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SECTION 1

INTRODUCTION

This report summarizes the results of investigations conducted under
Tasks 5 and 6 of Contract NAS8-30758. These tasks were aimed at (1) the
optimization of the baseline Rankine-cycle solar-powered air conditioner
definitized under Task 4, and (2) the development of a preliminary system

y specification.

_ Efforts under Task 5 encompass the following:

(a)	 Investigations of the use of recuperators/regenerators to enhance
the performance of the baseline_ system.

(b)	 Development of an off-design computer program for system perform-
ance prediction over a range of 	 interface parameters	 including
ambient conditions, conditioned space temperature, and heat source
water temperature.

(c)	 Optimization of the turbocompressor design to cover a broad range
of conditions and permit operation at low heat source water
temperatures.

(d)	 Generation of parametric data describing system performance (COP
and capacity) over a range of	 interface parameters.

(e)	 Development and evaluation of candidate system augmentation
concepts; selection of the optimum approach.

_ (f)	 Generation of auxiliary power requirement data over a range of
operating conditions.

(g)	 Development of a complete solar collector-thermal 	 storage-air
conditioner computer program.

(h) _ Evaluation of the baseline Rankine air conditioner over a five-
- day period simulating the NASA solar house operation.

(i)	 Evaluation of the air conditioner as a heat pump.

Data covering these topics are presented	 in this report.	 A	 listing of
the air conditioner off-design performance prediction computer program is
given	 in Appendix A,	 with a definition of the 	 input and output data. 	 Appendix
B'contains a	 listing of the overall	 solar system simulation program and also

" includes a	 listing of the input and output data. 	 Appendix C contains the
preliminary system specification.

^^cwwwarr AIRESEARCH MANUFACTURING COMPANY
OF CALIFORNIA 	 74-10996(8)
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SECTION 2

SYSTEM PERFORMANCE WITH RECUPERATORS

A number of Rankine system arrangements were investigated to determine

^W what thermodynamic benefits could be achieved through the use of recuperators.

The performance of each of the various approaches considered was calculated

C^
using the following design	 point condition s and assumptions. r

.

System capacity:	 10.5 kw (3 tons)

Refrigerant:	 R-11 common refrigerant for the power and
refrigeration	 loops

Evaporator outlet:	 280.4 K (45 F)	 saturated

Condenser outlet:	 305.4 K (90 F)	 saturated

` Boiler outlet:	 358.2 K (185 F)	 saturated

Compressor efficiency:	 0.736 (same as baseline system)

Turbine efficiency:	 0.771	 (same as baseline system)

Boiler,	 evaporator, condenser AP:	 5 percent of
	

inlet  pressure

Recuperator, subcooler/superheater AP: 	 2 percent of	 inlet pressure

i
on	 vapor	 side:	 on	 liquid	 side, AP negligible

Recuperator, subcooler/superheater effectiveness: 	 0.85 max. 3
1

The results of these	 investigations are summarized	 in Table 2-1,	 which

presents the following	 information for the baseline system and each of the
other six configurations considered:

System schematic

Thermodynamic state points and flow rates

l

Thermodynamic cycle on P-H diagrams
A

,•"

;" Compressor and turoine flow and enthalpy rise (AH)

Overall	 system thermal COP
.L w

.
3y Recommendations 1

A
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n`	 TABLE 2-1

SUMMARY OF RANKINE-POWERED AIR CONDITIONER ARRANGEMENTS
(T: TEMPERATURE, DEG F; P: PRESSURE, PSIA; H: ENTHALPY, BTU/LB; W	 FLOW RATE, LB/HR)

SYSTEM ARRANGEMENT	 THERMODYNAMIC CYCLE	 MAJOR CHARACTERISTICS/REMARKS

^j

A. BASELINE

T= 185	 T= 91..4> 1 14.	 P = 90.3 CHARACTERISTICS7	 H = 114.6	 H - 26.9

^

P

W_ 592	 ®W © O

COMPRESSOR TURBINEa

4O FLOW	 LB/HR	 504 592
O QH	 BTU/LB	 10 9.5

T = 101,2 BO I LER Q:	 51	 BTU/HR,920P	 2D.9	 T =	 T =
H^105.1	 -o-► . P= 

8.
8.0	 P= 8

8,, 
4

°'
OS Ql THERMAL COP:	 0.69

T= 122.2	 H.= 98.0 '	 .	 H = 26.6
P = 20.9	 W = 504	 w = 504
H = roa.o REMARKS

CONDENSER

RECOMMENDED CONCEPT.
T = 110.9.	 T = 90
P = 20.9	 P = 19.9 ENTHALPYH = 106,5	 H = 26.6

W = 1096

B. FULL FLOW RECUPERATOR

T= 97.t CHARACTERISTICS

10	 P = 20.9
T = 110.5	 H = 104.3

T = 18 5	 P = 9o.3	 11 COMPRESSOR TURBINE
^P=867	

H'.=31..1	 ®T=91.4
H = 114.6	 P =90.3

q
6

w = 1,33	 H = 26.9 FLOW, LB/HR	 504 633BOILER	 w = 533 &H. BTU/LB	 10.3 9.1
RECUPERATOR /	 ^-^

10.
2 BOfLER Q:	 52,860 BTU/HR

T = 123	 T = 113.9 9 RECUPERATOR Q: 2660 BTU/HR
P = 21.4O2 P = 10 .

H = 108.3	 H= 106.7. e THERMAL COP:	 0.68
EVAPORATOR

1	 ^5
a	 5

Q O

REMARKST=.105	 T= 45	 T=48
P = 21.4..	 P=8.0	 P =8.4
H , 10s.5	

u =504	 w""=904 LOWER COP DUE TO RECUPERATOR 'PRESSURE
cDNDENSER DROP; MORE COMPLEX THAN BASELINE.O	 O

NOT RECOMMENDED.
T = 97.1	 T - g0 ENTHALPY
P = 20.9	 P= 19.9	 -
H=104.3	 H= 26.6.

\J = 1137

C COMPRESSOR RECUPERATOR



C
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C.	 COMPRESSOR RECUPERATOR

T = 96.4 CHARACTERISTICS
P = 20.9

T - 18^	 Q H = 104.3
p T=106.5=8S 10 COMPRESSOR TURBINE

7	 H - 714.E	 P = 90.3	 to

QWH T - 91.4 6O O=607	 =3o.2 P=90.3
/Z

\V r/`^
BOILER

" = 607
W = 507 C FLOW	 LB/HR	 5047 607

O Q OH , BTU/LB	 10.3 9.5RECUPERATOR
BOILER Q:	 51,230 BTU/HR

T 125 a RECUPERATOR Q:	 2000 BTU/HR
A @2 H =	 0843 a 0 '0 3 THERMAL COP:	 0.70

8

T =48 REMARKS
r = 101.2
P = 20:9	

P = 	 8.4
=5T

H = tos.1	 "= 	 26'6
N = 	 504 SLIGHTLY HIGHER COP DUE TO BOILER LOAD

g
REDUCTION; MORE COMPLEX.

.T ^ 99 z	 T= 90
ENTHALPY NOT RECOMMENDED.

P =.20.9	 P = 19.9
H = 104.8	 H = 26.6

W =tilt

D.	 SUB COO LER/SUPERHEATER

T-91.4

CHARACTERISTICS'P = 90.3
T = 185	 H = 26.9
p = 85.0	 W = 599
H =	 114.5 COMPRESSOR TURBINE

7	 W = 599

6
 Osn1tER

T _ 83.3	 r = 48 3
FLOW, LB/HR	 469
DH/BTU/LB	 10.9

599
9.5

'	 H = 03.3	 5	
H = 8143 r = 65.6 w 0 Oz BOILER Q:	 52 ,530 BTU/HR

u = 469
9	 H	 193 SUPERHEATER Q: 	 2490 BTU/HR8

" ° 469T =	 EvaPOaaroR101.2 a THERMAL COP: 	 0.69

O	 SUBCOOLER/SUPERHEATERH = 105.1 O
O.

10T = 1 a REMARKS
P = 20.9	 T = 45t0H'='114.2	 P= 8.0

=9a'°
NO PERFORMANCE ADVANTAGE FOR ADDED

cnryne"SER COMPLEXITY.
NOT RECOMMENDED.

T = 129	 T a c9 ENTHALPY

P=20.9	 P=19.9
N	 H = 109.1	 H = 26.n

w	 1068
co

In

n	 .

5	 +-
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'` o TABLE 2-4 1	 (Continued)ADzZ

11 E.	 SUBCOOLER/SUPERHEATER-RECUPERATOR

T= 103 CHARACTERISTICS
{
11 c T

P=20.9
"	 H = 105.5= 18s	 T =122.8 COMPRESSOR TURBINE

7	 H = 
86
4.6	 H = 33.8	

a2
T = 91.4

!k w _ 627 n = 26.3 O 12	 O FLOW, LB/HR	 469 627
BDILER

H" = 26 .9
AH	 BTU/LB	 11 .4 9, 5^.

-

8	 3 ^

BO ILER Q:	 50,660 BTU/HR.RECUPERATOR

0

17

RECUPERATOR Q:	 4330 BTU/HR
--"`-

T = 169 	 T = s31,
@ P = 21.4 '	 1	 P = 7a 2

O
SUPERHEATER Q: 	 2490 BTU/HR

' H = 1x4.8	 H =16 3 . 3
=W	 469 T=6$.6

w
y

THERMAL COP: 	 0.71
r

8	 EVAPORATOR.

9 P = 19.9

H	 21.3 w
a 10 REMARKS •L

.^
T = 101.2	 SUBCOO
P - 20.9

LER/SUPERHEATER

HIGHER COMPRESSOR HEAT RESULTS
'

"=10$'1	 10	 T > 4$
P _8 o

IN MARGINAL COP IMPROVEMENT
{ =H	 98.0 WHICH DOES NOT WARRANT ADDITION

CoHDEHSER ENTHALPY OF TWO HEAT EXCHANGERS.

?
3	

4

O	 O
NOT RECOMMENDED.

T= 102	 T= 90
P = 20.9	 P = 19.9

If H = i0 G.3;	 H .= 26.6

ft

N = 1096

+ r
0

!
F.	 SUBCOOLER/SUPERHEATER-FULL FLOW

RECUPERATOR I
a
;i

T , 100.4
i

is j0	 H = 105.0 CHARACTERISTICST
P-860	

T=125.7
P_ 90 3

7	 H = 114.6 T _ 91.4 COMPRESSOR TURBINEH= 34.5 1 nw	 fi53 6
P= 90.3
H = 26.9
W=653 FLOW, LB/HR	 469 653

RPERRAT
T = 131.8 AN f

	BTU/LB	 11.5 9.1
RECUPERATOR P = 21.4

x = 109.4 BOILER Q:	 52,310 BTU/HR

T = 159	 T = 83.3 G = 1122

OO

RECUPERATOR Q:	 4960 BTU/HR
Q P . 21.4	 1	 P = 7.8 SUPERHEATER Q: 	 2490 BTU/HR

H = 114.8	 H = 103.8
= 459

T = 65.6
13	 P = 19.9 THERMAL COP:	 0 .69 11

-E{IA20RI.lT,OR" 469



CHARACTERISTICS

COMPRESSOR TURBINE

FLOW, LB/HR	 469	 653
AH, BTU/LB	 11. 5 	 9 .1
BOILER Q: 52,,310 BTU/HR
RECUPERATOR Q: 4960 BTU/HR

SUPERHEATER Q: 2490 BTU/HR
THERMAL COP: 0 .69

REMARKS

SOME COP AS BASELINE, SYSTEM

COMPLEXITY NOT WARRANTED.

NOT RECOMMENDED.
ENTHALPY

CHARACTERISTICS

COMPRESSOR TURBINE

FLOW, LB/HR	 469	 658
AH, BTU/LB	 11.5	 9.1
BOILER Q: 52,510 BTU/HR
RECUPERATOR (1) Q: 5200 BTU/HR
RECUPERATOR (2) Q: 1250 BTU/HR
SUPERHEATER Q: 2490 BTU/HR
THERMAL COP: 0.69

REMARKS

HEAT EXCHANGER AP's OFFSET BENEFITS
OF HEAT RECOVERY.
NOT RECOMMENDED.

ENTHALPY

RECUP RATOR

T= 100.4
_' 10 	P = 20.9

T = 185	 T = 125 . 71
H = 105.0

s Pc 86.0	 P = go T = 91.47	 H'=114.6	 H= 34.5 11
w	 6

P=90.3
= 53 6 H = 26.9

u = 653

BOILER

T =
RECUPERATOR. P = 21..4

21.4

i 9	 H = 109.41
T = 169	 T = 83.3

GP= 21 ..4	 1.	 P= 7.8
Ij W = 1122

m
H = ti4:8	 H = 103.8 T = 65.6

W = 4Fg 13 P = 19.9
5 H = 21.3

8 EVAPORATORS W = 469
4j T = 21.4

SUBCOOLER/SUPERHEATER

H = 105.5	 T = 45
12 P = 8.0

H=98.0'

; _
i CONOENSER
i

`j
T= 100:4	 T = 90

I

P = 20.9	 P= 19.9
H= 105.0:	 H = 26.6^i W = 1122

^i

G. SUBCOOLER/SUPERHEATER - TURBINE AND

COMPRESSOR RECUPERATORS

T=105.4
10 P = 20.9

T = 185	 T = 127.5
H = 106.3

P=86.0	 P=903	
lT7 H = 114.6	 H = 34.8 T = 91.4

dl= 658 6 P=90.3
H = 658

BOILER

^-.

W = 658

(^
RECUPERATOR (1). T	 185=

Z^P=21.4
3 T- 105 T= 101.7 H= 117.4 w

^-r 8	 P .R 1	 P=7.6
O17 H =, 10$.5 H= 105.9 12 r T =. 45 v,

W=694
I

P=8.0\`
H=98.0

fly'. I P T	 695.6EVAPORATORv P = 19.9

H = 21..3
SURL4OLER/S.UPERHEATER W = 469

~^ RECUPERATOR (2)	 13

I O T = 9 1 .3	 T = 83.3
P = 20.9	 P = 7.8
H = 103.6 1 H = 103.3

CONDENSER

T= 97. 2	T=90
P = 20.9	 P = 19.9
H= 104.7	 H=26.6

t1=	 1127

:.
_J

` m
co	 (

o
fV ^
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In all systems that were considered, the quantities of heat recovered are

relatively small in comparison to the total heat input to the boiler. The
maximum recuperator load shown represents only 10 percent of the boiler load.
However, higher compressor work is necessary to overcome the additional heat
exchanger pressure drops; simultaneously, the available load at the turbine
decreases for the same reason. As a result, the turbine flow rate increases
significantly and the net effect is a small change in overall system thermal

COP. i

No significant improvement in COP can be realized through the use of	
r 1

recuperators and/or subcooler/superheaters. The very small gain (0.02) shown
for Concept E of Table 2-1 is at best marginal and does not warrant the addi-
tion of two heat exchangers and associated lines to the baseline system.	 r,
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SECTION 3 r"	 `

OFF-DESIGN PERFORMANCE PREDICTION COMPUTER PROGRAM

fi

i GENERAL

The off-design computer program was developed to assess the performance f
of the Rankine air conditioner over ranges of ambient conditions and solarY

_ collector performance.	 The methodology used is depicted 	 in Figure 3-1.
I;

The computations are started by calculating a first set of cycle parameters
3 using the design computer program. 	 Simultaneous	 iteration of these parameters

is performed based on the generalized Newton method of convergence until the
flows, temperatures, heat loads, and turbine-compressor power and speed are
satisfied.	 The computer output data 	 include COP and system capacity,	 as well
as turbomachine and system thermodynam ic data.?,

This off-design program formed the basis for the complete system model'
described	 later.

ASSUMPTIONS

The design computer program is an	 integral	 part of the off-design

program.	 Many of the subroutines of the design program are used 	 in the off-
design program.	 The assumptions summarized	 in Table 1 of AiResearch report
74-10996(7) apply for the equipment pertinent to the selected basel ine. 	Major
assumptions specific to the off-design computer program are listed below.

(1)	 Once the	 initial	 conditions are calculated by the design program,
the following flows are assumed to be constant for all 	 operating
conditions:

i (a)	 Water flow through the boiler:	 0.0009 m 3/sec (13.8 gpm)
p

a

(b)	 Air	 f :w through the evaporator:	 0.4 m 3/sec (850 cfm)

(c)	 Air	 flow through the condenser: 	 1.91	 m3/sec (4050 cfm)
h

Figure 3-2 identifies the thermodynamic state points used 	 in the
thermodynamic calculations'. 	 The data	 listed above are from the
design computer program (see computer printout 	 in Figure 3-3).

(2)	 Design	 point parameters	 used	 in the calculation of the 	 initial
(starting point) cycle parameters, heat exchanger characteristics,

t
and air/water	 flow rates are defined in Table 3-1. 	 Heat exchanger
characteristics used by the off-design program are as follows:

I	 ^
f (a)	 Evaporator--Face area:	 0.160 m2(1.728 ft2),;

Number of tube rows:	 7.46--actually 8 tube rows
_ would be specified

J

q

cA wer* AIRESEARCH MANUFACTURING COMPANY	 74-10996(8)
OF CALIFORNIA
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INPUTS dCOMPUTATIONS OUTPUTS

C

2
I

Q INTERFACE I

DATA
r
i0 3

zZ
a -<

r,

it

• AMBIENT Tdb, Twb
9 WATER INLET TEMPERATURE
• RETURN AIR Tdb, Twb

I

i

DESIGN PROGRAM"
INPUTS FOR
DESIGN POINT
CONDITION

CYCLE PARAMETERS

INITIAL
ITERATION

DESIGN POINT
PARAMETERS

PARAMETERS

• CYCLE DATA	 • BOILING TEMPERATURE

BALANCE
PARAMETERS

0 POWER BALANCE

OUTPUT
DATA

• SYSTEM COP

{

•
• INTERFACE PARAMETERS • HEAT EXCHANGER 	 • EVAPORATING TEMPERATURE • HEAT EXCHANGER LOADS • SYSTEM CAPACITY

DEFINITION	 a CONDENSING TEMPERATURE • TURBINE FLOW • CYCLE DATA

0 R-11 FLOWS	 • TURBOMACHINE RPM • COMPRESSOR HAD • TURBOMACHINE DATA

1 AIR/WATER FLOWS	 • LOAD • RETURN AIR WET BULB

;;See figure 3-2

i

:.-.',See Table 3-1 S-195

Figure 3-1.	 Off-Design Computer Program 'Methodology M
-D v
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GV StLA9 PuwEeEC	 A14 CO N VIT1WANG SYSTEM 051rG	 R-11
L pET	 CCULE' g 5tk	 F•rPLr"Y,, 1 aUN	 Ur:	 21	 OCT	 75	 AT	 1013bt52 FADE	 I

D C\1
STAI JUN/ TU ;,kFasQk ENTHAIPY FLI'h	 R"TF	 Gi_N511Y

JEU	 F PSIa HTu/Lt, Lb/.R	 LP /C.0	 FT

1 45.0000 8.OvOu 98.0125 504.2143	 .2066

s
2 122,1692 2(1.9527 108."GH 504'.2193	 r41TU7

z 3 110.i671 20.95?7 106.4585 1096.6669	 .4902
T 4 9v.J[1*:0 19.9.55,; 26.b150 1096.6669	 .0000

5 417,U614 n. y,a.,, 2b.a15e 5uU.2193	 .UU4r
c -6 91.3602 9	 .Sa hN 2b.901. 592.447e,	 .Tj11)

0 Z 7 165.0At;a hb.11175 114.5950 592.447b	 1.9037
0 101.2adll 20.9527 105.1118 592.4476	 .41986
r

i3
^n HEAT HUT	 F L111 1, C(-Lt? F,	 4 11 I'A	 "ETCHT	 COST	 FA's	 rP	 FA K 	FL.`, E M v

n
wET	 AULdCF)

>< FACHAr.CEk FLn	 Tt..1 (r)	 Fl_, ip, P (F) (HT1, /Hk/ 	 (LE)	 (uS	 ')	 tIr,-r 2L)	 GATT) (0u/P!^') IF	 OUT
(LS/ H R)	 IN U U T	 (Ln/-(T) IN	 uuT WFG F)	 HA	 FAT,	 H1(	 FAN

EYAP 3815.	 b4.n 55.0	 504. 47.1	 45.0 .00	 35.E	 32.6	 27.2	 42.1	 .eb	 119.4 360000 67.0	 5304	 1,
BOILER 6927.	 200.1' -3 42.5	 592. 91.0	 1h5.n 4501.57	 $5.5	 .n	 54.3	 .0	 .00	 .v 51954.

t1
CnNONSk 1097.	 110.9 91.11	 1h24?,. 95.1!+++ w. .nv	 91.P	 108.a	 109.H	 124.3	 .dc	 831.1 67Sb2. 75.0	 60.0

I j COEF OF PERFORKANCE 1UHHO-LOMPKESSOF ELECTRIC POWER FEGCCk ATT) 	 SYSTEI CUST W

i

Po)• Ek	 CriP .11)o CQMPk 44 (1N) 2.170 EVAP FAN	 178.997	 FACTORY COST 822.
REF R IG COP 7.120 C 	 Pk	 IrFr .730 Cnf,^Sk FAA	 631).940
SYSTEM COP .691 kPrl 58444. CL	 TO N ER F414	 .000	 USER COST 3055,

TURON DIACIN) 2.170 wATFR PUMP	 . 87.5b2
1 111,49r.	 FFF .771 PPLO-:	 N!r, P	 49.656

TNAL	 T147.197

J

Figure 3-3. Baseline System Performance at Design Point--
''I Design Computer Program Data
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Parameter Design Condition

Water	 inlet temperature to the boiler 366.5 K (200 F)

R-11	 boiling temperature 358.3 K (185 F)

Ambient air dry bulb temperature 308.2 K (95 F)

Ambient air wet bulb temperature 297 K (75 F)

R-11 condensing temperature 305.5 K (90 F)

Room return air dry bulb temperature 299.8 K (80 F)

Room return air wet bulb temperature 292.6 K	 (67 F)

R-11	 evaporating temperature 280.4 K (45 F)

Condenser approach temperature _ 5.6, K (10 F)

Evaporator approach temperature 5.6 K (10 F)

Boiler approach temperature 4.2 K (7.5 F)

System capacity 10.5 kw (3 tons)

1

i

1

r

s

I

so

xs
TABLE 3-1

BASELINE DESIGN CONDITIONS

(b)	 Condenser heat transfer area:	 3.85 m2 (41.4 ft2)

(c)	 Boiler UA;	 27.2 kw/m2K (4802 Btu/hr	 ft2F)' 3

(3)	 Heat exchanger pressure drop is assumed to be 5 percent of the inlet
pressure as in the design program.

(4)	 The thermodynamic cycle calculations assume no superheat at boiler
or evaporator outlets; similarly,- no subcooling	 is assumed at the
condenser outlet. 	 The small	 quantities_ of heat	 involved 	 i n providing
adequate superheat and subcooling for proper operation of the turbo-
compressor and R-11	 pump will	 not affect system performance
significantly.

(5)	 The R-11 'Y,	 specific heat ratio,	 is calculated from the pressure-
enthalpy data with the- following equations:

?i

c^ww^T* AIRESEARCH MANUFACTURING COMPANY - 74-10996(8)
OF CALIFORNIA
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•	 for the compressor,

Y-1

PI.N	 Y POUTOHC	 p xx 778.3	 (Y - 1,
_I

P
IN

•	 for the turbine,

P IN	 Y

AH'T =
	

P x 778.3	 (y- I) Y-II-	 P	 P
IN	 OUT)	 Y

where	 AH is the isentropic enthalpy difference between the inlet

and outlet pressures,	 (Btu/Ib)

Pis the fluid	 pressure (lb/ft 2 )	 at	 inlet	 (IN)	 and outlet (OUT)

P is the	 inlet	 fluid	 density	 (lb /ft3)

(6)	 Compressor maps relating flow, 	 adiabatic head,	 speed, and efficiency
were developed and are presented and discussed 	 in Section 4
(Figure 4-5).

(7)	 Turbine performance maps were also developed and are given 	 in
Section 4 (Figure 4-2).

(8)	 A maximum speed of 76,000 rpm was selected for the turbomachine.

(9)	 The turbomach'ine mechanical	 efficiency	 is taken as 90 percent,	 which

l

is representative of this size machine.

(10)	 The power	 loop efficiency,	 PCOP,	 is defined	 as	 follows:

turbine output , power
PCOP =

boiler heatt	 nput

(11)	 The refrigeration 	 loop efficiency,	 RCOP,	 is defined as

RCOP _ evaporator load

compressor power

(12)	 The overall	 system efficiency,	 SCOP,	 is calculated from

SCOP = evaporator loadr-boiler load

COMPUTER PROGRAM LISTING

A listing of the off-design computer program is presented in Appendix A,
which also includes the nomenclature of the input data. 	 The program was written a
in Fortran V	 language for use on the UNIVAC 1108 computer. 	 An example of the
output data is shown	 in Figure 3-4.	 This run was made using a compressor -

:.K designed to yield maximum efficiency at design point. 	 Further discussions
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of compressor selection presented in Section 4 will show that this compressor
was modified to extend the range of operation of the system. This particular
printout is given for purposes of comparison with the design computer program.

*.X

The output data format is the same as that for the design program and
also includes some of the data generated in the initial calculations of the
starting point. These data define the baseline system. The output data
include the following:

(a) Refrigerant temperature, pressure, ethalpy, flow rate, and density
- at the system stations defined 	 in Figure 3-2

(b) Heat exchanger flows, temperatures, heat loads, and UA requirement

(c) Heat exchanger weight and cost

(d) Fan characteristics	 including flow, pressure rise, and power

(e) Wet bulb temperature of the air at inlet and outlet of the evaporator
and condenser where applicable

(f) i;ycle characteristics:	 power	 loop efficiency, refrigeration loop
COP,	 and overall	 system COP.	 COP	 is defined as	 follows:;

Refrigeration	 loop COP =	
refrigeration	 load'

compressor power input ).

refrigeration load
Overall	 system COP = boiler heat	 input

_. (g) Turbine and compressor characteristics: 	 efficiency,	 impeller
diameter, and speed

(h) Electric power requirements for the fans and pumps

(i) System cost data

The program was written using the English system of units as defined	 in
the nomenclature and the output data printouts.

5

a

DESIGN AND OFF-DESIGN COMPUTER PROGRAM DATA

Pertinent data from the computer printouts shown in Figure 3-3 and 3-4
are	 listed in Table 3-2, which provides a direct comparison of the data
obtained by the design and off-design computer programs.

Examination of the data shows nearly 'identical	 cycle temperatures.	 The
"„ largest difference	 is	 in the boiling temperature, 	 where the off-design program i

value	 is lower by 1.0 K (1,5 F).	 Compressor flow is the same 	 in both cases.
x	

"' However, the compressor map used for off- design performance prediction yields

VW

F
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R i TABLE 3-2

SUMMARY OF DESIGN AND OFF-DESIGN COMPUTER PROGRAM DATA

Design Conditions: See Table 3-1

Fixed System Data (From Design Program):

•	 Evaporator

Face area: 0.160 m 2 (1.728 ft2)
Number of tube rows: 7.46
Air flow: 0.4 m3/sec (850 cfm)

• Boiler

Heat transfer conductance: 27.2 kw/m 2K (4802 Btu/hr ft2F)

Water flow: 0.0009 m 3/sec (13.8 gpm)

•	 Condenser

Heat transfer area: 3.85 m 2 (41.4 ft2)

Airflow: 1.91 m3/sec (4050 cfm)

1

a

9

a

i

c

ti
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a slightly lower efficiency (0.71 vs 0.74). Higher turbine flows were obtained,
although the turbine efficiency predicted by the off-design program is higher
than that estimated by the procedure used for initial selection of the turbine.

`

	

	 This is attributed to minor discrepancies found in the R-11 thermodynamic data.
Since more flow is necessary at the turbine, the overall system COP is Lower
by about 10 percent than predicted by the design computer program. The lower
value is believed to be more accurate.

f
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Compressor Turbine'

Rotational	 speed, rpm 58,440 58,440

Flow rate, kg/sec	 (lb/hr) 0.064	 (504) 0.075	 (592)

Inlet temperature, K	 (F) 280.6 (45) 363.8	 (195)

Inlet pressure,	 kN/m 2 (psia) 55.2	 (8.0) 592.9 (86.0)

Outlet temperature, K	 (F) 323.4	 (122.2) 311.8	 (101.2)

Outlet pressure, kN/m 2 (psia) 144.9	 (21.0) 144.9	 (21.0)

Efficiency,	 percent 74 77

Diameter,	 cm	 (in.) 5.54	 (2.18) 5.54	 (2.18)

r

i

=z

rw

Y ~	 SECTION 4

TURBOCOMPRESSOR OPTIMIZATION

GENERAL

Predicting system performance for conditions other than the design point
requires that the efficiency of the compressor and turbine be estimated over a

range of flows, pressure ratios, and rotational speed. Compressor and turbine
performance maps have been developed for the baseline machine using experimental
data obtained on similar units.

Problem statements for the preliminary design of the compressor and turbine
were derived from the baseline system optimized for the following conditions
using the design computer program:

Water temperature at boiler inlet: 366.7 K (200 F)

Ambient air dry bulb temperature: 308.3 K (95 F)_

Ambient air wet bulb temperature: 297.2 K (75 F)
i
7	 Return air dry bulb temperature: 300 K (80 F)

Return air wet bulb temperature: 292.8 K (67 F)

Under these conditions, the design computer program, using the compressor and
turbine models described in the screening analysis report (Ai Research report
74-10996(7)), furnished the design point data listed in Table 4-1.

TABLE 4-1

COMPRESSOR AND TURBINE PROBLEM STATEMENTS
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The turbin3 inlet temperature used in turbine design is 5.6 K (10 F)
higher than that obtained with the design computer program. This program

assumes saturated conditions at turbine inlet. In practice, superheat must be

provided to prevent condensation from the bulk of the fluid as the refrigerant
expands isentropically in the turbine nozzle.

DESIGN FOR MAXIMUM DESIGN POINT EFFICIENCY

Preliminary design of the compressor indicated that the efficiency obtained
using the procedure cited in Ai Research report 74-10996(7) was slightly opti-
mistic. More detailed calculations gave a compressor diameter of 6.17 cm

(2.43 in.) at design speed; design point efficiency is predicted at 71 percent.

The compressor map is shown in Figure 4-1. These data are considered in good
agreement with the data obtained from the preliminary estimates.

The turbine was designed to match the speed and power requirements of the
compressor. In the performance of the preliminary design of the turbine,

discrepancies were found in the R-11 thermodynamic data used. These discrep-
ancies are related to the values of R and 'Y in the region of the vapor dome.

The design program uses a value of 'Y = 1.11 published by Allied Chemicals
(Genetron II thermodynamic properties, 1957). The off-design program calcu-

lates the value of 'Y from the pressure-enthalpy data contained in the same
reference, using the equations given previously. These discrepancies were
corrected in final design but were found to have an important effect on turbine
performance. As a result, higher turbine flow.rates were necessary to furnish

the power necessary to drive the compressor at the design point defined in
Table 4-1.

The turbine is a radial inflow machine with curved blading at the tip to

reduce reaction. Turbine diameter is 4.5 cm (1.77 in.), and turbine efficiency
at design point is estimated at 81 percent. This is slightly higher than pre-

dicted and offsets the detrimental effect of the lower compressor performance.
The overall efficiency of the turbocompressor remains about the same at 0.52

(including a 90 percent mechanical efficiency). Design point flow rate is
estimated at 297 kg/hr (654 lb/hr); this represents a 10 percent increase over

	

C	
the value predicted by the design procedure used previously.

	

t	 The turbine performance maps are presented in Figure 4-2. The flow
factor (F F) shown is defined by

WY O	 (F )	 'Y9/R
; ,)(Y+l Z2Y

	

F	 where	 W	 flow, lb /sec

_wG A - nozzle area, 0.049 in 2

,E
To	 inlet temperature, R

y

s
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Figure 4-1. Compressor Performance for Maximum Design Point Efficiency
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11	 'Y = 1.056 (obtained from p-H diagram)

R = 9.9

g = 32.2

The velocity ratio, U/C o , can be calculated from the following equations:
Ci

	

^.	 DN
C o =	 2g Had	 and	 U = 229.2

4
where:	 Had = adiabatic head, ft-lb/lb

LLw D	 = turbine diameter, 1.77 in.

N _ turbine speed, 58,440 rpm

The turbocompressor design was evaluated using the computer program
describeu in Section 3. Parametric data were generated to cover a broad range

	

C	 of values of the following parameters:

G
(1) Water temperature at boiler inlet

(2) Ambient wet bulb temperature

(3) Residence wet bulb temperature

Typical data are shown in Figure 4-3 for a residence wet bulb temperature of
291.1 K (64 F). Corresponding to the system performance of °Figure 4-3,
Figure 4-4 shows the operational lines of the compressor superimposed on the
compressor map.

These plots show that augmentation will be necessary for operation at
boiler temperatures below 361.1 K (190 F) and ambient wet bulb temperaty-e.?',
over 297.2 K (75 F)	 Furthermore, water temperatures on the order of 352.8 K
(175 F) would be necessary for operation of the baseline system (without

augmentation) at ambient wet bulb temperatures of 294.4 K (70 F).'

This was felt to be too restrictive since ambient wet bulb temperatures 	 3'
between 294-.4 K (70 F) and 297.2 K (75 F) are prevalent over a large portion
of the country during the summer months. Consequently, it has-been necessary 	 ^k
to compromise the efficiency of the compressor at design point to broaden the
useful operating range of the system. This was accomplished by iterating

	

C	 around the compressor design to modify its flow characteristics.

PERFORMANCE WITH BROAD RANGE COMPRESSOR
i.

	

k	 the broad range compressor was designed for higher speed (63,000 rpm) at

the design point conditions of Table 4-1. Investigation of the compressor
and turbine design requirements indicated that the compressor change would 	 `-

m aErT
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involve only a minimal	 change	 in the turbine design.	 Moreover, the diameter

of the compressor would remain about the same due to Reynolds number and size

correction factors.	 Since the changes are well	 within the accuracy of the

data desired, the turbine characteristics of Figure 4-2 were used with the
revised compressor design.

The performance map of the broad range compressor was incorporated in the
off-design computer program, 	 and again operational	 characteristics were deter-

` mined.	 Figure 4-5 shows the same data as Figure 4-4 with the revised compressor.

At heat source temperatures	 lower by at	 least 11.1	 K (20 F), operation 	 is
possible with the broad range compressor.	 Restrictions are imposed by stress
limitations,	 however,	 in the high water temperature range. 	 Furthermore, the
compressor efficiency at higher temperature is decreased considerably. 	 This
does not appear to be a significant disadvantage in the present application,
where temperatures much above the boiling point of water are undesirable in view

of the water tank pressurization that would be necessary to prevent boiling.

The performance map	 in Figure 4-5 was used to characterize the baseline
system compressor. i

SYSTEM DESIGN POINT PERFORMANCE WITH BROAD RANGE COMPRESSOR I:'

Figure 4-6 is an off-design computer printout of the predicted performance j.
of the system with the broad range compressor. 	 Pertinent data from the print- ?
out are shown	 in Table 4-2,	 which constitutes an extension of Table 3-2.	 The
system operating point	 in terms of cycle temperatures 	 is practically the same
with the two compressors,	 although the broad range compressor efficiency is
lower by about 3 percent,

The power loop efficiency remains the same, even at the higher turbine
speed.	 However,	 a reduction	 in	 flow	 in the refrigeration	 loop	 is noted, ,a

which results	 in a slight drop	 in system capacity,	 from 10.5 kw (3 tons) to s
10.3 kw (2.94 tons).	 The combined effects of	 lower compressor efficiency and
Lower refrigeration	 loop capacity result 	 in a slightly	 lower overall	 COP at
design point.	 Referring to Figure 4-5,	 it	 is anticipated that higher system l

COP's will	 be obtained from the machine at	 lower water temperatures than
design point.

z

3

f anwuerr
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GENERAL

The parametric performance data presented below are for the unaugmented

system operating without auxiliary power solely from the thermal energy
contained in the hot water to the boiler. 'Electrical power will be necessary

for the system pumps, fans, and controls. Operation of the system in the

augmented mode is discussed in Section 6.

The data were derived with the off-design computer program. The raw

data on computer printouts will be furnished to NASA upon request.

RANGE OF INTERFACE PARAMETERS

The performance of the system was predicted over a broad range of inter-

face parameters, including:

(a) Water temperature at boiler inlet: 344.4 K (160 F) to 383.3 K (230 F)

(b) Ambient wet bulb temperature: 291.7 K-(65 F) to 300 K (80 F)

(c) Residence wet bulb temperature: 287.8 K (58 F) to 292.8 K (67 F)

The water temperature range covers.that anticipated from a reasonable quality

flat plate solar collector.

The ambient wet bulb temperature of 300 K (80 F) is representative of the
maximum (1 percent time) design point ambient conditions published by ASHRAE
for the southeastern region of the United States. The 291.7 K (65 F) ambient

wet bulb is also listed by ASHRAE as about a minimum design point condition

for arid regions.	 131
I

The residence wet bulb temperatures selected cover 'a relative humidity

range of 35 to 79 percent at a dry bulb temperature of 75 F. At higher dry
bulb temperatures, the relative humidity range would be correspondingly_

lower. This range spans the largest portion of the classical comfort zone

published by ASHRAE.

PARAMETRIC DATA

Baseline system performance is presented in figures 5-1 through 5-4 	 Each

plot corresponds to a different residence wet bulb temperature. The plots show
the variation of system Capaci ty and SCOP plotted as a function of the water
temperature at boiler inlet for various values of ambient air wet bulb tempera-
ture. Operational limitations imposed by compressor surge and turbomachine

overspeed are also shown. Figure 5-5 illustrates the effect of the residence

wet bulb temperature.
:
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"	 Over the ;---ge of	 interface parameters	 investigated, system capacity will
vary	 from 7.0 kw	 (2 tons) to	 12.3 kw	 (3.5 tons).	 Similarly,	 the overall
SCOP will	 be 0.5 and 0.8 with the higher SCOP corresponding to 	 lower

tr	
ambient wet bulb temperature,	 higher residence wet bulb temperature,	 and	 lower
boiler water temperature.

i

t.	 The data presented show the following effects of the air conditioner 	 inter-
face parameters:

Y

k(a)	 Higher	 boiler water temperature will 	 result	 in

•	 Higher system capacity

•	 Lower SCOP

(b)	 Higher ambient air wet bulb temperature has the following effects:

•	 Lower system capacity

•	 Lower SCOP

•	 Reduced operating range

Conversely,	 lower residence wet bulb temperature will 	 result	 in

•	 Lower system capacity

•	 Lower SCOP-

•	 Reduced operating range

The higher SCOP's achieved at	 lower boiler wager temperatures are due to
(1)	 higher compressor efficiency, 	 and	 (2) higher heat exchanger effectiveness
because of	 lower	 loads.	 The plot	 in Figure 5-6 shows turbomachine efficiency
and heat exchanger approach temperatures as a function of water temperature for l
typical	 operating conditions.

The ambient air ,wet bulb temperature determines the R-11 	 condensing pres-
sure.	 As the ambient wet bulb	 increases, the system thermodynamic conditions
will	 deteriorate	 inherently. _ More power	 is _required from the turbine to match
the increasing demand of the compressor.	 As a result,	 the capacity and SCOP
of the system will	 drop. fi

The residence wet bulb temperature has a similar effect on the evaporator.
The evaporating temperature of the working fluid drops with the residence wet
bulb temperature.	 Higher compressor 	 Lift is necessary to accommodate the lower
evaporation pressures.	 The net effect is as	 listed above: -

a

Y

r
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The system	 is rated at 70.5 kw (3 tons) under standard ARI conditions
(ambient dry bulb and wet bulb temperatures: 	 308.3 K (95 F)	 and 297.2 K (75 F)

respectively; return air db and wb temperatures: 	 300 K (80 F)	 and

292.8 K	 (67 F) respectively).	 Under	 less severe conditions (for example,	 at

lower ambient wet bulb temperatures),	 system capacity will	 be higher than

design.	 This	 is	 illustrated	 in the plot of Figure 5-1. 	 Conversely,	 under	 less
favorable conditions the Rankine air conditioner will, 	 like any other	 system,

degrade	 in performance and capacity.	 This situation	 is evidenced by the plots

of Figures 5-1 through 5-5, where it can be seen that at ambient wet bulb
temperatures higher than the standard ART value, system capacity and COP

deteriorate.	 This also occurs when the residence wet bulb temperature drops

(Figure	 5-5).

The operational	 range of the air conditioner as	 limited by compressor surge

and turbomachine overspeed protection 	 is plotted	 in Figure 5-7.	 Typically,
with an ambient wet bulb temperature of 244.4 K (70 F), the air conditioner will
run without the need for augmentation with water temperatures at boiler	 inlet

from 344.4 K (160 F) to 377.8 K (220 F).	 This represents a very wide range and

is attributed to the flexibility of the turbocompressor to find 	 its own operating

speed while maintaining 	 high	 efficiency.

Over the entire range of conditions 	 investigated, the turbine efficiency

was found to vary from 75 to 81	 percent.	 By comparison, the compressor

efficiency varied from 55 to 71 	 percent (Figure 5-8); the 	 lower values occur'

at high	 speed corresponding to the upper range of boiler temperatures 	 investi-

gated.	 This does not appear to be a problem	 in actual	 operation since these j

high temperature	 levels may never be reached due to solar collector	 limitations

and system heat	 losses.

Examination of the raw data reveals that the R-11 evaporating temperature

will	 float over a wide range as the operating conditions of the system change.

The highest and	 lowest evaporating temperatures calculated are	 listed below,

together with the interface parameters at which these temperatures will 	 occur.

•	 Maximim,evaporating temperature:	 285.5 K (54 F)

Boiler'water temperature: 	 344.4 K (160 F)

Ambient wet bulb temperature:	 300 K (80 F)
3

Residence wet bulb temperature: 	 292.8 K (67 F)
l

•	 Minimum evaporating temperatures:	 274.1	 K (33.3 F) I

Boiler water temperature:	 372.2 K (210 F)

Ambient wet bulb temperature:	 291.7 K (65 F)
Residence wet bulb temperature: 	 287.8 K (58 F)

These represent, extreme operating conditions. 	 The data reveal	 that freezing of
the evaporator will 	 not occur and that no overriding control 	 will	 be necessary
to maintain the R-11 evaporating pressure above a minimum value.

GARRETT AIRESEARCH MANUFACTURING COMPANY 	 74-10996(8)
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BASELINE SYSTEM SCHEMATIC

The screening analyses of Task 4 and the system investigations discussed

previously have resulted in the development of the baseline system schematic
shown in Figure 6-1.

Packaging Considerations

In system packaging, attention should be paid to the relative locations of

the various components. The schematic of Figure 6-1 attempts to illustrate the
relative positions of the equipment.

The turbocompressor is positioned high in the package to (1) minimize the

possibility of Liquid refrigerant draining into the compressor and turbine
from the condenser lines, (2) minimize entrained liquid refrigerant entering the

compressor from the evaporator during startup, and (3) provide adequate Fine
length to ensure vaporization of all liquid refrigerant droplets passing through
the superheater section of the boiler. This problem could occur during normal
operation, but may be particularly severe during startup. The line from the

boiler to the turbine should provide for Liquid gravity drain back into the
boiler.

The condenser is also located high in the package to provide a maximum
hydrostatic head at the evaporator thermal expansion valve and at the inlet

to the refrigerant pump. This is particularly important in a system of this
type for which the condenser provides only limited subcooling. The refriger-
ant pump should be installed at the lowest level in the package.

All lines will require insulation to minimize heat losses and obviate
undesirable performance shifts during startup. For the same reasons, careful
attention will be required to reduce conduction paths from hot components to

cold components and also reduce convection and radiation losses to ambient.

Baseline System Control

Control of the baseline system (without provision for augmentation) is

necessary for normal operation when the capacity of the system exceeds the
demand for cooling. This situation will occur when (1) the house Loads are

reduced, (2) the boiler temperature is high, (3) the condensing temperature
drops, or (4) a combination of the above _exists. If the demand exceeds the

capacity of the system, then augmentation of the solar thermal energy will be
necessary if the house temperature is to be maintained at the selected value.
The controls required for operation in this manner will depend on the technique
selected for system augmentation. The equipment and controls added to
the baseline system for augmentation are described later. The following
discussion pertains to the control of the baseline system as depicted in

Figure 6-1.

14^1 
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Ideally, the baseline control system should provide the following features:

(a) Optimum utilization of solar thermal energy

(b) System operation without augmentation at minimum water temperature
to the boiler

(c) Minimum requirement for auxiliary power

(d) Minimum use of parasitic power for fans, pumps, and controls

(e) Minimum transient effects

Two types of control schemes were considered for the baseline system:

(1) a modulating control that matches system capacity to the demand, and (2) an
on-off control with which the system is operated at the full capacity attainable
under given conditions; since this capacity exceeds the demand, the system will
automatically shut off when the demand is satisfied and will start again as
required by the residence thermal transients.

A modulating control would use the difference between the residence temp-
erature and the thermostat setting (demand), and the difference between the
residence temperature and the cool air temperature from the evaporator (capac-

ity). Anticipator or duty cycle circuitry may be necessary to ensure stability
and proper control functions. Using the signals generated, a number of param-
eters can be controlled to modulate system capacity. A brief discussion of the

alternatives considered follows.

Hot Water Flow to Boiler --A reduction in the hot water flow to the
boiler will result in a drop in R-11 flow rate to the turbine and
also in a reduction in pressure available at the turbine. As a
result, compressor speed will drop corresponding to an increase in

evaporator temperature (assuming constant condenser temperature).
The net effects will be a loss of potential for latent heat removal
and lower power loop efficiency, resulting in Lower overall COP and

inefficient utilization of stored thermal energy.

Control of Turbine Inlet Pressure --A flow control valve could be
used to control turbine inlet pressure with the same effects as for
control of hot water flow to the boiler.

Control of Condenser Airflow--Condenser airflow can be controlled
by flow control vanes or by means of a variable (or two-speed) fan.
In either case, condenser temperature will increase. Data presented
earlier (AiResearch report 74-10996(7)) show that this will result
in significant performance deterioration. This approach also is
wasteful of stored water energy.

Control of Liquid Refri gerant Flow to the Evaporator --A reduction in
evaporator flow will result in an increase in the compressor speed

and pressure ratio. Assuming constant condenser temperature, this
results in a lower refrigeration loop COP with the same overall
effect as for the three previous cases.

E



j

Other means of capacity control such as evaporator pressure control,
compressor bypass, or compressor discharge pressure control have the same
degrading effects on system COP and utilization of solar energy. In addition,

	

m^	
a modulating type control will increase the duty cycle of the system fans
and pumps and the parasitic electrical energy necessary for system operation.

Although it minimizes transient effects, a modulating type system is not

	

y	 recommended.

The baseline system control is shown in Figure 6-1. A thermostat is pro-
vided at a suitable Location in the residence, together with an on-off switch.
When the air conditioner is switched on, the control module assumes control for

automatic cycling of the system from the thermostat upper and lower set point
temperatures. In addition, the ON switch activates the evaporative condenser
water pump and opens the condenser sump solenoid bleed valve.

When the residence temperature exceeds the upper thermostat set point, the
evaporator and condenser fan and the R-11 boiler feed pump are activated. At
the same time, the boiler isolation and evaporator shutoff valves are opened.
As the system operates, the residence temperature will drop until the thermo-

stat lower set point is reached. Then the control module will deactivate the
fans, refrigerant pump, and solenoid valves, and the system will assume a
standby status.

With the evaporator shutoff valve opened, the flow of refrigerant to the
evaporator	 is controlled by a capillary tube.

The water	 level	 in the sump of the evaporative condenser	 is controlled
between fixed	 limits by a float-actuated water shutoff 	 valve.	 A fixed bleed
is provided to prevent salt accumulation; the rate of bleed can be adjusted

3

manually depending on the 	 local	 water salt content.	 Water	 recirculation will 	 be
maintained during standby conditions to prevent periodic drying of the water on
the surface of the evaporator tubes and to obviate salt deposition and corrosion., ='
In addition,	 the water flow	 in the condenser tubes will	 prevent heating of the
condenser during standby and keep the condenser near 	 its operating temperature. t
This will	 provide a significant advantage toward the elimination of 	 startup
transients.	 A check valve in the vapor	 line to the condenser, together with the 1.
refrigerant shutoff valve at the evaporator	 inlet,	 will	 prevent refrigerant
transfer to the evaporator during standby and shutdown. 	 Subcooled conditions
will	 be preserved	 in the condenser	 lower tubes,	 and a positive head will	 be
available for refrigerant pump startup.

A	 level	 sensor	 is provided on the boiler to control 	 a pump bypass valve and j

thus adjust the refrigerant flow to match the boiling rate. 	 An	 isolation valve
in the vapor	 line from the turbine 	 is opened during operation. 	 This valve will
be closed when the system is on standby to prevent refrigerant migration to the

evaporator or condenser. This will prevent flooding of these two heat exchangers
and also maintain the boiler at pressure and temperature. Depending on the
duration of the off cycles and the thermal Josses from the boiler, it may be

necessary to provide a continuous reduced 'flow of hot water through the boiler
to offset the effects of heat Josses and valve leakage during standby. In this

4	 manner, the boiler will be maintained at high pressure, and startup transients
will be minimized,

s
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=$	 Turbocompressor speed is controlled below a maximum value (76,000 rpm)
consistent with the aerodynamic and structural characteristics of the turbine
and the compressor by monitoring the temperature of the hot water to the
boiler. A bypass valve limits heat input to the system below a safe value
compatible with maximum turbomachine speed. Compressor surge is obviated
by monitoring speed and inlet flow rate. Should compressor operating condi-
tions be such that they approach the surge line, a signal will be provided
to the control module for augmentation.

r
SYSTEM AUGMENTATION CONCEPTS

The baseline Rankine system just discussed must be further developed to
include means of supplementing the solar thermal energy source when necessary.
Three approaches were considered, evaluated, and compared using the off-design
computer program:

(a) Thermal energy input into the water loop to the boiler. As an
alternate, an electrical heater could be packaged within the boiler

r
itself.

I
	l	 (b) Auxiliary reciprocating compressor installed in parallel with the

system turbomachine which assumes the load when (1) the Rankine
system capacity drops below the demand, or (2) unassisted operation
is impossible due to compressor surge.

(c) Electric motor drive integral with the turbocompressor to supple-
ment turbine power and maintain compressor speed at the desired
level.

Operation and control of these systems in the augmented mode are described
in the following paragraphs.

For proper operation of the augmented system, the control module must have
sufficient information to (1) determine when to turn the auxiliary power on and
off, and (2) control system functions in the augmented mode. A tradeoff must be
made between economy of operation and system performance; a compromise solution
must be reached which should be resolved by the owner of the system. To this
end, provisions should be made in the control system for adjustment of the
auxiliary activation set point. A warning light should be installed near the
thermostat to indicate when auxiliary power is used. Further means for over-	 }
riding the automatic mode of operation in the ON or OFF positions should be
provided. Such -a'control is desirable for maximum economy or for system capacity
enhancement to meet maximum demand situations which could occur during initial
residence cooldown or in extreme climatic conditions

Should system capacity deteriorate due to a drop in water temperature at
the boiler inlet or increase in condensing temperature, the compressor speed
and flow will drop significantly. Operation at reduced capacity may be adequate
to maintain the residence temperature within the thermostat set points however,
if, for example, the residence temperature increases 1.1 K (2 F) (adjustable)

	

y	 above the set point, then the auxiliary could be automatically switched on to
obtain maximum system capacity. The intelligence used by the control module

owwwerr AIRESEARCH MANUFACTURING COMPANY
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is available from the baseline system instrumentation: thermostat set points

and turbine pressure ratio.

To obviate situations where continuous operation'in the augmented mode does

not generate sufficient capacity to reduce the residence temperature below the
lower thermostat set point, a storage water tank temperature sensor may be

desirable. The signal from this sensor would allow activation of the auxiliary
only when the water temperature is below a certain value, e.g., 366.4 K (200 F).

This signal could also be used to switch off the auxiliary when tank water
temperature increases. This will minimize auxiliary energy usage. The auxil-

iary power and the entire system are switched off when the residence temperature
reaches the lower thermostat set point, and the air conditioner control will be
reset for baseline operation without the auxiliary power.

Concept A, Auxiliary Thermal Energy (Figure 6-2)

Gas, fuel oil, or an electrical heater could be used in a water heater at
the boiler inlet to provide a boiling temperature commensurate with operation

of the system at maximum capacity. Switchover to auxiliary power will occur as
previously described. This will involve opening the water diverter Valve around

the boiler and the gas or oil supply valve (alternately, the electrical heater
will be powered).

1	 Capacity Enhancement by Auxiliary Heater

With this method of augmentation, it appears extremely wasteful of energy

to activate the auxiliary heater only to enhance system capacity since in the

augmented mode all thermal energy necessary for operation is from the auxiliary
heater. Figure 6-3 illustrates this fact. The plot was prepared for typical

operating conditions of ambient and residence wet bulb temperatures. It shows
the power penaltypaid in terms of kw per unit of increased capacity over a
range of boiler water temperatures. At water boiler temperatures below 343 K

(158 F), the system compressor will surge and ,system operation in the normal
mode is impossible. Auxiliary power will be necessary at the rate of 17 kw to

maintain the water temperature at boiler inlet at 366.7 K (200 F). Under
these conditions, system capacity will be 9.9 kw (2.9 tons).

System operation at reduced capacity is possible with water temperatures
as low as about 344.4 K (160 F)., Under these conditions, system capacity will
be 7.2 kw (2.1 tons). Should an increase in capacity be desired, the auxiliary

heater could be switched on manually and the air conditioning rate could be
increased to 9.9 kw (2.9 tons). The power input to the water will then be
17 kw as mentioned above. This power is expended only to enhance the capacity

of the system from 7.2 to 9.9 kw i2.1 to 2.9 tons) so the penalty paid is

6.24 kw/kw (21.3 kw/ton) of added capacity. As the temperature of the water
from the thermal storage unit increases . this ^'lena l ty increases since the
capacity in the normal mode of operation also increases, the plot in Figure 6-3
shows this effect. Auxiliary heater use for capacity increase is therefore not

V

recommended. The si g nal used by the system for activating the auxiliary

heater should be the compressor' surge sensor.
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• AMBIENT WET BULB TEMPERATURE:	 294. 4 K (70 F)
• RESIDENCE WET BULB TEMPERATURE: 291.1 K (64 F)
• AUXILIARY HEATER EFFECTIVENESS: 100 PERCENT
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2.	 Power Requirement for Augmentation

The power necessary for system augmentation was taken as constant to
obviate the requirements for monitoring and control.	 Here, a simple on-off

control	 will	 be adequate.	 Over the entire range of operating conditions,

a	 17-kw electrical	 heater will	 maintain water temperature at boiler	 inlet near
366.7 X (200 F).	 If a gas- or oil-fired heater	 is used,	 the system energy

requirement should account for the inefficiency of the heater 	 itself.	 This
could be as high as 80 percent through careful 	 design.

The system capacity in the augmented mode 	 is shown	 in Figure 6-4.

Overall	 system electrical	 energy requirement	 (EER)	 is shown	 in Figure 6-5.

System EER	 include= the parasitic power necessary to drive the fans,	 pumps,
and controls and represents the overall COP of the machine in terms of elec-

trical	 power	 input.

The power	 level	 necessary for operation	 in the augmented mode far exceeds
the power requirements of conventional 	 air conditioners.	 Commercial	 units
currently marketed have an overall COP	 (including power for fans and controls)

as high as 2.7.	 This compares to a COP between 0.4 and 0.6 for the Rankine

system in the augmented mode with auxiliary heaters.

Concept B,	 Auxiliary Compressor	 (Figure 6-6)

The requirement for auxiliary power 	 is established through monitoring of
the parameters described previously. 	 In this case,	 the Rankine power	 loop	 is

turned off.	 This	 involves stopping the hot water and R-11	 pumps and also

closing the boiler	 isolation	 valve.	 The entire	 load	 is then carried by the

auxiliary compressor.	 The check valve at condenser outlet prevents refrigerant
recirculation around the compressor. A back pressure control 	 limits evaporation

pressure and prevents freezing at the evaporator.

Estimates were made of the auxiliary power necessary 	 in the augmented mode

of operation.	 The compressor efficiency 	 in Figure 6-7 was used for this purpose.
The design point was selected to give a 10.5-kw 	 (3-ton) capacity at ARI	 standard

rating conditions.	 At that point, the	 isentropic efficiency of the compressor
is 80 percent.	 The motor efficiency was assumed at 70 percent over the entire a

range of operation. a

Auxiliary compressor power 	 is shown	 in Figure 6-8,	 plotted as a function
of ambient and residence wet bulb temperatures. 	 In the range of conditions

considered,	 the auxiliary compressor will 	 require between	 1.1	 and	 1.7 kw of

input power.	 System capacity,	 also shown	 in Figure 6-8,	 is between 7.0 and
10.5 kw ( 2 and 3 tons).

Compressor power requirement is only about 10 percent of that required
with the auxiliary heater.	 With the auxiliary compressor,	 energy	 is added to
the compressor at an efficiency of about 70 percent.	 In the case of the auxi l-
iary heater,	 the energy	 input	 is used in a	 low temperature.-low efficiency
Rankine loop	 (on the order of 10 percent).

v .s
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t
1 The system electrical energy requirement (EER) is plotted in Figure 6-9.

The EER includes the constant displacement compressor power as well as the
parasitic power. The EER shown is substantially higher than that of con-

ventional systems of 2.2 to 2.6 w/w (7.5 to 9 Btu/hr/watt), primarily because
of the lower condensing and higher evaporating temperatures achieved with the

highly efficient heat exchangers used in the system.

Concept C--Augmentation by Auxiliary Motor (Figure 6-10)

In Concept C, a high-frequency motor is packaged as an integral part of 	 }
the tubocompressor to augment turbine power when necessary. A sketch of the

machine, designed to provide 10.5 kw (3 tons) of air conditioning, is shown in
Figure 6-11. The compressor and turbine are mounted at either end of the rotor. 	 -
The motor rotor is on the same shaft between the compressor and turbine. The

motor is designed to produce 2.0 kw of power at a speed of 63,000 rpm so that
the entire compressor load can be handled by the motor with the turbine wind-
milling. Electrical power is supplied to the motor from a frequency converter

which uses normal house three-wire 230-v, 60-Hz power for conversion to a
frequency of 3150 Hz and a three-phase voltage of 120 v. The motor is a six-pole
brushless design and uses a permanent magnet. In this application, constant
speed operation has been selected to simplify the converter circuitry. As
discussed later, if the system is used for heating as well as cooling, then
a variable frequency converter may be necessary. In this case, motor speed
would be adjusted for optimum COP under any heat source temperature by varying

the frequency of the power input to the motor.

The motor is highly efficient; testing of similar machines have demonstrated

efficiencies higher than 90 percent. Cooling of the motor is by the process

fluid.

The rotor assembly is supported by two conical hydrodynamic foil bearings.

The use of these bearings minimizes mechanical losses and obviates the require-
ments for special Lubricant. This represents a significant advantage in system

design.

Overall dimensions of the unit are shown in Figure 6-11. The weight

of the machine is estimated at 12 lb. The high speed motor is very small,
and its cost will be considerably Lower than that of a comparable 60-Hz

unit. The motor cost savings could be large enough to offset the cost of the
frequency converter.

The rationale used in selecting the operating speed of the machine in
the augmented mode is presented below, along with parametric performance data
for system Concept C. The off-design performance computer program was used
to generate the data in the augmented mode of operation.
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1. Seed Selection in Augmented ModeP	 9

The turbocompressor design speed in the normal (non-augmented) mode of	 i

operation was determined to be 63,000 rpm. Potentially higher capacities

could be obtained at higher speeds. An investigation was conducted to optimize

the turbomachine speed in the augmented mode. Figures 6-12 and 6-13 show the

efficiencies of the compressor and turbine for auxiliary motor speeds of
63,000 and 70,000 rpm respectively. The efficiencies are plotted as a function

of water boiler temperatures over the entire range of ambient wet bulb tempera-

ture; residence wet bulb temperature has only a negligible effect on the

efficiency parameters. Considerably higher efficiencies are obtained at the
lower speed.

Over the entire range of water boiler temperatures, the higher speed

results in lower compressor efficiencies--from 2 to 5 percent depending on the
ambient wet bulb temperature. The effect on turbine efficiency is much more

pronounced and can be as high as 9 percent at high ambient wet bulb temperature.

As a result, the capacity increase due to higher motor speed is only on the order
of 6 percent over most of the operating parameter range. Table 6-1 shows system
capacity in the augmented mode corresponding to a water temperature at boiler

inlet of 338.9 K (150 F). At that temperature, the turbine cannot sustain
the compressor out of the surge range and motor augmentation is necessary for
operation.

f

Comparison of the plots of Figures 6-12 and 6-13 also shows that at the
63,000 rpm speed the compressor and turbine efficiencies are maintained at
much lower water temperatures, so that the useful operating range of the

machine is extended. Little power could be derived from the solar heat source
at low water temperatures (338.9 K (150 F)).

2. Potential Capacity Enhancement by Augmentation

In normal operation, without au gmentation, the speed of the turbomachine
will drop as less power is generated ;1 the turbine at low boiler water
temperatures. This will result in a capacity reduction as shown in Figures
5-1 through 5-4. This effect is illustrated in Figure 6-14; the plot was
prepared for a residence wet bulb temperature of 289.4 K (61 F). At these
particular conditions, the speed of the machine does not reach the maximum
allowable of 76,000 rpm.

As the boiler water temperature drops below a-certain value shown in
the figure, the compressor will surge and augmentation will be necessary for
operation. At this point, the motor is activated and controls the speed of
the turbomachine at a constant preselected value (63,000 or 70,000 rpm, for
example). In terms of turbine operation, this is analogous to a reduction of
ower re uirement	 The turbine willst i ll d	 IV	 q	 I	 eve op some power, although the

motor is activated and controls the speed.,

Augmentation by motor activation is possible over the entire range of
operation where the conditions are such that the normal speed of the turbo-

compressor is lower than the selected motor speed. Control in this manner is
possible toenhance system capacity even in the range where the system could

'Q^MN TT AIRESEARCH MANUFACTURING COMPANY	 74-10996(8)
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TABLE 6-1

SYSTEM CAPACITY IN THE AUGMENTED MODE,f	 (BOILER WATER TEMPERATURE = 338.9 K (150 F)

Turbomachine
Speed

Ambient Wet Bulb
Temperature, K (F)

System Capacity,
kw	 (Btu/hr)

63,000 rpm Residence Wet Bulb Temperature, K (F)

287.7 289.4 291.1 292.7
(58) (61) (64) (67)

8.9 9.5 10.2 10.9291.7	 (65)

(30,460) (32,470) (34,820) (37,370)

294.4	 (70) 8.8 9.4 10.1 10.8
(30,000) (32,060) (34,450) (37,000)

297.2	 (75) 8.5 9.2 10.0 10.7
(29,080) (31,330) (33,960) (36,510)

300	 (80) 8.1
(27,730)

3.9

(30,390)
9.8
(33,340)

10.6
(36,010)

70,000 rpm Residence Wet Bulb Temperature, K (F)

287.7 289.4 291.1 292.7
(58) (61) (64) (67)

9.5 10.1 10.8 11.6291.7	 (65)

(32,400) (34,420) (36,770) (39,700)

294.4 (70) 9.4 10.1 10.7	 - 11.4
(32,100) (34,120) (36,470) (39,020)

297.2	 (75) 9.3 10.0 10.7 11.3
(31_,720) (33,750) (36,130) (38,570)

300	 (80) 9.2 9.8 10.5 11.2
(31,350) (33000) (35,810) (38,260)
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be operated normally. This would involve starting the motor when the house

temperature exceeds the upper thermostat setting by a given preset value,

say 1 K (2 F).

Figures 6-15 and 6-16 show the additional capacity that could be achieved
by motor activation in the normal range of operation. The data are presented
for motor speeds of 63,000 and 70,000 rpm and for a fixed value of the

residence wet bulb temperature 289.4 K (61 F). Also shown is the electrical
power expended in providing the added system capacity. As will be shown
later, the system electrical energy requirement (EER) in the non-augmented

mode varies between 5.3 and 7.6 watts/watt (18 and 26 Btu/hr/watt) over the
range of boiler and ambient wet bulb temperatures shown in Figure 6-14.

By comparison, the EER achieved by augmentation in the normal mode is between

3 and 4.5 watts/watt (9 and 16 Btu/hr/watt). Thus, the added capacity is
about twice as costly in terms of auxiliary energy as the baseline capacity.
For this reason, automatic capacity enhancement by auxiliary power was rejected.

Note that conventional systems do not offer this option and that the
capacity of such systems also will degrade under operating conditions

(ambient and residence wet bulb temperatures) less favorable than rated
conditions. incorporated in the system, however, are provisions for manually
activating the motor when desired.

Comparison of the data in Figures 6-15 and 6-16 indicates much lower
EER at a motor speed of 70,000 rpm, although the added capacity is increased.
This is due to the lower compressor-turbine efficiencies at higher speed
as discussed above.

A motor speed of 63,000 rpm was selected for augmentation.

3. Minimum Boiler Water Temperature

When auxiliary motor operation is required to prevent compressor surge,
the turbine still has the capability to furnish a relatively large portion
of the total power necessary to drive the compressor. This is illustrated

in Figure 6-17 for a residence wet bulb temperature of 289.4 K (fit F).
Residence wet bulb temperature has only a minor effect on the parameters
plotted. The turbine contribution to the total power required is significant
at boiler water temperature near that corresponding to compressor surge. As
the water temperature drops, the turbine power drops and becomes only a small

portion of the total power requirement at high ambient wet bulb temperature.
This is due to a rapid deterioration of turbine efficiency (see Figure 6-12).

It is desirable to ,disengage the turbine at low efficiency to conserve
solar thermal energy, even though it is in a low grade form. Yet it is
also desirable' to operate the system with the turbine at water boiler tem-

peratures as low as 333.3 K (140 F) under conditions of low wet bulb temperatures
A compromise so-lution, which will be implemented with simple control circuitry,

is to disable theturbine when the boiler water temperature drops below 336.1 K
(145 F). Under ambient wet bulb temperature conditions representative of

average values in a hot humid climate (244.4 K (70 F)) it is estimated that 35
percent of the total compressor power is developed by the turbine. Referring
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to Figure 6-10, a water temperature sensor in the water storage tank will shut

off the water pump and isolate the boiler when the temperature drops below
336.1 K (145 F) .

4. System Operational Modes

Figure 6-18 illustrates the system characteristics in various operational
modes. Capacity, auxiliary power, and electrical energy requirement varia-

tions are shown plotted as a function of water temperature at boiler inlet.

Operation of the system with its control scheme is as fiollows:

(1) At high boiler water temperature, large quantities of energy are
available at the turbine. Turbocompressor speed will be excessive

in terms of stress considerations. This condition will occur at
boiler water temperatures in excess of 372.2 K (210 F). Turbomachine
overspeed protection is provided by a wax element type bypass

valve in the hot water Fine to the boiler. The valve will open at
a temperature of 372.2 K (210 F) and bypass water around the boiler;

the quantity of water bypass will be such as to limit the heat

input to the boiler in order to maintain turbocompressor speed below
76,000 rpm.

(2) As the boiler temperature drops, turbocompressor speed will also
decrease. The capacity of the system and its EER will drop. Under
these conditions, the only electric power used by the system is

for operation of the fans, pumps, and controls. All turbocompressor
power is developed by the turbine. This is the normal mode of
operation of the system.

(3) As the turbomachino speed decreases to a value approaching compressor
surge speed, a surge sensor will activate the auxiliary motor, which
will accelerate the turbomachine to design speed--63,000 rpm.

Surge will occur at different speeds and compressor flows depending
on the system interfacing parameter. With the auxiliary motor
"on", system capacity will increase significantly. However, the
EER will continue to decrease as the boiler water temperature drops
and less power is developed by the turbine and assumed by the auxiliary
compressor. Since the turbomachine speed is constant, system
capacity is also constant.

(4) A further drop in water boiler temperature will result in system
boiler shutdown and operation with the auxiliary motor alone.

5. System Parametric Data

F'	 6-19 1'h	 h 6-22	 t	 t T	 f	 d t.J ulfies	 _ roug	 presen parame I %, per ormance a a for the
Rankine air conditioner augmented by means of an electric motor integral

with the turbocompressor. Each figure corresponds to a different residence
wet bulb temperature, covering the range from 392.8 to 387.8'K (67 to 58 F).
The data are presented as illustrated in Figure 6-18.

1
4



MOTOR MOTOR-

POWER TURBINE TURBINE POWER. 

ONLY POWER
TURBINE POWER ONLY ONLY

TURBINE (63,000 (VARIABLE SPEED) (76,000 RPM)

OFF RPM)

(63,000 `.
RPM)

,x
w
vu

w

-
CDo
o..

= ^— NO AUXILIARY

POWER
^.

I x
ZD

Y o
V) CDo_

^''^

LU

w
o._

W
^

CL CL 
(D

V N

X W lc

WATER TEMPERATURE AT BOILER	 INLET

S-203

Figure 6-18. -Typical	 Operational Modes

cww ETT AIRESEARCH MANUFACTURING COMPANY
74- 10996(8)  OF CALIFORNIA
Page 6--28



i

j

9

y

j1'

12

3
10

N
2	

Y

.Y
6

S

I 4
1

2
i	 _.o..

D.

1.4	 MOTOR

1.2

OPERATION

qMe
7F"I	 '' wFT

?9^	 0. z
(7

254:4 f)(7s
oJ

MOTOR-TURBINE
OPERATION

Q	 ,r
I
1	 TEMP

0 

^	 e^TURP
k (F^

291.7
J65) TURBINE

OPERATION 0

1.0

a 0.8

t' 0.6

0.2

0

AMBIENT WET BULB

TEMPERATURE, K(F)
CONSTANT

SPEEO
291.7 (65) MODE

AUGMENTED MODE

W2

MAXU•fUM291.7 (65)
SPEEp.

297.2 (75)
COMPRESSOR 300 (80)

SURGE

NORMAL
MODE

n„ a,

1

to
34

32

9
30

28 ° 8

-	 26
4U

3
24

~
7

x
m 22 a

20
W ^!
wa	

18
u

16 ¢
314

4

12

3

AMBIENT WET BULB

TEMPERATURE,, K (F)

,49.1 
u `col

I
991

' 
° gaol

'S°

291.7

(65)

300

(80)

33 u 	335	 34U	 3455	 5,	 5	 770	 375	 3 0	 3 5	 390

I& LK

r

I.140	 1 50	 160	 170	 180	 190	 200	 210	 220	 230	 240

WATER TEMPERATURE AT BOILER INLET., F	 .,

5-.151

Figure 6-19. Auxiliary Motor System Performance Residence Wet Bulb
Temperature = 392.8 K (67 F)

f
/..'74-10996(8)S	 ^cn MUerT AIRESEARCH MANUFACTURING COMPANY	

-

	

OF CALIFORNIA	 Page 6-29



S

OPERATION

Te
l,

tell,

_I

MOTOR-TURBINE

,q "fat/<q

OPERATION

2914	 29^ 
300

 (9p7	 K (F)

(65)	
2g4	

2 (^57

TURBINE
OPERATION

9
30

_,
W 8s

U
7

w
^ w

F 20 \ 6

m. z

w

J
o

w ^ 

5

a

i
4

i

10
3

MES g0^ °^Fl

"o"165
11°^

tigu u	 y 1151

tig1	 X16°1

-

'

F ^gePEt0	 2g^.1

--

- —

(65)

300

(80)

	.l	 1

1 .4	
MOTOR	

j

^ L2

	

I	 i

s 1.0ws0
a 0.8r

0.6

	

. ^	
X

s 0.4

o.z

0

AM131ENT WET BULB

TEMPERATURE K (F)
4 14

17

3f io
c

o
t B

y 2 3

F yI[

i 6
au i

}} 1
12

h D o

291.7	 (6 5) I

294.4	 (70) CONSTANT

SPEED
MODE 

-
AUGMENTED MODE

297 . 2 (75)--

3DO(8D)

MAXIMUM

SPEED

COMPRESSOR
SURGE

NORMAL
MODE

-

330	 335	 340	 345	 350	 355	 360	 365	 370	 375	 380	 385 390	 +

- 140	 150	 160	 1.70	 180.	 1y0	 200	 210.	 220 '=
WATER TEMPERATURE AT BOILER	 INLET,.F S-192

Figure 6-20.	 Auxiliary Motor System 'Performance--Residence Wet Bulb
k Temperature = 291.1 	 K	 (64 F)

f
-. 74-10996(8)i

' (

,.
G.nNNETT)

r

AIftESEARCH MANUFACTURING COMPANY

Of CALIFORNIA Pa P 6-30

°^N u,



WEj 0 ^ lF
.SORE

^EtAREP
'lox

29 2^ X51

29^ '

^gol

291,7

(65)

300

I
Z
1 9

w
3
a°8
v

tea `
w
w 7

S
^ G3

..
e20 6

w ^
ti5
F

4

.. 3

10	 (80)

MOTOR
1 4 OPERATION

1.2

Y
1.0

w
0.8

II	 }

h	 a 0.6

x o.4

I

0

I	
MOTOR-TURBINE

OPERATION

__

z9 r.7
(65)

AMB^
—rFHoFN7

3 ?,q

^F

SU14

291.7	 – -

(65)

Y TURBINE

OPERATION

1
3

AMBIENT WET BULB	 -	 d
4	 4	 TEMPERATURE K (F)	 3

x
t

12

I. 3
L .. 10

P ~
_8

} 2 :c

Mr =
a

6

u

^
IY

4
I	 -- 7

2

m:
O p

291.7	 (65)

294.4	 (70)

—' 297 ,2 (75)

1 300	 (80)

60NSTANT.

SPEED
MODE

AUGMENTED MODE -
._

11L7 h

-

MAXIMUM
__(65 F) SPEED`

NORMAL

COMPRESSOR
MODE

SURGE

I	 330	 335	 340	 345	 350	 355	 - 360	 365:	 370	 375	 380	 .385
H^

K

t=	 1	 I	 I	 I	 I	 1	 I.	 1	 I	 I	 1	 I	 t	 I	 l	 f	 I_	 (	 1:..	 L	 f-.
140	 150	 160	 170	 180	 190.	 200	 210	 220	 230

WATER TEMPERATURE AT BOILER INLET, F	 S-193

Figure 6-21. Auxiliary Motor System Performance--Residence Wet Bulb

Temperature	 289.4 K (61 F)	
1

:m

7

74-10996(8)
lcauuFrrl AIRESEARCM MANUFACTURING COMPANY

	 Page 6-3 ).^	 Of CALMORNIA	 g



to

9
30

w

a A

^'	 u
2
s	 J 7^	 W

a
m 20	 a 6

0
w	 c
w	 5

H
2

4

10	 3

Mfr

rn

MOTOR
OPERATION
^,

AMBIENT WET BULB
TEMPERATURE, K (F)

80300	 ()^

OPERATION

MOTOR-TURBINE
- -	 -

291'7

(65)

297.2	 (75)

f	 294,4 (70)
/1^

TURBINE
OPERATION

W

1.

t.t

w
O.f

a

'z 0.6

< 0.4

0.2

0

TEMPERATURE, K (F)

291.7	 (65)

---
CONSTANT

SPEED
NODE

--- --- - ^f' —294.1; (70)-
297.2	 (75)

300	 (80)

'-

_

"'"

AUGMENTED MODE

-"- - ^

NORMAL
MODE

MAX IFIUM
SPEED

COMPRESSOR

SURGE

LL

f

S

3

µEt e ^Bt,EI

- ^gol
3°°

S
6MQE ^29'1	

a 11
—29^`'	 _ 2 1,15

291 '
.	 _- --

291.7.
(65)

300
(8o)

9
^• -	 1y.	 AMBIENT WET BULB

12

3
to

o
'" 8

^2 Y

a 6

4
1

..,. 2

330	 335	 340	 345	 350	 355	 360	 365	 370	 375	 380	 385

	

K	
,.

r	 f	 iI	 r	 ^	 ii	 f	 1	 i	 it1	 it	 i	 i	 t
140	 l50'`.,	 160	 170	 180	 Igo	 200	 21.8	 220	 230

. .MATER TEMPERATURE AT BOILER INLET, F 	 S-194

'.'	 Figure 6-22. Auxiliary Motor System Performance--Residence

	

Temperature	 287.8 K (58 'F)	 )

s;

74-10996(8)
S	 icncauEr AIRESEARCH MANUFACTURING CCIMPANY

	

OF CAIIFGRNtA	 Page 6-32

j



VW
	 Comparison of Augmentation Concepts

Figure 6-23 shows the performance of the system in the augmented mode
using the three approaches considered:

•	 Auxiliary heater

•	 Auxiliary compressor

•	 Auxiliary motor
The data were plotted for typical	 ambient and residence wet bulb temperatures
over the range of boiler water temperature of	 interest.

The auxiliary heater approach 	 is extremely wasteful	 of energy since the
auxiliary heat	 is used to produce power	 in a	 loop which typically has an

efficiency of	 about 10 percent.	 This	 is evidenced by the EER characteristic
of this approach.	 Even if gas or fuel 	 oil	 were used at a unit cost of 25
percent of that for electricity, this approach 	 is not comparable to either
of the other two concepts considered. 	 The efficiency of the auxiliary
compressor/motor at design point is about the same as that of the converter/

motor/centrifugal	 compressor (0.56).	 As a result, these two approaches have
similar characteristics.	 At water boiler temperatures below 336.1 	 K (145 F),

I	 the auxiliary motor concept has higher capacity and slightly	 lower power
requirement due to better off-design characteristics. 	 As a result, the
auxiliary motor concept has an EER which	 is 15 percent	 lower than that of the

>
auxiliary compressor--a significant performance advantage.

Where the auxiliary motor approach 	 is decisively better	 is	 in the range
of boiler water temperatures from 343.3 K to 336.1 K (158 to 145 F).	 Here,
considerable auxiliary power savings can be realized through operation of the
turbine-motor combinations.	 This difference will	 be	 Larger yet at higher
ambient wet bulb temperature.

For this reason, the auxiliary motor concept	 is selected as optimum.

I'
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SECTION 7

la
SYSTEM EVALUATION

GENERAL

To completely evaluate the Rankine air conditioner and its broad
operational range, it is necessary to determine its characteristics in the

context of the complete solar system. To this end, a system model was developed
to simulate operation in the NASA-MSFC solar house and thus provide a direct

comparison with the LiBr/H 20 absorption water chiller, which has been subjected

to extensive testing as part of theolar house program.

A schematic of the system is shown ;n Figure 7-1. The off-design computer
program was further developed to model tho complete solar system depicted.
The collector, storage tank, and house data obtained by NASA during the period
from August 19 through 23, 1974, were reduced to the format necessary for use

by the program. The program was then exercised to simulate operation with the
interface parameters corresponding to actual experimental data from the solar

house.

The results of these investigations are summarized, following a comparison

of the off-design characteristics of the Rankine and LiBr/H 20 absorption system.

PUMP

S-433

Figure 7-1. Solar System Schematic

OFF-DESIGN COMPARISON OF RANKINE AND ABSORPTION SYSTEMS

The off-design performance data of Arkla Industries Solaire system,
Model 501-WF, were obtained from a recent Arkla brochure (Form No. SP 52T-1).
These characteristics are plotted in Figure 7-2, with comparable Rankine
system data presented previously. The data shown cover the non-augmented
mode of operation only. In Figure 7-1, it was assumed that the ` cooling waver

ti	
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temperature to the absorption system would be only 2.8 K (5 F)	 higher than the

ambient wet bulb temperature. 	 This	 is representative of a very effectiver .
cooling tower.

The operating range of the Solaire system is shown to extend to water

temperatures as	 low as 355.5 K (180 F) with a 	 low ambient wet bulb temperature.
Capacity drops rapidly with the temperature of the hot water source.

By comparison, the utility of the Rankine system extends to hot water

temperatures approaching 338.9 K (150 F),	 while the capacity remains high over 	 r
the entire range of water temperature.

' In the augmented mode, the absorption system will	 have an EER comparable

{ to that of the auxiliary heater concept. 	 By comparison, the Rankine system
has an EER b to 8 times as	 large.	 Also,	 the requirement for 	 auxiliary power
with the Rankine system occurs at a hot water temperature about 11 K (20 F)

lower.

SOLAR SYSTEM COMPUTER PROGRAM

The methodology used by the computer program	 is	 illustrated	 in Figure 7-3.
The computations are performed as follows.	 First,	 system component charac-
teristics are computed using the design computer program. 	 Design point condi-

tions	 are used for this purpose. 	 Second,	 a time	 interval	 is taken over which

the	 input variables are assumed constant 	 (average value). 	 Then the calculations

proceed	 along the	 following steps:

(a)	 Water temperature at boiler 	 inlet	 is determined from the water tank

temperature and the tank-to-air conditioner heat	 losses.

(b)	 Using the boiler water temperature and ambient and residence wet
bulb temperatures, the off-design program determines	 if augmentation

is necessary.	 System capacity and COP are determined; 	 in the aug-

mented mode auxiliary power also	 is calculated.	 Water temperature
at	 boiler outlet	 is calculated.

j (c)	 System capacity	 is compared to the house heat 	 load	 (input).	 If the
capacity exceeds the	 load, the fraction of the time period considered
during which the air conditioner	 is	 "on"	 is calculated;	 energy
expenditure for the time p e-iod	 is computed.	 If the capacity	 is
Lower than the demand,	 auxiliary power	 is used to enhance system
capacity.

(d)	 The heat used	 by the air conditioner	 is calculated.

(e)	 The heat	 losses through the tank-air conditioner pipes, 	 the collector-
tank	 lines	 (if	 any),	 and the water	 storage tank are calculated. 	 A
heat balance	 is performed on the tank, 	 accounting for the energy
collected during the time period considered and the heat used by the
air conditioner.	 Tank water temperature at the end of the	 interval	 is
determined.
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I!
(f) Summations are made of the energy requirements, and calculations

are repeated for the next time interval.

i
i	 DATA AND ASSUMPTIONS

rrt

	

	 The data and assumptions used by the off-design computer program have been

discussed previously. The solar system computer program utilizes a modified
form of the off-design program so that these data and assumptions hold. In
addition, the listing below describes the values and the source of the input
data used in the evaluation of the air conditioner.

V 

(a) Heat collected by the 1300 sq ft NASA solar house flat plate solar
collector: this parameter is identified as Q COLLECTED (item 1.7.7)

in the NASA test data sheets.

(b) The solar house loads were also obtained from the NASA test data
sheets. The QAC APP plot (item 5.39) vs Time was smoothed out and
the slope of the resulting curve was used as the solar house load.

(c) Ambient temperature (db) and relative humidity were taken as T-021
s and RH-02 (items 5.2.4 and 4.1.1) of the data sheets. Again, these

data were smoothed out to account for instrumentation peculiarities
and provide better average values over short time intervals.

(d) System heat losses were derived from the NASA test data. Heat losses
in the system pipes and storage tank were estimated from the appro-

priate temperature plots. These losses were then apportioned to

yield 58.6 kw-hr/day (200,000 Btu/day), which represents the long-term
average obtained. The following values were used to describe the
particular NASA solar house installation:

(1) Collector-tank pipes: 21.1 w/K (40 (Btu/hr)/F)--these
losses will occur only during the heat collection period.

(2) Water stoarge tank: 13.2 w/K (25 (Btu/hr)/F)--these
losses are continuous.

(3) Tank-air conditioner pipes: 	 15.8 w/K (30 (Btu/hr)/F)--
these losses will also occur continuously with the
exception of the time when the system is in the augmenta-
tion mode.

(e) The house dry bulb temperature was taken as 297.2 K (75 F). This

temperature was prevalent during the test period of August 18 through
23, 1974. The house wet bulb temperature was not measured; a value
of 291.1 K (61 F) corresponding to a relative humidity of 45 percent

was assumed. The performance maps in Section 6 show this low value
of the residence temperature as not favorable to the performance of
the Rankine air conditioner.

(f) The water tank is assumed to be completely mixed. The water tank
capacity was taken as 15,454 kg (34,000 lb) H2O.

cwawErT AIRESEARCH MANUFACTURING COMPANY 74-10996(8)
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Figures 7-4 through 7-8 are plots of ambient temperature and RH,
Q COLLECTED, and house heat loads for August 19 through 23, 1974. These

data were obtained from the NASA test data as discussed above.

SYSTEM COMPUTER PROGRAM

.,

	

	 The nomenclature for the input data and examples of input and output

computer printouts are presented in Appendix B. A copy of the program listing

t	 has been furnished to NASA under separate cover.
p

SYSTEM PERFORMANCE
l
1

The performance of the Rankine air conditioner over the five-day period

considered is presented in Figures 7-9 thorugh 7-13. Data shown include the
following:

c,	 (a) Water storage tank temperature history--the starting value of

358.3 K (185 F) on August 19 was taken from the NASA data sheets

1 (b) The system heat Fosses

(c) The thermal energy used to power the air conditioner

(d) The electrical energy to sustain system operation--only the electrical
power necessary to operate the air conditioner as defined in Figure
6-10 is considered here

x m	 >`
A summary of the data is listed in Table 7-1

The thermal COP of the air conditioner varied from 0.66 to 0.52 during the
5-day period. The low COP ► s corresponded to the very high wet bulb temperature

,_.	 (300 K (80 F))at the end of day 2 (August 20). The average COP over the

entire period was approximately 0.6.

The Rankine air conditioner carried the entire solar house load without

auxiliary energy except for very short periods on day 5 (August 23). On that
day, 0.8 kw-hr of auxiliary energy was used. Parasitic power for fans, pumps,
and controls is estimated at 1350 watts when the system is in operation. Total

electrical energy requirement for the 5-day period is calculated to be 83.7
kw-hr for an average of 16.7 kw-hr per day.

x
It is interesting to note here that on days when reasonable quantities of

'	 thermal energy were collected with the solar collector, the water storage
tank temperature from time 0 to 24 hr did not change appreciably or increase
(see days 1, 2, and 5). Days 3 and 4 represent worse case situations where the
air conditioning load is high and yet little solar energy is available to the

system. This is an abnormal situation which is believed to be due to control
problems with the experimental solar collector subsystem. Even on these worse

days, no auxiliary energy is necessary to drive the Rankine system. Water
storage tank temperature dropped to 346 K (164 F) during these two days.

ca werT AIRESEARCH MANUFACTURING COMPANY	 74-10996(8)
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Day 1 2 3 4 5 Total
Daily
Average

Date--August 1974 19 20 21 22 23

Air conditioning 348,600 292,200 315,100 425,400 348,400 1,729,700 345,940
load,	 Btu

Q collected,	 Btu 778,000 805,000 478,000 150,000 681,000 2,892,000 578,400

Q	 losses, Btu 180,800 175,800 179,400 145,900 139,800 821,700 164,300

Q used by air 576,800 512,600 510,400 651,100 541,900 2,792,800 558,600
conditioner,	 Btu

Tank temperature, F

At 0 hr 185 185.7 189.0 182.7 164.2

At 24 hr 185.7 189.0 182.7 164.2 164.2

Average thermal 0.59 0.58 0.60 0.60 0.60 0.6
C CP

Electrical	 energy
requirements,	 kw-hr

Auxiliary energy 0 0 0 0 0.8 0.8 0.16

Parasitic energy 15.8 13.2 14.2 21.8 18.7 83.7 16.7

Total 15.8 13.2 14.2 21.8 19.5 84.5 16.9

. 1K

Y

TABLE 7-1

NASA SOLAR HOUSE 5-DAY SIMULATION SUMMARY



The system heat	 losses (tank and pipes) represent 28 percent of the total f
energy collected. 	 In system design, careful attention should be paid to this
aspect of thermal management to increase the effectiveness of the entire system.

F

The data	 in Figure 7-2 indicate clearly that under the conditions pre-
vailing during the 5-day period 	 investigated the LiBr/H20 absorption system
would perform very poorly.	 This	 is evidenced by comparing the data of Figures
7-9 through 7-13 with the data contained in the NASA test data records for
these 5 days.
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SECTION 8

OPERATION IN THE HEAT PUMP MODE

a

I GENERAL

Preliminary studies were performed to define the modifications necessary
for operation of the system as a heat pump and also to evaluate its performance.

In the heating mode, the Rankine power loop Is deactivated and the auxiliary

motor is used to drive the refrigeration loop compressor.

SYSTEM MODIFICATIONS

Figure 8-1	 depicts the modified system In the cooling and heating modes

of operation.	 The schematic was 'prepared for the case where a cooling tower

is used as the ultimate heat sink in the cooling mode. 	 With an evaporative

condenser an R-11-to-water heat exchanger would have to be added to the system

in parallel	 with the evaporative condenser.	 This heat exchanger would not

be used	 in the cooling mode and would require 	 isolation.
a

The system modifications necessary for dual mode operation	 include:

(a)	 Addition of selector valves	 in the water	 lines from the hot water

storage tank.	 These valves control the flow of water either to the

boiler (cooling mode) or to the R-11/water heat exchanger (heating

mode).

(b)	 Addition of	 isolation shutoff valves	 in the Rankine power	 loop.

_
(c)	 Addition of shutoff valves to isolate the cooling tower	 in the

heating mode.

(d)	 Addition of a switchover valve to assure reversal of the refrigerant

flow in the compressor circuit.

(e)	 Addition of dual	 expansion valve-check valve	 in the refrigerant

line between the two-loop heat exchanger. 	 These valves are

necessary to switch the condenser-evaporator functions.

(f) 	 Addition of a receiver for fluid	 inventory control.

Other modifications	 involve resizing equipment already	 included	 in the baseline^R
system, namely the auxiliary motor, the indoor coil 	 size, and the conditioned

space recirculation fan.

Earl y in the	 investigations	 it became apparent that (1) the air flow
rate through the indoor coil 	 had to be increased, and (2) the capacity of9 _
the indoor coil	 itself had to be increased for operation 	 in the heatingr
mode.	 These modifications had to be incorporated to permit handling of much
larger heat loads at reduced heat transfer coefficient on the air side of

the unit;	 in the air conditioning mode,	 humidity condensation occurs on the

cnaI ETr AIRESEARCH MANUFACTURING COMPANY 	 74-10996(8)
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1

9

3

extended surface of the evaporator. 	 In the heating mode, the same heat
exchanger operating as a condenser will be completely dry.

The return air flow from the conditioned space was 	 increased from 0.4
to 0.57 m3 /sec (850 to 1200 cfm). 	 The face area of the heat exchanger was
increased from 0.160 to 0.226 m2 (1.73 to 2.44 ft2 ), and the number of tube 	 g

• rows was increased from 8 to 9.

HEAT PUMP PERFORMANCE

Parametric data were generated to cover the range of conditions defined
by the following:

(1)	 Heating capacity:	 17.6,	 23.4, and 29.3 kw 	 (60,000, 80,000,	 and
100,000 Btu/hr)

(2)	 Water temperature from the solar heat source: 	 288,.9, 300, and
311.1	 K	 (60,	 80 and	 100 F)

(3)	 Residence temperature:	 294.4 K (70 F)

Figure 8-2 is a plot of the heat pump capacity and COP as a function of
water source temperature. 	 Operation with	 low water source temperature is
limited by the maximum speed of the compressor selected as 76,000 rpm. 	 A
turbocompressor could be designed for operation at higher speeds, thus extending
the utility of the system.	 However, at higher speeds system COP will 	 drop
rapidly due to the	 low turbine and compressor efficiencies.	 Figure 8-3	 K
shows the compressor operating line for a water heat source temperature of
311.1	 K	 (100	 F).

Since the system motor is operated at constant speed (63,000 rpm),
the system capacity can be determined as a function of heat source temperature.	 1
To enhance capacity, compressor speed could be increased to 70,000 rpm by
providing the necessary electronic circuitry in the frequency converter.

With a machine of this type, minimum power usage will	 be achieved if
the speed of the compressor can be adjusted to provide maximum COP at any
operating point. 	 A variable speed motor could be used to control 	 speed using	 3
residence temperature and water heat source temperature as the input signals.

a
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APPENDIX A

OFF-DESIGN COMPUTER PROGRAM

This appendix contains a definition of the input data nomenclature for the
off-design performance computer program.. Also given are examples of input and
output data.

Two versions of the program were prepared, corresponding to (1) operation
in the non-augmented mode, and (2) operation in the augmented mode. The two
programs are identified as SENSTY and POWRC respectively. Complete listings
for these two programs have been supplied to NASA under separate cover.

Note that the two programs use the same input data. The major portion
of the input data is contained in the namelist INPUT, which has been docu-
mented in AlResearch report 74-10996(7) previously submitted to NASA and
is repeated here as Table A-1 for completeness. Other inputdata used by the
computer are defined in Table A-2. Figure A-1 is a printout of the namellst-
INPUT data, and in Figure A-2 the additional input parameters are identified
on the data statements of cards 201, 202, and 203 and "do loop" cards 210,
211, and 212.

t
Examples of output data are shown in Figures A-3 and A-4 for the non

augmented and augmented cases.C
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TABLE A-1

INPUT DATA NOMENCLATURE FOR 'RANKIN'

VIST	 Viscosity of refrigerant at 15 tabulated temperatures TT, centipoise

TT	 15 temperatures at which viscosity VIST is given, °F

TTH	 17 temperatures at which following saturated liquid and vapor properties are given,
of

HVT	 Enthalpy of saturated vapor at temperatures TTH, Btu/Ib

HLT	 Enthalpy of saturated liquid at temperatures TTH, Btu/ I b

PT	 Saturation pressure at temperatures TTH, psia

RHOVT	 Density of 'saturated vapor at temperatures TTH, lb/(cu ft)

CID	Specific heat of vapor at constant pressure, Btu/(°F)(ib)

GAMMA	 Specific heat ratio of vapor

AK	 Ratio of sonic velocity to square root of absolute temperature, ft/(sec) ( °R)

W	 Molecular weight of refrigerant

DPP	 HX pressure drop expressed as a fraction of inlet pressure

EFM	 Mechanical efficiency of turbocompressor shaft, in fraction

QR	 Refrigeration load, Btu/hr

RHOL	 liquid density, lb/(cu ft)

EFPUMP [	 Efficiency of liquid pump, in fraction



TITLE

NTB

TBT

NTC

TCT

NTE

TET

KCR

UAER

EFFAN

CPL'

TG

TW

r

i
_.	 I

NDTE

DTET

NDTB

DTBT

TABLE A-1 (Continued)

A 
Name of refrigerant

Number of boiler temperatures to be used (maximum of 8 allowed)

Boiler temperatures to be used, OF

Number of condenser temperatures to be used (maximum of 8 allowed)

Condenser temperatures to be used, OF

Number of evaporator temperatures to be used (maximum of-8 allowed)

Evaporator temperatures to be used, OF

Control index for the type of condenser employed; 1 for dry condenser, 2 for wet
condenser, 3 for condenser using a prehumidifier, 4 for water-cooled condenser
in conjunction with a cooling tower

ILIA per sq ft front area for a dry condenser, Btu/(hr)(°F)(sq ft)

Fan efficiency (combined aerodynamic and electrical)

Specific heat of liquid refrigerant, Btu/(Ib)(OF)

Air temperatures at evaporator inlet, outlet, condenser inlet and outlet respectively,
OF

Wet bulb temperatures of air at evaporator inlet, outlet, condenser inlet and outlet
respectively, OF

Number of evaporator approach temperatures to be used (maximum of 5 allowed)

Evaporator approach temperatures tobe used, OF

Number of boiler temperatures to be used (maximum of 5 allowed)

Boiler temperatures to be used, OF

NDTC	 Number of condenser temperatures to be used -(maximum of 5 allowed)

'DTCT	 Condenser temperatures to be used, OF

NTBIN	 Number of boiler inlet hot water temperatures to be used (maximum of 5 allowed)

TBINT	 Boiler inlet hot water temperatures to be used, OF

NTCIN	 Number of condenser inlet cooling water temperatures to be used for the case
'	 KCR = 4 (maximum of 5 allowed)

TCINT	 ! Condenser inlet cooling water temperatures to be used, OF
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TABLE A-2

INPUT DATA FOR OFF-DESIGN PROGRAM
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.10352999+839 .13158000+03t .16487000+039 .20397000+039

924947000+031
RFOVT n .22600000-019 .415399990019 471709999001# .11739999+001

.1d350000+000 .27590000+009 .40100000+00# .56630000+009

.780+79999+0J9 .10520000+o19 +139,20000+01t .18140000+019

.23330'?0U+019 .29680090+019 .37440000+019 .46960000+019

-t .S6800OU0+011
CP .14000000+009

} GAMMA • .11100000+019
AK n .19600000+02•

^1! MIr = .137N,1,.01+v39
i

r7FP - .499+8909.019 .49999099.019 .49999999-01t .499999990019

0 4 9999999-t1 ► .49999999-Olt .49999999-019 .:99999996019

} .49999999.019 .49999999-019 .49999999019 .499999990019

„i 94999999.v 1 9 .49999999-019 .49999999-010
'!1 EF•M n .89999499+oD9

©R a .3000000J+459
1 AFOL s .RjOaOOOO+U29

EFPUP,P z .50000006+Jo.

TITLE n . 25618020+150

f NTB n 1#

E T8T • .16300000+039 .18500000+038 .18000000+039 .19000000+039
4 0 0 0000000+011 •00000000+009 .00000000+009

1
NTC z I.

v TCT n .90D00000+U2t .11500000+039 .12000000+031 .12500000+039	 J
C ZY]	 1 .00000000+u09 9.00000000+0000000000.	 9+0000000000+009. 

I CD	 _. NTE a
1 ♦

T€7 9 .450000nu+02# .50000000+020 .00000000+00t 900000000+009

ko .t)VOJ4))GV+JD9 00000000+009 .Dv00000O+O0t .00000000+009

USEw z .1180;1004+039
co

Figure A-1. Example of Input Data--Namelist	 INPUT

^.,, -esW'.VdYrh^
..	 _..,....

•, a	 __u...,. ./.. ^- z	 Na _^,^	 .4tir^^d	
- - - _



EFFA	 s va t r 	^,'^

i

P CPL
Tr	 = .Au1 1.1„0 , n+:,U. .95000000+029 ,00000000+nut

I
Tw	 ? .F'7	 u7 ::?"+.:i. at; Ot 7c	 ',t:;?. .750onuoo+020 +Un000000*009
^CTI• I:

n aTET	 - .1,at'I	 0	 +;,2. .r5.nu,vu+Olt .PU000001+02. .12500nO0+02•

NDTa t.

UTnT	 - .75? ,^'.t ;+	 1. .It",C;'QOl+C2r .15000GgU+02t .UO000OOC+009

2 .n+l'lCii	 0t +t^i .
3 NCTL	 a t.

az DTLT	 c . 1 'vau10	 +.,^. .1Snnut:o0+C2+ .000e0001J+009 .00tt0000n+009r , naOCUUm-..„
b NTbih,	 c. 1....

c 1HI11T	 - ,GU0L	 00c+	 3r .U1300oO`0 +e11 .0000000U+009 .000000004,009

NTLIN	 = 2,
^.' TCIt.1	 - .6,11O	 ''t'u+v2t .a?'.Ovo, 0 +129 •00000010+009 •00000000+0 09

.OQO00000+eOr
?^a SEnr.
a ^.

i

'I
Figure A-1
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Uu424 163* 51	 (04 1 1+ K )	 I'+	 nUT	 (DEG F)	 HX	 FAN	 OV	 FAN1 /)
004125
00425

lbo*
1651

..KITE(+'.'+fi)G•TG( 1) rTG(2)tn(5),T(5)tT(I)tUAEt*TE9*TFEtCOSTE.tFANCEt
1	 a	 DPETtPOwRFE

y 00425 1b6+ Iv1;C1).T.rt)•T••(21
•t OOu47 167. rrI1:(o.al)	 Sar,lelt,.TOUT•Ntb)tT'C6)tT(7)*taEtkTt3tZR.CnSTdt2Wt

U01147 1bb* 1:1e)
m 00467 109* ARIT€(4.132)e(3)t T( 3)t1(4)•(,CtTGCtTG4.UAS•NTC9*IFC,CUSTCr

a
00967 170+ 1PGrCLtEyCTIPCsrkFDeil3)tT(3)tTn(4)

z 00511 171* Sty Fn4,,iT(	 1	 EVAV1
o
x 00511 1.7.2^, 17141.r6.t1:FN.3+f7.1.tFd.Uef7.1•F6.1rF9:.2.4f7.irFu.ZtF10.l.fi1.0*
3 00511, 113* PF7.I,F1=*1)

Z 00512 171,*, 99	 Hk1-ATL	 1	 t	 'ILEF,
00512 175* IT109FP.I*fe.1.F7.IiF6.v.F7.1rFb.IsF9.2v4F7.1tF4.2tF10.1•F11.0•

n 00512 176* 2F7.1tFb.1)
00513 177* 102	 FUR1AT(	 1	 CUNp&5kf

o z -00513 11P.* ITiU.PL1.).Fb.1.F7.i•F`8.0tF7.1tF6.1tF9.2r4F7.irF4.2•lti0.1tF11.0.
00513 179* 2F7.1*Fb.1)

a C.)^	 r
00s I;1 100* R	 T^	 I	 E(b.lJ4) M

3 005,• 1817 104 FOR MAT11//1	 COEF OF PERFURMANCE1 tT301 1TURBO.COMPRE8SORt*T60e#F-,fCT
Z D, 00516 _162* IRIC	 POWER	 iE.1 D( • ATT)tt	 T9091SYSTEM	 COST(s)1/
z^z 00517 163* nRTTE(6t105)PCUPtT'C•R(lwRFEtCUSTF

00525 l a `* 105'FORN^41`1	 Pu«s4	 C(,P 1 9T15•F8.b•T30t 1 C0MPR	 DIAII N ) t	9T45*F8.3.
00525 195 ► 2T6Gt1E,AN FAN 1 97759F893*T900 FACTORY	 COST	 1tT1059F8.0)
0052b 186* KRIT€(bt106)vCuFtEFCftPpHkFC
00533 187* 100 FUR k-a1T(1	 REFRIG C0PT9T15tf8.39T3091COMPR EFF1.T QSvF8.3* T60.1CUNDS
00533 1884 )t	 FAN1rT75*Fn.3)
0053U 1139* .RlTk(btIO7)CONtNCoPLwHCTtCUSTU
015 4 2 19c*- 107	 POK .1 AT( 1	SY5TE- CoP 1 t T 15tF8.3*T309 1 RPMI•T45tF8.OtT60t1CL 	 TOAEP FAN
00542 lil t 119T75•F8.39T90.1US€Q 	 CUS1 1 9T1059	 F8.0)
00543 192* «R1TE(bt1gb)vTfPO-ftiP
20547 193* 108 FOR M A T (T300TURbs CIA(1 1Wv T45tF8.)*Tb0* I WATER PUMPitT75tF8.3)
00550 194* -.WRITE(ot109)€FT*PwkLP

i . 00554 195* 109 'FOH m AT(T300TURP4 EFF 1 tT45tF8..3tT6D9 1 FREUN P.UMP19T759F8..3)
00555 19b* 'Ski TE(r*IIU)PT+sT
00560 1974, ltU	 FoktL AT( T bU• 1 TOTAL Iv1`759F8.3)
00561 148 * nElu.ati ♦KEWOCS62 199 * SUOROUTINE OFFDSh *NtP
00565 200* 02MENSION 1 w 1T( 5 )91eT( t0tTWST(4) •NEW

t^00566 201* DATA	 TW1T/58.-r61..64..67.t70.J *NEW

'
0057' 2li2 4 lAT=	 TrT/ln^.t1 7 v.*16u, • 1 y 0•.240.t21U.•220.*235./ 9NEW
00572 203* ala	 r .iti4^..7U..75.•hG./ *NEW

--TO57 2,) L1 Ir.prSj?ta,	 hSE^%(1'. 1 )tNSEt3CL(iil) 4*^i
00575 205* GATe	 'sSE11x/it2*3t4•St6t7.e*9110/
00571 21)6* t'AIA	 4E,CL/	 lt2*3.4.5.6*7.b.ot]G/
00601 247* CU1^**.u075 *KEW
00602 2U6+ 1PRT&0 *SEW

_.00603 2U90 NI7E,t013 *KEW
6011 210* 10	 11	 .b:it4 *NEM
cJ7

11"

2111 „1)	 11	 ,7 n 2t7 *New
0612 212* UO	 11	 .,.58 1 * U sheh

00615 213*. 7w1=T4jT ( N o) *NEW
00616 214* 1111 >2T•.T(•	 7) *NE*

17 r1 00617 215 4 T.4(3)=T'13T(%C) *KEW
(n i 00620 2161 7(7)=TNl•	 15.Q **.4
CD 00621 217* _T(u)cTA(3)t1b.,1
O 00622 218* kEr( 1 )_ 	((1) i

j	 > 00623 - P19 q, XE^1(2)3' C

J Ol 00624 2201, XFw(J)XT17)

I
'I 00625 221* xE3C+)z7(.:)
i 00626 222* ze

i Figure A-2.	 Example of Input Data--Built-in Data



I

if 	
D

i s	 m SOLAR PC-<ER0 AIR CONOITIO MING SYSTEM USING	 R!.11
#4T CO N DENSER E M PLOYED RUN ON 23 OCT 75 A T 	10155107	 VASE	 11

Si AT10^^/Iir TE M ?ER O tui+F PRESSURE EkTHALPY FLOW RATE DENSITY

a
oEG F PSIA BTU/Ld LIS LP /CU FT

1 41.3u05 7.2b23 97.5519 407,1864 .lags
2 124.7314 20.4912 108.3107 907,1664 .4676
S 111.6332 20.4912 106.5413 997,6001 .4782

o?? 4 91.1941 19.5155 2603575 99706001 .0000	 1
5 43.177a 7,64,64 26.3575 407.1664 .Onoo

CECEO t 90.1011 79.3"41 26,6446 590,4136 .0000 
0 3 7 175.1860 7565658 113.5429 59004136 197124
n

Zz
a 101.2400 20.4912 10503210 5900136 ,4986

MEAT 40T F L U VI COLO FL IjID UA	 kEIGMT	 COST	 FAN DP	 FAN POWER a WET SULB(F)
EXCh*NGkR FLO	 TE"P(F) FLJ TEMP(h) (BTU/MR/	 (LE)	 (US 5)	 (IN.h20)	 (MATT) (BTU/hR) IN	 OUT

(LH/ w 4l-'I N GUT	 (L6 / rR ) IN	 UUT (DEG F)	 MX	 FAN	 MX	 FAN

EY¢P " 3815.	 80.n 55.0	 407.- 43,2	 41.3 .00	 35.8	 32.6	 27.2	 4207	 086	 179.0 28989, 6100	 4304
BOILER 6917.	 190.0 JA2.6	 5141i. 90.2	 175.2 4401.57	 35.5	 .o	 54.3	 00	 0 00	 00 51306.
CONUNSH 99b.	 111.8 n.d	 lb242. 95.0++++s+ .00	 910!	 10b.4	 109.8	 124.3	 .62	 631.0 79975, 7500	 7906

COEF OF RE 4FURPANCE TURHJ-COMPRESSOF ELECTRIC POWE R REOD ( WATT)	 EYSTEr COSTS)

PO*EH	 CLA P .UV5 CImPR	 JIA(IK) 2.425 EYAP 'F'AN	 1700997	 FACTORY COLT 822,
REF R IG COP 0,61.7 COMPH EFF ,702 CONOSR FAN	 8300960
SYSTE M CUP .563 npM 60705, CL TOWER FAN	 0000	 USER COLT	 - 30550

TU48N DIA(IN) 1,766 WATER PUMP	 47x562
TORBN EFF 0799 ODEON PUMP	 49.696

TOTAL	 11470197
i

COkeHFSSJ!? FL n K	 IN	 CF"'	 5 35.is1 AnIAOATIC MEAD IN aTU/Le s	 7955

Figure A-3.	 Example of Output Data--Non-Augmented Mode To ^,
o,
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CD
0
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a
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M .:	 5vtAR o .31 .tucr1 t IR'C[c !. !`TTIUkIMb S Y STEM 1511-G	 R•11.
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STATION/I0 I EMPEkAT'URF	 PRESSURE	 ENTHALPY	 FLOW RATE	 DENSITY

	

DE(: F	 PSIA	 BTU/L8	 LBMR-	 LA1CU FT
z
	T	 1	 39.a1h5	 n.9'^Ic	 97.$111	 436.3401	 .ld)b

2	 123.nulm	 19.5533	 100.3377	 430.34^1	 .0401
3	 114.n372	 19.5533	 107.0962	 794,7150	 .4531

	

o z	
4	 06.3435	 1119h222	 250343	 7911.7156	 .0000

	

o	 5	 410874	 102992	 25.8343	 431(.340.1	 10000

	

o	 6	 b8.60BI	 4802a9	 26.3099	 3560754	 00000
°

	

3	 7	 141.4146	 Li6.597u	 109.7520	 356,3750	 100760

	

0.0
	 ;i	 101.24d.)	 10.5533	 105.S55y	 356.3754	 .4986

D <

HEAT	 HuT FLUI n 	COLD FLU16	 UA	 MEIOMT	 COST	 FAN UP FAN POMER	 Q	 MET 8ULB(F)
EXCMANGE k	FLO	 TE'+P(F')	 FLO	 TE:*(F)	 (BTU/RR/	 (LE3	 (US S)	 (INOH20) (*ATT)	 (ETU/tR)	 IN	 OUT

CL91 0 .)	 1'4	 UUT	 (Lh/t-Kl	 IN	 ()!1T	 (LEG F)	 Ng	 FAN	 HX	 FAN

EVAP	 3,415.	 do .0	 55.D	 Lisa.	 41.4 39.4	 .00	 35.8	 32.6	 27.2	 "2.7 .06	 179.0	 31334.	 6I.Q	 47.4
SCTLE W 	6927.	 1'30.0 L450,	 356,	 68.6 14t.4 48o3.51	 3545	 .0	 5403	 .0 .00	 to	 29737.
CONCNSR	 795,	 11.1+.8	 86.3 18242.	 95.0+###st	 x00	 91.8 108.4 109.8 124.3 .42	 63lx0	 64573.	 7s F0	 7807

COEF OF PFXPOP w AVCF_	 TUi.4L•CV1'PnFSS0G	 ELECTRIC PGOER RERO(WATT)	 SYSTEt. COST(s)

POMER C1'P	 .oso	 COMPR 014(IN)	 24425	 EVAP FAN	 176.997	 FACTORY COST	 Baal
REF R TG COP	 66486	 COMPR EFF	 ,683	 CONOSR FAN	 830.980
SYSTEM CO P 	I,ou11	 Rpm	 631100.	 GL TO+ER FAN	 .000	 USER COST	 3055.

TilrrNn• OTA(I N )	 16766	 AATEA PUMP	 1170561
TO HN EFF	 .611	 FREON PUPP	 49.688

TW A L	 1147.197

W"PRESSIVi FLOA III CF" :	 4;".24	 r.n11EA tIC nF_AC It , tTU/LH a	 1.52
ALXtL1A k f Prlhkt 1 .1 nOJTS s	 17 .14	 T

f̂	
3

,j
Figure A-4. Example of Output Data--Augmented Mode
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APPENDIX B

F

OVERALL SOLAR SYSTEM PROGRAM

The solar system computer program simulates the performance of the system
shown	 in Figure 7- 1.	 The name of the program is TRANST.

- The	 input data for TRANST includes the input data for the design program

RANKIN defined previously	 in Table A-1 and Figure A-1.	 In addition, the system

program inputs include namelist TRANS defining the transient data	 input; these

are defined	 in Table B-1.	 Figure B-1 is a	 listing of the data input correspond-

ing to the August 20,	 1974 data and a residence wet bulb temperature of 291.1 	 K
(64 F).

- An example of output data is shown in Figure B-2 for the same day from

11.05	 to	 13.75 hr.

A	 listing of the program has been submitted to NASA under separate cover.

"I

I(
n

`
j

^iAWWETT AIRESEARCH MANUFACTURING COMPANY
OF CALIFORNIA

74- 10996(8)

Page B-1 r

F



TABLE B-1

INPUT DATA FOR SYSTEM PROGRAM



5I ,II LOIG+ ,	 r.F n , n,TSVII L P 	 A /2o^'l 4 oATR DATE	 101175 PAGE	 0

L

SnLAR PnwE,4E0	 AIR CONDITInnING SYSTE M USING	 a•11
wrT CQNI)ENSFA ErPLUYED

y

n $INPUT
50 VIST n 095900000•,129 .1025nno0.011 011000000.019 •1160000n ► nd9

012250000.019 .IR620000.019 013400000.01• .13900000an19
M

-' ,00000w%(j+t;n, .00000000+009 'W00000+009 ,00000000+009
.00000U00+00. .00000000+UOa .00000000+009

x TI E .40000010+02. .8000000060?9 .12n00000+03.
.16000v00+U39 .200000,0+n3. •P4000Don+Ot, .24on0O00+039

^ TTb a .•40000010+02. ..20100000+02• .00000000+009 .20000000+029
a .40000GOO+02• .b0000nao+02. .40n00400+029 •1000o00!1+03•

•12000o06+03v .Iu0000n0+03• .16000000+039 .14000000+039
Q a .200o00n0+039 .22000000+03• .24000000+039 .26000000+03.	 -
Z .28000000+03,

a o HVT t .81524999 +tY2. .09949999+029 .92419999+029 •90489999+029

r 
3

•973aY'+^>̂9+U29 .99679949+02. .10235999+039 .10480999+039

0x v .10721499+1,3 ► .1n9S6999+039 .31187999+03. .11406999+031
E `	 z z II61s999+039 .11812990+03, •31991999+039 .12151999+039

,	
a< •122bt1999+fi39

mLT • .000001)00+0n. .3980000n+01+ ,79899499+019 .12030000+02.
.16120000+029 .202700v0+02. .24480000+020 .28750000602.
,33n ag st00+U2, .37480000+02. ,41950000+029 .96470000+02•

i ' .510T00o0+02t .55760000+029 .6053(1000+029 995499999+029

.70564499607.9

4

PT n .7..4649996011+ .14190000+019 .25540000+019 443419999.019

C) . 3318nno0+U 1 9̂ 45500000 +029
.11017000+039

9999+02.
-	

.20390000+029

3,.10352wa'7+i3' •1315avG0+03. 7000+039	
r

•.24441000+03,'
RHO T .22600000.01.' •P15399996019 +71709999.01.. •11739999+00.

G d .1835^v000+009
.79009 499+009

:27Q900v0+009
+01•.1n52o0nn

^bO100000+009
.33920000+119

.96630000+009
+019.18140000

L ,'23330001+01, .29680000+019 .37440000+01• .46960000+019

t
.S"890000+01.

r'
CP .14000000+009
GAMMA V .11100000:019

C- ^ ^
AK • .19800000	 o2.

OPP n .499909,44..3 .49999999.019 .499999990019
a 99Q4'99 • tU1 . .49499994.01• •449999990019 •40999999.019

I,-	 p •4999999;9.01, .UgQ99999.01. .449999990019 .49949999.010
9 49999994.019 .49499999.01. .49999999.019

(^ t EFM t! ^BV999999+009
s	 p>[ GG n .3(000000+05.

f
^:. kNQt a .43GUp,in4`+U?.

EFFO,. "P .Stn1n000+4ti.
t I'TTLE . .2561.8020+189

NTH 4 19
TPT • . M00000+039 .IASO0nOn+039 914000000+039 .19000000+030

r .(WOU6000+0n. .0000000n+n0. .00000000+009 .00000000+004
E	 ? NTC n 1.

TCT 11 .9v0U0GQv+0?9 .115ovnuo+03. .12000000+039 .12500000+039

C) .0000n00v+00, .00000000+009 00000000600, .00000000+009
07 k NYE n It

to
Y ET 9 .4500000v+UP4 .50000000+029 .00000000+009 .00000000+009W

.ouoon000+nn, .onoovnvn+00. .00000000+009 .00000000+009

01) Acs 8

UAER n .138v0onV+1)3,

Figure -	 Input^ 1.	 Example •f	 ' Data--Solar S stem Program TRANSTY



t i	 M	 ► 	 ^

if
n

ST •tuLAITM, 	 nr r1 114 7 8VILLF	 F/20/74 uatA DATE	 101175 PAGE
F

1

0 k

` A EFFAN s .49000040+C`n9
s,
+fCPL

TG
a
a

.2100000.0+009

.8000n00u+it29 .OnO00000+00• .95000010+02f •00000000+001
TM .a .blo OO4OQ+i.p, .oclonlllco+00. .75000000+OTt .anon0000+n0..
NOTE s It

m S=TET a •100040n(1+02f .209000000+020 •12500000+029
N
> .15000000+029 r^

NOTP n Itn
pTBT • .T5000004+019 .10000400+029 .15.000000+029 .00000000+009

3 ,o4nDD^DO+,7nt
z Nrlc a 1.

OCT s ,jUQunOOC+n?f .jsU00(,rA+n2? .00000000+D0+ .00000000+604
^, ;000)0000+Dd9

NUIN • It
o z TP.INT a .20030000+039 .00000n0o+009 .00000000+009 .00000000+009

9^0 .ROOOOr0Ua049
! ^o NTL1N a 2f
4 TCIIJ a .80000nO04479 .8SOn000V+029 .00000000+00t .00000000+409

Z z •00000000+0nt
SEND
&TFANa

T10%E1 i- .00004000+00. .100000099+01• .2On00040+Ot9 .30000000+01•
.U0000000+0tf .50)0006,1+019 .60000000+01• .70000000+01t
.80000000+019 .90000004+019 .10000000+029 .11000000+029
.12000000+02t .13000000+029- 614000000+029 .15000000+02•
.le000000+0Pt .17000000+026 08000000+029 •14000000+029
.20000600+079 .21000000+029 .22000000+0!_9 .23000000+029
.24000000+O2t

i s wrr<LT a .09000009?+309 .00000000+009 •00000000+009 .00000000+009
•00900000+Q4t .00000000+009 .00000000+008 .00000000+009

i` .00000000+009 .00000000+009 .13416700+069 .13416700+069

.1341000+069 .13416700+Ob9 .13416700+069 .13416700+06•

.09000000+009 60000000n+001 .00000000+009 .00000000+009
9 0000n000000t .UO000OOO+00f .00000000+009 .00000000+009
.00440000*Uot

j. GI a .78ann000*va. .77000004+04. 675000000+04t .71000000+049
9 70000000+049 .68000000+049 •63000000+049 661000000+049
,600nOOOO+U49 .7S060000+049 .12400000+01, •19000000+059 t
.2360n000+059 .24700004+059 .23200000+0519; •21000000+459
.t 8 7000 n o*(!5t .1630000n+059 .13300000+0519 .10800000+459
. .7700000na04r .74000000+049 t
.71n00406+ 0.uf

.73000000+029 .7200060n+02t .71000000+029 .7!000000+02+ ,

.70500000+u29 .70OU0400+029 670000000+029 .71000000+020
671000000+029 .73000060+O2t .73000000+02. .73000000+020

` .73000000.029_ .1,111000v0+026 .73000000+029 .73000000+029
.TS000O00+C$f .734".'.0090+029 .1340D000+02f .73000040+429
.8 pn 00000+029 .P0009000+02f .8000non0+029 .9000000n+02• 3
.80000000+OPtF

TG3T i .73000600+92t .72000000+029 .71399999+029 .70799999+029
.70500000+02• .70199999+029 .70094999+029 .72500000+02f
9770)0000+9?. .A0000nc0+029 .A2000000+029 .835n00un+02•
.AU799449+z2t .b6099949+024 681099994+029 •5'000000+026
.8tl90n0o0+47, 9x;7000000+029 .8600nnOO+029 .84500440+429

p .@250000G+029 .81099999+429 .80299999+029 •80000000+029 Y
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APPENDIX C

PRELIMINARY SPECIFICATION

This appendix contains a preliminary specification for a Rankine cycle

r '	 solar-powered air conditioner featuring a turbocompressor with an 	 integral

motor.	 The specification was developed for a 10.5-kw (3-ton) capacity unit.
Data presented	 include the followings

(a)	 System characteristics

•;	 Functional	 description

•	 System interfaces

•	 System performance

•	 System package

(b)	 Characteristics of major components

•	 Evaporator	 E

•;	 Condenser	
.,

Y.

•	 Boiler 

0	 Turbocompressor with	 integral	 electric motor	
b

FUNCTIONAL DESCRIPTION

Rankine Cycle Air Conditioner Process'
1

A simplified schematic of the Rankine cycle solar-powered air conditioner 	 a
is presented	 in Figure C-1.	 The thermodynamic processes occurring	 in the system

are	 illustrated	 in the accompanying pH diagram. 	 The system utilizes	 low-grade
thermal	 energy from a flat plate solar collector to generate mechanical 	 power,

which	 in turn ,drives the compressor of a mechanical 	 refrigeration system.	 The	 -3

_-	 power loop expander	 is a single-stage high-speed turbine directly coupled to a

centrifugal	 compressor.	 To obviate sealing problems, a common working ;fluid,
R-11,	 is used	 in the power and refrigeration	 Loops.

In the Rankine power	 loop, the working fluid	 is boiled at high pressure
using stored thermal energy as the heat source. 	 The vapor produced is expanded
in a turbine and condensed at low pressure in an evaporative-tYpe condenser.

The _liquid	 is then pumped back to the boiler.	 A portion of the condensate	 is
throttled	 in an expansion valve and evaporated at 	 low pressure in a heat

exchanger, thus providing cooling to the conditioned airstream.	 The vapor	 is

then compressed and returned to the common condenser.

K
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When the thermal energy available from the solar collector/thermal energy
storage is insufficient to satisfy the demand for air conditioning, a high-
frequency motor mounted directly on the turbocompressor shaft is activated and
supplements the power developed by the turbine.

System Operation

Figure C-2 is a schematic of the complete system showing the arrangement
of the various system components including the controls.

The condenser is an evaporative type unit. Water is sprayed on the tubes
of the condenser, where it evaporates using the thermal'energy released by con-
densation of the working fluid. Evaporation of the water occurs at low tempera-
ture, near the wet bulb temperature of the ambient airstream circulated through
the unit. Water collected in a pan at the bottom of the condenser package is
recirculated by means of a pump. A demistor above the water nozzles prevents
liquid water carryover.

The boiler is also a tubular unit; the shell 'is filled with R-11 and covers
the tube bundle through which hot water from the thermal energy storage unit is
circulated. Pool boiling occurs on the outside surface of the tubes; a demistor
above the tube bundle prevents liquid droplet entrainment. A superheat section
downstream of the demistor provides adequate superheat in the vapor to
assure against condensation from the bulk of the vapor stream as it expands
through the turbine nozzle.

I

l
The control system is designed for on-off operation in the normal mode of

operation, when the solar thermal energy is adequate to drive the refrigeration
compressor; and also in the augmented mode when the electric motor supplements
the turbine. s

Control in the normal mode of operation is as follows. A thermostat and
on-off switch are provided at a suitable location in the residence. When the 	 _.

-.	 air conditioner is switched on, the control module assumes control for automatic
cycling of the system from the thermostat upper and lower set point temperatures.
In addition, the ON switch activates the evaporative condenser water pump and
opens the condenser sump solenoid bleed valve.

When the residence temperature exceeds the upper thermostat set point, the
evaporator and condenser fan and the R-11 boiler feed pump are activated. At
the same time, the boiler isolation and evaporator shutoff valves are opened.
As the system operates, the residence temperature will drop until the thermo-
stat lower set point is reached. Then the control module will deactivate the
fans, refrigerant pump, and solenoid valves, and the system will assume a
standby status.

With the evaporator shutoff valve opened, the flow of refrigerant to the
evaporator is controlled by _a capillary tube.
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The wateti	 level	 in the sump of the evaporative condenser is controlled

between fixed	 limits by means of a float-actuated water shutoff valve. 	 A fixed 4
bleed is provided to prevent salt accumulation; the rate of bleed can be adjusted'

I '	 " manually depending on the local	 water salt content.	 Water recirculation will 	 be
maintained during standby conditions to prevent periodic drying of the water on
the surface of the evaporator tubes and to obviate salt deposition and corrosion.

^. In addition, the water flow in the condenser tubes will 	 prevent heating of the
condenser during standby and keep the condenser near its operating temperature.
This will	 provide a significant advantage toward the elimination of startup
transients.	 A check valve in the vapor 	 line to the condenser, together with

1	 '` the refrigerant shutoff valve at the evaporator inlet, will 	 prevent refrigerant
transfer to the evaporator during standby and shutdown. Subcooled conditions
will	 be preserved	 in the condenser	 lower tubes,	 and a positive head will 	 be
available for refrigerant pump startup.

A level	 sensor	 is provided on the boiler to control 	 a pump bypass valve
and thus adjust the refrigerant flow to match the boiling rate. 	 An	 isolation
valve	 in the vapor Fine to the turbine is opened during operation. 	 This valve
is closed when the system is on standby to prevent refrigerant migration to the
evaporator or condenser.	 This prevents flooding of these two heat exchangers a

and also maintains the boiler at pressure and temperature. 	 A continuous reduced
flow of hot water through the boiler is provided to offset the effects of heat
losses and valve	 leakage during standby. 	 In this manner, the boiler 	 is main-
tained at high pressure, and startup transients are minimized.

Turbocompressor speed	 is controlled below a maximum value consistent with
the aerodynamic and structural characteristics of the turbine and the com-
pressor by monitoring the temperature of the hot water to the boiler.	 A
bypass valve	 I`imits heat input to the system below a safe value compatible with
maximum turbomachine speed. Water bypass will start at a temperature of372.2 K
(210'F) and	 increase with water temperature.

A warning	 light	 is	 installed near the thermostat to indicate when
auxiliary power is used.	 A switch	 is provided for overriding the automatic
mode of operation in the ON or OFF positions.	 Such a control	 is desirable
for maximum economy or for system capacity enhancement to meet maximum demand
situations that could occur during initial 	 residence cooldown or in extreme
climatic conditions.

If the water temperature in the solar energy storage tank drops to a
valve where turbine power 	 is	 insufficient to drive the refrigeration com-
pressor, the control moc'ule will activate the electric motor 	 integral	 with the
turbocompressor.	 The turbocompressor will then operate at a constant speed
of 63,000 rpm.	 The signals used for motor activation are (1) the turbomachine_
speed and flow at compressor	 inlet to prevent compressor surge under all
operating conditions, and (2) the wa ger storage tank temperature:	 when this
temperature drops below 336.1 K (145 F), the boiler is deactivated.
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To obviate situations where continuous operation in the augmented mode

-	 does not generate sufficient capacity to reduce the residence temperature below
the lower thermostat set point, a storage water tank temperature sensor is
included. The signal from this sensor allows activation of the auxiliary
motor only when the water temperature is below 366.4 K (200 F). This signal

also is used to switch off the auxiliary motor when tank water temperature
increases. The auxiliary power and the entire system are switched off when the

residence temperature reaches the lower thermostat set point; the air condi-

tioner control is then reset for baseline operation without the auxiliary motor.

..	
SYSTEM INTERFACES

F .

The system interfaces with the following

(a) Solar- thermal energy storage unit--Water from the hot water tank is
circulated through the boiler and returned to the tank. Water flow

rate is 0.0009 m3/'sec (13.8 gpm). A tank water temperature sensor
provides the signal to deactivate the auxiliary motor control circuitry
with the water supply temperature exceeds 366.5 K (200 F).

(b) Municipal water supply--City water is plumbed to the condenser to
provide the evaporant necessary for operation. Water consumption
at the rated capacity of the unit is estimated at 19 cm3/sec

(2.4 ft3/hr).

(c) Residence air distribution ducting--The evaporator is connected to
the conditioned space air return and fuel ducts.

(d) Electrical power--Normal house power (60 Hz, 220 v, 3 wire) is sup-
plied to the control module to power the fans, pumps, controls, and
auxiliary motor. In the normal mode of operation, total power
draw is 1.35 kw. In the augmented mode when the auxiliary motor
assumes the entire load, total power input to the air conditioner
is estimated at 2.5 kw under standard operating conditions. q

(e) Water drain--Water bleed from the evaporative condenser is
drained to the residence sewer line. The rate of water bleed
established will depend on local water quality. i

STSTEM PERFORMANCE s

The performance of the 10.5-kw (3-ton) air conditioner is listed in
Table C-1 corresponding to standard ARI rating conditions. The data are
presented for a hot water supply temperature to the boiler of 366.4 K

(200 F).

Performance at off-design conditions corresponding to hot water supply
temperatures other than 366.4 K (200 F) are given in Figures C-3 through

,.	 C-6 for a range of ambient and residence wet bulb temperatures.

<t
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SYSTEM PACKAGE

The position of the major components on the schematic of Figure C-2
attempts to illustrate the relative location of the major components in the

system package.	 The turbocompressor	 is positioned high	 in the package to

(1)	 minimize the	 possibility of	 liquid refrigerant	 draining	 into the com-
pressor and turbine from the condenser	 lines,	 (2) minimize entrained	 liquid
refrigerant entering the compressor from the evaporator during startup, and
(3)	 provide adequate	 line	 length to ensure vaporization of	 all	 liquid
refrigerant droplets passing through the superheater section of the boiler. l

The	 line from the boiler to the turbine provides for	 liquid gravity drain back

into the boiler.	 The hot water	 line from the solar collector	 is routed adja-
cent to the R-11	 vapor	 line to the boiler to obviate condensation on the vapor

line wall	 and maintain superheated conditions at turbine 	 inlet. x-=

The condenser also is	 located high	 in the package to provide a maximum
hydrostatic head at the evaporator thermal 	 expansion valve and at the inlet

to the refrigerant pump.	 This	 is particularly	 important	 in a system of this
type for which the condenser provides only 	 limited subcooling.	 The refriger-

ant	 pump	 is	 installed at the	 lowest	 level	 in the package.

All	 Iinbs	 are	 lagged with	 insulation to minimize heat	 losses and obviate
undesirable performance shifts during startup. 	 For the same reasons, careful
attention is required to reduce conduction paths from hot components to cold
components and also reduce convection and radiation	 losses to ambient.

1.
The	 largest component of the air conditioner 	 is the evaporative con-

denser.	 The dimensions of this unit are estimated at 1.5 m	 (60	 in.)	 high,	 bg	 Y
0.6 m	 (24	 in.)	 wide,	 by 0.96 m	 (38	 in.)	 deep.	 The weight of	 this	 unit	 is	 esti-

t

mated at 400	 lb.	 The evaporative condenser should be 	 located outside.	 Depend-

ing on the	 installation,	 it may be desirable to separate the condenser	 from
the remainder of	 the package to provide flexibility.

The remainder of the equipment, 	 excluding the evaporative condenser, x

can	 be packaged	 within	 a cabinet 1.1	 m	 (42	 in.)	 high,	 0.6 m	 (24	 in.)	 wide,
and 0.8 m	 (32	 in.)	 deep,	 including the conditioned air recirculation	 fan.
The weight of this second package is estimated at 350	 lb.

COMPONENT CHARACTERISTICS

k

J'

Listed on the following pages are the characteristics of the major com-
ponents of the system including the evaporator, evaporative condenser, boiler,
and turbomachine with 	 integral	 motor.

Evaporator

The evaporator is a tubular heat exchanger with wavy aluminum fins
mechanically bonded to the tubes to maximize the heat transfer area on the
air side.	 The tubes are copper and contain the evaporating R-11.	 The
characteristics of the evaporator are 	 listed	 in Tabl e C-2 corresponding to j

^-	 design	 point conditions.
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TABLE C-2

EVAPORATOR CHARACTERISTICS

Heat Transfer Surface

• 0.95-cm (3/8-in.) dia. copper tubes with wavy aluminum fins

• Tube pattern: 2.54 cm 0 in.) on center, staggered in the airflow
direction

• Number of fins: 3.9/cm (10/in.)

• Fin thickness. 0.15 mm (0.006 in.)

Core Dimensions

• Face: area : 0.158 m2 ( 245 i n . 2 )

• Depth:	 17.6 cm (6.93 in.)

• Number of tube rows: 8

Performance

• Heat rejection rate: 10.5 kw (36,000 Btu/hr) nominal

• Hot side (air)

Flow: 0.4 m 3/sec (850 cfm)

Air inlet dry bulb temperature: 300 K (80 F)

Air inlet wet bulb temperature: 293 K (67 F)

Air outlet dry bulb temperature: 286 K (55 F)

Air outlet wet bulb -temperature 	 285 K (53.4 F)

Air pressure drop: 124 N/m 2 (0.5 in. H20)

• Cold side (R-11

Flow: 64 g/sec (504 lb/hr)

Evaporating temperature: 281 K (45.6 F)

Superheat: 2.8 K (5 F)

Evaporating_ pressure: 58.7 kN /m2 (8.5 psia)

Pressure drop: 2.8 kN/m2 (0.4 psi)
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Evaporative Condenser

This unit	 incorporates a tubular heat exchanger, 	 an air circulation fan,

a water pump,	 and water spray nozzles.	 Water	 is sprayed downward uniformly

on top of the tube bundle; ambient air 	 is circulated	 in a direction opposite
to that of the water flow and exhausted on top of the unit._ 	 The water evapo-

rates on the surface of the tubes using the heat of condensation of the

refrigerant.	 Water vapor	 entrained-'b.y the airstream, 	 which: exits the

unit nearly saturated with water.	 A demistor above the water nozzle pre-

vents	 liquid water entrainment.	 A water sump collects the excess water from

the tube bundle and 	 is recirculated to the spray nozzle by a pump.. 	 The water

level	 in the sump	 is maintained constant by a float valve that controls the 1'

water supply to the unit.

The characteristics of the condenser are	 listed	 in Table C-3.

Boiler

The boiler consists of a tube bundle through which hot water from the
storage tank	 is circulated.	 The tube bundle is submerged 	 in the working

fluid,	 and pool	 boiling occurs outside the tubes. 	 The	 level	 of the
refrigerant	 is maintained	 in the boiler by control 	 of the bypass flow around °-
the refrigerant pump. 	 A level	 sensor on the boiler provides the signal	 for
bypass valve positioning. k.

Upstream of the tube bundle,	 a demistor	 is used for	 liquid separation so
that only small quantities of	 liquid R-11	 are entrained	 into the superheater
section of the boiler 	 located above the demistor.	 The hot water is circulated
through the superheater section first and then through the pool 	 boiler tube 5

bundle before returning to the thermal	 energy storage tank.

Table C-4 summarizes the characteristics of the boiler.

Turbocompressor-Motor

The turbocompressor-motor consists of a radial 	 inflow turbine driving a
_single-stage centrifugal	 compressor during normal	 operation.	 A high-speed
high-frequency motor mounted on the same shaft is activated to supplement
turbine power when necessary. 	 The motor can providethe power necessary
to drive the compressor without the turbine.	 Design_ speed is 63,000 rpm.-

The rotor	 is supported on two hydrodynamic foil' bearings. 	 No	 lubri-
cant other than the process fluid is necessary. 	 The	 input to the motor is
from a frequency converter which converts 230-v, 60-Hz, single-phase, f'
3-wire, normal	 house power to 120-v, 3150-Hz, 3-phase current.

Table C-5 summarizes the characteristics of the turbocompressor-motor.
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TABLE C-4

BOILER CHARACTERISTICS

Heat Transfer Surface

•	 0.953-cm (3/8-in.) copper tubes staggered in vertical direction

•	 Tube pitch:	 1.91 cm (0.75 in.)

•	 Prime surface area:

(a) Boiling section:	 1.37 m2_(14.7 ft2)

Total.of 150 tubes 30.5 cm (12 in.) long manifolded so
that water makes three passes through the tube bundle

(b) Superheat section: 0.46 m 2 (4.9 ft2)
Total 50 tubes 30.5 cm (12 in.) long; water makes
one pass through the bundle

Dimensions

•	 Core

(a) Boiling section tube bundle:
30.5 x 33 x 15.,7 cm (12 x 13-x 6.2 in.)

(b) Superheat section tube bundle:
30.5 x 33 x 4.3 cm (12 x 13 x 1.7 in.)

•	 Overall unit: 40.6 cm (16 in.) long x 33 cm
(13 in.) wide x 40.6 cm (16 in.) high

Performance

•	 Boiler section

(a) Heat rejection rate: 16.75 kw (57,170 Btu/hr)

(b) Cold side (R-11)

Flow rate: 0.083 kg/sec (654 lb/hr)
Inlet temperature: 306.6 K (91.9 F)
Boiling temperature: 357.5 K (183.5 F)
Inlet pressure: 610.2 kN /m2 (88.5 psia)
Pressure drop: 22.8 kN/m2 (3.3 psi)

(c) Hot side (water)

Flow rate: 0.87 kg/sec (6927 lb/hr)
Inlet temperature: 366.6 K (199.9 F)
Inlet pressure: TBD

Pressure drop: 34.5 kN/m 2 (5 psi) max

74-10996(8)
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TABLE C-4 (Continued)

Performance (Continued)

•	 Superheat section

(a) Heat rejection rate: 0.27 kw (916 Btu/hr)

(b) Cold side (R-11)

Flow rater 0.083 kg/sec (654 lb/hr)
Inlet temperature: 357.5 K (183.5 F)
Inlet pressure: 587.4 kN/m 2 (85.2 psia)
Pressure drop: 7.0 kN/m2 (1.0 psi)

(c) Hot side (water):

Flow rate: 0.87 kg/sec (6927 lb/hr)

Inlet temperature: 366.7 K (200 F)
Inlet pressure: TBD

Pressure drop: 10.3 kN/m2 (1.5 psi) max

^k
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TABLE C-5

TURBOCOMPRESSOR-MOTOR CHARACTERISTICS

Turbine

Flow:
Inlet pressure:
Inlet temperature:

Inlet enthalpy:
Outlet pressure:

Outlet temperature:
Outlet enthalpy:

Rotational speed:
Diameter:
Efficiency

Compressor

Flow:

Inlet pressure:
Inlet temperature:
Inlet enthalpy:

Outlet pressure:
Outlet temperature:

Outlet enthalpy:

Rotational speed:
Diameter:
Efficiency:

Motor

Input power:
Design speed

Maximum output power:

0.083 kg/sec (654 lb/hr)
580.5 kN/m 2 (84.2 psia)
363.1 K (193.5 F)

269.5 J/g (116.1 Btu/Ib)
146.2 kN/m 2 (21.2 psia)
317.4 K (111.4 F)

249.3 J/g (107.4 Btu/1b)

61,320 rpm

4.49 cm (1.77 in.)
0'. 80

0.062 kg/sec (504 lb/hr)
55.8 kN/m 2 (8.1 psia)
283.7 K (50.6 F)

229.3 J/g (98.8 Btu/lb)
146.2 kN/m 2 (21.2 psia)
328.6 K (131.4 F)

253.5 J/g (109.2 Btu/Ib)

61,320 rpm
6.17 cm (2.43 in.)
0.68

120 v, 30, 3150 Hz
63,000 rpm

2 kw

I


