General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

NASH-NGh- $33-016 \cdot 1 / 9$


```
(NASA-CR-148548) SONIC BOOM RESEARCH N76-28962
Progress Report, 1 May - 31 Jul. 1976 (New
york univ.) 15 p HC $3.50 CSCL 20A

\section*{Procne ss report}

\section*{SONIC BOOM RESEARCH}

\section*{May 1, 1976 - July 31, 1976}
nasa grant humber Ngl-33-016-119


Victor Zakkay, Acting Chairman Department of Applied Science

Itu Ting Professor of Mathematics

\section*{SONIC BOOA RESEAFCII}

During this period we conpleted our numerical program for the sonic bom analysis including the asymetrice cffect due to lift near the vertical planc of sumatry. Several numerical examples were computed. The results were presented at the third neroacoustic Conference in July (Two copies of NIAA Preprints No. 76-587 are attached).

The program and a numerical example were delivered to the contractor. A description for the usage of the program is presented in NYU Report Ant \(76-11\) entitled 'Numerical Program for Sonic Boom Analysis-Nonlinear With Asymetric Correction Due to Lift, by Fanny Kung. (Two copies are attached).
 - monlitiar mith astamteic chrretion due to loftt

\author{
F. KUNG* \\ DEPARTMENT OF APPLIED SCIENCE \\ WEW YORK UNIVCASITY \\ HEN YORK, NEL YORK 10003 IIYU/MA76-11 \\ ************ \(\% * * * *\)
}

ABSTRACT

A computer program for CDC 6600 is developed for the romlinear sonic boom analysis including the asymetric effect of lift near the vertical plane of symmetry. The progran is written in FORTRAN IV language. This program carries out the numerical integration of the nonlinear governing equations fron the input data at a finite distance from the airplane configuration at a flight altitude to yield the pressure signitude at ground. The required input data and the format for the output are described. A complete program listing and a sample calculation are given in the Appendix. (1)

\footnotetext{
* This rescarch is suppored by MSA Erant ko. NL-33016-119
** Research Scientist, Department of Applied Scionce
(1) Appendix will be forwarded upon request.
}
incal speed of somed in \(\mathrm{ft} / \mathrm{sce}\).
a speed of srund at: flight altitude
\(\mathrm{C}^{*}, \mathrm{C}^{-\quad} \quad\) outgolng and inconing characteristics in the plane \(\psi=0\).
\(\bar{f} \quad\) shock shape, \(\bar{x}=\vec{f}(\bar{r}, w)\)
\(\mathrm{g} \quad 32.2 \ldots \mathrm{ft} / \mathrm{secs}^{2}\)
\(h\) altitude in ft.
L. reference length (say the body length) in ft .

1 local Mach number
Mo flis Mach number
\(\Delta p=p\) on \(p_{\omega}\) pressurc increment from ambent value in lbs./ft?
\(\vec{r} \quad\) radical uistance/L.
R gas constant
\(S\) entropy
\(\tilde{s}_{\mathrm{sh}} \quad \mathrm{S}_{\mathrm{sh}} / R=\) entropy induced by slock wave \(/ R\), at \(\psi=0\)
\(\widetilde{S}_{s h}\)
\(\left(S_{s h} / R\right)_{\psi \psi}\) at \(\psi=0\)
\(u, v, w\)
\(U_{\infty} \quad\) flight velocity \(=M_{0} a_{0}\) in ft. \(/ \mathrm{sec}\).
ü
v
\(\psi_{\psi \psi} J\) at \(\psi=0\)
\(v_{\psi \psi} / U\) at \(\psi=0\)
\(\hat{\omega} \quad\),
\(w_{\psi} / U \quad\) at \({ }_{\psi}=0\)
\(T\) temperature in \({ }^{\circ}\) Rankine
\(\bar{x} \quad\) axial coordinate (horizontal)/L
\(\bar{y} \quad\) vertical coordinate/L
\(Y \quad\) flight altitude in \(f t\).


List of Symbols (Cont: \({ }^{\text {d }}\) )
\(\alpha \quad\) the half cone angle of the equivalent body in degrec
\(\beta\) shock anglo with the flow direction ahead of the shock ratio of specific heat \(=1.4\)
flow inclination with xaxis
Mach angle
Prandtil Mcyer angle
meridian angle, \(\psi=0\) is the vertical plane of symactry below the airplane

Subscripts
\begin{tabular}{ll}
\(\infty\) & the undisturbed value along the sate streamine \\
\(\bar{x}, \bar{r}, \psi \quad\) partial derivatives
\end{tabular}

The basic equations and the justific as for the approximations in the asymatric effects for this numericel program were described in ref. 1,2 . The numerical anatysis deals with nine variables, \(M, 0, \bar{r}_{\infty}, \bar{S}_{s h}, \tilde{u}, \tilde{v}, \tilde{w}, \ddot{y}\) and \(\tilde{S}_{s i f}\) as functions of \(\tilde{x}, \vec{r}\) in the verticat plane of symitry \(\psi=0\). , e first four variables are the variables in the quasimsymetrical anme is (ref. 1) and the remaning five variables, which are the circuaferential deriva. tives, \(u_{\psi \psi} / U_{\infty}, v_{\psi \psi} / U_{\infty} U^{-1} \psi_{\psi},\left(y_{\omega}\right)_{\psi \psi} / t\) and \(\left(S_{s h}\right)_{\psi \psi} / R\) at \(\psi=0\), reprosenting the asymuctric variables (ref. 2). The nine governing equations for these two sets of variables are coupled weakly through one variable \(\hat{w}\).

The iterative procedure for the numerical integration of those nine equations begins with the assignment of the value \(\hat{w}\). The four equations for the four variables \(M, \theta, \vec{r}_{\infty}, \vec{S}_{\text {sh }}\) are determined in the same manner as in the axi-symmetric calculations (ref. 1). The location of the now grid point \(\bar{x}, \bar{r}\) and the values \(M\), 0 are given by the characteristic equations with a curved \(C^{+}\) line segment. The values for \(\vec{r}_{\infty}\) and \(\vec{S}_{\text {sh }}\) are obsained by intogrations a long the stream line. We will then proceed to compute the asymetric variables. \(\tilde{u}\) and \(\tilde{v}\) will be determined by the integration of the equations along \(c^{+}\)and \(c^{-}\) \(\hat{w}=\tilde{y}_{\infty}\) and \(\tilde{S}_{\text {sil }}\) are obtained by the incegration of the equations along the streap line. With this new \(\hat{w}\) we continue to the next cycle of iteration until convergence.

Similar iteration scheme is employed for the shock point as described in ref. 2.

Since the asymetric computations can be considered as the determmation ce the value of \(\hat{w}\) in the quasi-asymmertic computatons. The general schema of the conputation from the initial data to the fine messure signature a man
will be the sane as that for the axi-symutric comptations:

The calculations proced alomg successions of \(C^{-}\)lines with index I. Along each c" line, "t will computs the new bow shock point and then the charac. teristic points with index \(J\) until the last \(c^{+}\)line with index \(J_{\text {max }}\) or the \(C^{+}\)line from a input data point. Then we proceed to the next \(c^{-1}\) line with I increased by 1 .

When two \(C^{\text {t }}\) lines aross over, an embedted shock is formed. The integer is is assigned in the order of shocks formed. For each enbedded shock, its location \(J\) along the \(C^{-}\)line is denoted as \(\bar{U}(K S)\). In cach sweep along a \(C^{\prime \prime}\) line, when \(J\) equals \(J(K S)\) we call the subroutine for embedded shock point (EMSHCK) instend of \(C^{+}-C^{-}\)(CPCM) subroutines.

Whenever a shock front or a \(C^{+}\)line cuts across the ground ( \(\vec{r}=Y / L\) ) the values on the ground level are obtained by linear interpolation. The pressure sighature includes the reflection coefficiont 1.8. When the grid point from the last \(\mathrm{C}^{+}\)line is below ground, the computation ends.

The progran contains four main subroutines: (i) \(\mathrm{c}^{+}\)and bow shock [CPSH], (ii) \(\mathrm{C}^{*}\) and \(\mathrm{C}^{-}\)[CPCM], (iii) formation of shock [FSHOCK] and (iv) embedded shock [EASHOCK]. It does not have a subroutine for the intersection of two shocks therefore the program will stop when two shocks do intersect.

The input definition will be discussed in Table I, the format for input deta appears in Tabie II, and the description of output will be in Table III.

We will discuss briefly how do we control the step sizes and prepare the input drita.

\section*{COITRUL OF STEF SIZES}

The step size is controlled by inequaliti, in the ridial distance beteron two adjacent bow shock points: \(\bar{r} \leqslant \bar{r}<C_{1}\) for \(\bar{r} \leqslant \vec{r}_{1}\)
and
\[
\begin{array}{ll}
\vec{r}^{2}-\ddot{r}<C_{1} \ddot{r} & \text { for } \bar{r}_{1}<\vec{r} \leq \vec{r}_{2} \\
\vec{r}^{\prime}-\vec{r}<C_{2} & \text { for } \quad \vec{r}_{2}<\ddot{r}^{\prime}
\end{array}
\]

In this program we have \(\vec{r}_{1}=1 \quad c_{1}=0.04 \bar{r}_{2}=100 c_{2}=4\). Therefore the uppor bound for the step sizes increases linearly from 0.0 at \(\ddot{r} \because{ }_{r}=1\) to 4 at: \(\vec{r}=\vec{r}_{2}=100\) and then remains equal to 4 all the way to the ground.

A change in step size and in the rate of increment can be made by changes in the values of \(\mathrm{C}_{1} \vec{r}_{2}\) and \(\mathrm{C}_{2}\) provide that it is continuous, i.c., \(c_{1} \bar{r}_{2}=C_{2}\).

When we want to use different control functions we should change the control equations in the main program and in the subroutine for \(C^{+\quad}\) and shock (Clsi).

PREPABAILOH OF: INUUT DAIA

The input data along \(\bar{F}=\bar{r}_{0}\) witl be obtatered from experimontal cata of from the full three dimensional antlysis near the airplane configuratim. At each point we input \(\bar{x}, M, 0, \vec{r}_{\omega}, \vec{S}_{s h}, \tilde{u}, \tilde{v}, \hat{b}_{i}, \ddot{y}_{\infty}\) and \(\tilde{S}_{s h}\). for the: bow shock we input in addition the shock angle f. It should be observed that not ait the input data are independent of cuch other. For exmple: at bow shock, \(\bar{r}_{\infty}=\bar{r}\) while \(\bar{S}_{\text {shl }} \beta\) and \(i f\) are retated to 0 and \(\bar{r}\) atd \(\tilde{S}_{\text {sh }}\) is related to \(\tilde{y}_{\infty}\). When the input data are rearl from the data cards, we get
\[
I U C A L=0
\]

If we intend to compute or modify some of the input data by some equations we set
\[
I U C A L=1
\]
and make the modifications from Statement no. 107 to Statement No. 3505.

In our sample calculation, the input data will first be prepared from an axi-symmetric computation of an equivalent symnetric body to \(\bar{r}=\bar{r}_{0}\). Therefore we have \(\tilde{u}=\tilde{v}=\hat{v}=\tilde{S}_{s h}=0\). Since \(\bar{y}=Y / L-\hat{r} \cos \psi\) we have \(\tilde{y}_{\omega}=\vec{r}_{c}\), If we set IUCAL \(=0\), the pressure signature will be that of a symetric body With asymnetric effect due to the two dimensional atmosphere layer only and the difference from the pure axi-symetric calculation is very small.

1
We set IUCAL \(=1\), as in the sampla calculation and then proceed to compute the asymmetric terns \(\tilde{u}, \tilde{v}, \hat{v}, \tilde{S}_{\text {sh }}\) and \(\tilde{y}_{\text {os }}\) from the linearized theory of an assigned lift di tribution (Ref. 2). Since the leading edge of wing is so located that the characteristic line hits \(\vec{r}=\vec{r}_{0}\) at \(\bar{x}=6.85\) in the plane \(\psi=0\) iying behind the bow shock, the bow shock is still syamatric with \(\tilde{S}_{\text {sh }}=0\) and \(\ddot{y}_{\omega}=\vec{p}_{o r}\), only the input data of \(\tilde{u}, \vec{v}\) and \(\hat{w}\) for \(\vec{x}>6.85\) are chruged
by the fommas for the special lift variation in fig. 8 of ref. 2 . Fer a different approximation thenry or a different lift varintion theso equations shourd be levised. (Statcment Ho. 170msor).

Finally, we want to point out that we heve included the data beyond the hody in order to yiald the tail shock at grouns. In the sumple calculation we use five body lengths. An estimate of the length on the safe side can be obtained fion the length required in the real atmospheric progran baset an Uhitman's iftcory.

\section*{RETEMSNCES}
1. Ferrl, A.; Siclart, M. and Ting, L..: Sonic Bocm Analysis for High Altitude flight at High Bach Numer, MIAA Paper 73-1034. Progress in Astronnutics and Aeromautics Vol. 38 pp. 301-320, AIM, Hew York, 1975
2. Ferri, A ; Ting, L. and LO, R. Monlinear Sonic Room Analysis micluding the Asymatric Effects. AIAA PAper No. 76 - Aeroroustic Conference Stanford, Calif., July 20.28, 1976.

TAGLEL 1

\section*{INPUT DEFINATOLS}


KS .......
BETT \(=n=\)
BET … -
\(x \times\)
\(\bar{x}\)
\(R R \quad \bar{r}\), vertical coordinate \(/ L\).
THETHE … , flow inclination with xaxis.
XMXM … M, local kach number

SRSR … \(\vec{S}_{\text {Sh }}\) entropy due to shock wave \((s) / R\)
\(\begin{array}{lll}U U \cdots & \tilde{u}_{2} & u_{\psi \psi \psi} / U_{m} \text { at } \psi=0 \\ V E — & \tilde{v} & v_{\psi \psi} / U_{\omega} \text { at } \psi=0 \\ W M \cdots & \hat{w} & w_{\psi} / U_{\infty} \text { at } \psi=0 \\ y y \cdots & \tilde{y}_{\infty} & Y_{m \phi \psi} / L \text { at } \psi=0\end{array}\)
SS \(\quad \tilde{S}_{S h}, \quad\left(S_{S h}\right)_{\psi \psi} / R\) at \(\psi=0\)
BIGXTEH
EPSTE日 -E

SBIR \(-S_{I}\)
axial coordinate (horizontal) /L.

RINRIN … \(\bar{r}_{\infty}\) value of \(\vec{r}\) for a stream line far upstrean

SBIRLK —— FK used in the special example for creation of
number of embedded shook: B , of the cubedded sloock
\(\beta\), of Dow shock asymmetric data with IUCAL \(=1\).

\section*{TABLEII .}

INPUT DATA FORHAT

\section*{Card 1}

Card 2

Card 3

Card 4
(4I5)
IUCAL, ISTOP
Card 5
(2F 10.5)


Card 6
(10X, 2E 20.8)
\begin{tabular}{|c|c|}
\hline VV(1) & ZMMM \({ }^{\text {(1) }}\) \\
\hline VV(2) & \(2 \mathrm{mmm}(2)\) \\
\hline ! & ! \\
\hline VV(IUMBE) & \\
\hline
\end{tabular}
(5X, 15, E20.10)
MAXBOY, DELTA (not being used, put a blank card)
Card 8
(I5, E15.8)
KS,
BETT
Card 9

Cord 10

The output for this program is divided into two parts. The first port contalus a tabulation of the input parameters to the program together with three input tables, \(4 H\) vs. TT; VV V.s. ZMMM; and the input table of \(\bar{x}, 0 \mathrm{M}\), \(\bar{r}_{\infty} \bar{s}_{s h}\), with the given radius (CRB). The second part first contains with table of \(J, \tilde{u}, \tilde{v}, \hat{w}, \tilde{Y}_{\omega s}, \tilde{S}_{s h}\) which will be the values of the input data if IUCAL \(=0\). In case IUCAL \(\neq 0\), the values will be recalculated (see remarks in the preparation of input data) and tie recalculated values of \(\ddot{u}\), \(\hat{v}, \hat{w}, \ddot{y}_{\infty}, \hat{S}_{s h}\) will be shown in the table.

Along each \(C^{-}\)characteristic line \((1=1,2, \ldots)\) the data of bow shock, first point of \(C^{+} c\) "- after the bow shock, the point of the formation of shock, and the embedded shock whenever it is present will be tabulated. In case the same I of bow shock appears twice, that means the control in the step size is activated in the bow shock calculations (see remarks in regard to the step size control). The output format is as follows:

Bow shock \(\quad 1=\)
\[
\begin{array}{llllll}
\bar{x} ; \bar{r}^{\prime} & 0^{\prime} & M^{-} & \bar{r}_{\infty} & \bar{s}_{s h}^{-} & \beta^{\prime} \\
\operatorname{MAAX} & \tilde{u} & \tilde{v} & \hat{w} & \tilde{\zeta}_{\infty} & \tilde{s}_{s h}
\end{array}
\]

Coom \(\quad \underset{1}{J}=\)
\[
\bar{x}^{\wedge} \bar{r}^{+} \theta^{+} \mu^{\circ} \bar{r}_{\infty}^{\prime} \quad \bar{s}_{s h}
\]
\[
\tilde{u} \tilde{v} \hat{w} \quad \tilde{y}_{\infty} \tilde{s}
\]

Shock FORMED at \(\mathrm{J}=\)
\[
\begin{array}{cccccc}
\bar{x}_{a}^{-} & \bar{r}_{a}^{\prime} & \theta_{a}^{-} & \mu_{a}^{-} & \bar{r}_{\infty a}^{\prime} & \bar{s}_{s h_{a}} \\
& B(k s) \\
& \tilde{u}_{a} & \tilde{v}_{a} & \hat{w}_{a} & \tilde{y}_{\text {ma }} & v_{s h_{a}}
\end{array}
\]

FSHORK FORMED \(\operatorname{CASE}\left\{_{B}^{\wedge} \quad J \quad=\quad\right.\) KS =
\[
\begin{aligned}
& \bar{x}_{a}^{\prime} \quad \vec{r}_{a}^{\prime} \quad 0_{a}^{\prime} \quad M_{a}^{\prime} \quad \vec{r}_{a}^{\prime} \quad \vec{s}_{s h_{a}} \quad \beta^{\prime} \\
& \begin{array}{lllll}
\tilde{u}_{a} & \tilde{v}_{a} & \tilde{w}_{a} & \tilde{y}_{\text {wa }} & \tilde{S}_{s h a}
\end{array} \\
& 0_{b}^{\sim} \quad M_{b}^{\prime} \quad r_{a b}^{o} \quad S_{b} \quad\left\{_{X M D E F C}^{X H C A L}\right. \\
& \begin{array}{lllll}
\tilde{u}_{b} & \tilde{v}_{b} & \tilde{w}_{b} & \tilde{y}_{w b} & \tilde{S}_{s h_{b}}
\end{array}
\end{aligned}
\]

REAARK: Subscripts \(a, b\) for points ahead and behind the shock. XMDEFC and XMCAL are the difference of \(\mu_{b}\) 's computed from the shock equations and from the characteristic equations.

\section*{EMSHOCK}
\[

\]

When the calculation reaches to the ground, all the data will be interpolated. The output format is

EMSHOCK
REACH ground
épem
cpSH
\[
\begin{aligned}
& \begin{array}{lllllll}
1 & \bar{x} & 0 & M & F_{\infty} & \bar{s}_{s h} \quad \Delta p
\end{array} \\
& \begin{array}{lllllll}
\tilde{u} & \tilde{v} & \tilde{u} & \tilde{y}_{\omega \omega} & \tilde{s}_{s h} & \text { ('qq) }
\end{array}
\end{aligned}
\]

REMARK: \(\Delta p=p-p_{\omega}\) in lbs./sq.ft.
\(\Delta q=p_{b}-p_{\infty}\) for embedded shock only```

