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FRACTURE OF COMPOSITE PANELS

F. Erdogan l and M. Bakioglu2

ABSTRACT: The tracture problem in panels which consist of periodically arranged
load-carrying and buffer strips of different materials is considered. The main
emphasis in the study is placed on the problem of a crack terminating at and
nrossing the interfaces and on the stress-free end problem. The problem is for-
mulated in terms of a system of singular integral equations and numerical solu-
tions are obtained for certain material combinations. With the study of possible
crack propagation and delamination in mind, certain stress intensity factors are
defined and calculated. A main result of the study is that when the crack touches
or intersects a bimaterial interface, the stress state has no longer the standard
square root singularity and, to study further propagation of the crack, the con-
ventional fracture models need to be modified or new models need to be developed.

KEY WORDS: Composite :raterials, fracture, crack propagation, delamination, stress
singularity, bonded layers, stress-free end.

In structural design with high strength composite sheet materials the use of

relatively low stiffness and high toughness buffer strips oriented parallel to

the main load-carrying laminates has been under investigation for some time [1,2].

The practical objective of this design procedure is to improve the fatigue crack

propagation and arrest characteristics of the structure. The fracture process may

start as a fatigue crack initiation at a local imperfection in the load-carrying

laminate. Under repeated loading it may be possible for the propagating crack to

reach the interface and to enter the adjacent buffer strips. Assuming that the

fatigue and fracture characteristics of both materials are known, for studies re-

lating to fatigue life and structural integrity, it would be necessary to have a

reliable analysis of the problem. Particularly in fatigue crack growth studies,

it would be very useful to have a technique for calculating the corresponding

stress intensity factors.

After the crack propagating in the first strip touches the interface, further

fracture propagation would take place along the plane for which the ratio of the

local load factor (or crack driving force) representing the intensity of the

applied Loads and the geometry to the corresponding strength parameter of the two

materials or the interface bond is maximum. In this ease, since the stress state

around the crack tip does not have the standard square root singularity, the con-

ventional fatigue and fracture models cannot be used to study the problem. To

( 2 ) Professor of Mechanics, Lehigh University, Bethlehem, PA 18015.(2) Professor
 Department of Civil Engineering, Istanbul Technical University,

Istanbul, Turkey.
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do this, in addition to having the correct analysis of the problem it may be

necessary to make certain modifications in the existing fatigue and fracture

models.

In the actual structures, particularly in those which consist of fiber re-

inforced laminates, generally the strips are anisotropie [1]. However, in this

study, largely for reasons of analytical expediency, both materials are assumed

to be isotropic and linearly elastic. The basic formulation of the problem of

periodically arranged bonded dissimilar strips and its solution for cracks grow-

ing in one set of strips and terminating at the interfaces were given in [2]
(Figure la). In this paper the emphasis is on the propagation of the crack in

the second mediun after crossing the interface and on the "stress-free end prob-

lem" of bonded layered materials (Figures Is and lb).

Fonmukati.on o6 the Paobtem
I

The general problem under consideration is described in Figure 1. It is a

two-dimensional elastostatics problem for a composite medium which consists of

periodically arranged two sets of bonded dissimilar strips having collinear

cracks as shown in Figures Is and lb. The medium may be under symmetric uniform
I

normal tractions in x, y, and (ir, plane strain case) z directions, or under in-

ternal stresses due to the difference between curing and operating temperatures.

Under any combination of these loads the problem giving the homogeneous stress

state in the composite medium in the absence of cracks may be solved and the

stress components on y= 0 plane may be obtained without any difficulty. Let

these stresses be

CY(x,0) = p  W	 alxy(x,0) = 0
(1)

W	 w
a2yy (x,0) = P2(x)	 a2xy(x,0) = 0

The solution of the original crack problem is obtained by adding to the homo-

geneous solution the solution found from a perturbation problem in which the

self-equilibrating crack surface tractions are the only external loads. From

the view point of fracture the important problem is the perturbation problem

which may be solved by considering the standard field equations for the strips

1 and 2 under the following boundary and continuity conditions:

ul (O,Y) = u„(O,Y) , vi (0,Y) = v2 (0,Y) , (0<Y<-)

alxx (0,Y) = a2xx(o,Y) , alxy (0,Y) = 02xy(0,Y) , (0<y<-) ,
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u1 (-hl ,Y) = 0	 a.xy(-hl,y) - 0 , (0<y<-)

u2 (h2 , y) = 0	 02xy

	

(h	 %YY)	 0 , (0<y _) ,

alxy (x,0) = 0	 (-hl<x<0) , a2xy(x,0) = 0 , (0<x<h2)

alyy (x,0) _ -pi (x) , (-hl<x<a-hl) , vl (x,0)	 0 , (a-hl<x<0)

a2yy (x,0) _ -p2 (x) , (h2-b<x<h2-c) , v2 (x,0) = 0 , (0<x<h2-b, h2-c<x<h2)

akyY(xt-) = 0 , akxy (x, OD) = 0 , (k=1, 2) ,	 (2)

where, because of symmetry, only one quarter of a strip from each sot is con-

sidered, uk , vk , akij are the dibplacement and stress components in the usual

nctation (k= 1,2; i,j = x,y), and the dimensions hl , h2 , a, b, and c are shown

in Figure 1. Defining

	

xl=x+Ill x2=x-h2 , Yl = Y = Y2 	(3)

	

Gi ( Xi ) = z^z vi (xi 3O)	 (L=1,2)	 (4)
i

rn9 using the tocltr,ique described in [z], the perturbation problem may be re-

duced to the following system of singular integral equations:

fa 
1	

a
t_x Gl (t)dt + 

1 
kll(xl,t)G1(t)dt

-a 1	
-a

	

rb	 nCl+Kl)
+ 

Jc
k12 (xl ,t)G2 (t)dt = -	 1+	 p1(xl-hl)	 -a<x<a

1

Ib(t x + t x )G2 (t)dt + 1ak21(x2,t)G1(t)dt
c	 2	 2	 a

(b	 '^(1+K2)

	

+ J ck22 ( x2 , t)G2 ( t ) dt 	-	
41r	

p2 (x2+h2 ) , b<x2<b ,	 (5)
a

where pi , K i , (i= 1,2) are the elastic constants with K  = (3-Vi)/(1+vi) for

generalized plane stress, K i = 3-4vi for plane strain, V i being one Poisson's

ratio. The kernels k ij (xi ,t), (i,j =1,2) are given by

00	 -s(h -t)

	

kil(xi,t) = o Kil(xi,t,$)e 	 1	 ds

(W	 -s(h -t)	 -s(h 2+t)	Ids= J [K12(xi,t,$)e 	 2	 - Ki2 (xi ,-t,$)e	 2	 ]ds (i = 1,2)
0

(6)

where the functions K ij are defined in the Appendix D of [2] and will not be

repeated in this paper. The index of the integral equations (5) is +1 [3].

Therefore the general solution of (5) will contain two arbitrary constants [3]
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which may be determined by using the following single-valuedness conditions:

ra(b

J
G1 (t)dt = 0 ,	 I G2 (t)dt = 0	 (7)

_a	 J c

For cracks imbedded in the strips, i.e., for 
a<h 1 

and 0<c<b<h2 , the solu-

tion of (5) is of the form

G1 (t) = g1 (t)(a 2 -t 2) 	 -a<t<a

G2 (t) = g2(t)[(b-t)(t-c)]-^ , c<t<b 	 (8)

where 
g  

and g 2 are bounded in their respective closed domains. The unknown

functions g  and g 2 may be determined from (5) and (7) in a straightforward

way by using the technique described in [4]. For this case the stress intensity

factors at the crack tips are defined and are expressed in terms of G 1 and G2

as follows:
4u

ka = x ia 	 [2(x l-a)]^C
1YY

(x 1 ,0) = - 1+ i lim [2(a-x 1
	Gl(xl)

1
4U

kb = lim [2(x 2-b)-	 (x2,0) = - 
1+
K 	 lim [2(b-x2)]'G2(x2)

x2-*b	 YY	 2 x2-),b

4U
kc = lim [ 2 ( c -x

2 )]^U 2Yy
( x 2 , 0 ) = 1+ 2 lim [2(x2-c)]'G2(x2)	 (9)

The case of a crack touching the interface, i.e., a= h l , was treated in [2]

where it was shown that

G	 Gl(t) = gl(t)(hi-t2)-S

ka = 1im vr2- (x2 +h 2 ) SQ2 (x2 ,0) _ - 2uo 1 i limes (h l -x 1 G1 (x1
x2-+-h2	 YY	

xlih1

u102	
1+2a1 (1-5)	 1-2x1 (1-R)

uo	 sin75 ( U1+K1U2
	

+ U2+K2u1 )

2cosTr( + 4a.2 (^-1) 2 - (al +a2 ) = 0	 0<a<l

(1	
11	 1= (K P2_ K 2 1 	 2 2U MIJ +K '0 ) 	, a 2 = (u 2- W  1 )I(u 1 +K 1 U 2 )	 (10)

where a is the power of stress sinyL llarity which is real for all material

combinations, and k is the "stress intensity factor".
a

Crack Cu.6.6ing bte In,teA6ace

In the integral equations (5), 41 a<h l , b<h2, and J<c<b, it was shown

-4-
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	 that the kernels kij are bounded in their respective closea"-domains [2]. Re-

ferring to Figure la and lb, if we let a= h l , b = h2 , 0<c<h2 , it is seen that

the problem becomes one of a crack crossing the interface for which equations

^

	

	 (5) are still valid. However, in this case following the procedure outlined

in [2] and [5], it can be shown that as x i , U= 1,2) and t go to the interface

together the kernels kij (i,j = 1,2) become unbounded. The singular parts,

kijs (xi ,t), of these kernels may be separated by examining the asymptotic be-

hAvior of the integrals given by (6). The kernels kijs are given in the Appen-

dix. Together with the kernels (t-xi)-1 ' kijs constitute a set of generalized

Cauchy kez:: ls. In this problem the singular behavior of the solution can be

examined by expressing

Gl (t) = gl(t)(hi-t')-Y , G 2 (t) = 92 (t)(h2-t) Y (t-c)
-n
 , 0<Re(n,Y) <l , (11)

where gl and 92 are again bounded. The characteristic equations to determine

the constants n and y are obtained from the dominant part of (5) by using the

complex function technique [3-6] as follows:

cotta)

[2costry

-a3-a4]

+ 2-a3 +

' where the constant (ai , i= 1,..,4) are defined in the Appendix. 	 From (12) it

is found that n = 0.5, which is the well-known result, and for all material

combinations there is only one root y satisfying 0<Re(y)<l which is always

real.	 The same analysis also gives the following relationship between the end

values of the two bounded functions g 	 and g2:

'	 d (h2-c)	 2cosrty	 + 4a2(1-Y)2-a1-a2

92 (h2 )	 (2hl)Y	 2y(a1-a2) + 2 -a1 +3a2 
	 gl(hl)
	 (13)

Equations (12) and (13) are identical to those obtained for the semi-infinite

s ` planes in [5].

r A unique solution of (5) in this case too requires two additional condi-

tions.	 One condition is given by the single-valuedness of the crack surface

= displacements which, referring to Figure lb and the definitions (3) and (4),)

may be expressed as"	 '.

((	

—c

I((
+ J h1Gl (tl )dtl +	 GZ(t2)dt2	 0	 (14) 

J 2
G2 (t2 )dt2

c

0 ,

F 4a2 (1-Y) 2-a1-a2][2cos7ry + 4a4(1-y)2

- [2Y(a1 a2 ) + 2-al + 3
0t ][2Y((X3-a'4)

3a4 ] = 0 .	 (12)

-	 t	 ,- •.	 --. - .	 __ . ^ . ^	 ^:	 _ _^-, . --s.^m^c _cam ^r



The second condition is provided by (13).

In this problem the stress state is singular at the crack tip x 2 = c,

Y2. 0 as well as at the point of intersection of the crack and the interface,

xl = + hI , yl s 0. By examining the stresses around these points, from the

solution of the problem it can be sho l,m that the stress intensity factors are

related to the bounded functions g1 and g2 as follows [5].

AU.
kc i^nc [ 2(c-x2) ]

^ ^2yY ( x2,0)	 - 11+K2 ihx-c) 
g2 (c) ,

kxx	 lim YYQlxx ( hl.Y) = si
n 	Cl2h )4 [ )11+KYil + U +K u ]

y-+0	
2	

1	 1 1 2	 2 2 1

92 
(h

2 )	 1-2Y +	 1
(h2_0) 	 11 2

+K2 111	Ul+K1U2

k = lim yYU (h .Y) = Uiu2 {- yl(h1) [1 	 1 ]
xY 

y^0	 lxY 1	 cos 12Y	 (2h,)y Ul+KlU2 	112+K2U1

+ h2(-c)^ [U2+K^1 Ui+K102] }	 (15)

In (15) the stress intensity factors k xx and kxy are defined explicitly be-

cause of their importance in the study of a possible delamination fracture

at the interface. However, it should be noted that, because of ( 13), in kxx

and kxy there is only one independent load factor, say gl ( h l) or g2(h2).

The solution of the system of singular integral equations with the generalized

Cauchy kernels subject to the conditions (13) and (14) are obtained by using

the technique outlined in [4,6].

StA as -6nee End Pubtem

The stress-free end problem is described in Figure lc. Analytically the

problem is simply the limiting case of the crack problem shown in Figure lb

in which c+0. In this case too first the problem for the whole plane (-0<y <m)

without the stress -free boundary y =0 is solved and the homogeneous stresses

given by ( 1) are determined. Then a perturbation problem with the end trac-

tions

alyY(x,o) = -p l (x)	 (Y	 (x,0) _ -P
2 
(XI

2yy

alxy (x,0) = 0	 02xy(x.0) = 0	 (16)
ii

is considered. The end tractions are statically self-equilibrating and
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satisfy (see (3))

1
hiPi (xi 

)dx1 + jh2P2 (x2 )dx2 = 0 .	 (17)

-hl	 h2

As in most cases, if p1 and p2 are co, Rant, then

Pih1 + P2h2 = 0	 (18)

In this problem, basically the integral equations (5) are mill valid

with a= hl , b- h2 , and c= 0. They may be solved by appropriately separating

the generalized Cauchy kernels, defining

GI (xl )	 gl (xl ) (hi-xi) -Y	G2 ( x2) = g2 (x2 )(h2-xz ) -Y ,	 (19)

and using a technique described in [6]. Here, Y is obtained from the charac-

teristic equation given by (12) and the end points of 
g  and 92 are related by

h2 y 2cos7r/ + 4a 2 (1-Y) 2-a1-a2
92(h2) t -(hl)	 2Y(a1-a2) + 2-a1+3a2	 91(h1)	 (20)

Again, to study a possible initiation of delamination fracture, it is useful
i

to define and calculate the following stress intensity factors:
i

kxx = lim YYQlxx(hl.}')	
P1112{- gl(hl) [ -2y

y-+0	 sin ^	 Ohl)Y U1 1U2	 .41.

U2+K2U1
	 (2h2)Y 101 2+K2 111 	u1+K1U2

k	 lim yYo	 (h ,y)	
01112{- 

gl (hl ) [ 1-2Y
xy y-0	 lxy 1	

cos	 (2h1)Y U1+K1U2

g (h )

U2+K2u1] - (2h2 ) Y [U2+K2u1 - u1+K1U2J}	
(21)

Nummicae Rea"

i
I

!	 The material constants used in the numerical examples and the corresponding

t	 powers of the stress singularity, R for a crack terminating at the interface as

f

	

	 defined by (10) and Y for a crack crossing the interface (or for the stress-

free end problem) as defined by (12) and (15) are given in Table 1. Here the

material combinations A and S are the same and are assumed to approximate

boron-epoxy sheets with buffer strips of the same material but different

-7-



stiffness. The material pairs C and D correspond to Aluminum and Epoxy. Fig-

'

	

	 urea 2 and 3 give the stress intensity factor k  for the material combinations

A and B, respectively, where it is assumed that only material 1 contains a

"

	

	 crack. Here, k  is defined by the first equation of (9) for a<hl and by the

second equation of (10) for a- h l . Further results regarding this problem may

be found in [2].

Table 1. The material constants and powers
of stress singularity

111/µ2 V1 V2

Plane Stress Plane Strain

6	 Ya Y

A

B

6.65

0.15

0.33

0.45

0.45

0.33

0.70148

0.36210

0.16650

0.16650

0.68856

0.41539

0.22509

0.22509

C

C

23.31

0.043

0.30

0.35

0.35

0.30

0.82503

0.28873

0.21948

0.21948

0.82562

0.33795

0.27369

0.27369

The stress intensity factors for the crack crossing the interface in the

material combination A are given in Figures 4,5, and 6. The stress intensity

factors kc , kxx and kxy shown in the figures in normalized form are defined

by (15). In the examples considered in Figures 2 -6 it is assumed that the ma-

terial is a thin plate (i.e., plane stress case) and is unconstrained in x

direction. Hence, the constant tractions p  and p 2 used in the analysis are

related by
Pl - 

E1	 (22)P2 E2

Figures 7 and 8 show the results for the stress-free end problem described

in Figure lc for material combinations A and C, respectively. The figures give

the thin plate results as well as the results for plane strain, i.e., for the

layered medium which is "thick" in z direction. The stress intensity factors

shown in these figures are defined by (21). In this case, stress-free boundary

requires that the constant tractions P  and p2
 used in the analysis of the per-

turbation problem satisfy the equilibrium condition (18). The results given

The problem for the orthotropic strips which is more representative of the
composite sheets is currently being studied.

-8-
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In Figures 7 and 8 are normalized with respuct to L).,ty , where Lu (hl+h2)
w

The magnitudes of pl and p2 are determined from the full plane ( -*<y<w) under

the specified external loads. For example, if the medium is subjected to a

constant strain e 	 = e" ® e in z direction, thenlzz 2zz o

eoElE2h2(V1V2)	
hl

pl h2E2 ( a-V1 )+hlEl (1-V2) ' p2 ®- h2 pl	 (23)

If the medium (-^.x<m, 0<y<w) is subjected to uniform tension alxx . a2xx C a
o	 i

in x direction, then

oh2 (V1E2-v2E1	hl

pl . h2E2 (1-VI)+h1E1 ( 1-v2) ' p2 = h2 pl	
(24)

Or, if the temperature of the infinite medium (- <(x,z)<O, 0<y<-) is changed

by an amount AT, then
=	 EIE2h2 (aZ a1)AT	 Q - hl

pl h2E2 (1-V1)+h1E1 (1-V2 )	 p2	 h2 	
(25)

where al and a2 are the coefficients of thermal expansion of the layers 1 and 2

respectively. Input functions for other loading conditions may be obtained in

a similar way. Needless to say, th• . results given in Figures 7 and 8 and those

which may be obtained on the basis of the equilibrium conditions ( 17) or (18)

are applicable to all these loading conditions.

DiAeueeion and Conctw&ions

In Figure 2 for a<hl and h2-0 it may be seen that the stress intensity

factor ka 
becomes the value obtained from a homogeneous plane containing peri-

odic collinear cracks, and for a= r'1 and h 2- 0, as expected, ka- . Also, for
a<hl , as h2-K°, ka approaches the value obtained for the strip bonded to two

half planes, which is a special caso of the problem under consideration [7,8].

These asymptotic values are shown in the Figures by dash-dot lines. Same re-

sults may be observed in Figure 3 where the crack is in the less stiff ma-

terial. Here, for a<hI 
and h2-'0, k  must and does approach the same periodic

crack values shown in Figure 2. However, the stress intensity factors in this

case are much lower than those given in Figure 2 where the crack is in the

stiff material

In Figure 4, for c^0, as expected, k c •m .
 

it is seen that kc 1ao also

when cyh2 . The reason for this is that for c = h2 the power of stress singu-

larity (i is greater than 0.5 (material combination A), whereas k  shown in

f

-9-



a
FiVuru 4 is calculated on tho basis of one half lower singularity. It may also

bu observed that k  becomes greatur as h 1 A 2 
increasse. Since the power of the

stress singularity Q F .'r a crack terminating at the interface is always greater

than Y for a crack crossing the interface, kxx and kxy also go to infinity as

the crack tip approaches the interface (Figures 5 and 6).

When the singular point is at the interface as in problems for a crack

touohing or crossing the interface, since the power of singularity is not 0.5,

for a crack propagation initiating at this point the stress state around the

crack tip does not remain self-similar. Therefore, in this case most of the

conventional fracture and fatigue models do not seem to be applicable. In the

absence of a physically more acceptable criterion, at present one may assume

that for this type of fracture problems the "maximum stress criterion" is

adequate. This criterion may ba y stated as "the fracture propagation will take

place radially in the direction 0-0c for which the cleavage stress Gee is

maximum and when

a69(6p,0) ? or = constant,	 (26)

where 6p is the size of the fracture process zone around the crack tip". The
process zone size depends on the microstructure and continuum properties of

s

	

	
the material as well as on the environmental conditions. The critical stress

ac is considered to be a "material constant" representing the cohesive

strength of the constituent materials and, for the appropriate 6p , is deter-

mined from controlled experiments for an idealized geometry and loading. If

the "weak link" around the singular point is the interface, then (26) may be
modified as follows

j(O2e + O2	 080 > 0
C) 

12 < I	
(27)

111 010 + fa r0	 000 < 0

r

where (ac)12 represents the adhesive strength of the bond, f000 is the friction

resistance, and the stresses 060 and Qr0 are calculated at a distance r- (6p)12
from the singular point and represents the process zone size for the particular

joint.

Finally, from Table 1 and Figures 7 and 8 it may be observed that in the

stress-free end problem the stress intensity factors, k xx , kxy and the power

of the stress singularity Y for the plane stress conditions are greater than

those for the plane strain cane. This means that for the stress-free end

-10-
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problem shown in Figure lc the atress utatu around the bonded corners under

Mane stress conditions is expected to tau much more severe than that under

plane strain conditions.
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APPENDIX

keferring to (S) and (6), let the asymptotic expression of Kij for s-

he Kijs' i.e.,

	

Kij (xi 0 t,$) - Kijs (x i ,t,$) + Kijf (x i .t,$) . (i,j - 1,2)	 (Al)

Then defining

	

kij ( x i .t) - k ils ( x i ,t) + k ijf (x i 10 , ( i,j - 1,2) .	 (A2)

the singular parts, k ijs and bounded parts, kijf of the kernelb k ij can be

obtained by substituting from (Al) and (A2) into (6). Thus, using the ex-

pressions for K ij given in [2], the singular kernels k ijs are found to be:

[3a2-al * 6a (h +x ) d + 2a (h +x ) 2 d2 3 [t-(2h +x )]-1
k lls (x l' t)	2	 2 1 1 dxl	2 1 1	 dx2 	 1 I

+ [ 3a2
-a l - 6c4 (h -x ) d - + 2a (h -x )2 d2 ][ t-( 2h -xl	 2 1 1 dx 1	2 1 1	 dx2	 1 1

1

d	 2-a1
 +3a2	

l
•	

k12s(x1,t) _ [(a 1-a2 )(h1 -x l ) L,,1 + — 2	 ][t-(h l+h2-x1)]

2-a +3a

	

+ [(a1-(1 (h +x 	 dx +	 2	 2 ][t-(h1-1
1

d	 2-a343n4
	 1

k21s(x2It)	 [(a3-a4)(h2-x2) dx2 +	 2	 ][t-(h1+h2-x2)1

k22s(x2,t) _ [3a4 2a3 - 6a4(112-x2) dx +2a4(h2-x2)2 d 2 
][t-(2h2-x2)]-1

2

(A3)
a1	IP2-K2111(112+K2P1l	 a2 = (112-u1(u1+K1112)

a

j

a3 = ( K2 u l -Kl u 2 )/(ul + K 1 U 2 )	 I a4 = (P1 -1 i 2 )/(U2+K2 u1 )	 (A4)

-12-
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Figure 7. Normal and
and kxy at
boundary is
Q = h l+h 2 .
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h 2 /t ' I

shear components of the stress intensity factor, kxx
the intersection of the interface and the stress-free
i a layered half plane; U l = 6.650 2 , v l = 0.33, V2= 0.45,

m

3

2



5	 10
h2/h,

0

2

Figure 8. Normal and shear components of the stress intensity factor, kxx
and kxy at the intersection of the interface and the stress-free
boundary in a layered half plane; ul- 23.31U2, vl - 0.3, v 2 - 0.35,
Q - h1+h 2 .
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