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I ABSTRACT 

I A technique has been developed for calculating feed-back and feed-forward 

I gain matrices that stabilize a VTOL aircraft while enabling it to track input 

cOI~ands of forward and vertical velocity. Leverrier's algorithm is used in 

I a procedure for determining a set of state-variable, feedback gains that 

I 
force the closed-loop poles and zeroes of one pilot-input transfer function 

to be at pre-selected positions in the s-plane. This set of feedback gains 

I is then used to calculate the feedback and feedforward gains for the velocity-

command controller. The method is computationally attractive since the gains 

1 are determined by solving systems of linear, simultaneous equations. Responses 

obtained using a digital simulation of the longitudinal dynamics of the CH-47 

1 helicopter are presented. 
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1. INTRODUCTION 

1.1 Background 

In recent years the overcrowding of this country's major airports has 

led to increased interest in the development of commerical VTOL or STOL air-

craft capable of operating in the 0-500 mile range. These vehicles would 

operate from separate runways at eXisting airports or from rooftops or short 

runways in or near business districts. Studies have shown (1,2) that such 

aircraft could reduce the total trip time providing they don't have to 

operate under existing take-off and landing procedures with their long 

delays. This will require innovations in vehicle design plus improved 

naVigation, guidance, and control systems. One approach to this l~tter 

problem is to use on-board digital computers to handle the navigation, 

guidance, and control functions in an adaptive mode. Thus it is necessary 

to have a controller capable of following guidance commands from the computer 

and at the same time present acceptable flying qualities to pilot inputs. 

The Flight Instrumentation Division of NASA's Langley Research Center 

is developing a technology base for digital adaptive control systems under 

the VTOL Advanced Landing Technology (VALT) program. This work was supported 

under this program by grant number NGR 47-018-005. 

1.2 Summary of Results 

This report presents the results of an investigation to develop a control 

algorithm as described above. The approach used in this investigation was to 

employ state variable feedback to achieve pole-zero placement of the vehicle's 

transfer functions. The initial attempt was to use the modified Newton-

Ralphson technique to determine the necessary gains. This presented several 

difficulties, which are discussed later, and was abandoned in favor of a 
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procedure, based on Leverrier's algorithm, that only requires the solution 

of linear simultaneous equations. 

Using this procedure one first calculates a set of state-variable feed-

back gains that result in acceptable responses to pilot inputs. This set 

of gains is then used to generate two sets of gains, one feedback and one 

feedforward, that maintain the same response to pilot inputs but enable the 

vehicle to track velocity commands from the guidance system. The algorithm 

is then used to control longitudinal dynamics in a digital simulation of the 

CH-47 helicopter during a decelerating approach. With this functioning 

properly, studies are conducted to demonstrate the controller's ability to 

function in the presence of errors in the estimates of aircraft parameters 

and at different sampling rates. 

1.3 Report Outline 

The equations and algorithms needed to express the coefficients of the 

closed-loop transfer function numerator and denominator polynomials are 

developed in Section 2. In Section 3 the various methods used to calculate 

the feedback gains are discussed along with some considerations in selecting 

a model. Section 4 presents the velocity-command configuration and procedure 

for calculating the necessary gains. In Section 5 the results of several 

fixed-point simulations are presented along with the simulation of a 

decelerating approach. Section 6 contains the results of the st.udies on 

varying aircraft parameters and sampling time. 

2 

-'-'-r~'-' 

I 
I 
'I 
1 

I 

1 



! 
~ 
! 

I 

r 1 
, 
i 

"'l 

J 

I 
I 
I 
1 

r-' 
j 

2.1 Basic Concepts 

2. ANALYTICAL DEVELOPMENT 
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I 
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! 

In considering the longitudinal dynamics of the CH-47 helicopter, the 

linearized equations of motion may be written in the form 

where 

x = Ax + Go 

x = 

o = 

u (forward velocity perturbation) 

w (vertical velocity perturbation) 

q (pitch rate) 

e (pitch angle perturbation) 

~: 
(differential collective purturbation~ 

(collective perturbation) ~ 

A is the 4 x 4 differential transition matrix 

G is the 4 x 2 input matrix 

(2·-1) 

Introducing state-variable feedback from all states to both inputs 

results in a control vector of the form 

where 

o = Kx + 0 
-p 

K is a 2 x 4 matrix of feedback gains 

o is a 2 vector of pilot commands 
-p 

Applying this control to equation (2-1) yields 

x = (A + GK)x + Go 
- -p 

The Laplace transform of equation (2-3) is 

[sI - (A + GK) ]x(s) = G<'I (e) -=-P ,-, 

3 

(2-2) 

(2-3) 

(2-4) 
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This equation leads to eight closed-loop transfer functions relating the 

four state variables to t~e two controls. These transfer functions may be 

obtained by employing Cramer's rule. Thus, they all have the same denominator, 

lSI - (A + GK)I, but different numerators that are obtained by taking the 

determinants of the matrices that result when the appropriate columns of the 

G matrix are substituted for columns of LsI - (A + GK)]. Each transfer func-

tion is a ratio of polynominals in s and the coefficients in these polynomials 

are functions of K. If values of K can be found to force these coefficients 

to take on pre-determined values, then the poles and zeroes of the closed-

loop transfer functions can be placed anywhere in the s-plane. 

The determination of these coefficients requires the expansion of 4 x 4 

matrices where each element in the matrix is a function of the feedback gains. 

To do this by hand is an extremely tedious and error prone process. To avoid 

having to expand these determinants by hand, a procedure was developed, based 

on Leverrier's algorithm, that calculates the desired coefficients. 

2.2 Leverrier's Algorithm 

Leverrier's algorithm is presented, with a proof, in reference (3) and 

used by Montgomery and Hatch (4) in their differential synthesis approach to 

pole-zero placement. The algorithm is an efficient computational technique 

for generating the coefficients of a system's open-loop transfer functions, 

or of the closed-loop transfer functions provided the feedback gains are 

known. 

In presenting the algorithm, consider equation (2-4) rewritten for an 

n x n open-loop system as 

-1 
~(s) = LsI - A] G~(s) (2-5) 

The term (sI - A)-l is of primary importance and may be written in the form 
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where 

-1 (s1: - A) 

B. is an n x n matrix 
1 

di is a scalar coefficient of the characteristic equation. 

(2-6) 

These B matrices and d coefficients are generated by Leverrier's algorithm 

as presented below: 

- 1/2 trace (B2A) 

(2-7) 
~ = - l/k trace (BkA) 

B = B lA + d 11 n n- n- d = - lin trace (B A) 
n n 

The transfer function between the ith state and jth input is of the 

form 

n-l n-2 
a .. lS + a .. 2s +. .. + a .. 
1J . 1J 1J n (2-8) 

where the denominator is the same as in equation (2-6) and the a's can be 

computed from 

= TB ," u. k"'U' -1 -J 
(2-9) 

The u. and u. are commensurable unit vectors with 1 in the ith and jth posi-
-1 -J 

tions respectively and 0 elsewhere. 

Thus the open-Joop transfer function coefficients can be calculated, but 
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what is needed are the closed-loop coefficients expressed as furh-:.tions of the 

feedback gains. 

2.3 Eeeansion of the Closed-Loop Denominator 

To achieve this consider the matrix [sI - (A -:- GK)] rewritten as 

(2-10) 

where 

u
i 

is a column vector with 1 in the ith position and 0 elsewhere 

g. is the ith column of the control matrix 
-1. 

a. is the ith column of the open-loop A matrix 
-1. 

The determinant of this matrix is the closed-loop characteristic equation. 

Expanding this determinant using the rule 

results in 

where 

244 
= DOL - L: L: k.. N ( x . , ° .) + L: 

i=l j=l 1.J J 1. i=l 

DOL = la1 (s) ~2(s) ~3(s) ~(s) I 

N(u,oe) = I~l ~2(s) a3 (s) ~(s) I 

(2-11) 

(2-12) 

DOL is the open-loop denominator and N(xi,oj) is the numerator of the xi/Oj 

open-loop transfer function. These terms are easily generated using equations 
x. ,0 

(2-7) and (2-9). The N( 1. e) which will be referred to as coupling functions, 
x. ,0 ' 

J c 
are not directly obtainable using Leverrier's algorithm. 
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2.4 Determination of the Coupling functions 
x. ,0 

To develop the algorithm that generates N( L e), consider the matrix 
xl,oc 

formed by substituting the fir$t column of the G matrix, times minus one, for 

the first column of the A matrix 

At = [-gl a2 aa ~] (2-13) 

If Leverrierts algorithm is applied directly to the above AI matrix, one 

obtains 

(2-14) 

However, what is needed is an expression for 

-1 

gll -a2l -a13 -a14 

-1 
g2l (s-a

22
) -a23 -a24 

[sU - AI] .-
(s-a

33
) 1 g3l -a32 -a34 

(2-15) 

g4l -a42 -a43 (s-a44) 

where 

0 0 0 0 

0 1 0 0 
U

l 
= 

0 0 1 0 

0 0 0 1 

If B matrices and d coefficients, similar to those of equation (2-7), can 

be found for this matrix, then the coefficients of the coupling terms can be 

found by using equation (2-9) to solve a new system 

[sUi - A I ]Y(6) = g2 (2-16) 

where 'L(s) is an n-vector of polynomials and all but the i th element are 

coupling functions. 
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Considering the form of equation (2-15), it is apparent that [SU
1

- A,]-l 

can be written as 

(2-17) 

where the denominator is N(u,o ), obtainable directly from Leverrier's algorithm. 
e 

MUltiplying both sides of equation (2-17) by [sU1- AI] yields 

3 2 [sU - A'][B 's + B 's + B 's + B '] = 
1 1 2 3 4 

[d 's3 + d 's2 + d 's + d ']1 
1 2 3 4 

Expanding this equation and equating like powers of s yields 

d 'I 
2 

(2-18) 

(2-19) 

It was pointed out earlier that the dIS are merely the coefficients of N(u,o ), 
e 

which are known, and B1 ' can be determined. However, knowing d1 ' and B1 ' 

does not allow one to solve for B2 ' because U1 is a singular matrix and there-

fore has no inverse. 

Although the equations cannot be solved in the forward direction, they 

can be solved in reverse order if B4 1 can be determined and if A' is not 

singular. In determining B4' one must recall that it is the matrix of terms 

that do not contain s in the expression [sU1- AI]-l. Now recall that B4 from 

equation (2-14) is the ~atrix of terms that do not contain s in the expression 

[sl - A,]-l. The only difference between [sU1- A'] 'and [sl - A'] is that 
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one of the diagonal elements of [sI - A'] is (8 + g .. ) while for [sU
1
- A'] 

1J 

it is just g ... It is easy to show that the addition of s does not affect 
1J 

the B4 matrix and therefore B4' = B4 , a matrix generated by Leverrier's 

algorithm. "Knowing B4' equation (2-19) can be solved in reverse order 

B3 
, 

= 

B2 
, = 

A,-l[U B ' 
1 4 

A,"-1[U~B3' 
L-

d 'I] 
3 

d 'I] 
2 

B ' = A,-l[U B ' - d 'I] 1 1 2 1 

The procedure may be summarized as follows: 

(2-20) 

1. Apply Leverrier's algorithm to the original A matrix and determine 

+ d IS + d n- n 

N(u,o ), N(w,o ), N(q,o ), N(e,o ) e e e e 

2. Replace one column of the A matrix with 

u, ° 
-~l and apply Leverrier's 

u,o u,o 
e 

algorithm to find Btt • Determine B's and N(w ° ), 
, c 

e e 
N( 0)' N(e ° ). 

q, c ' c 
3. Repeat &l~p 2 for columns 2, 3, and 4 of the A matrix. 

2.5 Closed-Loop_Numerators 

To determine the closed loop numerator coefficients as functions of the 

feedback gains, Cramer's rule can be used in conjunction with equation (2-11), 

to yield 

(2-21) 

(2-22) 
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Thus once the coupling function coefficients are known, both the closed-loop 

numerator and denominator polynomial coefficients may be determined as func-

tions of K. 

2.6 Chen's Algorithm 

Since the development of the above algorithm for generating the coupling 

functions, the author has become aware of an algorithm developed by R.T.N. 

Chen (5) that will also generate these terms and which is more efficient 

computationally. The entire algorithm will not be developed here but the 

method of generating the coupling functions will be presented without proof. 

To simplify the expressions the following notation will be used: 

N(Xl,o e) N(xl,o c) 

tl 
~ 

N(x2 ,oe) 

:£.2 
/:; N(x2 ,oc) 

N(x3 ,oe) N(x3 ,oc) 

N(x4,oe) N(x4 ,oc) 

Then the vectors of closed-loop numerators (using negative feedback) may be 

expressed as 

(2-23) 

where ~2 is the vector of 0c feedback gains. 

Comparing equations (2-23) and (2-22) it is apparent that the elements 

of the 4 x 4 matrix~ Dl [:£.1*2T - ~2~lT], are the coupling functions. Since 
OL 

the diagonal elements of this matrix are zero there are three coupling 

functions per closed-loop numerator as previously determined. If one 

considers just one element of this matrix, for example the (1,2) element, 

it may be equated to a coupling function as shown below: 

xl,o 
N( e) = 

x2 ,oe 

N(Xl ,oe)N(x2 ,oc) - N(xl ,oc)N(02,oe) 

. DOL 

10 

(2-24) 
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The expression on the right hand side of the equal mark is the difference in 

two 6th order polynomials divided by a fourth order polynomial and it must 

yield a 2nd order polynomial with zero remainder because of the previous 

definition of the coupling functions. 

Since all of the coefficients of the RHS polynomials of equation (2-24) 

are directly obtainable using Leverrier's algorithm, generating the coupling 

functi)ns merely requires a subroutine to multiply and divide polynomials. 

Furthermore, since it is known that the remainder must be zero, it is not 

necessary to calculate all seven coefficients of the products N(x.,o ) X 
~ e 

N(x.,o) and only the first three in the division. 
J c 

This approach has proven to be considerably more efficient than the 

previous method which involved four matrix inversions and many matrix multi-

plications. 
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3. DETERMINATION OF GAINS AND MODEL SELECTION 

3.1 Determination of Feedback Gains 

With the closed-loop transfer function coefficients expressed as functions 

of the feedback gains, the next step is to solve for a set of feedback gains 

that forces these coefficients to match predetermined values. This problem 

was approached from several different directions. 

Initially only the poles of the system were placed by forming a weighted 

least squares cost function and using nonlinear minimization techniques to 

match the coefficients. While this does place the poles, it has the obvious 

disadvantage of offering no control over the zero locations. It also yields 

non-unique solutions since eight gains are available to match just four 

coefficients. 

A second approach was to introduce a 2 x 2 cross-coupling matrix and 

then specify two numerator polynomials as well a~ the denominator. Again 

the gains were obtained by forming a weighted least squares cost function 

and minimizing using a modified Newton-Ralphson technique. This approach 

was never completely satisfactory because it invariably resulted in large 

values of gain or unacceptable responses for the transfer functions not 

being specified. This is most likely caused by the fact that u, w, and 8 

for the helicopter are not independent. If two of these values are 

specified then the third must take on whatever value is required to 

satisfy the other two. The problem then lies in the fact that it is 

very difficult to a priori specify two transfer functions that yield 

a satisfactory response for the third variable. The above methods are 

discussed in more detail in (6) anti (7). 

The method that was finally selected matches the poles and zeroes of 

one transfer function using only the feedback gains. Using this approach 
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it is only necessary to solve two systems of linear simultaneous equations. 

This method is presented by noting that the numerator coefficients are linear 

functions of elements of the gain matrix. If desired zero locations in the 

s-plane are specified, then a model numerator polynomial can be determined. 

Equating the coefficients of like powers of s in the model and equation (2-22) 

yields a system of three linear simultaneous equations that can be solved for 

three elements of the gain matrix. Depending on whether a 0 or 0 transfer 
c e 

function is selected, three of the four elements of the first or second row 

of the K matrix are uniquely defined. The fourth element may now be specified 

and these four known values of gain substituted into equation (2-12). When 

this is done, the denominator coefficients become linear functions of the 

remaining four elements of the gain matrix. 

If the desired pole locations are now specified and a model characteristic 

equation formed, equating the coefficients of like powers of s results in a 

second linear syste.m of simultaneous equations that may be solved for the 

remaining values of gain. The fact that the gains can be determined by 

solving two linear systems of simultaneous equations is a very attractive 

feature of this method and is discussed in more detail in reference (8). 

3.2 Selection of a Model 

'i While, in theory, the above technique is capable of generating feedback 

gains that can place the closed-loop poles and zeroes of one transfer function 

at arbitrary locations in the s-plane, in practice, considerable care must be 

exercised in specifying these values and in selecting the extra value of gain 

from the numerator equations. If these values are not carefully selected, 

either the gains will be too large or the other transfer functions of the 

system will have zero locations that result in unacceptable responses. 

Examples of this are presented in Section 5. 
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Initially the pole and zero locations were selected to match specifica-

tions set forth in references (9) and (10). This involved using pole-zero 

cancellation in order to match a second-order model and specifying two 

numerators. This effort was reported on in reference (11) but as stated 

previously, the general approach of trying to match two numerators did not 

produce satisfactory results and was abandoned. 

The final method used was basically trial and error in an attempt to 

satisfy the specifications shown in figure (1). While no step-by-step 

procedure for selecting the pole-zero locations or the gain element can be 

given, the following general observations were made. 

1. Movin~ the pole locations farther out into the left-hand-plane to 

improve the speed of response requires that the corresponding zero locations 

also be moved out if the steady-state response is to be maintained, This, 

in general, will increase the gain magnitudes. 

2. In specifying the extra value of gain one should be aware of the 

relative magnitude of the state that the gain will multiply and the maximum 

allowable input to the system. This will allow an initial guess that is 

reasonable. 

3. Once the open-loop numerator, denominator and coupling function 

coefficients have been determined, it is quite easy to iterate on the pole-

zero locations and extra gain to determine a set of acceptable values. 

4. For the CH-47, it required little modification to find acceptable 

values for all flight conditions consi.dered, once an acceptable set of 

values were determined at one flight condition. 

5. Right-half-plane zeroes, while not desirable, will not necessarily 

cause problems if they are far enough out in the RHP or if the magnitude of 

the transfer function's response is small. 
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4. CLOSED-LOOP VELOCITY-COM}~ND CONTROLLER 

Once the elements of the gain matrix have been determined so that the 

step input responses of all transfer functions are acceptable, then a satis-

factory pilot-command control system of the form shown in figure ~)has been 

generated. 

0 + 0 x 
l' . -- x = Ax + Go - - -

~ + 

K 

Figure (2) System Configuration for Pilot-Command Controller 

With the above system it is possible, using the steady state responses of 

the transfer functions, to calculate the control inputs required to produce 

command changes in forward and vertical velocity (u and w). However, this 
c c 

would be an open-loop controller with the inherent disadvantages of open-

loop systems. To overcome this, the system configuration of figure (3) was 

proposed. 

c [] 
u 

= c 
Wc x 

-h K2 
+ 0 . -- x = Ax + Go - - -

- , + 

I Kl L 
I I 

K3 

Figure (3) System Configuration for Velocity-Command Controller 
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K2 is a 2 x 2 matrix of feedforward gains 

K1 is a 2 x 4 matrix of feedback gains 

c is a 2 vector of command changes in u and w 

The system dynamics are still defined by equation (2-1), but the input becomes 

(4-1) 

(4-2) 

(4-3) 

or 

(4-4) 

Substituting into equation (2-1) yields 

x = (A + GK)~ + GK2~ (4-5) 

Now let K be the set of feedback gains obtained by specifying the poles 

and zeroes of one of the pilot-command transfer functions. Then it is 

apparent that the velocity-command and pilot-command transfer functions 

will have the same poles. Employing Cramer's rule and equation (2-11) it 

can be shown that the numerators of the u/u , w/u , u/w , and w/w transfer c c c c 

functions may be expressed as 

N(u,U ) = k2 N l(u,o ) + k" N l(u,o ) (4-6) 
c 11 c e t..21 c c 

N(w,u ) k2 N 1 (w,o ) + k2 N 1 (w,o ) (4-7) 
c 11 c e 21 c c 

N(u,w ) = k2 N l(u,o ) +k2 Nl(U,o) (4-8) 
c 12 c e 22 c c 

N(w,w ) = k2 N 1 (w, ° ) + k2 N 1 (w,o ) (4-9) 
c 12 c e 22 c c 
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Each of the above equations represents a third order polynomial in s with four 

coefficients. While it is not possible to control all of the coefficients, it 

is possible to control one coeff.icient from each equation. If the system is 

to track velocity commands, the steady-state lr:esponse of u and w to a unit 

step input on u must be one and zero respectively and the steady-state 
c 

response of u and w to a unit step input un we must be zero and one respectively. 

This requires that the constant term of the numerator of the u/u transfer 
c 

function equal the constant term of the denominator (which is known) and the 

constant term of the w/u transfer function equal zero to provide de-coupling. 
c 

Placing these constraints on equations (4-6) and (4-7) yields two linear 

simultaneous equations to solve for k2 and k2 . Similar restrictions on 
11 21 

the constant terms of the w transfer functions result in two equations that 
c 

yield k2 and k2 . Once the values of K2 are known K1 can be determined 
12 22 

using 

(4-10) 
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5. SIMULA,TIO!'i RESULTS 

This design procedure has been applied to the linearized longitudinal 

dynamics of the CH-47 helicopter. Results will be presented at several dif-

ferent flight conditions and finally the results of a simulated decelerating 

approach will be presented. The first example will be for nominal velocities 

of 150 kts. forward and 250 fpm vertical descent. This example will be used 

to demonstrate the technique for calculating K2 in the velocity-command 

configuration. 

5.1 Fixed Point I 

The A and G matrices shown below are based on stability and control 

derivatives provided by NASA's Langley Research Center. 

-0.05191 -0.03898 8.8944 -32.176 

0.02731 -0.57793 250.67 1.2324 
A = 

-0.00014 0.01769 -1.3044 0 

0 0 1.0 a 

-0.14909 -1.2698 

0.01857 -8.9842 
G = 

0.31973 0.22782 

0 a 

The open-loop characteristic equation for this A matrix is 

432 
DOL = s + 1.934s - 3.579s - 0.22ls + 0.0117 

The sign changes in the coefficients indicate an unstable system and right-

half-plane poles occur at 0.034 and 1.2. 

SpeCifying the poles and zeroes of the w/8 transfer function as 
c 
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Poles = -0.75, -0.8, -0.8 ± jO.4 

Zeroes = -1.0, -0.8 ± jO.4 

resulted in the following gain matrix~ 

K = [0.0667 

-0.0021 

-0.02 

0.0034 

-23.75 

28.08 

\ 

---!'---~r-'" 

I 

.-5.17J 
0.324 

when k12 was specified at -0.02. This feedback gain matrix yields denominator 

and numerator polynomials for pilot-command transfer fUnctions as shown below 

with the steady-state response of each listed to the right. 

432 Steady-State 

DeL = s + 3.l5s + 3.88s + 2.2s + 0.48 Response/inch of control 

N(o , u) 3 2 l6.1s 6.33 -13.2 fps = o .1Ss 9.23s e 

N(o ,w) 3 2 0.51 - 1.06 fps = 0.02s 0.6s - s e 

N (0 ,q) 3 2 O.Ols 0 = 0.32s + 0.2ls + e 

N(o ,8) 2 0.2ls + 0.01 0.02 rad = 0.32s + e 

N(o , u) 3 2 
- 11.4s 1.58 - 3.29 fps = -1.27s - 10.4s c 

N(o ,w) 3 2 2l.6s - 7.19 -15.0 fps = -8.98s 23.4s c 

N(o ,q) 3 2 0.006s 0 = 0.228s + 0.013s c 

N(o ,8) 2 o .013s - 0.006 0.013 rad = o .228s + c 

Thus, the system has been stabilized and the pilot-command responses, 

shown ill figures (4) and (5), look reasonable. Sign changes in the u/o , 
e 

w/o , and 8/0 numerators indicate right-half-plane zeroes; however, in 
e c 

ufo and w/o they are located at 64 and 34 respectively ro1d do not seriously 
e e 

affect the responses. 

some phase reversal. 

The 8/0 righ t-half-plane zero is at 0.14 and does cause 
c 

However, 8 is not very responsive to 0 commands and 
c 

this may not be objectionable. 

To determine the feedforward matrix, (lquations (4-6) - (4-9) are used 
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to form the following 2 x 2 systems of equations. 

-6.33 -1.58 k 
211 

0.48 

= 
-0.51 -7.19 k 

221 
0 

and 

-6.33 -1.58 k 
212 

0 

= 
-0.51 -7.19 k 

222 
0.48 

The resulting feedback and feedforward matrices are 

[-0.0105 -0.003 -23.75 -5.17 J 
K1 = 

0.0034 -0.065 28.08 0.324 

[-0.0772 0.017 ] 
K = 2 0.0054 -0.068 

These gains, uSed in the system configuration of figure (3), yield the fo11ow-

ing velocity-command transfer function numerators and steady-state responses: 

N(u, u ) 
3 2 + 1.17s = -0.018s + 0.66s c 

N(w,u ) 3 2 - 0.04s = -0.050s - 0.08s 
c 

N(q,u ) 3 2 - 0.0008s = -o.023s - 0.02s 
c 

N(e ,u ) 
2 

- 0.02s = - 0.023s c 

N(u, w ) 
3 2 

= 0.089s + 0.553s + 0.503s 
c 

N(w,w ) 
3 2 + 1.45s = 0.611s + 1.58s 

c 

N(q.;w ) 3 2 
= -O.Ols + 0.003s + 0.0006s 

c 

N(8,w) 
2 + 0.003s = -O.Ols c 

22 
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0.0 

1.0 

0.0 

0.001 rad 

···-~·4 



I 

\-_. -~-
~".-" 

\ -- '[ 
t 

r I l 

T T The responses to velocity commands of ~ = [10,0] and ~ = [0.10] were plotted 

and are shown in figures (6) and (7) respectively. The velocities settle to 

within 5% of the desired steady-state changes in 5 seconds with no overshoot 

and the decoupling between forward and vertical velocity commands is good. 

The pitch angle to vertical velocity command response shows a phase reversal 

that reaches a peak of 0.9 degrees in 1.3 seconds, but this may not be objec-

tionable. If these responses were unacceptable to either pilots or passengers, 

the gains could easily be recalculated using new pole-zero specifications. 

5.2 Fixed Point II 

The results of the previous example do not completely satisfy the speci-

fications of figure (1) in that the vertical velocity rise time exceeds two 

seconds. To correct this, the poles and zeroes of the w/8 transfer fUnction 
c 

were moved to the following locations 

Poles = -0.9 ± jO.l, -0.9 ± jO.45 

Zeroes = -1.0, -0.9 ± jO.l 

and k12 was specified at -0.03. The nominal velocities were set at 110 fps 

forward and 500 fpm vertical descent since these values correspond to desired 

values along one section of the nominal approach path shown in figure (8). 

The A and G matrices will not be listed for the remaining examples, but can 

be determined based on the data in reference (12). The K and K2 matrices 

for this example are shown below 

~ 0.075 -0.030 -7.126 -5.765 ] 
K = 

-0.046 0.050 12.412 2.156 

lO.062 0.039 ] 
K = 

2 0.007 -0.108 
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The corresponding plots of the velocity responses to pilot commands and 

velocity commands are shown in figures (9) and (10) respectively. These 

responses do satisfy the previously stated specifications and the decoupling 

between u and w in the velocity-command mode looks good. There is some 

direction reversal in the u/w response but because of the small peak value 
c 

of this response it should not be objectionable. The pitch and pitch rate 

responses are not shown since they were acceptable and are not of primary 

concern in this study. 

5.3 Fixed Point III 

This example is included to emphasize the importance of achieving satis-

factory responses to pilot inputs prior to determining the gains for the 

velocity-command loop. Before attempting to simulate a decelerating approach, 

the controller's ability to function properly at various nominal points 

throughout the flight range was investigated. In this example the nominal 

velocities were 20 fps forward and 3.33 fps vertical descent. The model 

and kl2 were the same as in Example II. The velocity responses are shown 

in figures (11) and (12). The responses to 8 commands show' extreme coupling 
e 

between u and wand a rather severe direction reversal on u/8 (again because 
c 

of the small peak value this may not present a problem). The corresponding 

velocity-command responses demonstrate the same undesirable level of coupling 

between u and w for u commands. The peak value of 10 fps will most likely 
c 

cause problems when flown in an adaptive mode. To correct this the value 

of k12 was adjusted (since it had been noted in previous studies that this 

can have considerable influence on the coupling between u and w) from -0.03 

to +0.01. This yielded the responses shown in figures (13) and (14). The 

coupling has been greatly reduced and although the u/w response indicates 
c 

a RHP zero the peak value is again small. 
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Using the model from Example II and k12 = 0.01 satisfactory responses 

were obtained at all flight conditions and these values were therefore used 

in the simulation of a decelerating approach. 

5.4 Decelerating Approach 

With the algorithm generating acceptable responses throughout the desired 

.-

range of flight conditions, the next step was to check the controller's ability 

to function in an adaptive mode during a decelerating approach. 

The section from C to D of the nominal approach path of figure (8) was 

used for this study with the following modifications. 

1. The vertical velocity between Band C was set at 0 rather than 500 fpm. 

(The controller was checked under both conditions but the results presented 

are for the latter since this is a more severe test of its ability to come onto 

and remain on the desired path.) 

2. The vertical velocity was linearly decreased from 500 fpm to 0 over 

the range from 100 feet to O. This takes both forward and vertical velocities 

to zero simultaneously and brings the vehicle to hover at an altitude of 50 

feet. 

In order to simulate a decelerating approach a guidance law had to be 

developed that would command the changes in forward and vertical velocities 

necessary to keep the vehicle on the desired approach path. This requirement 

is complicated by the fact that the controller is designed to command changes 

in body axis velocities while the approach path is defined in terms of approach 

navigation frame (ANF) velocities. The relationship between these two axis 

systems is shown in figure (15). 
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These systems are related by the equations 

. . 
u = x cos e - z sin e 

. 
w = x sin e + z cos e 

(5-1) 

Thus the basic procedure is to determine the desired changes in x and 

z and then use equation (5.1) to generate the necessary commands in u and w. 

The equations for generating x and z are of the form proposed by Hoffman, 

Zvara, Bryson, and Ham (13). The general procedure is to develop expressions 

for x, ~, and z as functions of range and determine the necessary purturba-

tions with the following equations: 

liz = (~DESlRED 
(5-2) 

where c and c are weighting factors whose function is to maintain the x z 

desired altitude profile. For the results to be presented c = 0.5 and 
x 

c = 1.5. The equations expressing ~, ~, and z as functions of range are 
Z 

given below and were obtained by fitting curves to desired profiles of 

figure (8). 

For 2500 < R < 1200 

XuESlRED = 0.0333 • R + 26.0 
. 
zDESlRED = 8.333 

-1.21212 . R2 + 0.1448484 . R + 173.636 zDESlRED = 
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For 1200 < R < 400 

. 
-6.25 10-6 • R2 + 0.0525 • R + 12.0 ~ESIRED = . 

zDESlRED = 8.333 

-6.25 10-5 2 . R + 90.0 zDESIRED = . . R + 0.275 

For 400 < R < 0 

. 
~ESlRED 

= -1.0 . 10-4 • R2 + 0.12 • R 

8.3333 400 < R < 100 

zDESlRED = 
0.08333 100 < R < 0 

zDESIRED = -5.0 . 10-4 R2 + 0.55 . R + 50.0 

In the zDESlRED equations the value of R is the actual value at the time 

the velocity commands are updated. For ~ESlRED and zDESIRED the value of R 

is obtained by subtracting DT . XACTUAL' wh~re DT is the guidance update time, 

from the actual value of R. This does not give an exact value for R and 

therefore x and z at the next update point since x is changing but it does 

yield an estimate at some future point along the trajectory and it was 

reasoned that this is better than commanding x and z based on the current 

location. 

For the results to be presented the sampling rate was 10 per sec. and 

the guidance commands were updated every 0.5 sec. while the actual aircraft 

parameters and gains were updated every second. The model and value of k12 

were the sam(~ as the last example at fixed point III. 

The results of this simulation appear i:l figures (16) through (20). The 

plot of altitude vs. range shows good tracking while the ANF x vs. range curve 

shows the actual velocity consistantly above the desired value. It should 

be emphasized, however, that the gUidance law, equation (5.2) penalizes errors 

in altitude so this result might have been ~'\nticipated. It should also be 

emphasized that this gu:tdance law was rather hastily devised to test the 

32 

'~I 



r"~---

I 
l 

n'. ,-..'_ "'~"""''''-'''''~'''''''J'-~-~''-''''''-~'''-".- _-,;u __ ,.,. ~-,..-".~ ..... ," • ~ •• ~ • 

Lv 
Lv 

, 

fit c: . 
·M 
ra. 
~ 

110 

100 

90 

30 

10 

U"\U"\ U"\ 0 .. . . 
oU"\ 0 ,... 
'" -:r -:r ..., 

0 U"\ . 
0\ ..., 
N N 

0 

0\ 
.-t 

···-~r.~ 

(!/ 
I 

/, 

/ 
" / 

(!)' , 

Range. Ft x 10-2 

00 ..., . . 
-:r ~ 
~ .-t 

Time. Sec. 

,.' 
"t!J 

..., . 
00 

Cl) 

'" 
'" 

ACTUAL 

DESIRED 

,... . 
N 

o 

o 

----, 

Figure (16) ANF Forward Velocity va. Range 

----~-------------.--~----.~----~-----

---....., 

~. 

/---~ --

-------. 

i 
--~-: 

__ J 

- --] 



I 
tt: 
;~ t
· 

r
·~·-

: . 
-, 

w 
+:-

. ~ ," ',.-"'""'"".-~"'-.---.-......... '-"-~. 
-~;-' 

soo 

400 

'" 300, _/ ra. . 
tI 

"'0 
::J 
~ .... 
~ ... 
-< 200 

100 

Range. Ftx 10 -2 

2 4 6 8 10 12 14 16 18 20 

I 
I I 

'" '" 0 0 '" 0 00 .., 
. . . . . 

'" 0 " C7'I 
.., C7'I -:r M 

-:r -:r .., N N M ... ... 
Time. Sec. 

Figure (17) Altitude va. Range 

. __ .""'h~ ................... ~_~ ........ ~~ ...... ,_._~ .. __ j_ •• _ ..... ~~_ , ••• _.< __ ,."-~ __ ,_~~,. __ '__~"_~+~"'"' __ • __ ..... ""'~ __ .~'."_~." 

--"""'I 

~"" r •• 

~--~ 

.~ " 

Q ACTUAL 

X DESIRED 

--~~ 

I 
22 24 26 28 jo --.----~. 

.., 
'" " .0 . . 

00 '" N 0 

---~ 

:. ---I 
.. -----------.~-'--~--~~-----~~----~~--. j 



r I-~ 
- - ------ "..........-- .--~--~--- -

r- -I' }--l . I 

~ I i I 
. , 

I 
I I 

i 

I I . ~ 

16 
If! I e: 14 

I ... 
12 

I 
OJ I \1 
0 10 ~ 

1 " : i 
.. 4 8 

i 

• I 0 
~ 6 
OJ 1 ~ 
t! 
> " I 
.... i ~ 2 

I 

10 20 30 40 SO 60 70 
I 
i 

Time. Sec. 1 
I 
l 
l 

Figure (18) ANF ~ v •• Time I 
I 

! 
, -. I 

j 

6 I 
1 . 5 u i 
I ., 

If! 4 
1 - I OIl' 

c!l 3 ~ . ., 
2 OJ 

.:2 
1 60 70 

-5 ... ~;c J 
~ .. 

-1 

-2 
I Ti_. S.c. 

,I 

~ 
~. 

I 
I 

i Fi,ur. (19) Pitch bt. va. Ti_ 
I 

~ -. 14 
! . 

j 
12 

1 
III ., ., ... 10 CD 
II 

I j:o 
I 

:1 
. 

8 

I " ,! 
.... 
CD 

~I 
~ 
-5 

6 1 
1 ... I 

II I 
.. .. 1 

[I 
4 

I 
!l 2 
il I ~ I I 

I 
10 30 40 50 60 70 

I 
Ti_. Sac. I 

! 

~ ! 
~ 1 
" " 

, 
rl .. Filura (20) Pitch Anile v •• ti_ l 

1 

I f 
35 

t,- ~ 

~ k...AE 



, 
i 

"l 

I 

,-
~ 

I 
I-
! 

L, 

r-
! 
j 

I ---------~--l 
~ 

feasibility of using the controller ~n an adaptive decelerating mode and 

it has demonstrated that this is possible. The remaining plots of ANF ~, 

pitch rate, and pitch angle vs. time are included to demonstrate that these 

values lie within acceptable limits. 

Thus the controller appears capable of performing the functions it was 

designed for without exceeding thE capabilities of the aircraft. The item 

remaining to be investigated is the controller's ability to function in the 

presence of errors in the estimates of aircraft parameters and at different 

sampling rates. The results of this study are presented in the next section. 
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6. SENSITIVITY STUD~~ 

Since the control algorithm is to be used in an on-board computer where 

the aircraft parameters must either be stored or estimated, it is necessary 

to have information concerning the controller's ability to function in the 

presence of errors in these parameters. The computer must also operate in 

real time and perform several functions in addition to the control function. 

Therefore it is necessary to know the controller's sensitivity to varying 

sampling rates. The results of these studies appear in this section. 

6.1 ?ensitivity to Parameter Errors 

The linearized equations that describe the vehicle's motion about a 

nominal point are of the form of equation (2.1) which is written below in 

expanded form to show the actual entries in the A and G matrices. 

where 

u X X (X I -W ) ulm wlm q m n 

w Z Z (U +Z I ) ulm wlm n q m 

q Mull MwII M II 
yy yy q yy 

e 0 0 1 

U = nominal forward velocity 
n 

W nominal vertical velocity 
n 

e = nominal pitch angle 
n 

g = gravitational acceleration 

-g cos e u Xc n 
elm 

-g sin e VI Zc n + elm 

0 q M 
cell 

yy 

0 e 0 

Xc 
clm 

Zc 
clm 

M 
cclI 

yy 

0 

(:: ] 

The remaining terms in the matrices are the stability and control derivatives 

that must be stored or estimated. The procedure used in the program was to 

specify U and Wand use these values to determine e and the derivatives • n n n 

based on the data in reference (12). 
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To determine the effect of errors in these parameters, values of V and 
n 

W were specified and the necessary values of gain were calculated, using the 
n 

techniques previously discussed. These gains, based on correct values of 

the vehicle's parameters, were then used to control the vehicle with the 

parameters changed, one by one, by multiplying by 0 and 3. This yields a 

fairly wide range of variation and should indicate the relative importance 

of each parameter. 

The corresponding responses in forward and vertical velocity were plotted 

for velocity commands of u 
c 

10 fps and w = 0 fps for nominal velocities 
c 

of U = 110 fps and W =. 8.33 fps. The sampling rate was 10 per second. 
n n 

These responses appear in figures (21) through (36) where each plot contains 

three curves representing the response with the correct value, the response 

with the indicated parameter set to zero and the response with the parameter 

multiplied by three. 

Based on these curves it appears that the controller is fairly insensitive 

to variations in the vehicle parameters. For the stability derivatives, 

variations in the 2 and M derivatives show considerable influence over the 

decoupling between u and w in steady state, but very little c~fference in 

the response for the first one or two seconds. If the controller is being 

flown in an adaptive mode, this may be the critical portion of the response 

since commands in u and w will most likely be updated every 0.5 to 1.0 

seconds. The control derivatives 20 / and M.t' II cause the vehicle to 
C m u E YY 

become unstable when set to zero. This however might have been expected 

since setting these parameters to zero severely limits the controller's 

ability to influence the vehicle's motion. The control derivative 

Mo /1 ,when mUltiplied by three, also caused the vehicle to become 
C yy 

unstable. However, a factor of three error in a control derivative is 
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an extreme variation. 

The above results are admittedly limited in their application since the 

vehicle parameters were varied one by one. They should however serve to 

indicate the relative importance of the parameters. It is recommended that 

work in this area be continued. 

6.2 Sensitivity to Sampling Rate 

Using the procedures described in this report the gains are calculated 

assuming a continuous system with dynamics described by equation 2.1, 

rewritten below. 

x = Ax + Go (2.1) 

Since the actual system, however, is digital, the equations of motion become 

~i+1 = F x. + B O. 
-:L -:L 

(6.1) 

where 

T 
F :::; f AF dt F = I 

0 
0 

(6.2) 

T 
B = f (AB + G) dt B 0 

0 
0 

(6.3) 

with T being the sample time. Thus the procedure was to calculate the gains 

for a continuous system and use those gains to generate O. in equation (6.1) 
-:L 

using the following equation 

~i + 1 + 1 = K ~i + K2 ~i (6.4) 

Equation (6.4) can represent the input for the velocity command controller by 

setting K2 equal to the feedforward gain matrix and letting 0 . be a vector 
-C1. 

of velocity commands or it can represent the input for pilot commands by 

setting K2 equal to an identity matrix and letting ~i be the vector of 

pilot inputs. 

47 



I 
I 
I 

i . 

~ 

r-
I 

I- C

' 
-T---~-r 

! t 
f ! 
! I 

Applying the input of equation (6.4) to equation (6.1) the state responses 

were plotted fo~ different sampling rates by generating new F and B matrices 

using equations (6.2) and (6.3). Responses were plotted for values of T 

between 0.05 and 2.0 sec at nominal velcdties of U = 20 fps, W = 3.33 fps 
n n 

and U = 110 fps, W = 8.33 fps. 
n n 

For nominal velocities of U = 20 fPS and W = 3.33 fps there is very 
n n 

little change in the vehicle's response for values of T of 0.5 second and 

smaller. The responses for T = 1.0 second were still stable but were 

becoming oscillatory and at T = 2.0 seconds the system was unstable. At 

the higher velocities of U = 110 fps and W = 8.33 fps the responses had 
n n 

become oscillatory at T = 0.5 second and unstable at T = 1.0 second. For 

T = 0.33 second and below, however, there was little di.fference indicating 

that these rates should be acceptable at all points along the approach 

trajectory . 
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7 . CONCLUSIQ.NS 

I 
1 

A technique has been developed for generating feedback and feedforward 

gains capable of producing acceptable vehicle responses to both pilot and 

guidance system commands. The calculations are simple and lend themselves 

to on-board computation in an adaptive mode of operation. Sensitivity 

studies indicate that the system can function in the presence of errors in 

vehicle parameters and over a fairly wide range of sampling intervals. 

Publications 

The results of this work have been published as listed below in 

reference 8 and in the paper "A Velocity Command Controller For A VTOL 

Ai"!:craft" presented at the 1976 JACC, West Lafayette, Indiana, July 1976. 

Technical Officer 

The NASA technical officer for thiA grant was Dr. J. F. Creedon, M.S. 494, 

NASA Langley Research Center, Hampton, Virginia. 
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A TECHNIQUE FOR POLE-ZERO PLACEMENT 

FOR DUAL-INPUT CONTROL SYSTEMS 

Gerald F. Reid 

Virginia Military Institute 

Lexington, Virginia 

ABSTRACT 

An algorithm is presented for determining the feedback gains required to 

place the poles and zeros, of pre-selected transfer functi.ons of a dual-input 

control system, at arbitrary locations in the S-plane. The technique employs 

Leverrier's algorithm and has been used in a digital simulation to control 

the longitudinal dynamics of the CH-47 helicopter. 
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A VELOCITY-COMMAND CONTROLLER ~OR A VTOL AIRCRA~T 

Gerald F. Reid 

Virginia Military Institute 

Lexington, Virginia 

ABSTRACT 

A technique is presented for calculating feedback and feedfonvard gain 

matrices that enable a VTOL aircraft to track input commands of forward and 

vertical velocity while maintaining acceptable responses to pilot inputs. 

Leverrier's algorithm is used for determining a set of state-variable, feed-

back gains that force the closed-loop poles and zeros of one pilot-input 

transfer function to pre-selected positions in the s-plane. This set of 

feedback gains is then used to calculate the feedback and feedforward gains 

for the velocity-c.ommand controller. The method is computationally attractive 

since the gains are determined by solving systems of linear, simultaneous 

equations. The method has been used in a digital simulation of the CH-47 

helicopter to control longitudinal dynamics. 
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