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A series of observations is described of ionospheric conditions

associated with the initiation of spread 7 in the mid-latitude ionosphere.

The morphology of spread F at Puerto Rico was investigated. Data

from 7 nights was examined for Arecibo, five with spread F and two

without. The relative height of the F-layer maximum and the vertically

integrated Pedersen conductivity, the relation betweer. E and F region

conductiv :.ties, the coupling lengths between the E and F regions, and

vertical and horizontal gradients of electron density were examined.

At Millstone Hill 13 nights were examined for all of which spread F

was observed. The EW and NS velocities and the vertical velocities

and the electric ion temperature ratio were examined.
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Chapter 1

INTRODUCTION

There is considerable interest in the study of the mechanisms

for the production of irregularities in the mid-latitude ionospheric

F-region. Such irregularities caU3e scintillation, of satellite signals

and fading of high frequency radio communications. They have been

observed for many years on ionosordes as a spread in the echoes

referred to as "spread F". Attempts have been made to char-

acterize the phenornena as "range spreading" when the echoes appear

to be multiple echoes with a spread in echo delay that is almost

independent of frequency and "frequency spreadii.a" when the effect

is observed as a spread in the maximum ordinary of extraordinary

critical frequency. It is believed that both types of spread F are

caused by similar irregularities and that the length scale, orientation,

and the intensity of the fluctuation is responsible for the difference

in appearance on ionosonde traces. The behavior of spread F is

different in the equational, mid-latitude and high latitude ionospheres

and the instability mechanisms appear to be different.

Several mechanisms have been proposed to explain mid-

latitude spread F based on different plasma instability mechanisms

such as those of Reid (1968), Perkins ( 1973)and McDonald et.al . ( 1975 ).

In each of these papers assumptions have been made about the

instability mechanism, and the conditions necessary for growth. In

this paper attention will be paid to the geophysical conditions observed

at the time of initiation of mid-latitude spread F to allow both the

correctness of the ass imptions about conditions for onset of spread
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F and about the validity of the assumptions made in the treatments

that may affect the calculation of growth rates. The data used in

this study are from Arecibo and Millstone Hill incoherent scat._ _

sounding facilities which provide data on the ele=tron densities,

electron and ion temperatures, and ion drift velocities that can be

used to deduce important parameters of the electric field and neutral

wind systems.
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Chapter II
DESCRIPTION OF THE DATA BASE

The Millstone Hill facility is a typical mid-latitude facility

with geographic coordinates 42.6 0 N; 288. 5°W; and geomagnetic

coordinates 54. 09 0 N; 356.86° and has an L parameter of 3. 12.

Singleton (1975) has presented a model of spread F incidence at such

stations.

The Arecibo Observatory is in a rather unique position

because of the very different geographical coordinates of its

conjugate location, Zinchenko and Nisbet (1976). It has geographic

coordinates 18.50 0 N; 293. 17 0 E; geomagnetic coordinates 29.990N;

02.38 0 E; and an L parameter of 1.43.

The Singleton (1975) model shows a deep minimum in spread

F incidence at 30 0 magnetic latitude. Spread F is seen, however, at

Arecibo, Mathews and Harper (1972). It was first decided to do a

small study of ionosonde data at Puerto Rico for three years of varying

solar activity to determine the morphology of spread F at that site.

Figure 1 shows the percentage of nights on which spread F was observed

in 1959, 1960 and 1961 and the Zurich Sunspot Number R  for this

period. It is apparent that there is a large winter maximum, minima

at the equinoxes and a summer maximum that is much smaller at high

solar activity than it is when the sunspot number is lower. Under

low sunspot conditions it is seen that the probability of seeing spread

F on any night was of the order of 90% in January (Figure 2).

Figure 3 shows the lozal time variation of spread F at Arecibo.

It can be seen that it is a night time phenomenon. It starts around the
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time of local sunset, reach, ii a maximum around midnight and there

is a minimum which appears at about the same time as the post

midnight collapse. After the collapse then there is another maximum

and spread F dies away at dawn. The post midnight decrease in

spread F occurr !nce at mid-latitudes has been discussed previously

by Glover (1960) and Bowmann (1975).

Table 1 gives the times of onset of spread F and the solar

and geomagnetic conditions for the Millstone observations. Table 2

gives similar data for the Arecibo observations.

In our study we have used 13 nights when spread F was observed

at Millstone Hill, 5 nights during which spread F was observed at

Arecibo and 2 nights on which it was not observed for comparison.

Data available from Millstone Hill were the drift velocities

at the level of 300 km in North-South, East-West and vertical

directions (L. Carpenter, V. Kirchhoff, 1975); h M F 2 ; NMF 2 ; and

electron and ion temperatures at the level of 300 km. The data from

Arecibo included the profiles of electron density, electron and ion

temperatures, Pedersen, Hall, and direct conductivities, different

components of drift velocities, horizontal and vertical gradients of

electron density, and h M F 2 and N MF 2 . The data used in this

analysis were not obtained specifically to study spread F and so the

full potentialities of the instruments for an investigation of this type

were not employed.
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Chapter III

EXPERIMENTAL RESULTS AND ANALYSES

As has been noted by many authors such as W. Calvert (1962)

and R. K. Misra (1973) spread F always starts during periods when

the F-layer is high. This means that the transverse conductivity of

the F-layer which is proportional to the neutral density will be sma'1

at these times. Perkins (1973) suggested that the inverse relation

between the height of the F-layer and the integrated Pedersen

conductivity causes the electrical support mechanism to be unstable.

To illustrate this point Figures 5 to 11 show the calculations of F-

layer integrated Pedersen conductivity versus local time for seven

nights at Arecibo. In these fi gures we have plotted as a dashed line

the height of the maximum of the layer using an inverted scale.

The integrated Pedersen conductivity in the F-layer is shown with

solid lines calculated from the Arecibo measurements. These figures

illustrate quite well the inverse relationship between the integrated

conductivity and the height of the main peak. This is valid both for

the nights . with spread F (Figures 5 to 9) and without spread F

(Figures 10 and 11). The drift velocities can be used to determine

the electric field which plays an important role in supporting the night-

time F-layer and in triggering the instabilities. The drift velocity

components in the north-south, east-west and vertical directions at

the level of 300 km for the times of spread F onset have been analyzed.

The results can be summarized as follows:

1. For the onset of spread F it seems to be necessary

to have a westward component of drift velocity.
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2. For all days analyzed with spread F the downward

component of drift velocity is present while spread

F is starting.

3. Average values of drift velocities' components

observed at the onset of spread F were:

VN-S =	 9 m sec-1

VW	= 49 m sec-1

V
Down - 18 m sec-1

As mid-latitude spread F is essentially a night-time phenom-

enon it is usually assumed in the theories such as those of Perkins

(1973) that the ionospheric plasma is in thermal equilibrium. While

this is true for much of the night since the spread F usually starts

soon after the local sunset it was found at the times of spread F

onset that Te was not equal to Ti. The ratio Te/Ti varied from

1.4 to 2.0 with an average value Te/Ti = 1. 6. It should be noted

however that this disagreement between experimental values of Te/Ti

and the theoretical assumption is not vital for most mechanisms

suggested but will only slightly change the calculated gorwth rate.

More important for the validity of the mechanisms is the

relation between the conductivities of E and F layer. To decide which

of these regions is responsible for originating the instabilities causing

the spread F it is necessary to determine which conductivity dominates

the night-time ionosphere during spread F conditions, if the conductiv-

ities of the E and F-layers are comparable, and how strong is the
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coupling between these regions. By such checks it is possible to test

the validity of neglecting the conductivity of one of these regions

as it has been done by Perkins (1973) with respect to E-region

conductivity. It is also possible tc examine whether electric fields

due to irregularities triggered in the E-region can be coupled to the

F- region to produce spread F.

Figures 12 'j 16 show the behavior of integrated F -region

Pedersen conductivity and E-region Pedersen and Hall conductivities

during five nights with spread F at Arecibo. From these figures and

Table 2 it is apparent that E-region conductivities either dominate

or are comparable with the F-re g ion Pedersen conductivity during

most of the nights when spread F was observed.

Figures 17 and 18 show the behavior for two nights at Arecibo

when there was no spread F. During the most of the nights without

spread F the F-region Pedersen conductivity is really considerably

larger than the E-region Pedersen conductivity but smaller than the

E egion Hall conductivity.

In analyzing these data it is thus necessary to consider to

what extent the F-region is coupled to the E-region with its higher

conductivities and to the conjugate ionosphere.

In local winter at Arecibo at the time spread F starts

the conjugate ionosphere is sunlit and so the integrated Pedersen

conductivity there would be expected to be quite large. Figure 19

shows the coupling length between E and F-region calculated from

high resolution measurements made at Arecibo. Frequently during

the night at Arecibo the electron densities become quite small in

the trough between the E and the F-region. The parameter of
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importance in determining whether two regions are coupled is the

coupling length shcwn at the top of Figure 1 (Zinchenko and Nisbet,

1976). The coupling length is the wave-length of a sinusoidal

density perturbation which would result in the electric field being

attenuated by a factor of two ;n the coupled region. When the wave-

length of the perturbation is small compared to the coupling length

the two regions can be considered to be isolated and when the wave-

length of the perturbation is large compared to the coupling length

the two regions can be considered to be coupled to each other. As

can be seen a coupling length at the time spread F started was about

6 km and the minimum coupling length during the night was of the

order of 2 km. The coupling length to the conjugate ionosphere has

also been estimated (Zinchenko and Nisbet, 1976). The calculations

made it appear that the coupling length to the conjugate ionosphere

must be of the order of 2 km. It would thus appear that in theories

predicting the onset of spread F, the F-region can be considered to

be isolated from the E-region and the conjugate ionosphere for

perturbations of wave-length much smaller than 2 km and to be directly

coupled to th !se regions at much longer wavelengths.

It should be noted here that according to Mathews and

Harper ( 1972) the range spreading type of spread F is believed to be

caused by the large-scale tilts or gradients of tens of km scale size

in the ionosphere and so at least for this type of spread F the possible

influence of perturbations originally triggered in the conjugate

ionosphere or even the E-layer cannot be excluded from considera-

tion.
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It may be speculated that if the coupling between conjugate

ionospheres is high then the rather high occurrence of spread F at

Arecibo can be explained as being due to its conjugate point which

is located at geographical latitude around 50 0 , where according to

Singleton ( 1975) the occurrence of spread F is much higher. More-

over with the same assumption we can consider the summer

maximum in the occurrence of spread F at Arecibo could result from

the winter maximum "transported" from the conjugate ionosphere

in the southern hemisphere.

The model given by McDonald, et al. (1975) assumes an east-

west gradient in the equilibrium Pedersen conductivity. Figures

20 to 21 show the values of east-west and vertical electron density

gradients for three heighcs measured by R. Harper at Arecibo for

the night with rather strong spread F. As was shown by Imel

(1976) these experimentally measured values of the east-west gradient

are too small to give a realistic growth rate.

Figure 21 shows the vertical electron density gradients for

three heights measured by R. Harper at Arecibo for the same

conditions as shown in Figure 20. Imel ( 1976) has shown that in

the region where the gradient is large and positive, it is possible

to have a gradient instability of the type discussed by Reid ( 1968).

However, growth times are rather long.
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Chapter IV

CONCLtiSIONS

This study has been directed toward checking the real

ionospheric conditions at the time of initiation of spread F. For this

purpose ionospheric measurements made earlier at two incoherent

scatter facilities, Arecibo and Millstone Hill, were used.

The importance of using actual ionospheric parai:ieters in

the theories predicting the onset at spread F has been demonstrated.

It has been shown in this study the ionospheric c ^.ditions accompanying

the onset of spread F includes the presence of drifts with average magnitudes

of 9 m sec -I in north-south direction, 49 m sec -1 in westward direction

and 18 m sec -1 directed down. At the onset of spread F the ionospheric

plasma is not in thermal equilibrium and the average magnitude of the

ratio Te/Ti is 1.6.

It has been shown that during most nights with spread F the

conductivities of the E-layer cannot be neglected and the coupling

between the night-time E and F-region is rather strong for the

perturbations of a scale larger than 3 km.

Large scale horizontal gradients measured at Arecibo and

used in calculations of the growth rate predicted by the model of

McDonald, et al. ( 1975) yield growth times that are far too long to be

realistic (Imel, 1976).

In future experiments at Arecibo it is necessary to

measure with good time and space resolution the winds, drift

velocities, temperatures, electron density, horizontal and vertical
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gradients, dimensions and orientation of small-scale irregularities.

The high time resolution is especially important because even during

nights of rather strong spread F periods are observed when the

instability disappears, and then reappears soon after.

Additional information about irre g ular ionospheric

parameters which can be obtained by the simultaneous in situ

measurements on satellites can be vary use 'ul. The simultaneous

measurement of the airglow intensities ma, -E- at the same facility

can provide valuable information aboi:t the size and orientation of

inhomogenities.
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