with Air (m/N)

§
•H

T
ra

n
si

t

. o.
ooo

1
rH
O
0o

Laser
Line

RC24)

RC22)

RC20)

RC18)

RC16)

RC14)

RC12)

RC10)

RC 8)

RC 6)

PC 6)

PC 8)

PC10)

PC12)

PC14)

PC16)

PC18)

PC20)

PC22)

PC24)

PC26)

PC28)

PC30)

PC32)

PC34)

PC36)

Freon 12

.00014

.00005

.00011

.00001

.00014

.00004

.00004

.00013

.00009

.00004

.00006

.00003

.00013

.00009

.00017

.00014

.00016

.00035

.00059

.00151

.00367

.00870

.0180

,0308

.0429

.0463

Freon 113

.000563

.000573

.000569

.000556

.000531

„. 000531

.000517

.000482

.000451

.000412

.000259

.000256

.000258

.000275

.000302

.000327

.000364

.000450

.000597

.000910

.00146

.00232

.00321

.00407

.00560

.00660

furan

.00356

.00304

.00271

.00279

.00227

.00157

.00120

.000970

.000709

.000538

.000063

.000048

.000037

.000025

.000020

.000020

.000012

.000014

.000010

.000009

.000008

.000011

.000007

.000005

.000005

.000004

iospro-
panol

.000940

.00116

.00140

.00170

.00200

.00232

.00265

.00292

.00314

.00324

.00352

.00370

.00376

.00362

.00342

.00319

.00316

.00303

.00298

.00280

.00261

.00232

.00198

.00167 ,

.00138

.00114

methyl
chloro-
form

.000031

" .000039

.000040

.000053

.000057

.000059

.000062

.000058

.000053

.000073

.000070

.000067

.000055

.000060

.000051

.000045

.000043

.000038

.000034

.000024

.000027

.000029

.000023

... 000028

.000031

.000030

methyl
ethyl
ketone

.000396

.000376

.000405

.000384

.000412

.000416

.000416

.000460

.000497

.000515

.000880

.000970

.00106

.00110

.00115

.00117

.00115

.00120

.00119

.00120

.00115

.00112

.00111

.00106

.000970

.000890
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Table XVI

Absorption Coefficients of Trace Gases in Atm. Mixture with Air (m/N)

Laser
Line

R(24)

R(22)

R(20)

R(18)

R(16)

R(14)

R(12)

R(10)

§ P( 8)

I P(10)

|P (12)

H- P(14)

o P(16)

°g P(18)

i P(20)

o"1 P(22)

° P(24)

P(26)

P(28)

P(30)

P(32)

P(34)

g. R(32)

°o R(30)

jS R(28)

°§ R(26)

tertiary
butanol

.000170

.000202

.000170

.000195

.000171

.000187

.000186

.000163

.000189

.000189

.000189

.000227

.000200

.000220

.000229

.000257

.000263

.000306

.000351

.000384

.000432

.000480

.000110

.000137

.000135

.000113

vinyl
chloride

.00000

.00022

.00000

.00015

.00004

.00000

.00000

.00002

.00017

.00023

.00033.

.00046

.00069

.00085

.00105

.00140

.00128

.00140

.00145

.00133

.00123

.00098

.00068

.00077

.00107

.00073

Laser
Line

R(24)

R(22)

R(20)

R(18)

R(16)

R(14)

R(12)

R(IO)

R( 8)

J R( 6)
4J

1 P( 6)

H P( 8)

~ P(10)

°o P(12)

i P(14)

ô  P(16)

£ P(18)

P(20)

P(22)

P(24)

P(26)

P(28)

r(3U;

P(32)

P(34)

P(36)

tertiary
butanol

.000130

.000120

.000117

.000100

.000106

.000100

.000086

.000100

.000108

.000094

.000101

.000130

.000162

.000163

.000223

.000322

.000438

.000666

.000990

.00144

.00207

.00255

.00322

.00364

.00380

.00353

vinyl
chloride

.00154

.00093

.00139

.00104

.00105

.00126

.00096

.00175

.00099

.00247

.00147

.00114

.00130

.00136

.00128

.00149

.00172

.00224

.00884

.00321

.00233

.00180

.00193

.00169

.00169

.00317
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pressures would exhibit self-broadening which was negligible compared

with atmospheric broadening, and accurate detection of each gas in a

mixture would be possible. This is discussed further later in the

chapter.

From these absorption coefficients, the sensitivity of a laser

absorption method for detecting each trace gas contaminant in the

atmosphere could be estimated. The minimum detectable concentration

(MDC) of each gas was set at the level for which there is a 20% uncer-

tainty in A at the gases' most strongly attenuating frequency. These

MDC values are listed in Table XIV. It may be seen from the Table that

single gases may be detected at the 1-200 ppm level for a 10m path.

The gases to be used in preparing a mixture were purified as above.

After an amount of each gas reached equilibrium in the gas manifold

and its pressure was measured, the cell was closed off from the manifold

and the gas in the cell was cryopumped into the sidearm bulb of the

cell, using liquid nitrogen. This bulb was of known volume relative to

the volume of the absorption cell. Care was taken to insure all the

contaminant was condensed into the bulb. After all the gases were

stored in the bulb in this manner, the bulb was warmed to room tempera-

ture and the gases were allowed to expand into the absorption cell and

mix for several hours. Air was then added to the cell to bring the mix-

tures to atmospheric pressure. Calculations of the times necessary for

diffusion are given in Appendix II. " " "'

Mixtures were prepared in such a way as to find the effect of the

following conditions on the accuracy of the concentration determination

procedure:
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1. The variation of the absorption for similar mixtures;i.e.,

mixtures with the same relative concentrations of the gases, but different

total pressures of the contaminant mixture;

2. The variation of the relative concentrations of two gases

with very similar absorption spectra;

3. The presence of a relatively high concentration of a broadly

absorbing gas.

D. Mixture Analysis —*••-•-

223Several different approaches to the solution process are possible.

A best fitting of the calculated concentration by a linear vector space

132analysis for a single species has been performed. Here four wavelengths

of a CO, laser were chosen to permit maximum discrimination for 0. detec-

tion. A least-squares fitting of a high resolution continuous spectrum

91has been done for up to 25 contaminant species. This method relies on

determining the concentration of each species from a distinguishing feature

or set of features in the absorption spectrum. The method chosen here

to determine the concentration of each gas present in the prepared mix-

tures involved a least-squares fitting of the absorption data prior to

solution. As a result, the magnitude of the errors due to experimental

fluctuations was minimized, and greater stability during matrix manipula-

tion was achieved.

Because only as many simultaneous equations were required as

unknowns, fifty-two absorption measurements on a twelve component mixture

form an overdetermined system. Early attempts at choosing appropriate
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132wavelengths for discrimination as in for even a three component system

resulted in low accuracy and a large dependence of the solution on the

choice of wavelengths. It would seem that the linear vector space

132analysis used by Craig worked sufficiently well for the simple one-

component system, but that poor stability would result for a multi-

component mixture using their iterative approach. As a result, a method

utilizing all the experimental information was Implemented. The expected

absorption at each wavelength* if the absorption due to each species

•pTfSsent is additive, would be given by

7±"I e±j c.j j - 1 , 2 , ... , A (24)

where y is the expected absorption at the 1 wavelength, e is the

experimentally determined absorption coefficient of gas j at wavelength i,

and c. is the "unknown" concentration of gas j. The experimentally measured

absorption values of the mixture, A., are subject to the uncertainties and

fluctuation errors-discussed above, and as a result will generally be

different from y values. The best set of solutions for the concentrations

of the contaminants occurs when the differences between A and y. values

are smallest (but not necessarily zero). This solution is achieved when

the sum of the squares of the residuals between A. and y. are minimized with

respect to variation of the solutions c., giving

•& - 0 ( J = 1,...,N) ; n - I (y±. - A±)
2 (25)

For this system N • 12, A = 52. Substituting equation (24) into equations

(25) and performing the partial differentiation results in a set of N
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simultaneous equations after rearrangement.

fjl Cl + fj2 C2 + fJ3 C3 + • — + fjn cn = dj (26)

j - 1 , 2 , ... , N .

where

It is seen that each f,. and d. matrix element is the sum of fifty-two

products. In this manner all the information is collapsed into an

N-dimensional matrix. In matrix notation equation (26) may be written

T T
EG " Q where g » e § and 2 * § A /A . Because the F matrix is

symmetric positive definite, elimination methods requiring non-vanishing

positive pivots may be employed. In particular, the triangular decomposi-

224tion method of Cholesky which breaks F into two triangular matrices

which are transpositions of one another, introduces very little mathe-

matical instability into the solution process through minimization of

the rounding errors in the matrix elements calculated during the

deconp.psition. The « solutions :are*then >'found -by back-subs titution. -A

fuller explanation and an example are given in Appendix III. Methods

requiring matrix inversion for solution are far more unstable. They

are particularly unstable for near-vanishing pivot elements. This would

be the case if the sum of the absorption coefficients for two gases were
f X A i

similar £.( e )2 ^ T ( e.,.)2 . We noticed that, in fact,
. > 1-1 *J.- i»l lfc J

matrix inversion methods were unable to reach stable solutions for the

twelve component mixtures in these experiments. The coisputer solution

program, DPELZC, is given in Appendix IV. An IBM System/360 Model 67
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computer was used in this analysis on a time-sharing basis. The memory

storage of the PDF 8/L mini-computer in the laboratory was insufficient

for these large matrices, and the word length did not allow sufficient

precision during computation.

Occasionally gases were omitted from the mixture and if the cal-

culated concentration of the gas was negative or zero, that species was

removed from the calculation process, reducing the number of simultaneous

equations by one. If the calculated concentration of an omitted gas

was non-zero, or if the concentration of a trace gas present in the mix-

ture was calculated to be zero, the error in the solution was taken as a

total uncertainty in the presence of the contaminant at that level. Gen-

erally, as the concentration of any gas decreased, the percent error

between the calculated and known input values increased even for similar

mixtures. This increase is expected because the relative contribution of

that gas to the absorption by the mixture is decreased and closer to the

noise level of the detection system. However, these errors were a function

of the interference effects in each particular mixture and not just the

contaminant's concentration. For example, benzene and cyclohexane have

very similar absorption coefficient distributions, as listed in Table XVII.

Benzene absorbs more strongly in this region and its maximum absorption

is shifted by one C02 laser line toward lower frequency. The MDC of

cyclohexane is increased when benzene is present in an amount sufficient

to dominate the relative absorption. Under these conditions, the benzene

MDC is decreased below the value expected from concentration considerations

alone. The concentration effect is predominant over most of the relative
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Table XVII

The Absorption Coefficients in m/N of Benzene and

Cyclohexane in the P Branch of the (00°1 - 02°0)

Transition "*'

Transition Frequency (cm ) (Benzene) (Cyclohexane)

P (8)

P (10)

P (12)

P (14)

P (16)

P (18)

P (20)

P (22)

P (24)

P (26) '

P (28)

P (30)

P (32)

P (34)

1057.3002

1055.6251

1053.9235

1052.1956

1050.4413

1048.6608

1046.8542

1045.0217

1043.1633

1041.2791

1039.3693

1037.4341

1035.4736

1033.4881

.00043 (1)

.00050 (1)

.00059 (1)

.00065 (1)

.00066 (1)

.00065 (1)

.00057 (1)

.00045 (1)

.00036 (1)

.00039 (1)

.00100 (1)

.00206 (2)

.00108 (1)

.00068 (1)

.000070 (2)

.000084 (2)

.000100n,,03K .
/9.U.TJ i ff'l V.

.000111 (2T

.000108 (3)

.000104 (3)

.000080 (3)

.000077 (3)

.000136 (4)

.000147 (4)

.000403 (8)

.000248 (5)

.000150 (4)

.000121 (4)

* The absorption coefficients at all other laser frequencies are

near zero for both gases.
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concentration range investigated, and thus this method of solution is suffi-

ciently sensitive to easily distinguish the two gases.

The concentrations of the gases at which the difference between cal-

culated and known values becomes sizable for the twelve component mixtures

are given in Table XV. It is seen that the presence of other absorbers

tends to. increase the MDC value of each contaminant, general to about

five times that of the isolated gas. Mixtures containing only a few com-

ponents should have MDC values intermediate to those of the twelve com-

ponen»alje6atre and single gas MDC levels. The errors listed in Table XT7
•Mfgpp • . '

are the observed differences for the gas at that concentration in a m±x-
•̂ .-ŷ ^•&•«.

ture. Interference effect do not permit the MDC levels to be set as

uniformly as for the isolated gases.

Another interference effect in the mixture may be used to increase

the sensitivity of detection. When all the gases are present in low con-

centrations, the absorption of the laser light by the mixture is small,

and the A, values are largely uncertain due to baseline fluctuations.

The addition of a broadly absorbing gas decreases the effect of the

fluctuations and actually increases the sensitivity of detection of the

other trace species. For example, isopropanol exhibits two broad absorp-

tions in the region of the spectrum covered by the, laser /See Figure 20/.

Two mixtures of twelve gases were prepared containing concentrations of

the gases at or below their MDC values determined above. One contained

an amount of isopropanol near its MDC value, and the o'ther contained

an amount roughly nine times MDC, resulting in 80-95% absorption of the

light at many frequencies.The calculated concentrations are compared in

-85-



Figure 20; The absorption coefficients of

isopropanol at the CO- laser frequencies.

The frequencies at which the following gases

have strong absorption coefficients are

indicated: acetonitrile (A), 1, 2-dichlqro-

ethane .(D), ethyl acetate (E), Freon 12 (12)

Freon 113 (113), and vinyl chloride (V).
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Table XVIII. A large increase in sensitivity resulted for those contami-

nants which have their strongest absorptions in a region where the addition

of isopropanol greatly increases the total absorption. Acetonitrile,

1,2 dichloroethane, and vinyl chloride are in this category /See Figure 2$J.

The frequencies at which ethyl acetate, Freon 12, and Freon 113 have their

strongest absorption coefficients are also indicated in the Figure. It

is seen that the total absorption at those wavelengths would not be

greatly increased by the addition of isopropanol, and little improvement

is observed in Table X7III.

Normal atmospheric attenuation over a 10 m path due to water vapor

and carbon dioxide is less than 0.2% for all frequencies. 'In

225
closed environments, both these gases may accumulate to high levels.

If their absorption is significant, they may be treated as additional

atmospheric contaminants and an attempt could be made to quantitatively

detect them. Water vapor would give rise to, at most, 0.3% absorption

132for a 10 m path, and hence is undetectable since experimental measure-

ment fluctuations are on the order of 1%. Carbon dioxide, on the other/

,hand, might be present in sufficient quantities to result in 10% absorption

at some laser frequencies, and thus could be quantitatively detected. In

these closed environments, ambient CO. may serve as a broad absorber and

enhance sensitivity. The additional errors introduced Into the 'solution

process would be small and-the accuracy of the detection method would then

be independent of cabin atmosphere composition. The presence of unexpected

226
trace absorbers will greatly perturb the calculated solutions. As a

result, all species which might occur in the closed environment must be

enumerated and the appropriate absorption coefficients stored in memory.
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Table XVIII

The Effect of a Broadly Absorbing Gas. on the MDC

Values in ppm *

Ratio of the calculated

concentration to the _____,_.

known value for the

mixture with:

Gas

acetonitrile

benzene

cyclohexane

1, 2-dichloroe thane

ethyl

acetate

Freon 12

Freon 113

furan

isopropanol

methyl chloroform

t-butanol

vinyl chloride

All Gases

near MDC

2.62

1.82

1.54

1.02

2.45

0.66

0.89

1.12

2.64

0.82

2.98

0.49

Addition of

isopropanol

1.34

1.10

0.64

0.52

1.18

0.85

1.16

0.93

1.04

0.95

1.65

0.81

MDC of gas

.from

Table XV

1 = 10 m

400 (33%)

200 ( 6%)

167 (50%)

1000 (30%)

9 (23%)

5 (38%)

9.2 ( 7%)

33 (20%)

40 (10%)

9 (14%)

73 (25%)

17 (50%)

MDC of gas

due to

presence of

isopropanol

'1.--10 m

140 (33%)

50 (10%)

130 (30%)

125 (50%)

9 (15%)

9 (15%)

9 (22%)

40 ( 7%)

-
20 ( 5%)

47 (58%)

17 (18%)

* 1 N/nT » 9.878 ppm
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Elimination of species not actually present will permit eventual matrix

simplification.

The enhanced sensitivity brought about by the addition of a broadly

absorbing gas verifies the fact that more strongly attenuated laser

frequencies give absorptions which are more reproducible. Thus one

might consider weighting the absorptions differentially to try to improve

the accuracy of the solution method. In this case equation (26) becomes

where to is a \ x X diagonal weighting matrix. Heavier weighting of

strong absorptions was tried initially, but a decrease in accuracy

resulted. The least-squares fitting part of the solution process

tends to treat large absorptions preferentially, and no improvement is

gained by weighting. More heavily weighting the small or medium absorp-

tions was also used in an attempt to determine whether or not the least-

squares fitting process stressed the large absorptions too strongly.

These solutions were not significantly improved over the unweighted

scheme. Apparently the unbiased least-squares fit of the data produces

the best set of solutions and further attempts at weighting offer no sig-

nificant improvement. A weighted computer solution program, W2DPAZC, is

given in Appendix IV.

Because the MDC depends on interferences in the mixtures, a com-

putational technique was developed which assigns a relative uncertainty

to the calculated concentration values for each specific mixture. No addi=

tlonal experimental data was needed and the extra computer time required
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is Insignificant. Such a self-evaluating procedure is desirable when inter-

ference with other absorbers may cause a trace species to become partially

obscured or much too prominent.

The first approach to this self-evaluation involved calculation of

227the residuals between the calculated and exact solutions of the matrix.

,The c. solutions were used to calculate y. value using-equation (24).

The difference between y. and A. is taken and this value is used as the

A. value in equation (26) and (27). The D matrix calculated is the

residual due to computer rounding and experimental fluctuation errors.

If the experimental A. values were exact, then the residual would reflect

the mathematical stability. The c. values calculated using the residual

D matrix are the errors in the concentration values previously calculated.

The relative importance of the two sources of error can be estimated as

follows. If the number of certain digits in the experimental values is

q and the word length of the computer is p, it follows that if the uncer-

tainty in the (p + 1) digit gives rise to a residual M_, then the uncer-

tainty in the (q +1) digit gives rise to a minimum error in the concen-

tration solutions of the order of magnitude 10 P~q tL. Thus the error

due to physical uncertainties P_ > 10 " M_ and the residuals calculated

by this process, R, are R < *L (1 + 10̂ P~q )̂. For the IBM System/360

Model 67 computer used in this analysis, p » 7. The standard deviation

in the experimental absorptions is less than 0.5% for all reasonable

absorptions ̂ See Table XIII/. The D vector is composed of the product of

these values and the standard deviation in the mean of each d. value is

228related to that of the A values which compose it,

a_ - ^— a. - 0.139 a. - 0.07% (29)
D /T A A
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The computer rounding errors may be considered to be completely random.

4Hence q »3 and P * 10 M_ > R. The mathematical errors introduced by

the solution process are negligible compared to the errors introduced

by the experimental uncertainties. The residuals calculated using this

technique give rise to an estimate of the uncertainties in the concentra- .

tions of 0.03% or greater, due exclusively to the experimental measurement

fluctuations.

However, the observed errors are much larger than this and so a finer

estimate of the effect of the physical errors on the stability and accuracy

of the solutions is needed. A method allowing modification of the experi-

mentally determined absorption values was implemented. After the concen-

trations are found, these values are used to calculate y-, the expected

absorption at the first wavelength. This value is compared to A, and A,

is allowed to vary by up to 2% in the direction of y... This new value

(A '), along with the other 51 unchanged A. values, is used to recalculate

the concentrations, which are, in turn, used to adjust A-. This is

repeated for all the wavelengths, and the entire process may be repeated

until the differences between y. and the modified A are arbitrarily small.

Typically, fewer than five iterations were needed to make y - A ' < 0.001.

The mathematical round errors accumulate, however, and are as much as 260

times greater than for the simple solution. This is still less than the

minimum physical uncertainty expressed above. The final set of concentra-
•

tions represent the exact solutions of the equations using modified absorp-

tions; This minimization of absorption method produced solutions whose

values were different from the original calculated solutions by only a
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small amount for gases far above their MDC; i.e., for gases responsible

for significant absorption of the light. For gases at concentrations near

their MDC, the differences were larger by up to a factor of 10 than the

error in the original calculated solutions. These new solutions are not

necessarily in the direction of decreased error compared to the known

input concentrations and are not meant to improve the accuracy of the cal-

culated solutions, but are intended to provide a better estimate of the

magnitude of the errors due to the experimental uncertainties for each

gas in each particular mixture. This method provides a better estimate

of the uncertainties in the solutions than those calculated from the

residuals.which form a lower bound for these errors. Observation of the

minimized absorptions reveals that the strong absorptions are seldom

changed by as much as 2% after 5 iterations (max. 10% change possible),

whereas the weak absorptions (I/I > 0.4) are greatly altered, with the

weakest changed by nearly 10%. Thus compounds whose strongest absorption

coefficients are in regions of low absorption of the mixture may have their

concentrations drastically altered by this minimization process. This

effect is noticeable in the solutions for concentrations of compounds that

are weak absorbers, which are made very unstable by this Iteration method.

The preferential treatment received by strong absorbers in the simple

solution process, is amplified by this method, which highlights the

instabilities.

Finally, it must be noted that no systematic deviation of the calcu-

lated concentrations from the known values occurred at very low con-

taminant levels. If self-broadening were significant in the measured
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absorption coefficients a consistently low concentration value would have

been calculated. The least-squares fitting procedure emphasizes the

role of the stronger absorption coefficients which were determined by

low trace gas concentrations. Thus, it is believed that there is some

self-broadening contribution to the observed absorption coefficients,

but the solution procedure used, results in a minimization of these

effects to the point where no experimental perturbations are observable.

Nonetheless, a more systematic study of pressure-broadening effects in

many of these systems would be desirable. For such studies, a broadly

tunable laser source is preferable to a line-tunable system such as CO..

The use of such a source permits one to map out a complete profile,-

rather than just sample a single point on that profile.

E. Conclusions

It has been shown that the CO- laser absorption technique is capable

of sensitive, real-time detection of trace contaminants. The method per-

mits simultaneous detection of fifteen or more species at ppm .'levels.

This sensitivity is largely due to the stability and reproduclbllity of

data gathered using the frequency stabilized C0? laser and dual beam
»

detection system. Absorption interferences have been found not to seri-

ously degrade performance from the single gas levels. In addition, the

presence of absorbers, like C02> in the ambient atmosphere may actually

increase the sensitivity of detection. The development of a self-

avaluatios procedure permits assessment of the method's performance under

varying ambient conditions.
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The standards set by the Committee on Toxicology of the HAS Panel

20on Air Quality for both short- and long-term exposures are listed in

Table XV. The MDC's we are able to obtain for five of the gases listed

in the Table are below the long'term exposure level, and an additional

four are below the short-term level. In the case of vinyl chloride, the

"exposure levels have been set particularly low because of the carcinogenic

properties of this gas. Extending the sampling path from 10 to 100 a would

permit detection at or below this level. Such a configuration would be

appropriate for an industrial monitoring situation, in which vinyl chloride

contamination is most likely to be a problem. We have also seen that addi-

tion of a broadly absorbing gas can enhance sensitivity to low concentra-

tions. This might be practicable for samples withdrawn from the atmosphere

into an enclosed multiple-pass monitoring cell.

Currently precision is limited by the experimental variations in the

absorption measurements. Either reduction in the magnitude of these fluc-

tuations or utilization of a greater number of experimental wavelengths

would improve calculated concentration precision through the least-squares

fitting procedure of the absorption data. It is seen from equation (29)

that the expected deviation in the D matrix is proportional to the Inverse

root of the number of different wavelengths used. For 52 wavelengths and

15 gases, the mathematical contribution to the error in the calculated con-

centration is negligible. Increasing the number of wavelengths should

.permit a corresponding increase in the number of simultaneously detectable

gases at a reasonable level of precision and sensitivity. One way to accom-

plish this would be to use several isotopically pure CO. lasers. In this
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manner several hundred lines spanning the 8.9 ym - 11.4 ym wavelength

region could be employed. Such a system would be bulky and have large

power requirements; separate laser cavities and support electronics would

be needed for each laser. Use of a mixture of all the CO. isotopes is

not possible due to quenching.

Another way in which this could be achieved would be to use continu-
o ' • . < > • . « .

ously tunable, rather than fixed-frequency (line-tunable) monitoring

sources. If a given .pollutant has sharp spectral features, then the laser

can be tuned to one of these sharp features, free from interference, and

good analyses can be obtained. This has been accomplished, for example,

for NO using a spin-flip Raman laser and for CO, ethylene, and

221SO- using a tunable diode laser. In spectral regions where all the

contaminants absorb, the data reduction methods we have employed may be

used to reduce these absorption measurements to derive concentrations

without running into computer limitations. If semiconductor diodes were

used as the tunable sources, an array of these tiny lasers could be

powered by the same support equipment, and they could be chosen to

insure that all contaminants of Interest would have significant absorption

at some laser wavelength.
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APPENDIX : Concentration Determlnation Procedure

A. Least-Squares Data Fitting

Substituting in for y. in equation (25) using equation (24):

X X ( N • ' "' t 2

n- I (y.- A.)2 -• H U e 4 c *} -A (Al)

As an example, let X = 4 and N = 3, then

X
Cl * + e i 2 C2 * + Ei3 C3 *> * A'! (A2)

2

X

I {<eiiciA +e±2c211

Performing one of the partial differentiations,

" = 2

Jx
( £il£ilCl + £il£i2C2 + eilci3c3) = Jx

 £i!Ai/A (A3)

and using equation (27)

( fll Cl + f!2 C2 + f13 C3 > - dl (M)

Repeating the differentiation for each c. gives rise to an ( N x N ) F

matrix of the form given in equation (26) .

]J . Matrix Decomposition

Normal matrix decomposition products are of the form F, = L U

where L and U are triangular matrices below and above the diagonal.

Both L and U matrices need to be stored. Either L or U will not be

a unit triangle. If the matrix F is symmetric and positive definite,
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as must be the case for matrices obtained from a least-squares fitting,

the decomposition may take the form F = L L' where the triangles are

the transpose of each other. L is now not a unit triangle. This is

seen to be equivalent to the decomposition F = L T L1 , where L is

%a unit triangle and T is diagonal non-unitary, if we take L « L T ,

where T is the square root of T (t..)

be recorded. For this system

•cT Only L or L1 need

:fll f!2 - V
f21 f22 ••' f2N

» • . . •

f Nl f N2 * ' * f NN

Cl
C2

• •

•S

'*i'
"2

•

.V

(A5)

The L1 triangle is found by the following procedure:

1) *1;L = ( f11)

for all s > 1.

flg/

2) let qjl - - fjl/ Au. then set fjg

for the first row

+ fjs and

d, » q.. p. •»• d for j =• 2, . . . ,N and s = 1, . . . ,N.

3) 122 <= ( f

for all s > 2.

f2g/ , 2. d/ £ for second row

4) let qj2 -'• - fj2/ A22, then set fjg = qj2 ̂  + fjs and

d - q p2 + d. for j - 3, . . . ,N and s = 2, . . . ,N.

5) continue until triangularized.

Now concentration values may be found by backs ubstitution in equation

V s-l'

As an example consider the system of equations:
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2 1

1 2

1 1

1 1 K
1 C2
1 c.

I 3.

f 5

= 6

1 4
'

Solving, using the steps indicated above,

1)

3)

5)

'SI l/fi 1/vT

1 2 1

1 1 1

fi 1/fi 1/S2

0 1/3/2 h/2/3

0 1/2 1/2

V2 l/i/2 I/SI '

o 75/2" hfiTi
0 0 vT/3

5/v>2 '

6

4

2)

5/J2 ) 4)

7/2y^/3"

3/2 j

= L1

^ l/i/2~ 1/v^" 5/i^2"

0 3/2 "172 7/2

0 1/2 1/2 3/2

ft l/fi 1/S2 5/S2

0 i/372 hfijl 7/2/173

0 0 1/3 1/3

' 5/fi

7/2*^/3 = P

A/I

By back-substitution c,••« 1 , c •'•

programs are given in Appendix IV.

The computer solution

£. Calculation of Residuals

Once the solutions have been found, the magnitude of the mathemat-

ical errors in the solution process may be estimated by the following

procedure:

1) Compute R = D - F c using double precision.

2) Solve F 6c - R using the L* matrix already calculated.

3) Set c' « c 4- 6c, rounding to single length.

4) Repeat using c' instead of c in step 1).
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APPENDIX : COMPUTER CONCENTRATION DETERMINATION PROGRAMS

Elimination Method with Zeroing of Concentrations

C .source foe .Double precision JELimination with Zeroinq of
C neqative Concentrations.
c .
C SOUaCE.DPSLZC
c .
C This proqram solves a system of LAMBDA eqns. in NGASES
C unknowns, where LAMBDA>NGASES. LAMBDA may not exceed
C 55; NGASES may not exceed 15. Both are read as input.
C Only non-zero inputs need be entered, one element at a
C time preceeded by its row and column numbers. A row
C number of 99 siqnals end of data. The proqcam requires
C the followinq parameters prior to the enterinq of data;
C LAMBDA: number of wavelenqths for which there is data
C NGASES: number of qasas in the mixture for this run
C BIGSTA: the maximum absorption to be permitted
C BIGSTE: the larqest absorption coefficient to be permitted
C All input is checked for validity.
C

DIMENSION ABSOfiP (55) , ABSCOF (55, 1 5) , C O N C ( 1 5 ) , A C B S D (1 5, 1 5) ,
* D(15) , I N D E X ( 1 5 )

DOUBLE PRECISION ACHED, D,SU 8,TEMP, Q
LOGICAL OK

C
C First clear arrays of data to be read in. Cceate index.
C

DO 20 1=1,55
ABSOfiP (I) =0.0
DO 10 J=1,15

AflSCOFfI, J) =0.0
10 CONTINUE
20 CONTINUE

DO 25 J=l,15
CONC(J)=0.0
IHD£X(J)=J

25 CONTINUE
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C Bead control parameters now. —^
HEAD{5,5CO) L A M B D A , N G A S E S , B I G S T A , B I G 5 T £
NGASP1=SGASES+1
IF ( .HOT. ( ( L A M B D A . GT. 55) .OR. (LAMBDA. LT. 1) )) GO TO 30
IF(.NOT. ( (NGASES.GT. 15) .OR. (NGASES.LT.1) ) ) GO TO 30
IF ( . N O T . ( (BIGSTE.LT.0 .0) .OB. (BI3S1A. LT. 0. 0) ) ) GO TO 30
HHITE<6 .510)
STOP

C
C If input parameters ware bad, -job was aborted. Read in
C arrays ABSOHP first. Set counter of bad data to 0.
C Check data validity before storinq.
C

30 NERROR=0
1IHIT=LAMBDA+1
DO 35 K A R D N O = 1 , L I H I T

R £ A D ( 4 , 5 1 5 ) I , J ,T2f lP
IF ( I .EQ.99) GO TO 36
OK^.TRUE.
IFUI.LT. D .OR. (I. GT. L A M B D A ) .OR. (J . HE . 1) ) OK= .FALSE,
IF (DABS (T£MP) .GT .BIGSTA) OK=. FALSE.
IF (OK) A B S O R P ( I ) = T E M P
I F ( . N O T . O K ) W R I T E (6,530) I , J ,TEMP
I F ( . H O T . O K ) N£EROR=NERflOR-»-1

35 C O N T I N U E
C .
C If DO is satisfied, there were too many absorptions read.
C

WRITE (6,540) K A B D N O
STOP

C
C Read in absorption coefficients. NERROR is cumulative.
C

36 LIMIT=NGASES*(LAMBDA)+1
DO 39 KARDON=1,LIMIT

READ (7 ,520) I,J,TEMP —'
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IF ( I .EQ.99) GO TO 4C
OK=.TBUE.
IF( ( I .LT. 1) .OB. ( I . G T . L A S B D A ) ) O K = . F A L S E .
IF ( (J .LT. 1) .OB. ( J . G T . N G A S E S ) ) OK=. FALSE.
IF(DABS(TEf lP) .GT.BIGSTE)OK=.FALSE.
IF (OK) A B S C O F ( I , J ) = T E M P
I F ( . N O T . O K ) W R I T E (6,530) I , J ,TEMP
IF ( . H O T . O K ) NEBBOa=NERBOR+1

39 C O N T I N U E
C ' . . :

C If DO is satisfied, there were too many cooff. read.
C

WRITE (6,540) KARDON
STOP

C
C All data cards have been read, check error count, W2IT:
C amount of data read.
C

40 I F ( N E R B O B . N S . O ) W B I T E ( 6 , 5 5 0 ) N E H R O H
I F ( N E H R O B . N J B . O ) STOP
K A B D S = K A R D N O * K A R D O N - 2
HRITE (6,555) KARDS

C
C Form condensed abs. caef f . matrix. Allows all of data
C to ba used. Each A C R E D entry is the product of two .
C absorption coefficients.
C

48 DO 70 J = 1 . N G A S E S .
DO 60 K = J , N G A S B S

SOW=0.0
DO 50 1 = 1 , L A M B D A

SOM=SUM+ (ABSCOF (I , J) *ABSCOF (I, K) )
50 C O N T I N U E

ACBED ( J , K ) = S U H
ACRID (K,J) =SUM

60 CONTINUE
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70 CONTINUE
C
C Now find D(«3) array.
c

DO 90 J=1, NGASES
SUH=0.0
DO 80 1=1 , L A H B D A

SOH=SOH* ABSCOF{I ,J )*A5SOBP (I)
80 CONTINUE

D ( J ) = S U M
90 C O N T I N U E

C
C Now trianqularize matrix to LL1 form.
C '

K=0
DO 130 a= UNCASES

K=K*1 •
TEMP=1/(DSQRT (ACH£D(J f K) ) )
KM1=K-1
K D I 7 L M = N G A S E S - K M 1
DO 100 K D I V = 1 , K D I V L H

K H D I V = K M H - K D I V

100 CONTINUE
D(J)=D(J) *TSMP
LINDEX=J+1

DO 12C L=LINDEX, NGASES
Q=-UCRED(L,K) )/ACR2D(J,K)

DO 110 M=HINDEX, NGASES
ACHED(L,a)=ACE£D (L,M) +Q* (ACRED (J,

110 CONTINUE
D(L)=D(L) *-Q*D(J)

120 CONTINUE
130 CONTINUE
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C Zero entries in lower trianqle, all information is in appar .
/••
U

DO 150 J=2.NGASES
JM1=J-1
DO UK)' K=1,JM1

ACHED (J,K) =0.0
140 CONTINUE
150 CONTINUE

C . . ,
C Now find solutions by 'back substitution.
C, Any neqative solutions are zeroed, and a record kept of
C their existence. After all concentrations are found a
C lump is made to a subroutone to remove all the abaorp-
C tion coefficients of these neqative concentrations from
C the elimination calculations. The exit is to a staqe
C where the ACRED array will be recalculated for a smaller
C number of gases.
C . ' .

155 SUH=0.0
IMCONC=0
DO 170 J=1,NGAS£S

CONC
TP (CONG ( J£LIH) ,LS .O .X) ) IMCONC=IWCONC*.1
I F ( C O N C ( J £ L I M ) . L T . O . 0.) CONC (JELIM) =0 . 0
sua=o.o
JELial=JSLIM-1
IFUELia i .Ll . 1) GO TO 171
DO 160 N=JELia, NGASiiS

SUH=SUM*ACEED ( JELIH1 . N) *CCHC (N)
160 C O N T I N U E
170 CONTINUE
171 X F J I M C O N C ) 172,172.200

C
C No.w answers are in CONC array.. W R I T E CO.NC in N/M*M and
C torr, and qive the ratios compared to the exp. estimates.
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172 » R I T E ( 6 , 5 6 0 ) N G A S E S
DO 175 J=1,NGASJiS

WRITE ( 6 , 5 8 G ) I N D E X (J) ,CONG (J)
175 CONTINUE

DO 180 J=1 .NGASES •
CONC ( J ) = C O N C ( J ) / 1 3 3 . 3 2 2

180 C O N T I N U E
H R I T B ( b , 5 7 0 ) NGASES
DO 185 J=1 ,NGASES

H H I T E f b , 580) INDi iX (J) ,CONC (J)
135 C O N T I N U E

HRITE{6 ,590)
1=1

- DO 190 J=1 ,NGASES
READ ( 3 . 6 0 0 J T E H P
IP ( I N D £ X (I) .Ni.J) GO TO 190
I F t T E M P . E Q . 0 . 0 ) GO TO 189
TEMP=CCNC (J ) / IEHP
HRITE(6 , 610) I N D E X (I) , lEMP

189 1*1+1 - •
190 CONTINUE

STOP " ' '
C
C This subroutine removas ABSCOF of zeroed concentrations
C trom the calculations. Index is,the marker showing
C which of the qases have been removed.
C

200 NCONC=NGASSS
201 DO 204 I = 1 , N C O N C

IP (CONC ( I ) ) 205,205,204
204 CONTINUE

GO TO 48
205 DO 210 J=I ,NGAS2S

JP1=J+1
DO 208 K = 1 , L A M B D A " ~
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ABSCDF (K,J) =ABSCOF (K, JP1)
208 CONTINUE

INDEX (J)=INDJ2X(JP1)
210 CONTINUE

NGASES=NGASES-1
GO TO 204

500 FORMAT{2I2,2G5.3)
510 FORMATC'O1 ,'.ERROR IN COKTBOL PARAMETERS')
515 FOHflAT(2I2.G8.3)
520 FORHAH2I2.G10.7)
530 FORHAK 1X,« ERROR IN CARE WITH 1= ',12,' ,J= ',12, -

*' VALUE= • ,1PE14.6) .
540 FORHATCO1. »TOO MUCH DATA INPUT')
550 FORMATCO', 'BSRORS FOUND IN I,I2,1 DATA CARDS')
555 FORflATf 1X,I3,• DATA POINTS RiAD IN.')
560 FORHATCO',' THE CONCENTRATIONS OF THE ',12,' GA52S -

*ARS(IN N/M*M) •/)
570 FORflATCO',' THE CONC£N1RATIONS OF THE lfI2,

1 GASES -
*ARE(IN TORR ) V)

530 FORMAT(1X,I2,5X,314.7)
590 FORMAT(IX,'THE RATIOS OF THE CALC. CQNC. TO SE£ £XP-

*BRIHSNTAL CONC. ARE;'/)
600. FOHMAT( IX,67. 4)
610 FORflAT{1X,I2,5X,3l4.8)
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