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THE EFFECT OF WINGLETS ON THE STATIC AERODYNAMIC

STABILITY CHARACTERISTICS OF A REPRESENTATIVE

SECOND GENERATION JET TRANSPORT MODEL

Peter F. Jacobs and Stuart G. Flechner

Langley Research Center

SUMMARY

This investigation was made to determine the effects of winglets on the static aero-

dynamic stability characteristics of a full-span representative second generation jet

transport model without tails. Two configurations were tested: a baseline wing and a

version of the same wing fitted with winglets. The longitudinal aerodynamic character-

istics were determined through an angle-of-attack range from -1 to 10 at an angle of

sideslip of 0 for Mach numbers of 0.750, 0.800, and 0.825. The lateral aerodynamic

characteristics were determined through the same angle-of-attack range at fixed side-

slip angles of 2.5 and 5. Both configurations were investigated at Reynolds num-

bers of 13 X 10^ per meter (4 x 10^ per foot) and approximately 20 x 10^ per meter

(6 x 106 per foot).
The winglet configuration showed slight increases over the baseline wing in static

longitudinal and lateral aerodynamic stability throughout the Mach number range for a

model design lift coefficient of 0.53. Reynolds number variation had very little effect on

stability.

INTRODUCTION

Winglets, described in reference 1, are intended to provide reductions in drag coef-

ficient for near-cruise conditions substantially greater than those obtained with simple

wing-tip extensions which impose the same bending increments on the wing structure.
The National Aeronautics and Space Administration has been conducting extensive experi-

mental investigations of the effects of winglets for jet transport wings at high subsonic

Mach numbers.

This investigation was conducted to determine the effects of winglets on the lateral-

directional and longitudinal aerodynamic stability characteristics of a full-span transport
model without tails for cruise Mach numbers of 0.750, 0.800, and 0.825. To observe the

sensitivity of the model stability parameters to Reynolds number, tests were conducted at



two different Reynolds numbers: 13 x 106 per meter (4 x 106 per foot) and approxi-

mately 20 x 106 per meter (6 x 106 per foot). This stability analysis, presented at a

wing-body lift coefficient of 0.53, corresponds to the somewhat lower overall cruise lift

coefficient of a typical transport aircraft having a downward-loaded horizontal tail.

The nature of this investigation necessitated a strain-gage balance capable of mea-

suring large forces and moments. Unfortunately, the relatively large axial-force beam of

this balance was insufficiently accurate to measure the small increments of drag involved

in this investigation. Even if it were possible to measure these drag increments, the test

Reynolds numbers of the winglets (approximately 0.4 x 106 and 0.6 X 106 based on average

chord, for the upper winglet) are so low that the winglets experience disproportionately

large skin-friction drag levels. For these reasons, accurate absolute values of drag are

unobtainable; therefore, drag data are not given in this report. (Drag data are presented

in ref. 2.)

SYMBOLS

The results presented in this report are referred to the stability-axis system for

the longitudinal aerodynamic characteristics and to the body-axis system for the lateral-

directional aerodynamic characteristics. Force and moment data have been reduced

to conventional coefficient form based on the geometry of the baseline wing planform.

Moments are referenced to the quarter-chord point of the mean aerodynamic chord of the

baseline wing (fig. 1). All dimensional values are given in both the International System

of Units (SI) (ref. 3) and U.S. Customary Units; however, all measurements and calcula-

tions were made in U.S. Customary Units.

Coefficients and symbols used herein are defined as follows:

b wing span, 114.45 cm (45.06 in.)

CT lift coefficient,
Llit

qb

8C]_,
CT lift-curve slope per degree,

cr da

C, rolling-moment coefficient (C^ on computer-drawn figures), ^g^0"16"

Ci rate of change of rolling-moment coefficient with sideslip angle (effective
^l

dihedral parameter) --, per degree
A/3

Pitching moment
C^ pitchmg-moment coefficient, ----s-----

2



aCm
^’mr’ longitudinal stability derivative,

’-L "’-’L

^"m o pitching-moment coefficient at zero lift

Cn yawing-moment coefficient, Yawing-moment
Cj, rate of change of yawing-moment coefficient with sideslip angle (directional-

P ^~n
stability parameter) --, per degree

A/3

CY side-force coefficient, ^ejo1^6.

C-y rate of change of side-force coefficient with sideslip angle (side-force
/3 ACy

parameter) ---, per degree

c local streamwise chord of wing

c mean aerodynamic chord of baseline reference wing panel, 18.06 cm (7.11 in.)

M free-stream Mach number

q free-stream dynamic pressure, N/m- (psf)

R Reynolds number per unit length, per m (per ft)

S baseline wing planform reference area, 0.1884 m- (2.028 ft^)

a angle of attack, deg

13 angle of sideslip, deg

A values obtained by interpolation

Q values obtained by linear regression

APPARATUS AND PROCEDURES

Model Description

A full-span, sting-mounted transport model without tails was used in this investi-

gation (fig. 1). The model has a relatively wide cylindrical fuselage similar to present

3



second generation jet transports and a conventional low wing with 3 of incidence and

640’ of twist (washout) distributed nonlinearly between the root and tip chords. The wing

has an aspect ratio of 6.95, a taper ratio of 0.299, and 35 of sweep at the quarter chord.

The thickness ratio of the wing varies from 0.124 at the wing-fuselage juncture to 0.09 at

midsemispan; this ratio then remains a constant 0.09 out to the tip.

A variation of this baseline configuration was also tested. The outboard 1.91 cm

(0.75 in.) of the wing was removed and two winglets were installed on each wing tip. The

two winglets, one large inclined upward and one small inclined downward, have trape-

zoidal planforms with a supercritical airfoil section (fig. 1).

The total winglet area represents 2.75 percent of the total wing area. The trailing

edges of the upper winglets and the wing tips were flush mounted with the winglets canted

outboard 15 from vertical (75 dihedral) and toed-out 2 relative to the fuselage center

line.

Similarly, the leading edges of the lower winglets and the wing tips were also flush

mounted with the winglets canted outboard 40 from vertical (50 anhedral) and toed-in 5
relative to the fuselage center line.

Test Facility

The investigation was conducted in the Langley 8-foot transonic pressure tunnel, a

continuous, single-return tunnel with a slotted, rectangular test section. The longitudinal

slots in the floor and ceiling of the test section reduce wall interference effects and allow

relatively large models to be tested through the subsonic speed range. Available controls

permit independent variation of Mach number, stagnation pressure and temperature, and

dewpoint. A more detailed description of the tunnel is found in reference 4.

Test Conditions

Measurements were taken at Mach numbers of 0.750, 0.800, and 0.825 for an

angle-of-attack range of -1 to 10 and nominal sideslip angles of 0, 2.5, and 5. The

Reynolds numbers and dynamic pressures at which the data were taken are presented in

table I. Stagnation temperature was maintained at 322 K (120 F) and the air was dried

until the dewpoint was sufficiently low to prevent condensation effects.

Boundary-Layer Transition

For all test Mach numbers, boundary-layer transition strips were sized and located

by using the techniques discussed in references 5 and 6 to simulate the boundary-layer

and shock-induced separation characteristics at a typical full-scale transport Reynolds

number of 40 x 106.
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A boundary-layer transition strip of No. 180 carborundum grains (set in a plastic
adhesive) was applied to the fuselage 3.81 cm (1.50 in.) aft of the nose. On the winglets,
transition strips of No. 220 carborundum grains were applied 0.25 cm (0.10 in.) from the
leading edge of each upper surface and at 40 percent of the streamwise chord on each
lower surface. The transition strips on the upper surface of the winglets were located
forward in order to eliminate interaction of a shock wave and the laminar flow (based on
previous experience with this model). (The transition pattern on the wing is shown in

fig. 2. All transition strips were 0.16 cm (0.06 in.) wide.)

The fluorescent-oil film flow visualization technique described in reference 7 was
employed to verify the presence of laminar flow ahead of the transition strip.

Measurements

Force and moment data were obtained by use of a six-component electrical strain-

gage balance housed within the fuselage cavity. Drag data, for the reasons previously
stated, are not presented. Angle of attack was measured by an accelerometer that was
also housed within the fuselage. Static pressures were measured in the model along the
sting cavity by using differential-pressure transducers referenced to free-stream static

pressures.

Corrections

The angle of attack of the model was corrected for flow angularity in the tunnel test
section. This correction was obtained from upright and inverted tests of the baseline

wing configuration. The lift and pitching-moment coefficients have been adjusted to cor-

respond to the condition of free-stream static pressure in the sting cavity. Blockage and
interference effects were negligible; therefore, no corrections to the data have been made

for these factors.

PRESENTATION OF RESULTS

The results of this investigation are presented in the following figures:

Figure
Variation of pitching-moment coefficient and angle of attack with

lift coefficient 3
Summary of static longitudinal aerodynamic characteristics. /3 0 4
Variation of rolling-moment, yawing-moment, and side-force coefficients

with lift coefficient 5
Summary of static lateral aerodynamic characteristics at C^ 0.53 6

5
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DISCUSSION

Longitudinal Aerodynamic Characteristics

The static longitudinal aerodynamic characteristics of the model with and without

winglets are presented in figure 3 and summarized in figure 4 for the two test Reynolds

numbers.

Although the actual variation of absolute values of C^ at all test conditions (fig. 3)

is nearly negligible, the winglets do provide small increases in longitudinal stability

(fig. 4). These increases are shown by more negative C^n^ values. (Note that the

Cmr1 values become increasingly negative with Mach number and that the difference

between the curves for winglets on and off remains fairly constant over the test Mach

number range.) This increased stability trend is offset somewhat by an increasing zero-

lift pitching-moment coefficient. A very slight positive effect on the longitudinal sta-

bility characteristics due to increased Reynolds number is shown.

Lateral Aerodynamic Characteristics

A summary of the static lateral-directional aerodynamic characteristics of the

model is presented in figure 6. Although the absolute values of these stability parameters

are small (as in the longitudinal case), the winglets do have a slight positive effect on each

of the lateral-directional stability parameter levels. Although the actual winglet Reynolds

numbers are small, a slight positive effect is again shown on the stability parameters at

the higher test Reynolds numbers.

CONCLUDING REMARKS

An investigation was made at Mach numbers of 0.750, 0.800, and 0.825 of the static

longitudinal and lateral aerodynamic characteristics of a tailless full-span representative

transport model with and without winglets.

Winglets were initially proposed to be retrofitted to existing aircraft to reduce

induced drag. The results of this investigation showed that no adverse stability penalties

could be attributed to the addition of winglets; in fact, the winglets actually showed small

positive increases in both lateral and longitudinal stability over the baseline configuration.

Although the winglet Reynolds numbers were quite low, there was a very slight

positive effect on the stability parameters at the higher test Reynolds number. Experi-

ence suggests that the stability benefits exhibited by winglets will continue to increase

with further increases in Reynolds number.

6
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Increases in the directional stability of an aircraft utilizing winglets presented the

possibility of reducing the vertical tail surface, with a resulting decrease in drag.

Langley Research Center

National Aeronautics and Space Administration

Hampton, Va. 23665

May 19, 1976
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TABLE I.- SUMMARY OF TEST CONDITIONS

R q
M .,

per m per ft kN/m- psf

0.750 13.12 X 106 4.00 X 106 30.14 629.55

19.91 X 106 6.07 X 106 45.82 957.07

0.800 13.12 X 106 4.00 X 106 31.58 659.51
20.57 X 106 6.27 X 106 49.96 1043.34

0.825 13.12 X 106 4.00 X 106 32.28 674.22

21.00 X 106 6.40 X 106 51.81 1082.04
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t--------33.27(13.10)------- 5,75(2.26)

----T------- -------^---- ----^------\ -t----’-------T ------------^ ^-----
\ Moment reference center ^_^---^""^
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224(.86) ^ 7.37-|> ^^’ 17.62-^T
(290) (3.00)

’-.----------------------------------------------114.81 (45.20)-----------------------------
11.51(4.53)

Figure 1.- General arrangement of model. Dimensions are in cm (in.).
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Figure 1.- Concluded.



Wing-fuselage juncture

^-i [ Y "V
JOc \ \ \ \ \ \

\ \ 25.96(10.22) \ ^
\ ’\. \ \ 31 .5( 2 .4) ^Grain size No. 100 \. \ \. \ \

\ /- \ \ Grain size\ v’ \,

-1- \.425c .’ \ No. l00\ \ \
No. 120 \ \ \ _\

\ \ No- 120 \ \ ^\
\ \ \ \ .425c \

NoJ20 \ \ \ \ \

No. 150 \ \ \ \ \
10.2(4.0\ 25c\ \ \ \

T V\./ A v-^-^

Upper surface Lower surface

Figure 2.- Location of wing transition strips. Dimensions are in cm (in.).->-’
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(a) M 0.750; 13 0.

Figure 3.- Variation of pitching-moment coefficient and

angle of attack with lift coefficient.
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Figure 3.- Continued.
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Figure 3.- Continued.
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Figure 3.- Continued.
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Figure 3. Continued.
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Figure 3.- Continued.
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Figure 3.- Continued.
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Figure 3.- Concluded.
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Figure 4.- Summary of static longitudinal aerodynamic characteristics.
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(a) M 0.750; R 13 x 106 per meter (4 x 106 per foot).
Figure 5.- Variation of rolling-moment, yawing-moment, and side-force

coefficients with lift coefficient.
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Figure 5.- Continued.
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(d) M 0.750; R 20 x 106 per meter (e X 106 per foot).
Figure 5. Continued.
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(e) M 0.80; R 20 X 106 per meter (e X 106 per foot).
Figure 5.- Continued.
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(f) M 0.825; R 20 x 106 per meter (6 x 106 per foot).
Figure 5.- Concluded.
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(a) R 13 x 106 per meter (4 x 106 per foot).
Figure 6.- Summary of static lateral aerodynamic characteristics. CL 0.53.
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(b) R == 20 x 106 per meter (6 x 106 per foot).
Figure 6.- Concluded.
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