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ABSTRACT

& statistical approach to sound propagativa is considered
in situatiens where, due to the presence of large pradients of
properties of the medium, the classical (deterministic) trmatment
of wave motion is inadequate. Mathematical methods for wave
motions not restricted teo small wavelengths {analopous to known
methods of quantum mechanics} ave used to fo.mulate & wave theoty
of sound In nonuniform flowa, Honlinear transport equations for
field probabilities are derived for the limiting cuase of noninter-
acting sound waves and it is postulated that such traonsport
equations, appropriatly generalized, mav be used to predict the
gtatistical heh:wior of sound in arbitrary flows.
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T, THTROLUSTION

In this work we address ourselves to the nonclassical treat-
ment of sound as a wave phenomenon. By “nonclassical treatment”
we ghall mean an analvsis based on mathematical methods deweloped
for the description of quantum svatems in cases where wave proper-
ties change appreciably over one wavelength., The objectiver of
this paper are to formulate a2 nuaptum-like stoclastic theory of
sound of arbitrary intensity propacating through a perfect gas
in an arbitrary irrotational flow.

A classical approach to wave analysis is valid only if
|VA|<<1, whare » = wavelength, Acoustics of inhomopeneous moving
fluids conrerns itself usually with the zero~wavelength approxi-
mation, Y2 = 0, An ertension cof the classical approach in the
apirit of the WKB (Wentzel-Kramers-Brillouin) approximation,
Kentzer (1975a), resulted in a dispersion relation valid for small
but not necessarilv negiigible wavelength, However, situations
where |[VA| = 0(1) are not uncommon in high speed flows. This
may be demonstrated on the basis of a plane wave propagating through
a fluld which moves with velocity U, If the speed of sound 18 a,
then the frequency is w = (U+a)k and we have along the wave tra-
jectory (heve ¥ =» 2/} = wavenumber)

G w2
at " T oax = 7 kgy(thad,

s0 that, in this casge,

dac © gk - (Ut

di A 3
ax " Tea 5% (Ura).

Thus the gradient of wavelength is equal to the fractional change
in the propagation velocity, (1Ha), occurring over one wavelength.
Therefore a cilzusical aprrosch is valid 1f dce|(U+a)/V(l+a)|.



There are manv applications, especially in the field of aerodynamic
noise, where this inequality 1s violated. For example, when a sound
wave propagates upstream a small change in (U-a) may produce a large
fractional change in (U-a) especially when U " a or at near-sonic
conditions., Another situation demanding nonclassical treatment is
one in which sound propapates across uoundary lavers or shear layers,
fo. then JU/9x is large. A very special situation avises in turbu-
lent flows where, due to the “graininess' of the medium,3U/dx 1is
very large almost everywhere and may change sign several times in
the distance of one wavelength,., When vorticity or entropy gradients
are pregent, one must consider a more general theory which would
include the interactions of acoustic waves with vorticity and entro-
py waves. Such a theory, based on the full Navier-Stokes equations

of fluid mechanics, waa developed by Fentzer (1975b).

In this paper we limit ourselves to sound propagating through
arbitrary potential (irrotational) fiows of a perfect gas, The
organization of the paper is as follows., First, we determine the
normal modes of the linear part of the equation for the fluctuations
around the instantaneous local mean flow, Sec. II, The normal modes,
which form a doublv infinite set of orthoponal basis wvectors, are
used to form an integral representation of the solution of the non-
linear equation. The exact nonlinear equation is satisfied only
locally on the average under the assumption that the phase of the
fluctuations is a random function. Such a function is then modelled
s0 as to preserve a wave-particle duality. A complex characteristic
function ¢ is introduced in Sec. 111, and an equation in the form
of a nonlinear, convective and dissipative Schrodinger equation for
the characteristic functions 1s derived treating local mean flow
conditions as constant. The Schrodinger~type equation is then
recast in Sec., IV back into a hydrodynamic form by Madelung's
tranasformation in which the new dependent variables are now the

absolute vslue of the magnitude and the phase of the characteris-



tic functions., The square of the mavnitude, "%13’ is then inter~
preted as a probability density and the pradient of the phase, when
multiplied by a constant with units of action Jensity, is inter-
preted as a probability diffusion velocity, In Sec, V we show

how ensemble averapes (moments) of products of wavenumber components
may be defined using the characteristic functions, and how the
moments determine the wavenumber distribution funetions., The dis-
tribution functions, in turn, are used to calrulate local ensemble
averages including the nonlinear wave interaction terms, Exampleu
of averapes of quantities of interest are pgiven., Conclusions are
summarized in Sec. VI, Finallv, in the Appendix, we factor out

the linearized convective wave pauation for the two orthogonal
elgensolutions into two linearlv independent first ovder equations

in the charactervistic form.
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II. EXPANSTION IN TERMS OF NORMAL MODES
NF THE LINEARIZED WAVE EOUATION

Cfonsider an 1{isentrenic flow of a barotropic fluid poverned
by the equations

W, - - 1
el Ty & = ¥ f
f;lt HeLing 0 p o= Y

%% + Gvgp + ﬁaEQ-ﬁ - (),

]
where p » pressure, ¢ = p(p) = mass density, a“= yp/p, ¥ = ratio
of specific heats.

It will be convenient to introduce a velocitv petential
such that the velocity vector u is given by u = V4, and a pressure
potential P defined by P = [dp/o(p) = agl(v-l). Thus

L2 4 UeTu + VP = )

£+ usVP + (y-1)PVeu = 0,
or,

%‘-2-3+ 20700 4 Up = 0O

%% 4+ YdeVP 4+ (Y~1)PV+¥4 = 0,

We introduce now the mean (ensemble average) and fluctuation
vilues, ¢ = § + ¢, P = F + P', The result 1is

{%‘E’-‘R + V3.0V + VP] + [%\Z—Q + VB0V + V4+TVE + VP']

+ [VoeVVe] = O

{-g{- + V8P + (y-1)PV.VE] + [%f:-'-» V3 VP '+ VTP

+ (Y=1)(PT+V¢ + P'V-VH] + [V¢-VP'+ (y-1)P'V-Vé] = 0,



By definition, the averapes of the fluctuations vanigh., We may,
therefore, averape the asbove eauations to ohtain differential

equations for the mean motion:

%%2 4 UFer?h o+ P 4 (NI w0 (1)
&+ vBTF 4 (=1IFTE 4 CRUPT) 4 y=1)(P'9Vd) = 0 (2)

Subtracting Eaqs. (1) and (2) we ubtain the differential equations
for the fluctuations:

%-g-‘-r’» + UeUTA + UP' m [Te VT ][ (V) (4 TYS) )
=14 By (3)
BP' -

S+ Uevpts (Y=-1IPVe it = {—UdePa(y=1)B Vel ]+{(VdeTP")

- e tp T+ (e 1) { (PTUVE) PV VHY ]

= 12 + Bz ((0)

where 1 = ©3 = mean velocity vector. 1In Eqs. (1) and (2) the
averages of the products of the fluctuations are in the nature of
Reynolds stresses. If the energy of the acoustic fluctuations is
small, one may neglect the quadratic terms in (1) and (2) to
facilitate computations, for then Eqs. (1) and (2) uncouple from
Eqs. (3) and (4), and the mean flow becomes independent of the
fluctuations. 1In Eqs. (3) and {4) we have separated by square
brackets terms linear in the fluctuatiens, Ia' and terms quadratic
in the fluctuations, Baa These terms will be referred to as the
wave interaction terms., We note here that Ia vanish if the mean
flow iz uniform, and Ba vanigh if the mean flow is uniform and
the squares of the fluctuations are negiigible, a = 1,2.

We digress now and consider only the linear parts of Eqa. (3)
and (4), that 1s, we set I = B =0, 7 = constant,P = constant,



=y —

In the linear case we mav take as che basic solution

X it | wob=
4 - m.ei(x k nt)l Pt e I,‘j.}i(_“:vt mt),

substitute in Fas. () and (4), take a scalar product of Lq. (1)
with 1§ and solve for the amplitudes 4, and Pg:

s il-. 1 )
,l’}, 11:‘ 1 Yo

F

iuj(ﬁkjiukk

- = 1VP b wf fry =11 4
(y 1"Pkkkk = l‘L

k Fo

k)
Nontrivial solutions of Eq. (5) exist if and onlv 1f the determinant
of the coefficient matriy vanishes, Setting the determinant equal
to zere gives the famfliar dispersion relations for sound, either

in the quadratic or linear form:

O P AN _
(s = Uek)* ® (y=1IPL" = a") (6)
or, tow Uk + ok = Uk + ¢ ak, o) = 1, ¢y = -1 (7)

In the above, k = wavenumber vector, k = |F|, To the two distinct
rooty there correspond two eigenvectors,

1 aef

= {11"'_1}1 Rv‘ 0 n ‘ P‘ ’

= = r‘;_-
“1] 24 {1, 14, n . B 280 {

af P

The amplitudes 4, and P, for the twe modes o = 1,2 are then given by

1
'.bg - "é"l: ps.al, Pg ‘1Aa}"-{120
Superposing the solutioas and assuming a continuous spectrum,
we may write
A_ (k) is (R) _ 18 (k) _

I R,.e dk, P' = «12]Aq(E)Raze ® 4k (6)
ak '

o2 _
L o= L , 8 = x*k -wht.

where f...dE = (Flak, dic,dk
o]

3!
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Returning now to the nenlinear equations for the fluctuations,

Eqs. (3) and (4), we may expand t+ dependent variables using the

is as basis vectors

doubly infinite set of orthoponal vectors Raje
and use the expressinns (6) provided that the wave amplitudes An

are allowed to depend on space and time, A « Aa(i,t.ﬁ). Equations
{3) and (4), multiplied by various powers of A&Raie“ia
ted over E, wvould generate an infinite set of intepro-differential

and integra-

equations for amplitnde correlations of various orders. Due to

the nonlinear terms B@ in (3) and (4), the infinite set would be
open, 1i.e,, there would be always more unknown correlations appear-
ing in the interaction terms than the number of equations. 1In

order to avoid generating an open hierarchy of correlation equations
we assume that the amplitudes %1varv slowly in space and have a
random phase, We will set

- - =~ =1t
Aa(xs tyb} Aﬁ:(k}e %

(7
where ﬁa is a complex random function. The assumption (7) amounts
to modifying the frequency uh.b? an addition of the random function

Uy e With this modification of frequency, substitution of expressions
{6) into Eqs, (3) and (4) pives

k ~ - . e e e
T o - - -
HIEEwEAﬁRalexp[i(x k w t wat)]dk L +8

- 1 maAaRuzexp[i(wE -uwt - wuc)]dE = I, + B,.

We now multiply the firat of the above equations by
aEiAERBlexp[~i(§'ﬁiwét-ﬁét)], and the second by AERBZexp[-i(i'E'
-mét—ﬁét)], subtract, and integrate with respect to k', Due to the
orthogonality of the eigenvectors Rai we have

! 2'.:1 TI.48 oE‘*“ (ol ! k
meB,ABI dk af(I1+Bl) k‘AB(k‘)RBlexP[ i(x-k' wétnwst)]dk'

- f(12+32)Ag(E')n82exp[-1 (§°E'-mét—&':ét) 14k’ (8)
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where A; = complex conjupate of Ay, w' = wlk'), @' = w(k'), If the
amplitudes ABCKJ are known, even anproximatelv, as functions of K,
the indicated integrals mav he evaluated subiject to appropriate

resonance condltions.

We remark here that the approximation (7) accomplishes three
things at the same time, 12, we gatisfv formally the flufd dynamical
equations for the fluctuations, Fas., (3)-(4), bv considering them
to be defining equations for Eu. 22, we can account for the nonlinear
wave interactions in the average at a piven point and instant of
time, and, 3%, we aveid the clesure problem by not using Eqs. (3)-(4)
as kinematical equations for *he time evolutiun of the amplitudes

Aﬁ and their correlations.

Since Iu and Ba are, respectivelv, linear and hilinear in the

fluctuations ¢ and P', it is evident that w, will have separate con-

tributions from Iu (two-wave interactions) :nd from Ba {three-vave
interactions). Duc to the products of exponentials appearing under
the integral signs in Fq.(8) the wave interactions are interpreted
as two- and three~wave resonances, The resonance conditions, ana-
logous to equations of conservation of quasi-particle momentum and

energy, are of the form
- i j + - " o4 ootk
E=F', ma(F:) ma(E) wB(E ) wBJ{ )
for pairs of interacting waves, and
T o= Jetait VAT (LY o g TryLr Lt Tty ™ rot
k = k'+k", wu(k)+wa(k) wB(k )+wﬁ(k )+wY(k )+wY(k )
for triads of interacting waves, n,8,y = 1,2.

A preliminarv studv of wave interaction integrals in Eq. (8)
indicates that, in absence of randomness (Gh = ), only waves with
parallel wavenumber vectors may interact and that an addition of
even the smallest viscous terns would eliminate all interactions
among acoustic waves of finite wavelength. However, the randomness

of the medium (&a 4 1) makes the resonance an effective mechanism



for the rodistribution of the spectral enerpies.

o more easily ve will assume

@ The lowest nrder nontrivial poly-

nomial anproximation ro @H(E) is a8 quadratic expression,

In order to solve Fa. (H) For o

the wavenumber dependence of

| e
.

- ("'A 5 7 i:)"’ [] (9)

B (F) = <y E 0y

i’

okt

which expression has an advantage of beinp analorous to a Hamiltonian

Pl

quadratic in momenta, ard the advantape of affordinp an interpreta-
tion of wave resonances as interactions amony gquasi-particles (wave

packets).

With the expression (Y43 for EMCE) we reduce the intepral Eq. (8)
to an alaebraic equation tfor the complex function (CF - 1£,):

L1k, al (T A0 Y 0o d, et )t e [ =1 (X e bemen i ) Jde

= FQLHn AL E Y enp {1 (ReFm b=, t) 1dR )
x[?szfl;.l(fi)dl?]bl

- n
vhere £, (i) - IAFI” = wavenumber distribution function of the f~ mode.
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T11., CHARACTERISTIC FUMCTIONG

is
i1, -

dk

=

= . .ﬁ."i - . ol £h
Let t}!ﬂ = fAuexp[:{(X k Lu”l: .;.lmt) Jdk = i b

vhere s = E-Eumatawﬂt i the phase. T1f & 18 a tunction of k only,

then
is
L ey (T R TN R
at [V IS Y
o is“ N 4 9 15“ ~
Tip o= AfkA & Y, Wwoow - FETA e dk,
a 34 [} ] 11

Consaquently, to the dispersicon relation

R

X . 0, I
[k (2= E1E<TI0F ] « 47K = 0

there ¢ .vesponds the Jifferential vguation
"‘ - . . L ) 3 T
(L5 4108 + r-18107 170 4 4775 - i
it ' ’
which has to be satisfied by the characteristic Ffunetion wu for

both modes o = 1 and o = 2,

The objections tu the use of the wave eaquation for wu are the
need for two initial conditions tor the characterisite funetion of
each mode and the difftculty of separating the mapnitude and phase
of the charcteristic function in an equation of second order. When
o = 0, the equation reduces to the wave equation. As shown in the
Appendix, if U and a are kept constant the wave equation may be
replaced by a svstem of two equatfons of first order in a characte-

ristic form:

[-g-t-+ (@ + can) e =0, =1, o, =l

1 2

with the arbitrary unit vector n being the space component of the
characterisite normal. This Tesult suppests the following heurias-
tic approach, We first factor out the dispersion relation into



two factors, M ief + Cuak * (tu=1ﬁq)k2, and write k = n+k yhere
no= k/k = unit vector in tie 2irectfon of B, Thus the differential
operator corresponding to ¥ I8 10+, In anticipation of a pgenera~
1ization of the results to vonuniform flows, we will first symmet-
rize the dispersion relati{irn., Subject to verification by experiment,
we ghall take

- - LT

(ﬁ'l’ + E"”,‘ = "‘:““'i + ;‘ia) - [i;.('r”(;eiga)iz] =0

3
d

e

[
iy

t

to which there corressmds the Jd{fferential equation for the charac~
teristic functinn of the -pode:
A
n, 1= . o i -, -
P, bl ST . Ve f 1N = fan*™ 4 petff{y
iBt + 2[U arﬁuu+ ; fl.!h@)] + ',LU-[Q"‘J"U»*‘ n .(d.,va)]

“

) KGR SR S T

This may be rewritten in the ferm of a nonlianear, convective and

disgipative Schrodinger equation,

dy _ .
=" Q1 4 ¢ an) T = Teoft Wi
a a iy

Te(r
Nt Yok ATy )

LR T S )

] . an
ﬂm fur -+ caan]. (10}

We cbserve that Ea plavs the rdle of a diffusion coefficient while
Ca is an analog of the P;anck eonstant # = h/27, The units of Cu
are {froquency)x*(lencth) = (enerpv)»{time)/{mass), or Cu = gpecific
action f{artion per unit mass). By analogv to A, Ca will determine
the local proportienality (scale) factor of wave and mechanical
attributes in the wave-particle dvalitv, Classical limit is ob=-
tained for cu and Ea approaching zero., This limit corresponds to

I = Ba = 0, the case of steadv uniform mean flow with negligibly

o
small amplitudes of the fluctuations.



IV, BROBARILITY TRANSVORT EQUATINNSG

We shatl put now the Schrodineer-tvpe equation (10) for the
complex characteristic function i, Dito Madelung's hvdrodynamical

form, which form remains nenlinzar even when il and a are constant.
ig .
P& 41 2 k- ==
»n " iy ;l'!* [l =
Let W = Tle = wherel' = a8 = fu ["wfp A dk = £ (k)dk

= probabilitv density, and where S " Ued%, V=V ¢ 0 4in peneral.

Note that the units of ¥ are (leanth) & and that ﬁtﬁﬂ » velocity,
Thus V will be referred to as the "probability velocity" with
Ca being the scale factor,

§. -
Substituting the polar form ¢ = P*eis inte Eq. (10), dividing

by wa and separating the veal and {wavinary varts, one obtains
two nonlinear equationsg

3P
__,,_,a -_ i, Y] I = ria F' A
oo (T an+2s, Ty R w e (r UE )

e (1 N L A kT l 3 2 2
- {" (U4c and+l (“ﬂv)+ga[2("£"pa) +Va]}Pq (11)

as

o .- - . . - 1
(1M o419 Telf V4
( caan) Sy = TR Yy

- AEN Y 4 v ."!7
ot 30, AT oo ‘K”Pa

+ o (e ) - vi, (12)
b " r
Equation (11) indicates that the probability density Pc is
not conserved, is convected bv the fluid and diffuses relative to
it wvith the speed of sound modified bv the effects of wave inter-
actions, The ripht-hand-side of (11) represents a sum of dissi-
pation and source terms. The twe modes, a = 1,2, couple only

through the coefficients o and Eq.

Since the phase S5 of the characteristic function has no

phygical meaning, and since onlv its gradient appears in the
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transport eaquation for ﬁl. we take the pradient of Fq, (12) and

obtain
av . .
o= - = i . = 1. .- ; 1..; 2 .2
=+ Y om WU + =7 e +o [2(ERP -
at (U+cuan) “a { (’uvu P "pa} ”u[h( o a) vﬁ]

e T 3 L — ] o?j"?'-i.'. g - T -y I
+ ﬂuql .anuk Vu (u cuan) (H+cuan)x(3xva)

- \frﬁx[\:’x(lj-l-c“an) 1. {13)

We note that the hvdrodvnamic transport equatiens (11) and (13)
are nonlinear even in the case of a stationarv medium, U = 0

and a = constant, and that Pa and Ga are strongly coupled, Due

to the nonlinearitv of the hyvdrodvnamical ferm - f Fgs, (11} und
(13) we feel confident to postulate that these equations hold

even in flows with arbitrary nenconstant U and a (in inhomogeneous

media or nonundform flows)d,

As a congequence of the formulation, the number of dependent
variables is eight, one scalar Pu and one vector Ga for each mode
ow 1,2, However, the spatial distributions of Pa and V‘3 will
provide essential information on the spectral distribution of

the fluctuations of the original twe scalar unknowns.
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V. STATISTICAL PROPERTIES OF FLUCTUATIONS

If we define the averapes of a function of k with Tespect
to the distribution function fﬁ(E) as

JF(k)a " fF(k)fu(k)dk / ffa(k)dk,

then, by repeated differentiation we mav obtaln averapes of a

product of the components of k:

K K
3 K]
DR SO NG U 15 SR DU S
R . . ‘* »
LT S Myt L™ ™
axn LI ] dxn JK L ax
1 N 1 N

where K = m1+...m = the order of the product, and where nye.on

N N
indicates the order in which the space derivatives are taken,

The averages mav be written entirelvy in terms of Pa and VG, €afe,

v
k> =V, <kk>= :_1; _[U?fnr BEnP] 4 <k k>,
i | i ax 1 !
i ij ﬁxi

1f the distribution function f is also a function of x and
t, the above definition of averapes may be considered to hold
locally with x and t as parameters. Since the characteristis
function determines the averages of products of k of all orders,
and the momente of the distribution determine the distribution,
the theory is closed. That is, 1f ((Xe,t.) and its derivatives
evaluated at x, and t, are given, we can determine f(X,,t.,k)
and evaluate the interaction integrals in Eq. (8). With [ and
Ea known, one may use Eqa. (11) and (13) to advance the solution
to the time t,+dt.

A finite number of moments may be used to determine a finite
numbar of terms of an expansion of the distribution function £(k).
Por that purpose the most convenient is the Gram-Charlier expan-~
sion using Grad polynomials (multidimensional Hermite polynomials).
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Such polynomials - 're introduced by H. Grad {1949a) and used in
connection with multidimensional Gram=Charlier expansion to de-
velop his 13-moment approximation to the kinetic theory of pases
(Grad, 1949h)., The convenilence of the Cram-Charlier expansion
lies in the fact that the coefficients of the series are the
averages uf the Hermite polynomials which mav be written in terms
of symmetrized averapes of the products of k. Thus a truncated
Cram-Charlier expansion will produce a distribution function

having a finite number of prescribed moments, We may write

£{1) ngffdk[1+(HIOD+HOID+H001)

Hi LY

M o0 02110100011

+H 00 030 00310t 201 120 102 921 12 110

+.-oo ].

2,,2,.2
where ~a (kSRR
o (94372 17273 T 2 2_,-1
g = ) e y O 5[<k1> + <k + <kp] T,
. LT
e ikt otttk
1444k 1 a1+

= Hermite polynomial of

2 akiakgakg order 1+{+k,

“ijk n <H1jk) = average of Hermite polynomial (symmetrized),

for exampla, HZUO - (20)2[ki - E%}, ﬁ200 - (20)2[<ki> - 5%],
“ 2 T 2
Hijg ™ (2007kky,  Byyo = (20)7{<k ko> + <k, k,>]/2.

is
Tresting the Fourier components ¢G - (Aa/ak)Rale % and

is
P& = AaRaze Cag the quantities to be averaged, and writiag for
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the induced velocity e Vg = 1E¢i. ve have
(3] [ 8 L

<p> w <ud = <P'> = 0,

-2 - -

L/ TA A*E{k)dk

<g%> = <oo*> = L, S
a" Xffa(k)dk

.k k - - 2=
1 % iﬁgﬂAﬁfﬂ(k)dk £re, (k)dk

c'®> m <Gttt - ¥ e lz T
a £t (kydk a” Lff (k)dk
N Lo
TN AXE (K)dE  ESEC(R)dE
<P|2) - <P|P|*> - L) '3'» L - n ) - az{,u.2>.

sza(E)dE. gffa(i)di

If the pressure perturbations are small compared to the mean

pressure, [p'l<<§. we may ige the Binomial Theorem to obtain

p' = %EI‘P'Iﬁ, so that with P = ;%i g we have p' = pP'. Then

i
-2 -
p'?> = <p'pt™> = B 0?5 = (Ba)ieu?s,

| 2 )
For Caussian distribution, £(8) = ()2 ™ sek)dk, ve

have 2 2
Py + P
<Pt2> (f%)3,2 L2, “%‘<p'2> - a2<0'2>‘
Pl + P2 o

Muantities analopous to a squars of the wave ampiitude are

2 e A, s _ A% ~1s& _
- - . ) . - 1
Y Box = TSR e Udk x TfRge Tdk
|a_|?
L

32k2

- 1, -2 -2
dk = ;2[<k ipl + <k 5?2],

3112 = B'8** = P, 4+ P

-2 1 2_ -2
T L 2P+ Py et 0 (PP

A word 1s 1in orvrder 02 the subject of units. The basic
[ s
- a * - 0-
solutions ¢a {Aa/ak)Rale and Pa Aaﬂaze have units of
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1) and 12172, respeztivelv, the same as the original variables,

the velocity potential P and the pressure potential P, Thus the
units of the amplitude A, are LET‘2¢ Superposition of the bhasic
polutions, their integrals over the wavenumher space, Fas,. (6),
results in % and P' becoming, respectively, the veloeity potentisl
density and pressure potenti:l density, with units of L“IT-I and
L_lTnz. Since f = |AI2, the units of the wavenumber distribution
functiov £(k) are LAT“&. and thoge of the probability density Pa
are LTHa. However, the expectation values of any quantity will
have units the same as those of the quantitv, thus the units of
<u'2> are those of velocity square, and those of <p'2> are pressurc
square, We may udd that gze velocity potential 4 and the basic
solution e, " (Aa/ak)ﬁlle ‘! have units of action density as do
the coefficients ca and &“.

The root-mean-square amplitudes, due to a douhle integration
over the wavenumber gpace under the square root sipn, should be
interpreted as densities of wave properties, e,p., vp'p' * = wave

e
u

pressure densitv (units of pressure/volume), vu'u'* = induced

velocity density, ete.
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VI, CoMOLUSTONS

We have found that there exist situations in the acoustics
of nonuniform medi{a where classical treatment hecomes Inadequate.
To treat such gituations guantum-like statistical methods were
used to derive transport enuations for the probablility densities
which determine wavenumber distribution functions, The distri-
bution “unctions permit one to evaluate ensemble averages as well

as spectral distributions of physical quantities of irterest,

The present theorv, it mav be arpued {see, e.p., pp. 52-55
of Xentzer, 1975b), parallels that of quantum mechanics and
ooeys the UNCEPTAINTY PRINCIPLE (existence of indeterminacy of
phase or non-conservation of the number of waves), COMPLEMENTARITY
PRINCIPLE {existence of pairs of confugate variables, such am x
and k, wand t, each of which may be better defined only at the
expense of a corresponding loss in the depree of definition of
the other), and the CORRESPONDENCE PRINCIPLE (results of the

theory reduce to the classical acocustics of homogeneous media)}.

The nonlinear effects manifest themselves in the present
theory in two wavs., First, the hydrodynamic form of the transport
equations containa nonlinear source terms and the nonuniformity
of the medium results Iin the coefficients of the transport equa-
tiong being functions of the dependent variables. Second, the
bilinear terms introduce nonlinearity at the microscopic level
through the wave interaction integrals, Thus each wave of finite

amplitude affects amplitudes of all other waves.

The fact that there exist two orthogonal (independent) wave
solutiong corresponding to a given wavenumber vector requires that
a general solution or its integral representation be a sum of two

independent solutions (two modes of propagation), and that two
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different sets of boundary conditions mav be used for each mode.
Thus it 1is possible to impose a radiation condition at infinitv,
and the coexistence of the two modes at a piven point may be

viewaed as a radiation condition at the microscopic level.
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ATPENNTY

Pauli's Docomposition of the Convective Uave T'auation

Conatder the potentinl equation,

s SRR S 4 7
S 4 20t 4w (ue U] - 2" o,

This 13 equivalent to

- N e . g N
(e b Too1 e & Tpe ™) m(ae™) + (2,5 14 = (Cea?e @it =0 A
it at et

where the subscript { ), denotes that U, 1s treated as a constant

. A -

when operated upon by %if = j? + u.*¥, and a, 19 kept constant when

o d
operated by 7,. Fauation (4.1) {s the wave eauation in the Fuler's

foru for a Fluid particle with an instantaneous velocitv v,

In order to factor out the second order wave operator of
Fq. (A.1) into twe linear averators, we write
. ‘) _
(- 116 = 0, (A.2)
and require that

01¢ = () (A1)

vhere E. ﬁ, and 61 are linear Jifferential operators. Then we

need an operator 62 such that

-
6,6, = (B2 0% = a.
The operators 61 and 62 must be real and must commute., If we choose

than ¥ and i mua: also commute,

Following Pauli (see any book on the quantum theory), we repre-
gent £ and by matrices and ¢ by a vector, Taking
E = 6‘E:- Hea [&‘a + 82 442 1
4D,t * o%13x T T2Wy T T3dzt



where 51.. "&4 are square matrices to be determined, We note that
the operators £ and I commute if U, and a, are treated as constants
and 1if && commutes with &1, 62 and %,. Squaring A and requiring

. 5 3
that !12 - a%ﬁi, we have the following conditionsa

32 " ﬁz b 52 o1 (a unit matrix)

1 2 3 ' ' '
LY Y E LSS M E
Mgy ™ =y, 08, = a0, u2a3 = 00,

3

l!
be the Paull spin matrices, e.g.,

Thus o, &,, and A, anticommute, Choosing & = I, ve assure that
A

&‘ comnutes with 52, and 33, while the latter may be taken to

01 lo -«

[
¥
i)
[

Thus the solution of Eq. (A,3) sliould be represented by a two~component

column vector,

¢
s - 1
¢ “¢2

The system {A.3) is thus equivalent to

.

Do 2 - T E
Gip + aegp)d) *a(Gr - 1500, = 0
(A.5)
D 3 ) ]
L0 T 0 a_ -
(D.t “'az)¢9 + a°(3x + 1 By)¢l 0,

As may be readily verified, as long as u, and a, are kept constant,
¢1 or ¢2 may be eliminated by cross differentiation so that both
compenents of ¢ sarisfy the convective wave equation (A.1l). With
d, and a, kept constant, Eqs. (A.4) are linear and we may consider

é to be a sum of two independent eigensolutions,
+ ¢, » 808, =0,

and the system (A.4) decouples to yield



Dett il Dot
Ly ~tao, and —?-a, =teo, (A:5)
Dot 9z Net az

By permutations of the matrices ﬁl. 62. &3 we may single out
any ore of the three space coordinates x, v, z, Thus a matrix
permutation is cquivalent to a rotation of the coordinate axes by
90°. Since ¢,/dz = n*V 41f n is a unit vector pointing in the
direction of the preferred coordinate (z-axis in this case), then
an arbitrary rotation 2f coordinate axes generalizes (A,5) to

Ded

—"-'1 + a.H'VQ’

3 - -
w [z= 4 (ueta,n)+V]d, = 0
Dot at * 1

1

Do, (A.6)

- b} - -

— e gtV = [ + (ug~a,n)*Vid, = 0

2 3t 2
Dot
- . . d 3 - =

whera n is arbitrary. The expressions Fra 3t (uga,n)*¥ in
Eqs. (A.6) are the total derivatives along the characteristic
rays with n serving as a perameter. Thus d/dt is an Eulerian
derivative written for a nsuedo~particle (a wave packet) moving
with a characteristic velocitvy (group velocity) utan,

Keeping n fixed implies that the solution vector ¢ coincides
with a different pair of eigensolutions at each point in time and
space. If we single out ¢ne such a pair initially and would like
to follow their development in time, we would have to determine
how the unit vector changes in time, These two choices corres-
pond to the Heisenberg's and Schrodinger's pictures of quantum
mechanics. 1f necessary, three equations for the components of
the unit vector n(x,t) may be obtained as follows:

d(n-n)

t-{'t-{ - 1’ dt 0'

and 122 +(zan) 913 +(Eram) e = 1@ (2 16, = 0.

where a = 1,2. The unit vector n may be thus determined as a
function of the solution of the wave equatiom,



In order to derive the nonlinear convective wave equation,
Eq, (A.1), all we need to postulate is that the dispersion relation
for an arbitrary acoustic wave with a wavenumber vector k = kn at
a point (x,t), where the local velocitv and speed of sound are
u(x,t) and a(x,t), 18 W = N in the inertial frame of reference
which, at each point x » X, and time t = t, moves with different
constant velocity G. i_a.ﬁ equal to the local group velocity of
the wave. Requiring that this postulate hold for an arbitrary
vave (arbitrarv n) anvwhere (arbitrary x,) and at all times (arbi~
trary t,), the dispersion relations, either w = ug*k + a.n*k = 0
or (w - i.-ﬁ)z - asz = (0, must be viewed as a result of trans-
forming w = 0 from an inertial freme instantaneously coinciding
with the wuve packet and moving with the group velocity of the
packet to an inerti{al frame common to all wave packets in all
space~time. Thus G.(§,t) and a,{x,t) should be treated as para-
metric constants when the dispersion relation ia replaced by a
differential operator, and should he allowed to become functions
of x and t after the differential expression is expanded. Thus,

¢.g., to the relation (w-ﬁ.-ﬂ)z - a%kz = ) thare corresponds

[1(%—54- 5071 + 229% = 0.

Expanding, we have
2

-(%E + G..v) ('-?\'E + G.'v)d‘ + a%vz¢ - - qz_.':i'z + a%vzd’
2
. 37 - VO - - 292

Dropping the subscript ( ), we obtain the nonlinear potential
equation which, wh..u written in terms of the operator D,/D,.t
takes the sgimple form of Eq. {A.l).
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