General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

PSU-IRL-SCI-448 Classification Numbers 1.9.2

THE PENNSYLVANIA STATE UNIVERSITY

IONOSPHERIC RESEARCH

NGL-39-009-003

(NAS NO2

A-CR-

148

598)

THE R

ACT

4 O V

c 7/2

Unc1

H N

H2

WLT

(Pennsylvania

Scientific Report 448

THE REACTION OF NH, WITH NO,

by

R. K. M. Jayanty, R. Simonaitis and Julian Heicklen

July, 1976

The research reported in this document has been supported by The National Science Foundation under Grant No. GA-42856 and by The National Aeronautics and Space Administration under Grant No. NGL-39-009-003.

IONOSPHERE RESEARCH LABORATORY

University Park, Pennsylvania

SECURITY CLASSIFICATION OF THIS PAGE (When Date Enternd)

REPORT DOCUMENTATION		
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
448		
4. TITLE (and Subtitie)		5. TYPE OF REPORT & PERIOD COVERED
The Reaction of NH_2 with NO_2		Scientific Report
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(#)		PSU-IRL-SCI-448
R.K.M. Javanty, R. Simonaitis, a	at ADDEC	
Julian Heicklen	GA-42856 NGL-39-009-003	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK	
The Ionosphere Research Laborato	ry Ruilding	AREA & WORK UNIT NUMBERS
318 Electrical Engineering East University Park, Pennsylvania 1	6802	
11. CONTROLLING OFFICE NAME AND ADDRESS	· · · · · · · · · · · · · · · · · · ·	12. REPORT DATE
	•	July, 1976
		13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(II dillere	nt from Controlling Office)	15. SECURITY CLASS. (of this report)
National Science Foundation Nat	ional Aeronautics	Unclassified
Washington, D.C. 20550 Was	hington, D.C.	154. DECLASSIFICATION/DOWNGRADING SCHEDULE
205	46	
17. DISTRIBUTION STATEMENT (of the ebetract entere	d in Block 20, il dillerent fro	van Report)
18. SUPPLEMENTARY NOTES		ORIGINAL PAGE IS
Neve		OF POOR QUALITY
None		
19. KEY WORDS (Continue on reverse side if necessary	and identify by block number	·)
Chemical Aeronomy		
NH ₃ was photolyzed at 213.	and identify by block number, 9 nm in the present ith NO.	nce of NO ₂ at 25 ⁰ C in order
to study the reactions of NH_2 where $NH_2 + h_1 + H_2$	2.	
The products included NO, with	a quantum yield o	f 1.0, and it can be attrib-
uted to the reaction $H + NO_{0} + HO + NO$		1
DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBS S/N 0102-014-6601	OLETE	

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

The other measured products of the reaction were N₂ and N₂O with respective quantum yields of 0.94 \pm 0.10 and > 0.3 in the presence of small amounts of He (\sim 5 torr) and 0.65 \pm 0.15 and > 0.13 in the presence of a large excess of He. The quantum yield for NO₂ consumption was 6.0 \pm 2.0 in the absence of He. These results are explained in terms of the reactions

NH2	+ NO ₂	*	$N_2 0 + H_2 0$	4a
	-	→	$N_2 + 20H$	4Ъ
		+	$N_{2} + H_{2}O_{2}$	4c
		+	2HNO	4d
		+	solid or undetected product ultimately	4e

The relative importance of the reaction channels are $(k_{4a} + k_{4d})/(k_{4b} + k_{4c})$ > 0.3 in the presence of small amounts of He (5 torr) and > 0.20 in the presence of a large excess of He. The ratio $k_{4b}/k_4 \approx 0.34$ if $k_{4c} = 0$ or $k_{4c}/k_4 \approx 0.42$ if $k_{4b} = 0$. Reaction channels 4a-4d account for > 65% of the reaction. The overall rate coefficient for reaction 4 is larger than for the NH₂-NO reaction, i.e. > $(2 \pm 1) \times 10^{-11}$ cm³ sec⁻¹.

....

Scientific Report 448

The Reaction of NH₂ with NO₂

by

R. K. M. Jayanty, R. Simonaitis and Julian Heicklen

July, 1976

The research reported in this document has been supported by The National Science Foundation under Grant No. GA-42856 and by The National Aeronautics and Space Administration under Grant No. NGL-39-009-003.

Submitted by:

Julian Heicklen Professor of Chemistry

Approved by:

J. S. Nisbet, Director Ionosphere Research Laboratory

Ionosphere Research Laboratory

The Pennsylvania State University

University Park, Pennsylvania 16802

Acknowledgment

This work was supported by the Atmospheric Sciences Section of the National Science Foundation through Grant No. GA-42856 and the National Aeronautics and Space Administration through Grant No. NGL-39-009-003 for which we are grateful.

•

TABLE OF CONTENTS

.

																						Page
ACKNOWLEDGEMENTS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	ii
TABLE OF CONTENTS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	111
ABSTRACT	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
INTRODUCTION	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
EXPERIMENTAL	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
RESULTS	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	5
DISCUSSION	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
REFERENCES	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	11

Abstract

 NH_3 was photolyzed at 213.9 nm in the presence of NO_2 at 25°C in order to study the reactions of NH_2 with NO_2 .

 $NH_3 + hv + NH_2 + H$

The products included NO, with a quantum yield of 1.0, and it can be attributed to the reaction

$$H + NO_2 \rightarrow HO + NO$$

The other measured products of the reaction were N₂ and N₂O with respective quantum yields of 0.94 \pm 0.10 and > 0.3 in the presence of small amounts of He (\sim 5 torr) and 0.65 \pm 0.15 and > 0.13 in the presence of a large excess of He. The quantum yield for NO₂ consumption was 6.0 \pm 2.0 in the absence of He. These results are explained in terms of the reactions

NH ₂	$+ NO_2$	\Rightarrow N ₂ O + H ₂ O	4 a
		\rightarrow N ₂ + 20H	4Ъ
		\rightarrow N ₂ + H ₂ O ₂	4c
		→ 2HNO	4d

The relative importance of the reaction channels are $(k_{4a} + k_{4d})/(k_{4b} + k_{4c})$ > 0.3 in the presence of small amounts of He (5 torr) and > 0.20 in the presence of a large excess of He. The ratio $k_{4b}/k_4 \approx 0.34$ if $k_{4c} = 0$ or $k_{4c}/k_4 \approx 0.42$ if $k_{4b} = 0$. Reaction channels 4a-4d account for > 65% of the reaction. The overall rate coefficient for reaction 4 is larger than for the NH₂-NO reaction, i.e. > $(2 \pm 1) \times 10^{-11}$ cm³ sec⁻¹.

Introduction

The reaction of NH₂ radicals with NO₂ has been, so far as we know, the subject of only one study. Bedford and Thomas (1) studied the thermal reaction of NH₃ and NO₂ in the temperature range of $615-660^{\circ}$ K. The kinetics of the reaction was consistent with an abstraction between NH₃ radicals and NO₂

$$NH_2 + NO_2 + NH + HNO_2$$
 1a

The reaction

$$NH_2 + NO_2 + N_2O + H_2O$$
 1b

was found to be unimportant. In this note we report on a brief study of the photolysis of NH₃ in the presence of NO₂ at 213.9 nm. The object was to study the reaction of NH₂ radicals with NO₂ at room temperature.

Experimental

A conventional high vacuum line utilizing Teflon stopcocks with Viton "O" rings was used. Pressures were measured with a dibutylphthalate manometer and a Wallace and Tiernan gauge. The reaction vessel was a cylindrical quartz cell 10 cm long and 5 cm in diameter.

The N₂O, NH₃, and NO₂ were Matheson C₀P. grade. The N₂O was degassed at -196°C and distilled in Vacuo from a dry ice-acetone bath. The NH₃ was degassed at liquid nitrogen temperatures and purified by distillation from -96°C to -130°C. The NO₂ was degassed at -196°C and diluted with helium.

Irradiation was from a Phillips Zn resonance lamp TYP 93106E. The effective radiation was at 213.9 nm. After irradiation the gases non-condensable at -196°C were expanded into a calibrated volume and analyzed for N_2 by gas chromatography using a 10 ft. long, 1/4 inch O.D. copper column packed with 5Å molecular sieves. The condensables were then analyzed for N_2O using a 24 ft. long, 1/4 inch O.D. copper column packed with Poropak Q. These columns were operated at room temperature. The carrier gas in all cases was helium.

NO production in the NH_3-NO_2 system was determined using a chemiluminscent detector described earlier (2). The lower limit of the detector sensitivity was about 10 ppb, but the NH_3-NO_2 system always gave a background signal corresponding to about 4 mTorr of NO. NO_2 removal rates were determined by differential absorption spectroscopy. The limit of NO_2 detection was \sim 15 mTorr. Formation of products after photolysis was also checked by infrared absorption using a Perkin Elmer 521 spectrometer, but none were detected.

Actinometry was done by photolysis of an optically equivalent amount of N₂O. The quantum yield of N₂, Φ {N₂}, for this system is known to be 1.41 (3) at 213.9 nm. The relative value for the absorption coefficient of NH₃ to that of N₂O is 50 ± 5 (4).

Results

The photolysis of NH3 in the presence of NO2 ($\stackrel{<}{_{\sim}}$ 0.2 torr) at 213.9 nm and 25°C leads to the production of N2, NO, N2O, and a solid product, presumably NH_4NO_3 or possibly NH_4NO_2 . The results for the photolysis are given in Table I. The range of concentration conditions which could be used was severely restricted by a dark reaction giving the same products (5). This dark reaction becomes dominant for $[NO_2] > 0.2$ mtorr and $[NH_3]$ > 2 torr. Much lower concentrations of NO₂ could not be employed because of the need to produce sufficient product yields for analysis. The product quantum yields were all corrected for the accompanying dark side reaction. The maximum corrections for the conditions employed were $N_2O_2 \leq 25\%$; N_2_2 , \leq 30%; NO₂, \leq 10%; NO, \leq 30%. The effect of absorbed light intensity, I_a, and irradiation time was determined only for Φ {NO}. For the other products the effect of I_a and time of irradiation was not determined, because of experimental restrictions. The results indicate that $\Phi{N_2} = 0.94 \pm 0.2$, and $-\Phi{NO_2} = 6.0 \pm 2.0$, where the uncertainties are the estimated errors in the measurements. Only a lower limit to $\Phi\{N_20\}$ $\stackrel{>}{\sim}$ 0.3 was escimated, because a significant dark background of N20 required extended irradiation such that most of the NO₂ was consumed. Φ {NO} \sim 1.0 over an extended time of irradiation, but declines in the later stages, either due to secondary reactions, or to the fact that the sampling capillary is plugged by solid NH4NO2 or NH4NO3 reducing gas flow into the chemiluminescent detector. Photolysis of NO₂ in the absence of NH₃ also gives NO (\sim 10% of the NO produced with NH; present). The NO quantum yields in Table I are corrected for the NO produced from NO2 photolysis. Plots of [NO] vs irradiation time are shown for one run, and for separate runs at different times in Fig. 1.

In most runs a significant amount of NO₂ was consumed, up to 100% if $-\Phi$ {NO₂} remains constant, but there does not appear to be a significant dependence of Φ {NO} on [NO₂].

In Table II are results in the presence of a large excess of He. Φ {NO} remains at 1.0, but both Φ {N₂} and Φ {N₂O} are reduced; the former to 0.65 ± 0.13, and the later to \geq 0.13.

Discussion

The initial step in the photolysis of NH₃ leads to the production of NH₂ and H

$$NH_3 + hv$$
 (213.9 nm) + $NH_2 + H$ Rate = I_a

The H atom produced in the primary act can react only with NO2.

$$H + NO_2 + OH + NO$$
 1

The OH produced in reaction 1 can react with either NH_3 or NO_2 , the relative proportion depending on the total pressure and the $[NH_3]/[NO_2]$ ratio.

$$OH + NH_3 + H_2O + NH_2$$
 2
 $OH + NO_2 (+M) + HONO_2 (+M)$ 3

The HONO₂ produced reacts further with NH_3 to give solid NH_4NO_3 . There are several possible reactions of NH_2 with NO_2

NH ₂	$+ NO_2$	\rightarrow N ₂ O + H ₂ O	4 a
		$+ N_2 + 20H$	4Ъ
		$\rightarrow N_2 + H_2 O_2$	4c
		+ 2HNO	4d
		<pre>solid or undetected product</pre>	4 e
		+ NH + HNO2	45

Reaction 4f is 13.5 kcal/mole endothermic (1). Therefore the upper limit for k₄f at 300°K is about 10^{-20} cm³ sec⁻¹; thus it may be neglected at 300°K, but apparently it is important at higher temperatures (1). Reactions 4a - 4c are formally analogous to the well known fast reaction

$$NH_2 + NO + N_2 + H_2C$$
 5

The observed N₂ production must occur by reaction 4b or 4c, because the alternate route to N₂ production via the secondary process consisting of reactions 1 and 5 cannot be important since Φ {NO} = 1.0 and NO is produced

with a constant rate up to [NO] = 36 mtorr (Fig. 1). The only source of NO appears to be reaction 1. Since NO production is linear up to $[NO]/[NO_2]$ ~ 0.4 , reaction 5 cannot compete with reaction 4 up to this value of the ratio. Thus $k_4 > (2 \pm 1) \times 10^{-11}$ cm³ sec⁻¹, since $k_5 = (2 \pm 1) \times 10^{-11}$ cm³ sec⁻¹ (6). The large quantum yield of NO₂ removal, $-\Phi{NO_2} = 6$ in the absence of He, can be accounted for by the fact that HO radicals propagate a chain, and NO₂ is known to react with H₂O₂ to regenerate the HO radical (7).

 $H_2O_2 + NO_2 \rightarrow HONO_2 + HO$

The source of the N_2O is probably reaction 4a, but the unlikely reaction 4d followed by

$$2HNO \rightarrow N_2O + H_2O \qquad 7$$

cannot be ruled out from the present data. If HNO is produced it must always be removed by reaction 7. Reaction with NO₂

 $HNO + NO_2 \rightarrow HONO + NO$ 8

can be ruled out, because then Φ {NO} would exceed 1.0 contrary to the observations.

Since $\Phi\{N_2\} = 0.94$ and $\Phi\{N_20\} > 0.3$ in the presence of small amounts of He, $(k_{4a} + k_{4d})/(k_{4b} + k_{4c}) > 0.32$. Similarly in the presence of excess He, $\Phi\{N_2\} = 0.65$ and $\Phi\{N_20\} > 0.13$; $(k_{4a} + k_{4d})/(k_{4b} + k_{4c}) > 0.20$. Based on the mechanism consisting of reactions 1-4 and 6-7, the rate law expressions for $\Phi\{N_2\}$ and $-\Phi\{N_20\}$ are

$$\Phi\{I_{2}\} = \frac{k_{4}b + k_{4}c}{k_{4}} \left[1 + \frac{\beta(1 + \alpha)}{(1 - \beta\alpha)}\right] = 2 + \frac{k_{4}c}{k_{4}} + \frac{[(1 - \beta) + \beta(1 + k_{4}c/k_{4})](1 + \alpha)}{1 - \beta\alpha} b$$

where $\alpha \equiv (2k_{4b} + k_{4c})/k_{4}$

$$\beta \equiv k_2 [NH_3] / (k_2 [NH_3] + k_3 [NO_2])$$

Values of β can be computed from the known rate coefficients $[k_2 = 2 \times 10^{-13} \text{ cm}^3 \text{ sec}^{-1}$ (8) and $k_3 \approx 1.0 \times 10^{-12} \text{ cm}^3/\text{sec}$ ([He] = 5 torr) (8) and $k_3 \approx 4 \times 10^{-12} \text{ cm}^3/\text{sec}$ ([He] $\frac{2}{3}$ 400 torr) (8)] and the mean value of the NO₂ pressure (ν 0.19 torr). Thus $\beta \approx 0.67$ when [He] = 5 torr and ≈ 0.35 in the presence of ν 400 torr He.

We fit the values found for $\Phi\{N_2\}$ to obtain the branching ratios for reaction 4. With [He] = 5 torr, $k_{+b}/k_{+} = 0.3$. if $k_{+c} = 0$ or $k_{+c}/k_{+} = 0.41$ if $k_{+b} = 0$. Either combination gives a computed value for $-\Phi\{NO_2\} = 4.9$ in fair agreement with the observed value of 6.0 ± 2.0 . With [He] ≈ 400 torr $k_{+b}/k_{+} = 0.36$ if $k_{+c}/k_{+} = 0$ or $k_{+c}/k_{+} = 0.42$ if $k_{+b}/k_{+} = 0$. The combinations give computed values for $-\Phi\{NO_2\} = 3.7$ and 4.0, respectively. Taki: f the low and high He pressure values the average values of k_{+b}/k_{+} = 0.34 if $k_{+c} = 0$, and the average value of $k_{+c}/k_{+} = 0.42$ if $k_{+b} = 0$. Combining the values for k_{+c}/k_{+} with the ratios $(k_{+a} + k_{+d})/(k_{+b} + k_{+c})$ determined above, the probabilities of the sum of channels 4a, 4c and 4d are > 0.70 and > 0.60 for the low and high He pressures, respectively. If $k_{+c}/k_{+} = 0$ the lower limits are slightly lower. A small additional loss of NH₂ via channel 4e is possible.

In a detailed study of the thermal reaction between NH₃ and NO₂ in the temperature range of 615 - 660°K, Bedford and Thomas (1) concluded that the exclusive reaction between NH₂ and NO₂ is reaction 4f. They obtained the ratio $k_5/k_{4f} = 10^{-2 \cdot 3} \exp(6400/RT)$. At room temperature k_5/k_{4f} extrapolates to 2 × 10², and since k_5 is now known to be (2 ± 1) × 10⁻¹¹ cm³ sec⁻¹ at 300°K (6), $k_{4f} = 1 \times 10^{-13}$ cm³ sec⁻¹ at 300°K. This value is nearly 7 orders of magnitude greater than the maximum predicted from the endothermicity of reaction 4f.

Bedford and Thomas and Second that reaction 4f is an abstraction reaction. Thus it could become more important at high temperatures than

channels 4a-4e, if these channels proceed through an adduct which can also decompose reversibly, i.e.

$$NH_2 + NO_2 \neq NH_2NO_2$$

$$NH_2NO_2 \Rightarrow N_2O + H_2O$$

$$\Rightarrow N_2 + 2OH$$

$$\Rightarrow N_2 + H_2O_2$$

$$\Rightarrow 2HNO$$

$$\Rightarrow solid$$

At high temperatures, these reactions become unimportant because the adduct preferentially reverts to reactants, and reaction 4f could become the dominant reaction path.

It is interesting to note that NO_2 does not abstract an H atom from HO_2 to form HNO_2 and O_2 , but proceeds via the pernitric acid to the same products (9). Evidence for adduct formation has also been obtained for the reactions of NH_2 with NO (6b) i.e. reaction 5, which is closely related to reaction 4.

Table II

Photolysis of NH₃-NO₂ Mixtures at 213.9 nm and 25°C

in the Presence of He⁸

[He], Torr	Irradiation time, min	[NO] mtorr	Φ{NO}	$\Phi\{N_2\}$	$\Phi{N_2O}$
280 [.]	3.0	-	-	0.62	-
280	5.0	-	-	0.63	-
280	4.0	-	-	-	> 0.13
300	4.0	-	-	-	> 0.12
300	4.0	-	-	0.68	-
500	4.0	-	-	0.66	-
730 ^b	2.0	4.3	1.07	-	-

.

a) [NH₃] = 2 ± 0.3 Torr, [NO₂] = 195 ± 11 mtorr, I_a = 10.5 ± 0.4 mtorr/min.
b) [NH₃] = 1.46 torr, [NO₂] = 109 mtorr, I_a = 2.0 mtorr/min.

PRECEDING PAGE BLANK NOT FILMED

List of Figures

Fig. 1 Plot of [NO] vs time of irradiation; O points from different runs at different times; I run with [NO₂] = 109 mtorr, [NH₃] = 1.46 torr, [He] = 730 torr.

.

