General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

PURDJE UNIVERSITY SCHOOL OF AERONAUTICS AND ASTRONAUTICS

West Lafayette, Indianc 47907

Report No. 76-1 NONCLASSTEAL ACOUSTICS by
Czeslaw P. Kentzer
August 23, 1976
supported by
NASA Grant NSG 1293
PURDUE UNIVERSITY

NOTCASSTOAL AOOUSTTCS*

Czeslaw P. Kentzer

School of Aeronauties and Astronautics Purdue University, Lafayote, Il 47907

ABGTRACT

Abstract

A statistical approach to sound propagation is considered In situations where, due to the presence of latge gradients of properties of the medium, the classical (deterministic) traatment of wave motion is inadequate. Mathematical methods for wave motions not restricted to small wavelengths (analogous to known methods of quantum mechanics) are used to formulate a wave theory of sound in nonuntform flows. Nonlinear transport equations for field probabilities are derived for the $11 m i t i n g$ cuse of noninteracting sound waves and it is postulated that such transport equations, appropriatly generalized, may be uged to predict the statistical behowior of sound in arbitrary flows.

[^0]In this work we address ourbelves to the nonclassical treatment of sound as a wave plienomenon. By "nonclassical treatment" we shall mean an analyais based on mathematical methods developed for the description of quantum systems in cases where wave properties change apprectably over one wavelength. The objectiven of this paper are to formulate a quantum-like stochastic theory of soind of arbitrary intensity propagating through a perfect gas in an arditrary irtotational flow.

A classical approach to wave analysis is valid only if $|V \lambda| \ll 1$, where $x=$ wavelength. Acoustics of inhomoreneous moving fluids concerns itself usually with the zerowavelength approximation, $\nabla=0$. An extenston of the classical approach in the apirit of the WKB (Wentzel-Kramers-Brillouin) approximation, Kentzer (1975a), resulted in a dispersion relation valid for small but not necessarily negligible wavelength. fowever, situations where $|\nabla \lambda|=O(1)$ are not uncommon in high speed flows. This may be demonstrated on the basis of a plane wave propagating through a fluid which moves with velocity U. If the speed of sound is a, then the frequency is $w *(U+a) k$ and we have along the wave trafectory (here $\mathrm{F} \cdot 2 \pi / \lambda \cdots$ wavenumber)

$$
\frac{d k}{d t}=-\frac{\partial \omega}{\partial x}=-\frac{\partial}{\partial x}(d+a), \quad \frac{d x}{d t}=\frac{\partial w}{\partial k}=(1+a)
$$

so that, in this case,

$$
\frac{d \lambda}{d x}=\frac{\lambda}{1+a} \frac{\partial}{\partial x}(d+a)
$$

Thus the gradient of wavelength is equal to the fractional change In the propagation velocity, ($4+a$), occurring over one wavelength. Therefore a cisesical aprroach is valle if $\lambda \ll|(U+a) / V(U \pm a)|$.

There are many applications, especially in the field of nerodynamic noise, where this inequality is violated. For example, when a sound wave propagates upstream a small change in ($U-a$) may produce a large fractional change in $(U-a)$ especially when $U \sim$ a or at near-sonic conditions. Another situation demanding nonclassical treatment is one in which sound propagates across woundary layers or shear layers, fo. then $\partial U / \partial x$ is large. A very special situation arises in turbulent flows where, due to the "graininess" of the medium, $\partial \mathrm{J} / \partial \mathrm{x}$ is very large almost everywhere and may change sign several times in the distance of one wavelength. When vorticity or entropy gradienta are present, one must consider a more general theory which would include the interactions of acoustic waves with vorticity and entropy waves. Such a theory, based on the full Navier-Stokes equations of flutd mechanics, was developed by Kentzer (1975b).

In this paper we limit ourselves to sound propagating through arbitrary potential (Irrotational) fiows of a perfect gas. The organization of the paper 18 as follows. First, we determine the normal modes of the linear part of the equation for the fluctuations around the instantaneous local mean flow, Sec. II. The normal modes, which form a doubly infinite set of orthogonal basis vectors, are used to form an integral representation of the solution of the noninear equation. The exact nonlinear equation is satisfied only locally on the average under the assumption that the phase of the fluctuations is a random function. Such a function is then modelled so as to preserve a wave-particle duality. A complex characteristic function ψ is introduced in Sec. IIf, and an equation in the form of a nonlinear, convective and dissipative Schrödinger equation for the characteristic functions is derived treating local mean flow conditions as constant. The Schrödinger-type equation is then recast in Sec. IV back into a hydrodynamic form by Madelung's transformation in which the new dependent variables are now the absolute vilue of the magnitude and the phase of the characteris-
tic functions. The square of the mannitude, lint is then interpreted as a probability density and the sradient of the phase, when multiplied by a constant with units of action densitv, is interpreted as a probability diffution velacity. In sec. V we bhow how ensemble averages (motoents) of products of wavenumber components may be defined using the characteristic functions, and how the moments determine the wavenumber distribution functions. The distribution functions, in turn, are used to calculate local ensemble averages including the nonlinear wave interaction terms. Examples of averages of quantitles of interest are stven. Conclusions are summarized in Sec. VT. Fjnalls, in the Appendix, we factor out the Incarized convective wave equat ion for the two orthoxonal efgensolutions into two innealy independent first order equations in the characteristic form.
11. EXIANSTON IN TERMS OF NORMAL MODES of the linearized wave eotation

Consider an isentrenic flow of a barotropic fluid governed by the equations

$$
\begin{aligned}
& \frac{\partial \vec{u}}{\partial t}+\vec{u} \cdot \nabla \vec{u}+\frac{1}{\partial} \eta p=0 \\
& \frac{\partial p}{\partial t}+\vec{u} \cdot \theta p+a^{2} v \cdot \vec{u}=0
\end{aligned}
$$

where $p *$ pressure, $p * p(p) \geqslant$ mass density, $a^{2}=\gamma p / 0, \gamma=$ ratio of specific heats.

It will be convenient to introduce a velocity petential such that the velocity vector \bar{u} is given by $\bar{u}=V \phi$, and a pressure potential p defined by $p=f d p / o(p)=a^{2} /(\gamma-1)$. Thus

$$
\begin{gathered}
\frac{\partial \ddot{u}}{\partial t}+\bar{u} \cdot \nabla \cdot \nabla u+\nabla P=0 \\
o r, \quad \frac{\partial P}{\partial t}+\bar{u} \cdot \nabla P+(Y-1) P \nabla \cdot \bar{u}=0 \\
\\
\frac{\partial \nabla \phi}{\partial t}+\nabla \phi \cdot \nabla \nabla \phi+\nabla P=0 \\
\\
\frac{\partial P}{\partial t}+\nabla \phi \cdot \nabla P+(Y-1) P \nabla \cdot \nabla \phi=0 .
\end{gathered}
$$

We introduce now the mean (ensemble average) and fluctuation values, $\phi=\bar{\phi}+\phi, P=\bar{p}+p^{\prime}$. The result is

$$
\begin{aligned}
& {\left[\frac{\partial \nabla \bar{\Phi}}{\partial t}+\nabla \Phi \cdot \nabla \nabla \bar{\phi}+\nabla \bar{P}\right]+\left[\frac{\partial \nabla \phi}{\partial t}+\nabla \bar{\phi} \cdot \nabla \nabla \phi+\nabla \phi \cdot \nabla \nabla \bar{\phi}+\nabla P^{\prime}\right]} \\
& +[\nabla \phi \cdot \nabla \nabla \phi]=0 \\
& {\left[\frac{\partial \bar{P}}{\partial t}+\nabla \bar{\phi} \cdot \nabla \bar{P}+(\gamma-1) \bar{P} \nabla \cdot \nabla \bar{\phi}\right]+\left[\frac{\partial P^{\prime}}{\partial t}+\nabla \bar{\rho} \cdot \nabla P^{\prime}+\nabla \phi \cdot \nabla \vec{P}\right.} \\
& \left.\quad+(\gamma-1)\left(\bar{P} \nabla \cdot \nabla \phi+P^{\prime} \nabla \cdot \nabla \bar{\phi}\right)\right]+\left[\nabla \phi \cdot \nabla P^{\prime}+(\gamma-1) P^{\prime} \nabla \cdot \nabla \phi\right]=0
\end{aligned}
$$

By definition, the averages of the fluctuations vanish. We miny, therefore, average the above equations to ohtain differential equations for the mean motion:

$$
\begin{align*}
& \frac{\partial V \bar{\phi}}{\partial t}+q \phi \cdot v \bar{p}+\bar{p}+(\bar{p} \cdot \sigma \bar{p}) \cdot n \tag{1}\\
& \frac{\partial \bar{p}}{\partial t}+V \bar{q} \cdot \nabla \bar{p}+(\gamma-1) \bar{p} q \cdot \vec{p}+(\overline{\partial d \cdot v p \prime})+(\gamma-1)\left(\overline{p^{\prime} \nabla \cdot V \phi}\right)=0 \tag{2}
\end{align*}
$$

Subtracting EqS. (1) and (2) we uhtain the differential equations for the fluctuations:

$$
\begin{align*}
& =\vec{I}_{1}+\vec{b}_{1} \tag{3}\\
& \frac{\partial P^{\prime}}{\partial t}+\bar{U} \cdot \nabla P^{\prime}+(\gamma-1) \bar{P} \nabla \cdot \nabla \psi=\left[-V A \cdot V \bar{P}-(\gamma-1) P^{\prime} \bar{V} \cdot \overline{\mathrm{U}}\right]+\left[\overline{\left(V, \bar{V} \cdot \nabla P^{\prime}\right)}\right.
\end{align*}
$$

$$
\begin{align*}
& =\mathrm{I}_{2}+\mathrm{B}_{2} \tag{4}
\end{align*}
$$

where $\overline{\mathrm{U}}=\Gamma \Phi=$ mean velocity vector. In Eqs. (1) and (2) the averages of the products of the fluctuations are in the nature of Reynolds stresses. If the energy of the acoustic fluctuations is small, one may neplect the quadratic terms in (1) and (2) to facilitate computations, for then Eqs. (1) and (2) uncouple from Eqs. (3) and (4), and the mean flow becomes independent of the fluctuations. In Eqs. (3) and (4) we have separated by square brackets terms 1 inear in the fluctuations, I_{α}, and terms quadratic in the fluctuations, B_{α}. These terms will be referred to as the wave interaction terms. We note here that I_{α} vanish if the mean flow is uniform, and B_{α} vanish if the mean flow is uniform and the squares of the fluctuations are negigible, $\alpha=1,2$.

We digress now and consider only the linear parts of Eqs. (3) and (4), that is, we set $I_{\alpha}=B_{\alpha}=0, \bar{U}=$ constant, $\bar{P}=$ constant.

In the linear case we may take as che baste solute ton

$$
\phi-\phi_{0} e^{i\left(\bar{x} \cdot \bar{k}-\omega_{0} t\right)}, \quad \rho \quad=t_{0} e^{i(\bar{x} \cdot \bar{x}-\cos t)},
$$

substitute in Fins. (3) and (4), take a scalar product of Eq. (3) with II and solve for the amplitudes t_{0} and r_{0} :

$$
\left|\begin{array}{cc}
0_{j}\left(\cos _{j}=U_{k} k_{k} k_{j}\right), & k_{j}^{0_{i}} \tag{3}\\
-(r-1) \bar{p}_{k} k_{k} & ,-1\left(\omega_{0}-U_{k} k_{k}\right)
\end{array}\right|\left\{\begin{array}{l}
t_{0} \\
P_{0}
\end{array}\right\}=0 .
$$

Nontrivial solutions of Eq. (5) exist if and only if the determinant of the coefficient matrix vanishes. Setting the determinant equal to zero gives the fandiar dispersion relations for sound, either In the quadratic or linear form:

$$
\begin{equation*}
(w-\tilde{U} \cdot \overline{\mathrm{k}})^{2}=(\gamma-1) \overline{\mathrm{p}} \mathrm{k}^{2}=a^{2} \mathrm{z}^{2} \tag{6}
\end{equation*}
$$

or, \quad a $\quad \bar{u} \cdot \bar{k} \pm a k=\bar{u} \cdot \bar{k}+c_{i} a k \cdot c_{1}=1, c_{2}=-1$.
In the above, \bar{k} wavenumber vector, $k=|\bar{k}|$. To the two distinct roots there correspond two eigenvectors,

$$
p_{1\}}=\{1,-1\}, \quad R_{2 j}=\{1,1\}, \quad R_{\alpha j} R_{p j}=2 \delta_{\alpha p}= \begin{cases}1 & \alpha=p_{1} \\ 0 & \alpha \neq p\end{cases}
$$

The amplitudes ϕ_{0} and P_{0} for the two modes $a=1,2$ are then given by

$$
\phi_{0}=\frac{A_{a}}{a k} p_{\alpha 1}, \quad F_{0}=-1 A_{\alpha} \mu_{\alpha 2} .
$$

Superposing the solutions and assuming a continuous spectrum, we may write

$$
\begin{equation*}
\phi=\Sigma \int \frac{A_{\alpha}(\bar{k})}{a k} R_{\alpha 1} e^{i s_{\alpha}(\bar{k})} d \bar{k}, \quad \bar{p}^{\prime}=-i \Sigma \int A_{\alpha}(\bar{k}) R_{\alpha 2} e^{1 s_{\alpha}(\bar{k})} d \bar{k} \tag{6}
\end{equation*}
$$

where $\int \ldots \mathrm{d} \overline{\mathrm{k}}=\iint_{\int_{0}}^{\infty} \mathrm{dk}_{1} \mathrm{dk}_{2} \mathrm{dk}_{3}, \Sigma=\sum_{\alpha^{m} 1}^{\alpha=2}, s_{\alpha}=\bar{x} \cdot \bar{k}-\omega_{\alpha} t$.

Returning now to the nonlinear equations for the fluctuations, Eqs. (3) and (4), we may expand $t^{\prime \prime}$, dependent varlables using the doubly infinite set of orthogonal vectors $R_{\alpha j} e^{i s}$ as basis vectors and use the expresstnns (6) provided that the wave amplitudes A_{α} are allowed to depend on space and $t 1 m e, \Lambda_{1}=A_{\alpha}(\bar{x}, t, \bar{k})$. Equations (3) and (4), multiplied by varlous yowers of $A_{a}^{*} R_{d i} e^{-1 s}$ and integram ted over \bar{k}, would gencrate an infinite set of intearo-differential equations for amplitude correlations of various orders. Due to the noninear terms $B_{i y}$ in (3) and (4), the infinite set would be open, $1 . e$. , there would be always more unknown correlations appearing in the interaction terms than the number of equations. In order to avold generating an open hierarchy of correlation equations we assume that the amplitudes A vary slowly in apace and have a random phase. We will set

$$
\begin{equation*}
A_{\alpha}(\bar{x}, t, \bar{L}) \quad A_{\bar{x}}(\bar{k}) e^{-1 \dot{G}_{\alpha} t} \tag{7}
\end{equation*}
$$

where $\tilde{\omega}_{\alpha}$ is a complex random function. The assumption (7) amounts to modifying the frequency $u_{\alpha} b ;$ an addition of the random function $\tilde{\omega}_{\alpha}$. With this modification of frequency, substitution of expressions (6) Into Eqs. (3) and (4) gives

$$
\begin{aligned}
& \Sigma \int \frac{\bar{k}}{a k} \tilde{\omega}_{\alpha} A_{\alpha} R_{\alpha 1} \exp \left[1\left(\bar{x} \cdot \bar{k}-\omega_{\alpha} t-\tilde{\omega}_{\alpha} t\right)\right] d \vec{k}=\bar{I}_{1}+\bar{B}_{1} \\
- & \Sigma \int \tilde{\omega}_{\alpha} A_{\alpha} R_{\alpha 2} \exp \left[1\left(\bar{x} \cdot \bar{k}-\omega_{\alpha} t-\tilde{\omega}_{\alpha} t\right)\right] d \bar{k}=I_{2}+B_{2} \cdot
\end{aligned}
$$

We now multiply the first of the above equations by $\left.a \bar{k}^{\prime}, A_{B}^{*} R_{B 1} \exp \left[-i\left(\bar{x} \cdot \bar{k}^{\prime}-\omega\right)_{B}^{\prime} t-\tilde{\omega}_{B}^{\prime} t\right)\right]$, and the second by $\Lambda_{B}^{*} R_{B 2} \exp \left[-1\left(\bar{x} \cdot \bar{k}^{\prime}\right.\right.$ $\left.\left.-\omega_{B}^{\prime} t-\tilde{\omega}_{\beta}^{\prime} t\right)\right]$, aubtract, and integrate with respect to \bar{k}^{\prime}. Due to the orthogonality of the eigenvectors $R_{\alpha!}$ we have

$$
\begin{align*}
2 \int \tilde{\omega}_{B}^{\prime},\left.A_{B}\right|^{2} d \bar{k}= & a f\left(\overline{\mathrm{I}}_{1}+\bar{\beta}_{1}\right) \cdot \frac{\bar{k}_{k}^{\prime}}{\prime^{\prime}} A_{B}^{*}\left(\bar{k}^{\prime}\right) R_{B 1} \exp \left[-1\left(\bar{x}^{\circ} \bar{k}^{\prime}-\omega_{B}^{\prime} t-\tilde{\omega}_{B}^{\prime} t\right)\right] d \bar{k}^{\prime} \\
& -\int\left(I_{2}+B_{2}\right) A_{\hat{B}^{\prime}}^{\prime}\left(\bar{k}^{\prime}\right) R_{B 2} \exp \left[-1\left(\bar{x} \cdot \bar{k}^{\prime}-\omega_{B}^{\prime} t-\tilde{\omega}_{B}^{\prime} t\right)\right] d \bar{x}^{\prime} \tag{8}
\end{align*}
$$

where $A_{\bar{E}}^{*}=$ complex conjugate of $A_{\bar{k}}, j^{\prime}-\omega\left(\bar{k}^{\prime}\right), \bar{\omega}^{\prime}=\omega\left(\bar{k}^{\prime}\right)$. If the amplitudes $A_{B}(\bar{k})$ are known, even nuproximatelv, ns functions of \vec{k}, the indicated integrals mav be evaluated sulifect to appropriate resonance coridtions.

We remary here that the approximation (7) accomplishes three things at the same time, 12 , we satisfy formally the fluid dynamical equations for the fluctuations, Fris. (3)-(4), by considerine them to be definins, equations for $\omega_{6}, 2^{\circ}$, we can account for the nonlinear wave interactions in the average at a siven point and instant of time, and, 3n, we avold the closure problem by not usins. Eqs. (3)-(4) as kinematical equations fo* the time evolutiun of the amplitudes A_{α} and their correlations.

Since I_{α} and B_{α} are, respectively, 11 near and bilinear in the fluctuations ϕ and p^{*}, it is evident that ω_{H} will have separate contributions from $I_{i f}$ (two-wave interactions) and from B_{a} (three-wave interactions). Duc to the products of exponentials appearink under the integral signs in Eq. (8) the wave interactions are interpreted as two- and three-wave resonances. The resonance conditions, analogeus to equations of conservation of quasi-particle momentum and energy, are of the form

$$
\bar{k}=\bar{k}^{\prime}, \quad \omega_{\alpha}(\bar{k})+\tilde{\omega}_{\alpha}(\bar{k})=\omega_{\beta}\left(\bar{k}^{\prime}\right)+\tilde{\omega}_{\beta}\left(\bar{k}^{\prime}\right)
$$

for pairs of interacting waves, ard

$$
\bar{k}=\bar{k}^{\prime}+\bar{k}^{\prime \prime}, \omega_{a}(\bar{k})+\tilde{w}_{\alpha}(\bar{k})=\omega_{B}\left(\bar{k}^{\prime}\right)+\tilde{\omega}_{\beta}\left(\bar{k}^{\prime}\right)+\omega_{Y}\left(\bar{k}^{\prime \prime}\right)+\tilde{w}_{Y}\left(\bar{k}^{\prime \prime}\right)
$$

for triads of interacting waves, $x, B, Y=1,2$.

A preliminary studv of wave interaction integrals in Eq. (8) indicates that, in absence of randomess ($\tilde{\omega}_{\alpha}=0$), only waves with parallel wavenumber vectors may interact and that an addition of even the smallest viscous tertis would eliminate all interactions among acoustic waves of finite wavelength. However, the randomness of the medium $\left(\tilde{\omega}_{\alpha} \neq 0\right)$ makes the resonance an effective mechanism
for the redistribution of the gpectial encrgies.
In order to solve lin. (8) for more easily we will assume the wavenumber devendence of me the lowest order nontrivial poly-

$$
\begin{equation*}
\omega_{\mathrm{B}}(\tilde{k})=\left\langle\omega_{p}+\frac{k^{2}}{k^{2}}=\left(r_{p}-t^{5}\right) t^{2}\right. \tag{9}
\end{equation*}
$$

which expression has an advantace of beins ansloyous to a Hamiltonian quadratic in monenta, ard the advantape of affording, an interpreta* tion of wave resonaices as interactions amons duasi-particles (wave packets).

With the expression (Y) for $\bar{G}(\overrightarrow{\mathrm{E}})$ we reduce the integral Eq. (8) to at algebraic equat ton tor the Eomnlex function $\left(C_{R}-1 E_{G}\right)$:

$$
\begin{aligned}
& \times\left[2 \int \mathrm{t}^{2} \mathrm{f}_{\mathrm{E}}(\mathrm{~F}) \mathrm{dF}\right]^{-1}
\end{aligned}
$$

where $f_{B}(\bar{k})+\left|A_{B}\right|^{n}$ wavenumber distribution function of the B mode.
where $g_{a}=\bar{x} \cdot \bar{k}-w_{y} t-w_{a} t$ is the phase. If $A_{i s}$ is a finction of \bar{k} only, then

Consequently, to the disperston relation

$$
\left.[u+2)(c-1 c) k^{2}+\pi \cdot \overrightarrow{1}\right]^{2}-a^{2} b^{2}=0
$$

there caresponds the differential equation

$$
\left.\left[1\left(\frac{\partial}{3 t}+\pi\right)+b\right)+(r-16)^{2}\right)^{2} n_{4}^{2}+a^{2} n_{4} \cdot \text { n. }
$$

which las to be satisfied by the characteristic function ${ }_{\text {w }}$ for both modes $x=1$ and it 2 .

The objections to the use of the wave equation for ware the need for two initial conditiome tor the characterisitc function of each mode and the difficulty of separating the manitude and phase of the charcteristic function in an equation of second order. When $\tilde{\omega}=0$, the equation reduces to the wave equation. As shown in the Appendix, if \bar{U} and a are kept constant the wave equation may be replaced by a system of two equations of first order in a characteristic form:

$$
\left[\frac{\partial}{\partial t}+\left(\overline{\mathrm{U}}+c_{\alpha} a \bar{n}\right) \cdot \hat{v}\right] \jmath_{a}=0, \quad c_{1}=1, \quad c_{2}=-1
$$

With the arbitrary unit vector \vec{n} being the space component of the characteribitc normal. This result suggests the following heuristic approach. We first factor out the dispersion relation into
 $\bar{n}=\bar{k} / k=$ unit vector in the sirection of \tilde{k}. Thus the differential operator correspondins to k is $-1 n \cdot$. In anticipation of a seneralization of the results to nonumform flows, we will first symmetrize the dispersion relatim. sinflect to verification by experiment, we shall take

$$
u_{a}+\frac{1}{2}(\bar{n} \cdot \bar{k}+\bar{k} \cdot \overline{1})=\frac{r_{1}}{\overline{2}}(a-\bar{k}+\bar{n} \cdot \vec{k} a)-\left[\bar{k} \cdot\left(r_{a}-1 \xi_{\alpha}\right) \bar{k}\right]=0
$$

to which there corresunds the iffetential equation for the sharacteristic function of the , wode:

This may be rewritten in the form of a nonlinear, convective and dissipative Schrödinger equation.

$$
\begin{align*}
& -\frac{1}{2} \psi_{\alpha} v \cdot\left[\bar{\Pi}+c_{\alpha} a \overline{]}\right] . \tag{10}
\end{align*}
$$

We observe that ξ_{α} plays the role of a diffusion coefficient while ζ_{α} is an analog of the Planck constant $\hbar=h / 2 \pi$. The units of ζ_{α} are (Eraquency) $\times(\text { lensth })^{2}$ - (energy) $\times($ time $) /\left(\right.$ mass), or $\zeta_{\alpha}=$ specific action (artion per unit mass). By analogy to \hbar, ζ_{α} will determine the local proportionality (scale) factor of wave and mechanical attributes in the wave particle duality. Classical limit is obtained for ζ_{α} and ξ_{α} approaching zero. This limit corresponds to $I_{\alpha}=B_{\alpha}=0$, the case of steady uniform mean flow with negigibly small amplitudes of the fluctuations.

IV. PROBABILITY THAVGMMET EDHATIONS

We shall put now the Schrodinger-tvie equation (10) for the complex characteristic function into Madeluns's hvdrodynamical form, which form rematns nonlinat even when it and a are constant.
 $=$ probability density, and where $S_{i s}=\int \vec{V} \cdot d \vec{x}, v \times \bar{V} \neq 0$ in general. Note that the units of \bar{v} are (lensth) ${ }^{-1}$ and that \bar{v}_{a} velocity. Thus \bar{V} will be referen to as the "utobability velocity" with ζ_{a} being the scale factor.

Substituting the volar form $\mathrm{F}_{\mathrm{F}} \mathrm{p}^{\prime} \mathrm{e}^{\mathrm{tS}}$ into Eq. (10), dividing by ψ_{α} and separatins, the reti and fmasinary warts, one obtains two nonlinear equations

$$
\begin{align*}
& \frac{\partial P_{\alpha}}{\partial t}+\left(\bar{U}+c_{\alpha} a \bar{n}+2 G_{\alpha} \bar{v}\right) \cdot V F_{\alpha}=\because \cdot\left(t F_{\alpha}^{t}\right) \tag{11}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial S_{\alpha}}{\partial t}+\left(\overline{\mathrm{u}}+c_{\alpha} \bar{n}\right) \cdot \nabla S_{\alpha}=7 \cdot\left[E_{\alpha} \bar{v}_{\alpha}+\frac{1}{2} \epsilon_{1 \alpha} \cdot \ln \Gamma_{\alpha}\right]+\xi_{\alpha} \overline{\mathrm{V}}_{\alpha} \cdot \nabla \ln P_{\alpha} \\
& +c_{d q}\left(\frac{1}{4}\left(\ln r_{i t}^{\prime}\right)^{2}-v_{i t}^{2}\right] \text {. } \tag{12}
\end{align*}
$$

Equation (11) Indicates that the probability density P_{α} is not conserved, is convected by the fluid and diffuses relative to It with the speed of sound modified bv the effects of wave interactions. The right-hand-side of (11) represents a sum of dissipation and source terms. The two modes, $a=1,2$, couple only through the coefficients C_{a} and F_{α}.

Since the phase S of the characteristic function has no physical meaning, and since only its gradient appears in the
transport equation for $F_{\text {ri }}$, we take the sradient of Fq. (12) and obtailı

$$
\begin{align*}
& -\vec{v}_{t x} \times\left[v \times\left(\overline{\mathrm{u}}+\mathrm{c}_{\mathrm{n}} a \bar{n}\right)\right] . \tag{13}
\end{align*}
$$

We note that the hivdrodynamic transport equations (11) and (13) are nonlinear even in the case of a stationary medium, $\overline{\mathrm{U}}=0$ and $a=$ constant, and that P_{α} and \bar{V}_{a} are strongly coupled. Due to the nonlinearity of the hydrodwnamical form firs. (11) and (13) we feel confident to postulate that these equations hold even in flows with arbitrary nonconstant \hat{v} and a (in inhomogeneous media or nonuniform flows).

As a consequence of the formulation, the number of dependent variables is eight, one scalar $P_{\text {, }}$ and one vector \bar{v}_{α} for each modes $\alpha \neq 1,2$. However, the spatial distributions of P_{α} and \bar{v}_{α} will provide essential infomation on the spectral distribution of the fluctuat ions of the original two scalar unknowns.

V. STATISTICAI. PROPERTIES OF FLUCTUATIONS

If we define the averages of n function of \vec{k} with respect to the distribution function $f_{i x}(\bar{k})$ as

$$
-F(\bar{k})_{\alpha}=\int F(\bar{k}) f_{\alpha}(\vec{k}) d \ddot{k} / \int f_{\alpha}(\tilde{k}) d \bar{k}
$$

then, by repeated differentlation we mav obtain averapes of a product of the components of \bar{k} :
where $k=m_{1}+\ldots m_{N}=$ the order of the product, and where $n_{1} \ldots n_{N}$ indicates the order in which the space derfvatives are taken, The averages may be written entirely in terms of P_{α} and $\vec{v}_{\alpha}, e . g .$,

$$
\left\langle k_{i}\right\rangle=v_{i},\left\langle k_{i} k_{j}\right\rangle=\frac{\partial v_{1}}{\partial x_{i}}+\frac{1}{2}\left[v_{1} \frac{\partial \ln p}{\partial x_{j}}+v_{i} \frac{\partial \ln p}{\partial x_{1}}\right] \nless\left\langle k_{j} k_{1}\right\rangle
$$

If the distribution function f is also a function of \bar{x} and t, the above definition of averages may be considered to hold locally with \bar{x} and t as parameters. Since the characteristic function determines the averages of products of \bar{k} of all orders, and the moments of the distribution determine the distribution, the theory is closed. That is, if $\psi\left(\bar{x}_{0}, t_{0}\right)$ and its derivatives evaluated at \bar{x}_{0} and t_{0} are given, we can determine $f\left(\bar{x}_{\bullet}, t_{0}, \bar{k}\right)$ and evaluate the interaction integrals in Eq. (8). With ζ_{α} and ξ_{α} known, one may use Eqs. (11) and (13) to advance the solution to the time $t_{0}+d t$.

A finite number of moments may be used to determine a finite number of terms of an expansion of the distribution function $f(\bar{k})$. For that purpose the most convenient is the Gram-Charlier expansion using Grad polynomials (multidimensional Hermite polynomials).

Such polynomials re introduced by 11 . Grad (1949a) and used in connection with multidimensional Gram-Charlier expansion to develop his 13 -moment approximation to the kinetic theory of gases (Grad, 1949b). The convenience of the Cram-Charlier expansion lies in the fact that the coefficient io of the series are the averages of the Hermite polynomials which may be written in terms of symmetrized averages of the products of \bar{k}. Thus a truncated Gram-Charlier expansion will produce a distribution function having a finite number of prescribed moments. We may write
where

$$
g=\left(\frac{\sigma}{\pi}\right)^{3 / 2} e^{-\sigma\left(k_{1}^{2}+k_{2}^{2}+k_{3}^{2}\right)}, \sigma=\frac{3}{2}\left[\left\langle k_{1}^{2}\right\rangle+\left\langle k_{2}^{2}\right\rangle+\left\langle k_{3}^{2}\right\rangle\right]^{-1}
$$

$$
H_{i j k}=\frac{\bar{H}_{1 j k}{ }^{H} 1 j k}{i!j!k!(2 \sigma)^{1+j+k}}
$$

$$
H_{11 k}(\bar{k})=(-1)^{i+j+k} \frac{1}{g} \frac{\partial^{1+j+k} g}{\partial k_{1}^{1} \partial k_{2}^{j} \partial k_{3}^{k}} \text { - Hermite polynomial of }
$$

$$
\bar{H}_{1 j k}=\left\langle H_{i j k}\right\rangle=\text { average of Hermite polynomial (symmetrized), }
$$

$$
\text { for example, } H_{200}=(2 \sigma)^{2}\left[k_{1}^{2}-\frac{1}{2 \sigma}\right], \quad \bar{H}_{200}=(2 \sigma)^{2}\left[\left\langle k_{1}^{2}\right\rangle-\frac{1}{2 \sigma}\right]
$$

$$
\mathrm{H}_{110}=(2 \sigma)^{2} k_{1} k_{2}, \quad \bar{H}_{110}=(2 \sigma)^{2}\left[\left\langle k_{1} k_{2}\right\rangle+\left\langle k_{2} k_{1}\right\rangle\right] / 2
$$

Treating the Fourier components $\phi_{\alpha}=\left(A_{\alpha} / a k\right) R_{\alpha 1} e^{i s} \alpha_{\alpha}$ and $P_{\alpha}^{*}=A_{\alpha} R_{\alpha 2} e^{i s_{\alpha s}}$ the quantities to be averaged, and writing for

$$
\begin{aligned}
& f(\vec{y})=\mathrm{p} \cdot \mathrm{fr} \overline{\mathrm{k}}\left[1+\left(\mathrm{H}_{100}\right)^{+1} 010^{+H 1} 001\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\mathrm{CH}_{300^{+H}}^{\left.0300^{+H} 003^{+H} 210^{+H} 201^{+H} 120^{+H_{1}} 102^{+H_{1}} 221^{+H} 12^{+H} 111\right)} \\
& +\ldots .1 \text {, }
\end{aligned}
$$

the induced velocity $\bar{u}_{a}^{\prime}=V d_{a}=1 \bar{k} d_{i t}$, we have

If the pressure perturbations are small compared to the mean pressure, $\left|p^{\prime}\right| \ll \bar{p}$, we may use the Binomial Theorem to obtain $p^{\prime} \propto \frac{\gamma \bar{p}}{\gamma-1} p^{\prime} / \vec{p}$, so that with $\bar{p}=\frac{\gamma}{\gamma-1} \frac{\bar{p}}{\hat{p}}$ we have $p^{\prime}=\bar{\rho} p^{\prime}$. Then

$$
\left\langle p^{\prime 2}\right\rangle=\left\langle p^{\prime} p^{\prime *}\right\rangle=\bar{\rho}^{-2}\left\langle p^{\prime 2}\right\rangle=(\bar{D} A)^{2}\left\langle u^{\prime}\right\rangle .
$$

$$
\text { For Gaussian distribution, } f(\bar{k})=\left(\frac{\sigma}{\pi}\right)^{3 / 2} e^{-\sigma k^{2}} f f(\bar{k}) d \bar{k} \text {, we }
$$ have

$$
\left\langle p^{t^{2}}\right\rangle=\left(\frac{\sigma}{2 \pi}\right)^{3 / 2} \frac{p_{1}^{2}+p_{2}^{2}}{p_{1}+p_{2}}=\frac{1}{\bar{\rho}^{2}}\left\langle p^{\prime 2}\right\rangle=a^{2}\left\langle u^{\prime}\right\rangle
$$

Quantities analogous to a square of the wave amplitude are

A word is in order on the subject of units. The basic solutions ϕ_{α}. $\quad\left(A_{\alpha} / a k\right) R_{\alpha 1} e^{\text {iss }} \alpha_{\text {and }} P_{\alpha}^{\prime}=\Lambda_{\alpha} R_{\alpha 2} e^{\text {is }} \alpha$ have units of

$$
\begin{aligned}
& |\tilde{\phi}|^{2}=\tilde{\phi} \tilde{\Phi}^{*}=\Sigma \int_{\frac{A_{n}}{a k}} R_{\alpha 1} e^{i s} \alpha_{d \bar{k}} \times \sum \int \frac{A_{B}^{k}}{a k}, R_{B 1} e^{-i s^{\prime}}{ }^{\prime} d \bar{k}, \\
& \left.=\sum \frac{\left|A_{\alpha}\right|^{2}}{a^{2} k^{2}} d \vec{k}=\frac{1}{a_{2}}\left[<\ddot{k}^{2}\right\} P_{1}+<\vec{k}_{2}^{-2} P_{2}\right], \\
& \left|\tilde{p}^{\prime}\right|^{2}=\tilde{\mathrm{P}}^{\prime} \tilde{\mathrm{P}}^{\prime *}=P_{1}+P_{2}, \quad|\overline{\mathrm{u}}|^{2}=\frac{1}{\mathrm{a}^{2}}\left(P_{1}+P_{2}\right), \quad\left|\mathrm{p}^{\prime}\right|^{2}=\bar{\rho}^{2}\left(P_{1}+P_{2}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \langle\phi\rangle=\left\langle\vec{u}^{\prime}\right\rangle=\left\langle P^{\prime}\right\rangle=0 \text {, } \\
& \left\langle\phi^{2}\right\rangle=\left\langle\phi \phi^{*}\right\rangle=\frac{1}{a^{2}} \frac{\sum \int k^{-2} A_{u} A_{\alpha} \xi_{\alpha}(\bar{k}) d \bar{k}}{\sum \int f_{(z}(\bar{k}) d \bar{k}}, \\
& \left\langle u^{\prime}\right\rangle=\left\langle\bar{u}^{\prime} \cdot \bar{u}^{\prime \prime *}\right\rangle=\frac{1}{a^{2}} \frac{\sum \iint_{\bar{k}}^{\frac{\bar{k}}{}} \cdot \frac{\bar{k}}{k} A_{q} A_{n}^{\star f_{\alpha}}(\bar{k}) d \bar{k}}{\sum \int f_{\alpha}(\bar{k}) d \bar{k}}=\frac{1}{a^{2}} \frac{\sum \int f_{\alpha}^{2}(\bar{k}) d \bar{k}}{\sum \int f_{\alpha}(\bar{k}) d \bar{k}}, \\
& \left\langle p^{\prime 2}\right\rangle=\left\langle P^{\prime} P^{\prime *}\right\rangle=\frac{\sum \int \Lambda_{\alpha} A_{\alpha_{\alpha}} f_{\alpha}(\bar{k}) d \bar{k}}{\Sigma \int f_{\alpha}(\bar{k}) d \bar{k}}=\frac{\sum \int f_{\alpha}^{2}(\bar{k}) d \bar{k}}{i \int f_{\alpha}(\bar{k}) d \bar{k}}=a^{2}\left\langle u^{\prime 2}\right\rangle .
\end{aligned}
$$

$\mathrm{L}^{2} \mathrm{~T}^{-1}$ and $\mathrm{L}^{2} \mathrm{~T}^{-2}$, respeztivelv, the same as the original variables, the velocity potential 1 and the pressure notential P. Thus the units of the amplitude Ais are $\mathrm{l}^{2} \mathrm{~T}^{-2}$. Superpostition of the basic solutions, their Inteprals over the wavenumher space, Eqs. (6), results in 雨 and $\tilde{\mathrm{p}}^{\prime}$ hecomine, respectively, the velocity potential density and pressure notentiol density, with units of $\mathrm{L}^{-1} \mathrm{~T}^{-1}$ and $L^{-1} T^{-2}$. Since $f=|\Lambda|^{2}$, the units of the wavenumber distribution function $f(\bar{k})$ are $L^{4} T^{-4}$, and those of the probability denstty P_{α} are LT^{-4}. However, the expectation values of any quantity will have units the same as those of the quantity, thus the units of $\left\langle u^{\prime 2}\right\rangle$ are those of velocity square, and those of $\left\langle p^{2}\right\rangle$ are pressure square. We may add that the velocity potential t and the basic solution $\phi_{\alpha}=\left(A_{\alpha} / a k\right) H_{a l} e^{1 s}$ have units of action density as do the coefficients ζ_{α} and $E_{i t}$.

The root-mean-square amplitudes, due to a double integration over the wavenumber space under the square root sign, should be interpreted as densities of wave properties, e.g., $\sqrt{p} \bar{p}^{-\quad} r^{\pi}=$ wave pressure density (untts of pressure/volume), $\operatorname{run}^{-r} u^{-r \pi}=$ induced velocity density, etc.

VI (ontherande

We have found that there exist situations in the acoustics of nonuniform media where classical treatment hecomes inadequate. To treat such situations quantum-like statistical methods were used to derive transport equations for the proliability densities which determine wavenumer distibution functions. The distribution fanctions permit one to evaluate ensemble averapes as well as spectral distributions of nhysical quantities of interest.

The present theory, it may be arpued (see, e.p., pp. 52-55 of तentzer, 1975b), parallels that of quantum mechanics and oieys the UNCEPTAINTY PRINCIPLE (existence of indeterminacy of phase or non-conservation of the number of waves), COMPLEMENTARTTY PRINCIPLE (existence of pairs of confugate variables, such as \bar{x} and \vec{k}, ω and t, each of which may be better defined only at the expense of a corresponding loss in the degree of definition of the other), and the CORRESPONDENCF PRINCIPLE (results of the theory reduce to the classical acoustics of homogeneous media).

The nonlinear effects manifest themselves in the present theory in two ways. First, the hydrodynamic form of the transport equations contains nonlinear source terms and the nonumiformity of the medium results in the coefficients of the transport equations being functions of the dependent variables. Second, the bilinear terms introduce nonlinearity at the microscopic level through the wave interaction integrals. Thus each wave of finite amplitude affects amplitudes of all other waves.

The fact that there exist two orthogonal (independent) wave solutions corresponding to a given wavenumber vector requires that a general solution or its integral representation be aum of two independent solutions (two modes of propagation), and that two
different sets of boundary conditions may be used for each mode. Thus it is possible to impose n radiation condition at infinity, and the coexistence of the two modes at a given point may be viewed as a radiation condition at the microscopic level.

Constiex the potential equation,

$$
1 \frac{a^{2} t}{2 t^{2}}+2 a+\frac{1 t}{2 t}+u \cdot(u+0) v t 1-a^{2} y^{2} t=0
$$

This is equivalent to

where the subscript () denotes that \vec{u}_{0} is treated as a constant when operated upon $t_{y} \frac{f_{0}}{l_{0} t}=\frac{d}{d t}+\bar{u}_{0} \cdot \vec{v}$, and a_{0} is kept constant when operated by P_{0}. Equation (A.1) is the wave equation in the Euler's form for a fluid particle with an instantaneous velocity $\overline{\mathrm{u}}$.

In order to factor out the second order wave operator of Eq. (A.1) into two in near operators, we write

$$
\begin{equation*}
\left(\hat{\mathrm{E}}^{2}-\hat{\mathrm{H}}^{2}\right) \phi=0 \tag{A.2}
\end{equation*}
$$

and requite that

$$
\begin{equation*}
\hat{0}_{1} \phi=0 \tag{1,3}
\end{equation*}
$$

where \hat{E}, \hat{H}, and $\hat{\sigma}_{1}$ are in ear differential operators. Then we need an operator θ_{2} such that

$$
\hat{O}_{2} \hat{\theta}_{1}=\left(\hat{E}^{2}-\hat{A}^{2}\right)=0
$$

The operators \hat{o}_{1} and \hat{o}_{2} must be real and must commute. If we choose

$$
\hat{\mathrm{O}}_{1}=\hat{\mathrm{E}}+\hat{\mathrm{H}}, \quad \text { and } \quad \hat{\mathrm{O}}_{2}=\hat{\mathrm{E}}-\hat{\mathrm{H}}
$$

than $\hat{\hat{E}}$ and $\hat{\hat{H}}$ must also commute.

Following Pauli (see any book on the quantum theory), we represssent \hat{E} and \hat{H} by matrices and ϕ by a vector. Taking

$$
\hat{E}=\hat{a}_{4} \frac{D_{0}}{D_{0} t}, \quad \hat{H}-a_{0}\left[\hat{\alpha}_{1} \frac{\partial}{\partial x}+\hat{\alpha}_{2} \frac{\partial}{\partial y}+\hat{\alpha}_{3} \frac{\partial}{\partial z}\right]
$$

where $\hat{x}_{1}, \ldots, \hat{a}_{4}$ are square matrices to be determined. We note that the operators \hat{E} ard H commute if $\tilde{u}_{\text {. }}$ and $a_{\text {. }}$ are treated as constants and if $\hat{\alpha}_{4}$ commutes with \hat{b}_{1}, \hat{a}_{2} and \hat{a}_{3}. Squaring \hat{A} and requiring that $\hat{i}^{2}-a_{0}^{2} v^{2}$, we have the following conditions

$$
\begin{aligned}
& \hat{a}_{1}^{2}=\hat{a}_{2}^{2}-\hat{a}_{3}^{2}=\hat{l} \text { (a unit matrix) } \\
& \hat{a}_{1} \hat{\alpha}_{1}=-\hat{\hat{\alpha}_{2}} \hat{\alpha}_{1}, \quad \hat{\alpha}_{1} \hat{\alpha}_{3}=-\hat{a}_{3} \hat{a}_{1}, \quad \hat{\alpha}_{2} \hat{\alpha}_{3}=-\hat{a}_{3} \hat{a}_{2}
\end{aligned}
$$

Thus $\hat{\alpha}_{1}, \hat{a}_{2}$, and $\hat{\alpha}_{3}$ anticommute. Choosing $\hat{\alpha}_{4}=\hat{i}$, we assure that \hat{a}_{4} commutes with \hat{a}_{1}, \hat{a}_{2}, and \hat{a}_{3}, while the latter may be taken to be the Pauli spin matrices, e.8.,

$$
\hat{a}_{1} \cdots\left\|\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right\|, \quad \hat{a}_{2}=\left\|\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right\|, \quad \hat{a}_{3} \cdots\left\|\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right\| .
$$

Thus the solution of Eq. (A.3) should be represented by a two-component column vector,

$$
\bar{\Phi}=\left\|\begin{array}{l}
\phi_{1} \\
\phi_{2}
\end{array}\right\| .
$$

The system (A.3) is thus equivalent to

$$
\begin{align*}
& \left(\frac{D_{0}}{D_{0} t}+a_{0} \frac{\partial}{\partial z}\right) \phi_{1}+a_{0}\left(\frac{\partial}{\partial x}-1 \frac{\partial}{\partial y}\right) \phi_{2}=0 \tag{A.4}\\
& \left(\frac{D_{0}}{D_{0} t}-a_{0} \frac{\partial}{\partial z}\right) \phi_{2}+a_{0}\left(\frac{\partial}{\partial x}+1 \frac{\partial}{\partial y}\right) \phi_{1}=0
\end{align*}
$$

As may be readily verified, as long as \bar{u}_{0} and a_{0} are kept constant, ϕ_{1} or ϕ_{2} may be eliminated by cross differentiation so that both compenents of $\bar{\phi}$ satisfy the convective wave equation (A.1). With $\bar{u}_{\text {. }}$ and a_{0} kept constant, Eqs. (A.4) are linear and we may consider $\bar{\phi}$ to be a sum of two independent eigensolutions,

$$
\bar{\phi}=\bar{\phi}_{1}+\bar{\phi}_{2}=\phi_{1}\left\|\begin{array}{l}
1 \\
0
\end{array}\right\|+\phi_{2}\left\|\begin{array}{l}
0 \\
1
\end{array}\right\|, \quad \bar{\phi}_{1} \cdot \bar{\phi}_{2}=0
$$

and the system (1.4) decouples to yield

$$
\begin{equation*}
\frac{D_{0} \phi_{1}}{D_{0} t}+n_{0} \frac{\partial \phi_{1}}{\partial z}=0, \quad \text { and } \frac{D_{0} \phi_{2}}{\eta_{0} t}-a_{0} \frac{\partial \phi_{2}}{\partial z}=0 . \tag{1,5}
\end{equation*}
$$

By permutations of the matrices $\hat{\alpha}_{1}, \hat{a}_{2}, \hat{a}_{3}$ we may single out any ore of the three apace coordinates x, y, z. Thus a matrix permutation is equivalent to a rotation of the coordinate axes by 90°. Since $\partial \phi_{1} / \partial z=\bar{n} \cdot V$ if \bar{n} is a unit vector pointing in the direction of the preferred coordinate (z-axis in this case), then an arbitrary rotation of coordinate axes generalizes (1.5) to

$$
\begin{align*}
& \frac{D_{0} \phi_{1}}{D_{0} t}+a_{0} \bar{n} \cdot \nabla \phi_{1}=\left[\frac{\partial}{\partial t}+\left(\bar{u}_{0}+a_{0} \bar{n}\right) \cdot \nabla\right] \phi_{1}=0 \\
& \frac{D_{0} \phi_{2}}{D_{0} t}-a_{0} \bar{n} \cdot \nabla \phi_{2}=\left[\frac{\partial}{\partial t}+\left(\bar{u}_{0}-a_{0} \bar{n}\right) \cdot \nabla\right] \phi_{2}=0
\end{align*}
$$

where \bar{n} is arbitrary. The expressions $\frac{d}{d t}=\frac{\partial}{\partial t}+\left(\bar{u}_{0}+\dot{a}_{0} \bar{n}\right) \cdot \nabla$ in Eqs. (A.6) are the total dertvatives along the characteristic rays with \vec{n} serving as a poraneter. Thus $d / d t$ is an Eulerian derivative written for a nsuedo-particle (a wave packet) moving with a characteristic veiocity (group velocity) ütañ.

Keeping $\overline{\mathfrak{n}}$ fixed implies that the solution vector coincides with a different pair of eigensolutions at each point in time and space. If we single out one such a pair initially and would like to follow their development in time, we would have to determine how the unit vector changes in time. These two choices correnpond to the Heisenberg's and Schrödinger's pictures of quantum mechanics. If necessary, three equations for the component., of the unit vector $\bar{n}(\bar{x}, t)$ may be obtained an follows:

$$
\bar{n} \cdot \bar{n}=1, \quad \frac{d(\bar{n} \cdot \bar{n})}{d t}=0
$$

and $\left[\frac{\partial}{\partial t}+\left(\bar{u}_{+}-a \bar{n}\right) \cdot \nabla\right]\left[\frac{\partial}{\partial t}+(\bar{u}+a \bar{n}) \cdot \nabla\right] \phi_{\alpha}=\left[\left(\frac{D_{e}}{D_{0} t}\right)^{2}-\left(a_{0} \nabla\right)^{2}\right] \phi_{\alpha}=0$. where $\alpha=1,2$. The unit vector \bar{n} may be thus determined an a function of the solution of the wave equation.

In order to derive the nonlinear convective wave equation, Eq. ($\Lambda .1$), all we need to postulate is that the dispersion relation for an arbitrary acoustic wave with a wavenumber vector $\vec{k}=k \vec{n}$ at a point (\bar{x}, t), where the local velocity and speed of sound are $\bar{u}(\bar{x}, t)$ and $a(\bar{x}, t)$, is $\omega=n$ in the inertial frame of reference which, at each point $\vec{x}=\bar{x}_{0}$ and time $t t_{0}$ moves with different constant velocity $\vec{u}_{\circ} \pm a_{0} \bar{n}$ equal to the local group velocity of the wave. Kequiring that this postulate hold for an arbitrary wave (arbitrary \bar{n}) anywhere (arbitrary \bar{x}_{0}) and at all times (arbitrary t_{0}), the dispersion relations, either $\omega-\bar{u}_{0} \cdot \bar{k} \pm a_{0} \cdot \bar{n} \cdot \bar{k}=0$ or $\left(\omega-\bar{u}_{0} \cdot \bar{k}\right)^{2}-a_{0}^{2} k^{2}=0$, must be viewed as a result of transforming ω on 0 from an inertial frame instantancously coinciding with the wive packet and moving with the group velocity of the packet to an inertial frame common to all wave packets in all space-time. Thus $\bar{u}_{0}(\bar{x}, t)$ and $a_{0}(\bar{x}, t)$ should be treated an parametric constants when the dispersion relation is replaced by a differential operator, and should be allowed to become functions of \bar{x} and t after the differential expression is expanded. Thus, e.g., to the relation $\left(\omega-\bar{u}_{0} \cdot \bar{k}\right)^{2}-a_{0}^{2} k^{2}=0$ there corresponds

$$
\left[1\left(\frac{\partial}{\partial t}+\bar{u}_{\bullet} \cdot \nabla\right)\right]^{2} \phi+a_{0}^{2} \nabla^{2} \phi=0 .
$$

Expanding, we have

$$
\begin{aligned}
&-\left(\frac{\partial}{\partial t}+\bar{u}_{\theta} \cdot \nabla\right)\left(\frac{\partial}{\partial t}+\bar{u}_{\theta} \cdot \nabla\right) \phi+a_{0}^{2} \nabla^{2} \phi=-\frac{D_{\theta}^{2} \phi}{D_{\theta} t^{2}}+a_{0}^{2} \nabla^{2} \phi \\
&=-\left[\frac{\partial^{2} \phi}{\partial t^{2}}+2 \bar{u}_{\theta} \cdot \frac{\partial \nabla \phi}{\partial t}+\bar{u}_{\theta} \cdot\left(\bar{u}_{\theta} \cdot \nabla\right) \nabla \phi\right]+a_{0}^{2} \nabla^{2} \phi=0 .
\end{aligned}
$$

Dropping the subscript (). we obtain the nonlinear potential equation which, wh written in terms of the operator $D_{0} / D_{0} t$ takes the simple form of Eq. (A.1).

Grad, H. (1449a) "Note on M-0imenstonal Hermite Polynomials," Com. Pure Appl. Maths + Vol. 2, No. 4, pp. 325-330.

Erad, H. (1944b) "On the Kinetic Theory of Rarified Gases." Comm. Pure Appl. Matlis., Vol. 2, No. 4, pp. 331-407.

Kentzer, B. P. (1975a) "Amplification, Attenuation, and Dispertion of Sound in Inhomogencous Flows," guth Meetinp of A.S.A., U. of Texas at Austin, Austin, Texas, 7-11 Apri1 1975 (available as School of Aeronautics \& Astronautics Kep. No. 75-1, purdue W.).

Kentzer, C. P. (1975b) "Wave Theory of Turbulence in Compiessible Medin," School of Neronautics \& Astronautics Rep. No. 75-2, Purdue U, (available also as NASA CP-2671, Mav jy/6).

[^0]: *

 Presented at the Seventh International Symposium on Nonlinear Acoustics, Virginj, Polytechnic Institute and State University, Virginia, Aug. 19-21, 1976.
 Research support by NASA Grant NSG 1293 greatfully acknowledged.

