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^' ^ ^	 SUMMARY,J H xr
cR	 2 1	 '

j

o ^ ^ fi	 Previous reports described a completely automatic corlputer program for the
ao^

~ y ^ dssign of single input-output, single-loop feedback systems with parameter un-^^	 ^
^^
v ''"^' certainty, to satisfy time-domain bounds on the system response to step commandsof n
h o
`*F' d and disturbances. The inputs to the program are basically the specified time-
.... z c
o r ^ domain response bounds, the form of the constrained plant transfer function and
^rn^
o r
^ ^" ^ the ranges of the uncertain parameters of the plant. The program output consistsa a ^
al c o
o ro ^ of the transfer functions of the two free compensation net^•rorks, in the form of
c ^ a
^ ^ ^

^ ^ • d ^ the coefficients of the numerator and denominator polynomials, and the data

v^ • wa
r " n " on the prescribed bounds and the extremes actually obtained for the system

x

.moo 	 response to commands and disturbances. This program ^•;as delivered and demon-
m

strated to NASA personnel 4•rith reports describing the co;^puter program. 	 This

report is therefore devoted to additional work since done.

^ ^ z
^^ ^

^ "^' ^ 1.	 Explicit solution	 for optimum L(jw).
.^ W ry

N x
_

Y'

6,

Q At some point	 in	 the program, there are prepared bounds	 ^(w) in	 the complex

plane on	 the frequency response of the	 loop transmission	 function L(jw)	 --	 see

Fig.	 1,	 i.e. L(jw)	 must	 lie outside the	 reyion described	 by	 r^(w) in order	 to

satisfy	 the response specifications over the range of plant	 uncertainty. The	 ^

^^ ^ ^ ^^^n	 '-
fa'^	 ^ ^^^	 ^c ;. •.
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computer then seeks to find a rational function b{jw) which satisfies these

bounds, rising as a vita] aid that the optimum L(jw) lies on its bound ^i(w)

at each w	 The technique used has been described in detail in previ:.^us reports,

F
but basically a primitive form of L(jw) is first used which satisfies the ^{w)

bounds and then local corrections are made in order to push L(jw) towards the

^{w)	 with iterations continued until the global 'error' (sum of distances from

the ^ {w) ), is less than a prescribed amount. This is one of the most difficult

parts of the program.

R different approach was attempted, wherein equations have been developed

^;hich actually give !.(jw} explicitly as functions of the bounds ^(w) .

As expected, the equations are integral equations, so in the general case an

iteration process is necessary to solve them. In the special case when the

bounds ^{w} are straight lines, no iteration is necessary. Hence, one approach

is to first use present techniques to obtain a reasonable first approximation

to 1_opt (jw)	 and then represent ^(w} as straight dines in the intervals where

the approximate Lopt (jw) crosses the tj1(w) 	 As of this date, there has no t
`°

been acquired suff'rGient experience to justify incorporation of either of these
l

techniques into the automatic computer program. 7:.e analytic background and

development is given in Appendix 1.	 -,

1

2. Nonminimum-phase (nmp) systems.	 ';

The computer prograia delivered is confined to minimum-phase (mp} systems,

i.e. for ail possible plant parameter combinations aver their range of uncertainty,

the resulting plant transfer function P{s) has no right half-p l ane zeros (r,npz).	 R

Then almost any set of performance specifications over almost any bounded parameter
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|	 uncert^ln^y.aet	 ( see	 /l^	 ^for	 llm y ^at7ons \ ,	 ar^ ^oh7evable,	 Howovar,	 ^f	 P[y\

hes e r^^z, oay ^t	 b	 theo	 L//m) = P^/m\ G^;m^	 canno^ achYeva a cr000uver

|	 frequoncy	 m	 (d^fYne6 6v	 /L^^m )| = l	 \	 sigoif^contly more ^b^n	 b/2	 (see
}	 ^	 '	 '	 c^'	 `	 ^

[l1^.	 ^mnsY^^vity reduc^ion	 ^s ach^^ve^ only ^nr	 m ^ m /2 appro^^m^^^ly ^	so

^	 the a^apt y v^ capab7l^tieo of nmp sys^mmo ^re sevar^l^ l^mlt^6 '	^Yvsn ^n uncor-

^ain plon^ wb^oh y o nmp for on^ or mora paname^er comb/na^ions and spec}f^c

|	 p^rfo^mon^^ spec y fY^atl^no,	 ^^	 y s gen^sslly	 Ympossible	 (a^	 leest u^ the pr^oant

s^e^o of ^hm ou61act \	^o know	 whath^r the pro6lem ls solvebYm,	 i'^,
|

w^o^her ^he performanoe apa^if^oet^ups ^ny achi^v^bla.	 Ona m^y ^horaPore hava

'	 ^o proceo6 w^th tha synthaeis deta^la and bm o^opped	 (if th^ problam	 is no^ |
|
|	 so^vablp), whem he trles to ^Yod	 L	 (^m)	 --	 Yt 6oas no^ exis^,	 |t	 ls thenopc—	 '

'	 neoaa^ary to rel^x tha p^rformanca speclfico^ions lo or6er ^o meka tha problem ^ ^

^|	 solvabl^'

^	 Tha o6^^ct^va was ^ q Yncorponmte nmp sy^temo ^nto the au^om^t^o das^gn '

|	 prpgnam,	 How^var ^	^^ was first neoey sary ^o eolve ^ua problam analyticelly and '^

/^	 thorouQhly un6^rstond th^ deta7lod stepm	 ln aolving	 lt,	 if donn ^y han6 or. ^	 ``^

|	 lntera^tiwaly elth the com^u^or -- espeoYally the r^as pnin8	 7nvolvod	 ln	 ra^ax^ng
^

!	 tho parformanco sp^^ y f^ca^^ons th^ mYnimum amount, should the at^^mp^ed onas

prov^ not solvable.	 ^lso, th^ proof th^^ was usad to derYve th^ proper^^es of
'
|	 tho optlmum	 L^/m1	 ln mp syst^ms, wos not val^d for nmp sy^tmmo '	|t was

naoa^sary to f[rst estab^7ah on a rYg prous bas^s th^ theora^icol 	 fouo^^t^ons
' .

|	 of nmp sys^ems.	 Th7s proved to 6a ^ flra^ cl^ss r^sear^h probl^m ln ltsm\f,
^

^^
|
i	 as oan ^^ ^een from th^ re^ults m^hieved, das^rYbed 	 ln App^n61^ 2.

J^^^^
^L^']
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3. Translation of time-domain bounds into equivalent frequency-domain bounds

The synthesis technique operates in the frequency (w) domain, whereas perfor-

manGe bounds are often given in the time domain. The present program, therefore,

has a routine for translating the latter into m-domain bounds, but which does nom

work satisfactorily for higher order systems, where the effective 'time-delay'

(say the time t .l , for the unit step response to reach C.1) is re]atively large.

^	 The problem of translation from time to frequency is also more difficult in non-

j	 minimum-phase systems. Considerable effort was invested in obtaining a good under-

.	 standing of the time frequency relations, in order to malce significant improvements

in this translation problem, The results are given in Appendix 3.
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Explicit Solution for Optimum L(jw)

There is given a boundary ^(w) in the complex plane at each w , such

that the loop transmission L(jw) must lie an or outside ^(w)	 Atypical

family of ^(w) in the logarithmic complex plane {Nichols chart NC) where the

abscissa B represents Arg L(jw) and A the ordinate represents ^L(jw)^

in layarithmic units, is shown in Fig. ]. The reasons for the portions labelled

^	 Bh , ^' in Fig. ], have been given in detail in Reference 2. A certain excess

e of poles over zeros is a priori assigned to L(s)	 sa that as s -^ ^ ,

L(s) -^ ^	 The objective is to find L(jw) which satisfies the boundary
s

constraints with a minimum value of !c	 Reference 2 details the reasons for

this definition and the a priori assumption of a value for e .
^	 —

The ^(w) are of two types. The one at w ^ .^ in r= ig. ] is an example

of the first which is single-valued for a]t B and exists for B from ^36Q°

to O°, whereas ^h is an example of the second which is multiple-valued and

generally exists for only part of B	 It is assumed here that each ^ has

a continuous derivative at each point. Any sharp corners of ^ can always be

rounded with infinitessimai effect on ^ 	 Consider a segment of ^ in Fig. 2.

Rt each point on ^ a tangent line To can be drawn as shown at point P for

example, whose equation is

	

A cos 6- B sin 9= C	 (])f̂	 o

A and Co will, in general, be functions of tl^e point an eU 	 i.e. of the

value of i3 being considered. The intercepts of this line are: on the B
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acceptable In L{ j w} at: B = B p must be on or above B so that point Pl

is acceptable. Draw a line T l parallel to T a 	through P l 	The equation

of this line is

Acos@ --Bsin6=C
	 {z}

with C > Co 	Let ]n L(jw) = A(w) + jB(w} , and suppose the boundary segment

shown 'sn Fig. 2 is for w = w l 	The condition that at B = i3 p 	A(wl} must

lie above P	 is expressed by writing

I

A(B ,w } cos @(B ,w ) - B (w } sin @{B ,w ) = C > C (B ,w )	 (3)
i	 P	 1	 P	 1	 P	 l	 P]	 o	 p	 t

iJote that G	 is a function bath of B and of w as is @	 The permissible
0

'^ 	 A is consequently also a function of these two, explaining (3).

Consider the situation at point Q on ►^(c^s l )	 in Fig. 2. LJe want 8 to

be a continuous function of B 	 so clearly -2 < 6(S Q) < 0 and Go (BQ} > (1 ,

in order that the A intercept is positive. The condition that L(jw l } lies

on or above Q if B = fm ]n L(jw l } = BQ , is the same as (3} if P is replaced

by Q	 i.e. it is C > Co (BQ ,w I )	 It is ft^und that this is the condition at

ali points on ^(w l }	 also, it makes no difference if all or some of the tangent

lines have A intercepts which are negative. Thus, it is noted that for ^

of the first type, (i.e.,	 ^@^ < ^/2^ cos 8 > 0), for all B values the accep-

cable condition is C > C	 ^
-- o

Consider a boundary of type 2 witY^ the acceptable region for L{jw) outside

^ , as in Fig. 3.	 if we start at paint P l 	define its 6 l > 0 and move clock-
^,>,

wise then the previous paragraph shows that from P l to P Z , the condition	 '°-'
^4{

i
^^

C > Co applies. At P Z 	@2 = -^/? so 1=q. (1) becomes B = C o 	The acceptable	 ^.:

'	 condition is hence again C ? Co	At P3	continuity of @ gives, -^r < 9^ < 	 ``

4 _

'^,E'^^4T3UCII3Ii,^ 0_̂ ` 'i^^

;;

__	 _	 --^. -^aiuu.n	 S	 •._ . .
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-7rl z	 cos 6 ^ < n

condition that L

and the intercept of the tangent lin g being Co/cos 6^	 the

lie on or below P^ .again requires C . > Co because C/cos 6^

< Co/cos 9^ , if C > Co and cos 63 < n	 At P^	 continuity of B gives

- 1.5^r < 8^ < _n ,cos 8^ < 0	 so again C ? Co is needed so that L. lies on	 _

or below P^	 Thus, if 8 and Co are proper]y defined as funct -ions of B	 ^
r .	 :^

(and, of course, of w) the condition that L lies on or outsid, a closed bo^n.--

dory 'rs given by C > Co 	^

The problem of choosing an optimum L(je^) can therefore be.stated as foll.aws, 	 `'^`i

There is given an infinite set of equations, nne for each w in Co,°°}	 tl

b

A cos e'(c^, B) - B s i n 8 {w, B} = Co {cAy , B)	 (^)
;^

8, C	 are continuous functions of w, B	 Find In .L(j w} ^' A(w} ^- jB. :(c^} , .
0

regular in the right half-plane and the boundary (rrhp), such .that-when the

latter A,B are substituted into {^), they satisfy the egoatian. with G > C. .
o

Given that L(s) has a specified excess a of poles over zeros, so that

L{s} ^ icQ/se as s -^ ^	 the optimum L is that with minimum icQ .

The requirement that In L(jw) = A{t^) ^- j6(w} satisfy (4) with Co replaced.

by C > Co may be put in the form

The general complex equation then has the form A ^ jB = e ^^(C -^ ji)}	 Ong

difficulty is that ]n p-^^(W)	 is not rrhp, because a - ^ $ is all--pass. We

therefore deliberately introduce eo{`^) such that ea^^ d and its In are rrhp.	 'i_ „
,; ;,_

This is done by choosing 6(c^} as the Hilbert image. of 8(m)	 using the Bode	 ;:G

^̀ i	 .;_^,	 .
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^`	 ^

'	 2wz ^	 6 (Y)dY
s+	

Y w	 Y	
;

^:	 ^

si.	 The desired equation is now

:^	 i	
1a	 I	 ^	 ^	 n

i	 e^-t- j b` (
A -r j B) - (C -h j D) e6 ^ C -^- j D	 {7)	 ^r

;__^^	 ^	 i_`	 ^^,	 .

whose real part is Eq. {5) multiplied by eff	 In order to ensure that A -^ ji3	 ^ -:^
o'. 	^

1	 is rrhp as required, D must be the Hilbert image of C = C eo , i.e. using the	 j
^^	 1

'_ ^	 Bode in ^:egral [1 1 ,

!	 D (w ) a	 .^ ^	 z	 z	 (^}	 1
i^	

I	
p	 w	 - y	

^
'_	 ^	 r

i

I	 Then (7} can be written as:

I
r	

-^(W}	 °° ee(y}C(Y)dY	

k

A (r^r) = c (^) cos a (w) — 
zt^e	 ^ s i n e {w) ^	

2	
z	

( 9a)	 ^ , -
D ^ —y ;l.

a

y

-	 i	 _^
::.	

B(m) _ -C{^y} sin 8(w) -- zc^e -
e(^3

} cas e(r,^) °° e6{v)^(Y)dY	 (^b)
^	 JO	 wz - z

	
`'E	 g^Y

I	 ^	 -^`

^^°	 ^	 It is understood that in the general case A, C, 8, etc. are functions of B`^	 ^	 ^

':	 as well. Recall that the objective ie^ to minimize k	 where lim 1.fs) = k /s e 	`

^	 Hence, 1 im ln[ L(jw) [ = l im A{W) = l^^ kQ - e In w and In kQ = 1 imCe In w -^- A(w)]
. r;	 w-,a,	 ^,,^	 w-,^

Minimization of kQ means minimization of iim A(w) 	 In Fig. 1, by recalling
f

}^

the evaluation of 8 fay means of the continuity of 6 	 it is seen that

]im 6(w) = -^'/z	 so the first term ran the right side of (9a) disappears and the
ti	 ^	 uY^

^s	 ,
F'

1^^

^.

..-..	 f--..^	 ....	 I 	 v_..	 ,._.-ti	
..... _	

_..	 ^,,.

f1 .-.^..
^—+_- __	 _	

_	
^	 ^	 ..._	 i	 _ . a
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second term becomes

2we
-^ (w) I^ e6{Y)-C (Y) dY

J 0	 w^ y^

^'
i

_	 .._	 ..:

Al-$

(rt0)

i

whose ]unit as w -^ ^ is to be minimized. Since every factor in {]0) is

positive {recall a(y} is real} except possibly for the free C(y} 	 it is

clerlr that a necessary condition for minimization is to make C{y) as smal]

as possible. But C(y) > C o {y)	 Hence, choose C(y} = C o (y}	 This proves

that the optimum L(jw) (if it exists) lies on its boundary ^(w) afi each w .

It has previous]y been proven [2] that if any solution exists at ail to the

problem, then an optimum must also exist. If the plant transfer function set

is minimum--phase over its entire range of uncertainty then ifi is known ^3J that

a solution exists.

Application to Numerical ldork

The simplest applicafiion of the above under consideration for numerical work, 	 {

i

is to f irst obtain art approximation to Copt by means of the computer program
;,^.	 ..

previously delivered to NASA. This approximation gives one a good idea of the 	 ^ .

region on each t^(w) , where Copt crosses. A straight line approximation, is 	 '4

them made of this region. Then 8(w} and C(w) = Co (w) in (9a,b} are known

as functions of w	 and {6) can be used to evaluate 6(w) -- a(0)	 Note in

(9a,b} that the constant cr(0} cancels out and need not be known, sa it can
{	 ,

ba set at zero. On the vertical line of tl^e 'universal high-frequency boundary' 	 ^ `"^_	 ;a
i	 ^.

^h in Fig, i, C = S a constant, corresponding to the value of the constant	 `

phase.	 It is c]ear from Fq.s. (9a,b} that the straight line approximation is
,^

',
^ai

-	 `.

..^

i

^.. . _:: .r .:
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the simples': to use because no iteration is necessary as C o , 8 are then not	
1

i

	
functions of B	 Thus, A _and 8 can be calculated independe;^t]y. 	 `^

Experimentati6n with this approach has not as yet been completed. En

numerical examples where the_ ^{w) are well approximated over a signif icant

interval near the point where LAPPRO?((^^} intersects ^(u^) 	 the results have

i bean quite good, permitting quick convergence to the optimum 	 L	 However,	 it

f ^
must be noted that the final 	 resu;t gives	 In L(jc^j = A(w} ^- j$(W)	 in the form

:::
^^	 '.

>^ of numerical	 data, not as a rational function. 	 It	 is necessary to use the RFA
,^	 r.

-

^

(rational	 function approximation} subroutine oi- the computer program package `'^
is

r ; previously delivered to NASA, 	 in order to secure	 L(s}	 as a rational	 function ^,̀ 	 ..
^_ ^

approximation of the numerical	 data.	 ]n numerical	 examples where the straight
4

';` ,

line approximation is valid only over a narrow interval	 in the region where
i

^ L	 {jam}	 intersects	 ^{^}	 the results have been poorer, as could be expected.APPROX ^,

1

Application of	 (9a,6} still	 gives a clear-cut answer, 	 but on soma	 ^(m}	 the ;'

``` resu 1 is put the point on a part of the straight line where it is no longer a •^^	 „'
^

reasonably accurate representation of	 ^{w}	 One must then take a c.ampromise
_=

^^^

straight	 line	 in between,	 i.e.	 iterate.	 Ef so, one might as well. 	 incorporate
-

'^

;: the iteration directly into 	 {ga,b} by using a second-order approximatian of !'Y

^(m)	 in the region of interest, at ]east at those 	 w	 values where it appears ^ :...
i. ^

necessary.	 Then	 8	 and	 C ^ Co	in	 {ga,b} must be written as functions of	 i3 E	 ";.

as well as of	 w	 There has net been sufficient time, as yet, to thoroughly

a
'

3

evaluate these alternatives and	 incorporate them into the. computer program. ?{,,
(

,. However, we are confident that this approach will	 significantly	 improve the
^	 .

('	 program for finding the optimum i_	 and intend to continue working on this
F

phase. The improved program will 6e made available to NASA when it is ready.



^; l --^

1. i. Morowitz, Synthesi s of Feedback Systems, Academic Press, few York, 196.3.

2. i. Morowitz, Optimum Loop transfer function in single-loop minimum-phase

feedback systems, Int.. J. Control, 1$, 1973, PP• 97`113.

3. I. Horowitz, Synthesis of feedback systems with nonlinear time`varying

uncertain plants to satisfy quantitative performance specifications, iEi=E

Proceedings, Jan. 7976, pp. 723-130.

..._..



1

	

I	 _	 ^ I	 ^^ _	 ^,,
r	

^	 r 

a^	

I`	 I	 1	 i 	 ^.^_ E	
i1 I	 a.5	 E	 ^	 1	 i\^^: 1

^^

	

^.	 I	 i	 I	 ^	 E	 ^	 ^ r ^	 ^^	
I	 1,	 -^ }14

	 't	
-. -}-	 I

.	 l	 ^ 1	 ' 'C.'"
y	

1.,	 - -	 . yam_ ^ 
/r = -	

y ^^'-%^ , •I `^^^	 ^}O}l7^

	

^ I — mss- 1 `	 i - —	 _ ^ _ !. 1,/ 	 ^, 1 :+ f `}^ 	 ,^Y

^o	 ' }^ -	 ' ^	 `\'^	 ^ ^ ^^-^ r.^^$.	 "'^^"' ^ }^ ,. r_ 	 Wit,	 I

.l'	 • ^`^k 1ti ^ ^ 4 f ^ f	 ^^^"'^--`F+^-y}^^ ^ j ^f ̂  ^' ^1` `rte ^ ^ ^^>\

^'

O	 I	 ^	 I	 ^^	 ^	 111	
-_	

— _ - _	 _	
T	

I•^ 1 ^S j^•4	 I1	 iî 	 s	 E	 -
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APPENi}I X 2

OPTIMUM SYNTHESIS OF NONM iN 1MUt4-PHASE

FEEDBACK SYSTEMS WITH PLANT UNCERTAINTY

Isaac Horow i tz-` and tie rte ] S i d i

ABSTRACT

Linear, time invariant feedback systems in which the constrained plant

transfer function has right haif- -plane zeros, are perforce nonminimum - phase,

and their attainable benefits of feedback are inherently restricted. This

paper presents criteria far determining whether a given set of performance

specifications are achievable, and if so, a synthesis procedure is included

for deriving the optimum design, defined as that with effectively minimum Loop

I	 transmission bandwidth. The properties of the optimum design ar • e derided and

its uniqueness proven, for both the minimum and nonminimum -phase feedback

systems.
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OPTIMUM SYNTHESIS OF NONMINIMUM-PHASE FEEDBACK SYSTEMS WITH

PARAMETER UNCERTAINTY

I. INTRQDUCTION

There a.s given a linear -time--invariant constrained punt

with minimum-phase (mp} transfer function P(s} Csee Definitions Il.).

•	 There is uncertainty in the parameters of F(s) 	 but the ranges of

the uncertain parameters are known. The uncertainty may include the

excess (ep ) of poles over zeros of the mp plant, up to three C17,

e.g. 4 ^ e p < 7 , and parameter ranges in which the plant is

unstable C27. It is desired that in response to command inputs

r(t) end disturbance inputs d(t) in Figure I, the system output

should satisfy, over the entire range of parameter uncertainty,

specifications of the form

AT (w) < ^TCjw)^ s BT(w) , T(s) ^ R^^

'	 (la,b)

Ad (w) ^ ^Td Cj w)^ < Bd {w) , Td (s) ^ D(s)

for given A i (w) < Bi(w) .

'

	

	 It is possible to demand A i (w} = B i (w) at a finite number of

C^ va^.ues, at which the loop transmission must then be infinite.

A^.though these performance tolerances are in the frequency domain,

it has beer. shown C37 that they suffice to satisfy t^.me-domain



^ 2 ^2
^	 -^

.E
'• 	 where cam} (t) is the mth derivative of ci (t) for m =^^,...,n	 ;,

finite, and a i {t) = b i (t) allowed, at most, only at zero and 	 ;;^

j	 infinite t	 ^^

A detailed synthesis procedure • has been presented C2^ for tha

above problem, and an existence theorem. Cl1 guaranteEing its

1
validity, providing P(s) is mp over its enure range of uncertainty.

Zn addition, under a certain definition of optimality and under

^ -	 simplifying restrictions reasonable only fora mp plant with a

relat^.vely large range of uncertainty and/or narrow performance

tolerances, the properties of the optimum design were derived and
C

j	 its existence and uniqueness proven C^-1.	 This paper extends the
r

i
synthesis procedure and the optimization results to both mp and

^	 nonrninimurr^-phase (nmp) plants in which most of the simplifying

constraints are eliminated, It a_s necessary in any case to remove

j	 the simplifying restrictions in order to cope with the nmp system.

^	 Additional reasons for removing them are:

^	 1.	 They do not necessarily bald in problems with moderate garamete^.ry

uncertainty and/or large performance tolerances.

^.
2.	 Zt has been shown C1,3^ that the above linear, time-invar^^^^t

( ^,ti) s^; nthesis techn^.que based on frequency response, may be

'^	 rigorously used in linear and nonlinear time-varying systems with

I	 uncertainty. The key i ngredient is the replacemeizt of fire nan-

linear (ar linear} t^.me-varying plan- set by an equivalent Qti plant

set. The restrictions which reasonably apply to a true ^ti plant

set (i.e. from a 2ti model) may not at all apply to this equiE^alent

'	 Qti plant set. Also, this equivalent Rti plant set, obtained from

a nonlinear or linear time--varying plant set, is much more likely

_.	 _. _.	 ... _..... _.._Y	 _	 _ _.....,•	 ^....

__
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to be nmp. This is one of the principal mota.vatians for solving

the nmp problem - to greatly extend the Qtv and nonlinear problems

j	 solvable by the 'equivalent Qti^ method.

3.	 Optimum Q.ti multiloop and multivariable synthesis based on

frequency response, is to a large extent a matter of the optimum

shaping of analytic functions (the loop transmissi^.^ns) in the

_	 complex plane. While some progress has been made C8,9], the

optimization problems are in general unsolved. The techniques and

'^	 theorems used in this paper for extending the single-loop results,
E

are useful and suggestive for the more difficult multiloop problems.

Tt is noted that the rion;^ini.mur^-Phase aonce^-t ^T^^s first
i

introduced by Bode C77 . ahe problem in control y ;r stcrls h^ s ^cetz

treated for determir.zstic and stochastic inputs, notably by

Chang C14^, Horowitz C57 and very thoroughly by Youla et al C15^.

However, these treatments have been confined to systems with

no parameter uncertainty.
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1 1, Definitions.

Throughout this paper, the left half-plane {Qhp) includes the

imaginary axis, while the right ha^.f-plane {rhp) excludes it. if

FEs) is a rational function in the complex variable s then it

is here called minimum-phase {mp) if it has no zeros in the finite

rhp. Otherwise, it is nonminimum--phase fnmp). A simple way to

handle a nanrational function is to agproximate it by a rational

function over the frequency range of interest and. deal with the

approximation. In this way it is seen that any reasonable

approximation of e-sT is nmp. Note that rhp poles are admissible

in a mp function.

This paper is concerned only wit^^ problems in which the

relevant functions can be approximated as closely as desired by

rational functions, so the above definition suffices.

_._-...__ .....	 k

1	 ^_.,. _;:., .	 ::.	 ..
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1 2 .	 Constraints on	 L(s }	 T (s)	 due to	 nrnp	 PCs)
I	 ,`

^	 ``-	 -
i-

Figure 1 presents a two-degree-of--freedom C5^ structure ri`

ì 	 in which	 F(s), GCs)	 are to be chosen to satisfy the system ^:°'^
^^^2•

^	 specifications	 (1).	 Sf	 PCs)	 has one or mare	 rhp n at	 z 1 ,...,z^	 ,

^	 let them be explicitly shown by writing ^.`` -^

^	 PCs)	 -	 Pl Cs)Cl-z l s)	 ...	 (1-z q s)
' ^

-

= ,^Pl (s} ^	 (1+z is }^C R 1+zis)7	
-,^PmCs)^CA(s)J ,	 (2a,b) ^

:.

L(s}	 ^ GCs)	 PCs)	 _	 (GPm )A(s)	 ^ Lm (s) A(s) i'.^

^':i
'	 Pm(s)	 ,	 Lm (s)	 are	 mp	 while	 ACs)	 is an	 'all-pass'	 function,

_,

^, 	 because	 ^A(jw}^ = ^.	 for all	 w	 If the system is to be stable ^''^

then it is impossible to cancel the 	 rhp	 zeros of	 P	 by means _'
^.

^	 of	 rhp	 poles of	 G	 because cancellation, being imperfect, results
^	 ^.^

'^°

in	 rhp	 dipoles for the loop transmission	 L = GP	 and therefore ^	 '
{

^	 far	 T = FL/(1+L)	 Hence, both	 L	 and	 T	 are constrained to ^	 :-

•	 have the	 rhp	 zeros of	 P	 as zeros.	 While this is actually alsr

I'

;
`'^

- true fnr the	 Qhp	 zeros of	 P , these	 can at least be cancelled ^.^^^
a

at a nominal set of parameter values, so the	 resulting nominal	 Lo , '''

To 	can be free of these zeros. 	 In the nmp case they must appear
1

"^'

even a.n •the nominal	 Lo , To ^	 '^^J

Consider the effect of a singlewa':il-pass section ^	 '=

A(s)	 =	 Cl-zs)/(1+zs)	 in	 L(s)	 ^ Lm(s) ACs)	 The phase of	 A(jw)
0

d^'CreaSeS$ mOIlO'tonically	 from Zero at	 w = Q	 ,	 t0	 --^^	 at w = 1/z j

^i

and tends to wl8a^	 as	 w } 	̂ ^ Tn a realistic feedback design, ,^-

f
^.

I

3
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.,.	
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f	
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^LCjw)^ > 1 by a reasonable margin over some w range, in

order to obtain the desired benefits of feedback. Beyond this

range it is important to reduce (L(jw}^ vs w 	 as rapidly as

possible C2,8]. One pays with phase lag for the rate of reduction

of lLC^w}^ , with the stability requirement lima.ting the fund of

phase lag available. ACjw) contributes phase la;^, thereby

diminishing the fund, without contributing anything, being all-

_	 pass, to the reduction of ^LCjw)i 	 At w = 0.5/^r, the
o	 ^ n

amount of phase-lag lost is 53.2 which when added to say 35
0

for phase margin, leeves only about 90 for magnitude reduction.

Tt is therefore ^.mpossible to obtain a crossover frequency we

defined by ^L(jwc )( ^ 1} , much larger than Q.^/T	 The above

discussion is qualitative. The quantitative limitations will be

forthcoming from the quantitative synthesis procedure in this paper.

TT.. SYNTHESIS PROCEDURE F'OR THE NMP SYSTEM

The synthesis procedure parallels that for the mp system

C 2 ] , faith certain modifications . The frequency respo^zse

specifications are assumed to be gzven by Cla,b). The problem

of translating time_ , domain into w --dom .. gin tolerances in mp

system has been discussed C2,s]. While no rigorous translation

ex ysts, there is a.n practace Zzttle dZffa.culty ^.n effecting one

satisfactory for engineering purposes. Appendix 5 discusses

the additional complexities that arise in the translation, due to	 }

the system being nmp. Tn presant?ng the technique, primary
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attention will be paid to (la) (see Figures 3, ^ For a typical

example of (la)). It will then be obvious what to do about (lb}.

Also, to simpliFy the presentation, the order of the plant is

assumed known. The modification needed far a plant of uncertain

order (up to a factor of three) will then be evident.

Let all therhp zeros of the plant and only these, be

contained in the polynomial N(-s), -s being used to emphasize

its nmp character. Let N o (-s} be the nominal value of N(-s7	 `.'

obtained at a set of lant arameter values orbit a	 '

	

p	 p	 r rely deFined
-,^

as nominal. There is therefore no uncertainty in N o (--s). P(s)

may also contain pales whose range of uncertainty includes	 _^

portions of both the Qhp and rhp 	 Denote these by the

polynomial d(s}, with nominal value d o (s) deliberately chosen

with all its zeros in the Qhp.
-	 I

-	 i

-	 ^	 The above bhp zeros and poles are explicitly displayed
i

by writing P = N{-s) Pl (s) /d(s)	 and
i

-	 ^	 IvT(-s)F1G	 Na(-^s)	 Pla(s}No(s)e	 N(-s)P 1 (s} do(s)
-	 I	 L - PG =	 -

-. d(s)	 No(s)	 da(s)	 Na(-s}P10(s) d(s)
i

(3)
^^	 ^ CAo ( s }3CLmo (s)^^ V (s)] ^ LnoV(s)

where Pl ^(s) is the nominal (and hence not uncertain) represent--

t	 ^	 anon of P (s) when the giant parameter have their nominal values.!	 1	 -
V(s) is the only unceratin part of L and is unity at the

nominal, values of the plant parameters. Lmo (s} is mp and stable

i	 ^	 of course, and Lno is the nominal nmp loop transmission, Since

I

i

'f^^'ROU^TC^BII^ITY OF THE

i ► ^=, i;:^n ^^f PAGE I^ POOR	 -
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U	 LT= F l+L , /^ 2n T= Q Qn 1+L 	 with

^	 G Qn L = ^ Qn V
a

duc to uncertainty. As the plant parameters range aver their

regions of uncertainty, l] R.n ]^ ( j w } = ^ Rn V (jw )	 occupies a

known region in the complex plane at any fixed w	 It is a

straightforward matter to use (4b) to find tl-.ose values of

L (jw) = A (j^) L Cjw} which satisfy (la) over the entire
no	 o	 mo

range of 0 Qn V. The boundary of thF. acceptable Lno is

denoted by ^^ , and of the corresponding Lmo Aol no by ^^ '

The logarithmic com^.lex plane {Nichols chart} is useful for hand

calculations avid far seeing the design 'tradeoffs' C2, 8^, but

of course the procedure easily lends itself to computer calculations.

The procedure iG illustrated by the following simple example.

yxample.	 P{s} = k{1-T$} with parameter uncertainty: lc E 01,37 ,
s(l+^s)

^ E 00.3,1] , ^ E C.05,.17	 The arbitrarily et-►osen nominal

values are ko = 1	 ^o = 0.3 , 'c o = .05 giving

V(s) = kCl--TS} (1+.3s}

The range of V(j4) an the Nichols chart shown in Figure 2. Note

that it includes the point ^, = 0 db ^^	 Suppose that ^T(j4}^

is allowed to be between 0.5 and -3 .5 db i . e. 	 ^ Qn ^ i^{ j ^t) ^ < ^idb
=.

Using {^.b} it is quite easy= to find the permissible values of	 ;
.-^,j

^^ 7.

(4a,b,c)



h^

.^	
Q ^.^

Lmo (j^) of (3), such that ^ 2n^T(j^)^ 4db for all V(j^) ,

a portion of which labelled as B^ is shown in Figure 2, i.e.

D Qn^T(j4}^ 5 4db so long as Lno (j^) lies on or above B^ .

Such bounds an the nmp Lno exist for each w ^ [0,^) 	 How-

ever, in actual numerical design it is more convenient to work

with a mp function (the Bode integrals C5, 7] can then be used},

so the corresponding boundary of Lmo (jw) of (3) is easily

derived as that of Lna (j4) multiplied by Ao l (j^} = '22.6 Q ,

in this case, giving the boundary B^ in Figure 2. Similar

^	 boundaries exist at each w , with the amount of shift in angle

due to Ao l (jw) , tending to 18a^ as w becomes large.

I
I

TZ 1 Disturbances and the Single H_;h--Frequency Bound3rl

I
In the above, only (la} was considered. The disturbance

s p ecifications (lb) may require all or part of the boundary to

be changed, so as to satisfy both (la,b). zt is important to note

however, that even in the absence of significant disturbances

j	 (sa assumed in the balance of this paper), the :Latter should
f

not be entirely ignored. Zf it is, then design economy Cos will
i

b^^ seen) will result in very large peak values of ^ L/ ( ^.+I.,) ^ at

higher w	 Such peaking does not violate (la) because in (4a),

i
-the prefilter F is abailable to drastically at •tenua •re the

higher frequency components of 'the command input. ^t is however.,
i

'	 assumed impassible to prefilter the disturbance D in Figure 1.

Hence, one should always add a specification of the form

_	 _	 _	 _.	 , ..	 ..	 - _ F	 __ ,..

,^^	 _...	 , ..	 _	 -	 _	 _	 ..	 ^^- ^ y,:,	 .. ,::	 y,. ......
__ .;	 ... ...	 ...
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2Q log{k	 /max

^	 range, the r
I

^^ 	 m for which

^'	 ^}^- 9 .

y	 {5)
^^^

y the designer. This leads eventually, in the ,3

o a single high frequency boundary Bh ,	 '^

w greater than same w h	for the following	 ^ ,^
:^

•	 '	 y

e	
; ,'	 '; ^

P -^ k/s p so V(s) -} k/ko whase range	 ^ '_ ^^
-t ^

vertical line in the Nichols chart, of magnitude	 ^	 3
E	 ' '1

db	 Assuming y in C5) 5..s a constant in this

`^ing boundary of Lno (j^) is the same for all 	 ,

above is applicable, e.g, B^ in Figure 2	 ^' -^:: ,

11.L^i1-.k.Z'f;ClU^1LC:y 1]UU11tic3L'^/ U1 	 Lna	 L5 LL'dlLuidL^ll l.V L11^ L'J.^'Ill 1Jy

Arg A Cjrl^)^ in order to obtain the boundary of the mp L (jam) .
O	 ^,	 mD

j	 The resulting boundaries are denoted by B^ IW to emphasize their

dependence on w	 Figure 2 displays some Bn^ for	 .^ _^

i	 AoCs) = (1--.05s)/(1+.05s) 	 Note how the corner paint VW

^^	 moves to the right as c^ increases. In genera]., Arg AoCjm)
0	 0

tends at hest to 180	 {if Ao ts) is of order 1, 180n	 for
`	 ^^
^	 order n), so that sooner or later the right side of Bhm	 lies^	 -

in the positive angle region,. It is this excursion of B^1m

- into the positive region which may render it impossible to

^	 satisfy a given set of specifications. It is proven in Appendix

1	 -
^ that if Lmo fjw) cannot reach the corner V W before V^	 - '

is on the zero angle line (i.e. while Arg L nio is still

negative), then it is impossible for bmo to satisfy the

specifications and also -^ 0 as ilj ^-

'i

,. ^,

.,,
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^	 ^ IT 2 Design ^p'rimization
,:	

i

1
-t;	 In mp systems, any r2alisti^c specifications of the (la,b)

,^

type (see C17 for precise conditions), may be satisfied for a

^'^
{-	 large class of plant parameter uncertainty problems, by an
_^

	^^ ^ti
	

infinitude of designs. A nmp problem if .it is solvable at all,
I'

	^	 will also generally have an, infinitude of acceptable designs.

	

-^' ^^	 Uniqueness is achieved by defining an optimal design, here chosen

as folXows. Let e be an apriori specified excess of poles over

zeros for the nominal loop transmission L o Cs)^ so that as

w -^ ^ , Lo Cs) -^ ko /se

r-,

r j'
.;

:^

T.'%.

^ ^ --

Definition: The optimal design is defined as that Grh^.ch satisfies

the system specifications with minimum value of ko .

This definition is motivated by the practical importance of

decreasing IL(j^^) vs c^ as fast as possible, in order to reduce

the effect of high-frequency plant parasites and of sensor noise

C2, 5, 87. It is noted that essentially this criterion was used

by Bode C5, 77 for the derivation of his 'approximately ideal

characteristic: It is important to note that by working with the

mp Lmo (s) of (3) instead of the nmp Lno (s)	 the problem of

finding Lopt becomes one of finding (Lmo ) opt	
Henceforth,

Lopt denotes (L mo )
opt ^ unless otherwise specified.

The fallowing property of L opt is worth noting, derived

from the Bade integral C8,7]

Qn^ L(0)^ -- ^.n^ L(°°)i	 - - 2 ^m Arg L(jc^y )d^.n c^	 (6)
_^
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very large	 w , to be nonzero as w ^ ^ 	 and, if necessary, at ^

very small	 w	 to be noninfinite as	 w r 0	 St shows that '.:^

the optimum design strives to maximizes its phase lag, subject

to the boundaries	 B `.
w ^

Zt is proven in Appendices 1--3 that if any design exists
'-

^	 ^

which satisfies the specifications, then	 Lopt	 is unique and
<,

exists in a limiting sense, i.e. may be approximated as clearly

,as desired.	 Also,	 Lopt	 lies on its boundary	 Bw	a^ every	 w

_	 from zero to infinity. 	 Tt is crucial however, to carefully {

include certain condi,-:.ions in order that the problem be well
^.^

defined.	 Figure 2 may be used for this purpose. 	 Let	 Bh ^ ^^ ^`^

be the applicable'uni-iersal' hagh^frequency boundary in a
f

^	 urel	 m	 roblem	 i . e .	 A f s)	 = 1	 As	 w -}	 ,	 Lopt	 mustP	 Y	 P P'	 ^ o

at least asymptotically ap proach the vertical line 	 W" YZ
#
!
1	 ^

{in Figure 2) correspondinf--, to	 Arg L = -90	 e	 L,^pt	 must ;	 ^

therefore make the transition from 	 Bh	to this vertical line and !

as soon as it 'turns the corner' at 	 QV there is nothing to

i	
stop it from very rapidly increasing its phase lag. 	 However, a

rapid increase in phase lag is accompanied by a sharp increase

in magnitude X5,,7] so 	 Lopt	 would fallow	 QVW	 and then

I	 instantaneously increase its phase lag to 	 -90e	 degrees, where-

zn	 ILopt^	 abruptly goes to	 ^	 along	 QVWW'	 and returns on

W"`Y^	 To prevent such a discontunuity, and For obvious

practical reasons, the supplementary 'transition' boundary	 WI^VZYZ

is added C^1, i_e.	 that far all	 w	 more than same	 c^ X 	,	 L	 must _

lie in the closed region bounded by 	 ..QVW W1 L^1 2 YZ	 .

^	 ^_.. ^
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The above suffices for mp Qti problems with large parameter

uncertainty and/or narrow performance tolerances. Zn these,

Lopt(jt^) must be so large over a large c^ range, that it can

reach the NQV region in Figure 2 only at m values so large

that the plant function P(jc^) is very close to its asymptotic
-e

high frequency value ks p 	 Thy rani_e (templa.te) of V{jw)

of {3, ^-} is then a line so Bh ^.s the single effective universal

boundary for all higher c^ 	 This is not necessarily so for the

problems listed ir. the Zntroduetion. In these Lno may cross the

-18D^ line before P(jw) has degenerated into ]cs -ep 	The

corresponding Bw^ need not form a nested set in this frequency

range, but instead cross each oiher, expand and contract in size

and shape etc. Amore careful definition must be ^nade of 'the

transition from the boundaries B^ obtained from Equation (^);
0

to the high-frequency asymptote Arg L no (^w) _ -9De , in order

that a continuous Lopt Cjw} may result. To do this note that there
.^.

must exist a w^^	 ^ , d W ;, ^..	 the boundaries of Lno	 clo

not enclose the origin of the a^.^ithmetic complex plane, and lie
^	 a

entirely in the second and third quadrants, - 27D < Arg < T1BD

Otherwise, it is impossible for L no {jc^) to approach zero as,
0

m + ^	 Sooner or later Lno (jt^^) must cross the -18D line

between the origin and the bounaries, and some .interval after

it has done so, its phase may be sharply decreased. L opt seeks

to ^ escape T from the bounda;.^ies to its final a^ ymptote as quicic'_y

as possible. The transition boundary consists of three parts.
n

The last is a segment of the line Arg L no = -9De	 {e.g. QDE

. ^'F.



in Figure Asa ror the

Figure 2. The second

magnitude ^Lnoi = cri

{see Figure A^ for Ci

^z-13.

case e = 4)	 corresponding to YG of

is one or more portions of an arc of constant

corresponding to W 2W1 of Figure 2

'^ > 1 and Figure A5 for CM < 1)

THe first part CpW) of the transition boundary must join

^'^CM to the B^ and is defined as follows. For each B^^ , w > w ,

choose pw	a straight line tangent to BW and terminating on CM

Ce.g.	 pw	 in Figure A4a where B^ = B w )	 3f several. such paints
1

of tangency exist, choose one for which p does not intersect the

inter:^or of B^	 If CM intersects S^	 pw	 may, of course,.

	

1	 1
not exist. Henceforth B^ refers to the boundary modified by ^'̂

and it is therefore also necessary that the p w be c^,osen so that

this set {B^}	 of modified boundaries continue to satisfy CAl)^

It is conceivable for Lno Cjw) to be on Cr1 for some w 	 range,

be forced to return to B^ 	 but after one or more such excursions

eventually return to CM while in -the second quadrant, and leave it
0

then only for Arg Lno =.^90e

`	 Given the above problem definition, it is proven in !`;^pendir.

1 that Lopt must lie on its associated BW at every w	 in

Appendix :? that if any L exists which satisfiES the Bw 	 then

Lopt exists

REPRODUCII3II,I^'^r U^ ::
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.=__
and in Appendix 3 that if Lopt exists, it is unique. The	 r,

7

above apply to both mp and nmp systems. It is well known and 	 '_.
''=>`

formal^.y proven in C2^ that in the mp case a salu^l:ion does :..d

exist. It is possible, however, that no solution exists for 	 ';;:

a specific nmp problem. Appendix 4 presents some criteria

far determining whether this is so.

III. DESIGN EXAMPLES

Example 1

The plant transfer function

P(s) = k(1--ds)	 with k ^ C1,3]	 ,	 b E Co.3,l]	 d E CQ.05,0.11.s 1+bs

The step response bounds were originally those shown as I in

Figure 3a, resulting in the equivalent frequency-response

bounds on the magnitude of the minimum-phase Tm (jw) (see

Appendix 5) I in Figure 3b. The disturbance response parameter

y of Equation (5) is 6 db.

Design

The range (templates) of V of Equation {3) were obtained

and used to find first, the bounds on L no and then as

discussed in Section II (Figure 2), the resulting bounds F3^,

on Lmo (jc^)	 shown in Figure 4a. iJsing the technique of

<,^Appendix ^, it is found that L	 cannot be reduced sufficiently
mo

.:.

by the time Arg Lmo is zero degrees. Tr^erefore the spec^.ficatians

on the system s^-ep response must be relaxed. In Figure 4a 	 -^^

`.

^::

c:^,

.,
..	 ^	

1.^
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it is seen that primarily the bounds for 	 m E	 [2,10]	 must be ^^^

relaxed as	 B 2 	compels	 ^ Lmo (j 2) ^	 to be^ 4 db	 and	 B l ^	 compe^. s ''.::

^'	 Arg Lmo (j10)	 to be rather large. 	 Anew set (II) of frequency
z	

i

domain bounds and their corresponding tame domain bounds are

_	 j	 shown in Figures 3b, a respectively. 	 The resulting new bounds ''

on	 Lmo (jw)	 are shown in Figure ^-b together with the 	 LmoCj^} .':^l
i

used.	 Experimental design results are shown in Figure 3a. ^'
_ '^'{

-	 Example 2. 's
i

In this example	 P =	 (1-YS)ka /s{s p a) 	with uncertainties ^

k ^ C1,10^	 , a E	 Cl,l ©] 	 and two separate values of	 -r	 were .^s

considered:	 1)	 z = 1/^ 2}.	 'r	 = 1/60	 The bounds on the nmp
_=
'^

Lno Cjca}	 , shown in Figures ^a, b^ are therefore the same in both
_-

:;^

cases.	 But the bounds on the mp	 Lmo (jw)	 for	 -r = 1/4	 in Figure

^a^ are shifted to the right much more than those in Figure 5b^ where

^' = ^./60	 A computer program taas prepared which derives an 	 L(jw) ;,

function which lies on the boundaries C9].	 In Figure 5a this
:_

program perforce gives an	 L	 function which crosses into the .y

positive phase region, as shown. 	 Such a	 L	 function cannot go

to zero at large	 ^^;	 In Figure 5b,	 Lmo	 is attainable, and ,the

resulting	 nmF Lno (jam)	 is also 5}fetched .	 Eolith such a computer '" ^

program it is a simple matter to check tahether any specific	 nmp

problem is solvable.

^^

>; ^

^	 - i .	 ^'^4

^...
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'	 IV.	 CQNCLUSIONS
., a
j,...^

Qptimum single-loop	 ^,ti synthesis for plan-tt with parameter :Y^^

uncertainty, Previously developed for a special class of	 mp ^.
4	 ..

problemsC^.], has been extended to a much larger class of 	 mp

systems and to	 nmp systems as well. 	 This extension permits ^^-

the °equivalent Qti'	 technique developed for linear time-

varying uncertain systems which are effectively	 mp Cl], to be

{.

';	 also applied to	 Qtv uncertain systems which are effectively	 nmp ,

the results to be made available in the near furture.	 The results

of this paper are also obviously applicable to Qti synthesis .''^`^

techniques previously developed for more complex	 mp	 structure ^

such as the	 cascaded multiple-loop [8] and the multivariable C^J.
,^

In all of these, the availab:^lity of a computer program for

finding the	 L{jm)	 function which satisfies the bounds, maces
`^

it an easy matter to determine whether the original	 nmp
':	 ^

specifications can be satisfied or whether they must be modified. ^

The synthesis technique provides insight into the minimum required

modification. '_

i

:,,:	 ,
;^-a

;^ 3

`-

•.'I
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APPENDIX 1.

LoAt(j^) LIES ON ITS BOUNDARY

It was s;ZOwn in Section II that the problem of optimisation

of the nmp Lno (s} of (3}, may be transformed into that of the

mp Lmo (s)	 Until specified ot)'•terwise L , Lopt , La , B^ etc

refer to the mp items. 	 The Following restrictions on the

boundaries B^ are highly realistic and obvious in any real

problem, and are listed for i:he sake of a clear mathematics l

problem statement:

BW bound simply connected regions in the complex

plane. They are continuous on CO,^) in the sense

that given any point ^ on B^ , •]Then for Om small

enough, there is a point z+Qz on Bw+gym which is
	 (Al)

as close as desired to z	 in the Euclidean metric.

Also each B^ is a continuously differentiable curve

in the complex plane.

Tre co:^tinuity requirement does not require similar continuity in

^ of the range (ternplate) of F(jm) 	 Even if the original Bm

is x:ot continuously differentiable it can easily be de£ormec] to

be so with infinitesimal changes in its actual shape. The res;ion
o

bounded by B^ which i.s forbidden to L(-j^r) 	 i rlc^notr'd by 
^^t.t

Theorem 1. Lopt f jw) if i`L exists lies on F3^
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.^	 A2 °fig

Proof.	 Let La Cjw) be submitted as c{^ndidate for optimum and

suppose there is at least one w interval (not a point because

of CAl) ),denoted by I = (A, B), in which La ^ Bw itself.

Suppose that it is always possible to`^_nd an HCjw) such that

La H (jw) ^ Bw for any m , with Qn ^ ^I C ^) ^ < 0 , and if a H

having no rhp zeros. Note that both L a and LaH as

candidate functions, must have the assigned excess a of poles

over zeros, so H(^) must be finite. Then L aH is better than

i .•	 La in the sense of •the definition of optimality. The theorem

is therefore proven if such an H(jw) can be found whenever such

an interval, I = (A,B) exists.

The main problem in choosing H is to ensure that

'	 LaHCjw) ^ B^ , b w. The problem does not exist for w E I = (A, B)

or in any other intervals in which L a ^ Bw 	because L(jw)

may there be shifted in any direction by a finite amount without

entering B°(w}	 Thus, the worst case to consider is when

La tjw) E Bw 	w E I (complement of I). Consider in Figure Al,

a very general farm for Sw 	in the arithmetic complex plane,
1

w l E I	 In Figure A1, suppose L a (jw l ) has the value A ^ Bw
1

If Arg H(jw l ) = 0 and Qn ^H(jw l )^ ^ 0	 -then clearly	 .

La Hfjw l } ^ Bw	 If La {jw l ) = E in Figure Al, then
1

Arg H(jw l ) = 0 , Qn^H(jw l )^ ^ 0 is sat ysfac^:ory. This strategy

(Arg H = 0	 2n([-i^ positive or negative) fails only et points

such as C , i.e. if La (jw l ) = C	 Such points are temporarily

ignored as if nonexistent. Let

!tn HC jw) = 2,n ^ H ^ + j Arg H ^` ^-^ l (w) f j H z (w)	 (A2 )

^'

^:^

^^

:^

j

^^^,^

,^

y,

^	 ^.
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and choose Arg Hl (w) = D	 b w E ^	 It is required that

Hl s 0 in those intervals in I in which L a (jw) has the property

of A in Figure Al, and that H l >. 0 in those intervals in wi^ich

La (jw) has the property of t7 or E	 These requirements dictate

say, n zero crossings of H l (w) at w l ,w 2 ,... in I = {O,A) D (B,^)

(see Figure A2), giving the n f2 intervals Rl ^ {0,w1},...,Rkfz W

{mk ,A)	 Rk^,Z = 
{B,w k^-1 ) , ...' Rn^-2 = (wn,°°)	 Only the values of

H 2 (r^}	 in	 X are available to secure these required properties For

Hl (w} , inasmuch as H 2 {w) has been chosen zero for w E Z The

candidate La can be such that a combination of the following may

be necessary .for N

(Aa) Hl { W ) ^ D in RI,R^,...

R 2 ,R^,... in	 (O,A)

in (O,A), with H l (w)	 0 in

{Ab) the opposite of {Aa), i.e. H l (w) < 0 for Rl ,R 3	etc.

(this case is shown in Figure A2).

(Ba} 2f the number of 'intervals' in (B,^) is even then the

firs, third, etc. of them must be 3 0 end the others 	 5 0 ,

in order that Hl (^) < 0 .

{Bb) If the numbers of 'intervals` in (B,^) is odd then the

first, third, ... must be 	 ^0 etc.

Thc^ following r_ombinations are passible: (1) Aa, Ba (2) Aa,

$b {3) Ab, Ba {^-) Ab, Bb, and the objective is to prove that H2

,can be constructed to give any desired one of these four combinations.

ObviouG^.y H1 CD) = 0 may be assigned for all cases.

.:	 _,.k

_..	 ..	 ...
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Consier the Hilber transform relating the real (l^^) and imaginary

CH 2) parts of the analytic function Qn H(s) 	 s = j^-► C 6,p. X09] ,

E	 3	 !^ Hl (w}-H l (0)	 2 °° H 2 (^)d^ 1.1 B 0(	 d

^`	 ^ 2	 ^ 0 ^ (w 2 -^ 2}	 A	 c^ 2
- ^ 2,,

I.

with H 2 (^) = 0 deliberately picked d c^ E z	 giving the limits
i

A, B instead of (0,^)	 Equation (A3) is used to prove that

the desired properties of HZ in T are achievable by a suitable

I .	 choice of H2 in X	 The technique is borrowgl' from those used
I

in Total Positivity C10, 11]. Pick a continuous H 2 (^) in Z

,!	 with n zero crossings A < Tel < n 2 ,,, < nn < $ and in addition

H 2 {A) = H 2 {B) = 0

^w l , ..... ,^:n^E	 Step 1. Define	 K	 as the n x n determinant whose^ l , .... ,^sn

ij th element is	 k(e^ i ,^ j ) = (w^-^^)^
1
	r1j_1 S ^

j 
< n
j 

and

w i E ^ ordered as in Figure A2. Tt is now proven that K(...) has

constant Sign for any	 ^ i , wj pair satisfying the above ordering 	 '^
Y

conditions i,e. k{r^,^} is totally positive C10]. wince each 	 ^

^ i , wj can be continuously varied (so long as the ordering is

j	 kept), a sign change of K(...} requires K(...) = 0 at some 	 ^

^ i , w. pain. Let the i th column of K(...) be the vector a i	 `^
7	 `^

if K(...) = G at some ^ i , w. pair, then ^ scalars al,...an
n	 J

not all zero, a E ai a i = 0	 Hence	 ^' ai(w^--^1)-1 = 0
^.	 i-1

A
for j = ^., 2, ... , n , which means that	 E ai(w2-r,)-^' = N{w2)jrr(wz-^i)

=^
,^

has n zeros at ^ j , j = 1,2,...,n	 This is impossible	 '^^

because N(m 2 ) is of degree n--1 in w Z and {^ 2 -^i) ^ 0

,..

,,. ^

x	 ,..

ti:.	 ^^
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for	 w E I , ^i E I , The only other possibility that K - Q

is impossible, as follows.

The determinant K(..) is expanded by its first column,

n
ivin	 K{..)	

a
g	 g	 = ^ 21 2 = ^{^i) _ ^(zl) letting a l = ^^ with

l ^i-^l
Ji the cofactor of the {i,l} element of the corresponding

matrix, and ^1 does not appear in any J i 	Thus K(..) can be

regarded as a function of ^i = z l 	Zf K(..) = 0 then the

derivatives ^(m)(zl} = 0 , m = 1,2,..	 ^(1)(zl) can be
c•^

obtained by differentiation^ythe first column of K(..) with

respect to z l , giving a determinant whose first column a.s

1/(c^^-zl)2	 i = 1,2,.. n	 while all other columns are the

same as in K{..)	 Similarly ^ {m} ( z l ) consists of K(..) with

the first column only replaced by mi /(wz-- zl ) m^ l 	 As m

becomes sufficiently large, one term will dominate in the

expansion of ^,m (z l ) by the first column - the term with the

smallest (w3-z l ^	 Hence only its cofactor need be cons^.dered.

This process is repeated, with the cofactor considered as a

function of ^2 , etc until the final cofactor to be considered

has only one term 1/{^yj-^^} ^ 0 because m^ E T ^n E I .

Hence K{..) has the same sign d w i E I , ^^ E I , or.dered

as previously indicated.

Step 2. From A3 and the definition of k(c^ i ,^^) in K{..) ,
s:	 S

Hl (ca) =	 f k(w,^}9{^)d^	 in which from .(A^) below, 6(^) has
A

n-^2 zeros 6t ^o = A < 
n l < n 2 .. • n { ^ ^ n r,+l ^ and has

_ ^
4

_-,	 _ ,.... ,.. ,. ..	 ^ ..
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the same sign, an between any two of these consecutive zeros

and the opposite sign between the next two. Tt is next shown

that H^(m} of {A3} cannot have more than n internal zeros

in ^	 Assume this is not so and that it has n-^l internal
i

zeros at 0 < wl < w 2 ... < wn,^l in T	 Let wn^ 2 be any

i
internal point an ^ , and consider the n+2 square matrix M

whose ij th element is

I	 ^^

j	 J	 k(wi ,^) ^e(^) J d^ ,	 for	 i = 1,2,... ,n^-2	 3-1,2,...na-1 , .

^j-1

i
'	 while the (n^2) column consist of H l (w i } o.^ {A2), i = 1,...,nf2.

(Det M )	 is zero because from {A2,3), its last column as a

!	 linear combination of the others. Since by assumption, ^iZ {W^^ = 0

for i = 1,2,...,n^-1 , expansion of det M by its last column,

gives

i	 .;	 ^l	 B	 Cw l , • . - ,wn+l	
n-i-1

jdet Mj ^ ( H^(mn^,2 )^ j ... !	 x `^ ,•..,^	 ^	 F[ (a(^ i)^d^l...d^n+l ,
A	 ^n	 l	 n+1 i=1

^	 with ^i E(n i-1' n i }	, ^o - A , ^l n^ l - B	 From step 1, K(..) 	 ^	
i

has a faxed sign. Hence det M can't be zero, which contradicts

the previous conclusion that det M = 0 	 This is true for

any wn^ 2 E I	 Hence, either Hl (w) ^ 0 , b'^s ^ I or H^(w}

has at most n zeros (excluding the origin) in Z	 The former

is impossible, because both H^ and its argument identically

zero in Z would require them to be identically zero b' w .

,^

a

_. _

c^	 ^	 ^_,,.; ;
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Step 3. Xt is finally shown that B{^} can be chosen so that
::

Hl (m) has n zeros (exluding the origin} in I so that

	

in view of Step 2, it has precisely n	 For ^ E I ,

n	
2 2	 2 2	 2 2	 n	

2Cn-•i)e(^) = ^k(w i—^ )^{^)C^ --A }(^ —B )^ ^(^} = o Bid

Bo = 1	 {A^)

^,

i	 -

I

From (A3}, H^(w^) = J k	 ^	 (mi-^2)c^(^}{^2--A2)(^2-B^)d^ 	 zt	 ^°1
A	 j # i	 $	 {

is possible to choose ^(^) so that 	 f (^z_A2)(^^_B2}^2x^{^)d^ _ B
A

for x W 1],...,n-1	 Far each x , this definite integral gives	 ^`'
^_:.. ^a.

a linear equation in the coefficients B i of ^(^)	 resulting	 j;^'
E

in n linear simultaneous equations in the unknown ei . It has	 ^`I;^
i^

been shown. that this set has a unique solution C12, p.236^,	 ^^"'
E : . ^

f^ _.

with n simple zeros of ^(^} in (A,B)	 ^

For the present purpose, it is imperative to knave the

relation between the sign of H l {c^) in Rk+l and its sign in

Rk^ 2 {see Figure Az), because in view of the previous four

combinations shown possible for H l , this relation must be

flexible. By making use of the known result for the Tchebycheff

sy;;^tem on CA,$] C11, p. 11^ it can be shown that Sign { H^ in

Rk,^ l ) 
^ (-1}n-^1 Sign(H

l in 
Rkf2}	

Hence, to secure the

desired flexibility it may be necessary to insert an extra

zeta say at the origin, or at A - or B } 	crhere it does no harm.

^f course, any desired sign of Hl in Rl is possible by

choosing the sign of k in (A3}. Also the scale factor of H

is controlled by the magnitudc> of k , in ordEr that LaH does

not crass into Bo {^i) , b' ca .

^,^PRODUG^BILLITY' OP THE
OR^G^^ PA{s^ ^ POOR

3^a	 ..r... _	 _ _



1	 ^

A^-z^

It is necessary to prove that l^-LaH has no rhp zeros.

!	 Qbviously, l^La has no rhp zeros, or L a would not be

'	 an acceptable candidate for L opt	 The transitio.^ from La

to LaH can easily be made continuous with L a H ^ B°(w) over
i

the entire transition r ^ ge, simply by means of the gain factor

^	 ^k in {A^). The zeros l^-LaH are continuous functions of

^^	 k in H	 Hence if these zeros are in the R.hp at k = 0
I

_	 and do not ^^ on the imaginary axis during the transition (by

i!	 having La H ^ B°(w}	 dw)	 then 1-^La H also has na rhp

zerDS. The theorem is therefore proven, providing La(jc,^)

^	 has nv values such as C in Figure Al, b m E [0,^) .

	

Tf La Cjw) = C (Figure Al) at one or more w values, ane 	
,E

may instead specify Hl (+^) of (Al) to be zero in T(A,B) and
i

choose it in I so that H Z Cw) may have the required zero

crossings in I	 THe Hilbert transform giving H 2 in terms of	 ^ -

Hl (corresponding to (A3)}, has the same total positivity	 _

property as (A3). This is satisfactory, providing L a {j:^} has

no va^.ues such as D in Figure Al	which is, in this respect,

the dual of point C	 In the most general case where L a {jw) has
.!

E	 both kinds of values over one or mere intervals, p^^uof of }

the theorem requires a more general Hilbert transform -- one	 _
,^

in which H 2 is specified in a^.ternate intervals —say ^.n

IA = {D, w a )	 IC= Cmb ,wc )	 e'tC, H l in Y^ _ {wa ,t^b )	 -

ID = {w c ,wd ) etc. Hl is made zero in intervals of C type

in Figure Al, H 2 = 0	 in the D type and either in -the A,

E, F type.

^.

^.,^	 _	 _
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Again, there is only one segment I = (A,B) in one of

;^^	 ^
these intervals in which nonzero H 2 {^) (or "ril (^)) may	 `;_

s.

be assigned. ^. certain pattern of zero crossings is required

in ^	 Figure A3 shows two examples, with the desired zero

crossings and sign of ai l in TA , part of I^, and IE the
a

same for both examples. The zero crossings for bath the H2

shown are really ^'^- same, but tha desired sign of H 2 is the	 t

apposite in the seco^_3 in the interval T^ 	 It wi^.l be seen

later, that it is therefore necessary in the second example to

introduce two mare zeros, one at w ay , the second at w b -

i.e. n ^ ll,l3 respectively for the first and second examples.

zt has been shown how to derive the Hilbert transform for

such problems in general and the solution has been given for

I;	 the case of two intervals [7; 5, p.319J. ^'or the special case
r

here, where the specified function is nonzero only over I = (A,B),

^	 ^	 ^^.:.the same technique gives

	

HZ(w) - vCw) j	
2 2	 - v(w) {	 Z 2

i

^	 - { - l)^'0.5^rHl(w), w^E TA ,T^,...;	 i = 0 for w E I s ; 1 for w E I^;...

{ - 2) 3 0.5 H 2 (w), w E I B , ID ,..., j= 0 nor w E IB ;

1 for w E Td ;..

it
^	 ACS) = Jr^(m^--^2) f l/2 ^ v{w) = j^r{wX--w2), Z/2
i

(A5}
x ^ a, b, ...

Nate that ^(^} > 0 , 'd^ E T ; and v(r^) > 0 , w E rA	 ?B,...

with v{w) ^- 0 as w -^- :^ a , m b , ...	 The problem is to

choose 9{^) of (A5) so as to obtain the desired zero crossings

'	 Rr^^onuc^^^ or ^^^	 _
oRZ^AZ ^.^.^^ ^ ^oo^

_	 .	 _ .__ ^^

a	
_

>•. .
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and signs of I-Il (w} in ZA , I^	 ... and of H 2 (w) in

The proof for this general. case is amost identical to that

for Figure A2 and equation (A3). '.Che ordering of the w i , r^.

is the same. Step 1 is exactly the same. Step 2 is also identical

but Hate that the zeros referred to are the internal ones

t^ l ,w 2 , ... in Figure A3 , not to the zeros at w a' w b ' we'

the latter being obtained by means o.f	 v(w) in (A5). Step 3

is also the same, as are also the remarks re 	 Rk+l , Rk}Z

which now refer to •the relative s.i.gns of H l (w ) a •t w = A- , B^

(In Figure A3, nfl is even and the signs are the same, sa no

additional zeros are needed for this purpose}. However, one

new complicat^_on concernes the relative signs of H l (w a-) ,

HZ (w a+)	 of H 2 (wb-) , Ii1 (w b^) , etc. .Tzt is seen that because

of •the factors (--1.) ^'	 (-1) ^ on the right side of (A5) , no

extra zeros are needed if Sg H l (wa--) ^ Sg H 2 (wa +) ,

Sg H 2 ( w b-) _ -Sg Hl{mb+}	 Sg H l ( w c -) = Sg H Z Cw c ^-)	 Sg Ii Z ( w d --) =

t
	 -Sg H1 (w d-^) , etc. An extra zero is needed far each violation

of the above. Thus, in Example 2 of Figure A3, there are

violations at w a wb requiring a zero at w a ^- (or wa-)

and at wb	(or wb^)	 giving n = 13.

This complet4s the proof of Theorem 1. 	 It has been shown that

if a loop function exists at all which satisfies 	 Bw	 -then fihe

optimum, if it exists, lies on B w at each w	 :Ct is implied,

of course, that the B r are bounded wh^.ch explains the need

for the supplementary ^ boundary discussed in 1I2.

,^

3.

^^
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APPENDIX 2

EXISTENCE OF Lopt

To prove existen^e, use is made of the analog of the

Weierstrass theorem which states C13] that if J(L) is a

continuous functional defined on 4he normal and compact

family {L(s)} , then J(L) = min 	 has a solution within the

^ -	 f amity. Here J{L) is equivalent to lim ^(jw)eL(jm}^
^^^

^

	

	 If the nominal. L has no rhp poles then the family {L{s)}

consists of functions regular in the right half-plane,

including the jW axis which satisfy the bounds on L(jc^) at

each w	 and ^,=ith lir,^ arg L(j^r) ^ -0. 5^re	 Zf all P(s)
m^^

over the ra:^ge of uncertainty have rhp poles then the nominal

L must also have rhp poles, If at the nominal parameter sets

these rhp poles are at 1 /T l ,... 1/^rm then let L = Ll(s)/

( 1-x ls) ... (1-^,^ ms) and consider optimization on L l (s) with

the family {Ll (s)} regular in the rhp etc, and lim arg

'	 lim arg L1 (jw) -^ 0.5^r(m-e)	 C5, Section 7.1+7. If L has no
m^^
poles at the origin then it is obviously possible to bound

'L(jm)^ , (or ^L l (jc^}^ ) by some very ]arge number M 	 if

necessary	 If L has poles at the origin these pales can

be removed and optimization considered on {sL} (or {s L l } ).

If in (1), A(W} = B(w} is wanted at a finite number of values

w a , ^b then any candidate L would have factors

(s 2 -waa}(s 2 =^w b) ... in the denominator. Such pales would be

removed in the same manner. In Appendices 1-2, L is therefore

_	 . --.
,;:^
.",
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assurrred mp and finite on the jw axis. By the principle

of the maximum modulus 	 L (s) Cor	 <Ll {s) ^ ,	 yr	 ^ r,L{s) ^ etc)	 M

over the entire rhp includir^g the boundary. By Mon•tels'

i	 theorem C 13 a , the family is therefore narr^.l and compact . The

functional	 J(L) is clearly continuous, so the conditions of

the analogue of the G^'eirstrass theorem are satisfied and an

optimum L(s) {or L l or s L etc) exists, prova.ding the family

{^,} is not empty. {L} is certainly not empty in the mp

problem C1J but it might be empty in the nmp problem. However,

if the nmp problem can be solved at all, then the optimum

solution exists and lies on B ey at all w	 From the nature

of B w in the transition range (Figure 2), I, Qpt is clearly

not realizable precisely as a rational function but may be

approximated as closely as desired by a rational function.

APPENDIX 3

^ 	 Lopt IS UNIQUE

Uniqueness of Lopt is first proven for the mp problem

under the assumption that the Bw ($') arE single-valued func^^ions 	 ;^

of $' , the angle of the line to Bm frorn the --1 point.

Conditions (Al) on Bw and the definition of the transition

boundary (p, CM, --9De) at the enc: of S^:ction IT are important 	 ^^

and should be noted. Suppose there exist two functions L a , L b 	,^

which satisfy all the necessary conditions for optimality. 	
,7

Let w	 be the frequency at which L 'reaches' CM and similarlya	 a

define w b 	Let SZ ^ smaller of the sets CO,w a ^ , CO,wb ] ,
::^

i

<% ;

^° .i

^^
r
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^	 ..

_..^



A 2-z^

and define

a (jw)-^Lb(jw)
N(jw) _

	

	 , 6^ = Arg N	 a i T Arg (la-Li)
1+La{jw)

^,. ^(w) = ArgCLa(jw)-Lb(jw}] 	
(A6)

All candidates for Lopt are constrained to have the same excess

{e} of poles over zeros and the same number (n) of poles at

the origin. In the following development n = 0 is used, but

i	 if' n ^ 0 replace L i everywhere by s nLi . Hence qa(0}=a b (0) giving

La {0) = Lb (0) because both are on the unique B o (0) .

iJniqueness is first proven on the condition La	 Lb have

no PM (phase-magnitude) crossing, defined as follows:

^	 La	 Lb have a	 PM	 crossing at	 w x	 iff

La (jwx )	 = Lb (jwx )	 and Sgn Arg	 L^	 _ -^Sgn Arg	 L`^
b^w	 ^ b^w f-x	 x

(A7}

i.e. there is a zero crossing of Arg (La /Lb }	 at	 wx	 '

±	 To simplify the proof,	 La = Lb	 tangentially,	 i.e.	 with	 ':i
''

no zero crossing of	 Arg {La/Lb) also does not exist at any ^	 ^^

w E SZ	 although they can be arbitrarily close.	 Another assumption,	 :.^

later	 dropped, is that after	 L reaches the	 CM	 portion of the	
y9

transition boundary {Figures A4 , 5 } , it remains on it until the	 '>^

final portion	 Arg L = -90e^	 (EDO in Figure A5a).	 Suppose	 `^°^

aa (0+)	 > ab {Of} ,	 then it is seen that	 aa (w}	 > ab (w}	 and

A N (w)	 > 0	 ,d w F SZ	 ,	 as	 follows. The first is true because	 s

.;

}

_,-^
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BW (0' )	 is single-valued, so a s = a b at c y l would require

La = Lb at m l , disallowed. To prove the latter, take La(jwo}

as fixed with a a (wo ) > a b Cw o )	 Inf B N (w o ) , as ^l+Lb(jwo)^

ranges from zero to ^ = Inf {Arg ^(1 +La)-(1 +Lb}^ - a a } = Q ,

at ^1+La , = 0 which is an impossible value (the loop is then

unstable). Hence O N > 0 ,	 ^ w E SZ .

Consider {A) the case GM > 1 and w b < wa (Gase Al) at

_	 which, from the previous, a a (w b 3 > a b (w b ) with ^(w b) of (A6) > ^

(Figure A4). Suppose in Figure A4a1 La reaches CM 'behind'

Lb (Case Ala) meaning by this that Arg L b (jw a ) < Arg La (jwa ) .

Then I,a is 'behind' Lb in this sense b w > w a	 because

PM crossings and departures from CM are not allowed. It is

readily seen that O N } Q as w } m	 Tf La reaches CM 'ahead'

of Lb (Case Alb)	 i.e. Arg Lb (jw a ) > Arg La (jw a )	 the^^ it is

seen in Figure A4^b that ^, (w a ? > 2^r	 La stays ahead for all

w > w a , and	 6 N -^ ^ as w } ^	 The third possibility is

(Gase Ala} wb > wa with La reaching CM ahead of Lb ,

giving 6 N ^ --^ as w -^ ^	 The fourth (A2b) is w b > wa and

Lb ahead of La on GM , giving	 9 N -^ 0 as w + m	 There

are similarly .four possibilities^withing the alternative CM < l ,

of which AN -^ -^r or zero, as w -^ m , in three of them.

But in only one case (wb < wa and Lb ahead of La on CM < 1)

does	 6 N } -0.5^r a as w ^- ^	 This is the only case in which

the behavior of O N at infini •^y is consistent with the fact

that from (A6}, ^N(jw}^^ Ow-e . , inasmuch as L i and Lj is

c
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each Os
-e
	and therefore if. N(s) is mp and has no right

half-plane poles , 9 N C^ ) _ --0 .5^r e	 N (s ) is obviously stable

from its definition in (A3). It is conceivable that N is nmp ,

but if so	 @ N (^ ) must be even less than -i3 .5n e , hecause

right half--plane zeros effectively contribute C5, p. 332 phase lag

at ^	 It is therefore necessary to prove that this case is

impossible, as follows.

-

	

	 In Figure ASa at w b < w a	L.b (^w b ) ^s say, at paint

B on CM and La (jw b ) at A must be to the left of 4' X ,

because w b C ^ and a s > a b in S2. Both A and B must be on

Bw (6') which is single-valued, and hence must be as shown.
b

Since Lb is 'ahead' of La an CM	 Arg Lb (jw a ) < Arg Ld Cjw a ) ,

both on CM	 The transition to the ).otter from the situation

in Figure Asa with L a (jw)	 in the interior of CM far

^'	 ^wb'wa) ^ Necessitates aa(wo) - °^b(wo) for some w o E (wb,t,sa)

as shown in Figure A5b	 But Bw	must cross CM below B°
0

{otherwise Lb (jwo ) would be in a forbidden region) and pass

through A'	 Note that for all w E ( w b , w a } , Bw must

'	 crass CM below Lb (jw) , and in addition the Bw must be

continuous {from Al). These, two conditions, together with

B	 of Figure Asa, compel B	 to have the shape shown in
w b	 wa
Figure ASb, violating its single-valuedness. Thus, this case

is impossible. The conclusion is that if no PM	 crosssings

are allowed of La , Lb and each stays on CM once it

reaches CIS then there cannot .exist two such functions

'	 satisfying the optimality requirements.

R^^,oD^e^s^GL ^ ^ao^^ ^^^^^^^
^,,
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Suppose that departures from CM are now permitted

but obviously only in the second quadrant). It is clear from

the preceding that f'or CM < 1 the starting point i.s at the

smaller of wa	wb with as > ab and ^ > a s > 0 at this
^.

^	 point. In order that 8 N {^} be consistent with ^N(^)^ , it

is essential. that (L a--Lb ) execute a clockwise rotation while

satisfying all the constraints. The closest to such a rotation

•^^	 previously was in Figures Asa, b, invalid because point A'
i	 -
^	 had to be on Bw	in the inter^.or of CM (otherwise, since

0
no departures from CM or PM crossings were allowed, La

always remained 'ahead' of Lb , giving ^(^) _ -- ^ for
i

e = 4 and in general" -©. 5^e +'^^)	 But now A x can be on
1

h	 GM, but the resulting B 	 must be as shown in Figure A6 (it would
wD

be possible but more difficult to draw Bw	if B^ was on CM).
0

I	 The desired rotation of (L a - Lb } requires that at some w d ,

^	 La(jwd) depart from CM so that B w	must pass through	 -
d

La (^wd } , as shown in Figure A5. Also, in order that the

^	 achievment at w o rot be lost, Lb (jw î ) at B" must be in
E	 o

^	 the shaded region and must of course not be in B^^ 	 necessitating

B	 as shown (it is easier to draw the latter if B" is CM ).
wd	 -

It is clearJ.y impossible to eontinuousl^^ d^.stort B	 into B
w o	 wd

	.without crossing any continuous curve drawn between B' and 	 =^
a

B" , thus forcing Lb (jw) E Bw for some w E (w o ,wd )	 Hence,

the • desired rotation of (La-Lb ) is not achievable, even if 	 E'
a	 -

CM departure are permitted.	 ^.
-	 ^	 ?!

,,,.a

^	

.3	

-

I

^	
'`l''

s
fi:' ;,
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The same result is obtained in the case CM > 1 , where

the best chance to achieve the desired rotation of L a-Lb is

when wa < wb giving ^ > ^ > 0.5^r as in Figure A7. The
i

zero crossing of a s-ab from positive to negative is achievable 	 -

if La is on CM - at say w^	 But the desired rotation

requires that La depart from CM while a s - ab remains
=,i

}	 negative. Bw must therefore advance c^.ockwise, overtaking 	 _

j-	 La on CM and forcing it off. However, in the process
r

!	 as - ab is forced to become positive again, in view cf the

definition of pw in II2. The desired rotation of La-Lb is
i

not achievable. Hence, Lo.^t is unique if nn P^1 crossings

are allowed, even if CM departures are permitted.

Let PM crossings of La Lb now be permitted. Zf there is

'.	 i	 a single one at w ^ E SZ , the the roles of L a , Lb are

sim;;ly interchanged in the proof above. This is so for any odd

'	 number of PM crossings in SZ , while the proof is unaltered if

there are an even number of PM crossings in 52 	 In the interval	 -

^	 between w a , w b (or w b , w a ) there can be no PM crossings

'	 ^aecause, by definition, ane L is on CM while the second is' 	 ^'
i

i.n the interior of CM	 There can, however, be PM crossings in	 '^
E	 .l^q

i	 .the interval {w c ,W } where w c is the larger of w a , ;^ L-	 In	 f `^^^<

r	 view of the previous argument, PM cr^oL^sings in S2 need not 	 ''
a,;

be considered, only PM crossings in (w c ,^)	 At any such

crossing ^ N^ = 0 ,	 Qn ^ N ^ = -W	 which is accom.:^^nied by an	 - -

abrupt positive change C5, p. 336] in 6^ 	 Thus PM crossings
i	 ''

_ ^	 in (w c ,^} increase the value of 9 N at infinity, increasing'	 ^'.A .

1

r	 even further the inconsistency between ^N( and 8 H as ^ } ^	 :r
E	 '

^t

._^,^..^..--.._	 -	 _..	 -	 -	 _ .	 _	 - .....	 ..w.^ _ ...... . _ _--,
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Proof ^f uniqueness is essentially the same in the nmp

system. From Equation (3), the nominal loop transmission Lno

Lno = Ao (s) Lmo (s) is nmp because Lmo is mp while Ao is

all-pass nmp. The boundaries 8^ of Lno have the same

properties as Bw of Lmo in the purely mp problem
..

previously studied, i.e. 	 ^ w " , 3 ,d w > w^^ they da not

enclose the origin and lie entirely in the second and third

quadrants. Also they satisfy (Al). The constraint that Bn(S')
w

are single-valued in g' is also meanwhile retained. N(jw) of

(Afi) is defined exactly as before with nmp L a	Lb two

candidates for the optimum Lno , so that each must be of the

form LmAo (s), Lm mp	 Thus N{s) has Ao (s) as a factor.

The only difference in the proof is in the relation between

^N{j w) ! and 6N (w} as w -^	 Sinee	 {N ^ is	 Os-e

6N (^) _ -0 . S gyre -m gr	 where m is the .amber of zeros of A{ s )

Hence the inconsistency between ^N(^)^ and ^N ( m) which was

used to prove uniqueness, is magnified in the nmp system.

Therefore in the nmp case, too, there is only one L function

which satisfies the optima]_i.ty conditions.

Multivalued Boundaries B (8^')
w

E	 The final step is to remove the restriction that B w{^') is

single-valued in 6'	 There is na difference between the nip

f
and nmp cases here so the mp case and natation is used in	 '

the following. It is worth noting that this restriction of

single--valuedness is actually a very reasonable one in practice.

#	 It is readily seen that to attain multivalued B (6') it is
^^	 't

necessary to have plant templates (ranges of V in Equation (3))

RI1PI^,ODL7CIBILITY UI{' 'I'H:.	 }

ORI€^^A..L PAGD I^ POOR	 ;^
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which can have at least four values for a given ^ T and

system specifications q Qn^T^ > q Qn^L^ and i l ^b ^ » ]. ,

thereby permitting B to closely follow the boundary of the

plant template. The latter might be in special cases permitted

at relatively large m , at which however, the plant templates

tend to be vertical lines in the Niohols chart. Hence, the

combination required for s multivalued Bm (6 ' ) is highly unusual .

Nevertheless this possibility is considered, far the sake of

generality.

Suppose that some Bm are multivalued in 8'	 as in Figure

A8 in the sector XY	 Let a single-valued approximation Bal

be made of B , differing from B only for some part of this .

sector, e.g. Bal may be taken as ..,Q^:FG4^1JA1... in Figure A^ .

Let such closed portions of B al at any w be denoted by q^

i,e. in Figure A8, ^. consists of GH 1J	 Let ^^ be chosen

so that the resulting {Bales } satisfy (Al). This is certainly

possible if the multivalued BW satisfy (A1.). Zt has been

shown that the optimum so:iut^_on Loptl to the {Bales} problem

exists and is unique, if any solution at all exists. If this

Loptl does not lie on qm at any w (e.g. it is at Al in

Figure AB}, then it is also the unique aptit^um solution to the

original multivalued problem. This is seen as follows. Suppose

that B32 consisting of ...E'^F'LJ,.. had been used, instead of

Bal (and similarly for all other m in such a manner that

conditions (Al} are preserved} : Clearly the resulting Loptl

would be rrecisely the same as before, as otherwise the

optimum for the single-valued case would not be unique. Yn this

manner every part of the multivalued boundaries in the XO''Y

r

,;	 __..	 p
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f

sector can be given an opportunity to be part of a Bai^'

without affecting the original unique Loptl .

On the other hand, suppose that on some B alm , 
Loptl

lies in the interior of EFG-type segment e.g. at A in
2

Figure A8 , but there ^.s no	 m	 for which	 Laptl	 l^.es on the

C-H i J--type segment of	 Balm	 Then	 Lop.^l	 is again the unique
'

optimum far the original multivalued problem, seen as fal^.aws.
1	

i
.'

Let	 ...QE'EG'HGH 1JA1 ..	 (and corresponding ones at other	 w	 ,

in such a manner that conditions (AZ) are satisfied), be used in ^	 ,,

B at	 Then as before,	 Loptl	 would still be the unique ^	 -^

optimum, the essential point being that a part of the boundary f

containing	 A 2	as an interior point, is common to 	 Bat	 and	 Bat ^^	 `^

In this manner, all parts of 	 EFGHIJ	 (except for the isolated
,^

points	 A 2	, A2 )	 have their chance to be parts of the boundary,

without affecting the result.	 An infinitesimal modification

of	 Bal	 at	 A 2	would result in an infinitesimal change of 	 Loptl
j

11	 f

and permit	 A 2	(or	 A 2 )	 to have its chance etc. _

Clearly, one need reconsider the problem only if for some	 ^

values	 ^ PT o tl	 lies on	 Qm	, e.g. the closed GH 1J -type portion

of	 Balm	 As	 L (^ ^,y )	 and the qm	 are continuous in	 c^	 ,	 and ,:'

Bo ,	 B^	 are single-valued,	 Loptl	 must be in	 pm	aver some `_j
,,

finite interval	 Cmx , wy ^	 zt is necessary to modify the 	 Bam

until there is no	 m	 for which	 Lope	 lied on	 pm	It will be
'.^3

s

clear from	 Loptl	 haw to proceed.	 For example, suppose	 Loptl `	 `.''

is in the	 A1J-type protian in Figure A8, for	 m	 immediately '^	 "'^

less than	 mY	 and more than	 my	then clearly the true	 Lopt _.

wants to be in the	 JIH^-type portion and return to the JÂ . tYP^• y

^f	 1
1

1

_	 9

^i	 -

i...	 .'

'^ 
7

1



r^ "

t	 '
,.: i

_.^	 i

:i	 A z-^37

`t'he B	 should be modified accordingly {while preservingaw

canditi©ns (Al) etc) to permit i •^ to da so. TF Loptl traverses

D , e.g. is in a JA I--type segment for m < w x and in a GF-type

segment^^ w > my , then Lapt wants to go right through the

rnultivalued partian, and the Bay must be modified to permit

it to do so. zn this manner an Lopt can be conceptually

obtained which lies an no ^ m except poss^.bly at its boundary

points: From the previous discussion, such an Lapt is unique.

`^

^^

^^

APPENDIX 4

ON THE EXISTENCE OF A SOLUTION TO THE NMP PROBLEM

As noted previously, there may be no solution to the nmp

problem. Zt is convenient here to work with the mp L mo of

Equation (3) and the shifted Bm {see Example in 1T and Figure 2).

Following the discussion there,it is Shawn here, that if an L

exists which lies on the Bm , it must have turned the corner at

V , before Arg L is zero.

Farm Equation (A3), it is easily found that

2 CR{w 2 ) - R ( r̂ l ) 7 = 2 { [R(w 2 ) - R(0)1- CR(w l ) - it(0) .^}

j Xfrlafr)rlr _	 a[r^ ^	 ^'	 2	 _	 (ARl
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m l 	/L(jw^) = Q Q 	but !L{jc^ l )^ has not managed to decrease
- -

to the corner point V which would have permitted it -to turn
r

'	 the corner and become negative in phase. Hence, for w > m l ,

mu,^t therefore be posit^.ve. If a solution L exists, then

j	 at some w 2 > w l , ^ must cross from positive to negative values

and remain negative, eventually reaching -0.5 ^e 	 Hence, in
^

	

	 ^`l
(AS}, _	 KCB} < D	 ^ E {w^,^) = I4	 > 0 in (w l ,c^ 2 } = T^	

^. j^

^	 and may have both positive and negative values from zero to 	 -f^
-_

i	 so-me wa (Tl) and must be negative from wa to w l (I2)	 Tn	 ^^

(A8), ^(^} < 0 in Il, T2 ; > Q in Z3, < Q in I4. Hence

the net effect in each of T2, Y3, I^- is positive, while in Il

'	 there may be a net negative effect, which it will be soon shown, 	 ^ `.
-̂^

-	 ': t

is overwhe^.med by the others in any realistic problem. Hence

^LCjm 2 }( > jLCjw l )^	 however,	 ^LCjw l )f> V , and since

^L(^m 2 )^ > ^L(jw l }^ there is no possibility whatsoever that

the corner may be turned at t^ 2 > w l 	unless the Bha change

in shape and move upwards in Figure 2, as w increases from 	 ^
,^

wl to m z	 _.^

'	 To prove that the effect of Tl even if negative, is over-

,	 1^helmed by the others, consider R(wl}--R(ma) using Equation A8

with w l , wa replacing c^ 2 	wl respectively, with the same

i	 ^(wa-w^}
^{^} but A	 replaced by a (^) =	 , whose ,

sign is opposite to that of A(t;} in (w a ,w 2 )	 and the same	 _

.	 in	 (O,m a } , {w z ,^)	 In	 (c^,,, W }	 ( a l (^ } ^ < ^ a (^ } ^	 , while in

{ O,cua ) J ^ A l (^) ^ > ! ^ (^ } ^	 , c^ihieh is the only interval in crhich	 ,.^

^	 '

r-f	
,	 ^t ` .
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^^

_''	 ^	 X{^}J^(^) < 0	 Hence if this interval suffices to make

3 ^	 ^
OX{^)a(^)d^ < 0, it certainly makes 0 X{^)7^1f^)d^ < 0 ,

z -	giving ^L(jc^a)( < (L(jw l )I	 This is .;.nconceivable in any realistic
'I

-	 ^	 feedback problem because it involves a region of positive phase angle

in the law w range {unusual but not inconceivable} up to w a , but

in addition requ^.res that at w significantly ^ w a , the bounds on L

require ^L(jw l )^ significantly ^ ^L(jw a )E	 This is therefare

rejected.

In practice in a 5p.scific problem, how may one determine apriari

-_	 whether L can reach V before arg L is zero? A necessary
I

conditiori is given here. Let L = L1M with Arg Ll = Arg Ll (jw l ) = 0
I

for w > w l , 9M = Arg M = 0 w S w l	 A^,I < 0 for w > w l ,

^M(0}j = 1	 From equation A3, Sgn{lCn^M(jwl)^-Qn^M(0}^}

Sgn j°°eM(^)^{^)d^ with }^(^} = C^(wi-^2)^^l > 0 in (U,w l ) ,
0

^	 <0 in (w l ,^) , so that	 ^M(jw l )^ > ^N;0)^ = 1	 He^^ce

!L(Ow l )^ > ^L l (jw l )^	 Therefore L(jw l ) certainly cannot reach the

the level V if Ll (jw l } cannat do so. One can therefare search

for such a Ll function. Define the optimum Ll as that which

satisfies Sw for w E CO,w I ^ with minimum value of ^L l {aw l )[ '

and the constraint ^Ll = L̂ (jwl ) = 0 , w >, w l	 Then it ^ n

_	 ^	 be proven by the same methods as in Appendix l that Lopt 1%e•^ on

i
Bw for each w E CO,w l 7. Therefore in she appropriate w range,

specify Arg Ll to have the values dictated by the right hand

E	 vertical parts of ^ Shw 	 and use a reasonable estimate of Arg Ll

>'
in the lower w range.

- ^^^

=i



V easy to answer the above question if a flexible

is available for determining L{jm) which

In a nmp problem far which no L exists whic:^

and goes to zero as ^ -^ ^ 	 such a program gives

an	 ]m	 w ose phase becomes positive before I, has decreased

to ^	 The program must break dorm at some point thereafter,
4

if its angle at large w must be -90e

i

1

^^

..	 i	 '
F	 ;,^...:

_^

It is fairy

computer program

lies on the Bw

Lies on the B^

L(' )	 h
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APPENDIX 5

SOME TIME DOMAIN PROPERTIES OF NMP SYSTEI^ES

This ap^:endix presents some properties of nmp systems which

are helpful in assigning realistic time-domain bounds and to their

frequency-domain equivalent. An important effect of the all-pass

factor A(s) = (1-'rs)/(lfzs} in Tn (s) = Tm (s} A(s) , Tm mp , is

that of 'time-delay'. A(s) is a first approximation to the pure

time delay e--2sT , reasonably accurate up to w k 2/z	 This

suggests and it is experimentally confirmed that if -the bandwidth

of the mp Tm (jw) is	 < 2/T	 then the nmp time response is

closely that of the mp	 delayed by 2^	 The ^^.ccuracy of this

approximation increases with time and it is of course, not valid

for t < 2/^' , the step response being negative over approximately

this interval. Similar time-delay estimates may be mace for

higher order all•-pass functions, by finding the frequency range for

which Arg A(jr^} ^ wT d , -rd the eq^ ivalent time--iielay.

In the nmp system the stop-response r_ m (t) may begin

with undershoot i.e. c n {O-^} < p	 This is obvious from the

initial-value theorem, if A(s) has an odd number of rhp zeros.

In fact, if the mp system has the t ypical continuously

.	 differentiable unit step response with cm (0) = 0	 cm(O+) > 0 ,

cm (^) a positive constant, then the nmp system with step

'	 response Qn (s} _ (1-'r l s) ... (1-^ x s) ^ rrr (s) with all_ ^ i positive

real, has at least x zero crossings and c n (0+) > 0 if x is

even, < 0 if x is odct. This is proven by induction.

R,',^`?R4DUC^3ILITY or TTr =-
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Let x = ^. , cm (0^} > 0 and then from the initial. value theorem

cn (Of) < 0	 For large enough t , cm (t) is negligibly small

while cm (t) > 0	 Hence, at large enough t^ c n ( •t} > 0 and so must

}	 have at least one zero crossing. Tn the general. case, write

I	 Cn(S) _ (1-T ls) Cy (s}	 so cn (t) = 1-T l cy 	Suppose the

proposition is true far x-1 , so that cy (t) has at least n--1 •

zero crossings, while c y (t) must have at least one zero crossing

'	 between any rwo of cy (t}	 Also Sgn cn (0-E-} _ - Sgn c„ (+,f) L.y

the initial value theorem. Hence en (t) must have at ^?.^=a::^

zero crossings. The proposition was proven true f;^r .ti = 1 	 so is

true for all poSit^ve integer x .

The maximum magnitude of the negative undershoot in the nmp

unit step response is of interest. For the case of a single rhp

zero at 1/^, it was found experimental?y that the following

approximate relation gave fair results, M = O.lT^s -.^ , where ^-6

is the -6db point of ^T n (jw)^	 Thus, to reduce M for a

given ^	 one must decrease the system bandwith and thereby its

speed of response. This empirical res^:lt can be theoretically

justified by noting that in -the small t interval where the peak

undershoot occurs, the step re^pnnse cf the mp system _r Tn =

Tn = { 1-s-r ) Tm , can be well approxi:rmted ley h er = At e , so
t

h n = hm -Thm 	cn = f hm d^---rhm 	At the instant t o of peak
0

undershoot ^n (tu } = h n (t u ) = 0 , giving t o = n^'^ and

n n+l
M = -cn (tu } ^ An T	 In considering alternatives for h m = Atn

n+l
it is reasonable to demand that_at some t o larger than to ,

..._ ..4ti
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the mp step response j hm d;^ have the same value K , i.e.
0	 t

Atn^l	n+l
= K	 Susbstituting in the above gives M = ^<! T 	̂ nn ,

n-^l	 to

with n the only free variable, and M a minimum at n < l .

This value of n is not Feasible because n^-1 is the excess

of pales aver zeros of Tm{s} and this excess must at least equal 	 ^ -;

that aF the ^:lant .
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Qti linear time-invariant
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APPENDIX 3

Translation of Time-Domain Bounds on Unit Step Response

Into Equivalent Frequency^Domain Bounds

The results given here are ]argely empirical and were obtained by examining

the wanks of many authors dealing with the problem and by considerable experi-

mental work with many additional sample responses. Definition of the parameters

of w and t-domain parameters are given in Figs. A3-la,b.

Time delay	 t .l	 (Time for unit step response to reach 0.1}

Our empirical relation is

w .l t.1 
f" 

A.]

	
(A3.1)

where A.l is a function of the slope of ^T(jw)^ for w > w .l , the ]after

being the frequency at which the normalized frequency response is 0.1 (-20 db)

in magnitude. The relation is shown in Fig. A3-2. This result is important in

our design problem because it is essential that at high-frequencies the tolerance

in ^T(jw}^ be greater than the high-frequency plant uncertainty. This reciuires

'widening' the nigh-f^^^^uency ^T(jw)^ bounds, and one should know that the

price paid is in the time delay.

Rise time, t r = t . ^ - t .1	 (t .9 = time for step response to reach 0.9)

i.et n l be the average slope factor of ^T(jw)^ for w 10 > w > w_3

(defined by fT(jw - ^)^ = -3 db, and w-i0 similarly defined}. The results are

given in Fig. R3-3. Among the samples used to obtain these results are those

i

r

r
	 ..	 y , ..

a



A3-2

shown in Figs. A3-4 to 6 which vary very widely in shape. The agreement is

within ^lO%.

Relative Overshoot V

'	 A useful r°suit is given 6y Fapoulis [A]] for IT(jc^)^ having a single peak

at wp and steady state response of unity,

f T {J^ )

i

Here we are also interested in the instant of peak overshoot denoted by t p .

I^	 The following empirical relation has been found by examining a large number of

examples, `or tha case IT (jmp}I < 12 db, with accuracy of ^-2O%,

I

(tp ^ t 9 ) (wp -^ ma ) ,,^ Icp 	 CA3.3)
^'

with iGp a function of	 IT(jwY )^	 given in Fig. A3-7. 	 In Eq. (A3.3), mo is

the value at which ^T( ,^w}^ = 1, normally ^ = O in servo systems. The above
0

is valid for cases in which there is overshoot but no 'oscillation' (see bzlow).

Note that Eq. (A3.3) is used to find tp	since t . ^ is known from the previous.

Fig. A3-8 gives the peak response (1 ^- V) as a function of Ac^^T(jmp )^/mp 	where

Dm = w 2 - w l has been defined in Fig. A3-la. The accuracy of Fig. A3-8 is within

'	 tiS°^.

Oscillations in step response

A criterion for existence of 'oscillations' is difficult to define. For

example, we do not here regard {a) in Fig. A3-9 as oscillatory but do so for (b).

Roughly, there should be two discernible cycles with almost the same period. But

of course we are here concerned with oscillations like (b) in Fig. A3-9, and not



.^ A3-3

;i

j

^
_l

°^

3

"; i
^^

;^

,:

like (c). The latter is associated with the peak at wp2 in Fig. A3-10, the

farmer with the peak at w pl	 A great number of samples were taken with the

result shown in Fig. A3-11, where the 'peaking criterion'

^ ^wi
P.C. = w
	

IT (jwpl}^

P

^w i = smal]er of aw l , Awl , l]w i = w - w i	defined in Fig. A3-la.	 From Fig. A3-]1,
P

oscillations exist only if P.C. < .07.

Nonminimum-phase systems

Appendix 5 of Appendix 2 presents some results for one or mare right half-

plane zeros in the system transfer function T(s)	 Here we only present an

empirical relation for the peak negative undershoot which occurs in the initial

part of the unit (positive) step response, when the system has ^ single right

ha]f-plane zero at 1/a. The results are presented in Figs. A3-12a,b. Here

w-k refers to the -k db frequency for T(s) of the form T(s) = TM (s}( 1 -^^ as ) '

TM minimum--phase. The error oIMUS in the figures refers to the respective

error obtained if the following relations are used

(A3.5a,h)

MU5 is the maximum undershoot.
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