General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

```
(NASA-CR-147857) THE NUMERICAL BVALUATION N76-30891
OF MAXIMUM-IIKELIHOOD ESTIMATES OF THE
FAFAMSIERS FOR A MIXTURE OF NOFMAL
DISTRIBUTIONS FROM PABTIALLY IDEN,IPIED UncLas
SAMPLES (Houston Univ.) 17 p HC $3.50 G3/65 01742
```

THE NUMERICAL EVALUATION OF MAX
LIKELIHOOD ESTIMATES OF THE PARAMETERS FOR A MIXTURE OF NORMAL DISTRIBUTIONS FROM PARTIALLY IDENTIFIED SAMPLES
HOMER F. WALKER REPORT \$54 JUNE, 1976

PREPARED FOR
EARTH OBSERVATION DIVISION, JSC
UNDER
CONTRACT NAS-9-15CCO

The Numerical Evaluation of Maximum-Likelihood

Estimates of the Parameters for a Mixture of Normal Distributions from Partially Identified Samples

by
Homer F. Walker
Department of Mathematics, University of Houston
Houstor, Texas 77004

June, 1976
Report \#54

The Numerical Evaluation of Maximum-Likelihood
 Estimates of the Parameters for a Mixture of Normal Distributions from Partially Identified Samples

by

Homer F. Walker

Department of Mathematics, University of Houston
Houston, Texas 77004

1. Introduction.

Let π_{1}, \ldots, π_{m} be populations whose multivariate observations in \mathbb{R}^{n} are distributed with respective normal density functions

$$
p_{i}(x)=\frac{1}{(2 \pi)^{n / 2}\left|\Sigma_{i}^{0}\right|^{1 / 2}} e^{-\frac{1}{2}\left(x-\mu_{i}^{0}\right)^{T} \Sigma_{i}^{o-1}\left(x-\mu_{i}^{0}\right)}, i=1, \ldots, m .
$$

If π_{0} is a given mixture of members of these populations, then observations on π_{0} are distributed in \mathbb{R}^{n} with density function

$$
p(x)=\sum_{i=1}^{m} \alpha_{i}^{o} p_{i}(x)
$$

for an appropriate set of proportions $\left\{\alpha_{i}^{0}\right\}_{i=1,-, m}$. These proportions necessarily satisfy ${ }_{i=1}^{m} \alpha_{i}^{0}=1$ and $\alpha_{i}^{0} \geq 0, \quad i=1,-, m$. In this note, we also assume that each α_{i}^{0} is strictly positive.

We address here the problem of numerically approximating the maximumlikelihond estimates of the parameters $\left\{\alpha_{i}^{0}, \mu_{i}^{O}, \Sigma_{i}^{0}\right\}_{i=1, \ldots, m}$ determined by samples of two types. Samples of both types consist of sets $\left\{x_{i k}\right\}_{k=1, \ldots, N_{i}}$
of independent observations on $\pi_{i}, i=0, \ldots, m$. (The sets $\left\{x_{i k}\right\}_{k=1, \ldots, N_{i}}$, $i=1, \ldots, m$, comprise the identified observations of such samples, and such samples are said to be partially identified.) We distinguish samples of the two types according to whether the numbers N_{i} of identified observations contain information about the proportions $\alpha_{i}^{0}, i=1, \ldots, m$. If the numbers of identified observations contain no information about the proportions, then the sample is of the first type; otherwise, the sample is of the second type. The following are examples of how samples of the first and second types, respectively, might be obtained:
(1) For $i=0, \ldots m$, numbers N_{i} are arbitrarily choosen and independent observations $\left\{x_{i k}\right\}_{k=1,-, N_{i}}$ are obtai'ed from π_{i}.
(2) A number K_{0} of observations are obtained from π_{0}. For some $N_{0} K_{0}$, N_{o} of these observations are left unidentified, while the remaining $\mathrm{K}_{\mathrm{o}}-\mathrm{N}_{\mathrm{o}}$ obsezvations are identified. For $\mathrm{i}=1, \ldots, \mathrm{~m}$, a subset $\left\{x_{i k}\right\}_{k=1, \ldots, N_{i}}$ of the identified observations is determfned whose member observations come from π_{i}.

In the following, we consider likelihood equations determined by the two types of samples which are necessary conditions for a maximum-likelihood estimate. These equations, which were derived by Coberly [1], suggest certain successive-approximations iterative procedures for obtaining maximun-likelihood estimates. These procedures, which are generalized steepest ascent (deflected gradient) procedures, contain those of Hosmer [2] as a special case. Using argument: that parallel those of [3], we show that, with probability 1 as
N_{0} approaches infinity (regardless of the relative sizes of N_{0} and $\left.N_{i}, \quad i=1, \ldots, m\right)$, these procedures converge locally to the strongly consistent maximum-1ikelihood estimates* whenever the step-size is between 0 and 2. Furthermore, the value of the step-size which yields optimal local convergence rates is bounded from below by a number which always lies between 1 and 2 .
2. Samples of the first type.

We first assume that numbers $\left\{\mathrm{N}_{\mathrm{i}}\right\}_{\mathrm{i}=0}, \ldots, \mathrm{~m}$ are given and that, for $i=0, \ldots, m, N_{i}$ independent observations $\left\{x_{i k}\right\}_{k=1, \ldots, N_{i}}$ are drawn on π_{i}. The \log-likelihood function for a sample of this type is

$$
L_{1}(0)=\sum_{i=1}^{m} \sum_{k=1}^{N_{i}} \log p_{i}\left(x_{i k}\right)+\sum_{k=1}^{N_{0}} \log p\left(x_{0 k}\right) .
$$

In this expression, the parameter vector θ (with components $\alpha_{i}, H_{i}, \Sigma_{i}$, $1=1, \ldots, \mathrm{~m})$ belongs to the vector space $\alpha \oplus 3)(\oplus \mathcal{\}}$ defined in $[3]$, and the density functions on the right-hand side are evaluated with the true parameter vector 0^{0} (with components $\alpha_{i}^{0}, \mu_{i}^{0}, \Sigma_{i}^{0}, i=1, \ldots, m$) replaced by 0 .

[^0]Differentiating $L_{1}(\Theta)$ and setting its partial derivatives to zero gives the likelihood equations
(1.a) $\quad \alpha_{i}=A_{i}(\theta) \equiv \frac{\alpha_{i}}{N_{0}} \sum_{k=1}^{N_{1}} \frac{p_{i}\left(x_{o k}\right)}{p\left(x_{o k}\right)}$
(1.b) $\mu_{i}=M_{i}(\theta) \equiv\left\{\sum_{k=1}^{N_{i}} x_{i k}+\sum_{k=1}^{N_{O}} x_{o k} \frac{\alpha_{i} p_{i}\left(x_{o k}\right)}{p\left(x_{O k}\right)}\right\} /\left\{N_{i}+\sum_{k=1}^{N_{O}} \frac{\alpha_{i} p_{i}\left(x_{o k}\right)}{p\left(x_{O k}\right)}\right\}$
(1.c) $\quad \Sigma_{i}=S_{i}(\theta) \equiv\left\{\sum_{k=1}^{N_{i}}\left(x_{i k}-\mu_{i}\right)\left(x_{i k}-\mu_{i}\right)^{T}+\sum_{k=1}^{N_{O}}\left(x_{o k}-1 i_{i}\right)\left(x_{o k}-11_{i}\right)^{T} \frac{\alpha_{i} p_{i}\left(x_{o k}\right)}{p\left(x_{o k}\right)}\right) /$

$$
\left\{N_{i}+\sum_{k=1}^{N_{o}} \frac{\alpha_{i} p_{i}\left(x_{o k}\right)}{p\left(x_{o k}\right)}\right\}
$$

for $i=1, \ldots, m$.

We set

$$
A(\theta)=\left(\begin{array}{c}
A_{1}(\theta) \\
\cdot \\
\cdot \\
A_{m}(\theta)
\end{array}\right) \quad, \quad M(\theta)=\left(\begin{array}{c}
M_{1}(\theta) \\
\cdot \\
\cdot \\
\cdot \\
M_{m}(\theta)
\end{array}\right), \quad S(\theta)=\left(\begin{array}{c}
S_{1}(\theta) \\
\cdot \\
\cdot \\
\cdot \\
S_{m}(0)
\end{array}\right)
$$

and define an operator Φ_{ϵ} on $\left.Q(\oplus)\right\}(\oplus \mathcal{S}$ by

$$
\Phi_{\epsilon}(\theta)=(1-\epsilon) \theta+\epsilon\left(\begin{array}{l}
A(\theta) \\
M(0) \\
S(0)
\end{array}\right)
$$

Clearly, for any non-zero c, the likelihood equations are satisficd by a vector $\left.0, G^{\oplus}\right) f\left(\oplus \lambda\right.$ if and only if $\theta=\phi_{\epsilon}(\theta)$.

We consider the following iterative procedure: Beginning with some
starting value $\Theta^{(1)}$, define successive iterates inductively by

$$
\begin{equation*}
\theta^{(j+1)}=\Phi_{C}\left(O^{(j)}\right) \tag{2}
\end{equation*}
$$

for $j=1,2,3, \ldots$. Our local convergence result for this iterative procedure, as stated in the introduction, follows immediately from the theorem below.

Theorem 1: With probability 1 as N_{O} approaches infinity, Φ_{ϵ} is a locala contractive operator (in some norm on $\alpha \oplus)^{\prime} \oplus \mathcal{B}$) near the strongly consistent maximum-1ikelihood estimate whenever $0<\epsilon<2$.

In saying that ϕ_{ϵ} is a locally contractive operator near a point
 a number $\lambda, 0 \leq \lambda<1$, such that

$$
\| \Phi_{\epsilon}\left(\theta^{\prime}\right)-\theta| | \leq \lambda| | \theta^{\prime}-0| |
$$

whencver θ^{\prime} lies sufficiently near θ.

Proof of Theorem 1: Let

$$
\theta=\left(\begin{array}{c}
\bar{\alpha} \\
\bar{\mu} \\
\bar{\Sigma}
\end{array}\right)=\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{m} \\
\vdots \\
\mu_{1} \\
\vdots \\
\mu_{m} \\
\Sigma_{1} \\
\vdots \\
\Sigma_{m}
\end{array}\right)
$$

be the strongly consistent maximum-likelihood estimate. We assume that
$\alpha_{i} \neq 0, i=1, \ldots, \mathrm{~m} . \quad$ (As N_{0} approaches infinity, the probability is 1 that this is the case.) As in [3] it suffices to show that, with probability $1, \nabla \Phi_{\epsilon}(\theta)$ converges to an operator which has operator norm less than 1 with respect to a suitable vector norm on $\pi \oplus{ }^{\prime}(\oplus)$.

Now

$$
\nabla 4_{\epsilon}(0)=(1-\epsilon) I+\epsilon \nabla\left(\begin{array}{l}
A(0) \\
M(0) \\
S(0)
\end{array}\right),
$$

and we write

Define inner products $<,>_{i}^{\prime}$ on $ク \pi,<,>_{i}^{\prime \prime}$ on S, and $<$, on $\alpha \oplus)(\oplus \&$ as in [3]. Setting
$B_{i}(x)=\frac{p_{i}(x)}{p(x)}, \gamma_{i}(x)=\left(x-\mu_{i}\right), \delta_{i}(x)=\left[\sum_{i}^{-1}\left(x-\mu_{i}\right)\left(x-\mu_{i}\right)^{T}-1\right], K_{i}=N_{i}+\mu_{i}^{\prime \prime}{ }_{0}$
for $i=1, \ldots, m$, one calculates

$$
\begin{aligned}
& \nabla-A(0)=I-\left(\begin{array}{lll}
\alpha_{\alpha} \\
\text { diag } \alpha_{i} & \frac{1}{N_{o}} & \sum_{1}^{N_{0}} \\
1
\end{array}\left(\begin{array}{l}
\beta_{1} \\
\vdots \\
\beta_{m}
\end{array}\right)\left(\begin{array}{l}
\beta_{1} \\
\vdots \\
\beta_{m}
\end{array}\right)^{T}\right. \\
& \nabla_{\mu} A(0)=-\left(\begin{array}{llll}
\text { diag } \alpha_{i}
\end{array}\right) \quad \frac{1}{N_{0}} \sum_{1}^{N_{0}}\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{m}
\end{array}\right)\left(\begin{array}{cc}
\left\langle\beta_{1} \gamma_{1}, \cdots\right. & 1 \\
\vdots \\
\left\langle\beta_{m} \gamma_{m},\right. & \\
m
\end{array}\right)^{T} \\
& V_{\Sigma^{\prime}} \Lambda(0)-\left(\begin{array}{llll}
\operatorname{diag} & \alpha_{1}
\end{array}\right) \quad \frac{1}{N_{0}} \sum_{i}^{N_{0}}\left(\begin{array}{l}
\beta_{1} \\
\vdots \\
\beta_{m}
\end{array}\right)\left(\begin{array}{c}
\beta_{1} \delta_{1}, \cdot "_{1} \\
\vdots \\
\beta_{m} \delta_{m}, \cdots \\
m
\end{array}\right)^{\top}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\nabla_{\alpha} M(\theta)=\left(\operatorname{diag} \frac{1}{K_{i}} \sum_{1}^{N_{i}^{0}} \beta_{i} \gamma_{i}\right)-\left(\operatorname{diag} \frac{\alpha_{i}}{K_{i}}\right)\left\{\begin{array}{l}
N_{0} \\
\sum_{1}^{O} \\
\vdots \\
\beta_{m} \gamma_{m}
\end{array}\right)\binom{\beta_{1} \gamma_{1}}{\beta_{m}}^{\beta_{1}}\right\}^{T} \\
& \nabla \underset{\mu}{M}(0)=\left(\operatorname{diag} \frac{\alpha_{i}}{K_{i}} \sum_{1}^{N_{0}} \gamma_{i} \gamma_{i}^{T} \Sigma_{i}^{-1} \beta_{i}\right)-\left(\operatorname{diag} \frac{\alpha_{i}}{K_{i}}\right)\left\{\sum_{0}^{N_{0}}\left(\begin{array}{l}
\beta_{1} \gamma_{1} \\
\vdots \\
\beta_{m} \gamma_{m}
\end{array}\right)\left(\begin{array}{c}
<\beta_{1} \gamma_{1}, \cdot, \\
\vdots \\
\left\langle\beta_{m} \gamma_{m}, \cdots,\right. \\
m
\end{array}\right)^{T}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\nabla_{\alpha} S(0)=\left(\operatorname{diag} \frac{\sum_{i}}{K_{i}} \sum_{1}^{N_{O}} \beta_{i} \delta_{i}\right)-\left(\operatorname{diag} \frac{\alpha_{i} \sum_{i}}{K_{i}}\right)\left\{\begin{array}{l}
N_{0} \\
\sum_{1} \\
\vdots \\
\beta_{m} \delta_{m}
\end{array}\right)\left(\begin{array}{l}
\beta_{1} \delta_{1} \\
\vdots \\
\beta_{m}
\end{array}\right)^{T}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\left(\operatorname{diag} \frac{\alpha_{i} \Sigma_{i}}{K_{i}}\right)\left\{\begin{array}{l}
N_{0} \\
\sum_{1} \\
1 \\
\beta_{m} \delta_{m}
\end{array}\right)\left(\begin{array}{l}
\beta_{1} \delta_{1} \\
\vdots \\
\left\langle\beta_{m} \gamma_{m}, \cdots\right. \\
m
\end{array}\right)^{\prime}\right\}
\end{aligned}
$$

Here, the arguments of β_{i}, γ_{i} and δ_{i} can be determined from the indices of summation, e.g.,

$$
\sum_{1}^{N_{O}} \beta_{i} \gamma_{i}=\sum_{k=1}^{N_{O}^{O}} \beta_{i}\left(x_{o k}\right) \gamma_{i}\left(x_{o k}\right)
$$

Setting

$$
V=\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{m} \\
\beta_{1} \gamma_{1} \\
\vdots \\
\beta_{m} \gamma_{m} \\
\beta_{1} \delta_{1} \\
\vdots \\
\beta_{m} \delta_{m}
\end{array}\right)
$$

one obtains at θ

where
$B_{21}=\left(d \operatorname{iag} \frac{1}{\mathrm{~K}_{\mathrm{i}}} \sum_{1}^{\mathrm{N}_{\mathrm{O}}} B_{i} Y_{i}\right)$
$B_{22}=\left(\right.$ diag $\left.\frac{\alpha_{i}}{K_{i}} \sum_{0}^{N_{0}} \gamma_{i} \gamma_{i}^{T}{ }_{i}^{-1} \beta_{i}\right)$
$B_{23}=\left(\right.$ diag $\left.\frac{1}{K_{i}} \sum_{1}^{N_{0}} \beta_{i} \gamma_{i}<\delta_{i}, \cdot>_{i}^{\prime \prime}\right)$
$B_{31}=\left(\right.$ diag $\left.\frac{\Sigma_{i}}{k_{i}} \sum_{1}^{N_{O}} B_{i} \delta_{i}\right)$
$B_{32}=\left(d i a g \frac{1}{K_{i}}\left\{-\sum_{1}^{N_{i}}\left[(\cdot) \gamma_{i}^{T}+\gamma_{i}(\cdot)^{T}\right]-\alpha_{i} \sum_{1}^{N_{O}}\left[(\cdot) \gamma_{i}^{T}+\gamma_{i}(\cdot)^{T}\right] \beta_{i}+\sum_{i} \sum_{i}^{N_{O}} \delta_{i}<\beta_{i} \gamma_{i}, \cdot,\right\rangle\right)$
$B_{33}=\left(d i a g, \frac{\sum_{i}}{\kappa_{i}} \sum_{i}^{N_{O}} B_{i} \delta_{i}<\delta_{i}, \cdot "_{i}^{\prime \prime}\right)$.

We have assumed that O is the strongly consistent maximum-1ikelihood estimate. Then, regardless of the relative sizes of N_{i} and N_{9}, one can show as in [3] that, with probability $1,\left\{\nabla \epsilon_{e}(0)-E\left(\nabla \phi\left(\theta^{\circ}\right)\right)\right\}$ converges to zero as N_{0} approaches infinity. Now

$$
\begin{aligned}
& E\left(V\left(\begin{array}{l}
A\left(0^{\circ}\right) \\
M\left(0^{\circ}\right) \\
S\left(0^{\circ}\right)
\end{array}\right)\right)=\left(\begin{array}{cccc}
I & 0 & 0 \\
0 & \left(\operatorname{diag} \frac{\alpha_{i}^{O} N_{O}}{K_{i}} I\right) & 0 & \\
0 & 0 & \left(\operatorname{diag} \frac{\alpha_{1} N_{0}}{K_{i}} 1\right)
\end{array}\right) \text {. } \\
& -\left(\begin{array}{ccc}
\left(d i a g \alpha_{i}^{0}\right) & 0 & 0 \\
0 & \left(d i a g \frac{\alpha_{i}^{O} N_{O}}{K_{i}} I\right) & 0 \\
0 & 0 & \left(\operatorname{diag} \frac{\alpha_{i}^{O} N_{0}}{K_{i}} \Sigma_{i}^{e}\right)
\end{array}\right)\left\{\begin{array}{l}
f V(x)<V(x), \cdots p(x) d x) \\
g^{n}
\end{array}\right. \\
& =B(1-Q R) \text {, }
\end{aligned}
$$

where

$$
\begin{aligned}
& B=\begin{array}{ccc}
I & 0 \\
0 & \left(\text { diag } \frac{\alpha_{i}^{0} N_{0}}{K_{i}} 1\right) & 0 \\
0 & 0 & \left(\text { diag } \frac{\alpha_{i}^{O} N_{0}}{K_{i}} 1\right)
\end{array} \\
& \left(\operatorname{diag} \alpha_{i}^{0}\right) 00 \\
& Q=\quad 0 \quad 1 \quad 0 \\
& 0 \quad 0\left(\operatorname{diag} \Sigma_{i}^{0}\right) \\
& R=\int_{\mathbb{R}^{\mathrm{n}}} \mathrm{~V}(\mathrm{x})<\mathrm{V}(\mathrm{x}), \cdot>p(\mathrm{x}) \mathrm{dx} .
\end{aligned}
$$

It was shown in [3] that $Q R$ is positive-definite and symmetric with operator norm less than 1 with respect to the inner product < , , Q^{-1}.> on $\alpha \oplus S(\oplus \mathcal{S}$. It follows that $I-Q R$ is positive-definite and symmetrie with norm less than 1 with respect to $\left\langle\cdot, Q^{-1} \cdot\right\rangle$. Since B and Q commute, $\left.<\cdot, Q^{-1} B^{-1} \cdot\right\rangle$ is an inner product on $\left.O(\oplus)\right)^{*} \oplus S$, and one sees that $\left\langle W, Q^{-1} W\right\rangle \leq\left\langle W, Q^{-1} B^{-1} W\right\rangle$ for $W \in O(\oplus) T(\oplus S$. Consequently, $B(1-Q R)$ is positive-definite and symmetric with norm less than 1 with respect to the inner product $\left\langle\cdot, Q^{-1} B^{i}\right\rangle$. One concludes that

$$
E\left(\nabla \Phi_{\epsilon}\left(\theta^{\circ}\right)\right)=(1-\epsilon) I+\epsilon E\left(V\left(\begin{array}{l}
A\left(\theta^{\circ}\right) \\
M\left(0^{\circ}\right) \\
S\left(0^{\circ}\right)
\end{array}\right),\right.
$$

has norm less than 1 with respect to $\left\langle\cdot, Q^{-1} B^{-1} \cdot\right.$, whenever 0,2 . This completes the proof of the theorem.

We remark that, reasoning as in [3], one may determine a particular value of (the "optimal $c^{\prime \prime}$) which yields, with probability 1 as N_{0} approaches infinity, the fastest asymptotic uniform rates of local convergence of the iterative procedure (2) near θ. This optimal \in is given by

$$
\epsilon=\frac{2}{2-(\tau+\rho)}
$$

where ρ and τ are, respectively the largest and smallest eigenvalues of $B(I-Q R)$ regarded as an operator on $\mathcal{E} \oplus \mathscr{O L} \oplus(\quad(\xi$ is the subspace of \mathcal{E} whose components sum to zero.) Since ρ and τ lie between zero and 1 , one sees that the optimal c is always greater than 1 . If the component populations are "widely separated," then ρ and τ are near zero and,
hence, the optimal ϵ is near 1. If two or more of the component populations are nearly indistinguishable and if N_{o} is large relative to the $N_{i}^{\prime} s$, then T is near zero, and the optimal ϵ cannot be much smaller than 2 .

3. Samples of the second type.

We now assume that K_{o} observations are obtained from the mixture population π_{0}, and that, for some $N_{0}<K_{0}, N_{O}$ of these observations are left unidentified, while the remaining $K_{O}-N_{O}$ observations are identified. For $i=1, \ldots, m$, let $\left\{x_{i k}\right\}_{k=1, \ldots, N_{i}}$ denote the subset of the identified obser atis as which come from π_{i}, and let $\left\{x_{o k}\right\}_{k=1, \ldots, N_{0}}$ be the set of unidentificd observations from π_{0}. The log-likelihood function for this sample is
$L_{2}(\theta)=\log \left\{\frac{\left(\sum_{i=1}^{m} N_{i}\right)!}{N_{1}!\ldots N_{m}!} q_{1}^{N_{1}} \ldots x_{m}^{N_{m}}\right\}+\sum_{i=1}^{m} \sum_{k=1}^{N_{i}} \log p_{i}\left(x_{i k}\right)+\sum_{k=1}^{N_{0}} \log p\left(x_{o k}\right)$
$=\log \left\{\frac{\left(\sum_{i=1}^{m} N_{i}\right)!}{N_{1}!\ldots N_{m 1}!}\right\}+\sum_{i=1}^{m} \sum_{k=1}^{N_{i}} \log \left[\alpha_{i} p_{i}\left(x_{i k}\right)\right]+\sum_{k=1}^{N_{1}^{\prime}} \log p\left(x_{o k}\right)$.

Differentiating L_{2} and setting its partial derivatives to zero gives the likelihood equations

$$
\begin{equation*}
\alpha_{1}=\tilde{A}_{i}(\theta) \equiv \frac{N_{i}}{K_{0}}+\frac{\alpha_{1}}{K_{o}} \sum_{k=1}^{N_{0}} \frac{p_{i}\left(x_{o k}\right)}{p\left(x_{o k}\right)} \tag{3,7}
\end{equation*}
$$

$$
\begin{align*}
& \mu_{i}=M_{i}(\theta) \tag{3.b}\\
& \Sigma_{i}=S_{i}(\theta)
\end{align*}
$$

for $i=1, \ldots, m$.

We set

$$
\tilde{A}(\theta)=\left(\begin{array}{l}
\tilde{A}_{1}(\theta) \\
\vdots \\
\tilde{A}_{m}(\theta)
\end{array}\right)
$$

and define an operator \tilde{q}_{c} on $C(\Theta)^{\prime} \mid \oplus S$ by

$$
\tilde{\Phi}_{\epsilon}(\theta)=(1-\epsilon) \theta+\epsilon\left(\begin{array}{l}
A(\theta) \\
\mathrm{M}(\theta) \\
\mathrm{S}(0)
\end{array}\right)
$$

Our iterative procedure is the following: Beginning with some starting: value $\theta^{(1)}$, define successive iterates ind ctively by

$$
\begin{equation*}
\theta^{(j+1)}=\tilde{\Phi}_{\epsilon}\left(\theta^{(j)}\right) \tag{4}
\end{equation*}
$$

for $j=1,2,3, \ldots$. As before, the desired local convergence result for this iterative procedure follows from the theorem below.

Theorem 2: With probability 1 as N_{ρ} approaches infinity, $\tilde{\Phi}_{\epsilon}$ is a local'y contractive operator (in some norm on $\mathcal{O}(\oplus))(\oplus \mathcal{B}$) near the strongly consistent maximum-1ikelihood estimate whenever $0<\epsilon<2$.

Proof of Theorem 2: If 0 is the strongly consistent maximum-1ikelfhood estimate, then, as before, it suffices to show that, with probability 1 , $\nabla \tilde{\phi}(\theta)$ converges as N_{0} approaches infinity to an operator which has operator norm less than 1 with respect to some vector norm on $G i \theta)(\oplus \rho$. Proceeding as before, one sees that
$\left.\nabla-\tilde{A}(\theta)=\left(\operatorname{diag}\left(1-\frac{N_{i}}{\alpha_{i} K_{o}}\right)\right)-\left(\operatorname{diag} \frac{\alpha_{i}}{K_{o}}\right)\left\{\begin{array}{l}N_{o}^{o} \\ \sum_{1}^{o} \\ \vdots \\ \beta_{m}\end{array}\right)\binom{\beta_{1}}{B_{m}}^{\beta_{1}}\right\}^{T}$
$\nabla-\tilde{A}(0)=-\left(\operatorname{diag} \frac{\alpha_{i}}{K_{0}}\right)\left\{\begin{array}{l}N_{0} \\ \sum_{1}^{0} \\ 1\end{array}\left(\begin{array}{c}\beta_{1} \\ \vdots \\ \beta_{m}\end{array}\right)\left(\begin{array}{c}\left\langle\beta_{1} \gamma_{1},{ }^{\prime}>_{1}^{\prime}\right. \\ \vdots \\ \left\langle\beta_{m} \gamma_{m}, \cdot>_{m}^{\prime}\right.\end{array}\right)^{T}\right\}$

The remaining Fréchet derivatives, i.e., the derivatives at O of M and S with respect to $\bar{\alpha}, \bar{\mu}$, and $\bar{\Sigma}$, are unchanged, except that k_{i} must be replaced by $\alpha_{i} K_{o}$ wherever it appears.

One obtains at Θ
(4) $\quad \nabla\left(\begin{array}{c}\tilde{A} \\ M \\ S\end{array}\right)=\left(\begin{array}{ccc}\left(\operatorname{diag}\left(1-\frac{N_{i}}{\alpha_{i} K_{0}}\right)\right) & 0 & 0 \\ \tilde{B}_{21} & \tilde{B}_{22} & \tilde{B}_{23} \\ \tilde{B}_{31} & \tilde{B}_{32} & \tilde{B}_{33}\end{array}\right)$.

In this expression, each $\widetilde{B}_{j k}$ is the same as the corresponding $B_{j k}$ defined
previously, except that each K_{i} in the latter is replaced by $\alpha_{i} K_{0}$ in the former. One verifies that, with probability 1 as N_{0} approaches infinity, (4) has the same limit as $\tilde{B}(I-Q R)$, where Q and R are as before and $\tilde{B}=\frac{N_{O}}{K_{O}} I$. Repeating our earlier reasoning, one verifies that $\widetilde{B}(I-Q R)$ is positive-definite and symmetric with norm less than 1 with respect to the inner product $\left\langle\cdot, Q^{-1} \tilde{B}^{-1} \cdot\right\rangle$. Hence

$$
\nabla \tilde{\Phi}_{\epsilon}(\theta)=(1-\epsilon)+\epsilon \nabla\left(\begin{array}{l}
\tilde{A}(\theta) \\
M(\theta) \\
S(\theta)
\end{array}\right)
$$

converges to an operator which has norm less than 1 with respect to $<\cdot, Q^{-1} \tilde{B}^{-1}>$ whenever $0<\epsilon<2$. This completes the proof of the theorem.

The remarks concerning the "optimal ϵ " at the conclusion of the preceding section are valid here verbatim.

BIBLIOGRAPHY

1. W. H. Coberly, private communication.
2. D. W. Hosmer, Jr., "A comparison of iterative maximum-likelihood estimates of the parameters of a mixture of two normal distributions under three different types of samples," Biometrics 29 (1973), pp. 761-770.
3. B. C. Peters, Jr., and H. F. Walker, "An iterative procedure for obtaining maximum-1ikelihood estimates of the parameters for a mixture of normal distributions," Report \#51, NASA contract NAS-9-12777, University of Houston, Department of Mathematics.

[^0]: *As in [3], one can show that, given any sufficiently small neighborhood of the true parameters, there is, with probability 1 as N_{0} approaches infinity (regardless of the relative sizes of N_{o} and $N_{i}, i=1, \ldots, m$), a unique solution of the likelihood equations for either type of sample in that neighborhood, and this solution is a maximum-likelihood estimate.

