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INTRODUCTION

Three-dimensional flutter solutions in subsonic and supersonic flows are
an essential part of automated structural design. The methods that have been
developed for subsonic flow are based on the numerical solution of the singular
integral equation relating the pressure loading (or any other related quantity)
to the downwash induced by the motion of the surface. The commonly used method
is to treat the pressure as a series of preselected loading functions with un-
known coefficients which are to be determined by satisfying the boundary
conditions. In supersonic flows, the most frequently used method is to solve
for the velocity potential directly in terms of distributed sources over the
surface, although the integral equation approach has also been used. There is a
need for a new method for both subsonic and supersonic speeds which is more
oriented ftowards inclusion in a computer system (such as is used in automated

design).

The objectives of this work include the development of a method based on
the aerodynamic element concept which is to be used over the subsonic and super-
sonic Mach number range and the determination of aerodynamic forces on oscil-

fating surfaces which are compatible with the structural breakdown.

There are three principal features in the current developmental work.
Firstly, the concept of aerodynamic elements is adapted to unsteady aero-
dynamics. Secondiy, the downwash-velocity potential method is used (also
referred to as the integrated potential method) which results in simpler
expressions than those resulting from the normal ly used downwash-pressure
formulation. Last!y, the method developed is applicable to both subsonic and

supersonic speeds.

In This report, a numerical method is formulated for calculating the
aerodynamic matrix and generalized airforce matrix for both planar and non-
planar wings of arbitrary planforms in steady and unsteady subsonic and super-
sonic flows.

The method uses the concept of "aerodynamic elements" and the downwash-

velocity potential relationship (in preference to the downwash-pressure



relationship more commonly used by others). The downwash-velocity potential
method, using this aerodynamic element concept, was applied fo lifting surfaces
at steady angles of aftack in a Note (Ref. 1) by Haviland. In this case, the
method was applied to a very simple steady-state rectangular wing model in sub-
sonic flow. It was shown that a wake sirip could be constructed using the same
elements and that it could be terminated a few chord lengths from the wing.

The arrangement of surface elements was selected in an attempt fo simulate the
nested horse-shoe vortices used by Hedman (Ref. 2). Exact agreement with the
latter method was demonstrated. The work reported here is an extension of this
method applied to the oscillating case in subsonic and supersonic flows. The
application of the present method to an oscillating rectangular wing in sub-

sonic flows has already been reported in reference 3.

The idea of using arbitrary surface elements in the steady case has been
advanced by Woodward (ref. 4) and by Rubbert and Saaris (ref. 5). |In these
cases, researchers intended to represent curved surfaces, fillets, and arbitrary
planforms in an optimum manner. The use of closed vortex loops surrounding
surfaces of uniform potential by Rubbert and Saaris is of special interest here
since it is the steady-state limit of The velocity potential method described
in this report. Unfortunately, the concept of vortex lines has not proved to
be useful for unsteady compressible flows. However, by specifying velocity
potential distributions over the surface elements (without wake effects) and
adding velocity potential distributions in the wake separately as functions of
the trailing edge values, the computations are simplified considerably over
those resulting from methods using the downwash-pressure methods. Both of
these approaches employ doublet distributions fo formulate nonhomogeneous
integral equations. Examples of the downwash-pressure method (also calied the
integrated pressure method) include the kernel function method of Watkins,
et al. (ref. 6), and the doublet-lattice method of Albano and Rodden (ref. 7).
Other researchers, such as Jones (ref. 8), Stark (ref. 9), Houbolt (ref. 10),
and Morino and Kuo (ref. 1l) in the subsonic case, Rodemich and Andrew (ref. 12)
in the transonic case, and Donato and Huhn (ref. 13) in the supersonic case
have used the velocity potential. Most formulations of the supersonic problem
have used the direct source method, as opposed to the doublet formulation

necessary in the subsonic case. However, the downwash-pressure methods have



been employed by Watkins et al. (ref. 14) using the kernel function approach,
and an extension of the doubtet—-lattice method has been suggested by Harder
and Rodden (ref. 15). A comprehensive review of the state of art was pro-
vided by Landahl and Stark (ref. 16).

The method of solution proposed in this work is to select NRP downwash
collocation points at which the complex normal flow velocity components are
known in terms of amplitudes and phase of oscillatory motlion, and then to
select an equal number of velocity potential distributions (each multiplied
by an unknown factor which is fo be found). In The simplest application,
there is a collocation point for each surface element and one for each strip
of wake. There is one point corresponding to each velocity potential at the

center of a surface element or on the trailing edge.

In the proposed application, one would first specify the surface element
geomeiry, the collocation points, and the unknowns in the velocity potential.
\One would then select the aerodynamic elements which one feels to be most
-appropriate and supply the geometric data specified for these. [If the computer
1sysTem provides sufficient flexibilify, one would be able to have subroutines

|
in the library which could process the input data so as to solve a given

type of problem repeatedly. The basic computer program would compute an

|
5aerodynamic influence matrix using subsonic or supersonic aerodynamics (which-
fever is applicable) and would give complex downwash at the collocation points
, in terms of the unknowns in the velocity potential. In most cases, the in-

/ verse of this matrix would be required which has the nature of an "aerodynamic
stiffness matrix" and gives the solution for the unknown velocity potential

in terms of the downwashes. The next step depends largely on the particular
application. In structural applications, the forces at the structural nodes
would be calculated, using subroutines which would supplement the aerodynamic
element subroutines. In flutter applications, similar subroutines would be
used to calculate the generalized forces. The main objective of this work is
to develop an efficient method for calculating the aerodynamic influence matrix.
Since most available results from various other methods are given in the form
of overall 1ift and moment derivatives (which can be readily calculated as

generalized forces), fthese were calculated in the present work.



In order to evaluate the effectiveness of the method discussed here, various
comparisons were made against results obtained by using other methods found in
the literature. At present, the subsonic rectangular elements have been
successfully applied not only to steady and to harmonically osci]la+lng rectan-
gular wings but also to swept wings with or without control surfaees and to
T-tail configurations. The demonstration of supersonic rectangular elements has
been restricted to planar, steady-state rectangular wings of various aspect

ratios. This has also been compared with results of previous research.

The mathematical formulation of the problem begins with the well-known
three-dimensional |inearized pofential flow equation in a moving coordinate
system. This equation is deriveable by a perturbation of the Eulerian momentum
equations, the continuity equation, and the equation of state. An alternative
way of deriving this equation is by using the Galilean transormation of the

acoustical equation. The following assumptions are made:

. Inviscid flow.
Adiabatic fiow.

3. lrrotational flow (except for a certain prescribed region
downstream of a body).
No body forces.

Equation of state for perfect gas.
The boundary conditions on a thin aerodynamic surface can be stated as
follows:
1. Normal flow velocities at the coliocation points (often referred

to as the "downwash") are determined by the requirement that flow

conforms to upper and lower surfaces.

2. Normal flow velocities are equal on upper and lower surfaces,

(i.e., no relative velocities or "breathing" of the ftwo surfaces).

3. Disturbances are felt after their cause. This eliminates parts of
the solution and is sometimes derived from the condition that there

is no radiation from infinity (Sommerfeld radiation condition).



The wake region sfreaming behind an aerodynamic surface is a sheet of
vortices. I+ is treated as an additional boundary which can accomodate any
normal flow and, therefore, any potential discontinuity but cannot sustain a
pressure differential. Beyond this measure, no further steps are taken to
assure ‘that the Kutta condition is met (i.e., that the pressure goes to zero

at the trailing edge).

The basic equation defines an acoustical perturbation of a uniform flow
and is appropriate for subsonic, transonic and supersonic flows. However, no
further consideration has been given 1o the transonic case because it is not
appropriate for flows over bodies of finite thickness. Rather, for such cases,
it would be necessary to perturb the actual, nonuniform flow over such a body.
Experience to date with the comparison of theoretical and experimental flutter
results indicates that wings of practical thickness can be treated successfully

by uniform flow perturbations except in the fransonic speed range.

Further discussion on the derivation of the equation, assumptions, and

limitations involved can be found in references 6, 10, 11, and 4.

In the following three sections, the theoretical development is described,
a method of solution is discussed applicable to rectangular elements, and
computer results are presented. These cover subsonic rectangu.:- elements
applied to rectangular and swept wings and to T-tail configurations. In

addition, supersonic elements are applied to steady state rectangular wings.

The next section presents a proposed extended method for subsonic and
supersonic elemeﬁfs of polygonal plan form. Formally, the new method is based
on the development of contour integrals around the elements, as is also used
for the steady-state supersonic results. Previously, however, surface integrals
had been used for the subsonic case. Similar contour integrals have been used
by Jones (ref. 17). 1t can be readily demonstrated that the new method would

give identically the same results as the former for all in-plane calculations.

Although the main effort reported here has been concentrated on obtaining
results for comparison with vortex lattice or doublet methods, the need for
irregular aerodynamic elements may dictate the development of impiroved velocity
potential distributions in which finite vortices would be eliminated. One

method for doing this was described by Mercer et al. (ref. 18). However,




there is some expectation that the polynomial expressions described in the
section "Proposed Extended Method of Analysis" may prove adequate for +this
purpose.

The final sections contain conclusions and recommendations. They are
followed by three Appendices, covering the subsonic computer program, standard
integrals, and a description of the modifications made 1o the computer program

to enable it to handle the steady-state supersonic calculations.
THEORET ICAL DEVELOPMENT

Statement of Problem

The problem of the present investigation is to determine the aerodynamic
forces on Thin, flat plates undergoing harmonic oscillations in subsonic and

supersonic flows.

Coordinate System

The basic coordinate system is x', y, z, or g with a uniform flow velocity
V in the positive x-direction as shown in Figure |. Each surface has its own
coordinate system x, s, n, with x parallel to x', s as the other coordinate
in the plane of the surface and n as the local normal. The latter makes an

angle g with the z-axis, measured in a righft-handed manner about x.

The x', y and z system locates the "receiving point" or "collocation
point," sometimes given as the point k. The sending point¢ is designated by
the dummy coordinates £', n, ¢ and by the loca! coordinates &, o, v, and is
sometimes given as the point £. The angle between the local normal v and the
z-axis is y. Surrounding each point 2 is an element of surface area sometimes

referred to as a "sending region.”

Governing Differential Equation

For the propagation of smali disturbances that must be satisfied by
the velocity potentials, the linearized potential flow equation in the co-

ordinate system shown in Figure | may be written in the form:
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Fig. 1. Coordinate Systems
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where V and c are local unperturbed flow velocity and sound velocity,

respectively.

int
For a harmonically oscillating system with ¢ equivalent to ¢Grle ,

() () 2 (5)
c? c? ax! c? ax'2

2 2 2
_ 8% , 3% | 3%
x'2  ay?  3z2

Eq. (1) becomes

(2)

Throughout the remainder of the report, the oscillatory case will be
considered only, and the symbols for the field quantities will refer to their
complex amplitudes, so that, for example, the actual velocity potential is

iwt
¢e

W.

. This also applies to pressure p, to density p, and to normal velocity

Integral Equation

Since it is very unlikely that an exact solution to Eq. (2) can be found,
one approach to solving the problem is the transformation of the governing
differential equation and its associated boundary condition to an integral
equation for which approximate solutions can be found. For compressible flow,
the integral equation as derived on the basis of the velocity potential and
given for example in reference |3 may be written as

$6) = [ gy LML) 4 (3)
S v

This integral equation relates the velocity potential differential across a
thin aerodynamic surface or a wake, A$, which is taken to be positive if it

decreases in the positive v-direction, to the velocity potential in the field.

In €q. (3), G4ryp), represents Green's function which appears here in

derivative or "doublet" form. The normal flow velocity w§r), at the



collocation point ¢r where the local normal is n can be obtained by different-

iating Eq. (3) with respect to n which results in

o9 6r)

wer) = = [ A¢4pIK, Gr40)dS
an 10 s ¢
where
K Grgo) = Lim 3%GGrp)
¢ anav

n,v>0

The surface of integration, S, appearing in Egq. (3) includes the

aerodynamic surfaces and their wakes. Elsewhere in the field, A4 is zero.

(4)

(5)

Expression for Green's function.- The Green's function, G¢r4p), appearing

in Eqs. (3) and (5) can be written in a general form:

Ghrpo) = U(TR)GRGrgp) + U(TA)GAGFJD)

where

-t
-e R/41TR

GR(Jr 5)

-fwT
-e A/41rR

GAGr;p)

R2 = (x' - £")2 + B2(y - )2 + g2(z - )2

1p = {R - M(x' - £')}/B%¢c

Time of transit of "retarded wave'

{-R - M(x' - £")/B%¢c

A
1}

Time of +ransit of "advanced wave"

e=’| - M2

(6)



| if TR is real and positive
U(tR) =
0 otherwise
_ I if T, is real and positive
U(TA) =
0 otherwise

In the subsonic case, (M < 1), Ta is negative and G consists of only one
term, Gplr). For supersonic flow, (M > 1), both 1, and T, are positive
when R is real; therefore, disturbances are restricted to the region of the
aft Mach cone from the disturbing point. (This is equivalent ot the statement
made later that only disturbances in the forward Mach cone from a given
receiving point are felt.) A|§o note that TR and T, are used in the same sense
as in reference 14. |In supersonic flow, the retarded wave arrives ahead of the

advanced wave.

Expression for K

¢

The term K¢ defihed by Eg. (5) might be termed the "velocity potential

kernel function." It can be simplified when the thin surface coordinate system
is used because K¢ varies with the normal coordinates n and v only through the

"acoustical distance" R. Thus noting that

9§=(;5£)(-82 E)
dv 82 3v R aR
with a similar relationship existing for the derivative with respect to n,

K, can be written as

¢
2
an 82 9v R @R

2
+<_l__ E)(-'_B) _BzRa_(_e_a_G)
B2 3v 82 an 3R R 3R
= T14r g0 Ky rgo) + To6r0)Ks Grgpo) (7

After substitution of the Green's function from Eq. (6) the following

expressions resuit:



Ty € s0) =3—(-——R)= costy - g) (8)
3n 82 3v
2
Kyorsp) = - & 22 (9)
| @R } 9R nepdver)
To6rap) = - — 22 -———)_--—-—-
2304 ( g2 au)( g2 an/ = . R2 (10)
9Ky _
KoGrgp) = -g2R R o

In the expression for T, the term nGp) denotes the n-coordinate of the
sending pointsp, and vér) denotes the v-coordinate of the recelving pointsr.
in actuality, both Ty and T, are equivalent to terms given by Vivian and
Andrew (ref. 19). However, the expressions for K; and K; are different from
the corresponding expressions given by these authors, and, in particular, they

are only singular when ¢r and¢p coincide.

The Green's function, G, introduced in Eq. (5), is often referred to as the
"free-field Green's function" or as the "fundamental solution." The term

Green's function is retained here for brevity and convenience.

The kernel function, K¢, intfroduced in Eq. (5), relates the unknown
velocity potential differential across an aerodynamic surface or its wake to
the known normal flow velocity or "downwash." Because of this relationship,
the method is cailed the "Downwash-Velocity Potential Method." Other authors,
such as Allen and Sadler (ref. 20), have used the term "iIntegrated Potential
Method."

The alternative methods of Watkins et al (ref. 6) and of Albano and
Rodden (ref. 7) lead to kernels which have more complex forms and less tract-
able singutarities. The assumption has been made that the present form results
in numerical simplicity; this is, however, a difficult point to substantiate.
Certainly, the aerodynamic element concept does not preclude the use of such
kernels which would relate the unknown pressure differential to the known
normal flow velocity as is noted in the following section. However, the use
of global defining functions for the unknown pressures, as introduced by
Watkins, et al (ref. 6), would lead fto unnecessary complication and would
negate the inherent simplicity of the aerodynamic element concept.



METHOD OF SOLUTION

Introduction

The integral equation shown in Eq. (3) is solved using an approximate
method. The method assumes that the velocity potential distributions over
selected "elements" on the aerodynamié surfaces are expressed in terms of
unknown parameters. The velocity potential distribution of each element is
determined by satisfying normal velocity boundary conditions af a set of col-
location points located over the surface using the relationship given in
Eq. (4). The computer program sefs up simultaneous equations relating the
velocity potentials to the known normal flow velocities at collocation points.
Typically, there is one such point to each element. Solution of the simul-
taneous equations and interprefation of the velocity potential parameters
results in the required aerodynamic forces. Since there is a one-to-one
correspondence between velocity potential and pressure distribution, any system
of calculation based on pressure distribution can be performed in terms of

velocity potentials.

Infegration by Discrete Elements

In the downwash-integral equation as expressed in Eq. (4), the velocity
potential distribution A¢@p) is the only unknown function within +he
equation. The integration of Eq. (4) is required for each collocation point
k=1, ..., NRP and can be performed by integrating separately over the
appropriate sending regions relating to the unknown velocity potential
amp| itude coefficients A¢£ g=1, «. .., NRP)‘ Thus, a set of simultaneous

equations is formed which can be written as

N

W RP Ad
k Z 2
T = A — (12)
v g2 K2 v
where the matrix A is the "aerodynamic influence matrix." The principle

k, 2

concern of this report is the determination of the matrix Ak I Once this
2

matrix is known, it is a fairly straightforward procedure to obtain the
perturbation velocity potential differentials A¢'s for all the collocation

points and to calculate the generalized airforce matrix.



Aerodynamic Elements

In calculating the aerodynamic influence matrix, the concept of "aerodynamic
elements" is employed. This means that the user is given a catalog of sub-
programs capable of handling elements of different shape and different Mach
number range. For an experimental program such as reported 1n this work, this
concept also provides a convenlent way of evaluating various mathematical
formulations of the same problem. The concept is very similar to that used In
finite element method in structural analysis In which there is a basic program
containing sufficient subprograms to handle a wide variety of structural
elements which may be required.

Basic form.- Expressions for the terms of the aerodynamic influence
coefficient Ak,z given in Eq. (12) can be obtained by breaking the surfaces up
into elements (the unknown velocity potential differential A¢£ being associated
with the element &). To facilitate the handling of wake effects and ‘o pro-
vide for cases where the velocity potential differential is not constant over
an element, it is convenient to define a corresponding point £* in each wake
element ¥, Thus, the velocity potential differential can be written in the

form:
Ap(L¥,E,0) = Ady f(2%,E,0)exp{-iwlE(2%) - £(2)]/V} (13)

In the above expression, f is a shape factor. However, even if this is
uniform, the exponential term assures that the potential at the point &%
conforms to the expression relating the velocity potentlial in the wake to the
velocity potential near trailing edge. In order to standardize the terminology
for on-surface and wake elements, the notations f and ¥ are used throughout,
but it Is to be understood that they become identical for on-surface elements.
The system of points and regions is illustrated in Fig. 2. When Eq. (I3) is
substituted into Eq. (4), and the result is redefined as in Eq. (12), it is
found that the aerodynamic influence matrix can be expressed in the form:

A ¢ = Z(e®)k (k,2,2%) (14)

K, ¢

which reduces for on-surface elements to

A = Kk, (k,2,2) (15)

Koo - g
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where

kyCkots %) = [f K¢(r;gp)f(z'*,;,d) exp{- \‘,—“’ [ECL*) - £(2)T}dEdS  (16)
2%

fn Eq. (16), the area integration is restricted to the element 2%.

Subsonic &erodynamic elements.- Having performed the indicated
differentiations in Egs. (9) and (11), the expressions for KiGrsp) and Kolrsp)
for subsonic flows are as follows:

KiGrgp) = U(T'R) 82 + 1w GR(sr,Jp) €
R2 Rc

384 . 3iwp? _ w?
KaGrgo) = U(ty) <—+ — - =
R R2 Re c2 GR(‘F,“)) (18)
where U(TR) and GRQn;p) are shown in Eq. (6). Using the expression in Eq. (7)
and substituting the resulting expression for K¢@n4p) info Eq. (16), k, (k,%,%%)

becomes A
k¢(k,£,z*) = {cos (y = g@)ky(K,2%) + Kko(k,2,8%)
Xexp%—wi (19)
where
kato2%) = - g [ ] 352 b lo ] ;
¥ R3(k) ¢ R=(k)

X exp 3" —iul[R(k) - R(k,2%) + ME = M (£%)] ;

B2c
x f(28¥*,E,0) d§ do (20)
ka(k,2,2%) = KL [ f g 567, Slug? _o? f
e x RS(k) cRY(k) o2 R3(k)
X exp ;— 1 [R(K) - R(k,2%) + Mg - Mg(l*)]i
B2%c
x n(E,0)f(2%,E,0) dE do 2

|5 o



M2. *® M ¥
—E-{E(z ) - E(K)} + —;—R(k,z ) (22)

B B
In the above expressions, R(k,2) is R derived for the points k and %,

L(k,2,2%) = E(2%) - E(2) +

while R(k) is R derived for the points k andgp. Also, n(g,o) is the n-coordinate
of the point £,0 on the sending element.

Mid point constant potential (MPCP) rectangular elements: The simplest

derivation of the integrais in Eq. (19) can be obtained by insuring that the
point &* is essentially the mid-point of the element £* and then evaluating the
integrand at that point. Assuming a uniform potential distribution with
f(*,8,0) equal to unity,

* 2 .
kpk,o%) = - AGDY Y B, de 1 (23)
4 R3(k,2%) c R2(k,2%)
_ =A®)u(k)In(2¥)
ko (k,2%) = e
4 H 2 2
x{ 38 + _DiwB _ w } (24)
RS(k,2%) cR*(k,2%¥) c2R3(k,8%)

where A(%¥*) is the area of the element 2*. For the remaining subsonic aero-

dynamic elements, the same out-of-plane term as shown in Eq. (24) will be used.

Zero order constant potentiat (ZOCP) rectangular elements: In reference

I, the same expressions were used as for the MPCP rectangular elements in the
first evaluation of the in-plane steady state case. |t was found that they did
not provide correct results. Therefore, kl(k,l*) was rederived for a rectangular
element. Since orly the steady-state term, independent of the radial frequency
w, was involved, it is referred to as the zero order element. The resulting

expression for kl(k,z*) can be written as:

H ¥*
k(8% = kgg(k,a¥) - —2 AT (25)

At cRZ(k, %)

where



—n2 I
keo(k,2%) = ZBZ [t dE do
53 4m rectangle 2% R3(K)
% *
- [Fss(k,g,o)] EAFTEE*; GOUT:’;*; (26)
FOR %N

FSS(k,E,o) can be obtained using the standard integral formula {isted in

Appendix B.
R(K) = X2(K) + B252(Kk) + 2v2(K) (28)
X(k) = £ - E(K) (29)
S(K) = o - o(k) (30)

The terms EAFT(R*) etc. define the coordinates of the edges of the
rectangle making up the region 2% and are shown in Fig. 3. When the receiving
point k is coplanar with the sending region 2£*, v(k) is zero, and one must be

careful fo program the limiting equations accordingly.

First order constant potential (FOCP) rectangular elements: In order to

improve the accuracy of the results, the complete integrand of Eq. (20) was

expanded fo the first order term in w, and then integrated. The result being:

ki(k,2%) = kg (k,2%) {I +[l*’— RCk,2%) + ME(8%) - Mg(k)]} ¢ oM kyg (ks 2%)

B2c c
. . (31)
whete kSS is shown in Eqg. (26) and
kyg (K-2%) = '_ﬂf / {X(K)/R3(K)} dE do
rectangle 2%

(¥ *
= I:FUS(k,g,q)] gAFT(i*)} GOUT(R*l (32)

ORI § oy (a9
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, o : . :
Fug(k,&,0) = B log {R(k) + BS(Kk)} (33)

Numerical difficulties will occur whenever a collocation point k is near
a corner of the rectangular element £¥. This situation should thus be avoided.

First order zero pressure (FOZP) rectangular elements: [f the potential

Is varied in such a way that the distributed pressure remains zero, as shown
in Fig. 4, the stepped potential of Fig. 3 is avoided, and the derivation
of the forces acting on the elements is simplified. The modification consists

of using the shape factor
f(2%,£,0) = exp {~lw[g - £(2¥)]/V} (34)
in Eq. (20) and the resulting expression for k;(k.%*) is written as:

ky(k,2%) = kss(k,z*) I+ i%—-[MR(k,z*) + E(8%) - 5(k)]} + iwkUS(k,z*)/V
BV (35)
This is slightly different in form from that given in Eq. (31).

Supersonic aerodynamic elements.- As a first step in the development of

supersonic rectangular elements, the in-plane case is considered. Much of the
subsonic formulation is directiy applicable to the supersonic formulations.
Completing the differential indicated in Eq. (9), the expression for Kj¢rsp)

in supersonic flow becomes

2
KiGrao) = - f B6L)
iw
L re2a §uce o UGt )| ~op. (RAMIX'-£)}
N B ROV _C R, 8%
4w LR 3R R c R? (36)
jw -
- . - = {-R-M(x'-£)}
1 823 {u(r, fw  U(T,) 2
| — A P R ]e B<c
an LR R R ¢ R?

Now Eq. (16) can be written in the form
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kg (ks 8,2%) = Lk plk, 2%) + K)atks2%)} exp{- VE-Lck,z;z*)} (37)

where

_ | B2 3 UttR) fw UCTg)
kip(Ks2¥) = 2— If S -—

element 2£¥{R 38R R e R2
(38)
X exp [- l%— "{R(K) + ME - Mg(z*)}] £(2%,£,0) dE do
B<C
oL 62 3 Utr,) iw Ult,)
klA(k"Q‘) 7 =L (" Ay
T elément g*{R R R c R2?
(39)
x exp |- 22 {-R(K) + Mg - Mg(2¥*) | f(2*,£,0) dE do
B2c
M2
L(k,2,2%) = E(2%) - E(L) + -;{g<z*) - E(K)} (40)
8
For a uniform potential distribution with f(L¥,E,0) equal Yo unity,
K,o(k,2%) = J koo (k, 201 + ~2— {R(k,2%) + ME(2¥*) - ME(K)}]
IR SS 62c
H H ¥*
190 o200 b exp _lﬂﬂiﬁL&—l} an
B2c
* =" * 12_ - * ¥y o
kyatks 2%) lkss(k,ﬂ y [t +.32c{ R(k,2%) + ME(L¥*) - ME(K)}]
3 . . - *
¢ 1Mk, 2% {exp) JUREK2T) (42)
us a2c

Thus, the expression for k¢(k,2*) becomes B

21



kg Chot¥) = 2kg (a0 |1+ 28 foen - ]
.B2¢
wR(k,2%) w - 2Rk, 2%)
X COS { L + 350 R(k,2¥) sin {-——Ejzr-'}
21uM « WR(K, 2%)
=T kyg kst °°53"‘§52?" (43)
where
UlTt.,Ta)
-1 g2 3 R*TA
¥y =
ks (ks 2% = 77 e{e£9n+ ,x ROV BR(KY ) "RG0 ( 98 o (48
- 2 ulr,,t,)
kyg (ks £ = —% f X(k) g7 3 ‘ REA N 4g do (45)

clement o* R(k) 3R(k) l R(K)

In-plane steady supersonic (IPSS) rectangular elements: In the sfeédy—sfafe

case, Eq. (43) reduces to

*) = *
k¢(k,2 ) =2 kSS (k,2%) (46)

where kSS (k,2%*) is the expression given in Eq. (44). |f one makes the follow-
ing substitutions:

U= U(TR,TA)
X = X(k) = & - &(k)
S = S(k) =0 - o(k)
(47)
N = N(k) = v = v(k)
a2 = M2 - |
RZ = R2(k) = X2 - a252 - a2N?

then, in the planar case, where v(k) + 0,

—

22



2 2
2 (_R) s ‘(R.) (48)

but
2 2 2
(—aZ-a +2_4 2 )(9) =0 (49)
aX2 952 aN2/\R
Therefore,
- : 2 2
kgg(kot%) = == [ f (3——- a2 L)(H)dg do
ejement 2% \ 352 ax2/ \ R
(50)
| [ (ao aP)
= = =~ - =) dX ds
41Telemen‘r L% X 35
where -

=3 (U = 3 (U
k) ool

Using Green's theorem (ref. 21)

*) = —
kgg (K, 2%) = =

[P dX + Q dS]

51)
]
[a2 g—x{%; ds + g—s z-RJ-} dx]

The cutoff function in the above equation may be written in the form:

5
0o'Q 09,

U=ucalsl -x (52)
with

U
35 (53)

u_1
oX a
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Derivatives of the step function give rise to the impulse function, otherwise
called the Dirac delta function. For example,

SY-U(X) = 6(x) =0 (x # 0)
(54)
UG = 800 = = (x = 0)
A useful integral property of this delta function is
[ f(x)8(x) dx = £(0) (55)

The next step is to make use of these properties and to perform the line
integration indicated in Eq. (51) for complete and partial rectangular elements
as sketched in Fig. 5.a. The flgure shows an example of a rectangular wing
broken up in 3 x 3 rectangular elements. Mach lines from one receiving point
are shown to illustrate the complete and partial elements inside the aft Mach
lines. Thus, the system of points and regions for steady supersonic calcula-
tlons is slightly different from the subsonic case as shown in Fig. 2. The
col location points |lie on the forward edge of each eiement. There is no need
to consider the wake element in this case. The particular arrangement of
col location points used in these calculations is shown in Fig. 5.a. It is
different from that used in the subsonic case but was selected for convenience,

and does not, by any means, represent the final method recommended.
The integration along the periphery of a complete element (see Fig. 5.b)

gives

R_
XS

R_
X5

+ §§| ; (56)
c D

For partia! elements such as No. 2 in Fig. 5.a which are cut by Mach Iines,

the path of integration is taken as indicated in Fig. 5.c. In this case,

\ R
* = — —_
kgg (ks 2%) = 7o i XS .

2
%y =@ ¢Bf1 U X
keg(ks2T) = 77 fc ( aR 35 ds

(57)
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For the elements No. 3 and 4 in Fig. 5.a, the |Ine Integrations similar to
those used for elements No. | and No. 2 are no longer applicable because of

the singularity problem when X(k) = O.

However, the nature of this singularity is well known because {1 results
from the two-dimensional flow solution reia+ing pressure at a point to local
angle of attack at that point. According to this, the two-dimensional com-
ponent of normal velocity under a |ift line is characterized by a Dirac delta

function.

Therefore, the solution for the cross-section of a two-dimensional
supersonic wing consists of a sfepped section. However, the section is known
to be characterized by a straight line at a uniform angle of attack. Either
one must abandon the uniform potential element, or one must use some suitable
smoothing process in which a smooth curve ts found which is a best fit to the

stepped profile. The latter approach is used here.

The aerodynamic matrix is obtained in two parts. The first part gives the
three-dimensional relationship along the lines described already. The second
gives the two-dimensional component and in order to obtain this part correctly,
the arrangement of collocation points shown in Figure 5 was selected. I+ will
be noted that each collocation point is on the forward edge of a corresponding
element (also a |ift line because this is where the velocity potential jumps).
Thus, the two-dimensional contribution to the aerodynamic matrix can be ob-
tained by inverting the two-dimensional expression for |ift due to angle of
attack. This leads to the following procedure for the contributions of elements

No. 3 and 4 to the downwash at collocation point No. 4.

The |ift coefficient per unit span of a two-dimensional lifting flat

plate is

0 = T = (58)
i pV2Ax M2 - |

Lift is related to velocity potential as follows:

L A
L ovaax ) Jyax %)
2 P 2
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Downwash is related to velocity potential by

W, A4 (- 2 -
VOV O\ ) T e (602

K 61)

Thus, the contribution to downwash at collocation point No. 4 (= k) from
element No. 4, as in Fig. 5.d, is =K, while the contribution from element No. 3
consists of the sum of the values K (because collocation No. 4 is on the near

edge of element No. 3) and ;§ . This scheme represents a process of

E.F
averaging out the downwash over the element resulting from the physical

consideration that the downwash is continuously distributed over the surface

rather than concentrated along a line.

1+ will be noted that the two-dimensiona! part of the aerodynamic matrix

has -K on the diagonal, with +K at certain other elements.

The listing of the additional subroutines used in steady supersonic
calculations and modifications made in subroutine DMATR are included in

Appendix C.

Calculation of Aerodynamic Forces

Basic approach.- Let the downwash L be the sum of the contfributions from

all of the complex amplitudes ai of generalized coordinate. Then the normal

flow velocity at each collocation point, W, can be expressed in the complex

form:
W N w. N .
k - LKoo - Tw q
vl v [ZI g vy M 9 (62)
where h; K and a; | are the amplitudes of displacement and local angle of
» t4

attack, respectively, at each collocation point k for unit amp!itude of the

27



~generalized coordinate ai’ and N is the number of modes.

Also, let
N -
A¢2 = IZI A¢i’z 9; (63)
then
N .
Ad. RP ,-1 w,
i,% _ A i,k
v Z ks — (64)
k=1
Thus, given the inverse of the aerodynamic influence matrix A and the modal

K, %
components of downwash wi K? the modal components of the velocity potential can

be calculated.

Generalized forces.- The generalized forces 6i can be expressed in the

form:
. N .
Q. = Y ff d(i,x,8)8P(j,x,s)q; dx ds (65)

%5 &

where d{i,x,s) and AP(j,x,s) are the modal deflection and net pressure at

point (x,s), respectively. Eq. (65) can be put in the form:

- N

. = —pV2 C. .q. (66)

Q; o izl i, 9

where p is the density of air.
The flutter airforce matrix, Ci j’ is given as
14
c; ;= -I [f ati,x,s) AE1i§ﬁ§ldx ds (67)
s

oV

Note that A¢ and AP are given in the same sense and are thus positive when the
algebraic value is highest on the negative (-n) side of the airfoil. A positive
AP then results in a force in the plus n direction. 11t can be shown that the
pressure differential and velocity potential differential are related by the

following equation:
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8PUL%,8) | b ata,xs) e o LB 68)
pvz ax V b4 »

\
where f{(2,x,s) is the shape factor factor mentioned in Eq. (13). Eg. (67) now
can be expressed in terms of velocity potentials by the above relationship.

On integration of Eq. (68),

. X
Adf(x,s) _ - iwx AP(A,s) fwA
L_V_ = —exp ( v )f S50 exp (—V— )_dk (69)

—o0 pVZ

The velocity potential in the wake is related to the velocity potential near the

trailing edge by the requirement that the pressure differential sustained by the

wake is zero. Thus, if A¢TE is the velocity potential differential at Xg hear
the frailing edge, then
- Jdw oo
Apf(x,s) = A¢TE exp { v (x XTE)} (70)

This can be derived readily from Eq. (69).

Flutter airforce matrix for constant potential case.- In this case, the

velocity potential varies as shown in Fig. 3, leading to 1ift lines at the

front and rear of the rectangular element. The forward Iift is negative (i.e.,

Ad -
in the negative n-direction). When the velocity potentials ¢Q’& are solved

from Eq. (64), the rectangular element moves as a rigid body so that

d(i,x,s) = hi,l + {x - x(l)}ai’z (70
The contribution to the airforce matrix is obtained from Eqs. (67) and (68)
as follows:
ac, . =) [T h, o+ {x - x(2)}a,
Had element 2[ 2 H,2
(72)

. Ad .
3f(L,x,s) ., iw } j,
[————7;;——— + v f(l,x,s)] dg ds v
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Under the assumption that the velocity potential is constant over the rectangle

and that the point & is at its center, the contribution +o C, i for the surface
elements becomes ’

. Ad .
AC, . = -A(R) a. - 1o h ¢J:9«
tsJ 1,2 v i,? Vv (73)

The velocity potential on each element in the wake is given by Eq. (70).

The strength of the lifting line at the leading edge of the wake is thus equal
to the velocity potential in the first element as follows:

- L iw *
A¢{xFOR(2*),s} = AP(L*) exp 3 v EXFOR(Z )

| (74)
- x(2¥%) + 5 Ax(2%)] z
and the contribution to Ci J is
= * * - »*
Aci,j As(2*) {hi,z* + [xFOR(z ) x(2%¥)] “i,z}
(75)
By g% fo l
X

- - * -
v exp v [xFOR(R*) x(2%) + 7 Ax(£%)]

where xFOR(E*) is The x-coordinate of the leading edge of the wake strip, and

Ax(2¥*) is the chord of the first rectangular element in the wake, as shown
in Fig. 3. [If the wake is terminated at a finite distance (as in Fig. 3),

there is a lift line in the wake which has negligible effect and is therefore
ignored.

Flutter airforce matrix for zero pressure case.- The proper interpretation

of the pressures in the wake Is open to question when constant potential
elements are used.

No such questions arise, however, when the zero pressure

element is used. Here the velocity potential is assumed to vary across a

rectangular element in such a way that the pressure is zero except under |ift

lines at forward and rearward edges. Thus, in a region influenced by the

velocity potential A¢(2), the shape factor is expressed as
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f(2,x,8) = exp {- \',—“’ [x - x(!.)]} (76)

The contribution to the flutter airforce matrix in this case is obtained by
applying Eq. (72) and using the shape factor f(%,x',s) varying as in Eq. (76).

ACi,j As(2) ;[h + {x ) = x(2)} ai,lj

2 FOR

X

iw
exp [— 7 Xeor®) - x(l)}]

Ch

77)

L) - x(D} a,

|,2]

+ {x

i,2 AFT

X

Ad.
exp [~ —{x (2 - x(z)}]} \'/'“

The lift at the leading edge of the wake strip is similar to the lift at
the leading edge of a rectangular region in Eq. (77), so that

AC. . = As(2*) [h + {x

i,J i, ¥

FOR(E®) = X8} o ]

(78)
Ad; ox

X exp [— \',—“’ {Xpor(2*) - x(l*)}] ‘;,

COMPUTED RESULTS AND DISCUSSIONS

Computer Program

A computer program was written in FORTRAN |V language to perform the
calculations outlined in the section on METHOD OF SOLUTION. The description
of the program, input instructions, and sample problems along with the {ist-

ing of the program are included in Appendix A.

To date, four versions of aerodynamic elements all using rectangular

elements have been formulated. They are summarized as follows:
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Subroutines Type of Elements

ACON5, ACON6 and Zero Order Constant Potential (ZOCP)
CCON5, CCON6 Rectangular Elements

ACON7, ACON8 and First Order Constant Potential (FOCP)
CCON5, CCON7? Rectangular Elements

ACONIIl, ACONIZ and First Order Zero Pressure (FOZP)
CCONI1, CCONI2 Rectanguliar Elements

ACON3, ACON4 and In-Plane Steady Supersonic (1PSS)
CCONIt, CCONIZ2 Rectangular Elements

Scope of Computations

A total of eight planforms were considered and are shown in Figures 6 to
13 with the details of their geometry. Table | gives the details of the cases
for which calculations were made. Subsonic calculations including cases |

through 3 are presented in reference 3.

Discretization of Surfaces

The breaking up or division of a surface into rectangular elements was
accomplished by defining a chordwise strip of wing, locating its centertine,
dividing the length into a specified number of chordwise elements, and laying
these out by shifting one quarter of the chord of an element back from the
teading edge. Collocation points were then located at their centers. These
were extended into the wake with approximately equal chordwise dimensions and
ferminated about five to ten wing chord lengths back. This method of locating
elements is iilustrated in Fig. 14 for a rectangular wing and is compared with
a similar wing divided up into winglefts with a 1ift line at the quarter chord
of each and a collocation point at the three-quarter chord as employed by

Hedman (ref. 2).

Only the half wing is shown divided up in Fig. 14, because the symmetry
logic of the computer program takes care of the effects of the other half.
Other planforms used in the present calculations also have one or two planes
of symmetry and these symmetries were used whenever applicable in an attempt

to save computational effort.
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Fig. 6 Rectangular Wing A.R.

X ——|-e— =

= 2 (Planform No. 1)

A

I—l

0

||-——— 4.0

Fig. 7 Rectangular Wing A.R.

8 (Planform No. 2)
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~—— 3.75

Fig. 8 Tapered Wing A.R. = 5.0 (Planform No. 3)

1
x

Fig. 9 Swept Wing A.R. = 5.0 (Planform No. 4)



Control sSurface chord = .712 X Local semichord
Taper Ratio = .2378

Fig.

10.

1.0 1 1.0

Swept Wing with Partial-Span Flaps
A.R. = 2 (Planform No. 5)
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Fig. 11 Rectangular T-tail (Planform No. 6)

Fig. 12 Stark's T-tail (Planform No. 7)
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Mach No. Aspect Ratio

1.2 3.015
1.4 2.041
1.6 l1.613"
1.8 1.336

Mach No.

4t 44 L}

Fig. 13 Rectangular Wings for Supersonic Calculations

(Planform No.8)

Mach No. = 1.3
Aspect Ratio = 1.2039

= 1.3

Aspect Ratio = 2.0

Mach No.
Aspect Ratio

1.3
= 4.0
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Tabl

e |

Calculafions Performed

Case|] Planform Mach Reduced
No. Number ! Number |Frequency Derivatives |Remarks
i . Rectangular Wing 0.9 0.5 CLa’CMa Evaluation of
AR, =2 the effective
wake length
2 l. Rectangular Wing 0 0, .2, .4, CLa’CMa Comparison with
A.R. = 2 .6, .8, .9 Kernel function
0.8, 0.9(0, .15, .25, method and
.35, .5 Doublet Lattice
method
3 |2. Rectangular Wing 0 0 Co» Cm Strip width
A.R. =8 variation, and
Comparison with
Kernel function
method
4 |3. Tapered Wing, Cy» Cm Comparison with
A.R. =5, tabulation by
Taper Ratio = .5 .5 0 CPM’CL Thomas and
Sweep angle Wang (ref. 26)
= 3.817 deg
4. g?;?pirgd Wing 12 0 CPM’CBM
Sweep angle EMCP;PMCP
= 15.0 deg ee Besulfs
and Discus-
sion, Case 4
5 |5. Swept Wing with 0, .7, 0.5 Ci X Comparison with
Partial span 0.8, .9 (Séé the results re-
flap A.R. = 2, Appendix A) ported by Stark
L.E. Sweep angle (ref. 24)
= 60 deg
6 6. Rectangular 0, .25 0.2 CLa’CMa Comparison with
T-tail Clevenson &
Leadbetter
(ref. 28) and
Kalman (ref. 23)
et. al.
7. Stark's T-tail 0.8 0.3, .45 Qm n Comparison with

Stark's results
(ref. 24)

38




Table | Continued

Calculation Performed

Case Planform Mach Reduced
No. Number Number Frequency | Derivatives |Remarks
7 (8. Rectangular Wings |!.2, 1.4, 0 c, .,C Comparison with
with various 1.6, 1.8 (g“- ',",'; N
Aspect Ratios ee hesults
and Discus~-.
sion, Case 7)
8. Rectangular Wings }1.3 0 CLa’CMa Comparsion with

with Various
Aspect Ratios

Nelson, et al.
(ref. 31)
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lRELATIVE AIR FLOW

- WINGLET
/~LIFT_ BOUNDARIES
RECTANGULAR LINES
ELEMENTS
—7 f
® ° . . F'-.-_:-'-.-'F‘:/"
R . ° . "."T'-.-" _...q._.:._ ' _A‘ll_s
) L L 0\ t‘__- _:_.-_.. 4 ...._—
. . . . \ _ / Y . 'Y .
COLLOCATION POINTS
[ ™
INFINITE
TRAILING
VORTICES

“\—FINITE CUTOFF

{(a) PRESENT METHOD (b) HEDMAN'S METHOD

Fig. 14. Comparison of Four~by-Four Arrays,
Present Method and Hedman's (ref..2)



Results and Discussions

Case |: convergence of the results with the wake length.~- Case |

consisted of a check into the convergence of the results wheh the number of

- chord lengths included in the wake is varied. This is expressed as the ratio
F which is equal to the length of the wake divided by the chord. Results
shown in Table |l were obtained for a four-by-four arrangement on a rectan-
gular wing (planform No. |) using first order zero pressure rectangular
elements. The reduced frequency was 0.5, and fhe Mach number was 0.9.

i (Reduced frequency is defined as wb/V, where b is the half chord of the wing).

TABLE [1

Convergence of Calculated Results for Aspect Ratio
Two Rectangular Wings, Oscillating about Mid-Chord at Reduced Frequency of
0.5 and Mach Number 0.9, as Ratio Wake Length/Chord (=F) is Changed

Ratio Lift Derivative Moment Derivative
F . Real Imaginary Real Imaginary

I 3.5454  0.5387 .6146 -1.8636

5 3.5622  0.5444 .5986 -1.8542

10 3.5622  0.5440 .5992 ~1.8542

20 3.5623  0.5435 .5996 -1.8542

In the remaining calculations, F was taken equal to ten (10) which is

well within one percent error according to Table I!l.

Case 2: rectangular wing pitching about.midchord.- Case 2 was concerned

with calculations on a rectangular wing (planform No. 1) to compare with

two different references. First, calculations were made to compare with the
results of the kernel function method reported by Runyan and Woolston (ref. 22)
for the zero Mach number case and for reduced frequencies ranging up to 0.9.
Second, calculations were made to egmpare with the yasukts of the doublet lattice
method reporfed by Kalman, Rodden, and Giesing (ref. 23) for Mach numbers of

0.8 and 0.9, and for reduced frequencies up to 0.5. These results have been
reported in reference 3.
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Using the key to the symbols given in Fig. 15, the results of these
comparisons can be seen in Figs. |5 to 18 for comparison with the kernel
function method and in Figs. 19 to 22 for comparison with the doublet lattice
method. [n the first comparison, generally fair agreement is noted except
that the real part of the moment derivative does not agree well at zero fre-
quency. Such a disagreement was noted earlier (ref. |) when it was seen that
the kernel function method and the downwash-velocity potential method gave
different centers of pressure on a high aspect ratio wing. Otherwise, agreement
with the first order zero pressure elements is generally high. The constant
potential elements have the next highest agreement and the zero order calcu-
lations appear to have least agreement. At zero frequency, these three methods
are of course identical. Improved agreement is also noted with the eight-by-
eight arrangement as compared to the four-by-four arrangement. This indicates
convergence as the number of collocation points (NRP) is increased. One result
by Stark (ref. 24) is shown for comparison and is seen to be in very close
agreement with the results of Runyan and Woolston (ref. 22). in the second
comparison, agreement at zero frequency is now good. This should be expected
considering that the doublet lattice method gives the Hedman results at zero
frequency. Agreement at a reduced frequency of 0.5 and a Mach number of 0.9 is
good when first order zero pressure elements are used in an eight-by-eight array.
Results given by lLaschka (ref. 25) and one result by Stark (ref. 24) are also
shown.

Definitions of the derivatives shown in the figures are as follows:
Reduced Frequency = Kr =5V
Lift Derivative = 3= + gs
Moment Derivative = M %-L qSc

d3a 2

where L is the |ift in the sense of the negative n-axis, a is the angle of
rotation about the mid chord, q is the dynamic pressure, S is the wing area,
M is the moment about the mid chord iline, and ¢ is the chord. Both a and M

are positive in the same sense.
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SOLID LINE—-RUNYAN & WOOLSTON

4t @ -ZERO ORDER, 4 x4 ARRAY
A-FIRST ORDER, CONSTANT POTENTIAL, 4 x4 ARRAY
O-FIRST ORDER, ZERO PRESSIJRE, 4 x4 ARRAY
sl m, A, 0-8x8 ARRAYS
) o\,
8 & ' o S:tit. (0]
2 >
LIFT
DERIVATIVE
(REAL)
1!
REDUCED FREQUENCY
00 0.l 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 15. Lift Derivative (Real Part) for Aspect Ratio Two Rectangular Wing Rotating
about Mid-Chord at Zero Mach Nunber
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4F  SOLID LINE-RUNYAN & WOOLSTON
SYMBOLS - SEE FIGURE I5 a8

3 N

LIFT

DERIVATIVE

(IMAGINARY)
2 5
| b

o
REDUCE) FREQUENCY
o 2 2 2 r N a 2 2 2
0 o.l 0.2 03 - 04 0.5 0.6 0.7 0.8 0.9
Fig. 16.

about M;d~Chord at Zero Mach Number

Lift Derivative (Imaginary Part) for Aspect Ratio Two Rectangular Wing Rotating
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1.8r SOLID LINE~-RUNYAN & WOOLSTON
X-STARK .
OTHER SYMBOLS-SEE FIGURE I5 O\E
1.6} A=
¢-o ) o) |
o
DERIVATIVE
(REAL)
1.2}
REDUCED FREQUENCY
l.o 'Y ry I 2 2 2 2 [ 2
o) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fig. 17. Moment Derivative (Real Part)} for Aspect Ratio Two Rectangular Wing Rotating

about Mid-Chord at Zero Mach Number
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-0.8} SOLID LINE-RUNYAN & WOOLSTON
X-STARK
OTHER SYMBOLS~SEE FIGURE I5
~06F
MOMENT
DERIVATIVE
(IMAGINARY)
~0.4}
-0.2
REDUCED FREQUENCY
o . 2 ry e 2 A S A 2 N 2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 18 Moment Derivative (Imaginary Part) for Aspect Ratio Two Rectangular Wing
Rotating about Mid-Chord at Zero Mach Number.,
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2.0‘;4 (0] 2 © o
1.8 g E\s, B’ §

1.6  SOLID LINE-KALMAN, RODDEN, AND GIESING
| DOTTED LINE-LASCHKA.
4}  X-STARK

| OTHER SYMBOLS-SEE FIGURE (5

1.2}

“OF voMENT
0.6} DERIVATIVE

' (ReAL)
0.6 3
0.4}
0.2}
REDUCED FREQUENCY
% 0.l 0.2 0.3 0.4 0.5

Fig. 19 Moment Derivative (Real Part) for Aspect Ratio Two Rectangular
. Wing Rotating about Mid-Chord at Mach Number 0.8.
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-.4

-t.2r

-1.0

~0.8

~0.6¢

~0.4

b SOL.ID LINE-KALMAN, RODDEN, AND GIESING
DOTTED LINE-LASCHKA

L X=STARK

OTHER SYMBOLS-SEE FIGUREIS

P
MOMENT

| DERIVATIVE
(IMAGINARY)

REDUCED FREQUENCY
o 0.l 0.2 03 0.4 0.5

Fiy. 20 Moment Derivative (Imaginary Part) for Aspect Ratio
Two Rectangular Wing Rotating about Mid-Chord at

Mach Number 0.8.
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0.8F X-STARK

.; OTHER SYMBOLS—SEE FIGURE IS \ A0
f 0.6} \ .-‘ﬁ
i \\9
0.4r A
0.2F
j o REDUCED FREGQUENCY
-0 0.l 0.2 0.3 0.4 0.5
Fig. 21.: Moment Derivative (Real Part) for Aspect Ratio Two Rectangular
Wing Rotating about Mid-Chord at ‘Mach Number 0,9.
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~2.4}
22T MomENT
_o. o DERIVATIVE
1 (IMAGINARY PART)
-1.8}
~i.6r
-4} 04
-1.2} /,/
~.0f / SOLID LINE-KALMAN, RODDEN,
p/ AND GIESING
~0.8¢ 4 DOTTED LINE-LASCHKA
| 7 X- S TARK
-06} 4 OTHER SYMBOLS - SEE FIGURE |5
-0.4}
~0.2F
o REDUCED FREQUENCY
o 0.l 0.2 0.3 0.4 0.5
Fig. 22. Moment Derivative (Imaginary Part) for Aspect Ratio Two

Rectangular Wing Rotating about Mid~Chord at Mach Number 0.9.



Case 3: lift distribution of a recfangular’wing;“subsonic steady.-
Sectlonal lift slope, asrodynamic center total 1ift, and moment deriva

tives for an aspect ratio eight rectanagular wing (planform No. 2) were

evaluated in this case. In order fo examine the effect of the strip width
variations, one set of runs was made with an evenly spaced sirip width as
shown in Fig. 23. Another set of runs was made with the arrangement having
reduced strip width towards the tip as shown in Fig. 24. The lift distri-
butions and aerodynamic centers are plotted in Fig. 25 and Fig. 26, respec-
tively, with results of the kernel function method for comparison (obtafned
by private communication from E. C. Yates, NASA Langley Research Center),

The sectional |ift slope distribution in Fig. 25 shows that the present
method gives lower values than the kernel function values, although the trend
reverses towards the tip. [mproved agreement was also noficed towards the
tip when the arrangement of reduced strip width towards the tip, sketched in
Fig. 24, was used. The aerodynamic centers calculated by the kernel function
method using polynomial pressure modes are in closer agreement with the
present results than those obtained by the kernel function method using the
Glauert-Birnbaum series. This is shown in Fig. 25 with numerical data in
Table 111.

Case 4: “apered and swept wings; subsonic steady.- In this case,

calculations were performed at the request of Langan and Wang of NSRDC {ref. 26)
for the co&parison of various numerical |ifting surface theories with experi-
mental results. Calculations were made for a tapered wing of aspect ratio five
(planform No. 3) and for a swept wing of the same aspect ratio with no taper
{planform No. 4). The arrangements of the aerodynamic elements used for these

calculations are shown In Figs. 27 and 2Z8.

Figures 29 and 30, and Tables 1V and V were supplied by Langanand
Wang -(ref. 26). Tables IV and V present the wing loading characteristics for the
tapered viing and the swept wing as computed by |5 programs and as obtained
from the experimental resulfs. The programs are listed in Tables 1V and
V and are identifled by the names of those who contributed the data. Mach
number for whicg +he calculations were made, |ift coefficient CL’ pitching
moment center of pressure (PMCP) measured from the wing apex divided by the
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Fig. 23 Planform for Aspect Ratio 8 Rectangular Wing with 8x 8 Arrays of Points,
Evenly Spaced.
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Fig. 24 Planform for Aspect Ratio 8 Rectangular Wing with 8x 8 Arrays of
Elements and Strip Width Reduced Towards Tip.
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—s—e—e— Kernel Function Method - 40 Stations (4% 4), Glauert Birnbaum Series

—Q—  First Order, Zero Pressure, 8 x8 Arrav, Evenly Spaced Strips

el First Order, Zero Pressure, 8 x 8 Arrav, Reduced Strip Width Towards the Tip
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Kernel Function Method ~ (6 x6), Lang.iey Kernel Function Program Using
Polynomial Pressure Modes
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Fig. 25 Comparison of Section Lift Slope For An Aspect Ratio 8 Rectangular Wing
Mach No. = 0, k = 0
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Kernel Function Method - 40 Stations (4 x4), Glauert-Birbaum Series

First Order, Zero Pressure, 8 x 8 Array, Evenly Spaced Strips

L
—_—
=D  First Order, Zero Pressure, 8 x8 Array, Reduced Strip Width Towards the Tip
.y .

Kernel Function Method, (6 x 6) Langley Kernel Function Program Using Polynomial
Pressure Modes
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Fig. 26 Comparison of ARerodynamic Center For An Aspect Ratio 8 Rectangular Wing
Mach No. = 0, k = 0
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Table 111
Sectional Lift Slope and Aerodynamic Centers, Total Lift and
Moment for Aépect Ratio 8 Rectangular Wing with the variations
in gtation Spacing. Mach number = 0, K. =0, constant down~-

wash a = 1.0

Aerodynamic | Strip Y i )
Element Spacing =5 €y cm cm/cz . CL cM
First Order | Even 0625 [5.3187 }1.3194 |0.2481
Zero Press. | Spacing
(See 1.1875 15.2896 |1.3113 [0.2479
Fig. 23)
.3125 |]5.2253 ]1.2931 (0.2475
.4375 |5.1147 |1.2616 |0.2467
.5625 ]4.9359 |1.2102 | 0.2452
.6875 |4.6426 |1.1248 {0.2423
.].8125 }4.1314 | 0.9747 | 0.2359
.9375 {3.1128 [ 0.6843 | 0.2198 | 4.7226[1.1474
iiijusted .1250 |5.3132 11.3177 {0.2480
spacing | . .2 .
First Order glthd 1.3750 [5.1936 | 1.2844 |]0.2473
Zero Press. |reduce
strips .5625 |4.9559 | 1.2164 | 0.2454
towards | 6875 |4.6588 |1.1300 | 0.2426
tip
(see X
Fig. 24) .78125]14.2873 ] 1.0206 | 0.2381
.84375/3.8688 | 0.8976 | 0.2320
.20625} 3.2858 | 0,7308 | 0.2224
.96875/2.3371 {0.4809 | 0.2058 [4.6898}1.1393
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TABLE 1V - Tapered Wing at |l.4-Degree Angle of Attack

(b)
(c)
(d)
(e)

(f)

Program Mch | ¢ | e | eme | ooy | weMx o '::: Computer
Tulintus 0.15 | 0.817 | 0.240 | 0.425 | o.043 | a20(®) 25 | coc 6600
Dulmovits 0.831 | 0.240 | 0.431 10 x 15 96 | 18M 360775
Margason-Lamar 0.83t | 0.240 | 0.432 10 x 12 142 | coc 6700(f)
Glesing 0.15 | 0.829 | 0.237 0.048 [ 11 x17 120c | 18M 360765
Rubbert 0.00 | 0.798 | 0.238 | 0.420 | 0.0m | 10 x5 17 | coc es00
Lopez & Shen 0.00 | 0.814 | 0.238 0.042 8x1? 105C | 18M 360/65
Haviland 0.15 | 0.848 | 0.242 | 0.438 8x 8 291 | coc es00
Jordan 0.00 | o0.820 | 0.2 0.043 2x15 9 | unIvac 1108
Lamar 0.00 | 0.806 | 0.233 | 0.423 | o0.0m ax13 98 | 184 360/65
Widnatl 015 | 0.812 | 0.218 | 0.43 0x 2 63 | coc 700!
Bandler 0.00 | 0.807 | 0.238 0.042 ax 4 8 | coc 6700(f)
Rowe 0.15 | 0.815 | 0.239 | 0.428 ax 6 13 | coc sso0
Cunningham 0.15 | 0.839 | 0.235 | 0.424 4x 5 18 | 18M 3707158
Jacobs-Tsakonas 0.00 | 0.920 | 0.264 | 0.439 5(b) aoc | coc 6600
Lopez (Klichemann) | 0.15 | 0.852 | 0.242 0.047 | 16{c) 12¢ | 184 360/65
Exper iment () 0.15 | 0.83 0.28 0.44
Additional Computer Runs
Glesing 0.00 | 0.823 | o0.240 0.044 | 11 x17 121¢ | 18 360/75
Jordan 0.808 | 0.212 0.042 2x 7 5 | univac 1108

0.819 | 0.2 0.043 2x 15t | 1o

0.817 | 0.213 0.043 2x M 28

0.811 | o0.211 0.042 315 3
Jordan 0.00 | 0.798 | 0.213 0.041 4 x15 68 | UNIVAC 1108
Cunningham 0.15 | o0.849 | 0.233 | o0.425 3x 3 10 | 18M 3707185
Lopez 0.00 | 0.845 | 0.242 o.046 | 16¢c) 12¢ | 18M 360765
Widnall 0.15 | 0.826 | 0.217 | 0.426 0x 3 73 €oC 6700
Notes:

(a) Tulinius uses 420 horseshoe vortices with 6 chordwise and 6 spanwise functions relating

their strengths.
Chordal modes.

Spanwise modes. -
The kink at the wing centerline has been rounded off for these calculations.

Experimental results are examined in detail fn the section entitled, "Comparisons with
Experimental Results.” There is a difference between the wing tips in the experiment
and those in the calculations.

Times for COC 6700 are in terms of CDC 6400 time.

The system is solved by a least squares method with 99 pivotal points.

From Langan and Wan926
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TABLE V -~ Uncambered Swept Wing

Time

Program mch | ¢ | Pmep X | euce Cor NCM x NSM sec | Comuter
Tutintus 0.12 | 3.891 | 0.538 | 0.450 | 0.999 | «20(#) & | coc 600
Dulmovits 0.12 | 3.987 | 0.561 | 0.455 10 x 15 104 | 16M 360775
Margason-Lamar | 0.10 | 4.008 | 0.532 10 x 12 n | coc e700(9)
Glesing 0.12 | 3.973 | 0.540 1.0 | nxw 123¢ | 1o 360765
Rubbert (®) 0.00 | 3.868 | 0.535 | 0.447 | 0.966 | 10x1s 351(¢) | coc 6600
Lopez & Shen 0.00 | 3.996 | 0.53 1.000 | 8x17 110¢ | 18M 360765
Haviland 0.12 | 4.021 | 0.583 | 0.463 8x10 463 | coc 6400
Jordan 0.00 | 3.910 | 0.5% 0.999 2x15 13 | uNIvAC 108
Lamar 0.00 | 3.874 | 0.536 | 0.447 | 0.980 8x 1 651 | 18M 360/65
Widnall 0.12 | 4.080 | 0.502 | 0.443 0x 2 60 | coc s700(9)
Bandler 0.00 | 4.030 | o0.528 1.052 ax 4 10 | coc 6700(9)
Rowe 0.2 | 3.921 | 0.53¢ | 0.447 8x 9 95 | coc 6600
Cunningham 0.12 | 4.09 | 0.523 | 0.408 5x 5 19 | 184 370/158
Jacobs-Tsakonas 0.00 4,253 0.553 0.464 5(d) 80C .| COC 6600
Lopez 0.12 | 4.065 | 0.550 1.100 | 16(®

Experiment

Pressure 0.12 3.89 0.462
Force 0.12 3.85 0.466
Additional Computer Runs
Margason-Lamar 0.00 3.996 0.532 0.457 10 x 12 144 coc 6700‘9)
Giesing 0.00 | 3.956 | 0.540 1.0 | M x17 123c | 18M 360765
Jordan 0.00 | 3.894 | 0.532 0.993 2x 15 | 20 | untvac 1108
Widnall 0.12 | 4.073 | 0.499 | 0.44a 10x 3 73 | coc 6700
Cunningham 0.12 | 4.043 | 0.52¢ | 0.445 8x 5 1s | 18M 370155
Cunningham 0.2 | 4145 | 0.523 | 0.443 Ix 3 7| 184 370088
Lopez - 0.00 | 4.047 | 0.550 1.009 | 16®) 20 | coc 6600
Notes:

(a) (Not applicable)

(b) Rubbert's program is nonlinear.

wing at @ = 0.1 radians.
(¢c) Each of the Rubbert runs for the swept wing took 117 seconds.
(d) Chordal modes.
(e) Spanwise modes.
(f) Rounds off the kink at the centerline for this run.
{9) COC 6700 time {s in terms of time_on a COC 6400.

The above results were obtained by running the uncambered

*Ref.

. From Langan and Wang
27 gives a value of 0,555 for PMCP.

—~




root chord, and bending moment center of pressure (BMCP) measured from the
wing centerline divided by semlspan are presented for each program. In Table V,
The_liff derivatives are given In place of the |ift coefficients.

Fig. 29 presents the spanwise |ift distribution for the tapered wing
at 11.4 degrees angle of attack. Flg. 30 shows the spanwise distribution of
chordwise location of the center of pressure for the tapered wing at 11.4
degrees angle of aTTack.

Most of the results of the present method are in fair agreement with
the computer results obtained by others and with the experimental results. The
most noticeable disagreement is the spanwise |1ft distribution shown In -

Ein~ 20 uwhar,

a +ha val,
] IB. o mMIC O 1 1

va
1o va

the wing tip. A simi
reported in Case 3.

Case 5;: swept wing with control surface = subsonic unsteady.- Case 5
consisted of calculations on a swept wing with parftial-span flaps (planform
No. 5) shown in Fig. 10 which compare with the results reported by Stark (ref.
24). The osclillating modes for wing and control surface and the corresponding
aerodynamic coefficients are defined in Example 2 found in Appendix A.

The breakdown of the wing and the control surface is shown in Fig. 31
for the case of 40 collocation points. Fig. 32 shows the arrangement of the
swept wing with even strip width and Fig. 33 shows the arrangement with
reduced sti ip width towards the tip. The aerodynamic coefficients calculated
by using these arrangements and for different numbers of collocation points
are compared with those of Stark (ref. 24) and with the results obtalned by the
doublet lattice methods (obtained by private communication from J. Griffin,
Vought Aeronautics Co.) in Fig. 34 , and in Table Vi. It is difficult
to compare the relative computational efforts of the different methods used for
the results reported here due to the lack of Information availlabie.

In general, the results for the swept wing are not in as good agreement
with the referenced values as in the case of rectangular wing calculations.
The |ift coefficients are in good agreement except at high subsonic speed.

At Mach number 0.9, the imaginary value of |i1ft coefficient Is considerably

smal ler than the referenced value. The real parts of moment coefficients
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Fig. 31 Arrangement of Aerodynamic Elements for a
Swept Wing with Partial-Span Control Surface
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Fig.32 Arrangement with Evenly Spaced Strip Width for An
Aspect Ratio Two Swept Wing (Leading edge sweep
Angle 60°, Taper Ratio = .2376)
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Fig. 33 Arrangement with Reduced Strip Width Towards Tip
For An Aspect Rajio Two Swept Wing (Leading Edge
Sweep Angle = 60 , Taper Ratio = .2376)
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Oscillating in Pitch
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Table V1.

Lift and Moment Derivatives for Aspect Ratio

Two Swept Wing with Partial-Span Flaps
(Leading Edge Sweep Angle=60°, Taper Ratio=.2376)

Rotating about Root Midchord (Kr = .5)
[ [ Present Method Reference
Mach Ax Strip
No. an RP| Width | Real Imag. | Ref. No. Real Imag.
le 16 | Even 1.9277 12.7281 | Stark 24 1.7399 | 2.6312
*
o " 64 " 1.8742 | 2.6369 | D.L. (A) 1.8039 | 2.5424
&k
" 64 | Reduced | 1.9179 |2.6833 | D.L.(B) 1.8180 | 2.5493
Q22 16 | Even .2700 {1.019 | Stark 24 .2335 {1.18u44
%
" 64 " .2400 |{1.008 | D.L.(A) .2987 | 1.221
ek
" 64 | Reduced .234 (1.010 | D.L.(B) .3034 | 1.2202
Q12 14 | Even 1.9394 | 2.4229 | Stark 24 2.3309 | 2.9015
%
" 16 " 2.6948 |2.8539 | D.L.(A) 2.3620 12,7519
ek
" 40 " 2.5694 }2.2033 [ D.L.(B) 2.3869 | 2.7426
" 64 " 2.5962 }2.8341
" 64 | Reduced | 2.6566 |2.8936
Q13 14 Even . 38U46 .7713 | Stark 24 . 0984 .7658
" 40 " L1412 L7971
Q1u 14 | Even . 7677 .3133 | Stark 24 .8003 .0693
" 40 " _.83ub6 .0211
-7 Q22 14 | Even .2234 11.3227 | Stark 24 .3495 | 1.5228
*
" 16 " .uuor 11,254 | D.L.(A) .4326 [1.5172
ek
" 40 " .5655 |1.2922 | D.L.(B) Luu84 11.5313
" 64 " .3857 |1.277
" 64 | Reduced .3738 ]1.298
Q23 14 | Even .1276 .5684 | Stark 24 .0518 .5608
" Lo " .0153 .56u41
Q24 14 | Even .5332 .3479 | Stark 24 . 5663 .1817
" L0 " .5693 .1397
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Table VI. (Cont'd)

Present Method Reference
mch N S g - N T T
No. | %m|Yge| JtCiP '
: Width Real Imag. Ref. No. Real Imag.
qu 14 | Even .02005} .05953 | Stark 24 .0052 L0471
" 40 " .0165 .0410
Q43 14 | Even .0190 .0338 | Stark 24 .0130 .0211
40 " .0120 .0203
Q12 16 | Even 2.7525 |lL.e424 | Stark 24 |3.0654 2.6195
%
" 64 " 3.404  |1.596 D.L.(A) 2.9741 2.6347
*.
-9 " 64 | Reduced | 3.2915 |1.9057 | D.L.(B)" |2.9637 2.4395
Q22 16 | Even .686 .945 Stark 24 | .8287 1.7606
%
" B4 " .945 |1.068 D.L.(A) . 7439 1.6998
ok
" 64 | Reduced| .8546 }1.185 D.L.(B) .8758 1.6792

* D.L.(A): Doublet Lattice Calculations by Rodemich's Formulation
%% D.L.(B): " " 1 " landahl's "

(Results obtained by private commmication)
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~are In close agreement with the referenced values up to Mach number 0.9;
imaginary parts are, however, consistently lower than the referenced values,

- giving the worst comparison at Mach number 0.9 as shown In Fig. 34. Improve-
ments were noticed as a higher number of collocation points was used at Mach

number 0.9.

The flap moment coefficients were calculated with only 14 collocation
points for Mach numbers ranging 0 to .9. Considering the small number of
col location points used, the results are in falr agreement as is shown in
Fig. 35. One calculation was made with 40 coilocation points for Mach number
0.7 which resulted in marked improvement over the results obtained from 14
col location points. This indicates convergence of the present results to the

referenced values with a higher number of collocation points.

Case 6: T-tails ~ subsonic unsteady.- Two T-tails found in the

literature were re-analyzed, using the first order zero pressure rectangular
elements. The first was the rectangular T=tail (planform No. 6) shown in

Fig. Il. Results are compared in Table VII with experimental results reported
by Clevenson and Leadbetter (ref. 28) and with calculations by Kalman et al.

(ref. 23). In the fatter calculations, the effect of the tunnel wall as a
reflecting plane was disregarded. In comparison, Kalman's calculations used
100 collocation point which is equivalent to using 200 points if the effects of

symmetries had not been included in the computer program.

The second was Stark's (ref. 29) well-documented T-tail (planform No. 7)
shown in Fig. 12. Results are shown in Table VIll compared with results reported
by Stark and results by Kalman (ref. 23), using the doublet lattice method. The
numbers »f collocation points used for the present method were 18, 50, 60, 66,
70, and 72. Stixty~three collocation points were used In Stark's configuration
and 230 in Kalman's. These numbers would have been higher if effects of symmetries
had not been considered.

The computed results generally showed convergence towards the referenced
values as the number of collocation points was increased up to 60 collocation
points. Further increase of the number of collocation points to 66 and 72
initially gave erratic results. However, when the elements adjacent to the
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Table VIl, Comparison of Side Force and Moment Derivatives for A
Rectangular T-tall Oscillating In Yaw about the Fin Midchord

« Side Force Deriv. Momepf Deriv.
Method M K. CY.w CNJ_'J?_
| Real |  Imag. Real Imag.
Present 251 .2 1.5226 0.1931 .7221 -.09371
Cievenson .25 .202 1.215 0.0 .635 -.194
and 28
Leadbetter 251 195 1.4 c.0 636 -.195
Kalmags 1o | .2 | 1.1738 .2494 .6437 | -.0905
et al

]
*
Based on 5 CREF (See Fig. 1)
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Table YI!l. Comparison of Aerod

ynamic Coetficients for Stark's T-tall

31

(Mach No. = .8)
Mode Yaw (j=1) STdesway (J=2) Roll (J=3)
%

Derivatives K. Real Imag. Real imag. Real imag.
Present,Noo=18 | .2 | .0211 |-.3019 | .0367 | -.0055 |.o098 | .0z11
Prosent,Noo=50 | .2 | -.2849 [-.4738 | .02713 [ -.06099 |.01244 | .02705
Present,N.o=60 | .2 | -1.221 [-.a3t6 | L03197 | -.03147 |.01253 | .o2e13

Yawing

Moment | Present,N. =66 | .2 | -.918 |-.5868. | .9731 | -.a333 |.1085 | .00026

€,y Present,N.=70 | .2 [ -.2719 {-.4950 | .02056 | -.05895 |-.01339| .02893
Present,N.o=72 | .2 | -.7165 [2.1534 |-.a507 .404 | -.0029 | .0350
Kalman23 .2 | -.0837 |-.5270 | .0470 | -.0278 .0137 | L0257
stark>! .2 | -.0081 |-.a811 | .42 .0300 L0125 | L0239
Present,N.o=18 | .2 | -.5861 |-.3520 | .0265 |-.1m L0133 |-.0298
Present,No=50 | .2 | -.7818 |-.3495 | .01269 | -.150 .01662)-.0362
Present,N =60 | .2 | -.6231 |-.34a6 | .02160 | -.1228 .01653-.0347

Slde

Force | Present,Noo=66 | .2 [ -.3766 [1.0956 | .3863 | -.6203 [-.4012 | .1a77

©)). | Present =70 | .2 | -.7793 [-.3602 | .01488 | -.1a95 .01766|-.03592
Present,Nep=72 | .2 [ -.7991 |1.2200 [-.2777 | -.0483 .00833 }-.0297
Kalman?> .2 | -.6270 |[-.3985 | .0297 | -.1260 .0171 |-.0318
stark®! .2 | -.6108 |-.3625 | .0241 | -.1200 .0158 |-.0295
Present,Noo=18 | .2 | -.1262 [-.1101 | L0129 | -.0264 .0120 |-.0382
Present,Noo=50 [ .2 | -.1231 |-.1346 | .0177 [ -.0266 .0201 |-.0596
Présent Noo=60 | .2 | -.1295 [-.1330 | 01693 [ -.02769 | .01967]-.0582

Rotiing

Moment | Present,N=66 | .2 | -.4012 | L1477 [-.0865 | -.0632 .0142 |-.0625

€50 | Present,Nep=70 | .2 | -.1236 |-.1373 | 01815 | -.02657 | .02085|-.0594
Present,Noo=72 | .2 | -.07963 [-.3133 | 0512 | -.0310 L0211 |-.0586
Kaiman2> .2 | -a270 | L1267 | o154 | -.0269 L0186 }-.0529
stark?? 2 | -a2a7 j-onss | o1sa | -Lo2ss 0179 |-.0497

Yowing | Present.Nop=18 | .3 | L0458 |-.6220 | .08aa | -.0160 .0244 | .0331

Moment | stark?® .3 | -.0690 |-.7736 | .0973 | -.0549 L0315 | .0403

siae | Present.Neo=t8 | .3 | -.6106 [-.51a5 | 0552 [-.1818 .0300 |-.0458

Force | grark?? .3 | -.6a71 [-.5502 | .os62 | -.1895 .0379 |-.0449

Rol ting] Present.Neo=18 | .3 F-1342 11603 | o260 |-.0a28 .266 |-.0588

Homent | srark?? 3 | -o3aa [-1720 {0299 [ -.0a15 .04 |-.0770

» Based oh i-u (See Fig. 12)




intersection of the two surfaces were kept to the same size as for the case
of 60 collocatlon points, the results obtained with 70 collocation points

showed a tendency to converge.

The evaluation of the three versions of rectangular subsonic elements
for planar cases showed that the best agreement resulted from the "first
order, zero pressure, rectangular element" followed by the "first order,
constant potential, rectangular elements," with the "zero order, constant
potential, rectangular elements" appearing to have the least agreement.
These three methods were applied to the T-tail with 18 elements, but the
results given in Table IX do not indicate that any one method is preferable
over the others.

Definitions of aerodynamic coefficients used for the two T-tall

caiculations are as follows:

F
C =___L__
Y,¥ mq SFIN
M
Cy 4 = v
N,¢ c
7 "5 |NCReF
where Fy = Side Force
Mw = Pitching Moment
SFIN = Fin Area

Stark's T-tail;

_ |
Cl,j T Ti{l Jm(x,y)APn(x,y)dxdy

+ J] 9 (x,2)8P (x,2)dxdz
Tall

74



Table IX. Camparison of Various Aerodynamic Elements for Stark's29

T~tail (NRP = 18, Kr = 2%)
Mode Yaw (j=1) Sidesway (j=2) Roll (j=3)
Derivative Real Imag. Real |Imag. {Real Imag.
By
ZoCP 0.321 -. U222 .0416 §-.0045 | .011u .021Y4
. By
Yawing | FOCP .0289 | -.4080 .0389 |-.004Y4 | .010u .0215
Moment
By
(Clj) FOZP .02094 | -. 3978 .0367 {-.0053 | .0098 .0211
By
Stark -.0961 | 0.4811 .0412 }-.0300 | .0125 .0239
By
ZOCP -.5671 | -.3575 .0289 | -.1141 | .0144 -.0289
. By .
Side FOCP -.5787 | -.3548 .0275 }-.1163 | .0138 -.0294
Force
c,.) |
23 FOZP -.5859 | -.3519 .0265 }-.1176 |.0133 -.0297
By
Stark ~.56108 | -.3625 L0241 }-.1211 |.0158 -.0295
By
ZOCP -.1240] -.1083 .0127 | -.0257 | .0122 -.0377
. By
Rolling | FOCP -.1252 {-.1094 |} .0128 }-.0261 |.0122 | -.0380
Moment
(C..) By :
33 FOZP -.1260 | -.1100 .0219 | 0.0263 | .0120 -.0382
By =31
Stark -.1248 | -.13151 .0134 }-.0255 | .0179 -. 0497
* Based on %—b (See Tig. 12)

Effective wake length (F=6)

ZOCP = Zero-order, Constant Potential, Rectangular, Element
FOCP = First order, Constant Potential, Rectangular, Element
FOZP =

First order, Zero Pressure, Rectangular, Element



where the oscillating modes considered are

0 R n=|
Jn(x,y) = 0 ’ n=2 for tail
y/b , n=3
(xO - x)/c , n=I
Jn(x,z) = | , n=2 for fin
-z/b , n=3
i=1 ‘m
Jj=1 ‘n
c = b/3
X, = x—coordinate of fin Tip mid chord

APn = Pressure jump corresponding to Jn

Case 7: rectangular wings - supersonic steady.- Using in-plane steady

supersonic rectangular elements, Two setfs of calculations were made on rectan-
gular wings of various aspect ratios. The first was for comparison with results
previously obtained by Haviland (ref. 30) for Mach numbers ranging from |«¢2 to
.8 and aspect ratios as shown in Fig. 13. The second set was made to

compare with the results reported by Nelson @t al. (ref. 31) for Mach number |.3

and aspect ratios as indicated in Fig. 13,

The breakdown of the wing surface for supersonic calculations is different
from that for subsonic caiculations. This has been illustrated in Fig. 36 for
the case of 16 collocation points on an aspect ratio two rectangular wing. The
tift and moment derivatives calcutated for the rectangular wing pitching about
the leading edge which compare with results by Haviland (ref. 30) are shown in
Table X. The derivatives calculated to compare with the results reported by

Nelson et al. (ref. 31) for rectangular wings pitching about the midchord are

shown in Table XlI.

Using 8 x 8 arrays of elements, the present results are within 5% of the

referenced values for the whole Mach number range used in the calculations.
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Fig. 36 Arrangement of Aerodynamic Elements
for Aspect Ratio Two Rectangular Wing
for steady Supersonic Calculations
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Table X.

Comparison of Lift and Moment Derivatives
(about Leading Edge) for Rectangular Wings
in Steady Supersonic Flows

No. of Mach Aspgct LifF ‘ Moment
Method Points No. Ratio Derivative| Derivative
Haviland-° 6 % 6 1.2 3.0151 | 4.49 -4.08
Present 4 x4 " " 4.878 -4.,4056
" 5 x5 " " 4.8158 -4.3398
" 6 x6 " " 4.7507 -4,2595
" 8 x 8 " " 4.694 -4,1979
Havilangd>P 6 %6 1.4 2.0412 1} 3.08 -2.77
Present 4 x4 " " 3.2922 -2.9683
" 5x5 " " 3.2503 -2.9246
" 6 %6 " " 3.2161 -2.8836
" 8 x8 " " 3.1589 -2.8159
Haviland-l 6 X6 1.6 1.6013 | 2.42 -2.17
Present 4 x 4 " " 2.5827 -2.3286
" 5x5 " " 2.5499 -2.2943
" 6 x6 " " 2.5230 -2.2622
" 8x8 " v 2.4984 -2.2369




Table X - Cont'd

No. Mach Aspect | Lift Moment
Method Points No. Ratio Derivative|Derivativ
'Havi{and30 6 X6 1.8 1.3363 ] 2.01 -1.79
Present 4 x4 " " 2.1555 -1.538
" 5 x5 " " 2.1279 -1.9147
" 6 X6 " " 2.1054 -1.8876
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Table X|. . Comparison of Lift and Moment Derivatives (about
Midchord) for Rectangular Wings in Steady Super-

sonic Flows Mach No. = 1.3
No. of Aspect | Lift Moment
Method | Points Ratio Coefficient Coefficient
Nelson3| i
et al. |.2039 2.42 .40
Present 4 x 4 " 2.596 .465
Nelson3I
et al. 2.0 3.38 .245
Present 4 x 4 " 3.678 .234
" 8 x 8 " 3.494 .254
Nelson3'
et al. 4.0 4.16 .120
Present 4 x 4 " 4.347 .105
" 8 x 8 " 4,229 415
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used in Case 2
- Computation Time

The four-by-four results took beftween thirteen (13) and twenty seven (27)
seconds to run on the CDC 6400, using batch processing. The eight-by-eight
results required 220 to 294 seconds. The Time should be roughly proportional
to the number of elements in the aerodynamic influence matrix, i.e.., to the

number of reference points (Nog) squared, or 1:16 in the above case.

PROPOSED EXTENDED METHOD OF ANALYSIS

In this section, the method described previously is extended to poiygonal
elements for subsonic and supersonic flows in the out-of-plane case. Expressions
are shown to be the same as those previously developed when applied to rectangular
elements. ]

Statement of Problem

The problem of the extended method is identical to the original problem.

Coordinate System

This is identical to the original system outlined. However, for analytical
convenlence, use is made of the X,S,N coordinate system defined in Eq. (47).
This gives the coordinate of the sending point in a system whose origin is the
recelving point §r. X is parallel to the x' axis, S is parallel fo the plane of

sending surface, and N is normal to itT.

Governing Differential Equation

This is identical to Eq. (2).

Integral Equation

This is defined by Egs. (4) and (5).
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_Expression for Green's function.- This is equivalent to Eq. (6). However,

the cutoff function.is redefined in terms of a real argument, and the results

are expressed in terms of the X,S,N coordinate system.

Taking s at the col location point k, the subsonic Green's Func™ion Is

- o= ~iw
G = B Ur(k),m} = = exp{-—s-z—c— [R + MX]} e
Define also
..l -
GA{!r(k),sp} = 7R ©XP {EZI% [-R + MX]} (798B)

where

¢ R =‘\/X2 + 8232 + BZNZ
The supersonic Green's function may then be expressed as:
6 = UFI[EHrikhp} + G, Griklp 3] (80)

U is the step function, defined by

I; X>0
0; X<0

Ui{x) =

and the cutoff function F (which is positive only in the forward Mach cone) is
F = X -v/-g252-g2N?2

as used by Watkins and Berman (ref. 14).

Expression for K¢.- This is still defined by Eq. (5), but it g expressed
in a different form than in Eq. (7). Note first that
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3/9n = -n - v3/3v - n * 48/3¢

I}

-cosl{y - g)3/dv - sin(y - g)3/3c (81)

where y and are the angles between the local normal and the z-axis on the
sending and <=celving surfaces respectively, as shown in Figure I. Then

K¢ = -cos(y - g)8%2G/3v2 - sin(y - g)326/3vdc (82)

Method of Solution

The method of solution is generally the same as suggested previously.
However, expressions for irregular elements are developed for both subsonic
and supersonic flow. No doubt the same can be done for sonic flows by deriving
the limiting expressions correctly.

-Integration by Discrete Elements

The expression for the "aerodynamic influence matrix" Ak zremains as
?
in Eq. (12).

Aerodynamic Elements

The catalog of aerodynamic elements is extended. Due to the new form
for K¢ expressed in Eq. (82), however, the new and old elements can only be
compared for the in-plane case.

Basic form.- The zero-pressure form of element has given the best results
up to now, and has therefore been chosen as the fundamental form for the
extended method. Also, Egs. (I3) and (34) have been combined, f has been
redefined, and the X,5,N, coordinate system has been introduced, resulting in

-A§UL*,X,S) = A4, F(2%,X,S) exp {2\'/3 [X - X(2)] (83)
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The net pressure differential AP acting in the positive N direction is

now given by

(84)

AP _2§ 3, Lm} A¢(2%*,X,8S)

2
Therefore, for any element on which f equals |, AP is zero, (the zero
pressure element), while for any element on which f equals {x - x(2)}

| v

_1%2 = _pho% exp{:\‘,—‘” X - xw)]} (85)
-zﬂ p

which Is constant in the zero frequency case. The relative advantages of
using polynomial forms for f are not understood at this time. However, the
above two examples warrant further discussion.

In the first case with f equals | there is no pressure except at the edge
of region ¥ where there is a lift line corresponding to the stepwise jump in
Ap. This would be ftreated as a vortex loop in the steady state case, as is
done for example, in the method of Rubbert and Saaris (ref. 5). 4

In the second case, the pressure varies harmonically. Further possibili-
ITies are polynomials with unknown coefficients. For example, if f is
I + a {x - x(2)}, we have two unknowns for each element, 44/v and a.

The expressions for the general terms A of the aerodynamic influence

matrix given in Eqs. (14) and (15) are refaI:éﬁ. I+ might be noted that the
form of Eq. (14) could be used for the on-surface elements aé well as for

the wake region elements if it were desired to subdiVide them. Also,'fhe fqrm
of Eq. (I5) might be used for frailing edge elements, if the 'panef!ed' wake
used in earlier parts of this report were to be replaced by in+egra]s extending

To infinity.

i+ is thus convenient to introduce a modified Green's function

G=6exp (- WIx-xw]I} (86)
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Then using Eqs. (82) and (83), Eq. (16) can be rewritten as

ky(ky2,2%) = ~[[ 4% {cosly - g)a%G/aN?

+ sin{y - g)22G/3NaS} f(2¥,X,S)dX dS (87)

Subsonic aerodynamic elements.- After some manipulation, it can be shown

that
e [l sl b s
and
g:g;s = [ {' * ’1'5‘3%; azzs %Iﬁ} - %E'E%JRGR (89)
where
Ge= Gooxp {— %‘i[x - xm”
e {- Eé% [MR + X - BZX(R,)] } (90)

Minimum first order expansion-subsonic: The argument of the exponential

In the expression for éR' Eq. (90), can be expanded about the point &* as

before for the development of the so called "first order" elements. Since the
argument of the expanded exponential is of the form lwA/c (where A is a typical
dimenslion of the element 2%), expansion up to the first order term should

be adequate when small aslements are used. Then, from Eq. (90),

- "l - im _ -i_(n_ - *
6, Y TR {-l 7= [R - R(k,2*)] 22y [x - Xt2*)]

R g%c
x exp {_ E;% [MR(k,2%) + X(2%) - BZX(R-)]% (91
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By substituting this into Eqs. (87), (88), and (89), the "Minimum First
Order Expansion" results in which ali terms in w2 and higher order are dropped.

This leads to the following expression for k¢

K. (k,2,2%) = fcosty=g) ¢ Vik,a%) + SO 1 g g |
¢ l 4T o 4r o ’

lwR(k, * *
y {I N .msig 2% lwg(i\lll. )| { S409). 11 (i, %)
+ -——Q—Sing_ ) I'l'(k,z*); :—;—;]exp { [MR(k 2%)
+ X(2%) - BZX(Z)]} (92)

in the above expansion, terms such as (wN/c)? are dropped. The
validity of this step is in question and is discussed later. The remaining

terms dropped are of the form (wA/Y)2 which are small if the elements are

themselves small.

The "I" integrals have the form

32 )1
I'(k,2%) = [[ £00%,X,9) =7 {ﬁdedS | (93)
2*
2
L' ka%) = [ 10 X,9X 27 j--é—' dXds (94)
« | IR
2
2
I",e%) = [ £(0,%X,9) mge {rlz; dXds (95)
2*
ek k) = ||
I,"(k,2%) i’i £(2%,X,S)X m{m dXds (96)
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Supersonic aerodynamic elements.- As with Eqs. (88) and (89), it can be
shown that

22 - _ F! |wR% 52 gug fw 92U w2UN2-| -

aNZ UG|B - bz gZc ( ONZ )R ¥ BZc pNZ 2R3 R |§ (97
A { R ]

32 | = _ iwR { 82 JU{ . iw 32U  w2UNS | =

a5 C|R - L§I T %aNas {ﬁ}* a7 335 " o2p3 TR 98

The no+a+ion-|§ refers to alternate choices of the subscripts, R (retarded)
and A (advanced). The corresponding signs on the RH side are indicated by
* or ¥ as appropriate.

Minimum first order expansion-supersonic: Using the same procedure as

in the subsonic case, an expression is obtained for k¢ which corresponds to
that given by Eq. (92).

k. (k,2,2%) = | 16954Y=a) v vy owy 4+ SINGY=Q) 1 owpy ox)
o 4m o) 4m o
R(K,2%) . 20R(K,2%) . wR(K,2%) . 2iwX(2) WR(K, 2%)
2cos £ + 2 2 + _ s
X { Ci Bz? Bzc sin BZC BZV I BZC :

- H - " H *
- {cos;: g) Il'(k,k*) + S|n21 g) Il(k,z*)} {ZIm c wR(k, 2 );

g2V °s B2c
- - *
_ ‘cos(v q) Ik, ) + sin(y-g) 1" (K, 2%) 2w in wR(K, %)
l 4 47 B%c gZc
X exp 1- é;—‘\*” [X(2%) - BZX(R,)]; + k(K 2%) (99)

The first term includes all contributions except from coincidence of
the point k with the element 2* which is covered by k¢". The derivation of
the corresponding integrals has been discussed. The second term which covers

the coincidence effect appears only In the supersonic case.
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Although this equation appears formidable at first sight, it has a
symmetry which should make programming relatively simple.

The integrals are

2
I 'k, 2% = [ fa¥,x,5) = ) dXds (100)
aN2 ( R
2* L
32 ‘U(F)
L' toe%) = [f tarxs) x 2o I-R—z dxds (101)
L¥* ’
- 22 fue
" * = ¥* —— —
I"(k,2%) = [[ £(£%,X,5) 5 { 3 :dXdS (102)
2*
, .
Ik, 2%) = [ f0%,X,5) X g {%—Fl§dxas (103)
R:*
2
JTk, %) = [f £(2%,X,S) %‘-Fldx,ds (104)
9'*
2
mtk,e*y = ff faxx,s) 2UE) axas (105)

2*

The first four "I" integrals differ from the corresponding subsonic ones
only in that they contain the step function U(F). The "J" integrals only appear
in the supersonic case and their integrands are zero except on the forward

Mach cone.

Evaluation of Integrals by Contour Integration

Evatuation of the "I" and "J" integrals begins with their reduction to
contour form. These contours will be assumed to be polygons, so that it will
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be necessary only to evaluate the contributions of straight IIne'segmenfs.

Define the indefinite F integrals as fol lows:

_ men 92 JUCF)

Fron = I X s SN?'('ﬁF'} dXds (106)
_ mn 32 fu |

Flon = f] x"s WS | R dXds (107)

It will be shown that these can be reduced to line integrals, thus, for
. example, if f(2%,X, S) equals unity, then I, can be expressed as the sum of
line integrals along the sides of the polygons, so that

N " ' i+1
I"(k,2%) = | ., %F1,0$ | (108)
where i, i + | are two consecutive points (in the right handed sense) around
the contour, as shown in Figure 37. A transformation to an X,' S,' N
coordinate system will be used to facilitate integration. The bracket

{F}:+I has a particular sighificance. |f the line i to i + | does nhot cross
the Mach cone, it is identical to [F]ii+|, and has the conventional meaning
"evaluate F at i + | and subtact value at i." However, there is no contri-
bution +to the line integral from outside the Mach cone, but there is one from
the intersection point, so that a different interpretation must be made when a

line intersects a Mach cone.

in Eq. (108) above, the shape factor f corresponds to the zero pressure
case which has already been discussed. |In the harmonic pressure case, with
f equal to x - x(2), one would have

N " } i+

"
) *)y = - *
Ti(k,8%) =} F X( g )FI’O’ i (109)

i=| 2,0
Given a method fo evaluate the "F" integrals, a large range of elements is

available. Five cases of interest can be identified concerning two consec-

utive points, | and 2 which are as follows:
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Figure 37: Contour Integral
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(1) Subsonic case, and supersonlc case with points |, 2 lying inside the
Mach forward cone. .

({1) Supersonic case with point | inside the forward Mach cone and point
2 outside.

ST AL

)} Supersonic case with p

i olnts | and 2 reversed relative 1o 1l.
(1V) Supersonic case with points | and 2 outside the forward Mach cone.
v

) Supersonic case with collocation point -k lying on element 2%.

Cases | and |1 are discussed In the following subsections. Case 11i
Is easily deduced from ll. Case |V ylelds zeros (for this |ine section, though

not necessarily for the whole element). Finally, Case V introduces additional
diagonal terms. (Note that a point lles inside the forward Mach cone If the

cutoff function F defined under Eq. (80) is positive).

The following transformation of coordinates is used in the plane
element 4%

X = Ey,z {X"(Xz = X;) - 825'(Sy - S} /Ry, (110)
S = Ey,2 §X'(Sp = 1) + S'Xp = X} /Ry 2 (i
dXdS = dX'ds' (112)

where Xi, S;, and X5, S, are the coordinates of the points |, 2 and 3

Ri,2 = V| (Xa = X122 + 82(S, - $)2| (113A)
and
= - 2 2 - 2
E),p = ! 1 (X, = X)2 +82%(5, -S)2 >0
- - o~ 2 2 -
P Uf (Xp =~ X))? + 8%(S, -5)2 <0 (1138)
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In the supersonic case, E1,2 in Eq. (113) is negative unity if the line
from point no. | to point no. 2 makes a smaller angle with the S-axis than does
the Mach line. Also, R1,2 is zero when the |ine between the two points is

parallel to a Mach line. This case is discussed later.

The inverse transformation to Egs. (110) to (111) is

X' = {X(Xy - X1) + B2S(S, - S} /Ry, (114)

S'

I

{-X(Sp = S1) + S(Xp = X} /Ry,, (115)

In terms of the new coordinates,

R= yEi,2X'2 + B2E;,,5'2 + N2 (116)

In the subsonic case the transformation can be represented by the following

three fransformations applied in order:

(1) A Prandtl-Gauert Transformation
(2) A rotation of axes so that the line from points | to 2 is parallel
to the X' axis.

(3) An inverse Prandtl-Glauert transformation.

In the supersonic case, the corresponding transformation which transforms
the equations to rectangular hyperbolic is used (See, for example, the report

by Heaslet and Lomax (ref. 32)), but the factor E is introduced to avoid the

12
use of imaginary numbers. ’
I+ is readily shown that
ax = E1220X2 = X3) v _ B2E; 2(Sp = S3) I
R1,2 R1,2
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Ey,2(Xs = X3)

gs = £1,2052 = S9) or o ds! O 118)
Ri,2 Ri,2
also that
]dX' = E1’2R1‘2 (119)
(120)

.“
(=1
[72]

]
o

Note that it Is possible for X' o be positive in the forward Mach cone,
whereas X is always negative, as illustrated in Figure 38. A useful method of

evaluating integrals can be derived from the following:

2 D, .2 0 za}L= Ar §(0,0,0); M < |
{B Wt B szt BTl RT \2r 60,0,00: M > | tzh

Case |. no Mach come intersection.-

"F" integrals of the first Kind: These integrals have the general form
given In Eq. (106), but with U(F) = I,

To cover the zero pressure case, with f = |, we requirem=0, I; n=20
v 32 |
(a) Fo.0 = /I {ﬁ}dXdS

Substituting froni Eq. (121), using Green's Theorem.(ref.21), and then Egs. (114)
and (115)

"
®
N
Va
T
s Nag—

(122)

il
|
™
&N
la
x
n  — e,
2o —
.
a
w
+
o:lw
1%2]

— a—
j—
e
Q.
>

93



94

—_—
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Figure 38.

element
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forward
Mach cone

Case of Positive X' in Forward Mach Cone




Taking the straight line from point no. | to point no. 2 which is
parallel to the X' axis, dS' is zero. Thus,

2 ' 2
' 2 -E, HX'S!
‘Fo of =/ or ‘% axt =f——22 (123)
7%:%f 1 1 l R(E; »S'2 + N2) |,

t4

I+ Is convenient to leave the integral in this form since, for computer
evaluation, X,! S! can be found readily.

) F;’o = [[ % 32 1%} dXds

Applying the same substitutions as before, together with Eq. (110), and using
the rule for differentiation of products, one has

- 2
‘Fl 2 _Ey ,2(x2 X)) f 12 1 !
| 1.0 N R1,2 1 8ST R

2
_ B2Ej 08'(Sy - S3) 1 ' Ej 2 (S, - $1) dx!
R1,2 fl 557 |Rf & R1,2 f1 R

_ |s2s! _ X'S' (S, - S |
- [éRl,z {El,z(xz X1) +(E1,25'§ ~ N%)‘

2
] (124)
1

Note that the last term In Eq. (124) is complex if Ej, 2 is negative.
Evaluation of the iIntegrals in Eqs. (123) and (124) is facilitated by the
standard integrals of Appendix B.

B'E12F(QJ 1) og {/ﬁ—'x'+R
1,2

"F" Integrals of the second kind: These "F" integrals have the general

form given in Eq. (107):

_ 92 l-
(@ Fyq = /] 3% {ﬁ} dxds
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Integrating first with respect to dS

Fo,0 = - ¢‘ {%; | (125)

then transforming and taking the straight line etement from peint | to 2

1

fon 1% E1a0 =X .
lFO,o 1= . R fl N dX
' 2
Ey,oNX' (X5 ~ X1) (126)

2 2
Ry, 2(Ey 5S'2 + N |

" 2
) Fi0 =[] X355 {F'{—} dxds

As before, for the straight line element from point | to 2:

2
B2S' (X, - X1)(Sy; - Sl_) f ) ‘_[_ X"
(R )2 1 oN lR

2
BZN(XZ— X1) _x.) + X!S'(Ss - 5))
R(R, 1 2! X1 (E; 257Z + NO)

. ’ 1

(127)

Case || with Mach cone intersection.- Let point C lie on the intersection

of the forward Mach cone with a straight line path from points | to 2 so that
point no. 2 lies outside of the cone. The integrands of the "I" and "J" integrals
are now zero beyond point C, but most of their terms are singular at C. This

arrangement is illustrated in Figure 39.

First note, that when point no. 2 is outside the Mach cone, function U(F)
goes from unity to zero at a point C which lies between points | and 2 as shown
1jnrg%§UFé/39: Then, since the derlvaflve of the step function is the Dirac
delfé funcTEon §(X), it fol lows fha+ for any function Y(X)

L
I
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Figure 39:

receiving point

QForwa rd Mach cone

intersection point

Intersection with Forward Mach Cone
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JYQ) 3UX)/aX dX = fY(X) 8§(X) dX = Y(0)

In the more general form, applicable to the case in point
9
[ Y,8,N) 5= U {Fx, 5,0} dx

oF /3a

= Y(X,S,N) SF/3%T  C (128)
where a is X, S or N, Equation (l116) for R can be factored in the form
R = ‘E1,2F'F'A (129)
where
= X' —\/-g2gt2 _ g2 2
Ft.= -X' —\/-B2S" B El,zN (130A)
= - \/-g2g12 _ 2 2
Fp' = X' - V/-82s'2 - g2¢, N (130B)
[T is not easy to identify the cut-off function for the forward Mach cone.
For the following derivation, it will be assumed that it is F' as given by

Eq. (130A), which would be the case if points | and 2 were aligned in a positive

direction along the X axis.

Note that, at a point C on the forward Mach cone

t
X = -1/- 25!2 — 2N2
c L/B SIS

First, the following indefinite integral is evaluated at C

s fuen _ o faucEyy | B2uEDIST] L,
L }dx'|c'f¥'R‘ 35" %3 ;dx .
- ‘ B2s! _ g2X'S! ;
lR\/_625|2 - B2N2  R(B25'2 + g2N2) IC
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- . B2RS -
XI(BZSIZ + 52N2 IC =0 (132)

By interchanging variables

3 UGF!) | _
f—a—N- R X' [, =0 (133)

Also, the following indefinite integral

2 { ueEn]
[ X 53 I~ R st’ o
g2s'x! i B2U(F")X's!
= - dX'p |
{RYIBZS'Z - BZNZ R3 c
2 2
{-%ﬂ+35'§|c (134)
Agaln, by interchanging variables
UCE!)
[ xr 2 | }dx'l =0 (135)
N | e

I+ follows from Eqs. (132) to (135) that all of the singular terms in the "F"
integrals vanish on the Mach cone. Presumably, the same results would fol low
from the application of the method of determining the principal values of
Improper integrals given by Mangler (ref. 33).

"F1 integrals of the first kind with Mach cone intersection.

(a) = ff 55z {”‘F )§dXdS

Proceeding as for Eq. (123) but substituting from Eq. (132)

' 2 3 U(F')} Ey,oX!S!
¢ -2 FO{ gxr = B2 ] (136)
% 0 0} j st l R R(EI,ZS'Z + N2) !
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Thus an element in the form of a polygon would have contributions from the

Vertices inside the forward Mach cone only.

! 2
_ 32} U(F)
(b) Fl’o-ffxng = }dde

As -for Eq. (124) but substituting from Egs. (133) and (134)

1 2
2¢1 tct —
F -8 _ X'S'(S, ~ §;)
{ 1,0}1 RR, lEl’Z(XZ A E ST END |,
C
[B ‘/El.Lész - S7) log { /—E1,2 X' + R} ] (137)
>
1

Thus there is a contribution at point C from the finite term.

"EN integrals of the second kind with Mach cone intersection:

Uk |
(a) = ff aNas {—R—i dXdS

As' for Eq. (126), but substituting from Eq. (133)

2
n ] - Ey oNX'(Xo = X7) l
FO’O ‘1 RRl 2(E1 28'2 4+ N2) (138)
2
(b) Fl o= JIx al?las Uéi dXds
Again, as for Eq. (127), but substituting from Egs. (I33) and (134)
2
" 2 Q! -
= BNUXp - X)) i} X'S'(Sp - S1)
{Fl’o}l R(R1,2)2 El ,2(X2 Xl) + (El,ZS'Z T NS . (139)

"KM integrals of first and second kind: In order fo evaluate the "J"

3n+egrals, we first define the "K" integrals which are similar fo the "F"
integrals of Egs. (106) and (107)

“1o0




= Jf Xmsh 22U g (140>

n 3<U(F) 2U(F)
= [f X" Z dXds (141)
Then, for example, if f(2%,X,S) = |, we have
N " i+l
MK,2%) = T 1K o (142)
? .
I

There is evidently no contribufion except at a Mach cone intersection.

() = [ EUE) U(F) dXds

As for F_ ; in Eq. (123)

’

R NS \
K =f1—"—a-§|—'dx

1
g2s
- B3

_ —B2sl
Y—p2s'2 - gonz

(143)

C

Note that the sign would be reversed if the point | were outside the Mach cone,
and point 2 were inside.

2
(b) Ky,o = [ 25 dxds

1"
As for Fo,q in Eq. (126)

" _ Ej, 2(x2 - X1) % U(FY)
{KO,O} - 1 , f aN dX

B2(Xa = X1IN
RI,ZX

(144)
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Additional Supersonic Terms

In evaluating the "I'" and "J" integrals of Egs. (100) to (105), t+he RH

term of Eq. (121) was omitted. The term kg in Eq. (99) replaces this, and must

be evaluated for supersonic flows.

In the original calculations for rectangular elements, the collocation
points were placed directly over the lifting lines, as shown in Fig. 5.
However, the procedure for calculating kg could be described as follows:
The wing is divided up into rectangular winglets, as in Hedman's method
for the subsonic case, (see Fig. 14) but, in place of the [ift lines at
the quarter chords and the collocation points at the three~quarter chords
of the winglets, the lift line and collocation point are both placed at
mid-chord., Then, for the purpose of calculating the effect of a lift-line
directly on the collocation point with which it coincides, the |ift line
is replaced by the same total lift uniformly distributed over the eifement.
Because we are actually concerned with an aerodynamic matrix which relates
velocity poten.ial fto downwash, the reSulTing matrix has some off-diagonal
terms. The 1ift and downwash on a ftwo-dimensional supersonic wing are
directly related through the so-called "Ackeret result" (reference 4),
so that the wing section consistent with a lift-line is stepped, nevertheless,
the procedure outlined above gives correct |ift and moment when applied to
two-dimensional wings. As with the subsonic case, the simplified method
used for rectangular elements will no longer be as effective when applied

to arbitrary elements.

Numerical Problems in Computation

In evaluating the expressions for the "F" and "K" integrals, numerical
probiems may arise in the computer due fo division by zero in such cases as

the following:

(a) R=0
(b) S'"=N=0
(c) R1,2 =0
I+ will be necessary to take care of these cases either by taking special

precautions during preparation of input by programming additional computer loglc.

(a) R = 0. This occurs when there is a collocation point k on a vertex of an
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element. This situation should be avoided. In the supersonic case, it may be
that R is very nearly zero because a vertex Is nearly on the Mach cone. |f

R < €, where € is an arbitrary small number, calculations should proceed as
though the Mach cone is intercepted.

(b) S' = N = 0. This occurs when the collocation point is on the extension of

a side of an element. It can easily be shown from Eq. (l15) that, if S' is

zero anywhere on a straight line élemenf, it Is zero all along it. If N=20
also, this could lead to division by zero in all four integrals. In all such
cases, however, the |imiting contributions are zero. Therefore, on the computer,
terms with S'2 + N2 in the denominator can be disregarded when S'2 + N2 Is small.

(c) R1.2 = 0. This occurs when the line segment is parallel to a Mach line.
Since Ry , appears in the denominators of X! and S,' the limiting expressions
must be evaluated carefully. Resulting limits on Eqs. (123), (124), (126) and

(127) are,

- - 12
] ~y?!
(Fy o |2 (145)
’ _S'R I
-
2 g2s |2
(F] o »| B2 | (146)
- 2
1 -
(F) )2 > | M X %) )] (147)
i R(S")2 |
- 2
"2 BZNS(Xy, = X7)
{Fl’o}l > - =2 1 (148)
| RS!

where X' and S' are evaluated as for X' and S' but with Ry,, taken as equal to
unity.

Comparison of Extended Method with Previous Results

As was pointed out earlier, it is only possible to make a compariizzq:j////////////
the final expressions for the in-plane case. However, for parallel air S

(where angles vy, g are equal), Eqs. (82) and (88) can be written as follows:
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K¢ = 3 B2/R2 + Im/cR}éR

+ Z-NZ/RZ 2 ,38“/R2 + 3iwB2/cR - w2/c? éR (149)

This agrees with Eq. (7), after substitution from Eqs. (17) and (18) and taking
T, equal fo unity and T, equal to -N2/R.

in the case of an in-piane airfoil, Eq. (92) can be written in a form
directly comparable with Eq. (35)

- IQ(k 2%) fwR(k,2%) . TwX(2¥*)
ky(ks2,2%) [3 P+ g5— + a7y

t
H *
'{'I%}{I ini? )}]e"p {5 BV [MR“‘ £
+ X(¥*) - szxm] ‘ (150)

Now from Eqs. (26) and (93) with f equal to unity

I'(k,2%) | 32 (|
L0t - o [f S {r } axes
2'*

ff{r'!-;} dXds

« :
kss(k,l ) (151

also, from Eq. (32) and (94) with f equal to unity

1
I (K, %) _ X {' }d
s - {f = = fdxds
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e

=1/ %

= *
dXdS = kg (K,8%) (152)
.* :

ol

<

Substituting back from Eqs. (151) and (152) into (150), it is found +ha+_+he

expression k¢ is identical to that given by Eqs. (19) and (35). Thus the ~ —-_

extended method |eads +c'expressions which are identical to those developed
earlier when parallel, zero pressure elements are used. As a further verifi-
cation, Egs. (I51}) and (152) can be compared directly for the rectangular
element shown in Figure 40. First, we evaluate Ié according to Eqs. (108) and
(125). Tne contriburion of each point comes from Two fterms. Iransforming,
using Egs. (114) and (1i5), and noting that (Xg - Xa) and (Sg - Sg) are both
zero, we have the following:

2 2 2g,2
ToGk,2®) _ 1 Y_ XA _BTsal. (XA + B%Sa
A ATRp Sa . Xa | “ZTRAXASA
L. U IR S (153;
AnXpSp  4wXgSg  4wXgSc  4mXpSp ‘

where Ry is R evaluated at the point A. The above expression is identical to
that for kg given in Eq. (26). Using The same approach in dealing with Il'

and substituting from Eq. (124), the contributions of the first two terms cancel
at each point. This leaves only the contributions of the logarithmic expression
along the lines A to B and C to D. Thus,

' B D
I (k%) _| 1 _ ! _
Zng2 [4ﬂ6 log(gS + R)] [:EEE'IOQ( BS + R)] (154)

A c

I+ can, however, be shown that
-log(-8S + R} = log{(BS + R)

therefore the above expression is identical to that given for k,q in Eq. (32).
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Only the steady state in-plane case has been previously developed for
supersonic flow. From Egs. (46) and (99), we now have

k¢(k,2*) =_2kss(k,£*) = 2I,"'(k,2¥%)/4n o (j55)
Comparing Egs. (f53) and (56) it is seen that the extended method Is compatible

in the supersonic case also.

In summary, it has been shown that the methods given in this section
are identical to those given previously when applied to in-plane, first order,
zero pressure, rectangular elements In the subsonic case and to in-plane,
steady state, rectangular elements in the supersonic case. Computations based
on both of these cases have already been evaluated. The extended method would
give lidentical results in the cases discussed.

Computer Program

The expressions developed here could be Included as new elements in the
computer program described in Appendix A. However, It would be considerably
less time consuming to precompute as much as possible and then to calculate the
aerodynamic matrix from the precomputed data for each value of w. An examina-
tion of Egs. (92) and (99) shows that the aerodynamic matrix A

written as follows:

K. % could be
2

= 1 " "t
A {A K, 2 + wA + TwA k,z} exp lwl(k,2)

K, % k,2

+ k" (k,2,2) + J(2%)k

P (k,2,2%) (156)

¢

In the above expressions, five real matrices of the same size as Ak g are

»
required. The indicated summation is over wake elements which can be rectan-
gular, and can therefore-be evaluated more rapidly than polygonal elements.

In the present pfogram, the normal flow (downwash) at each collocation
point is assumed to be known, and generalized forces are calcuiated after the

velocity potentials have been solved. The same could be done with the extended
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method; however, since the aerodynamic elements can now be made to conform with
structural elements, it might be befter to defermine location and downwash

of the collocation point from deflections at structural nodes and, finally

to compute equivalent forces at the nodal points. |If zero pressure elements

are used, the forces act along the perimeter. The force per unit length on a
line element when taken right-handed is proportional to its projection along

the o axis. It is thus in the negative direction (i.e. opposite to the positive

normal coordinate v) when the projection of the line is positive.

Thus if dF is an element of force on +he perimeter, as shown in Figure 41,

dF = pv2A¢2exp i— '—‘\*/l [; - gm]}_ do (157)

Missing Term

A first order expression is-used to replace the exponential terms before
integration. However, a term in (uN/c),? where N is the normal distance from
col location point To sending surface, is ignored (this cannot be expressed by a
contour integral). |If it should later prove to be important, it may be neces-
sary to evaluate the surface integral by its midpoint value using the approach

described previously.

Summary of Extended Method

The principal aim of this section has been fo develop the expressions
for arbitrary out-of-plane polygon aerodynamic elements. Each expression is
in the form of a contour integral so that it is only necessary to compute the
contribution of each straight-line element. The expressions developed are
generally applicable for subsonic and supersonic flow, but special steps are

necessary when a line element intercepts the forward Mach cone from a receiving

point.

This method has been proven to be identical to the one developed and
checked out earlier in this report when applied to in-plane surfaces. Thus,

much of the experience acquired to date remains valid.
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The problem of defining the Ackeret lift term is not discussed in detail
because it is believed to require considerable numerical experimenfafion and
careful programming. Certainly, the idea that the pressure at a given point
contributes directly to the flow at that point is straightforward. Also, the
problem of finding optimum ways of locating collocation points has not been
discussed. In the applications To rectangular elements discussed earlier,
special schemes were used for locating collocation points and the rectangles
themselves. However, if the aerodynamic elements are +o be compatibie with
structural elements, such favorable arrangements will no longer be possible.
Computed results may thus turn out to be unreliable because the normal flow
distribution corresponding to constant potential or zero pressure elements is
singular on the edges of the elements on which there are finite vortices. |If
selection of collocation points were arbitrary, then it would be necessary to
use more uniform potential distributions so that finite vortices could be
eliminated. The polynomial forms envisioned in Eqs. (106) and (107) might

possibly prove adequate for this purpose.

CONCLUDING REMARKS

tn the present investigation, a numerical method has been developed on the
basis of the linearized theory by which the general ized airforce matrix can
be calculated for steady or oscillating wings in subsonic and supersonic flows.
The use of the downwash-velocity potential relationship in preference to more
commonly employed downwash-pressure relationship gives a somewhat simplified
form of the kernel function. The approximations made in the evaluation of the
integrals involved avoid some of the difficulty incurred in evaluating the
improper integrals. Thus, one of the advantages of the method proposed here
is numerical simplicity in comparison to other existing methods. The present
method has been tested quite extensively for rectangular elements in steady
and unsteady cases in subsonic flows. |ts application in supersonic flow has
been Iimited to steady planar rectangular wings. The results of these calcula-

tions are summarized in the following paragraphs.

I+ has been demonstrated that accurate results can be obtained for cases
of steady and oscillating planar rectangular wings in subsonic flows using

the downwash-velocity potential method. Among the three types of aerodynamic
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elements eva[uafed, the best results were obtained with the so called "first
order, zero pressure” rectangular eiements, foilowed by "first order, constant
pofenfialh rectangular elements. The "zero order,-constant potential rectan-
gular elements, although considerably simpler than the other two types of '
elements provided the least favorable results. Results appear to be convergent
with respect to the total number of boxes used. The wake can safely be termi-

nated in five chord lengths or less.

The lift distributions on rectangular and tapered wings in subsonic flows

indicate that the use of rectangular elements gives excess |ift towards the
Tips. it has been found that the distribution improves with shorter spanwise
divisions ftowards the tips (given a limitation on the total number of elements

Yo be used). All other resul+ts, including the distribution of the center of

pressure, and various coefficients, have shown that this method glves results
comparable to those resulting from other methods of analysis.

Calculations for oscillating swept wings and for swept wings with flaps
using rectangular elements have been compared with those made by other methods.
IT appears that, when The rectangular elements are used, the agreement of the
swept wing results with the referenced values is not as good as in the case
of rectangular wings. |Improvement was noticed as smaller elements were used
towards the tip, but satisfactory agreement has still not been obtained at
high subsonic speeds. I+ is believed that these results indicate a need for
elements conforming to the planform such as those that have been developed in
the so-called extended method. The flap moment coefficients show fair agreement
with the referenced values. However, the results are |limited To 18 collocation

points, except in one case where 40 points were used.

Fair agreement has been obtained with other results published in the
l iterature for two-T-tail configurations using midpoint integration for out-
of-plane terms. As the number of elements is increased, however, agreement
first improves and then gets worse. This appears to result from the use of
mid-point integration for out-of-plane elements and indicates a need for the
extended method.



The results obtained for steady rectangular wings using in-plane steady
supersonic rectangular elements are good, but convergence with the referenced

values seems to be slower than in the corresponding subsonic cases.

.Because all of these calculations were made using a computer program which
contained as subroutines all of the rectangular aerodynamic elements cited in
this report, it is believed that the effectiveness of such a concept of
aerodynamic elements was demonstrated. |In addition, the objective of developing
a method valid for subsonic and supersonic flows was partially accomplished.

As is shown in the section covering the extended method, this objecffve has

been realized conceptually.

The proposed extended method is capable of reproducing all of the in-plane
calculations performed to date. |1 also appears to have the features necessary
for better results on swept wings and out-of-plane cases (such as T-tails).

I+ is therefore concluded that the extended method is potentially capable of

handling all calculations relating to oscillating wings.

It is believed that the proposed extended method will contribute greatly
to the problem of handling flutter and to other related problems in automated
structural design. In particular, the following three points are of signi-

ficance:

I. The computation procedure is based on the concept of aerodynamic
elements. This procedure ftreats arbitrary panels on the aero-
dynamic surface which can, therefore, conform to the structural
surface panels. Thus, not only can the computed forces employed act
at the structural nodes, but, also, the preparation of aerodynamic
input data is simplified since it is so similar to the structural
input data.

2. This method applies to a broad Mach number range so that. one computer
program can handle subsonic and supersonic flows.

3. The calculations can be arranged so that if five matrices are
computed first, then the flutter forces for the complete reduced

frequency range can be calculated rapidly.
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RECOMMENDAT IONS

[T is recommended that the proposed extended method be programmed and

fested.

(n

(2)

(3)

(4)

(5)

(6)

Following this, the tasks listed below should be performed,

Adaptation of the method to The unsteady transonic (M = [) case,
Although this adaptation may not result in accurate air force
predictions and its usefulness may thus be limited, it is needed
to provide a basic linear solution capability against which more
refined methods can be compared.

Investigation to determine the best method of including the
Ackeret or "fwo-dimensional" [ift effects in the supersonic case,
The method used for the numerical resulfs given in Tables 10 and ||
was selected for convenience but is too restrictive for use in the.
aerodynamic element concept.

Determination of optimum chordwise spacing of elements. Thus far,
the Hedman (ref. 2) method of locating I1ff |ines has been used
exclusively in calculations. Again, this is too restrictive for
appllcation to the aerodynamic element concept. "
Development of a set of rules for selecting aerodynamic element
configurations fo meet given accuracy objectives. To date, only

a few variations have been made on rectangular wings and those
were made mainly to observe gross effects and to demonsirate
convergence.

Trial inclusion of the method in an automated design computer
system. One of the goals in developing this method was to make It
possible fo compute aerodynamic forces at structural nodes. There~
fore, an evaluation of its capability in this application and of
its practical application in general would be of great interest.
Trial development of new aerodynamic elements. |1 is especially
important to investigate arrangements which will eliminate finite
vortices since it is expected that they will remove restrictions

on collocation point locations.
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APPENDIX A

The Computer Program

Introduction.~ In order to perform the calculations on the downwésh-
velocity potential method, a computer program has been written in FORTRAN IV.
language to be used with CDC 6400 at the University of Virginia Compﬁfer
Center. Its principal feature Is a subroutine to calculate and store the
aerodynamic influence matrix which is then Inverted and used to calculate
general ized forces which result from specified motions of the surfaces.

The program assumes that the user will supply data In the form of a
breakdown of each surface into a large number of aerodynamic elements. To
date, eight sets of subsonic compressible aerodynamic elements (all rectan-
gular) have been formulated. For uniform size rectangular elements, the
required Input data can be computed by using subprograms from basic informa-
tion such as the geometry of the surfaces, their planform arrangements, and
the specified motions of these surfaces.

Program Description.-

Summary of Programs:

Main Program:
FLUTT

Subprograms:

DMATR and DREAD

WMAT and WREAD

ACALC and ACON3 through ACON8 and ACONII, 12
CMATR and CCON5, 6 and CCONII,t2

ALIST

TEST

INVER

Their roles are the following:
FLUTT:

*Reads in data controlling the desired output, controls selection
of the subroutines to be used, and specifies integer words, floating
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Appendix A

words, and the |ine counts for each type of data.
-Calculates the addresses for various matrices.
-Reads in Mach numbers and frequencies.

DMATR:

«Generates D vector for uniform size rectangular elements in each

strip from the basic information.
DREAD:

-Controls reading in D vector for rectangular elements of nonuniform

size.
WMAT:
| «Generates W matrix from the modal displacements of each strip.
WREAD:

-Controls reading in W matrix for rectangular elements of nonuniform

size.
ACALC:

*Controls retrieval of Data vector using subprogram TEST.
sDetermines the conditions of symmetry for each surface.
*Calls for appropriate ACON's to be used.

*Generates A (aerodynamic) Matrix.
ACON5 through ACON8 and ACONII, 12

Calculates terms in A matrix by various methods described

previously.
CMATR

‘Controls retrieval of Data vector by using subprogram TEST.
«Controls retrieval of A and W matrices.

«Calls for appropriate CCON's to be used.

-Calculates velocity potential discontinuity using subprogram INVER
to invert A matrix.

«Computes C (flutter alirforce) matrix.
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CCON5,6 and CCON1I,12
‘.Computes terms in C-matrix.

ALIST:

TEST:

*Used in retrieval of Data vector for ACALC and CMATR.
INVER:

*Used In Inverting A matrix.

Flow Diagram: A functional flow diagram of the computer program is
pictured In Figure A-I. The aerodynamic influence matrix calculated by ACALC
is inverted and used to compute generalized forces due to specified motions
of the surfaces by CMATR and the appropriate CCONs. The use of general ized
forces was found to offer considerable flexibility. For example, it Is
possible to calculate the flutter airforce matrix or the lift slopes merely
by specifying the modal displacements in the correct manner.

DATA Vector: The DATA vector contains the complete physical description
of the airfoils and of the aerodynamic elements. Each block of data is desig-
nated by a "Type" number, with provisions for |5 types stored sequentially.

A mixed integer and floating point format is used with the Integers coming
first in each line.

The first 60 words of the vector contain information required to identify
the 15 types of data stored, and the 6lst word represents the total number
of lines. The complete vector contains the following:

Identification:

NADD(1)
NFIX(i)
NFL(i) = Number of floating words per line of Type | data.

First address of Type 1| data (i = |,...,I15).

Number of integer words per line of Type | data.

NL(i) = Number of lines of Type | data.
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READ DATA

YES NO READ DATA 7
- EOF e e e
v PLJUL o -1 TO r'bl
CALL 3 |
DBLK1l ‘ NDMAT
1M CcaLL
DMATR
CALL 4 : ‘ NPD
DBLK2 CALL
DREAD 1

2
NO NTOT<6130 — i \ PRINT ]
- D-matrix

CALL

CALL
WMAT

WBLK1

J 1
hi | o>
WBLK2 ki

READ DATA L PRINT ,

\ELOCK F-29 & F-30f W-matrix
§

CALL

acarc [ .. _]
8:5,10 . CALL

ACON 5,...,12

§ALL
1 ABLK 9,10,13,14,15
PRINT 7,8,11,12,13
-matrix [*
CALL CALL
CMATR INVER
N=N+1
- 1,..,
6,9,1) CALL
YE ‘.ﬂgiiﬁaiﬁil ‘
CCON 5,6,11,12

CALL

999

7,8,11,12,13 {CBLK9,10,13,14,]15

( Enp Je—(sTOPR)

Fig. A-1 Flow Diagram
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Type |: Description of Alrfoil Surfaces

NSURL, NSURK = Surface number

if surface is symmeTric about z-axis

NSYMZ = —Ilif surface is symmetric about z—aX|s, but mo+lon Is
antisymmetric. :

0 if there is no symmetry.
NSYMY
NGEOM

same as above, but relative to y-axis

It

number of like surfaces on which aerodynamic forces are
calculated

X0 = x-origin of surface
YO = y-origin of surface
Z0 = z-origin of surface
COSG = cos g
SING = sin g

Type 2: Point Coordinates

L, K
NSURL, NSURK = Surface number

XL, XK = x-coordinate

Sending or receiving point number, | or K

SL, SK = s-coordinate

Type 5,7,11: Aerodynamic Element

L = Sending point number, |

XFOR = Most forward side, XFOR
XAFT = Most rearward side, XAFT
SIN = Inboard edge, S
SOUT = Outboard -edge,

IN
Sout
Types 6, 8, 12: Aerodynamic Element (Trailing edge)

L = Sending point number, |
NBOXES = Number of regions to be assumed in wake
XFOR, XAFT, SIN, SOUT as above
Element Types 5,6: Mid Point Constant Potentlial (MPCP)
7,8: First Order, Constant Potential (FOCP)
11,12: First Order, Zero Pressure (FOZP)
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A Vector: In order fc minimize the use of the core storage, the matrices
in complex form are all stored in a one dimensional array A€I). Table A-|
shows the composition of the A vector. The matrices stored.in AI) are
described as fol lows: :

A -Matrix

The A-matrix contains the complexfaerodynamlc matrix A(k, £), and Is
stored in complex form in the A vector with a blank column to facilitate
matrix inversion. The general term is A(L) where L = (k = 1) (NRP + |) + &.
The required total storage is 2NRP(NRP + ).

W-Matrix

The W-matrix contains the modal values of the angle of attack, ali, k),
and deflection, h(i,k), at each point k due to mode i stored in the comp lex
fqrm ali, k), h{i, k). W-matrix is stored in complex form in the A vector.

The general term of W-matrix is A(NADDW + L) where L = (MODE - |) NRP + k
and MODE takes the values | to (NMODE| + MODE2). NMODEI is the number of
values of column index i in the flutter airforce matrix C(i, j), and NMODE 2
is the number of values of column Index j in the C-matrix. |[|f NMODE2 is
equal to zero, j belongs to the same set of modes as i, and C Is a square
matrix as used in flutter calcuiations. This feature simplifies the calcu-
latlon of lift derivatives and distributions. The total storage required for
W-matrix Is 2NRP(MODE! + NMODE2).

P-Matrix

The P-matrix contains the complex matrix of potential discontinuities
P(j, k) and is stored in complex form In the A vector. |ts general terms
is A(NADDWF + J3) where NADDWF = ((NRP + [) + NMODEI + 2NMODEZ) NRP and J3 =
NRP(MODE-1) + k. MODE takes the values | to NTEMP where NTEMP = NMODE2 and If
NMODE2 = O, NTEMP.= NMODEI. Total storage required is ZNRP(NTEMP).

C-Matrix

The C-matrix contains the complex flutter airforce matrix C(i,j) and is
stored In complex vector form in the matrix A. |ts general term is
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Table A-1 Composition of A Vector

Address
A(I) NADDW —>»—  NADDW2 —>» NADDW3 —>»— NADDWF —>- NADDC = NTOT - =
Aerodynamic | Modal Modal Same as Potential | Flutter
Matrix Matrix Matrix w(i, k) Discont. Airforce
A(k,P) w(i, k) w(i, k) for matrix matrix
or for for NMODE 2 P(jr k) C(il j)
Matrix its Inverse | NMODE 1 NMODE 2 except
Imag. part
is multi-
plied by
Freq. ratio
(w/v)
NADDW = (NRP + 1) NRP
NADDW2 = NADDW + NRP X NMODEl
NADDW3 = NADDW2 + NRP X NMODE2
NADDWF = NADDW3 + NRP X NMODE2

NADDC = NADDWF + NRP X NMODE2
NTOT = NADDC + NMODEl1l X NMODE2

v X(puaddy
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A(NADDC + NTEMP(i-1) + j) where NADDC = NADDWF + NRP*NTEMP, and NTEMP, i and
Jj take the same values as above. The total storage required is 2 NMODE! (NTEMP).

Symmetry: For each surface, the condition of symmetry Is expressed by
the two numbers NSYMZ and NSYMY, each having three values. In each case,
a nonzero value indicates structural symmetry (the sign indicates whether the
downwash normal to the surface is poéifive or negative, respectively). Thus,
there can be four conditions of structural symmetry corresponding to four
values of a counter MSYM as shown in Figure A-2. For each value of MSYM, values
are assigned to the four quantities KSYMZ, KSYMY, LSYMZ, LSYMY as shown. However,

when the condition indicated is not met, the counter MSYM skips a value.

To simplify computation, contributions to the A-matrix are obtained by
assuming the receiving points fo be rotated into the four segments in turn.
The sending points remain in the principal segment. This is accomp!ished by

altering the equations developed in Sections 11 and 111 by multiplying cos g

sin g, and AA by the following factors;

cos g by KSYMz
sin g by KSYMY
AA by LSYM = LSYMZ*LSYMY*KSYMZ

Some exampjes<3f possible airfoil combinations together with the appro-
priate values of NSYMZ and NSYMY are shown in Figure A-3. It should be noted

that the symmetry conditions are supplied separately for each airfoil.

Preparation of Input Data: The input data are read by the main program
FLUTT and by subprograms DMATR or DREAD, and WMAT or WREAD. The user can choose
either DMATR or DREAD for input of Data vector and WMAT or WREAD for input of

W matrix. For rectangular elements obtained by breaking up each surface into

chordwise strips of varying width and breaking up each strip info equal size
rectangular elements, one can use DMATR by supplying the coordinates of each
strip and the number of elements to be contained in each strip. The W matrix
for surfaces divided into such rectangular elements can be easily generated
with the use of WMAT by supplyfng\fhe modes of motion for each strip. To
divide a surface into rectangular elements of nonuniform size, the user should
calculate all the required data for D vector and then read them in by .

DREAD. The corresponding W matrix should also be calculated by the user and

then read in by the subprogram WREAD.
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MSYM = 3 MSYM = &4
condition: NSYMZ =1, -1 condition: NSYMY =1, -1
NSYMY = 1, -1
KSYMZ = -1 KSYMZ = 1
KSYMY = -1 KSYMY = -1
LSYMZ = NSYMZ LSYMZ = 1
LSYMY = NSYMY n LSYMY = NSYMY
s
s
g
£
n
— — Y
n (y z_.)
N CYok? “ok
g . .
ecelving point
g
5 s
T sending point
n
v o
MSYM = 2 MSYM = 1
condition: ©NSYMZ =1, -1 condition: none
KSYMZ = -1 KSYMZ = 1
KSYMY = 1 KSYMY = 1
LSYMZ = NSYMZ L3YMZ = 1
LSYMY = 1 ' LSYMY = 1
_ Z
Multiply cos g by KSYMZ; Yok by KSYMZ
sin g by KSYMY; Zok by KSYMY

AA by LSYM = LSYMY?LSYMZ*KSYMZ
~ Figui-e A-2, Symmetry Conditions

~ )
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L
NSYMZ = 1 NSYMZ = 0
NSYMY = O NSYMY = 1
i A —— Y
‘7~___ I
- '
-—1
|
z ]
(a) Wing with Dihedral :
(b) Symmetrical Vertical Tail
\ /’
N 7/
\ //\ '
N2 NSYMZ =-1 NSYMZ = 1
o Y pand 4
4 NSYMY =-1 NSYMY = -1

‘ |
/7 4

(¢) Cruciform Tail (d) Biplane

Figure A-3. Examples of Configurations

Note: Surface for which data is supplied

----- Surface implied by symmetry conditions

_...T—- Direction of downwash
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Before attempting to make use of the computer program, one should make the
following selections:

-Selection- of. subprograms to be used: 1) Input for D vector--DMATR or
or DREAD; 2)  Input for W matrix--WMAT or WREAD; 3) Calculation of A
matrix--Select aerodynamic elements to be used.

*Desired print out of varlous matrices.

*Local coordinates for each surface.

*Planforms for each surface.

«Conditions of symmetry for geometry and motion of each surface.
*Numbers of collocation points and chordwise strips.

-Effective wake length.

-Number of repeated runs using same D vector and W matrix for different
Mach numbers and frequency ratios.

*Mach numbers and frequency ratios.

The user should also be aware of the inherent limitations in the program
as follows (as set by the DIMENSION statements):

“Number of collocation points must be < 72.
*Number of chordwise strips must be < |4.

* (Number or modes) X (Number of chordwise strips) must be < 84.
*Number of surfaces must be <4.

*Number of repeated runs must be < 10.

¥*¥Data Block F-QO¥*%

Number of cards = |; Format (Ix, 79Hbbb.....b)

The above is a sample of a title card. Anything placed on this card will
be printed as output at the beginning of each run.

*¥¥Data Block F-|¥¥*

Number of cafas = |; Format (20 I3)
This block specifies the print out of D, W, A, and P matrices.

l: .print, O0: no print

—
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[+3 4% 7+9 10+12 I13+I5

(VIC NPD NPW  NPA NPP

where IC = Card ldentification number = |
NPD = Print-out of D vector
NPW = Print-out of W matrix
NPA = Print-out of A matrix
NPP = Print-out of P matrix

¥%¥Data Block F-2%**

Number of cards = |; Format (20I3)

This block shows the number of integer words per line of Type | data.
Types not used should be equal to zero.
(ih=1,...,15).

143 4+6 ..... craseeee seeceasenacncs 37+39

r'IC NFIXT (i=1,2, ..., I5)
where IC = 2
NFiIXI = 4
NFiX2 = 2
NFIX3 =0
NFiX4 = 0
NFIX5, 7, Il, = | for the type i used

NFIX6, 8, 12 = 2 for the type | used

**¥ Data Block F-3%¥¥

Number of cards = |; Format (20I3)

This block shows the number of floating words per line of Type 1 data.

Types not used should be set to zero.

[#3 496 teeeeerccanes cesees 37+39
(iC NFL i (i =1, 2, .y 15)
where IC = 3
NFLI = 5
NFL2 = 2

NFL3, NFL4 = 0
NFL5, 7, Il, = 4 for the type | used
NFL6, 8, 12 = 4 for the type | used
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*%% Data Block F-4%¥*

Number of cards = |; Format (20I3)
This block shows the number of lines for each type of data.

[#3 496 .eeeecreeeenrnnceeenes 37039

-.(;C ONLi Cti=1, 2, ..., 15
where IC = 4
NLI = Number of surfaces
NLZ = Number of collocation points
NL3 = 0
NL4 = O

NL5 to NLI2: Equals the number of elements of the Type 5 to 12,

respectively.

**¥Data Block F-5%**

Number of cards = |; Format (20I3)

This block determines the sélections of subroutines for D vector
and W matrix and the number of repeated runs to be made with the
same D vector and W matrix for different Mach numbers and frequency

ratios.

|1+3 46 79 1012

(IC NDMAT. NWMAT NAMAT

where IC = 5

NDMAT = | if subprogram DMATR is used and 2 if subprogram
DREAD is used.

NWMAT = | if subprogram WMAT is used and 2 If subprogram
WREAD is used.

NAMAT = Number of runs to be made using the same D vector

and W matrix for different Mach numbers and

frequency ratios.
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¥%¥%Data Block F-6%*¥*

Number of cards = |; Format (201I3)
This block specifies the following items;

>3 46 79 1012 1315 . 16>18

(IC NMODE! NMODEZ NRP MTOT NTE
where IC = 6
NMODEI = Number of values of row index i in C matrix
NMODE2 = Number of values of column index j in C matrix
NRP = Number of reference points (collocation points)
MTOT = Number of chordwise strips
NTE = Number of frailing edge elements

Data Block DM-7 to Data Block DM-22 are used only when NDMAT of Block F-5

is |I.

***Data Block DMf7***

Number of cards = I|; Format (20I3)

I93 4 Boevrvereosccccsncosoasassnscacnnes
(iC (NSUR(T), I=I, NL)
where IC = 7

(NSUR(I), I = |, NL) = Surface number for each surface

NL = Number of surfaces
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*¥*XData Block DM=8%%X

Number of cards = |; Format (20I3)

93 4 B ieeeerececnsenvsocsanssssessacnsans

(Io (NSYMZ(I), I = I, NL)

where IC = 8

(NSYMZ(I), I=I, NL) I if surface is symmeiric about z-axis

-1 if surface is symmetric about z-axis, but
motion is antisymmetric

n

0 if there is no symmeiry

*¥*XData Block DM-g¥¥¥

Number of cards = |; Format (2013)

93 4 B veuereeneranerneeaneenns
{Ic (NSYMY(I), I=I, NL)

where IC = 9
(NSYMY(I), I = |, NL) = same as in Block DM-8, but relative to y-axis

*¥%*%¥Data Block DM—|Q¥¥*¥

Number of cards = |; Format (20I3)

rIC (NGEOM(I), I=1, NL
where IC = 10

(NGEOM(I), I = |, NL) = Number of like surfaces on which aerodynamic

forces are calculated

*¥*%Data Block DM-| | ¥*¥

Number of cards = |; Format (IX, I2, 4X, I3, 6FI10.5)

13 8210 11>20 v v v v v v u u .
(Ic NC -~ (X0(I), I=1, NL)

where IC = |l; NC = Card nuhber in each block (i.e., for Ist card NC = 1)
(X0(I), I =1, NL) = x-origin of surface I
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ok DM-|2%%%

Munoci of cards = |3 Format (IX, I2, 4X, I3, 6F10.5) ' o o

b 80 |20 . . . P S
NC  (YOo(I), I=1, NL)

.. IC = 12; NC = Card number in each block
(1), T =1, NL) = y-origin of surface I

o Block DM=|3¥%%
2 of cards = |; Format (IX, I2, 4X, I3, 6FI0.5)

153 8+0 11 >20 v v v v v o . .
" IC NC (ZO(I), I=1, NL)

wre IC = 13; NC = Card number in the block
I}, I =1, NL) = z-origin of surface I

2 7a Block DM 4%%¥

»f cards = |; Format (iX, I2, 4X, I3, 6F10.5)

_ 80 1> 20 L .. .. ...
T NC  (COSG(I), I=I, NL)

10 = |4; NC = Card number
5(I), I=l, NL) = cos g of the surface I

ok DM- ] 5¥¥%%
of cards = |; Format (IX, I2, 4X, I3, 6F10.5)

[ N I
NT (SING(I), I=I, NL)

i~ IC = 15; NC = card number of the biock

(SING(I), T =1, NL) = sin g of the surface I

g = angle between local normal and z-axis, positive clockwise.
- ck DM-|o**¥
- of cards = I ; Format (20I3)

4 %6 v 4 4 ¢« ¢« o o s o o
(NSURF (I), I=], MTOT
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where IC = 16
{(NSURF (I), I=I, MTOT) = Surface number of strip I

[ 2 R %)
"
\

X 3TN ] -~ N s
TrryaTa BIOCK UM=| /™

Number of cards = |; Format (20I3)

93 4 6 . ¢ ¢« « o o o o o o

[ IC (NQT(I), I=I, MTOT)

where IC = {7
(NQT(I), I = I, MTOT) = Number of elements in strip I

**%¥Data Block DM-—|8¥¥**

Number of cards = 1|; Format (2013)

I3 4 * 6 ¢ ¢ ¢ ¢ ¢ o 0.
( IC (NB(I), I =1, MTOT)

where IC = |8
(NB(I), I=1, MTOT) = Number of elements to be assumed in the wake behind
strip I

®%%Data Block DM-|g*¥*

Number of cards = MTOT/6; Format (IX, I2, 4X, I3, 6FI10.5)

I+3 810 Il > 20 . . . ...
(c NC  (SFOR(I),I = |, MTOT)

where IC = 19; NC = Card number in the block
(SFOR(I), I = |, MTOT) = Leading edge of strip I

*¥*#%Data Block DM-20%**

Number of cards = MTOT/6; Format (I1X, I2, 4X, I3, 6FI10.5)

153 810 11 »20 o . . o . ..
((c n sarT@), I=1, MTOD)

where IC = 20; NC = Card number in the block
(SAFT(I),I = |, MTOT) = Most rearward edge of strip I

®%¥%Data Block DM-2|***

Number of cards = MTOT/6; Format (I1X, I2, 4X, I3, 6F[0.5)

13 810 11520, . . . . . ..

{ IC NC (SIN(D), I=t, MIOT)
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where IC = 21; NC = Card number In the block
(SIN(L), I=1, MTOT) = {nboard edge of strip I

***Data Block DM-22%%¥
Number of cards = MTOT/6; Format (1X, I2, 4X, I3, 6F|0.5)

-3 8+I0 11-20 . . . o .
(7IC NC (SOUT(I), I=1l, MTOT)

where IC = 22; NC = Card number in the block
(SOUT(T), I=1, MTOT) = Qutboard edge of strip I

Data Block DR-~7 to Data Block DR~10 are used only when NDMAT of Block F-5

is 2.
*¥*XData Block DR-7 and DR-g8***
These blocks supply type | data. Integer words are read on cards DR-7
and floating words on cards DR-8. Repeat DR-7 and DR-8 for each

surface.

DR-7: Number of cards = Number of surfaces; Format (20I3)
1»3 46 79 |02 |35 |6+>18
(kIC IT NSUR NSYMZ NSYMY NGEOM

where IC 7
I7T =1

NSUR = surface number

NSYMZ = See Data Block DM-8
NSYMY = See Data Block DM-9
NGEOM = See Data Block DM-10

DR-8: Number of cards = Number of surfaces; Format (I1X,I2,7X,6F10Q.5)

(-3 46 Il > 20 21 > 30 31 > 40 41 > 50 5] -+ 60
( IC IT XORI16G YORIG ZORIG COsG SING
whete IC = 8

IT = |

XORIG = x-origin of surface

YORIG = y-origin of surface

= z-origin of surface
COSG = cos g
SING = sin g
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¥*%Data Block DR-9 and DR-|0¥¥*¥

These blocks supply type 2 data. Integer words are read on cards DR-9
amd £lanadlima wAarde An Aarmde ND 1IN naad <O amAd NRD_IN Lo Amab
anug 1 1vai Ills WUI UOD VIl LAl UD ViIN= U r\UPvGI WUATZ aiiud WwRnNTI1Iv 17Ol caciil

collocation point.

DR-9: Number of cards = Number of collocation points;
Format (2013)

153 46 749 10 > 12
(Ic 11 PT  NsWR

where IC = 9
IT =2
PT = Collocation

NSUR = Surface number

DR-10: Number of cards = Number of collocation points;
Format (IX, I2, 7X, 6F10,5)

1+3 46 11»20 2130
( IC IT X S

where IC 10
IT=2
x-coordinate of coliocation point

S

s-coordinate of collocation point

*%%¥Data Block DR-I| and DR-|2¥¥**

These blocks supply the data for the on-the-wing aerodynamic elements.
Integer words are read on cards DR-11 and floating words on cards
DR-12., Repeat DR-1| and DR-12 for each element.
DR-11: Number of cards = Number of elements

Format (20I3)

1+3 46 7»9
(iC IT L
where IC = 1|
IT = 5, 7, or |l depending on the selection of aerodynamic elements
L = Sending point number

DR-12: Number of cards = as for DR-ll; Format (I1X, I2, 7X, 6Fl10.5)

I+3 46 1120 "21+30 31+40 4150
_{ IC IT XFOR XAFT  SIN SOouT
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where IC = |2
IT = As in DR-I|
XFOR = Most forward slide of an element (X-Coord.)
XAFT
SIN = Inboard edge of an element (S-Coord.)

Most rearward side -of an element

SOUT = Outboard edge of an element

**%Data Block DR-13 and DR-[4%¥*¥*

These blocks supply the data for trailing edge elements.
Integer words are read on cards DR-13 and floating words on cards
DR-14. Repeat DR-13 and DR~{4 for each element.

DR-13: Number of cards = Number of trailing edge elements;
Format (2013)

I3 46 7+9 |0+12
{ IC IT L NBOXES

where IC = |3
IT = Type of data
L. = Sending point number

NBOXES = Number of regions to be assumed In the wake
DR-14: Number of cards = as for DR-I13; Format (IX, I2, 7X, 6F10.5)

3 46 11 20 21 > 30 31+ 40 41 » 50

{ IC IT XFOR XAFT SIN SOUT
where IC = |4
IT = As in DR-13

XFOR = Most forward side of a tralling edge element
XAFT = Most rearward side of wake region

SIN = Inboard edge

SOUT = Outboard edge

Data Block WM=1 to Data Block WM-6 are used only when NWMAT OF Block F-5
is |.

*¥*%Data Block WM-—|¥¥**

Number of cards = NMOMT/6; Format (iX, I2, 4X, I3, 6F[0.5)

123 810 Tl +20 « o ¢ o o o o o o &
lIC NC  (H(I), XI=I, NMOMT)
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where IC = 23; NC = Card number in the block
(H(I), I = |, NMOMT) = Deflection of strip K due 1o mode J

I = ((J=1)Y*MTOT + K)
J = Mode number
K = Strip number

NMOMT = (NMODE | + NMODE 2)*MTOT;[if NMODE2 = O, NMOMT = NMODE|¥*2*MTOT]

¥%%Data Block WM-2%¥%¥

Number of cards = NMOMT/6; Format (I1X, I2, 4X, I3, 6F10.5)

I3 80 11 >20. & v v v v @ v v v 4
( IC NC (ALPH(I), I=I, NMOMT)

where IC = 24; NC = Card number in the block
(ALPH(I), I=!, NMOMT) = Rotation about XROT for strip K due to mode J
See Block WM-] for other definitions.

**%Data Block WM-3%¥*

Number of cards = NMOMT/6; Format (I1X,I2, 4X, I3, 6F10.5)
143 810 Il > 20 . ¢« v ¢ 4 ¢« o o o &
(IC NC (XROT(I), I=I, NMOMT)

where IC = 25; NC = Card number in the block
(XROT(I), I=I, NMOMT) = Axis of rotation for strip K due 1o mode J
See Block WM-I for other definitions.

**¥Data Block WM-4¥%%%

Number of cards = MTOT/s; Format (I1X, I2, 4X, I3, 6F10.5)

{3 80 11+20 . o ¢ ¢« v ¢ ¢ o o o .
{ IC NC (SIN(K), K=1, MTOT)

where IC = 26; NC = Card number in the block
(SIN(K), K=1, MTOT) = Inboard edge of strip k

*%%Data Block WM=5¥*¥
Number of cards = MTOT/6;- Format (iX, I2, 4X, I3, 6F10.5)

{3 810 119220 ¢ ¢« o o o v o o o &
{iC NC~ (SOUT(K),K=1, MTOT)
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where IC = 27; - NC = Card number in the block
(SOUT(K), K=1, MTOT) = Outboard edge of strip K

*¥%*Data Block WM-6%%¥
Number of cards = |; Format (2013)

Y
{Ic (NSURCK) (K=1, MTOT)

where IC = 28; NC = Card number In the block
(NSUR(K), K=1, MTOT) = Surface number of strip K

Data Block WR-1 is used only when NWMAT OF Block F-5 is 2,

*¥%%Data Block: WR-]¥¥¥%

Number of cards = NRP*NMODE¥*2/6; Format(iX, I2, 4X, I3, 6F10.5)

]+3 8+I0 I-'l+20 L ) [ ] - - . .
{Ic NC  (A(I), I=I, NTOTW)

where IC = 23; NC = Card number in the block
(A(I), I=|, NTOTW) = Ith element of W matrix
NTOTW = NRP*NMODE

*¥%¥Data Block F-7%*¥*

Number of cards = NAMAT/6; Format(IX, I2, 4X, I3, 6F10.5)

-3 810 Il -+ 20 . . ¢ ¢ ¢ ¢ « o« &
{Ic NC  (RM(I), I=1, NAMAT)

where IC = 29; NC = Card number in the block
(RM(I), I=I, NAMAT)=Mach number for Ith repeated run

*¥¥*Data Block F-8**¥

Number of cards = NAMAT/6; Format(IX, I2, 4X, I3, 6F10.5)

-3 80 11 +20 . . . ¢ ¢ ¢ . .
(IC NC  (FRA(I), I=I, NAMAT)

where IC = 30; NC = card number in the block
(FRA(I), I=I, NAMAT) = Frequency ratio for Ith repeated run
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Appendix A

Example Problems.-

Example 1:. Input data for the example in Elgure A-4 is read by
using subprograms DREAD and WREAD for rectangular elements of nonuniform size.
In calculating A and C matrices, ACON5 and ACON6 and CCON5 and CCON6 were used.
The outp ~ shows the listing of D vector, W, A, P, and C matrices.

Definitlions of Modes and Aerodynamic Coefficients: The oscillating modes
considered -

3,00 ={ ' »n=
X-XROT , h =2
The aerodynamic coefficlents considered -
iy = jfs J;, (X)AP (X)dXdy
Mode m, n a h NRP
2 8 =1 m=1 0 2.0 +5
- Z p
i= =3 ———— 4 -
i=2 m=2 5o §<x .5) 1+5
~ N
' B j=! n=2 1.0 X=.5 [+5
c O
- =
=
S = Half Wing Area = 1.0
¢ = Root Chord = 1.0
APn = Pressure jump corresponding to Jn(g)
Example 2: The example illustrated in Figure A-5 shows how the input

data for-a Swept Wing with Partial-Span Flaps can be read in by using sub-
programs DMATR and WMAT. The A and C matrices were calculated by using ACONII
and ACONIZ and CCONII, CCONiI2, respectively. Portions of various output

listings are shown for reference.
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—-— SIN = 0
SOuT
| .2 (.20) I_,__S(_,O)
l §—XFOR(. 125)
q A | T f t
L ———— — =
: 2!2 _{_;(.375)
0 + | + 2 ¥ xaFt(.625)
) 39 2 : ¢
.875 | i O [ 4 |
_I_._l_.._.‘.___l/./d !
— |.._.|o I
A !
* ' : P4
—] .25 |._ .—|.25 —
5 ——

Fig. A-4 Rectangular Wing of Aspect Ratio Two,

P

itching about Midchord



Input for Example |

Appendix A

Input
EXARPLELS RECT. wliib USLING DREAD AND WREAD
1 1 31 1 1
T2 & 2 0 0 1 2 -0 =0 =0 =0 =0 =0 =0 =0 -0
3 5 2 0 0 4 4§ «g =0 =0 =0 =0 «0 «0 =0 =0
T8 1T S € C 3 2 <6-0<0<0-0-0-8 -0 <0
5 2 2 1
6 2 1 5 0
7 1.1 1 0 1 '
8 1  0,00000 0,00000 0,00000 1.,00000 0.00000
9 2 1 1 '
10 2 «37500 «10000
— 9 2 2 1
10 2 «37500 .,50000 -
9 2 3 1
10 2 37500 90000
92 & 1
10 2 «87500 25000
% 2 §5 1
10 2 87500 . 75000
i1 5 1 :
_12 ] «12500 «62500 0,00000 «20000
117 5 2
12 5 «12500 62500 20000 «80000
i1 5 3 _
12 ) «12500 62500 .80000 1,00000
13 6 4 1 i
14 [ «62500 1.12500 0,00000 50000
i ¢ 5 1
14 3 62500 1.12500 50000 1.00000
23 1 0,0p00G 2,00000 ©0,00000 2,00000 0,00000 2.,00000
23 2  0,000C0 2.0000U 0.00000  2,00000 4,00000 «,50000
23 3~ 4,0q0u0 -.50N0U 4,00000 =-.50000 4,00000 1.50000
23 4  4,000u0 1.56000 1,60000 =,12500 1.00000 «,12500
23 §  1.6puCu -.12500 1,00C00 .37500 1.00000 . 57500
29 T I 0.0pu00
30 1 0.0n0CU
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_.:_,,Qufpuf for Example |

_PRGGRAM FOR UNSTEADY. AIR FORCES. USING
QOWNWASH=VELOCITY POTENTIAL METHOD

BY J.K. HAVILAND AND Y,S. YOO = UNIV OF VA

PART 1 = READ IN W AND DATA MATRICES

EXAMPLELY RECT,.
1 1 1 1 1

—2- % 2. .0_0...

3 5 2 0 0

—4 -1 _5-.0.-0__.

WING USING OREAD. AND WREAD. ...

1-.2.=0_~0 -0 =0..~0-~0.~0.=0_-=0
4 4 ~g =0 =0 =0 =0 =0 =0 <0 -0
3—2--0.20--0.-0 .=0.~-0.~0. ~0_=0

5 2 2 1
—6- 2--1-.5..0.-0. — ... ——
DATA MATRIX ELEMENTS .
——f2— WS P2 _.2. -5 . ....91 _0 0 0-
91 0 0 0 91 1 ) 3 106 4 2 .
— 118__ =0 __~0_=0____.218. ..-0__=0  ~=0___ 1318 .~0 _~0_-0_____
118 =0 =0 -0 118 =0 =0 -0 118 =0 =~0 -0
—_ 118 _=0.._~0_~0_____118._.=0_=0.. -0___ __118_.=0_=0__-0___
118 '
77— 1 T 1 0. _1_ _
8 1 0,00000 0.00000 0.00000 1.,00000 0,00000
9__2 11 —
10 2 37500 «10000
_9 e hed b . o
10 2 37500 ‘+50000
9.2 3 1
10 2 . 37500 290000
9__ 2 & /1
10 2 «87500 225000
—9—2-_-5-
10 2 «87500 275000
11 %5 1
12 -] «12500 +62500 0,00000 20000
115 2 —_——
12 S 12500 «62500 20000 «80000
111 5 3 .. [ - —— e e - — .
12 ) 12500 62500 «80000 1,00000
13641
14 6 62500 1,12500 0,00000 50000
13 6 5. o e et e e e
14 6 62500 1,12500 «50000 1.00000
231 _ 0,00000 . 2,00000.__.0,00000 2.00000 . 0,00000... 2,00000
23 2 0,00000 2.00000 0.00000 2,00000 4.00000 =.50000
23 3 4,00000 -.50000 4,00000 50000 4,00000 1.50000
23 L] 4,00000 1.50000 1,00000 -,12500° 1,00000 ~o.12500
23 85 _1,00000__ «.12500___1,00000____,37500 ___1,00000___ ,37500Q



Cont'd

. WMATRIX ELEMENTS .. . . ...

Output for Example |

ROW COL  abAL IMAGINARY
1 . 1. . Ue. ... . . "2,VUD0000UE+0D _
1 2 U. : 2.,UD00000UE+00
1 . 3. G, .. 2.0000000UE+DQ . .
1 4 G 2.0000000VE+00
1 o) | S —_ 2«0000000VE+00 ___ . _. . ..
2 1 4,000U00U0E+UD -5.,00000000E-01
2. .2 . 4,00000000E+U0. .  ~5,0000000UE~01 —
-2 3 4,000U00UDE+UO -5.0000000UE~U1
2. . 8% 4,000000U0L+UD 1.5000000VUE+00
2 S 4,0000000U0E400 1.5000000VUE+00
B 3 1.000UC0UDBE+UO__ -1.25Q0000UE=-01 B —_—
3 2 1.000000600F+00 ~1+2500000UE~01
S 3 1.000U0000E+00 | _ =1.2500000UE-01
3 4 1.0000U0U0C+UU 3,7500000VE~01
.. . 3__..5 _ 1i.0Quuo0Uu0g+bO0 3,7500000VE-01 i
29 1 L,0puuu
30 el U.0Q0LS e m
TTPART T2 ST OFRIVE RERODYWAMIC WMAIRIX T T T
A MATRIX 1 tRP= 5 MACH NO= 0,00000 Fka= 0,00000 7
RO COL =t AL IMAGIHARY
IR S S~ Y 1922 1Y (R A Sy i 0. -
1 2 «1.2006411763L+00 0. _
1 LR LN ALY I 0.
1 y 320042504 ~01 O.
1" 577 L€.,53705959C=02 (. T T T T T T T T e
1 6 Ue 0.
2 1 ~1.556%084YE =0T U. T e
2 2 1.60YBLBTSE+UD U,
AT E T I ION IR ZS0 =01 Te
2 4 «1.95477195E=01 0.
2 5 I J73197113(-01 0. T T T T *"
2 6 U. UO
371 L .IINTIBISE=UZ e - - T T T
CTTTTTE T 3T T A G2 IR ES0E 00 U
3 4 -5.3“789016[-02 Uo _
‘3 s Tl 08162 Y1E~CL U T
3 6 . U O,
R S NS T 1 5 TR S 0. T i
y 2 -2 e371e0394E-01 0.
Y ¥ T o1.9%063241C0-08 0. -
4 [ 1,571372436£+400 0. o
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Cont'd Output for Example |
u 5  aze91080Y80L=01 Ce
4 6 Le U.
5 1 TlZ 3788 T1IIREST2 0. TemTrmTT
9 2 ccJBNEUS2TIL=01 U
T T TR T T T I R19Gu bt =U2 0. -
9 4 meH1UCE9BNE=-01 Ce
5 5 0T 1.9 RGEs3EF0U 0. T
5 6 Ce Ue )
PART 3=DERIyL CrATRIX

LISTING OF FOTFLLTiAL DISCONTINLLITIES

" ROW COL mb AL~ T TTTTUTTTIMAGIARY T T
b 1 1.010091U1L+UC Ue
G 6ohGo21lb-ud U -
1 3 t. o 6072H7128 -1 Oe
T T T 1,011305406E+4 60 C. o o
1 5 8.57H13173C=01 e
TCNATRIXTFOR = 1 -
MACH NOe= 40000V FiRA= 0.00000
ROw coL =tAL IMAGIIARY
UL T T T e 6690307400 0. T
2 1 -1.36537605L+00 e -
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1 | N A

SFOR(1)

/ !

| X (1)
m

/ SAFT (1)

/. - -

[
///*/72 1.616
3

(P LA

A e SINCD)
74 llf— SOUT(1)
A b
—

B
- | .0 ———————]

m\\

Control Surface Chord = .712 x half local chord
Wing Aspect Ratio = 2

Wing Taper Ratio = .2378

Leading Edge Sweep Angle = 60 deg.

Fig. A-5 Chordwise Strip Arrangement for a Swept Wing
Partial-Span Flaps



Appendix A

Definitions of Modes and Aerodynamic Coefficients:

where AP,

Jn(l) = XX

1

1

XX,

i,

1

S

The oscillating modes considered:

For Wing
For Wing

For Control Surface,
For Control Surface,

1
C; .5 =-2+S-_SSJm(gc_) AP (X)axdy

s D7
s D=
n=3
n=h

The aerodynamic coefficients considered:

pressure jump corresponding to Jn(§)

s = half span
S = half wing area
Mode { m, n H(Z) | Strips |ALPH(I) |Strips ROT(I) | Strips
i=1 | m=1 2 16 | o 146 0 16
SE|= | 0 we | 2 1+6 | .808 1+6
e % 0 >4
i=3 m=3 -g- 5+6 0 1+6 0 1+6
0 0 1k
1-+k
e - 2 1.5153 5
- m=h 0 6 | g 5+6 _|1.7201 6
J= n=2 16 ] .732 1+6 .808 16
SR 1%
5 % i= n=3 1.0 5+6 3] 16 0 1+6
0 14 0 1+h
- - 1.5153 5
3 n=h 0 146 1.0 5+6 1.7001 2

- 146




Imput for Example 2

EXAYPLE 2

SWEPT WING WITH

Appendix A

CONTROL SURFACE,NRP=1#

1 1 1 0 1

2 4 2 =0 =0 =0 0 <0 =0 =0 =0 1 2 =0 =f) -0

3 S 2 -0 <0 -0 =0 -0 =0 =0 =0 & 4§ =0 -0 =0

4 2 14 =0 =0 =0 =0 =0 =0 «0 =0 10 4 =0 -0 -0

5 1 1 5

6 4 3 1% & 4

7 1 2
8 1 1 -

9 0 0

10 1

11 1 =0,00000 -0.,00000

12 1 -0,00000 <=0.00000

13 1 ~0,00000 -0.00000

14 1 1,60000 1.00000

15 1 -0.00000 -0.00000

14 1 1 1 1 2 2

17 3 2 2 3 2 2

18 16 0 0 16 11 11

19 1 34540 .86600  1.21240 1.55880 1,51540  1.72010
2n 1 1,71360  1.5154%0 1.72018 2,.05490 1,85990 1.95750
21 1 0.00000 .40000 .62000 .A8000 .4000D «562000
22 1 . 40000 .62000 .84000 1.00000 .62000 .84000
23 1  2,00000 2.00000 2,00000 2.nnA00 2,00000 2,00000
23 5 <0.,00000 -0.00000 ~0.00000 =0.n00000 <=0.000N0 «0.00000
23 5 w0 00000 -0.00000  ~0.00000  ~0.00080  2,00000  2.06006
23 4 «0,00000 ~0.00000 =0.00000 =-0.0G000 =0,00000 =0,00000
23 5 =-0,00000 -0,00000 =0.00000 -0,0n000 =0,00000 -0,00000
23 6 -0,00000 -0.00000 ~0,00000 <G.n0no00  1.,00000  1,00000
23 7 =-0,00000 -0,00000 =-0,00000 <0,00000 =-0,00000 =0,00000
24 1 -0,00000 -0.,00000 =-0,00000 <=0,00000 <-0,000nC =0,00000
24 2 _2,00000 2.00000 2,00000 2,00000  2,00000  2,00000
24 3 =0,00000 -0,00000 -0.,00000 =0.00n00 =0,00000 =0,00000
24 4 =-0,00000 -0,00000 ~0,00000 <~0,00600 2,00000  2,00000
24 5 73200 73200 .75200 . 732200 . 73200 . 73200
24 6 «0,00060 -0.00000 =0.00090 =0,PNA00 =0.0NON0C =0,00000
24 7 -0,00000 <~0.00000 =~0.00000 =0.nN000  1.00000  1.00000
25 1 _ ~0,0p008 =-0.00000 =0,00000 =-0,00000 =0,00000 =-0,00000
25 2 .80800 .80800 .80800 LBNADD L 80800 .80800
25 3 -0,00000 =-0,000n0 ~0.000006 -n,08000 =-0,00000_ -0,00000
25 4 <«D,00P00 -0,00000 <=0,000060 <=0,0n000  1.51530  1.72010
25 5 » 80800 .80800 -80800 -8N800 .,80800 280800
25 6 =0,00000 =0,00000 =0,00000 =0.00N00 =0,00000 =0,00000
25 7 -0,008008 -0,00000 -0,00000 =0.00000 1.51530 1.72010
26 1 0,00000 LH0000 262000 -A3000 40000 262000
27 1 40000 262000 .84000 1,00000 62000 .54000
28 1 1 1 1 2 2 ~
29 1. D,0000GO 250000 2700600 -ANNBD 290000

30 1 1.00000 1.00000  1.00000 1.00000  1.00000
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Qutput for Example 2

PROGRAM FOR UNSTEADY AIR FORCES USING
DOWNNASH-VELOCITY POTENTIAL METHOD

- Appendix A

BY JeKe HAVILAND AND YeSe YOO = UNIV OF VA

PART 4 ~ READ IN W AND DATA MATRICES

DATA MATRIX ELEMENTS , _ )
2 & 5 2 80 2 2 14 1367 =0 S0759
136 <0 <=0 =0 136 =0 =0 =0 136 =0 =0 =0
136 =0 =0 =0 136 -0 =0 =0 136 =0 =0 =0
136 -0 =-0- -0 136 1 & 10 186 2 4 &
216 -0 <0. =0 210 -0 =0 =0 210 -0 -0 =0
210
T 1 1 6 1 | T
't =0,00000000 ~0,00006800 -0.00000000 1.00000000 =0.000000
T 2 1 40 1 o
i <=0.00000000 =0,00000000 =-0.00000000  ~1.00000000" =0.,000000
2 1 1 . '
2  .68820000 +20000000
2 2 1
2 1.14393333 «20000000
e
2 1.10952500 «51000000
2 & 1 , ,
2 1.43422500  .51000000
2 5 1 o
2 1.40278750 «73000000
2 6 1
2 1.65663750  «73000000
2 7 1 T
2 1.68282500  .92000000
2 84 1
2 1.84819167  .92000000
e 2A8IA18T . e e e
2 1.64458750 «51000000
2 10 2 ‘
2  1.80912500 «73000000
2 11 1
2  1.59966667  .20000000
2 12 1
2 2.01355833 «92000000
2 13 2 .
2  1.98908750 « 51000000
2 14 2
2 2.04652500 .73000000 o
1 N - - -
11 + 46033333 +91606667 0,00000000 40000000
11 2
11 +91606667 1.37180000 0.00000000 «40000000
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Appendix A
Cont'd Output for Example 2

~ WMATRIX ELEMENTS

ROW COL REAL IMAGINARY
1 1 -0 " 2+00000000E+00
1 2 -0. ‘200000000E+00
i 3 -u. 2.00000000E+00
1 L -0 2.00000000E+00
1 5 =0, 2.00000000E+0C
1 6 -0. 2.000000G0E+00D
1 7 -0, 2.00000000€E+00
1 8 -0, 2.00000000E+00
i 9 -0 2.00000000€E+00
1 10 -0, 2.00000000E+00
1 11 =-0. 2.00000000E+00
1 12 -0, 2.00000000E+00
T 13 -0, 2.00000000E+00
1 14 =0 2.00000000E+00
2 1 2.00000000€+00 -2.39600000£-01
2 2 2.00000000E+00 6.71866667E-01
2 3 2.00000000E+00Q 6.03050000E~01
2 L 2.00000000E+00 1.25245000E+00
2 5 2.00000000€E+00 1.18957500E+00
2 6 2.00000000E+00 1.69727500E+00
2 7 2.00000000E+00 1.74965000E+00 -
2 8 2.00000000€E+00 2.08038333E+00
2 9 2.00000000E+00 1.67317500E+00
2 10 2.00000000E+00 2.00225000E+00
2 11 2.00000000E+00 1.58333333E+00
2 12 2.00000000E+00 2+41111667E+00
2 13 2.00000000E+0GC 2.36217500E+00
2 14 2.00000000E+00 2.47705000E+00
3 1 -0 0.
3 2 =0. Oe
3 3 =0 00
3 b -0 O
3 5 0. 0.
3 6 -0 G.
3 7 '0_. 0.
3 8 '0. 0. )
3 9 -0. 2.00000600E+00
3 10 -0. 2.00000000E+00
3 11 -0, 0.
3 12 -0 1 IS '
3 13 -0, 2.00000000E+00
3 14 -0, 2.00000000E+00
'0 1 -0. 0. .
b 2 =0 0.
[ 3 -0 T Do -
[ 4 0. 0.
& 5 -0. O.
L 6 =0, 0.
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Appendix A

Cont'd for Example 2
PART 2 - DERIVE AERODYNAMIC MATRIX

FRA="1,00000

TATMATRIX 1 NRP= 14 MACH NO= 70000
ROW COL REAL IMAGINARY

1 1 1.47645344E+00 7.40374286E~-03
b | 2 -2.30407783E-01 9,50228066E=02
i 3 ~4,92222006E-02 2+38331129E-02
i 4 -8.88720944E-03 1.29734819E-02
1 5 =5.91692197E-03 9.19569541E-03
1 6 =7.723687T77E-04 5.73546826E-03
i 7 ~2.04522320€E-05 2.46429225E~03
1 8 5.61022988E-04 1.81960463E-03
1 9 =9.91527271E-04 4.87913843E-03
1 10 3.61765554E~-04 2.18064490E~-03
i 11 -1.,2L052829E-04 3.34679343E-02
1 12 3.22993542E-03 3.31610288E-04
1 13 4,02740113E-03 4,02313751E-03
i 16 5.36009830E~-03 7.69676263E-04
1 15 0. 0.

2 1 ~2.04411530E-01 -4,33756905E-02
2 2 1.47645344E+00 7.40374286E-03
2 3 ~2.96346732E-01 2.10531821E~-03
2 4 -1.01923316E-01 2.55039169E~-02
2 5 -3.68973917E-02 1.24130106E-02
2 6 -1.34087399€E-02 1.04745443E-02
2 7 -4.03207363E-03 4414043549E-03
2 8 -2.02912877&-03 3.6144L3247E-03
2 9 -1.51234926E~-02 1.05108725E-02
2 10 =3.33496549E~-03 4o.45918174E-03
2 11 -2.15677709E-01 1.25451330E~-01
2 12 3.26458742E-03 5.51131065E-03
2 13 -3.70683910E-03 1.66086156E~-02
2 14 4o38441613E-03 T1.09612281E-02"
2 15 0. 0.

3 1 -1.46780441E-01 -2.72107623E-02
3 2 =1.06648139E+00 6.61679208E-03
3 3 3,20433063E+00 2.25398425E-03
3 o -1.65627950E-01 3.78511216E-02
3 5 -8.92789699E-02 2.40201301€-02
3 6 -1.52776211E-02 1.18819624E-02
3 7 -4,77809758E-03 Lo74043228E-03
3 8 -2.04304184E-03 3.73013038E-03
3 9 -1.30731458E-02 9.95308345€E-03
3 10 -3.08981740E-03 4.,42260538E-03
3 I1  -9.07982028E-02 8,15845866E-02
3 12 3.20195257E-03 5.04209210E-03
3 13 -1.84017549E-03 1.41290677E-02
3 14 4.58966359€E-03 9.57498621E-03
3 15 0. g.

4 1 -3.88413133E-02 ~1.53173113E-02




Appendix A

Cont'd for Example 2

'PART 3-DERIVE CMATRIX

LISTING OF POTENTIAL DISCONTINUITIES

ROW  COL REAL IMAGINARY
1 1 7.19240047E-01 =1.96046962E-01
1 2 1.12190693E+00 6+19647631E-02
13 7.82588972E-01  4,45566363E-02
— 1.11157379E+00 2.77268333E-01
1t 5 7.49497603E-01 1.90192592E-01
1 6 9,29313913E-01 3.40077119E-01
17 5.99494642E-01 2.43762016E-01
1 8 6.58601669E-01 3.10765401E~01
1 9 1.17338193E+00 3.57908726E-01
1 10 9. 74568491E-01 4.05036350E-01
1 11 1.32432438E+D0 3.45992226E-01
1 12 6.74430936E-01 3.17596219E-01
1 13 1.24778906E+00 2.89990190E-01
1 16 1.00525883E+00 3.73063626E-01
21 2,28537254E-02  =1.00678125E-02
2 T2 6.94409307€-02 1.85305132E-02
2 3 4.68362780E-02 1.23600268E~02
2 8494 395525E~02 9.72468758E-02
2 5 5.83969759E-02 5.76615346E-02
2 6 8.08251905E-02 2.00663205E-01
2 7 5,21469123E-02 1.11077066E-01
2 8 5.64875102E-02 1.93862280E-01
2 9 9.92489587E~02 4.33071999E-01
2 10 7.97854832E-02 4.95524806E-01
2 11 1.12070872E-01 1.21716905E-01
2 12 6.84566594E-02 2.20200364E~01
2 13 1,26839334E-01  5.48240810E~01
T2 1 1.15338995E-01 5.66342821E-01
3 1 =3,31905867E-03 -2.68749724E-02
3 2 4.05511239E-02 -6.60891619E-02
3 3 2.71556190E-02 -4.47067358E-02
3 4 1.26420457E-01 -6.43118486E-02
3_ 5 7.66394524E-02  ~4,34688242E-02
3 6 2.27800481E-01 -2.61098239E-02
3 7 1.28759268E-01  =-2,07230550E-02
3 8 2.13937738E-01 2,25854757E-03
3 3 4.66146099E~01 =7,67512014E-03
3 10 5.23098757E-01 3.74847134E-02
3 11 1.59097132E-01  -7.80808271E~02
3 12 2.4L860925€E-01 7.19108775€E-03
3 13 5.92013163E-01 1.00081713E-01
3 14 6.07729750E-01 8.19817326E-02
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Appendix A
Cont'd for Example 2

CMATRIX FOR N= i
TMACH NO.=" 70000 FRA= 1.00000

ROW CoOL REAL IMAGINARY
1 1 1.93944G33E+00 2042293213E+00
1 2 =3.84698368E-02 7.71292667E-01
1 3 T.67700013E~-01 3413311215E~01

—2 1 2.2361554BE-01 1.,32273833E+00° T

2 2 =1.,27653711E-01 5.68402451E-01
2 3 5.33188544E~01 3.47877202E~01
3 1 8.43453971E~-01 6.39851554E-01
3 2 =6.05133618E-02 5.13395599E~01
3 3 4.95997098E-01 2.54582146E~01
) i 2.10508664E-02 8.95289405E-02 T
b 2 =1.89865173E-02 3.38392790E~02
b 3 2.73564388E-02 4+.14206999E~-02




nionoon

——..READ_(5,700) _

Appendix A
Listing of Program FLUIT Pl

PROGRAM FLUTT (INPUT OUTPUT TAPES=INPUT+TAPE&=0UTPUT) ___
DIMENSION DATA(800 )cRH(lO)oFRA(lO)'NVECTts)vVECT(5)
REAL NKL -
COMPLEX A(6130) .
EQUIVALENCE (NDATA+DATA)
COMMON/BLOCKA/NDATA (800 )¢AsNRP+RMeFRA+DERS,0C+ALSQ+SOAL
_COMMON/BLOCKR/XKQL 1 SKOL +LSYMsNPLANE 4Ny NKL -
COMMON/BLOCKC/NVECTVECT
CALL FTNBIN(C+0+0) . :
**t****t************************************t*
&« PROGRAM FOR UNSTEADY AIR FORCES USING *
* DOWNWASH=-VELOCITY POTENTIAL METHOD %
_* BY JeKe HAVILAND AND Y.S. YOO = UNIV OF VA *
t**#*************************************#****
2 DO 3 J=1+6130
3 A(J)={0440)
DO 4 J=1.61
4 NDATA(J)=0
IF(EOF+5) 99945
S READ(%¢800) IC+NPD+NPW+NPANPP
IF(IC,NE.1) GO TO 999
WRITE(6+820)
WRITE (64700)
WRITE(6+¢800) ICsNPDsNPWeNPANPP

PO S .

——— 25 NDATA(4*J+1)=(NDATA (4%

— .WRITE(6+105)

READ(5+800) ICs(NDATA(J) 1J=245644)
WRITE(6+800) ICe(NDATA(J) 1J=2458+4)
IF (IC.NE.2) GO TO 999
READ(5+800) ICs(NDATA(J) +J=34¢59¢4)
WRITE(6+600) ICe (NDATA(J) 1J=3159+4)
_IF(IC.NE,3) GO TO 999 D .
READ(54800) TCs (NDATA(J) v J=t16014)
WRITE(6+800) ICs (NDATA(J)sJzbeE0ol)
IF(IC,NE,4) GO TO 999
READ(5¢800) IC+NDMATNWMAT NAMAT
WRITE(64800) IC/NDMAT NWMAT,NAMAT
_IF(IC.NE.5)_GO TO 999 . _. I
READ(5+800) ICyNMODE1¢NMODE2+NKP+MTOTNTE
WRITE(6+800) ICvNMODEL«NMODE2+NRP+MTOTNTE
IF(IC.NE.6) GO TO 999
NDATA(1)=62
DO 25 J=1+15

J=2) $NDATA(4%J=1) ) *NDATA (4] 4.
INDATA (4%J=3)
IF (NDATA(61).LE,800 ) GO TO 30

153



Appendix A
Cont'd for Program FLUTT

105 FORMAT(2X*LINE COUNT EXCEEDS STORAGE FOR DATA MATRIX=*)
GO 70 999 '

30 IF (NPD J.EQ.0) GO TO 35
WRITE (64106) (NDATA(K)+K=1+61) .

106 FGRMAT(1X* DATA MATRIX ELEMENTS*/(4Xe4I4s4XeUIGe4Xo4I4))

35 GO TO (110+220.13504140)NDMAT

110 CALL DMATR(MTOT+NPD«NTE)
GO TO 500

120 CALL DREAD (NPD)
60 TO 500

130 CALL DBLK1
GO TO 951
140 CALL DRLK2
GO 1V 951

500 NMOLF=NMODE1+NMODE2
NTOTW=NRP*NMODE
N1=HNRP+1
NADDW=N1%NRP
NSIZE1=NRP*NMODE1
NADDW2=NADDW+NSIZE]L
IF(NMODE2.NE.O) GO TO 510
NTEMP=NMODE1
NSIZE2=NSIZE1
GO0 TO 520

510 NTEMP=NMODE2
NSIZE2=NRP*NMODE2

520 NADDW3I=NADDW2+NSIZE2
NADDWF=NADDW3+NSIZE2
NCSIZE=NMODE1*NTEMP
NADDC=NADDWF+NSIZE2
NTOT=NADODC+NCSIZE
IF(NTO1.LT.11000) 6Q TO 10
WRITE(6+850) NTOT
GO T0 999

10 GO TO (210+22012304240) NWMAT

210 CALL WMAT(NMOOE+MTOT+NADDW«NTOTW)
60 TO 310 )

220 CALL WREAD{(NMODE +NADDWNTOTW)

60 TO 310

250 CALL WBLK1
GO 10 953
240 CALL WRLK2
60 TO 953
310 IF(NFH.EW:D) GO TO 45
WRITE(64840)
LALL ALIST {AsNADDW,NMODE NRP)

45 READ(5+810) ICsNCe(RM(I)+I=1+NAMAT)
WRITE(6+810)ICeNCe(RM(I)+I=1+NAMAT)
IF(IC,NE.29) GO TO 999
READ(5¢810) ICNCe{FRA(I)+vI=1¢NANAT)
WRITE(6+810)ICNCy(FRA(I)vI=1+NAMAT)
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IF(IC.NE.30) GO T0O 999
DO 940 N=1.NAMAT
WRITE(6¢850)
WRITE(6+860) NyNRP+RM(N) «FRA(N)
DO 50 J=1+NADDW
~ CALL ACALC
50 A(J)I=(0.40U,)
CALL ACALC(MTOT)
IF(NPANE.0O) CALL ALIST(A+O0+NRPsN1)
CALL CMATR(N1+NTOTWNADDW+NMODE1+NMODE2+NTEMP+NSIZEL
1NSIZE2+NCSIZE «NADDC +NPP «NADDW2 +NADDW3 + NADDWF )
700 FORMAT (1Xs79H
1
800 FORMAT(1X+12+2013)
810 FORMAT(1X eI2+4Xe13+6F10.5)
820 FORMAT(2X//1X*PROGRAM FOR UNSTEADY AIR FORCES USING*/
12X% DOWNWASH=VELOCITY POTENTIAL METHODx//
21X*BY J.K. HAVILAND AND Y.S, YOO = UNIV OF VAx//
830 FORMAT(1X*STORAGE CAPACITY FOR TOTAL A MATRIX ISx*¢I6)
840 FORMAT(1X//* WMATRIX. ELEMENTS*//)
850 FORMAT (2X//1X* PART 2 ~ DERIVE AERODYNAMIC MATRIX*/)
860 FORMAT(1X*A MATRIX*¢I3¢% NRP=*¢I3¢% MACH NO=*+F8e5e%
1IFRA=*4F8,5)
940 CONTINUE
950 CONWTINUE
951 CONTINUE
953 CONTINUE
GO TO 2
999 CONTINUE
STOP
END o

SUBROUTINE DMATR(MTOT+NFD«NTE)
DIMENSION UATA(800 )eXO(4)oYO(H4)+Z20(l4)+COSG(Y4) +SING(H)
1DELX(14)

DIMENSION RM(10)+FRA(10)

COMPLEX A(6130)

DIMENSION NSUR(4)eNSYMZ(4) o NSYMY (4) sMGEOM(4)
DIMENSION SFOR(1U4)+«SAFT(14)SIN(L1Y)+SOUT(14) DELS(1Y)
DIMENSION wNos(14)+NQT(14) «NSURF(1H4)

EQUIVALENCE (NDATA.DATA)

COMMON/BLOCKA/NDATA(800 ) ¢AJNRPyRMyFRAVDERS+0C+ALSQ@ySQAL

DO. 950 J=1.15

NADD=NDATA(4%J=3)

NFIX=NDATA(4*J=2)

-NFL=NDATA(Y4%xJ=~1)

NL=NDATA (4xJ)

IF(NL.,EGQ,0) GO TO 950
GOTO(110+1154120¢120412041204¢220¢120+120¢120+120¢120,
112041204120 ) 4J
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110 READ(5.600) IC-(NSUR(I) I=1» NL)
WRITE(6+800) ICo(NSUR(I)vI—lvNL)
IF(IC,NE. 7) STOP
READ(5+800) IL«(NSYMZ(I)eI=1eNL)
WRITE(6+800)ICs (NSYMZ(I)eI=1eN})
IF(IC.NE. 8) STOP
READ(5+800) IC«(NSYMY(I)eI= 1vNL)_
WRITE(6¢800)ICy (NSYMY(I)eI=19oNL)
IF(IC.NE, 9) STOP
READ(5+:800) IC+(NGEOM(I)eI=1+NL)
WRITE(6+800)ICs (NGEOM(I)+I=1eNL)
IF(IC,NE.10) STOP
READ(5+¢810) ICeNCo(XO(X)eI=1+NL)
WRITE(6+¢810)ICNCo(XOCI)oI=1+NL)
IF(IC.NE.11) STOP
READ(5¢810) ICeNCo(YOUL)eI=1eNL)
WRITE(6¢B10)ICINCe(YO(I)oI=1NL)
IF(IC,NE,12) STOP
READ(5¢810) ICoeNCo(Z20(I)eI=1NL)
WRITE(6+810)ICeNCs(ZO(I)oI=1eNL)
IF(IC.NE.13) STOP
READ(5+810) IC, NC+(COSG(I)sI=1sNL)
WRITE(6+4610)ICINCoe(COSG(I)evI=1NL)
IF(IC,NE.14) STOP
READ(5+810) IC+NC+(SING(I)sI=1eNL)
WRITE(6¢810)ICyNCo(SING(I)oI= 1 NL)
IF{IC.NE.15) STOP
60 TO 500

115 READ(5:800) IC«(NSURF(I)eI=1sMTOT)
WRITE(6¢800)ICe (NSURF(I)eI=1eMTOT)
IF(IC.NE«16) STOP
READ(5+800) ICy(NQT(I)eI= 1+MTOT)
WRITE(6¢800)IC«+(NQT(I)eI=1eMTOT)
IF(IC.,NE.17) STOP
READ(5+800) IC+(NB(I)eI=1eMTOT)
WRITE(6¢800)IC«+(NB(I)+I=1+MTOT)
IF(IC.NE.18) STOP
ND=0
DO 10 I1=1.MTOT+6
I2=11+5
IF(12,6T.MTOT) 12=MTOT
READ(5¢810) IC+NCy(SFOR(I)sI=I1+12)
WRITE(64¢810) ICNCs(SFOR(I)sI=I1+12)
NO=ND+1

10 IF(IC, NE,19,0R,NCo.NE,ND) STOP
ND=0
00 20 I1=1.MTOT+6
I12=11+5
IF(I2,GT.MTOT) I2=MTOT
READ(S5+810) IC«NCoe(SAFT(I)vI=11:12)
WRITE(6+810) ICNCy(SAFT(I) I=I1+12)
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NO=ND+1
20 IF(IC.NE.20.0R.NCNE.ND) STOP
____ND=0O
T DO 30 I1=1eMTOTe6
12211+5
IF(I2.GT.MTOT) 12=MTOT
READ(5+810) ICeNCe(SIN (1)01811012)
WRITE(6¢810) ICoNCo(SIN (I)elInltel2)
. _ND=ND+1
30 IF(IC.NE.21.0R,NCoeNE.ND) STOP
ND=0
00 40 I1=1.MTOT.6
1221145
IF(I2,6GT.MTOT) 12=MTOT
____READ(S5+810) ICeNCe(SQUT(I)eI=11.12)
WRITE(6+810) ICeNCo(SOUT(I)eI=I1eI2)
~ ND=ND+1 _
40 IF(IC.NE.22.0R+NC.NE.ND) STOP
DERS=SOUT(1)=SIN(1)
IF({IC.NE.22) STOP

120 GO TO 500 .

500 DO 940 NLINE=1.NL
K1=NADD+(NFIX+NFL)=(NLINE=1)
K3=K1+NF1IX
K2=K3=-1
KU=K2+NFL
60 TO(210022002§ql210025002600250'26002500260025002600

TTTT133003400350)0d

. 210 NDATA(K1)=NSUR(NLINE)

NOATA(K1+1)=NSYMZINLINE)

NODATA(K1+2)3NSYMY(NLINE)

NDATA(K2)=NGEOM(NLINE)

DATA(K3)=XO(NLINE)

DATA(K3+1)=YO(NLINE)

DATA(K3+2)=20(NLINE)

DATA(K3+3)=COSG(NLINE)

DATAIK4)=SING(NLINE)

GO TO 32

220 LINE=0 _ I
DO 930 M=1.MTOT
NQ=NQT (M)

DO 920 IQ=1+NQ
IF(IQ.LT«NQ.,OR +NB(M).LT.1) GO TO 222
IF(NLINE.LE. (NRP«NTE)) GO TO 930
LINE=NLINE
NTB=0
00 4 MTEST=1.MTOT
IF(NB(MTEST).GE.1) NTB=NTB+1
IFINTB.EQs (NLINE=NRP+NTE) )M=MTEST
IF(NTB.EQ. (NLINE=NRP+NTE) )60 TO 224

4 CONTINUE
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222 LINE=LINE+1 _
IF(LINE.NE.NLINE) GO TO 920
224 DELX(M)=(SAFTAM)=SFOR(M))/NQT (M)
DELS{M)=SOUT(M)=SIN(M)
ITYPE=J-]
GO TO(420+430e44045094600450+9460+4500460+
1450+460¢530¢5404550)+ITYPE
230 GO TO 220
240 GO TO 260
2950 GO TO 220
260 NLINE=NRP=NTE+NLINE
GO Tu 220
330 GO TO 950
340 60 TO 950
350. 60 TO 220
420 NDATA(K1)=LINE
NDATA (K2 )=NSURF (M)
DATA(K3)=SFOR(M)+(,75+ (IB=1))%DELX(M)
DATA(K4)=SIN(M)+DELS(M)*x,5
GO TO 32
430 GO TO 450
43u GO TO 460
450 NJATA(K1)=LINE
XF=SFOR(M)+DELX (M) *,25
DATA(K3I)=XF+(IQ=1)*DELX (M)
DATA(K3+1)=DATA(K3)+DELX (M)
DATALKA+2)=SIN(M)
DATA(KY)=S0UT (M)
IF(IQ,EQ.,NQsAND.NB(M).LE,1) GO TO 452
G0 TO 453
4592 DO 6 MT=1L+MTOT
IF(SIN(MT) s LToDATA(KY) e ANDeSOUT(MT) eGTDATA(K3+2)
LeANDeMT«GT,M) GO TO 5
GO TO &
5 DATA(K3+1 )=SFOR(MT)+(SAFT(MT)=SFOR(MT))/(NGT{MT)*4)
GO TO 453
6 CONTINUE
453 GO TO 32
460 NUDATA(K1)=LINE
NDATA(K2)=NB (M)
DATA(K3)=SAFT(M)=DELX(M)%,75
DATA(K3+41)=DATA(K3)+DELX(M)XxNDATA(K2)
DATA(K342)=SIN(M)
DATA(KY4)=SQUT (M)
NLINE=NLINE=-NRP+NTE
60 TO 32
530 GO TO 950
540 GO TO 950
550 GO T0 450
32 IF(NPDWNE«0) WRITE(6+107) J « (NDATA(K) sK=K1K2)
107 FORMAT(3X714)
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IF(NPDJNE.O) WRITE(6¢109) J +(DATA(K) K=K3,KY4)
109 FORMAT(2X+I345F13.8)
800 FORMAT(1X+I2¢201I3)
810 FORMAT(1XeI2¢4X113¢6F10.5) _
GO TO 940
920 CONTINUE
930 CONTINUE
940 CONTINUE
950 CONTINUE
__ _RETURN_
END

SUBROUTINE DREAD(NPD)
DIMENSION DATA(800 )eRM(10)+FRA(10)
. COMPLEX A(6130)
EQUIVALENCE(NDATAWDATA)
COMMON/BLOCKA/NDATA (800 ) +A+NRPyRMyFRAJUERS OC+ALSQ+SQRAL
35 DO 5 J=62+¢800
S NDATA(J)=0
ND1=6
ND2=7
DO 50 J=1+15
NADD=NDATA(4%xJ=3)
MFIX=NDATA(4%J=2)
NFL=NDATA (4xJ=1)
NL=NDATA (4*xJ)
IF(NL.EG.O) GO TO_ 50
ND1=ND1+1
ND2=ND2+1
DO 40 NLINE=1NL
K1=NADD+ {(NFIX+NFL)*(NLINE=1)
K3=K1+NF1IX
K2=K3-1
Ky=K2+NFL
READ(S+800) IC+IT+(NDATA(K) sK=K1e¢K2)
IF(IC.EQ.(ND1 )+AND.IT.EQ.J) GO TO 37
WRITE(6¢108) JoIT
108 FORMAT(1IX*TYPEx¢I3+%xCARD OUT OF ORDER READ FIXED%+13)
GO 70 999
37 IF(NPDNE.0) WRITE(6¢800) IC+ITs (NDATA(K) K=K1eK2)
READ(S+810) IC«ITe(DATA(K) +K=K3:KY4)
DERS=DATA(KY4)=-DATA(K3+2)
IF(IC.EQ.(ND2 )+sAND«1IT.EQ.J) GO TO 38
WRITE(6¢110) JeIT
110 FORMAT(1X*TYPE*+13+%CARD OUT OF ORDER READ FLOAT*.I3)
60 T0 999
38 IF(NPD.NE+0) WRTITE(6+810) IC IT(DATA(K) +K=K34K4)
40 CONTINUE
ND1=ND1+1
ND2=ND2+1
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CONTINUE

FORMAT (1X+I12¢2013)

FORMAT (1X+12+4Xv1346F1045)
CONTINUE

RETURN

END

SUBROUYTINE WMAT (NMODE+MTOT+NADDW«NTOTW)

DIMENSION DATA(B800 )¢ NSUR(14)+SIN(14)+SOUT(L14)+XROT(84)
DIMENSION RM(10)+FRA(10)+H(8Y4) ALPH(8%&)

COMPLEX A(6130)

EQUIVALENCE(NDATADATA)

COMMON/BLUCKA/NDATA (800 ) +AsNRP«RMeFRAYDERS+OC+ALSQ¢SQAL
DO S J=1+«NTOTW

A(NADCW+JI=(0)

NMOMT=NMODE=MTOT

ND=0

00 23 I1=1.NMOMT.6

12=114+5

IF(12,6T,NMOMT) I12=NMOMT

READ{(S+810) IC«NCe(H(1)9I=11,+12)

WRITE(6¢810) ICyNCs(H {(I)eI=I1012)

ND=ND+1

IF(IC.,NE.23,0R.NC,NE,ND) STOP

ND=0

DO 24 I1=1.NMOMT.6

24

25

26

12=1I1+5

IF(I2,6T.NMOMT) I2=NMOMT

REAUD(5+810) IC+NCo(ALPHII)+I=I1I2)
WRLITE(6¢810) ICNCo(ALPH(I) I=I1+12)
ND=ND+1

IF(IC.NE+24.0R.NC.NE.ND) STOP

NU=u

00 25 I1=1,NMOMTe6

I12=11+5

1IF(I2.GT.NMOMT)I2=NMOMT

READ(S¢810) ICINCe(XROT(I)eI=I1+12)
WRITE(6¢810) ICeNCo(XROT(I)oI=INeI2)
ND=NDL+1

IF(IC,NE.25.0R.NCo.NE.ND) STOP

ND=0 .

00 26 I1=1+MTOTs6

12=11+5

IF(12,6T.MTOT) I2=MTOT

READ(5¢810) JICoNCo(SIN(I)eI=I1,12)
WRITE(6+810) ICINCo(SIN (I)yI=I1.12)
NDO=ND+1

IF(IC.NE.26.0R,NCsNE+ND) STOP

NLU=0
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IF(I2,6T.MTOT) I2=MTOT

READ(5¢810) ICNCe(SOUT(I)oI=I1012)
ARITE(6+810) ICeNCe(SOUTI(I)I=11+12)
ND=ND+1

IF(IC.NE.27+.0R.NC<NE,ND) STOP
READ(S+800) ICe(NSURCI)+I=1¢MTOT)
WRITE(6+800) ICs(NSUR(I)sI=1+MTOT)
IFLIC,NE.28) STOP
FORMAT(1X+12¢2013)
FORMAT(1Xe12¢4X0I346F10,5)

DO 40 LIN2=1¢NRP

DO 40 M=1+MTYOT

NADD2=NDATA(S) +4x(LIN2-1)

— IFEANSUR(M).. «NEo. NDATA(NADD2+1)).GO. TO 40 .

40

9299.

10
810

X= DATA(NADD2+2)

S1=DATA(NADD2+3)

IF(SIN(M) +GTeS1 «¢OR.{SOUT(M) .LT.S1)) GO TO 4O
N=MTOT* (MODE~1)+M

JENRP* (MODE=1)+LIN2+NADDW

A(J)=CMPLX(CALPHIND ) ¢ (HIN)+(X=XROT(N))*ALPH(N)))

CONTINUE
CONTINUE
RETURN
END

SUBROUTINE WREAD(NMODE +NADDWNTOTW)
COMPLEX A{6130)

DIMENSION DATA(800 )+RM(10)+FRA(10)
EQUIVALENCE(NDATA+DATA)

-

COMMON/BLOCKA/NDATA (800 ) +A+NRP+RMyFRA, DERS ¢0C+ALS@+SQAL

DO 5 J=1+NTOTW

A(NADDW+JI)=(0)

J=NRP*NMODE+NADDW

ND=0

IW=NADDW+1

D0 10 Il=IWeJe3

I2311+2

IF(I2,6GT.J) 12=J

READ(5¢810) IC«NCe{(A(I)eI=I1e1I2)
WRITE(6+¢810)ICeNCo(A(I)eI=I2eI2)

ND=ND+1

IF(IC.NE,23,0R+NC+NE,ND) STOP

COWTINUE _ . :
FORMAT(1XeI2:4X91346F10,5) o -
RETURN '
END
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SUBROUTINE ACALC

DIMENSION DATA(800 )cRM(lO)vFRA(lO)'NVECT(S)vVECT(S)
REAL NKL +«NLKoNKLNLK

COMPLEX A(6130)+AK+AA

EQUIVALENCE(NDATADATA) _
COMMON/BLOCKA/NDATA(800 ) +A'NRP'RMiFRAVDERS+0C+ALSQySOAL
COMMON/BLOCKB/XKOL + SKOL +LSYMsNPLANE « Ny NKL
COMMON/BLOCKC/NVECTVECT

ALS@=1.,0=-RM(N)*RM(N)

SAAL=SAQRT(ABS(ALSG))

OC=RM(N)*FRA(N)

NL1=NDATA(4)

. NL2=NDATA(8)

105

110

111

115
116

DO 900 LIN1K=1.NL1
NADD1K=NDATA(1)+9% (LIN1K=1)
NSURK=NDATA (NADD1K)
XOK=DATA(NADD1K+4)
YOK=DATA(NADD1K+5)
20K=DATA(NADD1K+6)
COSGK=DATA (NADD1K+7)
SINGK=DATA(NADD1K+8)

DO 900 LIN2K=1.NL2
NADD2=NDATA(5) +4x {LIN2K=1)
IF (NDATA(NADD2+1) NE.NSURK) GO TO 900
K=NDATA (NADD2)

XK=DATA (NADD2+2)
SK=DATA(NADD2+3)

DO 898 LINiL=1 + NL1
NADD1L=NDATA(1)+9%(LIN1L=1)
NSURL=NDATA (NADD1L)
NSYMZ=NDATA(NADD1L+1)
NSYMY=NDATA (NADD1L+2)
NGEOM=NDATA (NADD1L+3)
XOL=DATA (NADD1L+4)
YOL=DATA(NADD1L+S5)
Z0L=DATA(NADD1L+6)
COSGL=DATA(NADD1L+7)
SINGL=DATA(NADD1L+8)

DO 897 MSYM=1+4

GO TO (105+110+1151120) MSYM
KSYMZ=KSYMY=LSYMZ=LSYMY=1
G0 TO 130

IF (NSYMZ.NE,O) GO TO 111
MSYM=3

GO 10 897

KSYMZz=1

LSYMZ=NSYMZ

GO TO 130

IF (NSYMY.EQ,0) GO TO 898
KSYMY==1

LSYMY=NSYMY
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GO TO 130
120 KSYMZ=LSYMZ=1
- 60 TO 1l1e
130 LSYM=LSYMY®LSYMZxKSYMZ —
" NPLANE=KSYMZxKSYMY
IF (NSURL +NE.NSURK)NPLANE=0
IF((ABS(SINGL)x(1~KSYMZ)+ABS(COSGL)%(1-KSYMY)).NE.O)
1NPLANE=0
XKOL=XK+X0K=X0L
DELZ=20K*KSYMY=Z0L
DELY=YOK%*KSYMZ=YQL
T1KL=COSGK*xCOSGLAKSYMZ+SINGK%xSINGL*KSYMY
SKOL=DELZ*SINGL+DELY*COSGL+SK=T1KL
SINGKL=SINGK*COSGL*KSYMY=COSGK*SINGL*KSYMZ
NKL=DELZ*COSGL-DELY®SINGL+SKx*SINGKL
DO 897 LIN2L=1«NL2
NADD2=NDATA(S)+4»(LIN2L=1)
IF(NDATA(NADD2+1)NE.NSURL) GO TO 897
L=NDATA(NADD2)
XL=DATA(NADD2+2)
SL=DATA(NADD2+3)
IF (NPLANE.NE.O) GO TO 153
NLK==SL*SINGKL~DELZ®COSGK*KSYMZ+DELY*SINGKxKSYMY
NKLNLK=aNKL®NLK .
153 DO 897 NTYPE=3.15
CALL TESTI(NTYPE.L«NLNADDJ)
IF(NL.EQ.,0) GO TO 897
IF(NDATA(NADDJ)+NE.L) GO TO 897
JTYPE=NTYPE=2
GO TO(230+240+2500260+¢2700280¢290¢300¢3104320¢330+340
1+350) +JTYPE
230 CALL ACON3(T1KL.«AA (NKLNLK.AKsXLSL LK+NADDJ)
G0 TO 896
240 CALL ACON4(TIKLsAA +NKLNLKsAK+XL+SLe+LeKeNADDJ)
GO TO 896
250 CALL ACONS(T1KL+AA «NKLNLK+AKeXLsSLeLKaNADDJ)
GO TO Aa9s
260 CALL ACONG(TIKL+AA +NKLNLK,AK.XL+SLeLK+NADDJ)
GO TO 896
270 CALL ACONT(TAIKL+AA o+NKLNLKeAK«XL +SLeLKeNADDJ)
G0 TO 896
280 CALL ACONB(T1KL+AA +NKLNLKsAKsXLsSLeLeKeNADDJ)
GO TO 896
290 CALL ABLK9
60 TOo 897
300 CALL ABLK1i0
60 TO 897
310 CALL ACON11 (TiKL+AA +NKLNLKyAK:XLsSLeLeKsNADDYJ)
GO TO 896
320 CALL ACON12 (T1KLvAA NKLNLK,AK XL+SLeL+KyNADDJ)
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G0 TO 896
CALL ABLK13

GO TO 897

CALL ABLK14

GO TO 897

CALL ACON15 (T1KL+AA +NKLNLKeAKeXLsSLeLeK1NADDJ)
CONTINUE

NADD=(L+(K~1)%(NRP+1))

A(NADD)=A (NADD) +AA

CONTINUE

CONTINUE

CONTINUE

RETURN

END

SUBROUTINE ACONS (T1KL«AA «NKLNLK+AKeXLoSLeL KsNADDJ)

DIMENSION DATA(800 )+RM(10)+FRA(10)+VECT(S)«NVECT(S)

REAL NKL ¢« NLK+NKLNLK

COMPLEX A(6130)+AKsAA
EQUIVALENCE(NDATA+DATA)

COMMON/BLOCKA/NDATA(B800 ) +A+NRP+RMyFRAVDERS+0C+ALSQ¢SQAL
COMMON/BLOCKB/XKOL y SKOL «LSYM¢NPLANE + N+ NKL
COMMON/BLOCKC/NVECT VECT

R(XeS)=(XKOL=X)%xx2+ALSQA*( (SKOL~S) *%x2+NKL**2)
AA=0

IF{NDATA(NADDJ) .EQ.L) GO TO 100

GO TO 894

XFOR=VECT (1)

XFORW=XFOR

XLSTAR=XL

XAFT=VECT(2)

SIN=VECT(3)

SOUT=VECT(4)
ALP=((XAFT=XFOR)%(SOUT~SIN})/12,566371

DELX=0

NBOXES=1

60 TO 267

ENTRY ACON6

AA=Q

IF(NDATA(NADOJ) .EQ.L) GO TO 200

GO TO 894

NBOXES=NVECT (2)

XFORW=VECT (2)

XAFTW=VECT (3)

DELX=(XAFTW=-XFORW)/NBOXES

XFOR=XFORW~DELX

XLSTAR=XFORW=,5*DELX

XAFT=XFORW

SIN=VECT (&)
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SOUT=VECT(S)
ALP=DELX*{SOUT=-SIN)/12,566371
267 DO 894 NBOX=1+.NBOXES
XFOR=XFOR+DELX
XLSTAR=XLSTAR+DELX
XAFT=XAFT+DELX
RKLSQ=R(XLSTAR.SL)
RKL=SQRT(RKLSQ)
RKLCU=RKL S@*RKL )
IF(NPLANE.NE,0O) GO TO 440
IF(L.EQ.,K) GO TO 450
AK==ALSQ*xALP/RKLCU
GO TO 450
440 AK=FUNK(XAFT+SOUT)=FUNK(XAFTe+SIN)=FUNK (XFOR+SOUT ) +FUNK
1(XFORSIN)
AK=SAK%(1¢712.,566371)
450 IF(QC,NE.0) AK=AK%(1+(0es91.)*0CxRKL/ALSQ)
AK=AKxT1KL
IF{L.EQ.K) GO TO 500
IF(NPLANE<EQ,0) AK=AK+NKLNLK*ALPX(~=3,%ALSQ%x*2/RKLSQ
1-3+%(0e11.)%x0CxALSQ/RKL+0Cx%2) /RKLCU
500 AK=AK*LSYM
IF (0C.EWQ.0) GO TO 495
XFUN=FRA(N) * (XL~XLSTAR+(RM(N)*%x2/ALSQ)* (XKOL=-XLSTAR)~
1 (RM(N)/ALSQ) *RKL)
AK=AK*CEXP((0e91e¢)*XFUN)
495 AA=AA+NK
894 CONTINUE
RETURN
ENU

SUBROUTINE ACONT7 (T1KL+AA +NKLNLK«AKeXL+SLeL+Ke+NADDY) .
DIMENSION DATA(B800 )+RM(10)«FRA(10)+VECT(S)+NVECT(S)
REAL NKL ¢« NLK«NKLNLK
COMPLEX Al(6130)+AK.AA
EQUIVALENCE(NDATA+DATA)
COMMON/BLOCKA/NDATA(800 )+1A+sNRP+RMsFRA+DERS+0C+ALSQ,SQAL
COMMON/BLOCKB/XKOL « SKOL + LSYMNPLANE « NoeNKL.
COMMON/BLOCKC/NVECTVECT
R{XeS)=(XKOL=X)%%2+ALSAx( (SKOL=S) *%2+NKL%x%2)
AA=0
IF(NDATA(NADDJ) .EQ.L) GO TO 100
GO TO 894

100 XFOR=VECT(1)
XFORW=XFOR
XLSTAR=XL
XAFT=VECT(2)
SIN=VECT(3)
SOUT=VECT (&)
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ALP=( (XAFT=XFOR)*(SOUT=SIN))/12.566371
DELX=0
NBOXES=1
GO TO 267
ENTRY ACONS
AA=0
IF{NDATA(NADDJ) .EQ.L) GO TO 200
G0 YO a9y
200 NBOXES=NVECT(2)
XFORW=VECT(2)
XAFTW=VECT (3)
DELX=({XAFTW~XFORW)/NBOXES
XFOR=XFORW=DELX
XLSTAR=XFORW= , SxDELX
XAFT=XFORW
SIN=VECT(4)
SOUT=VECT(S)
ALP=DELX*(SOUT=SIN)/12.566371
267 DO 894 NBOX=1+.NBOXES
.XFOR=XFOR+DELX
XLSTAR=XLSTAR+DELX
XAFT=XAFT+DELX
RKLSQ=R(XLSTARSL)
RKL=SGRT (RKLSQ)
RKLCU=RKLSQ@%RKL
IF{NPLANE.NE.Q) GO TO 420
AK=~ALSG*ALP/RKLCU
AKU=~0C*ALP/RKLSQ _
AKZ(AK+ (0,01, )*AKU) *TIKL+NKLNLK*ALP* (=3, 2ALSQ*%2/RKLSQ
1 =~3¢%(0ev1le)%x0CxALSQ/RKL+0C%%2) /RKLCU
420 IF(NPLANE.EQ.Q) GO TO 425
IF(NPLANE «NE+0) AK=FUNK(XAFT+SOUT)=FUNK(XAFT+SIN)=FUNK
1(XFORSOUT) +FUNK(XFOR+SIN)
AK=AK%2(1+/12.566371)
AKU=FUNKU(XAFT+SOUT) =FUNKU(XAFT+SIN)=FUNKU(XFOR,SOUT)
1+FUNKU(XFOR+SIN)
AKU=AKU* (OC*RM(N)/(12.566371%*SQAL))
AKU=AKU+ (OC/ALSQ) % (RM(N)* (XLSTAR=XKOL ) +RKL ) *AK
AK=(AK+(0av1,)*AKU) xT1KL

425 XFUN=FRA(N)*(XL-XLSTAR+(RM(N)x%2/ALSQ) % (XKOL=XLSTAR)=
1 (RM(N)/ALSQ)*RKL)
AK=AK*LSYM*CEXP((0Oose¢1e)% XFUN)
AA=AA+AK
894 CONTINUE
RETURN
END
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SUBROUTINE ACON11(T1KL+AA +NKLNLK+AKeXLeSLeLiK+NADDJ)
DIMENSION DATA(800 )+RM(10)+FRA(10)+NVECT(5)VECT(S)
REAL NKL ¢+ NLK+«NKLNLK

COMPLEX A(6130)+AKsAA

EQUIVALENCE (NDATADATA)

COMMON/BLOCKA/NDATA(800 )+A+NRP+RMsFRAYDERS+0C+ALSQ+SQAL
.COMMON/BLOCKB/XKOL + SKOL ¢+LSYM«NPLANE +N¢NKL
COMMON/BLOCKC/NVECT VECT
RIXeS)I=(XKOL=X)**2+ALSQA*( (SKOL=S) x*2+NKL**2)

AA=0 :

IF(NDATA(NADDJ) +EQ.L) GO TO 100

GO 70 894
.XFOR=VECT (1)

XFORW=XFOR

XLSTAR=XL

XAFT=VECT(2)

SIN=VECT(3)

SOUT=VECT(4)

ALP= ((XAFT=XFOR)*(SOUT~SIN))/12.,566371

DELX=0

NBOXES=1

GO TO 267

ENTRY ACON12

AA=0

IF(NDATA(NADDJ) .EQ.L) GO TO 200

60 TO 894

NBOXES=NVECT(2)

XFORW=VECT(2)

XAFTW=VECT (3)

DELX=(XAFTW=-XFORW) /NBOXES

XFOR=XFORW=DELX

XLSTAR=XFORW=,5%DELX

XAFT=XFORW

SIN=VECT (&)

SOQUT=VECT(5)

ALP=DELX*(SOUT-SIN)/12,566371

DO 894 NBOX=1+NBOXES

XFOR=XFOR+DELX

XLSTAR=XLSTAR+DELX

XAFT=XAFT+DELX

RKLSQ=R(XLSTAR.SL)

RKL=SQRT (RKLSQ)

RKLCU=RKLSQ*RKL :
AK=(14/12¢56637)% (FUNK(XAFTSOUT)=FUNK(XAFT+SIN)=FUNK
1(XFOR¢SOUT)+FUNK(XFOR+SIN))

AKU= (FUNKU (XAFT s SOUT) =FUNKU(XAFT « SIN) =FUNKU(XFOR+SOUT)
1+4FUNKU(XFOR+SIN) ) *(FRA(N)/(12.566371%xSQAL))

AKU=AKU+ (RKL*RM(N) +XLSTAR=~XKOL ) *AK*(FRA(N) 7ALSQ)
AK=(AK+(0e91,)*AKU) xT1KL

IF(NPLANE.NE.O) GO TO 425
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IF(L,EQ.K) GO TO. 425
AK= AK +NKLNLK*ALP%x (=3 ,*ALSQ**2/RKLSQ@

1 =3e*%(0ee¢l,)*0C*ALSQ/RKL+0C*#*2) /RKLCU

425 XFUNSFRA(N)*(XL~XLSTAR+(RM{(N)*x2/ALSQ)

1*(XKOL=XLSTAR) = (RM(N)/ALSQ)*RKL).
AK=AK*LSYMRCEXP((0o01¢)% XFUN)
AA=AA+AK

894 CONTINUE

10

20
30

10

RETURN
END

FUNCTION FUNK(X+S)

REAL NKL « NLK+NKLNLK

DIMENSION DATA(800 )+RM(10)+FRA(10) +NVECT(5)+VECT(5)
COMPLEX A(6130)

EQUIVALENCE(NDATADATA)

COMMON/BLLOCKA/NDATA (800 )+A+NRPIRMsFRAWDERS+0C+ALSQ¢SQAL
COMMON/BLOCKB/XKOL + SKOL+LSYMsNPLANE ¢ NoNKL
R(X¢S)=(XKOL=X)**x2+ALSA*( (SKQL=S) **2+NKLx%2)
IF(NPLANE.NE.,0) 60 TO 10

IF(ABS(NKL/DERS) +6T,+0001) GO TO 5

GO TO 10
FUNK=(1,/NKL)*ATAN2 (NKL*SQRT (R(X¢S) ) ¢ ( (XKOL=X)*(SKOL=S)))
RETURN

CONTINUE

IF(ABS((XKOL=X)/DERS)+LT+¢0001) GO TO 20
IF(ABS((SKOL=S)/DERS) +LT.«0001) GO TO 20
FUNK=SQRT(R(X+8) )/ ((XKOL=X)*(SKOL=~S))

GO TO 30

FUNK=0

CONTINUE

RETURN

END

FUNCTION FUNKU(XeS)

DIMENSION DATA(800 )¢RM(10)«FRA(10)+NVECT(5)¢VECT(S5)
COMPLEX A(6130)

EQUIVALENCE(NDATA+DATA)

REAL NKL ¢« NLK¢NKLNLK

COMMON/BLOCKA/NDATA(800 )+A'NRP+RM+FRA+DERS+0C+ALSQ¢SQAL
COMMON/BLOCKB/XKOL « SKOL +LSYMsNPLANE ¢+ Ny NKL
R(X¢S)=(XKOL=X)*%x2+ALSQ%( (SKOL=S) **2+NKL%%2)
IF(ABS(NKL/DERS) «6GT,.0001) GO TO 10

IF(RM(N)+GT.1.) GO TO 10
IF((ABS{(XKOL=X)/DERS)eLTe+0001)¢AND.(SKOL,LE«S))GOTO20
IF(RM(N).GT+1,) GO TO 12

FUNKU=ALOG (SQAL%(SKOL=S) +SQART(R(X+8)))
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G0 10 30

IF(((XKOL=X)/DERS)+LT.«0001) GO TO 20
FUNKU=ASIN( (SKOL=S)*SGAL/ (XKOL*X))

GO TO 30

FUNKU=0

CONTINUE

RETURN

END

SUBROUTINE CMATR(N1«NTOTW+NADOW+NMODE1 +NMODE2+NTEMP

ANSIZE1+NSIZE2+NCSIZE+NADDC+NPP+NADDW2 +NADDW3 « NADOWF)

DIMENSION DATA(800 )+RM(10)¢FRA(10) «NVECT(S)+VECT(S)
REAL NKL s NLK « NKLNLK

COMPLEX A(6130)+CK

EQUIVALENCE(NDATA.DATA)

COMMON/BLOCKA/NDATA(B800 )+A'NRP+RM«FRA+DERS+0C+ALSQ+SQAL
COMMON/BLOCKB/XKQL + SKOL ¢ LSYMyNPLANE « Ny NKL
COMMON/BLOCKC/NVECTVECT

WRITE(64:115)

FORMAT(1X//1X*PART 3«DERIVE CMATRIX*%//)

NL1=NDATA(4)

NL2=NDATA(8)

IF (NMODE2.,NE.0) GO TO 80

DO 85 J=1+NSIZE1

A(NADDW2+J)=A(NADDW+J)

00 90 J=1+NSIZE2
A(NADDW3+J)=CMPLX(REAL (A(NADDW2+J) ) +FRA(N)*AIMAG(A

1(NADDW2+J)))

DO 95 J=1+NSIZE2
A(NADDWF+J)=(0ev04)
CALL INVER(AJNRP)
DO 200 MODE=1+NTEMP
DO 200 LM=1,NRP
DO 200 KM=1.NRP
J1=N1# (LM=1)+KM
J2=NRP* (MODE=1) +KM
J3=NRP* (MODE~1) +LM
A(NADDWF+J3)=A(NADDWF+J3) +A(J1) %A (NADDW3+J2)
IF(NPP .EQ,0) GO TO 217
WRITE(64117)
FORMAT (2X*LISTING OF POTENTIAL DISCONTINUITIES#)
CALL ALIST(AyNADDKF +NTEMPNRP)
CONTINUE
DO 219 J=1.NCSIZE
A(NADDC+J)=(0¢10,)
DO 600 J=1¢NTEMP
DO 600 I=1,NMODE1
DO 600 L =1:NRP
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DO 600 NTYPE=3:15

CALL TEST(NTYPEsLsNL +NADDJ)
IF(NL.EQ.0) GO TO 600

IF (NDATA(NADDJ) «NE.L) GO TO 600
J1=NADDW+NRP*(I~1)+L
J2zNADDWF +NRP* (J=1) +L
J3=NADDC+NTEMP# (I=1) +J

DO 335 LIN=1.NL2
NADD2=NDATA(S) +4%{(LIN =1)

IF (NDATA(NADD2).EQ.L ) GO TO 355
CONTINUE

GO TO 600

XL=0DATA(NADD2+2)

NSURF=NDATA (NADD2+1)

DO %45 LIN1=1.NL1
NADDLIL=NDATA(1)+9%(LIN1=1)
NSURL=NDATA (NADD1L)

IF (NSURF,EQ.NSURL) GO TO 455
CONT INUE

GO TO 600
NGEOM=NDATA(NADD1L+3)
JTYPE=NTYPE=2

GO TO(230+240:¢2501260¢270¢280¢290+3000¢310,3204330¢340.

1350) «JTYPE

CALLCCON11(J1+U2¢J3NGEOM XL L NADDJ+CK)
GO TO 500
CALLCCON12(J1¢J2¢J3+NGEOMsXL L +NADDJCK)
60 TO 500

CALL CCONS(J1e¢J2¢JIINGEOM XL +L+NADDJ+CK)
G0 TO S00

CALL CCONGE(J14J2¢J3«NGEOM XL +L ¢NADDJCK)
60 TO 500 '

GO TO 250

GO TO 260

CALL CBLK9

GO TO 600

CALL CBLK9

60 TO 600
CALLCCON11(Jl¢J2yJINGEOM XL oL +NADDJ+CK)
GO0 TO 500

CALLCCON12(J1+¢J2¢J3+NGEOMeXL +L+NADDJCK)
GO TO 500

CALL CBLK13

GO 7O 600

CALL CBLK1i4

GO TO 600

CALL CBLK1S

60 TO 600

IF (NDATA(NADDJ) NELL) GO TO 600
Al(JU3)=A(J3)+CK



Appendix A
Cont'd

600 CONTINUE
WRITE(6+800) N+RM{N)+FRA(N)
800 FORMAT(1X//1X*CMATRIX FOR N=#*.I5/
11X*MACH NO.=#¢F9.5¢% FRA=*,F9,5/)
CALL ALIST(A.NADDC,NMODE1NTEMP)
999 CONTINUE
RETURN
END

SUBROQUTINE CCONS(J1e¢J2+J3+NGEOM XL oL +NADDYCK)
DIMENSION DATA(800 ) «RM{10)«FRA(10)+WECT(5)+NVECT(S5)
REAL NKL +NULKNKLNLK
COMPLEX A(6130)+CK
EQUIVALENCE(NDATA«DATA) .
COMMON/BLOCKA/NDATA(800 ) +sAvNRP«RMiFRAVDERS+0C+ALSQeSQAL
COMMON/BLOCKB/XKOL ¢ SKOL «LSYMNPLANE + NoNKL
COMMON/BLOCKC /NVECT«VECT
IF(NDATA{NADDJ)NE.L) GO TO 290
XFOR=VECT (1)
XAFT=VECT(2)
SIN=VECT(3)
SOUT=VECT (&)
ALP=(XAFT=XFOR)*(SOUT=SIN)
CK== (ALP2(REAL(A(J1))n(0e¢1.)xFRA(NI*AIMAG(A(J1)))%A(J2))
1 *NGEOM
290 CONTINUE
~ RETURN
ENTRY CCONeé
IF(NDATA(NADDJ)+NEs L) GO TO 390
XFOR=VECT (2!
XAFY=VECT(3)
SINSVECT(4)
SOUT=VECT(5)
NBOXES=NVECT (2}

DX=XFOR=XL
DELX=DX+ (XAFT=XFOR} =, ,5/NBOXES
CK= ((SOUT=SIN)*(DX*REAL(A(J1))

1+AIMAGIA(UL) ) )%A(U2)%CEXP(=(0sv14 ) *FRA(N) %DELX) ) xNGEOM
390 CONTINUE

RETURN

ENO
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SUBROUTINE CCON11(J14J2+J3+NGEOM XL L+ NADDUCK)
DIMENSION DATA(800 )«RM(10)+FRA(10)NVECT(5)+VECT(5)
REAL NKL « NLK+«NKLNLK
COMPLEX A(6130)+CK o
EQUIVALENCE (NDATADATA)
COMMON/BLOCKA/NDATA (800 ) +A+NRP+RM+FRAVDERS+0C+ALSQSQAL
COMMON/BLOCKB/XKOL + SKOL'LSYM«NPLANE ¢ NoNKL
COMMON/BLOCKC/NVECT, VECT
IF(NDATA(NADDJ).NE.L) GO TO 290
XFOR=VECT(1) _
XAFT=VECT(2)
SIN=VECT(3)
SOUT=VECT(4)
CK=(SOUT=SIN)*®( (AIMAG(A(JL) )+ (XFOR=XL)*REAL(A(J1)))*
1CEXP(=(0s01¢)*FRA(N)*x(XFOR=XL))=(AIMAG(A(JL))+(XAFT=XL)
2¢REAL (A(J1)) )#CEXP(=(0, 110 ) *FRAIN) *(XAFT=XL)))*A(J2) «NGEOM

290 CONTINUE

RETURN

ENTRY CCON12

IF(NDATA(NADDJ) .NEs L) GO TO 390

XFOR=VECT (2)

SINZVECT(4) S _ -

SOUT=VECT(S) ~ ~ 777
CK= (SOUT=SIN)*( (AIMAG(A(J1))+(XFOR=XL)*REAL (A(J1)))*

ANGEOM#CEXP(=(0s91¢ )*FRA(N)*(XFOReXL)))*A(J2)

390 CONTINUE

RETURN
END

SUBROUTINE ALIST (A«NADDsNROWS/NCOLS)
COMPLEX A(6130)

WRITE (6¢201)

DO 200 J=1.NROWS
DO 200 K=1,NCOLS
IS=NADD+ (J=1) *NCOLS+K

WRITE(641202) JeKeA(IS)

201 FORMAT (X*ROW*3X*COL*2X*REAL*14X*IMAGINARYx)
202 FORMAT(X21442E18.8)
200 CONTINUE

RETURN
END
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SUBROUTINE TEST(NTYPE«LeNLINADDJY)

DIMENSION DATA(800 )qRH(lO)oFRA(lO)vNVECT(S)-VECT(S)
COMPLEX A(B8130) e
T EQUIVALENCE (NDATADATA)
COMMON/BLOCKA/NDATA(B800 )+A+NRP, RHoFRAoDERScOC.ALSGvSOAL‘
COMMON/BLOCKC/NVECT,VECT

NADD=NDATA(4xNTYPE=3)

NFIX=NDATA(4=NTYPE=2)

NFL-NDATA(Q*NTYPE-ll

T NL=NDATA(4%NTYPE)

IF(NL.EQ.0) GO .TO 897

DO 159 LIN=1.NL

NADDJ=NADD+ (LLIN=1)* (NFIX+NFL)

IF(NDATA(NADDJ) NE.L) GO TO 159

DO 157J=1,5
T NVECT(J) =0
VECT(J)=0

D0 158 J=1WNFIX
NVECT(J)=NDATA(NADDJ+J=1)
NFL=NFL+NFIX=1

DO 156 J=1.WFL o
VECT(J)=DATA(NADDJ+J)

GO TO 897

CONTINUE

RETURN

END
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SUBROUTINE INVER (A+N)

COMPLEX PIVOT+A(6130)

Ni=N+1

DO 1 I=1.N

D0 1 J=1sN
A(IXNI=N1+N+2«J)}SA(I%xN1=N1+N+1=y)
J=1

I=0

I=1+1

JizJd+l

ID=0

NN=0

IF(REAL(A(I®N1=N1+J1))) 54,45
IF(AIMAG(A(I®N1=N1+J1))) 5465
IF(ID) 641046

IF(I=N) B8¢7+8

I=0

I=I+1

NN=NN+1 _

IF(N=NN)} 20+20+¢3

10=J

D0 101 LA=1«N
A(LAXNLI=N1+J)=(0e00¢)
A(IxN1«N1+J)=(1+0¢0,0)
PIVOT=A(I%N1-N1+J1)

DO 11 M=1l.N1
A(IxN1=-N1+M)=A(IxN1=-N1+M)/PIVOT
DO 17 LA=1.N

IF(1=-LA)12412+15

KK=LA+1

IF(N="KK) 18+13:13
PIVOT=A(KK*N1=N1+J1)

DO 14 M=1.N1
A(KKEN1=N1+M)=A(KKEN1=N1+M)=PIVOT*A(I*N1=N1+M)
G0 70 17

PIVOT=A(LAXN1=N1+J1)

DO 16 M=1«N1
A(LAXN1=N1+M)I=A(LA*N1=N1+M)=PIVOT*A(I*N1=N1+M)
CONTINUE

IF(N=J) 20+20+19

J=Jdi

60 TOo 2

RETURN

END
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APPENDIX C

Subroutines For Steady Supersonic Calculations

SUBROUTINE ACON3 (T1KLeAA'NKLNLKeAKoXLsSLoL«KeNADDY)
DIMENSION DATA( 800)«RM(10) FRA(10)NVECT(S)VECT(5)
REAL NKL +NLK+NKLNLK

COMPLEX A(6130)+AKsAA

EQUIVALENCE(NDATAWDATA)

COMMON/BLOCKA/NDATA(800 ) eA+NRP+RMyFRAVDERS+0CALSQe¢SQAL
COMMON/BLOCKB/XKQOL ¢+ SKOL «LSYMNPLANE + NoNKL
COMMON/BLOCKC/NVECTVECT

R(XeS)=(XKOL~X)*%2+ALSQA*( (SKOL=S)*%2+NKL*x%2)

AA=D

AKS=0

IF(NDATA(NADDJ) .EQ.L) GO TO 100

GO TO 894

XFOR=VECT (1)

XAFT=VECT(2)

SIN=VECT(3)

SOUT=VECT (4)

NBOXES=1

GO0 TO 267

ENTRY ACONu4

AA=0

AKS=0

IF(NDATA(NADDJ) .EQ.L) GO TO 200

GO TO 894

NBOXES=NVECT (2)

XFOR=VECT(2)

XAFT=VECT(3)

SIN=VECT(4)

SOUT=VECT(5)

DO 894 NBOX=1.NBOXES

IF(XL.GT.XKOL) GO TO 894

IF(L.EQ.KseAND+sSKOL.EQ.SL) GO TO 278
IF(SL.EQ.SKOL.AND,XKOL.EQ.XAFT) GO TO 279
AK=(1.712.56637)% (FUNS(XAFT  SOUT)=FUNS(XAFT+SIN)=FUNS

1(XFOR+SOUT)+FUNS(XFOR«SIN))

AK=(2,*AK+AKS) *LSYM*T1KL
GO TO 884
AKS=SQAL/(2.x{XAFT=XFOR))
AK=AKS*TI1IKL*LSYM

GO TO 884
AKS==SQAL/(2,*(XAFT=XFOR))
GO TO 277

AA=AA+AK

CONTINUE

RETURN

END
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Appendik c
Cont'd Subroutines for Steady Supersonic Calculations

FUNCTION FUNS(Xs+S)
REAL NKL +NLK+NKLNLK

DIMENSION DATA(800 )+RM(10)+FRA(10)+NVECT(S)+VECT(5)
COMPLEX A( 6130)

EQUIVALENCE (NDATA+DATA)

COMMON/BLOCKA/NDATA( 800) vA+sNRP+RM+FRA'DERS+0C+ALSG+SQAL
COMMON/BLOCKB/XKOL ¢« SKOL ¢+ LSYM«NPLANE « N« NKL
R(XvS)=(XKOL~X)*%x2+ALSQ* ( (SKOL=S) *x2+NKL*%2)

IF (NPLANE.NE.O) GO TO 10

RETURN

CONTINUE

IF(ABS((XKOL=X)/DERS)«LT«+0001) GO TO 20
IF(ABS{(SKOL=-S)/DERS)«LT+«0001) GO TO 20

ARG=R(X+S)

IF (=SQAL*ABS(S=SKOL).LE.(X=XKOL)) &0 TO 20
IF(ARG+GT+=+000001 ,AND. ARG.LT.0) ARGSD
FUNS=SQRT(ARG) / ( (XKOL~X)* (SKOL=S))

GO TO 30

FUNS=0

CONTINUE

RETURN

END
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Modifications in DMATR for Steady Supersonic Calculations: The method for
breaking up a surface into rectanguiar elements in the case of steady
supersonic calculation is slightly different from that used in subsonic case,
and is shown in Fig. 36. The modifications required 1n subroutine DMATR

are as fol lows:

Subsonic Supersonic
DATA(K3)=SFOR(M)+(.75+(IQ-1))* DATA(K3)=SFOR(M)+ -
DELX (M) (. 50+(IQ- I *DELX(M
XF=SFOR(M)+DELX(M)¥*.25 XF=SFOR(M)+DELX(M)*,50
DATA(K3)=SAFT (M)-DELX(M)*.75 DATA(K3)=SAFT(M)-DELX(M)*.50

The DMATR program listed in Appendix A is in the subsonic form.
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