NASA CONTRACTOR REPORT

NASA CR-149970

(NASA-CR-149970)	NTRAN USER'S MANUAL (MES	N76-30848
Computing, Inc.,	Huntsville, Ala.) 74 p HC	
\$4.50	CSCL 09B	
		Unclas
······································	G3/61	50423

NTRAN USER'S MANUAL

By E. R. Pitts M&S Computing, Inc. Post Office Box 5183 Huntsville, Alabama 35805

.

July 30, 1975

Prepared for NASA - GEORGE C. MARSHALL SPACE FLIGHT CENTER Marshall Space Flight Center, Alabama 35812

1	REPORT NO.	TE	CHNICAL REPORT STANDARD TITLE PAGE
	NASA CR-149970	2. GOVERNMENT ACCESSION NO.	3. RECIPIENT'S CATALOG NO.
4	TITLE AND SUBTITLE		5. REPORT DATE
			July 30, 1975
	NTRAN USER'S MANUAL		6. PERFORMING ORGANIZATION CODE
7.	AUTHOR (S)		8. PERFORMING ORGANIZATION REPORT #
 	E. R. Pitts		75-0028
9.	PERFORMING ORGANIZATION NAME AND A	DDRESS	10. WORK UNIT NO.
ļ	M&S Computing, Inc.	•	
]	P.O. Box 5183		11. CONTRACT OR GRANT NO.
	Huntsville, AL 35805		NAS8-25621
	· · · · · · · · · · · · · · · · · · ·		13. TYPE OF REPORT & PERIOD COVERED
12.	SPONSORING AGENCY NAME AND ADDRES		
ŀ	National Aeronautics and S		Contractor Report :
	Marshall Space Flight Cen	ter, Alabama 35812	
	- *		14. SPONSORING AGENCY CODE EC45
15.	SUPPLEMENTARY NOTES		
	Electronics Development I	Division. Electronics and	Control Laboratory
	Design Techniques Branch		COMPLET MANUFACOLY
<u> </u>			
16.	ABSTRACT		
•	for the LOGSIM and LASA	R programs from PRF an tion, input instructions, a	and deck setup instructions
17.	KEY WORDS	Unclass	ION STATEMENT sified-Unlimited
		COR: EC01	John M. Lould M. Oden for F.S. Moore Director, E& Lab
19.	SECURITY CLASSIF. (of this report)	20. SECURITY CLASSIF. (of this page)	21. NO. OF PAGES 22. PRICE
	Unclassified	Unclassified	70 NTIS
MSEC	- Form 3292 (Rev December 1972)		

292 (Rev December 1972)

For sale by National Technical Information Service, Springfield, Virginia 22151

TABLE OF CONTENTS

.

•

Sectio	n		Page
LIST (OF FIGU	RES	:
1.	INTROI	DUCTION	1
2.	NTRAN	TECHNICAL DESCRIPTION	3
	2.1	Phase 1 - Initial Translation	3
	2.2	Phase 2 – Transmission Gate Analysis	4
	2.3	Phase 3 - Minimum Feedback Ordering	7
3.	OPERA	TING INSTRUCTIONS	9
	3.1	Preparation of Library File	9
		3.1.1 Modeling Rules	9
		3.1.2 Card Formats	10
		3.1.3 Sample Libraries	10
	3.2	Description of Output	10
		3.2.1 Phase 1 - Initial Translation	18
		3.2.2 Phase 2 - Transmission Gate Analysis	18
		3.2.3 Phase 3 - Minimum Feedback Ordering	19
		3.2.4 Error Messages	19
	3,3	Deck Setup Instructions	· 19
		3.3.1 Run LOGSIM Translation	24
		3.3.2 Restart LOGSIM Translation	24
		3.3.3 Run LASAR Translation	25
	• .	3.3.4 Restart LASAR Translation - Type 1	25
		3.3.5 Restart LASAR Translation - Type 2	26
APPI	ENDIX A	Sample Problems	27
APPI	ENDIX B	List of NTRAN Subroutines	57
APP	endix c	NTRAN Functional Hierarchy	63

LIST OF FIGURES

Title	Page
Dual Purpose Pad Paradox	5
Sample CMOS-LOGSIM Library Sample CMOS-LASAR Library Sample PMOS-LOGSIM Library	13 15 16
Demonstration Schematic	29
Main Program Subroutine LOGGEN Subroutine LOGTGA Subroutine LASGEN Subroutine ROMGEN Subroutine SPGEN	64 65 66 67 68 69 70
	Dual Purpose Pad Paradox Sample CMOS-LOGSIM Library Sample CMOS-LASAR Library Sample PMOS-LOGSIM Library Demonstration Schematic Main Program Subroutine LOGGEN Subroutine LOGTGA Subroutine LASGEN Subroutine LASTGA

1. INTRODUCTION

NTRAN was developed to provide the users of the MSFC Banning Design Automation System a means for generating input for the LOGSIM and LASAR programs that is representative of the logic circuitry included in a layout produced by the PRF or PR2D programs. NTRAN utilizes a PRF or PR2D input deck and a "library" file to produce output formatted as input for either of the target programs (LOGSIM or LASAR). The library file consists of a model in terms of the target program for each of the standard patterns utilized in the design. The library file is in card image format and is easily prepared and maintained utilizing standard system software.

NTRAN was designed to maintain, to the extent possible, the original identity of the information as it is transformed into the required form. This goal was realized by adopting a "cell-pin" convention for the signal names in the network. The "cell" portion of the name indicates the PRF (or PR2D) cell number that the signal is associated with and the "pin" identifies the pin name within the pattern type that the signal is associated with. The definition of a pin is extended to include all logic nodes of the pattern type whether the node is a true pin or not. A convention is employed that allows the user to readily ascertain the nature of the pin by using numeric names for true pins and nonnumeric names for nodes that are internal to the pattern. For example, signal 100-AA is recognized as an internal node of PRF cell number 100. The "cell-pin" signal name convention is maintained throughout all phases of the process for LOGSIM translations, but must be abandoned for the final output of LASAR translations.

Since neither LOGSIM nor LASAR is programmed to handle the unique properties of transmission gate logic, NTRAN generates a reasonable approximation of a transmission gate network with a ROM for LOGSIM and a sum of products network for LASAR. A transmission gate network consisting of as many as 15 transmission gates can be handled by the program (see Section 2.2).

Under certain conditions, it is possible that NTRAN will generate incorrect data for the design that is being translated. An example of this is the situation in which bonding pads for chip inputs and outputs use the same standard pattern number. If the pad is in a net that contains both input and output pins from other cells it is uncertain whether the pad is a chip input or chip output. A similar situation exists with respect to transmission gate networks, i.e., the function (input or output) of a pin is not always determinable from the network topology. The solution to this problem is to provide a means for the user to interact with NTRAN at specific stages in the process. It is accomplished by writing an output file in card image format at the end of each major step in the process, and by designing NTRAN to restart execution at any one of these major steps. The user can, therefore, modify the intermediate output files in such a 'manner as to cause NTRAN to arrive at a solution that is most representative of the design being processed.

-1-

ORIGINAL PAGE IS OF POOR QUALITY The final output of NTRAN is a file that will require a slight amount of modification before being used as input to the LOGSIM or LASAR programs. These modifications consist of inserting program control options, input generator patterns, etc., the type of information that NTRAN is unable to inject. Also, for LASAR the output file must be split into two separate segments (model cards and illegal cards) for input to separate load modules of the LASAR system.

2. NTRAN TECHNICAL DESCRIPTION

As previously stated, NTRAN operates with two input files (PRF deck and library) to produce an input file for either LOGSIM or LASAR. The process consists of two distinct phases for LOGSIM and three distinct phases for LASAR. The first and second phases consist of the initial translation and of the transmission gate analysis, respectively, for both LOGSIM and LASAR. A third phase is required for LASAR in which the net names are assigned numerical values and pre-ordered to force LASAR to arrive at identical "user" and "LASAR" node numbers. At the end of each phase in the program an output file is written that reflects the current state of the translation process. Interim output files are used to support a restart feature in which the user modifies the partially completed translation to cause NTRAN to arrive at a final result that is most representative of the circuit design being processed.

2.1 Phase 1 - Initial Translation

The first step in the initial translation process consists of reading the input deck and searching the library for the required pattern numbers. NTRAN will automatically determine if a PRF or PR2D deck is being used. As each pattern is found, entries are made in NTRAN internal storage reflecting the cell number and the pattern pin number to which the entry belongs. For example, if cell number 100 is an inverter with output taken from pin 2 and input applied at pin 3, an inverter (1 input NAND) will be entered whose output name is 100-2 with an input named 100-3. Once all cells are entered, the PRF netlist is examined to determine the chip inputs and outputs and to interconnect the elements in the network.

NTRAN is programmed to deal with several categories of bonding pads. Dual purpose pads (used for both input and output) and single purpose pads, both modeled and not modeled are acceptable. Bonding pads that perform a logical function (usually inversion for buffering) are required to be modeled and entered in the pattern library while non-buffered bonding pads are not included in the library. Both types must have a pattern number that is greater than or equal to 9000. Provision is made for the user to indicate if a pad is to be used only as input or only as output in the library. Absence of such an indication implies that the pad can function either way. In summary, the following types of pads may be accommodated:

- o Non-modeled dual purpose,
- o Modeled dual purpose,
- o Non-modeled single purpose, and/or
- o Modeled single purpose.

NTRAN will invariably determine the function of the last three types of pads correctly but may have difficulty with the first type. NTRAN assumes that a dual purpose pad is an output pad if the pad is connected to a pattern output pin. The circuit configuration shown in Figure 2-1 demonstrates a situation in which NTRAN may improperly identify a pad. If the pad were intended to be wire-or'd with the inverter, NTRAN would mistakenly identify the pad as an output.

Figure 2-1 illustrates the desirability of the restart feature. The user can modify the output file of phase 1 such that the function of the pad is properly identified and re-execute the remainder of NTRAN.

Since some standard pattern designs use internally bussed clock lines (e.g., Banning PMOS), a means for indicating their presence in the pattern models has been provided. This is accomplished by reserving pin names of the form "Cn" to indicate clocks. As a final step in the determination of chip inputs and outputs, NTRAN will scan the network for pins so named and assign each unique one found as a chip input.

The final step in the initial translation process is that in which the elements are interconnected in accordance with the PRF (or PR2D) netlist. As previously stated, the network entries are initially generated with output names and input names reflecting the cell number and the pattern pin number to which the entry belongs. The connecting process will scan the PRF netlist, determine the cell-pin that is the output pin in the net, and change all other cell-pin names in the net to the output cell-pin so found. All element input names.will, therefore, bear the cell-pin identity of the element that drives the input. If multiple outputs are found in the net a wired-or is automatically generated to tie the outputs together, and all inputs in the net are connected to the output of the wired-or. Provision has been made to account for pattern edge inputs and outputs found in shift register strings. This is accomplished by reserving pin names of the form "On" and "In" (O for outputs, I for inputs) to indicate cell edge outputs and inputs in the pattern. NTRAN interconnects such entries by scanning the network for "On" pin names and when so found, examining the adjacent cell for a matching "In" pin name. As matches are found NTRAN replaces the "In" name with the "On" name. If a match cannot be made, a warning message is issued.

Completion of the interconnect process marks the end of phase 1 of NTRAN. The current state of the translation is formatted for the appropriate target processor, output to logical unit 10, and listed on the printer. NTRAN may be re-, started following this point using the output of unit 10 modified to the user's liking.

2.2 Phase 2 - Transmission Gate Analysis

Phase 2 involves the process whereby the behavior of transmission gate networks are determined. NTRAN first searches the network for a group of interconnected transmission gates. The gates may be interconnected in any

ORIGINAL PAGE IS

DUAL PURPOSE PAD PARADOX

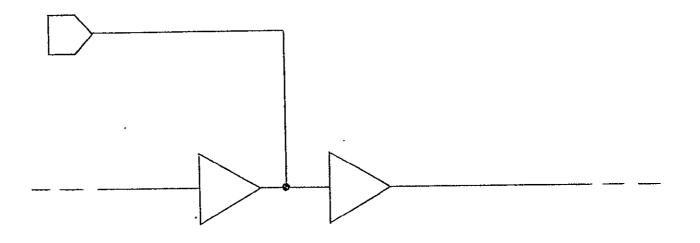


Figure 2-1

•

manner, so long as all clock (gating) terminals are driven by a buffered logic element (i. e., one that is not a transmission gate). Once a group is found, NTRAN attempts to find the "input" and "output" terminals of the transmission gate network. This process, like the identification of the chip inputs and outputs, gives improper results under certain conditions. Since the input and output pins of a transmission gate are interchangeable, the determination of a pin function rests solely on the nature of the other pins in the net. That is, if a transmission gate is in a net that contains only input pins, it is safe to assume that the transmission gate pin is acting as an output. Also, if the transmission gate pin is in a net containing only output pins it is likely acting as an input. If, however, the transmission gate is in a net containing both input and output pins, it is uncertain whether the pin is to be used as an output or an input. NTRAN assumes that the pin is to be used as the transmission gate input. Again, the restart feature may be utilized to force the transmission gate pins into the proper roles by modifying the interim output file.

Once the transmission gate network input and output terminals are identified, NTRAN builds a truth table for each output terminal in the network based on the interconnect structure. For LOGSIM translations a set of technology design rules also influence the truth table values. These rules specify the output of a transmission gate when disconnected (holding or indeterminate) and the result of two or more transmission gates driving the same node with conflicting signals (indeterminate, logic 1, logic 0). Note that the inherent feedback mechanism of transmission gates is not accounted for by NTRAN. If the user specifies that two or more transmission gates may drive the same node simultaneously with conflicting signals. NTRAN does not account for the fact that the input terminal of one or more transmission gates may be pulled up or down as the result of such a condition. Due to the complex NAND gate networks that would result in attempting to simulate the hold state for LASAR translations, NTRAN ignores the design rules input by the user and forces disconnected transmission gates to output indeterminates. Also, to further simplify the LASAR networks, transmission gates are not allowed to drive the same node simultaneously.

Once the truth table is built, NTRAN constructs a ROM if the target processor is LOGSIM and a sum of products network if the target processor is LASAR. The inputs to the ROM consist of the input terminals of the transmission gate network and of the clock terminals of all the transmission gates in the network. For the sum of products network, each product term consists of the clock terminals of those gates that produce a valid connecting path between an input terminal and the output, and of the input terminal itself. A product term is generated for each valid clock combination for the transmission gate network. The sum of products is simulated by using NAND gates for the product terms and for the summing operation. Input combinations for which the output is indeterminate are reflected to the LASAR program by generating illegal specifications for the network. The illegals are generated first from the clock combinations that do not provide a path from input to output, and then by those clock combinations that cause any two or more input terminals to be interconnected.

-6-

ORIGINAL PAGE IS OF POOR QUALITY Completion of the transmission gate analysis marks the end of phase 2 of NTRAN, and for LOGSIM translations the end of the process. The current state of the translation is formatted for the appropriate target processor, written on logical unit 11 and listed on the printer. For LASAR translations, NTRAN may be restarted following Phase 2 using as input the data written on logical unit 11 with the appropriate modifications.

2.3 Phase 3 - Minimum Feedback Ordering

Since the LASAR program cannot utilize the cell-pin signal names output by NTRAN at the end of the first and second phases, a third phase is required to replace them with purely numeric names. The assignment of node numbers to cell-pin names could be done in an arbitrary manner, but would give the user two cross-reference tables to deal with. These would be the NTRAN cell-pin nameto-user node number cross reference table, and the user node number-to-LASAR node number cross reference table. Since these two tables would make it difficult for the user to relate the LASAR node numbers to the original PRF elements, NTRAN assigns the node numbers based on minimum feedback order just as LASAR does. Therefore, when LASAR performs the minimum feedback ordering, the node numbers will be unchanged so long as element expansion into NAND gates is not required. Element expansion is avoided by restricting the library model elements to NAND gates and transmission gates. NTRAN will replace the transmission gates with NAND equivalents thereby presenting a pure NAND network to the minimum feedback ordering process. The net result, of course, will be a single table consisting of the NTRAN cell-pin names-to-LASAR node numbers cross reference.

Completion of the minimum feedback ordering process marks the end of LASAR translations. The final output is recorded on logical unit 12 and listed on the line printer.

(BLANK)

3. OPERATING INSTRUCTIONS

To use NTRAN, a library file must be prepared that consists of network models for the standard cells involved in the translation. Once prepared the library may be used repeatedly, requiring modification only when additional standard cells are to be used. A different library must be prepared for each of LOGSIM and LASAR, and for each of the applicable process technologies. For example, if translations are to be made to LASAR and LOGSIM for CMOS and PMOS technologies, four libraries will be ultimately required. Only one library, however, is required for any one run of NTRAN.

3.1 Preparation of Library File

In general, preparation of the library consists of modeling each of the standard LSI cells in terms of the target processor. For the LOGSIM library the user may utilize DTMR, DTMF, DCTM, NEWGATE, ROM, and NET cards to characterize his model. Any LOGSIM logic element type may be used in the model, along with the user-defined transmission gate element. As mentioned previously, for the sake of maintaining visibility of the design being translated, the LASAR library element types are restricted to NAND's and transmission gates.

3.1.1 Modeling Rules

- o Model card images are to be prepared precisely in the format of the target processor.
- o Model card images for each pattern must be consecutive in the library file.
- o The transmission gate clock terminal must be the second input terminal.
- Wired-or's internal to the pattern must be resolved by the user (except for transmission gates).
- "Illegal" cards are allowed as part of a LASAR model and must immediately follow the model cards for the pattern to which they apply.
- "MODEL/" must appear in the first six columns of the first card for each pattern and not on any of the other cards for the pattern in a LASAR library.
- Logic elements are restricted to NAND's and transmission gates in a LASAR library.
- o Dual outputs may not be used in LASAR models.

0	Model signal names are limited to 2 characters.
0	Numeric signal names indicate that the signal is connected to a pin.
o	Non-numeric names identify signals that are not connected to a pin and are interpreted as follows:

- L0 signal is logic zero
- Ll signal is logic one

Cn - signal is internally bussed clock no. n

- On signal is cell edge output no. n
- In signal is cell edge input no. n

All other names have no particular significance and are to be used to interconnect logic elements within the pattern.

3.1.2 Card Formats

Presented in Table 3-1 is the format for the card images that make up the model library. The first two cards are invariably required while the remainder arc required only to the extent demanded by the design being processed. All "I" format entries must be right-justified in the field while "A" format entries must be left-justified.

3.1.3 Sample Libraries

Presented in Figures 3-1, 3-2, and 3-3 are sample libraries for CMOS-LOGSIM, CMOS-LASAR, and PMOS-LOGSIM, respectively. These three libraries were constructed to be used for NTRAN checkout purposes and as such do not include all of the standard cells for either technology. Also, the delay and decay times illustrated do not reflect the actual response times associated with the cells. The network topology, however, is believed to be accurate.

3.2 Description of Output

As previously stated, NTRAN creates an output file at the end of each of the defined major phases of the process, and also lists that file on the printer. Additional printer output is produced during each phase of the process to inform the user of the actions of NTRAN.

ORIGINAL PAGE IS	-10
OF POOR QUALITY	

MODEL LIBRARY CARD FORMAT

,

.

CARD NUMBER	COLS.	FORMAT	DESCRIPTION
1	1-8	A8	"LOGSIM" or "LASAR" (Identifies Target Processor)
	9-12	A4	Process Technology (CMOS, PMOS, Etc.)
	13-14	12	Number of Pattern Types That Are To Be Excluded From Translation (Protective Diodes, Killer Gates, Etc.)
	15-26	314	Pad Pattern Numbers That Are To Be Used Only as Outputs
	27-38	314	Pad Pattern Numbers That Are To Be Used Only as Inputs
	39-42	A4	Name That is Being Used to Indicate Transmission Gates in This Library File
	43	11	= Zero; Transmission Gate Activation Level is Logic Zero
,			= Non-Zero; Logic One
	44	11 .	= Zero; Transmission Gate Output is Indeterminate When Disconnected
			= Non-Zero; Output "HOLDS"
	45	11	= Zero; Output is Indeterminate For Two or More Transmission Gates Driving Same Node Simultaneously
			= Non-Zero; Output is Determinate
	ت. بين	Table 3-1	
		-11-	

MODEL LIBRARY CARD FORMAT (Continued)

CARD NUMBER	COLS.	FORMAT	DESCRIPTION
1	46	I1 .	(Used Only If Card Column 45 is Non-Zero) = Zero; Output is Logic Zero For Two or More Transmission Gates Driving Same Node With Conflicting Signals = Non-Zero; Output is Logic One
2	1-80	2014	Pattern Numbers of The Cell Types That Are to be Excluded (Blank Required if There Are None)
3-N	1-72	*	Model Cards as Required to Describe Each Pattern in Library
	77-80	14	Pattern to Which the Model Card Belongs

* See LOGSIM and LASAR User Manuals.

٠

Table 3-1 (Continued)

SAMPLE CMOS-LOGSIM LIBRARY

.

	LEGSIM	CH05019	0309010	9020	TUTE	
	1210 ארדכ	1,10				111
, , , ,	DTHF ····	1-75				111
-	NET	2	NAND *	1,1	3	111
PAGE IS	···· DTMR					
	DTMF	1,10				112
B		- 2				11a
55	DIME	1,15				122
	DTM				سيرين إسبار فراد مربون مريسة براد والمربون بعر محمد محمد مريون ومريون مريون مريون	
	NET	2	NAND *	1.1	3,4	122
			· · · · · · · · · · · · · · · · · · ·		مناه و المحمدية بنية و مراسبه معانية الم المستقدين الم الم	12:
1 	JTMF	1,19			·	12:
ώ	NET		- TAND *	1.1		12:
	DTMR	1,25			124	
	DTMF				المراجعة مواجعة مستحدية ومحمد والمحافظ المحافظ المحافظ المحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ وال	
	NET	5 27	NAND *	1.1	3,4,5,6	12-
	· DTMR		·····	مهر که است. مراجع می محمد است. م		12:
	OTI'F	1,10				12:
		- 1-, 1-0				
			NAND +		7	12
	NET	•••••••••••••••	tvan:0*		AA7 BB	12
			NAND *		4,7	. 12
	NET	A-A-	- "NAND" *			
	NE I		NANU *	•	070	13
	DTMR	1,25				13
			NAND *	. 1 .	´3 ·	- 13
	NET	•		· · · · · ·	اليين با يك ما ترك هيدوني بينيو از بارهام الكان بينانيديديد ووريام توريكون ميايد	
	DIMK					13
	DTMF	1,10				
			TGTE*		L 7 V	• 14
	DT-4K	1,20		-	و بې مېمېمېنى بارىخ چېلىرى بېرىغان بېرى مەر بېرى بىرى يې مەر يې مەر يېرىكى بېرىكى بېرىكى بېرى	14
	DTMF			· · · · · · · · · · · · · · · · · · ·		14
	DCTM	1,100				

Figure 3-1

SAMPLE CMOS-LOGSIM LIBRAR Y

. . . (continued)

·	RUM NET NET			8 J 10	143(- 143(143(
· · ·· ·	-	· ·· AA ··			-1430
	,si⊊ T	AΑ	TOTE *1	5,4	1430
		- AA	·Tare * ··· ·	7 .	1430
	DINK	1,44			1629
	OT AF	- 1,54	و و من و مرد و مردوس کې مور کې مو		162
	NET	2	AND * 1,1	3,4	1620
	DTYK	.1,31		مەنىيە بەر يەنىيە ئەر يەرىپەر ي مەنىيە يەرىپەر ي	
	OTAL	1,31			164(
	., <u>т</u>		-ANO # 1,1-	3,4,5,6	164
	D F In	1 2 4 4			1870
	-DT-H	1-54	······································		1879
	MET	6	NOR + 1,1	ABJCD	187
	- NET			2,3	· ··1·87(
	12 E I	CO	AND * 1,1	4,5	187
•	DT ^{ian} DT ^{ian}	1,33 1,37			189 ⁽ 189
	<u></u>	<u>e</u>	NUR* -1,1	- AB, CD, EF	189
	NET	A5 \	AND + 1,1	2,3	189
···· ···· ··· ·	પંત્રની ્રેન્ન	.Ci)	- AND*- 1,-1		1-89
	NET	ΈF	AMO * 1,1	6,7	189
-,	0713	-19-31 -	سه مریسه و مریو و هورونو سیس مریو اور م		- 231
	DTHE	1:37			231
	NET -		£X3R*1,1		231

SAMPLE CMOS-LASAR LIBRARY

<pre>MBUEL/11/4/3/2/ MUDEL/1 ++/AU/2/BNA/A, B/AB/1NA/3/A/1NA/4/8/ MUDEL/1 ++/AU/2/BNA/A, B/AA/10/AA/2/ MUDEL/1 +*/3, 4, 5, 6/2/ MUDEL/1 +*/765/2, N/AA, BE/7/2NA/3, 5/AA/2NA/4, 7/BB/ MUDEL/1 +*/765/2, N/AA, BE/7/2NA/3, 5/AA/2NA/4, 7/BB/ MUDEL/1 +*/3/2/ MUDEL/1 +*/3/2/ MUDEL/1 +*/3/2/ MUDEL/1 +*/3/2/ MUDEL/1 +*/3/2/ MUDEL/1 +*/3/2/ MUDEL/1 +*/3/2/ MUDEL/1 +*/3/2/ MUDEL/1 +*/3/4/2/ MUDEL/2 **/3, 4/AA/1NA/AA/2/ MUDEL/2 **/AA/1NA/AA/2/ MUDEL/2 **/3, 4/AA/1NA/AA/2/ MUDEL/2 **/AA/1NA/AA/2/ MUDEL/2 **/AA/1NA/AA/2/</pre>				TGTE	9020	CM450190309010	-	
<pre>ALDEL/1 ++/AL/2/2004/A, 0/AB/1NA/3/A/1NA/4/6/- ALDEL/2 ++/AL/2/2004/A, 0/AB/1NA/4/4/6/- ALDEL/2 ++/B/2/ ALDEL/2 ++/AL/1NA/AA/2/ ALDEL/2 ++/B/AL/1NA/AA/2/ ALDEL/2 ++/B/AL/2 ++/B/</pre>	11	1		•		··	1210 -	
<pre>V(UEL/F xA/3x4/2/ MUDEL/F xA/3x4x5/2/ MUDEL/F xA/745/2/ MUDEL/F xA/745/2/ MMDEL/F xA/745/2/ MMDEL/F xA/3/2/ MMDEL/F x5/2/ MMDEL/F x5/2/ MMDEL/F x5/2/ MMDEL/F x5/2/ MMDEL/F x5/2/ MMDEL/F x5/2/ MMDEL/P x72x4/xA/1NA/AA/2/ MMDEL/P x72x4/xA/2/ MMDEL/P x72x4/xA/2</pre>		. م به ا سایر مرد دروی .		4NA/4/8/-	S. 1. WA / 3 / A	, 1	MeULL/1	
MUDUL/3 44/8+4+5/2/ MUDUL/4+ A/3+4+5+4/2/ MUDUL/1+A/7765/2+N/AA+36/7/2NA/3+5/AA/2NA/4+7/88/ MUDUL/1-A/3/2/ MUDUL/1-A/3/2/ MUDUL/1-A/3/2/ MUDUL/1-A/3/2/ MUDUL/2-A/3+4/AA/TOTE/5+4/AA/TOTE/6+7/AA/2NA/AA+8/08/2NA/88+L1/8/ TOTE/**10/3/ MUDUL/2-A/3+4/AA/1NA/AA/2/ MUDUL/2-A/3+4/AA/1NA/AA/2/	12			±				
<pre>(L)2L/4.A/3)4/5/2/ M_DEL/1.A/3/2/ MADEL/1.A/3/2/ MMDEL/TETE/8/3/4/ MMDEL/TETE/8/3/4/ MMDEL/TETE/8/3/4/ MMDEL/TETE/8/3/4/ MMDEL/TETE/8/3/4/ MMDEL/TETE/8/ MMDEL/2.A/3/4/AA/1NA/AA/2/ MMDEL/2.A/3/4/AA/1NA/AA/2/ MMDEL/2.A/3/4/AA/1NA/AA/2/ MMDEL/2.A/3/4/AA/1NA/AA/2/ MMDEL/2.A/3/4/AA/1NA/AA/2/ MMDEL/2.A/3/4/AA/1NA/AA/2/ MMDEL/2.A/3/4/AA/1NA/AA/2/</pre>	12	,		· · · ·				
MIDEL/1-A/7/6/2+A/AA,3B/7/20A/3,5/AA/2NA/4,7/88/ MODEL/1-A/3/2/ MMDEL/THTE/E,3/4/ MTDEL/THTE/E,3/4/TOTE/5+4/AA/TOTE/6,7/AA/2NA/AA,8/0B/2NA/BB,L1/8/ THTE/A,10/3/ MHDEL/2-A/3,4/AA/1NA/AA/2/ MHDEL/2-A/3,4/AA/1NA/AA/2/	12							
MODEL/1 A/3/2/ MMODEL/THTE/Ex3/4/ MTDEL/THTE/Ex3/4A/TGTE/5+4/AA/TGTE/6,7/AA/2NA/AA,8/8B/2NA/BB,L1/8/ THTE/Ax10/3/ MHDHL/2 A/3+4/AA/1NA/AA/2/ MHDEL/S WA/SAT+5+6/AA/1NA/AA/2/	- 12	· · · · · · · · · · · · · · · · · · ·	//88/	AA/2NA/4,	7/204/3,5	- A/7/6/21 N/AA+3B/		
MMDEL/FSTE/SJ3/4/ MMDEL/TETE/SJ3/4A/TGTE/S+4/AA/TGTE/G,7/AA/2NA/AA,8/BB/2NA/BB,L1/8/ FSTE/St10/9/ MMDEL/2 A/3+4/AA/1NA/AA/2/ MMDEL/S MA/St4/5+6/AA/1NA/AA/2/	13							
WEDEL/ILTE/Ex3/#A/TOTE/5+4/AA/TOTE/6,7/AA/2NA/AA,8/88/88/2NA/88,L1/8/ FHTF/HX10/9/ MHDHL/2 A/3x4/AA/1NA/AA/2/ MHDEL/S AA/3x4x5x6/AA/1NA/AA/2/		, <u>_</u>		••		rate / Starie / is / and an		
10177/20177/ MUDUL/2 A/304/A/1NA/AA/2/ MUDUL/2 A/30473047567AA/1NA/AA/2/	14	38/2NA/88,L1/8/	:A/AA,8/	:/6 , 7/AA/2	.+ 4/AA/TG 1	CTE/Ex3/MA/TOTE/E	MIDEL/I	
MADEL/GNA/SIHISI6/AA/INA/AA/2/	- 14							
MADEL/4NA/3+4+5+6/AA/INA/AA/2/	16 16							
	18		10-111		(144/2/	+ NA/S:4,5:6/AA/1NF	HADEL/4	
MUDE_/2 XA/2, 3/AA/2NA/4, 5/38/2NA/AA, 58/CC/1NA/CC/6/				AF SB/CC/16	5/38/2NA/1		MHDEL/2	
MADEL/2-14/2+3/44/2N4/4,5/RB/2NA/6,7/CC/3NA/AA,BR,CC/8/			ABRIC	7/CC/SNA/	AB/ENA/	234/2+3/44/244/415	MADEL/2	
HIDLE/PHALEFS/AUTENALAF/2NALAAJAB/AC/INALAC/AD/2NALAD, C2/AE/INA/C2/ HIDLEL/PHALEJAF, 5/AU/2NALAE, A6/5/	22	AZADICZZAEZINAZCZ	ACTADIZI	ABZACZINAZ	HISINALAA.	2 14/2+3/64/1NA/4/A	いたいさん/ク	

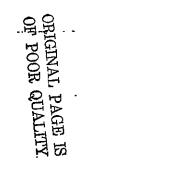


Figure 3-2

SAMPLE PMOS-LOGSIM LIBRARY

COLUMNS	1224567	(8901254a	6/800123400/6001034	5678901234567890123456789012	66666667777777777778 345678901234567890
	Legisia	PMesr1	*****	TGTE1	
	5050 - 1	.		ومرور و مرور و	2240
	ይተሉጽ	1,10			
			سی در در در باره از این بای هم در میبینهای در در میشور بر میشود می از میشود. مرب	م بار در به <u>م</u> یه میر - بار به مغیر مداره دمین در میبید. معاور درماند د	2240
	LCTM	1×100			
. -	-1 E T	۸ Α · · · ·		213	2240
	· ET	43	NBR *	AA#4	2240
	~EŦ	- дС		$ Ad_F C 2 \cdots$	2240
	NE T	AU.	NAND *	C2'	
	- NET		MCLK -*1 , 4-, 4		2240
	· · E T	4F	AND *	AB, AD, AF	2240
	: <u>E</u> T			· AC, AF·	4020
1	(ተጉጉኛ	i/10		,	
	- CTHF -	1 + 1-3			4020
Î.	1/E T	3	NAND *	A1, A2	4020
	-r'ET	··· A1	NAND	·	4020
•	NET	54	NAND *	A4,C2	4020
	· '#ET ·	43			4020
	2 · 5 T	6.4	NAND *	2	4020
		1+1-0			4360
	DIN F	1010			4360
		1343	60H0H1H1H1H000H100		4360
	RET	÷	4360 × 1/1	4,3,2,00	4300
	ATOK -	1-12		and a second	4380
	⇒τ ∽F	1=10			4380
	. <u>n E</u> T				4380
	20° T	43	NANO * 121	3	4380 4380
· · · · · · · · · · · · · · · · · · ·	NET				
	NET	АA	NAND * 111	2	4380
	- DIMA -				
	OTME	1,15			6020
	···				
	NET	3	MCLK * 1,1,1	2,02	. 6020

Figure 3-3

الم الما المقادين مرجوعات الاجار خرير جوجود التا الحي

SAMPLE PMOS-LOGSIM LIBRARY (continued)

********	UT VR	1,17		—	6200
• •	······································	1	·		
	CCTM	1,113			6200
					6200
	1.ET	CC	NAND * 1+1	85 85	6200
• •	r.ET ·	15년 - 1	"	* / `AA,C1'`, *	
	NET	4.14	NAND # 111	2	. 6200
- ··· ·	シアト・モー	1717			
	DTMF	1 > 7			6220
	üCTM		الله الله الله المناطقة، ولمان والماني الله الذين الارام المانية الله الله المانية والمركز المانية المانية الم ا		·
	<u>ት የ</u>	:01	MCLK * 10101	CC, C2	6250
-	NET	- cC	- NAND - + 7:1		6220
	·ET	2.2	HCLK * 12121	AA,C1	6220
	rel (····			6220
	DTME	1 • 17			6240
	᠂᠃᠊ᡦᡃ᠋ᠯᡥᡏ᠆᠂᠂	······································			6240
	CCT 1	1,113			6240
• ••	· ··· <u>·</u> [[3		CCCCS	6240
	HET	СĊ	NAND * 111	Bo	6240 6240
	T <u>E</u> T		MCL-«··*-1-)-1-5-1	AA;C1	6240
20	8 <u>6</u> 1	A A	NAND * 1+1		
	OTHR				6260
3 日 5 日	UTYF	1×7 1×127-		به به اله هم اله	6280
PA.	・・ ひむすチ NET	1.14/	TGTE * 10101	2+3	6280
<u> </u>	्ट। छ िंभन्ने	<u>+</u>	1015 - 1017	الي الا ميا 	6060
P	DTMF	1.77			6060
<u>5</u>		→ ↓ ★ ⊥ יייי ייי ייי ייי ייי ייי ⊥			6060
ORIGINAL PAGE IS	1954	2		المحمد الدر الم المحمد الم المحمد الم المحمد الم	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				ire 3-3	ν.

3.2.1 Phase 1 - Initial Translation

The first output printed by Phase 1 is a program header page that identifies the run parameters. These parameters consist primarily of the information supplied on the first two cards of the library file by the user. The PRF (or PR2D) input deck is also echoed on the printer to provide the user a convenient means with which to cross check the results of the translation.

If tied together outputs (transmission gates excepted) are detected in the network, NTRAN automatically generates an AND gate and inserts it into the network to combine the outputs. For LOGSIM translations the gate output is named "WOR-n" where n is sequenced beginning with 1 for each wired-or generated. Since LASAR is restricted to use only NAND gates, two are required to implement the AND function. The first will be named "WOR-n" as above and the second will be named "INV-n" with n being the same number. For each of LOGSIM and LASAR translations, a message is output identifying the elements constituting wired-or and the network elements added to simulate it.

Additional output may be produced by NTRAN during Phase 1 processing and is generally self-explanatory.

3.2.2 Phase 2 - Transmission Gate Analysis

As discussed previously NTRAN generates a ROM or a sum of products network to simulate the behavior of transmission gates that are present in the design. In either case, a truth table is first constructed from which the equivalents are derived. NTRAN prints the truth table in the normal engineering format as each truth table is constructed, identifying the constituent transmission gates, the output terminal, the input terminals, and the clock terminals. This printout provides the engineer with a representation of the transmission gate network behavior that is more easily interpreted than the LOGSIM ROM cards and the LASAF model cards that are eventually inserted to simulate the truth table.

Following the printout of the truth table, NTRAN lists the elements that were added to simulate the transmission gate network. The ROM cards and the accompanying net card are output for LOGSIM translations in which the ROM's are named "ROM-n" with n sequenced beginning with 1 as each ROM is generated.

For LASAR translations, significantly greater additions to the network description are required than are for LOGSIM translations. A product gate is generated for each legal combination of clock inputs; a summing gate is generated to tie the product gates together; and illegal specification cards are generated to prevent erroneous stimulus generation by LASAR. Also, if the transmission gate activation level is logic zero, an inverter gate is required for each clock input. The summing NAND gate will retain the original signal name of the transmission gate network output terminal as its output signal name. Product gate output signal names will be coded "PRn-m" where n is sequenced beginning with 1 for each sum of products network and m is a sequence number identifying a product gate within the sum of products. For example, "PR02-03" is the third product gate in the second sum of products network. If clock inverters are required, their output signal names are coded "*CLKNAM" where CLKNAM is the original clock input name.

3.2.3 Phase 3 - Minimum Feedback Ordering

The only printed output produced during Phase 3 in addition to output file listing is the signal name to LASAR node number cross reference table. This table should be retained to correlate the node numbers in LASAR output with the original PRF elements.

Note that in the final output file, NTRAN will have assigned sequence numbers to the NAND gates that match their output signal node numbers. This operation should further reduce the difficulty of relating LASAR output to the original PRF data.

3.2.4 Error Messages

Throughout the execution of NTRAN, situations may arise in which the data being processed appears to be in error, or a situation may materialize for which NTRAN cannot continue. For the former condition, a self-explanatory warning message is printed, and for the latter, the program is aborted with an attendant message of the form "PROGRAM CONTINGENCY ERROR IN XXXXX-Y." The "XXXXX" corresponds to the NTRAN subroutine name and the "Y" to a checkpoint within the subroutine at which the error occurred. Table 3-2 displays all of the possible abort error codes, their probable cause, and the possible remedy.

3.3 Deck Setup Instructions

Presented in Sections 3.3.1 through 3.3.5 are the deck setups for the Xerox Sigma 5 computer required to execute NTRAN in each of the five possible modes. Deck setups are illustrated with which to run a LOGSIM translation, restart a LOGSIM translation, run a LASAR translation, and restart a LASAR translation in each of two modes. A Type 1 LASAR restart allows the user to re-execute the transmission gate analysis and minimum feedback ordering sections with a modified output file from Phase 1. A Type 2 LASAR restart allows the user to re-execute the minimum feedback ordering section with a modified output file from Phase 2. Note that each of the deck setups are practically identical and require little change to switch from one setup to the other.

For the user who is unfamiliar with the Sigma 5, the files required to run NTRAN are described in Table 3-3 in a general manner.

NTRAN ABORT ERROR CODES.

• • -

•

CODE	PROBABLE CAUSE	POSSIBLE REMEDY
CHIPIO-1	Too Many Chip Inputs (Max. = 50)	Enlarge "CHIPS" Array and Recompile Program
CHIPIO-2	Too Many Chip Outputs (Max. = 50)	Enlarge "CHOPS" Array and Recompile Program
CODILL-1	Signal Name on Model Illegal Card Not in Model	Check Model Library File for Inconsistencies
FINDIO-1	No Output Terminal Found in Transmission Gate Network	Check PRF Netlist for Errors
FINDIO-2	No Input Terminal Found in . Transmission Gate Network	Check PRF Netlist for Errors
FINDIO-3	Too Many Transmission Gates and Input Terminals in Transmission Gate Group (NTGS+NINS>16)	Partition Transmission Gate Network if Possible and Rerun
GROUP-1	Transmission Gate Clock Terminal is Being Driven by Another Transmission Gate	Modify PRF Netlist
INSERT-1	Too Many Logical Elements in Design (Max = 3000)	Enlarge "NET" Arrays and Recompile Program
LASGEN-1	Pattern Number in PRF Deck is Not in Model Library File	Add Required Pattern to Model Library File
LASTGA-1	Not Enough Room in "NET" Array to Build Sum of Products Network	Enlarge "NET" Array and Recompile Program
LASIN-1	No Network Elements Found on LASAR Restart File	Ascertain Validity of Restart File

NTRAN ABORT ERROR CODES (Continued)

4

CODE	PROBABLE CAUSE	POSSIBLE REMEDY
LASIN-2	No "INPUT/" Cards Found on LASAR Restart File	Ascertain Validity of Restart File
LASIN-3	No "OUTPUT/" Cards Found on LASAR Restart File	Ascertain Validity of Restart File
LOGIN-1	No Network Elements Found on LOGSIM Restart File	Ascertain Validity of Restart File
LOGIN-2	No "GEN" Cards Found on LOGSIM Restart File	Ascertain Validity of Restart File
LOGIN-3	No "PNT" Cards Found on ` LOGSIM Restart File	Ascertain Validity of Restart File
LOGGEN-1	Pattern Number in PRF Deck Not in Model Library File	Add Required Pattern to Library File
MAIN-1	Model Library File Has Neither LOGSIM nor LASAR in First Record	Ascertain Validity of Model Library File
ORDER-1	Illegal Card Signal Name Not in Network Array	Call Programmer
ORDER-2	Too Many Network Elements for LASAR to Handle (Maximum = 999)	Partition Design and Run in Two or More Parts
PRNET-1	Pattern Model Too Large to Fit in Staging Buffer	Enlarge Array "STGBFR" and Recompile Program
PUSH-1	"STACK" Array Too Small	Enlarge "STACK" Array and Recompile Program
RDPR2D-1	PR2D Netlist Too Large For PRFNET'' Array	Enlarge "PRFNET" Array and Recompile Program
RDPR2D-2	Indicated Netlist Continuation Card Missing	Correct PR2D Input Deck

Table 3-2 (Continued)

NTRAN ABORT ERROR CODES (Continued)

•

CODE	PROBABLE CAUSE	POSSIBLE REMEDY
RDPRF-1	PRF Netlist too Large for "PRFNET" Array	Enlarge "PRFNET" Array and Recompile Program
RDPRF-2	Indicated Netlist Continuation Card Missing	Correct PRF Input Deck
RFFAN-1	Excessive Signal Name Length	Check Model Library for Syntax Errors
STAGE-1	Illegal Card Type in LOGSIM Model Library File	Make Sure That Library File Has Only DTMR, DTMF, DCTM, NEWGATE, ROM and NET Cards
STGLSR-1	"MODEL/" Missing on First Pattern Model Card in LASAR File	Assure That All Patterns Have "MODEL/" In Columns 1-6 on First Model Card
STGLSR-2	Syntax Error in LASAR Model Card	Assure That All Model Cards Obey The LASAR Syntax Rules
STGLSR-3	LASAR Model Too Large for Staging Buffer	Enlarge Array "STGBFR" and Recompile Program
WFFIX-1	Field Width Violation While Writing LOGSIM Output File	Call Programmer

Table 3-2 (Continued)

NTRAN FILE REQUIREMENTS

	· · · · · · · · · · · · · · · · · · ·	·····		
LOGICAL UNIT NO.	DEVICE TYPE	MODE	FORMAT	CONTENTS
1 ·	DISK, TAPE	INPUT	CARD IMAGES	MODEL LIBRARY
2	DISK, TAPE	SCRATCH		
5	CARD, DISK, TAPE	INPUT	CARD IMAGES	PRF OR PR2D INPUT DECK
6	PRINTER	OUTPUT		NTRAN LIST OUTPUT
10	DISK, TAPE	OUTPUT*	CARD IMAGES	INTERIM OUTPUT FILE FOR BOTH LOGSIM AND LASAR TRANSLATIONS
11	DISK, . TAPE	OUTPUT*	CARD IMAGES	 FINAL OUTPUT FOR LOGSIM TRANS- LATIONS INTERIM OUTPUT FOR LASAR TRANS- LATIONS
12	DISK, TAPE	OUTPUT*	CARD IMAGES	FINAL OUTPUT FOR LASAR TRANSLATIONS

THESE FILES ARE ALSO USED AS SCRATCH FILES PRIOR TO BEING WRITTEN AS INDICATED.

3.3.1 Run LOGSIM Translation

where:

LOGLIB is the LOGSIM library prepared by the user.

PHASE 1 is the output from the first phase of NTRAN.

PHASE 2 is the final output of NTRAN.

TEMP is a scratch file.

3.3.2 Restart LOGSIM Translation

```
!JOB
```

!LIMIT (TIME,5), (CORE,50)
ASSIGN F:1, (FILE, LOGLIB), (IN)
!ASSIGN F:2, (FILE, TEMP), (OUTIN)
!ASSIGN F:5, (DEVICE, CR), (IN)
!ASSIGN F:6, (DEVICE, LP), (OUT)
!ASSIGN F:10, (FILE, PHASE 1), (IN)
!ASSIGN F:11, (FILE, PHASE 2), (OUTIN), (SAVE)
!RUN (LMN, NTRAN)
!FIN

where:

1

LOGLIB is the LOGSIM library.

PHASE 1 is a file previously created by NTRAN using Setup 3.3.1 and modified by the user.

PHASE 2 is the final output file.

TEMP is a scratch file.

3.3.3 Run LASAR Translation

```
!JOB
 !LIMIT (TIME, 5), (CORE, 50)
 !ASSIGN F:1,(FILE, LASLIB), (IN)
 !ASSIGN F:2, (FILE, TEMP), (OUTIN)
 !ASSIGN F:5, (DEVICE, CR), (IN)
· !ASSIGN F:6, (DEVICE, LP), (OUT)
 !ASSIGN F:10, (FILE, PHASE 1), (OUTIN), (SAVE)
 !ASSIGN F:11, (FILE, PHASE 2), (OUTIN), (SAVE)
 !ASSIGN F:12, (FILE, PHASE 3), (OUTIN), (SAVE)
 !RUN (LMN, NTRAN)
 !DATA
               PRF or PR2D Input Deck
  .
        ο
 ! EOD
 ! FIN
```

where:

LASLIB is the LASAR library prepared by the user.

PHASE 1 is the output from the first phase of NTRAN.

PHASE 2 is the output from the second phase of NTRAN.

PHASE 3 is the final output of NTRAN.

TEMP is a scratch file.

3.3.4 Restart LASAR Translation - Type 1

```
!JOB
!LIMIT (TIME,5), (CORE,50)
!ASSIGN F:1,(FILE,LASLIB),(IN)
!ASSIGN F:2,(FILE,TEMP),(OUTIN)
!ASSIGN F:5,(DEVICE,CR),(IN)
!ASSIGN F:6,(DEVICE,LP),(OUT)
!ASSIGN F:10,(FILE,PHASE 1),(IN)
!ASSIGN F:11,(FILE,PHASE 1),(IN)
!ASSIGN F:12,(FILE,PHASE 2),(OUTIN),(SAVE)
!ASSIGN F:12,(FILE,PHASE 3),(OUTIN),(SAVE)
!RUN (LMN, EDIT)
!FIN
```

where:

LASLIB is the LASAR library.

PHASE 1 is a file previously created by NTRAN on logical unit 10 and modified by the user.

PHASE 2 is the output from the second phase of NTRAN

PHASE 3 is the final output of NTRAN.

TEMP is a scratch file.

3.3.5 Restart LASAR Translation - Type 2

```
!JOB
!LIMIT (TIME,5), (CORE,50)
!ASSIGN F:1,(FILE, LASLIB),(IN)
!ASSIGN F:2,(FILE, TEMP),(OUTIN)
!ASSIGN F:5,(DEVICE, CR),(IN)
!ASSIGN F:5,(DEVICE, LP),(OUT)
!ASSIGN F:10,(FILE, PHASE 2),(IN)
!ASSIGN F:12,(FILE, PHASE 3),(OUTIN),(SAVE)
!RUN (LMN, NTRAN)
!FIN
```

where:

LASLIB is the LASAR library.

PHASE 2 is a file previously created by NTRAN on logical unit 11 and modified by the user.

PHASE 3 is the final output of NTRAN.

TEMP is a scratch file.

APPENDIX A

.

SAMPLE PROBLEM

.

APPENDIX A

This appendix is presented to illustrate the proper use of NTRAN in translating a PRF input deck to its equivalent LOGSIM and LASAR forms. Shown in Figure A-1 is the schematic of the design translated. Pages 30 through 42 show a copy of the computer printout of a run in which a LOGSIM library is created and NTRAN is executed to obtain a translation. Pages 43 through 56 illustrate a similar run in which a LASAR translation is obtained.

DEMONSTRATION SCHEMATIC

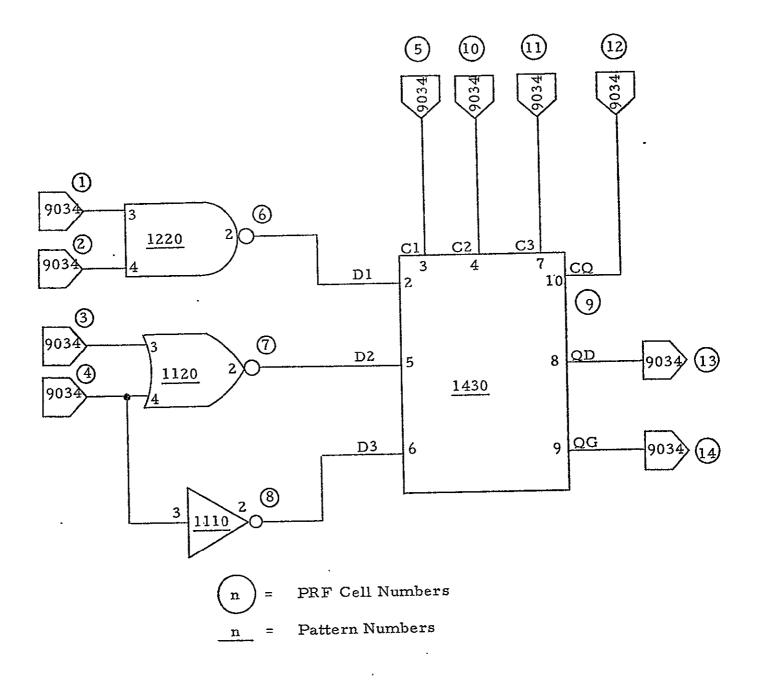


Figure A-1

08135	JUL 28,175	10+01	27			
JPR MSJ3	3, EC45001(BAST/C	AD1 . 1			
	TIME:5);(C	ARE,50), (BRDER)		•	
PCL CAPY CA	R TO LAGUI	a				
	3L18 TA LP		,	• • ·		
	CM8501903		9020 1	STE		
1210						
	1,10			· ·	1110	
DTMF NET	1,5 2	NAND #		3	1110 1110	•
DTMR	1,10	NAND #	111	2	1120	
DTMF	1.10				1120	
KF T		NOR +	1.1	3,4	1120	
DTMR	1,15				1220	a ser a a la construcción de la
DTMF NET	1+10 2	1.4ND #	. 1.1	3.4	1220 1220	and the second of the second
5149	1,33		• • • • • • • • • • • • • • • • • • • •		1230	
DTWF	1,19				1230	
		NAND .	+ 1+1	3,4,5	1230	
D+~8 D+~8	1,25				- 1240 1240	a an
Net	2	NAND 4	• 1e1,	3141516		۲
2142	ī,ic		* 194,		1290	
10***F 00***F	1,10		<u></u>		1290	
OVE +	1/12	NAND .		~	1290	
1 7	2 7	N 4 5 0 - 4	· · · · · · · · · · · · · · · · · · ·	7 AA;BB	1290 1290	
\ р Т		AAND A	•	4 ,7	1290	
1. 2 7	ĂĂ	I AND A		3,5	1290	
DTMR	1/25				<u></u>	
·	1,19	LAND .		-	1310 1310	
5	1,10	1410	• 1•1	°	1320	
DT VE	1,10			,	1320	
1.5 *	1	"GTE	• 1+1	213	1320	
DTYR.	1,20				<u>1430</u> 1430	
DCTM	1,20				1430	
Rov		******			1430	
NET	8		• 1+1+1	314171AA	1430	
NET	9	*G1 <u>2</u> -	4	8,10	1430	
- NFT -	<u>ــــــــــــــــــــــــــــــــــــ</u>	TATE :	*	573	1,430	
<u>भूगम्</u> भूगुण्	**	TSTE -		514 617	1430 _ 1430	
0143	4 <u>4</u> 1,44		· · · · · ·	9// · · · · · · · · · · · · · · · · · ·	1620	an a
DTME	1.54			. .	1620	
NET	5	AND I	+ 1,1	3,4	1620	
DTMR	1,31			، •	<u> </u>	
NET	1/31 2	AND	a 1.1	3141516	1640	
DTYR	1,44	0.46	- L # L - p	3343030	1870	
	-		-			
					•	
			······································	······································		
			•			

		•						• ~			
DTHE I	a 54					• •	1870				
NFT 10	<u> </u>		* 1,1	AB,CD			1870	· · · · · · · · · · · · · · · · · · ·			
NET /	B	AND	* 1,1	213		,	1870 .	-	· ·		
	D	AND	* 141				1890		* 7		
NET DTMR DTMF NET NET	33			• • • • •		11	1890	<u> </u>	7:		
	1,37 _	NAR	* 1,1	AB_CD_EF		• 1	1890		77		t (
NET 1	5	AND	* 1.1	2,3		1	1 1 2 9 0		7 7		
NET - (2 <u></u>	AND	* 1,1	4,5		1 1	1 1 2 2 0	`	17		
NET S	 ; ;		* 1:1	617			1890			. ,	
DTMR	31	с <i>и</i>		• • • • • • • • • • • • • • • • • • • •		• •	2310		77 77	•	
DTMP	137				• • • •		2310 .				,
NET	<u>i</u> :	EXOR	* 1,1	3:4	.1	• •	2310	1	•		
				·····			·			<u></u>	
										*	4
						•					
							•				
N*1	1111				1111111111						
,,,,,,,,					51 225 - 22 3	3					
•	• 11	•		•	، د						
*****	,					•					
	• • •			· · · · · · · · · · · · · · · · · · ·		·		, _,, ,,			
			-		· · ·	•					
	·										
						1			,		
·	ـــــــــــــــــــــــــــــــــــــ		 .			······································					
.31					11 113						
			•	•							
•		~~~					·				
		୍ୟ <u>ନ</u>		•							
		THE R									
		ŏН									
		Σ	-						•		
		ORIGINAL OF PODR		·							
•		PAGE IS									
· -		2-4									•
		불면								•	
	R	12									
				<u> </u>		•					
				••							
								•			
						•	•				
	<u>•</u>								**************************************		
		•						, . . .		•	
									·		
	• •										

0	SSING TERMINATED	
CL PROCE	SSING TERMINATED	
		• • • • • • • • • • • • • • • • • • • •
. .	-, · -	
	, was a <i>m</i>	
<u> </u>	····· ,	
•		· ····································
- 32'		
•		······································
,		•
	, ,	
		
1		
	, ,,, ,,	······································

ASSIGN F11, (FILE, LAGLIB), (1 ASSIGN F12, (FILE, TEMP), (801 ASSIGN F15, (DEVICE, CR), (1N) ASSIGN F16, (DEVICE, LP), (801 ASSIGN F110, (FILE, PHASF1); (ASSIGN F111, (FILE, PHASF2), (RUN (LMN, NTRAN)	(N) (IN) (GUTIN), (SAVF) (GUTIN), (SAVF)	· ·		
RUN (LMNINTRAN)				
,	·····		· · · ·	
			• •	
			· · · · · · · · · · · · · · · · · · ·	
- <mark>-</mark>				
		······································		•• -
· · · · · · · · · · · · · · · · · · ·				
· · · · · · · · · · · · · · · · · · ·	· · ·	,	······································	· · · · · · · · · · · · · · · · · · ·
	•			
	· · · · · · · · · · · · · · · · · · ·			
		· · · · · · · · · · · · · · · · · · ·		
	•	· · · · · · · · · · · · · · · · · · ·		
	·			
DF RIA				
	·	•		
OF POCR				
· ·	, . , .			
QUALIT				
		· · · · · · · · · · · · · · · · · · ·		
· · · ································				

	* * * * * * * * * * * * * * * * * * *
	* * * * * * * * * * *

	PROGRAM FUNCTION: NETWORK TRANSLATOR (GENERATES FOVIVALENT LOGSIM AND LASAR INPUT FROM PRE AND PR2D INPUT DECKS
	DEVELOPED BY: MRS COMPUTING INC., HUNTSVILLE ALAPAMA
	PROGRAM EXECUTION MODE : START
	TARGET PROCESSOR 1 LOGSIM
	PRACESS TECHNALAGY ! CMAS
	EXCLUCED PATTERN NUMBERS \$ 1210
ა ৯	TAPUT PAD PATTERN NUMBERS 1 9030 9010 0
	BUTPUT PAD PATTERN NUMBERS : 9020000
	TRANSMISSIRY GATE MNEMONIC I TOTE
 -	TRANS. GATE ACTIVATION LEVEL I LOGIC O
	TRANS, GATE ANALYSIS RULEI 1.0
~	TRANS. GATE ANALYSIS RULED 1 0
<u> </u>	TRANSA GATE ANALYSIS RULES 1 0
	INPUT DECK TYPF 1 PRF
	INPUT DECK TYPE I PRE

	*** INPUT DECK ECH8 ***
PLACTAPE TEST TEST TEST TEST PARAMETERS	TFST
INITIAL PLACEMENT	9034
6 7	
ASSIG'MENT OF GATE	S TO PATTERNS
14 19034 29034 109034 119034 1 .NET LIST	39034 49034 5903 <u>4 61220 71120 81110 91430</u> 29034 139034 149034
	3
	4 3 4 8 3 3
<u>1 6 2 9</u>	2 ····································
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
<u>1 11 2 9</u> <u>1 12 2 9 1</u>	0
· · · · · · ·	A # # END OF INPUT DECK ***
	
<u> </u>	
ORIGINAL OF POOR	
DR AL	
QUALITY	
• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·

-

BEGIN TRANSLATI	ON PRACESS ***
······	
• ••	· · · · · · · · · · · · · · · · · · ·
، ، ،	
·	
······	
: = W	
6	
·	•
· _· ·	
• •	
······································	
· ·	
- ···	
• • • • • • • • • • • • • • • • • • •	
·	
·····	
•	

· 1.	TEST TE	ST TES	T TEST TEST	· ·	· - · ·		a	
5	" DTMR	1,10	,					
З,	, CTMR	2,15				· · · · · ·	++	
4	DTMR	3.50						
5	DTMF	1,5				<u> </u>		
6	DTMF	2,10						
7	DTMF	3,50						•
	DCTM	1,100						•
9	REM		430******01**0101HH					······································
1 1 1 1	NET		NAND + 1,1,0,0	4*2			•	
10 11	NET	8 - 2 7 - 2	NAR # 1,2,0,0	3+2,4-2				
	NET	6=2	NAND + 7121010	1-2:2-2				,
12 13	NET	9-3	1430 4 3/3/1/0		A			
· //13 14	NET	9+9	TGTE + C+0+0+0	9=8,12=2				
14	NET	9=9 9=AA	TGTE + C101010					
15		9=44	TGTE + C+0+0+0	7-2,10-2				
-16	NET			8-2-11-2				
17	NET	9-44	TGTE + CICICIO	8•2311•2				
18	GEN	1-2						
- 19 - 20	GEN	2=2			· · · · · · · · · · · · · · · · · · ·			
20	GEN	3-2						•
21	GEN	4 - 2						
22	GEN	5-2						
22 + 23	GEN	_10-2					· · · · · · · · · · · · · · · · · · ·	
-37-25	GEN	<u> </u>						
l ≈ 25	, GEN	12-2					······································	
	PNT	9-2	9•9					
	D OF FILE 10	***					•	•
-								
			•					
	· · · · · · · · · ·	-	· · · · · · · · · · · · · · · · · · ·					•
					•			
	·					,	•	
	ORIGINAL OF POOR (•					
	-¥.₩							
_	<u>_</u>							
	· 껁끱							
	25							
	L PAGE IS							
	<u></u>							· · ·
•	Y A							
	H <u>Q</u>			· · · · · · · · · · · · · · · · · · ·				
•						-		
	35					,		
	53 (VA							
	• •							
	•					• -		
	 .	•					••	
				•				

• • • • • • • • • • • •

F BEGIN TRANSMISSION GATE ANALYSIS ***

••	
•	
·	
1 12 00	· •
ĩ	
•	
3 	
<u></u>	
• • •	
	· · · · · · · · · · · · · · · · · · ·

.

٠

***** TRANSMISSION GA	TE NETWORK DETECTED AND AN	ALYZED, DESCRIPTION FOL	Ì BWS ****		
BUTPUT TERMI	NAL1 8UT#9=9				
. INPUT TERMIN	ALS: D1+9+8				
CLOCK TERMIN	ALS: C1=12=2				
TRUTH TA	BLE: D1 C1 : BUT				•
*** THE FOLLSWING ROM Rom: 1 210 0+1*	0 1 1 +		PRECEDING TRANSMISS	•	-
· · · · · · ·					
<i>.</i>	· · ······························				·
1 W = - Q					
	•				
······································	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
	· · · ·			· · · · · · · · · · · · · · · · · · ·	······································
<u>0</u> <u>0</u> <u>0</u>		•		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
OF POOR			······	······································	
B. QUI	······································				
QUALTTY IS	· ····································		· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·					
	<u>,</u>		······································		

	BUTPUT TERMINALI	8UT#9=AA, _		-		•	
	INPUT TERMINALSI	D1=6=2 D2=7=2 D3=8=2					
	CLOCK TERMINALS:	C1=5=2 C2=10=2 C3=11=2	•		-		······································
	TRUTH TABLET	D1 02 D	<u>3 C1</u>	<u>C5</u>	<u>C3</u>	1 60	T
				• • • • •	• • • • •	1	let
		0 0	0 0 0 0	õ	1	1 *	•
	. • •	0 0	0 0	. 1	ç	1 4	
		0 0 0 0	0 0 0 1	<u>.</u>	<u></u>	1	
		0 0	<u>c</u> 1	0	i	: 0	
	,	0 0 0 0	c 1 c 1	ĩ	ĭ	1 4	
		• •		*	*	1 0	
		o 0	1 0	<u>1</u>	<u> </u>	<u>i_</u>	0
		<u> </u>	1 1	0	0	1 4	•
	• •	0 0	1 1	- 1	ò	1	1
		0_ C	1 1	1	, 1	1 4	
		<u>c 1</u>	<u>c c</u>	<u> </u>			
		0 1			1	1 (*
•	ega mananan at ta at a sa at	0 1	či	ŏ	Ĩ	i	
		0 1 -	- <u>C</u> 1	1	- 0 1	1. '	*
		• <u>•</u>	•	•			<u>•</u>
	•	C 1 C 1	1 (C 1	1	•
	···· ·· ·· ·	0 1	1	iÖ	Ö	1	
•	••••	$ \begin{array}{c} 0 & -1 \\ 0 & -1 \end{array} $	- <u>1</u>	<u>1 0</u> 1 1		- :	
		0 1	_1	<u>1 1</u>	1	1	
		• • 1 0		• •	ċ	;	 Marana a secondaria da secondaria de la companya de
•	····· ·· ·· ·	1 0		Ċ 1	1	1	
		10. 10	°	10 1 0		:	0
		1 0	Ċ	1 1	0_		0
	· · · · · · · · · · · · · · · · · · ·		0		- 1 1	1	•
••		1 0	1	0 1	0	1	

			l
<u> </u>			!
<u> </u>			
, ,,,		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	r
- , ,		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
•• 		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	·····	1 1 1 1 1 THE TROTHY ATE THE PRECEDING TRANSMISSION GATE NETWORK	
tat TH	E FOLLOWING ROM SPECI	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Ram	1 01001***0-00****0		•
ReM	2 6TG01#**1#11*		
*			*
Į.	· · · ·		
<u>_</u>			
	4		
•			
	· @		
-	F 210		
	ÖŻ		
	OF POOR		
	QUALT		
<u></u>			
· • • • • •	T IS		
•			
	· · · · · · · · · · · · · · · · · · ·		
			<u>;</u>
	······································		

2 C17% 1.10 3 C17% 2.10 5 C17% 3.20 5 C17% 1.10 6 C17% 1.10 7 FC* 1.160 7 FC* 1.160 8 FC* 1.160 9 FC* 1.160 12 C5* 7.2 NAV + 11200 12 C5* 7.2 NAV + 112000 12 C5* 7.2 NAV + 112000		152. 1		GATE ANALYSIS, THE FOLLOWING FILF HAS BEEN RECORDED ON FORTRAN LOGICAL UNIT 11 ***
* DTAR 3/26 DTAF 1,8 * DTAF 2,10 * DTAF 2				
5 CT-F 1, 6 CT-F 2, 10 DT-F 3, 20 DT-F 1, 10 T + 1	З		2/15	· · · · ·
6 2147 3100 9 DCT 1 14100 9 Pc 1 41400*****0101#4 10 22* 1 276 0*** 0*01*****0*01*****0*10****1*00****00****0*01******	4			
7 CTVF 3:20 9 DCTV 1:4:30 10 C2 1:3:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:	5			
<pre>\$ Diff it in</pre>	6			
9 P63 1 41+300******01***01****01****0******0*****0*****0*****0*****0****				
11 PAW 1 610010000000000000000000000000000000				
11 PAW 1 610010000000000000000000000000000000	. 9			
12 454 9 brG01x++1+1+ 13 1:7 4:7 4:7 14 N25 7-2 NAR + 1/2/0r0 3-2/4-2 15 N25 7-2 NAR + 1/2/0r0 3-2/4-2 15 N25 7-2 NAR + 1/2/0r0 3-2/4-2 16 N25 7-2 NAR + 1/2/0r0 3-2/4-2/12/0 17 N25 9-2 100 9-2/12/11+2 19 35N 122 20 CN 2-2 21 7F. 3-2 22 GN 1-2 23 GN 5-2 24 GN 1-2 25 GN 1-2 25 GN 1-2 25 GN 1-2 25 GN 1-2 25 SP 0 21 1 7-2 25 SP 0 21 1 1-2 25 SP 0 25 SP	10		1 2	
<pre>1.1 VET 7-2 V-VR * 1:2:0:0 3:2:4:2: 15 VET 5:2 VAVP 2:2:0:00 1:2:2:2:4 16 VET 5:2 1:3:0 2:2:1:2:1:2:9:4A 17 VET 5:4 16 2:0:0:0 5:8:1:2:2 18 VET 4:4A TOOL 2:0:0:0 5:8:1:2:2 19 32 1:2 20 2:4 3:7 22 2:5 3:4 1:2 23 3:4 1:2 24 3:4 1:2 25 3:5 1:2 27 4:1 3:4 27 4:1 3:4 27 4:1 3:4 27 4:1 3:4 27 4:1 3:4 28 4:1 1:2 29 5:5 0 20 5:5 0</pre>	11	•	1 6	TG01+*+0+00****0+01** <u>*</u> 0+10*+++0+11****1+00****1+01+***1+10+
<pre>1.1 VET 7-2 V-VR * 1:2:0:0 3:2:4:2: 15 VET 5:2 VAVP 2:2:0:00 1:2:2:2:4 16 VET 5:2 1:3:0 2:2:1:2:1:2:9:4A 17 VET 5:4 16 2:0:0:0 5:8:1:2:2 18 VET 4:4A TOOL 2:0:0:0 5:8:1:2:2 19 32 1:2 20 2:4 3:7 22 2:5 3:4 1:2 23 3:4 1:2 24 3:4 1:2 25 3:5 1:2 27 4:1 3:4 27 4:1 3:4 27 4:1 3:4 27 4:1 3:4 27 4:1 3:4 28 4:1 1:2 29 5:5 0 20 5:5 0</pre>	14		6	TG01##+1#11#
15 VET 6-2 NAVQ 272700 1-2727 16 VET 9-4 1630 2473110 5-2110-211129+AA 17 VET 9-4 T6 240700 9987129+A 18 VET 9-4A T801 24070 6-277278-275-2710+2711+2 20 CEV 7-4A 21 9F 3+2 22 GEV 5-2 23 GEV 5-2 24 GEV 5-2 25 GEV 1+2 25 GEV 1+2 26 F1 9-4 9-9 27 PAT 9-8 9-9 28 PAT 9-8 9-9 29 PAT 9-8 9-9 20 PAT 9-9 20 PA				
16 NET 9-8 1439 - J.A.J.J.D. B-2J.J.P.2A. 17 NET 9-8 TG C.00.00 9-81/2-2 18 NET 9-44 TG01 C.00.00 6-2J.7-2/R-2/J1+2 20 TEL 2-2 21 TFL 2-2 22 GEL 2-2 23 GEL 1-2 24 GEL 1-2 25 EV. 1-2 25 EV. 1-2 26 St. 1-2 27 FL 2-2 28 SEL 1-2 29 SEL 1-2 29 SEL 1-2 20 SEL 1				
17 NET 9-0 TG COUCLO 9-8452-2 18 NET 9-14 TGOI COUCLO 6-247-248-245-2411-2 20 CE 24 2-0 21 75 3-2 22 GE 2-2 23 GE 5-2 24 SE 1-2 75 DE 11-2 75	10			NAND # 2/2/010 1=2/2=2
18 NET Ted Tool 0.000 6+227-228-22510+22111-2 20 3EX 12				
19 32 1:2 20 56. 2:2 21 36. 3:2 23 36. 5:2 23 36. 5:7 24 36. 1:72 25 36. 1:72 26 5:7 1:72 27 36. 1:72 27 3:5 1:72 27 3:5 1:72 27 3:5 1:72 3:7 3:5 9:9 9:7 3:5 9:9	17		-	
20 CEL 2-P 21 SF. 3-P 22 SEN 1-2 23 SEN 1-2 24 SEN 1-2 25 SEN 1-2 25 SF. 0 27 FN 9-3 9-9 3-9 27 FN 0 27 FN 0 28 SEN 1-2 29 SEN 0 29 SF. 0 20 SEN 1-2 20 SEN 1-2				(201 C)01C10 P=51/=51X=51D=5111=5
21 1 1 7 . 3 . 7 . 2 . 2	30	<u> </u>		
22 fkv 4-2 23 fkv 5-2 24 fkv 1-2 25 fkv 1-2 26 fkv 1-2 27 fkv 1-2 28 fkv 1-2 29 fkv 1-2 20 fkv 1-2 27 fkv 1-2 28 fkv 1-2				
23 SEV 5-2 24 SEV 1-22 25 SEV 1-22 25 SEV 1-2 27 PV 9-3 9-9 				······································
2* 5K 17+2 25 3E 17+2 27 PhT 9-9 9-9 9-9 				
25 GE 11+2 27 9E 9-9 ** END BF FILE 11 ***				
••• END OF FILE 11 ••••	24			
••• E'-2 & & F File 11 ••••				
••• END OF FILE 11 ••••		4 2 4	1	•
	++ END 8			
	++ END 8			
	++ END 8			
	+ END 8			
	+ END B			
	+ END B			
	+ END 8			
	+ END B			
	* E'.0 6 5*52* 0			
	* E'.0 8			
	* E'.0 6 5*52* 0			
	* E'.0 6 5*97* 0			
	* E'.0 8			
	* E'.0 6 5*52* 0			
•	* E'.0 6 5*52* 0			
•	** E'.D 8			
•	* E'.0 6 5*52* 0			
•	* E'.0 6 5*97* 0			
	** E'.D 8 5*8** 0			
	** E'.D 8 S*5#* 0			
	* E'.0 6 5*97* 0			

		, <u> </u>
10177 JUL 25,175 IC+ OFC		
UMR - 2507375045701(24572047)+1 LIMIT (TIMEJE)+(C25545767)+(C2008)		
PCI		
CARY CA TH LASLIA		
CORVILSI IN THE LP		• • • • • •
LASAF CHOSC1903090110 9020 TGTF	•	•
1210		a second a second and a second
2405L/1 A/3/2/	1110	
<u>MODELV11 AVA1/2/2014/4, HVAB/104/3/4/104/4/8/</u>	1120	
MJ0E1 /2 4/3/4/2/	1220	
	. 1230 1240	
MADRUVALAV3145516797 MADRUV1 AV7767676744433877728473352447284748777882	1290	
· · · · · · · · · · · · · · · · · · ·	1710	
V - CEL / T - ST - Z - Z - Z - Z - Z - Z - Z - Z - Z -	1320	
MADEL 7: 1/3/AL/2NA/4/19/3NA/7/AC/4NA/2, AA/BA/5NA/5, AB/BB/6NA/6, AC/BC/	1430	
7 4/34/5P) 90/8/TGTE/8/10/9/	1430	
	1430	·
	1430	
	1430	
<u>111</u> • 1 • 4 7 • 3	1430	
	1430	
silli. • 1 4 = 7 • R	1430	
1 L 3 = 4 = 7 R 1 L 3 = 6 = 7 = R	1430	
	1620	
MeDEL/4 .4/3/4.5/6/44/1N4/44/2/	1640	
YOEL/P (4/2/3/4//> ////////////////////////////////	1870	
YETEL 12 A 1613144/2: 4/4,5/7A/2NA/6,7/CC/3NA/AA,BB,CC/R/	1890	
V. JEL / P. A/P, 3/AA/1. A/4/A 1/P\A/AA, AB/AC/1NA/AC/AD/2NA/AD, C2/AE/1NA/C2/AF/	2240	
3 .A/AD/AF/5/AD/AA/AF/AD/5/	. 2240	
YEDEL/1: 4/3/4//1/4/ 19/2/4/44/4/CC/2.4/89,9/00/2/4/CC,00/2/	2310	

	· ·- · · -	
· .	ORIG OF P	
	DOR	
	L PAG QUAI	
· · · · · · · · · · · · · · · · · · ·	E IS	

END Pol Frightston terminated	
4	
	······································
	a
	·····
· ·	······································
· .	
· .	

ASSIGN	FIS, (FILE,LASLIR), (IN)
ASSIG.	F12, (F11F, 7F"P), (90'TIN)
A3910.	F16, (LFVICE, CR), (IK)
A*915	>16,(EFVICF,LP),(90T)
A59165	FIL, (FILE, PHASSI), (BUTIN), (SAVE)
ATTIN	F111, (F1LF, PHASER), (SUTIN), (SAVE)
A35135	F (12) (F (_ F) PHARE 3) ((UUT IN)) (SAVE)
R: R 7 L	
•	
	g file
4 	62
<u> </u>	
	SF G
	H to
-	
-	
·	
•	
	•

····· • • • • • • • • • • • • • • • • •	* ,
	* * * *
	······································
***********	********
PRESEAN FINCTION : NETWORK TRANSLATOR (GENERATES FOULD	ALENT LAGSIM AND LASAR INPUT FROM PRE AND PRED INPUT DECKS
DEVELOPED BY: MAS COMPUTING INC., HUNTRVILLE ALABAMA	
- · <u>-</u>	· · · · · · · · · · · · · · · · · · ·
P#~CRAY"FXECUTION MODE 1 START	
PHACERS TECHNALAGY : CHAS	
FXCLUCE" PATTER', SUMPERS 1 1210	
INPUT PAD PATTERN NUMBERS : 9030 9010	
PUTEU PATTER: 10120 0 0	
TRINSTICSIAL CATE MURMANTO : TATE	
TRANS, GATE ACTIVATION LEVEL 1 LOGIC O	· · · · · · · · · · · · · · · · · · ·
TEPTS, TATE ANALYSIS BUIFT & C	

.46-

TRANS. DATE ANALYSIS PULED TO THANS, BATE ANALYSIS PULER : C

TIPUT DECK TYPE : PRE

.

... . . .

. -----

.

建全物效率非常常有多的的比比不不不

•

•

*** INPUT DECK 52H8 ***
PLACTAPE TEST TEST TEST TEST
PARA "LTERS
4 9034
Ś
7
3
ASSIS MENT AF GATES TO CATTERNS
13.34 29/34 39/34 49/34 59/34 61/2/ 7112/ 81110 91430
100034 119034 129094 149094 NET LIST
1 8 8 9 6
<u>1 10 2 9 4 ,</u>
*** FND BF INPUT DECK ***
OF FORMAL
<u> </u>
Ϋ́Υ΄

*** "E31% TPA" 51	LATIN, PROCESS				
					······································
			· · · · · · · ·		
					·····
• 					- · · · · ·
	·				· · · · · · · · · · · · · · · · · · ·
		POOR R			
-	,	QUALT			· · · · · · · · · · · · · · · · ·
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		N N N N N N N N N N N N N N N N N N N			
					· · · · · ·
,					·····
				·	,, ' ,
· · _ ··· · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			······································
		······································		· · · · · · · · · · · · · · · · · · ·	······································
	····				· · · · · · · · · · · · · · · · · · ·
				,	

1	NAME TEST TEST TEST TEST	
3		
_ 4	MA:EL/	
5	1.4/4#2/8#2/	· · · · · · · · · · · · · · · · · · ·
6	1\A/7+A::/7+2/	and a star and a second a second and a
7	2'.4/7+A:7+3/7+AH/	
<u>я</u> 9	1×4/3=2/7+4/	
10	13:A/4=2/7=A/ 2*:A/1=2+2+2/4=2/	
11	5° A/5+2/9+AA/	
12	2.4/1.4/2	
13	9.4/11-9/0-10/	· · · · · · · · · · · · · · · · · · ·
14	4 4/6-210-44/9-24/	
15	5-4/7-2:9-1:/9-49/	
16	6 x/4+2, 9+ AC/9+ 1C/	
17	71,4/0+14,7=14,9=80/9=8/	n manana manana manana kana kanana manana manana manana kana k
19	TGTE/0+++12+2/9+9/	·
19		
<u>20 i</u>	<u>1\2\1</u>	
21 22	1-2,000,00-2,0-2,10-2,11-2,12-2/	
23	50TP. T/	
24	9=525+12	
25	1LL h+2 11+2 9=8	
26	TLL 5-2 10-2 11-2 =9-8	
27	1LL -5+2 +10+2 , 11+2 9+8	
24	ILL =5+2 -10+2 11=2 =9+8	
29	ill + + + ? 10=? +11-? 9-8	
_30	1LL2 10-2 -11-2 -9=8	
31	11L 5+2 =1C+2 +11+2 9-8	· · · · · · · · · · · · · · · · · · ·
32	ILL F=P =10=2 =11=2 =9=8	
44 END 8	SF FILE 10 +++	
		· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	
•••-		
	R.H.	
-		
•	あ <u>た</u>	
	O.C.	
	E.S.	
		······································
	OF POOR ALL PLANE	

<u>* 56 il</u> n	TRANSMISSIN	N GATE ANILYSIS ***
	· ····································	
	۰ ۲۰	
		· · · · · · · · · · · · · · · · · · ·
	,	
•		чд чд
, .	· •	
		OP PO PO PO PO PO PO PO PO PO
		N B
г— Л С		
	•	
	· · · · · · · · · · · · · · · · · · ·	
-		
	,	
<u></u> .	, 	

		2F9.DESCRIPTION. EOL) OWS.#*###
	BUTPUT TEPRINAL: SUT#9#9	
	INFLT TERVINALS: D1=9=8	•
	· ·	
	CLECK TERMINALS; C1=12+2	
	TRUTH TARLET D1 C1 : AUT	
	11+7+31+1+1=1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+	
** ** * *		· · · · · · · · · · · · · · · · · · ·
	······	
<u> </u>		· · · · · · · · · · · · · · · · · · ·
	<u></u>	·
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	,	
····· ·· ·		
	Q. H.	
·· ··· ·· ····		
		· · · · · · · · · · · · · · · · · · ·

1%A/12+2/	1+12+21	
254/9-51	12+2/2301+	1/
	11/9+9/	
TLL 12+2 TLL 12+2	-9-3 -9-3	
100 <u>1</u> 545		
•		
	· · · · · · · · · · · · · · · · · · ·	
•		
· ·	••	
••		
•	•	
- 1 52 1		
ັ ຫຼຸ	-	
		A A
	•	
	• 	
	•	
-		
•		
	······	
بالمسار المتاريفين يكرر مترور المشتقينين وروايين		
.	• • • • •	
••		

*** F. JIVALENT NAND "ETWARK AND TILEGALS FAR BREEFDING TRANSMISSION GATE NETWARK ***

.

	FND OF TRANSMISSION GATE ANALYSIS, THE FOLD NAME TEST TEST TEST TEST TEST	WING FILE HAS BEEN RECORDED ON FORTRAN LOGICAL UNIT 1
· · · · · · ·		
3		
5	1:4/4=2/8=2/	
- 5	1.4/7=4.7.9	
/ *	214/7+4,7+4/7+43/ 114/3+2/7+4/	•
. 9	1/4/4=2/7+4/	
10	2: 4/1 = 2: 2= 2/6=2/	·
11 12	1'\A/5+2/9+AA/ 2\A/10=7/9+AR/	· · ·
17	31AZ11#2/9=4CZ	
. 14	4 A/4=2:9=AL/9=3A/	
15 16	514/7+2+9+41/9+68/ 6+4/8+2+2+40/9+60/	
17	7VA/9=114,9=124,9=12/9=12/	
1 A	1-A/12=2/+12=2/	
19	"P.1/9-3, 12-2/PR01-01/	
2ı	1'.A/DF01-01/9-92	
L 22	144077	,
, W 23	1+615+213+3, 4+215+310+2+11+2+12+2/	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	PITT/	
· · · · · · · · · · · · · · · · ·	ILL 9-2 10-2 11+2 9+8	
29	<u>1LL 5+2 10-2 11+2 +9-8</u> 1LL +5+2 +1C-2 +11+2 9-8	
้า	IL +5+2 +10+2 11+2 +9+8	
31	11L -F+2 10-2 -11-2 9+A	
	ILL -5-2 10-2 -11-2 -9-8 ILL 5-2 -10-2 -11-2 9-8	
3+	ILL 5+2 +10+2 +11+2 9+8 ILL 5+2 +10+2 +11+2 +9+8	- , , , , , , , , , , , , , , , , , , ,
35	ILL 12=2 9=9	
	1LC 12-2 -9-9	
	10 SF FILF 11 +++	
	0.	
Ç	2.E.	
	がて	
	e v	
		tal a seba d a c a shada ( period a shada ) period an a bad period and an a bada ya taba bi tabara a shada ya
	HH	· · · · ·
		a a construction of the second s

<b>***</b> •€	714 IA 14Å4 EE	FORACK BEDERING PROCESS *3	**		·····	
· · · · · ·	-	· -· ······				
` <u></u>		·		·· ··· ··· ··· ··· ··· ··· ··· ···		
	· · · · · · · · · · · · · · · · · · ·	·····				
-				· · · · · · · · · · · · · · · · · · ·		
-54-		OF POOR QUALITY				
	· ·	ALUTY IS		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	·· _	· ····································				
			- ;· ··			
			······	·····	·····	
				· · · · · · ·		• •

••• CLLI 1 11 21	-+PIN NAME 1+E 7=F 7+2	77 i 4928 2*2 6-2 9+98	NHDE NUMB 3+2- 9=AA 9+8	4-7 4-7 9-88 9-9	FFERENCE T 5-2 9-AC	ARLE *** 10-2 *12-2	i 1 = p 7 = AR	12=2 9=84	8=p 7+A 9=8C PR01=01	
				·				•		- 
 - ,	···· · · ·	· · · ·		·			•		· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
		ORIGINAL PA								
· · · · · · · · · · · · · · · · · · ·		L PAGE IS	• •					•		
	· · · · · · · · · · · · · · · · · · ·			•						

*** END OF MINIMUM FEEDBACK PROFRING PRACESS, THE FAILAWING FILE HAS BEEN STORED AN FORTRAN LOGICAL UNIT 12 ###

1	NAME TEST TEST TEST TEST	•• •
3	MADEL /	<u></u>
···· — [	9', A/4/9/	
Ä	10/4/3/10/	
7	11\4/4/11/	
	1254/122/12/	
	11/1/5/13/	<u> </u>
10		
11		
12	16/4/1/16/	
13	17\4/10(11/17/	
14	1514/12,13/15/	
15	1988/7715/19/	
16		
17	21\\/17/21/	
. 18	22\4/21/14/22/	
19	23\4/14/22119/23/	•
50	24NA/21/24/	
01 <u>21</u>		
6 22		
	118131417161718/	
2.		
55	9: TP .Y/	
27	1LL 5 6 7 23 5 6 7 +23 +5 +6 7	
24	ILL -3 <u>=5 =6 7 =23 =5 . 6 =7 23 =5</u> ILL 6 =7 =23 5 =6 =7 23 5 =6 =7 =23	
59		
. <u></u>	1LL <u>8 24 8 •24 23 5 •6 •7 •23</u>	
	JF FILE 1P +++	,
+STUP (		
-alar- A		
· ···		

APPENDIX B

LIST OF NTRAN SUBROUTINES

#### NTRAN SUBROUTINES

.

SUBROUTINE NAME		FUNCTION
1.	MAIN	FORTRAN "MAIN" program - controls and sequences execution of the major NTRAN subroutines.
2.	BLOAD	Retrieves 2-bit byte from packed truth table.
3.	BSTORE	Stores 2-bit byte in packed truth table.
4.	CHGSIG	Changes all signal names in specified net to indicated value.
5.,	CHIPIO .	Finds and identifies the chip inputs and outputs
6.	CODILL	Codes pattern model illegals specifications such that they may be filed; then retrieved and correlated with their respective elements downstream in the translation process.
7.	CONECT	Connects network elements according to PRF netlist.
8.	CPACK	Converts hybrid signal names (half Hollerith, half integer) to pure Hollerith and left- justifies result.
9.	DEGAS	Removes blank network entries created by transmission gate analysis to provide room for new network entries.
10.	ERROFF	Writes indicated error message and terminates NTRAN execution.
]1.	FINDIO	Identifies the input and output terminals of a transmission gate network.
12.	FMTBIN	Formats integer word for output in binary.
13.	FNDPIN	Finds network entry address of specified cell-pin.
14.	GROUP	Identifies group of interconnected trans- mission gates.

Table B-1

## NTRAN SUBROUTINES (continued)

SUBROUTINE NAME	FUNCTION
15. ILGEN1	Generates illegals for a transmission gate network that reflect clock combinations that do not connect an input terminal to the output.
16. ILGEN2	Generates illegals for a transmission gate network that reflect clock combinations that cause two or more input terminals to be connected.
17. ILLIN	Handles input from coded illegals temporary file.
18. ILLOUT	Handles output to coded illegals temporary file.
19. INSERT	Inserts copy of currently staged pattern model into network array and attaches PRF cell number to it.
20. LASCI	Creates card image in LASAR format for specified network entry.
21. LASGEN	Controls execution of a group of subroutines to generate initial network entries from a PRF deck and LASAR library.
22. LASIN	Reads interim LASAR output file to reestab- lish internal definition of data being pro- cessed (used for restarts).
23. LASOUT	Outputs network in LASAR format.
24. LASTGA	Controls execution of subroutines used to analyze transmission gate networks for LASAR translations.
25. LOGGEN	Controls execution of a group of subroutines to generate initial network entries from a PRF deck and LOGSIM library.
26. LOGIN	Reads interim LOGSIM output file to re- establish internal definition of data being processed (used for restarts).
	able B-1 ontinued)
	-59-

# NTRAN SUBROUTINES (continued)

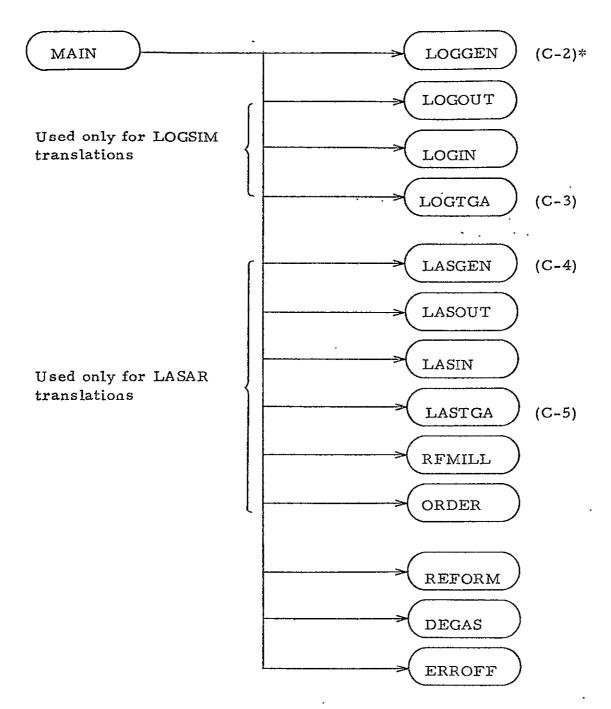
SUBROUTINE NAME	FUNCTION
27. LOGOUT	Outputs network in LOGSIM format.
28. LOGTGA	Controls execution of subroutines used to analyze transmission gate networks for LOGSIM translations.
29. OPACK	Reformats numeric signal names assigned by subroutine ORDER for compatibility with LASOUT subroutine.
30. ORDER	Performs minimum feedback ordering process.
31. PLACE	Enters computed ROM in network for LOGSIM translations.
32. PNBCD	Converts PRF netlist pin numbers to BCD.
33. POP	"Pops" partially completed network trace out of simulated stack.
34. PRDGEN	Generates product gates for LASAR trans- mission gate analyses.
35. PRNET	. Processes LOGSIM "NET" cards when reading pattern model from library.
36. PRNWGT	Processes LOGSIM "NEWGATE" cards when reading pattern model from library.
37. PRROM	Processes LOGSIM "ROM" cards when reading pattern model from library.
38. PRTMCD	Processes LOGSIM "DTMR," "DTMF," and "DCTM" cards when reading pattern model from library.
39. PUSH	"Pushes" partially completed network trace onto simulated stack.
40. RDPRF	Reads PRF input deck.
41. RDPR2D	Reads PR2D input deck.
	Table B-1 continued)
	-60-

## NTRAN SUBROUTINE: (continued)

SUBROUTINE NAME	FUNCTION
42. REFORM	Using subroutine CPACK, reformats network signal names to be pure Hollerith.
43. REXPAT	Removes excluded pattern numbers from PRF netlist.
44. RFFAN	Reads "Free Field" alphanumeric data.
45. RFFFX	Reads "Free Field" fixed point data.
46. RFMILL	Reformats pattern model illegals from a coded form to a form usable for LASAR input.
47. ROMGEN	Generates ROM to simulate transmission gate network for LOGSIM translations.
48. ROMOUT	Generates output in LOGSIM format to des- cribe ROM generated by transmission gate analysis.
49. SCAN	"Scans" input records in LASAR format and extracts input and output signal names.
50. SPGEN	Generates sum of products network to simulate transmission gate network for LASAR translations.
51. SPOUT	Generates output in LASAR format to describe sum of products network generated by transmission gate analysis.
52. STAGE	Sets up pattern model in core for multiple insertion in the network array for LOGSIM translations.
53. STGLSR	Sets up pattern model in core for multiple insertion in the network array for LASAR translations.
54. SUMGEN	Generates summing gate for LASAR trans- mission gate analyses.
	Table B-1 (continued)

# NTRAN SUBROUTINES (continued)

SUBROUTINE NAME		FUNCTION	
55.	TRACE	"Traces" a transmission gate network to find all possible paths of connection betweer an input terminal and an output terminal.	
56.	TTDISP	Displays truth table generated for trans- mission gate network.	
57.	TTGEN	Makes truth table entries reflecting connecting paths through transmission gate network.	
58.	TTINIT	Initializes truth table.	
59.	TTMOD	Modifies truth table reflecting cross connected input terminals.	
60.	WFFIX	Formats fixed point data for "Free-Form" output.	


Table B-1 (continued)

-62-

APPENDIX C

.

NTRAN FUNCTIONAL HIERARCHY



* Module is detailed in indicated figure.

Figure C-1

.

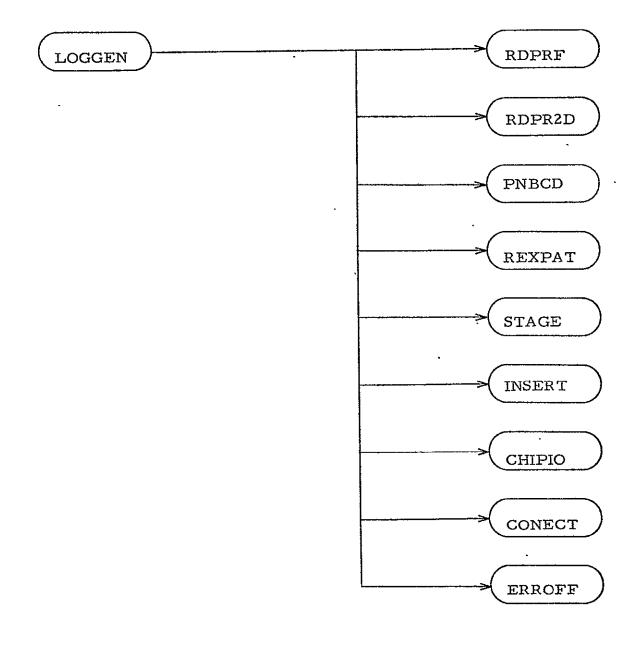



Figure C-2

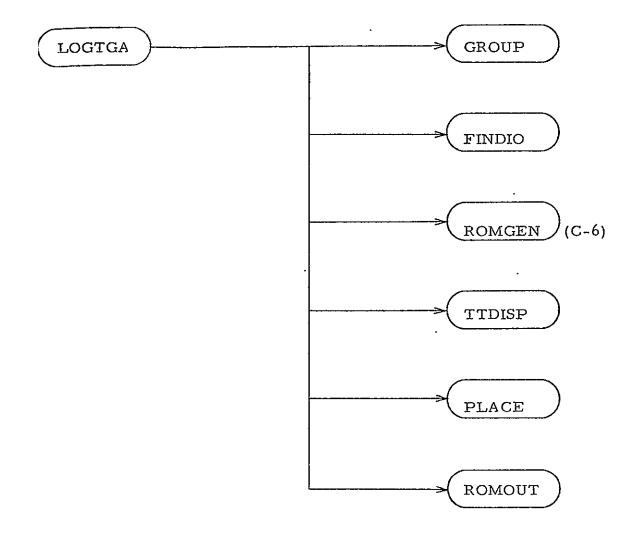



Figure C-3

•

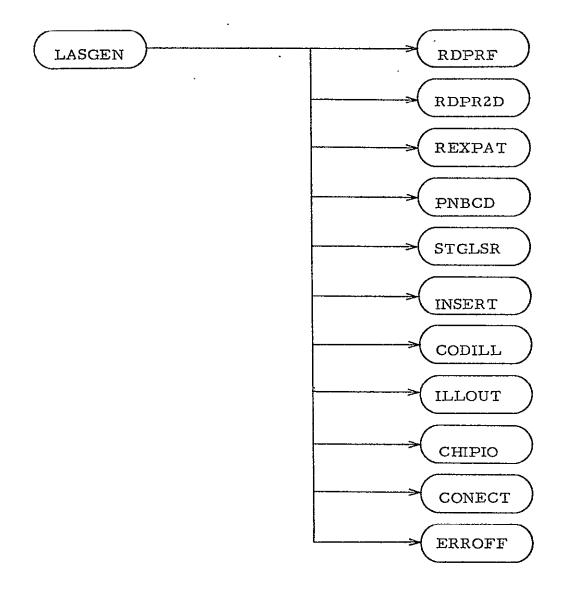



Figure C-4

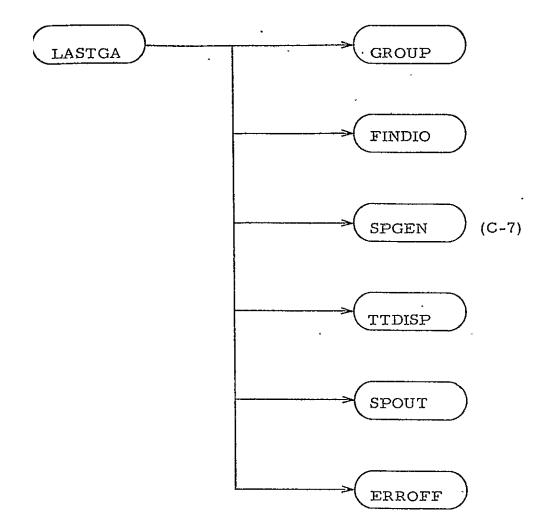



Figure C-5

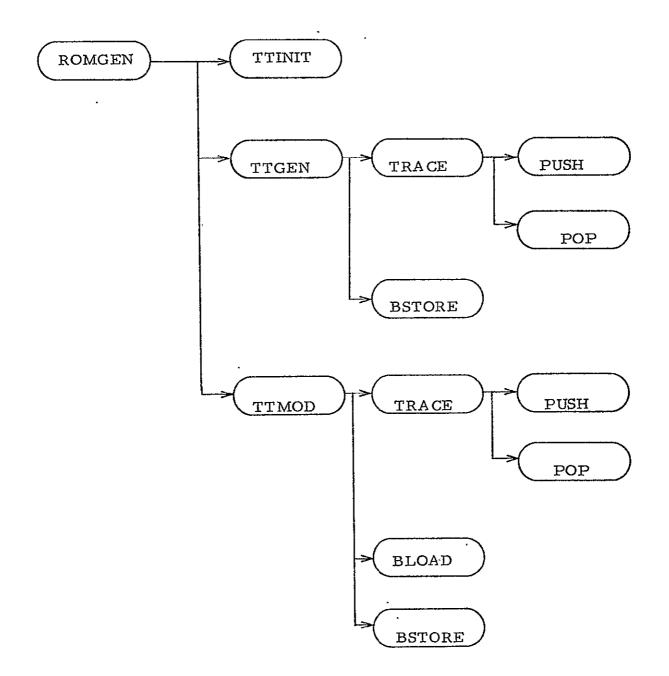



Figure C-6



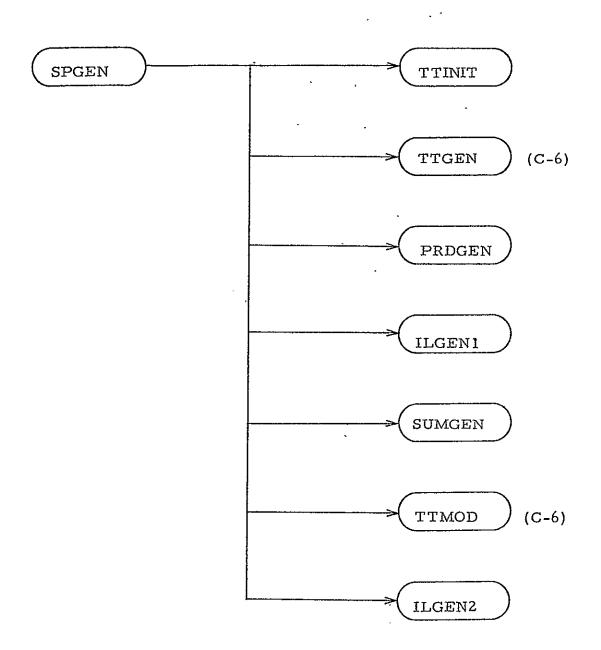



Figure C-7