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FRACTURE OF COMPOSITE PANELS

1

F, Erdogan™ and M. Bakioglu2

ABSTRACT: The fracture problem in panels which congist of periodically arranged
load-~carrying and buffer strips of different materials is considered. The main
runphasis in the study is placed on the problem of a crack terminating at and
nrossing the interfaces and on the stress-free end problem, The problem is for-
nulated in terms of a system of singular integral equations and numerical solu-
tions are obtained for certain material combinations. With the study of possible
crack propagation and delamination in mind, certain stress intensity factors are
defined and calculated. A main rasult of the study is that when the crack touches
or intersects a bimaterial interface, the stress state has no longer the standard
Bquare root singularity and, to study further propagation of the crack, the con-
ventional fracture models need to be modified or new models nead to be developed.

KEY WORDS: Composite raterials, fracture, crack propagation, delamination, stress
singularity, bonded leyers, stress-free end.

In structural design with high strength composite sheet materials the use of
relatively low stiffness and high toughness buffer strips oriented parallel to
the main load-carrying laminates has been under investigation for some time [1,2].
The practical objective of this design procedure is to improve the fatigue crack
propagation and arrest characteristics of the structure, The fracture process may
start as a fatique crack initiation at a local imperfection in the load-carrying
laminate. Under repeated loading it may be pussible for the propagating crack to
reach the interface and to enter the adjacent buffer strips. Assuming that the
fatigue and fracture characteristics of both materials are known, for studies re-
lating to fatigque life and structural integrity, it would be necessary to have a
reliable analysis of the problem. Particularly in fatigue crack growth studies,
it would be very useful to have a technique for calculating the corresponding
stress intensity factors.

After the crack propagating in the first strip touches the interface, further
fracture propagation would take place along the plane for which the ratio of the
local load factor (or crack driving force)} representing the intensity of the
applied loads and the geometry to the corresponding strength parameter of the two
materials or the interface bond is maximum. In this rase, since the stress state
around the crack tip does not have the standa.d square root singularity, the con-

ventional fatigue and fracture models cannot be used to study the problem. To
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Jdo this, in addition to having the correct analysis of the problem it may be
nNecgssary to make certain modifications in the existing fatique and fracture
models,

In the actual structures, particularly in those which consist of fiber re-
inforced laminates, generally the strips are anisotropic [1]. However, in this
study, largely for reasons of analytical expediency, both materials are assumed
to be isotropic and linearly elastic. The basic formulation of the problem of
periodically arranged bonded dissimilar strips and its solution for cracks grow-
ing in one set of strips and terminating at the interfaces were given in [2]
(Figure la). In this paper the emphasis is on the propagation of the crack in
the second mediun after crossing the interface and on the "stress-free end prob-

lem" of bonded layered materials (Figures la and 1b).
Formulation of the Problfem

I

The general problem under consideration is described in Figqure 1. It is a
two~dimensional elastostatics problem for a composite medium which consists of
periodically arranged two sets of bonded dissimilar strips having collinear
cracks as shown in Figures la and 1lb. The medium may be under symmetric uniform
normal tractions in x, y, and (ir. plane strain case) z directions, or under in-
ternal stresses due to the difference between curing and operating temperatures.
Under any combination of these loads the problem giving the homogencous stress
state in the composite medium in the absence of cracks may be solved and the
stress components on y=0 plane may be obtained without any difficulty. Let

these atresses be

o =)
olyy(x'O) = pl(x) ’ clxy(x.O) =0 , )
[+ 47} _ 0

The sclution of the original crack problem is obtained by adding to the homo-
geneous solution the solution found from a perturbation problem in which the
self-equilibrating crack surface tractions are the only external loads. From
the view point of fracture the important problem is the perturbation problem
which may be solved by considering th2 standard field equations for the strips

1 -and 2 under the following boundary and continuity conditions:
W (0,y} = u,(0,y) , vy (0,y) = v,(0,y) , (O<y<=) ,

05y (0r¥) = 0, (0,¥) Oy gy (0¥} = szy(o.y) v (0<y<®)
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ul(-hlfY) ® 0, U:xy(“hl:YJ = O, (O<y<w)
“2(h2'Y) =0, ozxy(hz'y) =2 0, (O<y<w) ,

g yY(Jt:,O) = -pl(x) ' (-hlsx(a-hl) ' vl(x,O} =0, (a-h1<x<0) '
4] yy(x,o) = -pz(x) ' (hz-b<x<h2-c) ' vz(x,o) =0, (0<x<h2—b, h2~c<x<h2)
Okyy(x,“") =0, kay(x.‘”) =0, (ka1,2) ' (2)

where, because of symmetry, only one quarter of a strip from each set is con-
sic_lered, U Vyr Ukij are the displacement and stress components in the usual
nctation (k=1,2; i,j=x,y), and the dimensions hl' hz' a, b, and ¢ are shown

in Figure 1. Defining

xl=x+hl,x2=x~h2,yl=y=y2 {3)
) .
Gi(xij = J;";V (x ro) , tL=1,2) (4)

ard using the toechnique described in fZ], the perturbation problem may be re~

duced to the following system of singular integral equations:

a 4 a
f‘t—_-x—{Gl(t)dt«l- J ll(xl,t)G {t)dt
i b (L))
+ fcklz(xl.t)cztt)dt s - Tpl(xl-hl) , =a<x<a ,
Jb( : )6, (t)at + Ia (%,/£) G, (£)dE
o %, t+ Xy 21°727
b n(1+|<2)
+ Jckzz(xz,t)s2(t)dt = - —Tu;—- pz(x2+h2) p b<x2<b P {(5)

where ui, Ko {1i=1,2) are the elastic constants with Kiz (3-ui)/(l+\)i) for

generalized nlane stress, K, = 3-4\Ji for plane strain, vi being one Poigson's

i
ratio. The kernels kij (xi.t} . (i,j=1,2) are given by

o
- -s{hy-t)
kll(xi't) = Jo Kil(xi,t,s)e ds

~s(hy=t) _ ~sthy+e) gy

klz(xi,t) = f:[Kiz(xi,t,s)e Kiz(xi,-t,s)e s {(i=1,2)
(6)

where the functions K, are defined in the Appendix B of [2] and will not be

repeated in this paper. The index of the integral eguations (5) is +1 [3].

Therefore the general solution of (5) will contain two arbitrary constants [3]
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which may be determined by using the following single-valuedness conditions:

a b
j Gl(t)dt =0 , I Gz(t)dt =0 . (7)
<a (o]

For cracks imbedded in the strips, i.e., for a<h
tion of (5) is of the form

1 and 0§c5b<h2, the solu-

.

gl(t)(az—tz)-ﬁ , —a<t<a ,

Gl(t)

6, (t) = g,(6)[ (b-t) (t=c) 1™, c<tn , (8)

where g1 and g2 are bounded in their respective closed domains. The unknown
functions 9, and g, may be determined from (5) and (7) in a straightforward

way by using the technique described in [4]. For this case the stress intensity
factors at the crack tips are defined and are expressed in terms of G, and G2

1
as follows:

k, = lim [2(x1-a)]L’olyy(xl,0) = - 14:(1 xlli_'u‘_\i [2(a—x1)]HG1(xl) .
1. i n !
k=l [2x,-0) Vg, (x,,0) = - Tre, i [2(b-x) 1%, (x,) ,
. 5 ay y
k, =x1214'é [2(c-x2)] Ogyy%a0) = ‘1‘+—.<; xlzx_f:: [Z(xz-c)] G,(x,) . (9)

The case of a crack touching the interface, i.e., a=h,, was treated in [2]

1
where it was shown that

- 2oy,

Gl(t) gl(t).hl t9) ’
k. = lim V2 (x_ +h )Bo (x.,0) = - 2y lim 1lim/2 (h, -x )BG (x,)
a  xy*-h, 2 2" T2yy'T2’ o x+h) 171 1771
. L (1+2al(l-8) \ 1-2a1(1-8)‘

] ] ’
o sinmf ul+K1u2 u2+K2u1
2cosTB + 4a2(6—1)2 - (o+a)) =0, 0<B<l
a = (Kluz-Kzul)/(u2+K2u1) I (uz-ul)/(ul*Kluz) . (10)

where B is the power of stress singularity which is real for all material

combinations, and ka is the "stress intensity factor".
Crack Crossing the Interface
In the integral equations (5), if a<h1, b<h2, and J<c<b, it was shown
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that the kernels kij are bounded in their respective closed- domains [2]. Re-

ferring to Figure la and 1b, if we let a=h., b==h2, 0<c<h2, it is seen that

the problem becomes one of a crack crossinglthe interface for which equations
(5) are still valid. However, in this case following the procedure outlined
in [2] ana [5], it can be shown that as %;, (i=1,2) and t go to the interface
togethey the kernels kij {(i,7=1,2) become unbounded. The singular parts,
kijs(xi,t), of these kernels may be separated by examining the asymptotic be-
havior of the integrals given by (6). The kernels kijs are given in the Appen-
dix. Tegether with the kernels (t—xi)'11 kijs constitute a set of generalized
Cauchy ker:.ls. In this problem the singulay behavior of the solution can be
examined by expressing

Gy (8) = g (8) (R2-t2)™T G (1) = gy (8) (hy=t) " (t=c) ', O<Re(n,¥)<L , (11)

where gl and g, are again bounded. The characteristic equations to determine
the constants 1 and ¥ are obtained from the dominant part'of (5) by using the

complex function technique [3-6] as follows:
cotm =0,

[2cosmy + 4&2(1—Y)2—al-u2][2cosﬂY + 4a4(1-yj2

-a3-u4} - [2Y(al-a2) + 2—a14-3u2][27(u3-a4)

+ 2-0, + 3a4] =0 . (12)

where the constant (ui, i=1,..,4) are defined in the Appendix. From (1l2) it
is found that n = 0.5, which is the well-known result, and for all material
combinations there is only one root Y satisfying O0<Re(y)<1l which is always
real. The same analysis also gives the following relationship between the end
values of the two bounded functions gl and 9yt

(h -c)&

2 1
(2hy) Y 2y(al—a2)~»2-al+3u2

2cosmy + 4a2(1-y)2-u -0,

gz(hz) = - glfhl) - (13)

Equations (12) and (13) are identical_to those obtained for the semi-infinite
planes in [5]. _

A unique solution of {5} in this case too requires two additional condi-
tions. One condition is given by the singlenvaluedness of the crack surface
displacements which, referring to Figure 1lb and the definitions (3) and (4),
may be expressed as .

[hzs {t.,)dac, + fhls (t.)at, + [-CG {(t,)dt, = 0O : (14)
c 2 2772 Ly 1'71 L hy 2 2" %2
. .



The second condition is provided by (13).

In this problem the stress state is singular at the crack tip X, €
y2'=0 as well as at the point of intersection of the crack and the interface,
¥Rt hpe Y
solution of the problem it can be shown that the stress intensity factors are

» (0, By examining the stresses around these points, from the

related to the bounded functions g, and g, as follows [5].

4.
- L 2 /2
ke 2;1% [2(c xz)] Opyy (%peP) = = T T— g,(c) ,
u. U g, (hy)
172 . 1t 1-2Y 1
k = 1i YO = - -
xx Y*g Y lxx(hl'y) gin %}t (2hl)Y My U u2+K2ulJ
_5Mm) L aay 1
(112--c)E u2‘”(2”1 S LS
T} g, (h ) ,
_ Y _ 172 1'71L 1-2y 1
k. = limy'o _ (h ,y) = - - ]
X oy XYL cos IX © (2ng)7 THpHG M, ML)

S iy 1)
L
(hy-c) ¥ Hp¥Kaly By ¥k by

+ (15)
In {15) the stress intensity factors kxx and kxy are defined explicitly bhe-
cause of their importance in the study of a péssible delamination fracture

at the interface. However, it should be noted that, because of (13), in kxx
and kxy there is only one independent load factor, say glthl) or gzthz).

The solution of the system of singular integral equations with the generalized
Cauchy kernels subject to the conditions (13} and {14) are obtained by using
the technique outlined in [4,6].

Stness~gree End Problem

The stress-free end prohlem is described in Figure le. Analytically the
problem is simply the limiting case of the crack problem shown in Figure 1lb
in which ¢*0. In this case too first the problem for the whole plane (=®<y<®)
without the stress-free boundary y =0 is sclved and the homogeneous stresses
given by (1) are determined. Then a perturbation problem with the end trac-
tions

clyy(x,o) = ~pl(x) R Uzyy(x,ﬂ} = *pz(x: '
ley(x,o) =Q , Uny(x.O) =0 (186)

is considered. The end tractions are statically self-equilibrating and
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satizsfy (see (3))

hy hy
] Py (x,)dx, + I Pyix,)dx, = 0 (17)
-hy hy

As in mogt cases, if Py and p, are cor ttant, then
plhl + pzh2 =0 , {(18)

In this problem, basically the integral equations (5) are still valid
with a= hl" b= h2, and ¢=0. They may be solved by appropriately separating
the generalized Cauchy kernels, defining

= 2_.2,\"Y = 2_.2,"Y
Gl(xl) gltxll(hl xl) ’ Gz(xz) gz(xz)(h2 xz) ' (19}
and using a technique described in [6]. Here, ¥ is obtained from the charac-

teristic equation given by (12) and the end points of 9, and g, are related by

h2 ¥ 2c08TY + 4&2(1~Y)2~a

1
g,(h,) = -(==) = =
272 h, 2Y (0 =0,) + 2-0,+30,

Again, to study a possible initiation of delamination fracture, it is useful

-az

gl(hl) . {20)

to define and calculate the following stress intensity factors:

TR g, (h.)
1M2 149 1-2y
k.= 1im yYU (h,,y) = {-
Xy e sin L 2n¥ MM,
1 %M gy 13
N I ]
HatK,yHy (2h2)Y Moty Pk,
TIRY g, (h,)
AT e U T
k = 1lim yYO (h,,y) = {- {
xy o ¥ Clxy i o %}, (2hl)Y DT
-2 A L O -2 1 . (21)
Hytoly (2h2)Y HytKoHy  MptKG,

Numenical Resulis

The material constants used in the numerical examples and the corresponding
powers of the stress singularity, B for a crack terminating at the interface as
defined by (10) and Y for a crack crossing the interface (or for the stress-
free end problem) as defined by (12) and (15) are given in Table 1. Here the
material combinations A and B are the same and are assumed to approximate

boron-epoxy sheets with buffer strips of the same material but different

-F =




atiffness.‘ The material pairs C and D correspond to Aluminum and Epoxy. Fig-
ures 2 and 3 give the stress intensity factor ka for the material combinations
A and B, respectively, where it is assumed that only material 1 contains a
crack. Here, ka is defined by the first equation of (9) for achl and by the
second equation of (10} for aﬂ}ﬁf Further results regarding this problem may
be found in [2].

Table 1. The material constants and powers
of stress singularity

Plane Stress ?1ane Strain
B/, v v B Y B Y

A 6.65 | 0,33 0.45 | 0.70148 | 0.16650 | 0.68856 | 0.22509
0.15 | 0.45 | 0.33 | 0.36210 | 0.16650 { 0.41539 | 0.22509

23.31 | 0.30 ) 0.35| 0.82503 | 0.21948 | 0.82562 | 0.27369
0.043 | 0.35 ] 0.30 | 0.28873 | 0.21948 | 0.33795 | 0.27369

The stress intensity factors for the crack crossing the interface in the
material combination A are given in Figures 4,5, and 6. The stress intensity
factors kc, K and kxy shown in the figures in normalized form are defined
by (15). In the examples considered in Figures 2~6 it is assumed that the ma-
terial ls a thin plate (i.e., plane stress case} and is unconstrained in x
direction. Hence, the constant tractions Py and P, used in the analysis are
related by

P 5

—— =

. {22)
Py, Ey

Figures 7 and 8 show the results for the stress~free end problem described
in Figure 1lc for material combinations A and C, respectively. The figures give
the thin plate results as well as the results for plane strain, i.e., for the
layered medium which is "thick" in z direction. The stress intensity factors
shown in these figures are defined by (21). 1In this case, stress~free boundary
requires that the constant tractions Py and P, used in the analysis of the per-

turbation problem satisfy the equilibrium condition (18). The results given

* .
The problem for the orthotropic strips which is more representative of the
composite sheets is currently being studied.
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in Pigures 7 and 8 are normalized with respuct to pﬁiY, where ZA-(hl+h2) .
The magnitwies of Py and p, are dotermined from tha full plane (~®<y<®) under
the specified external loads. PFor exampla, if the madlum is subjected to a

o -]
constant strain 61“= 62“= e:o in 2 direction, than
£ ‘:,n:]..".zh:z (vl-\)z) h

Py " o (ot Py =t TRy o (23)
1 = h,B, (1=VI)4hyE) (1-V3) 2 h, %1

If the medium (-~=.g<w, QO<y<w) ig subjected to uniform tension ¢
in x direction, then

1xx = %2xx " %

o - oohz(vlrsz-vzml) » u-h_l.;_, 241
1l hzaz(l-vl)+hlzl(1—v2) 2 h2 1l

Or, if the temperature of the infinite medium (-=<(x,g)<®, 0<y<w) is changed
by an amount AT, then

o = nlzzhztaz-al)Am o = - El.p (25)
4 !
1 hzzz(l—vl)+hlﬂltl-v2) 2 h2 1

vhere al and a, are the coefficients of thermal expansion of the layers 1 and 2
respectively. Input functions for other loading conditions may be obtained in
a gimilar way, Needless to say, the results given in Figures 7 and 8 and those
which may be obtained on the basig of the equilibrium conditions {17) or (18)

are applicable to all these loading conditions.
Discussion and Conclusions

In Figure 2 for a<h1 and h2+0 it may be sgen that the stress intensity
factor ka becomes the value obtained from a homogeneous plane containing peri-
odic collinear cracks, and for a==h1 and h2+0, as expacted, ka+w. Also, for
afhl, as hz*w, ka approaches the value obtained for the strip honded to two
half planes, which is a special casc of the problem under consideration (7.8].
These asymptotic values are shown in the Figures by dash-dot lines. Same re~
sults may be observed in Figure 3 where the crack is in the less stiff ma-
terial. Here, for a<h1 and h2+o, ka must and does approach the same periodic
crack values shown in Pigure 2. However, the stress intensity factors in this
case are much lower than those given in Figure 2 where the crack is in the
stiff material.

In Fiqure 4, for c*0, as expacted, kc*w. It is seen that kc*“ also
when c*hz. The reason for this is that for c==h2 the power of stress singu-

larity B is greater than 0.5 (material combination A}, whereas kc shown in

-




Pigure 4 is calculuted on the basis of onae half power singularity. It may also
Lu observed that kc becomes greator as hl/h2 increasaes. Sincae the power of the
strass singularity B f.r a crack terminating at the interface is always greater

than v for a crack crossing the interface, kxx and k_ also go to infinity as

the crack tip approaches the interface (Pigures 5 an;yﬁ).

When the singular point is at the interface as in problems for a crack
touching or crossing the interface, since the power of singularity is not 0.5,
for a crack propagation initiating at this point tho stress state around the
crack tip does not remain gelf-similar. Therefore, in this case most of the
conventional fracture and fatigue models do not seem to be applicable. 1In the
absence of a physically more acceptable criterion, at present one may agsume
that for this type of fracture problems the "maximum stress criterion" is
adequate, This criterion may ba stated as "the fracture propagation will take
place radially in the direction esec for which the cleavage stress Oyg is
maximum and when

Uae(ép,ﬂ) > o_ = constant, (26)

where 6p is the size of the fracture process zone around the crack tip". The
process zone size depends on the microstructure and continuum propertics of
the material as well as on the environmental conditions., The critical stress
cc is considered to be a "material constant" representing the cohesive
strength of the constituent materials and, for the appropriate 6p, is deter-
mined from controlled experiments for an idealized geometry and loading. 1f
the "weak 1link" around the singular péint is the interface, then {(26) may be
medified as follows

G < (@Fg + 9Zg) "+ Ugg > O

12 (27)

010t 9% + %o

where (Uc)12 reprosents the adhesive strength of the bond, fO,, is the friction
resistance, and the scresses CBS and UrG are calculated at a distance r==(5p)12
from the singular point and represents the process zone size for the particular
joint.

Finally, from Tabie 1 and Figures 7 and 8 it may be observed that in the
stress-free end problem the stress intensity factors, kxx
of the stress singularity Y for the plane stress conditions are greater than

' kxy and the power

those for the plane strain care. This means that for the stress-free end
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problam shown in Flgure l¢ the stress ptato around the bonded corners undor
pPlane stress conditions is expected to bu mdich more savere than that under
plane strain conditions.
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APPENDIX

Referring to (5) and (6), let the asymptotic expression of K, 6 for g+

i)
be Kij', tn.-.
Klj“i't'.’ - Kijl(xi‘t’., + Kijf(xl't‘.) ' (i.j-1,2) . (Al)
Then defining
kij("l't) = kijl(xi't’ + kijf(xi't) o (1,3=1,2) , (A2)

the singular parts, kijl and bounded parts, kijt of the kernels kij can be

obtained by substituting from (Al) and (A2) into (6). Thus, using the ex-
pressions for Kij given in [2]. the singular kernels kijs are found to be:

0,-0, a 2 &% 1
Ky g%y et) = [—5 b 60, (h +x,) g + 20, (h +x)) ;;5J[t-(2h1+xl)]

1 1

3a, -0

s 2 ke 6, (h

a*
2

dxl

2=0, 430

a s -1
klz-(xl,t) - [(ul—az)(hl—xl) :‘L § el ][t-{h1+h2-x1)]

_Cl__ = 2 i =y =1
17%y) x, + 20, (h -x,) e (2n x1)] :

a 2-a, +30, of
+ [(a,a)) (hy+x)) ax ¥ i J(t=(h +h,+x)) ] '

3 2-a3¢3n4 -1
Kypg(¥prt) = [(05-0)) (hy-x,) ax, . Ay [t (hy +h,y-x,) ]

s T a 2 a° =
Kypg (Xyrt) = [ 5 = 60, (h,~x,) 3;; + 20, (hy=x,) 5;; ][t-(th-xz)] ;

(A3)

) = (K M=Kl )/ (M #K 1

1 2 2 1) ’ u'2 e (Uz'ul)/(ul+‘1uz) ’

a, = (K, -Kluz)/(U1+K1U2) e (Ul-uz)/(U2+K2U1} . (n4)
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Figure 1. The geometry of bonded strips and the stress-free end.
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Stress intensity factor in bonded strips for the crack in the
stiffer material (u; =6.65u;, V1 =0.33, v, = 0.45; the scale on
the right corresponds to the broken strip case, i.e., to a=hy;
dash-dot lines give the asymptotic values for hy*=).
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Figure 3. Stress intensity factor in bonded strips for the crack in less

stiff material (y; =6.65u3, V] =0.33, V3 =0.45; the scale on the
right corresponds to b=h,).
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Stress intensity factor at the crack tip in bonded strips for the

crack crossing the interface where material 1 is fully cracked
(u; = 6.65u5, vy =0.33, vy=0.45, £=hy+hy-c).
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-3 Figure 5. Normal component ky, of the stress intencsity factor at the inter-
section of the crack and the interface for the crack crossing
the interface where material 1 is fully cracked (uj=6.65u3,
vy =0.33, V-0.45, £=h;+h,y-c).
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Shear component of the stress intensity factor at the inter-
section of the crack and the interface for the crack crossing the
interface where material 1 is fully cracked (u;=6.65lp, v =0.33,
Vo =0.45, £=hy+hy-c).
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Normal and shear components of the stress intensity factor, ky,
and ky, at the intersection of the interface and the stress~free
boundary in a layered half plane; M) =6.65up, vV =0.33, vy =0.45,
Zﬂhl+h2.
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Figure 8. Normal and shear components of the stress intensity factor, kyy
and kg, at the intersection of the interface and the stress-free
boundary in a layered half plane; y) = 23.31uz, v1=0.3, v,=0.35,
L= h1+h2 .




	GeneralDisclaimer.pdf
	0001A01.pdf
	0001A02.pdf
	0001A03.pdf
	0001A03_.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf

