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Despite s ign i f icant  advancements i n  Controls Configured Vehicles/Active 
Controls Technology (CCV/ACT) i n  the past  decade, few ap-plications of t h i s  
promising technology have appeared i n  recent a i r c r a f t  designs. This paper 
b r i e f l y  summarizes the s t a t u s  of CCV/ACT, describes some of the cons t ra in ts  
which a re  re tarding i t s  wider application, and of fers  some suggestions toward 
establ ishing an increased l e v e l  of confidence i n  the technology. 

I”E3 ODUC TION 

Major advancements have been accomplished i n  f l i g h t  control  technology 
during the pas t  decade, pa r t i cu la r ly  i n  the  areas of fly-by-wire, act ive 
controls  and, more recent ly ,  d i g i t a l  controls.  The next generation of U. S .  
commercial t ransports  must take advantage of benef i t s  achievable from these 
advanced techniques t o  remain competitive i n  the world market. European 
a i r c r a f t  indus t r ies  have major advanced f l i g h t  cont ro l  programs underway 
and are  making s igni f icant  progress i n  t h i s  f i e l d .  The United States  space 
program, research a i r c r a f t  programs and mi l i ta ry  advanced development programs 
have brought ACT d i g i t a l  F B W  (fly-by-wire) technology t o  a l e v e l  where 
subs tan t ia l  benef i t s  can be real ized i n  the near future .  Hodever, the 
commercial a i r c r a f t  industry, a i r l i n e  industry, and government c i v i l  av ia t ion  
agencies must  be convinced t h a t  an a i r c r a f t  designed around t h i s  advanced 
technology w i l l  achieve predicted performance and be safe, r e l i ab le ,  
operationally p rac t i ca l  and cost  e f fec t ive .  Commercial acceptance of any new 
technology w i l l  occur only when suf f ic ien t  t e s t  data are generated t o  c l ea r ly  
demonstrate t ha t  these c r i t e r i a  can be met with reasonable r i s k  on a new 
airplane design. 

Most of the  progress to date i n  t h i s  f i e ld  has been accomplished 
primarily on four a i r c r a f t :  
these a i r c r a f t  a r e  making s igni f icant  necessary contributions,  but the 
programs a r e  experimental i n  nature, conducted t o  demonstrate concept 
f e a s i b i l i t y  under carefu l ly  r e s t r i c t ed  f l i g h t  conditions in  evacuable mi l i ta ry  
a i r c r a f t  with e jec t ion  sea ts .  This paper b r i e f l y  summarizes the  s ta te-of-  
the-ar t  of CCV/ACT technology and suggests some approaches t o  the  problem of 
developing a w i d e r  l e v e l  of confidence i n  tha t  technology. 

the  XB-70, B-52, F-4 and F-8. Programs on 
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BACKGROUND 

I n  the past  decade, po ten t i a l  benef i t s  of advanced f l i g h t  control  
technology have been shown by a la rge  number of t heo re t i ca l  analyses and by 
several  USAF and/or NASA f l i g h t  demonstration programs. Table I summarizes 
b r i e f l y  the r e s u l t s  of most of these e f f o r t s .  References 1 and 2 provide 
a more complete summary. 

Major A i r  Force experimental f l i g h t  research programs involving load 
a l l ev ia t ion  and fat igue damage r a t e  reduction by s t r u c t u r a l  mode control  
techniques were the B-52 LAMS (Load Alleviat ion and Mode Stab i l iza t ion)  and 
the XB-70 GASDSAS (Gust Alleviat ion and S t ruc tura l  Dynamic S t a b i l i t y  
Augmentation System) programs. 
system (SAS) was developed and incorporated on the B-52G and H f lee t  t o  
reduce fat igue damage r a t e  during low level ,  high speed f l i g h t .  The A i r  
Force Control Configured Vehicle (CCV) research program has completed f l i g h t  
demonstration of four ACT concepts a t  selected f l i g h t  conditions on a B-52E 
a i r c r a f t :  r i d e  control,  f l u t t e r  mode control ,  maneuver load control,  and 
augmented s t a b i l i t y .  I n  addition, the  compatibil i ty of a LAMS system with 
these four concepts was a l s o  demonstrated.. Goals fo r  each concept were 
successful ly  achieved individually and co l lec t ive ly  during the program. 

Concurrently, an advanced s t a b i l i t y  augmentation 

Other f l i g h t  programs have incorporated limited ACT concepts i n  recent ly  
designed mi l i ta ry  and commercial a i r c r a f t .  Reduction of l a t e r a l  gust l o a d s  
on the L-1011 t ransport  with an advanced yaw damper resul ted i n  a 20 percent 
reduction of l i m i t  design loads. 
been developed f o r  the 747 t o  improve passenger r ide  qua l i t i e s  i n  the a f t  
section. The system is  current ly  being evaluated by @ntas Airways. A r i d e  
control  system i s  being designed for the  B-1  s t r a t eg ic  bomber, using s t ruc tu ra l  
mode control  techniques, t o  improve crew r i d e  qua l i t i e s  during t e r r a i n  following 
missions. An Active L i f t  Distr ibut ion Control System (ALDCS) i s  being designed 
f o r  t h e  C-5A a i rplane t o  reduce wing design l i m i t  maneuver and gust loads 
and wing fat igue damage r a t e  a The General Dynamics prototype lightweight 
f igh te r ,  the YF-16, has a quadruply-redundant analog, FBW control  system 
without mechanical backup. Relaxed inherent s t a b i l i t y  is integrated in to  the  
a i r c r a f t  design t o  reduce drag and gross weight, 

A Gust Response Suppession System has 

The f i r s t  serious commitment t o  including an ACT concept ir, a commercial 
t ransport  occurred during the  recent National SST program. The SST was 
configured with relaxed longi tudinal  s t a t i c  s t a b i l i t y  t o  achieve necessary 
gains i n  range-payload from reduced gross weight and drag. Experience gained 
from development of f a  i l -pas  s ive and f a  i l-opera t i onal/fa i l -pas  s ive autoland 
systems a t  Boeing during the  1960's provided confidence tha t  a su i tab le  f l i g h t  
cont ro l  system could be developed t o  meet SST safe ty  and operational requirement 

The resu l t ing  SST longi tudinal  command and s t a b i l i t y  augmentation system 
providing basic  a i rplane safe ty  was fai l -operat ional  squared (fai l -operate  
a f t e r  second f a i l u r e )  
channels and actuators  e 
( a  discussion of t h i s  system is contained i n  Reference 3) 

u t i l i z i n g  quadruply redundant sensors, analog e lec t ronic  
A mechanical reversion back-up mode was retained 
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Cancellation of the  SST program precluded thorough development and f l i g h t  
test  evaluation of the SST f l i g h t  control  system. 
which include electronic  display and control  system components were, however, 
government funded f o r  fur ther  development under the  DOT/SST Technology follow- 
on program (Contract DOT-FA72-WA-2893). 

Advanced technology items 

Fu l l  r ea l i za t ion  of advanced cont ro l  function po ten t i a l  on production air-  
craft depends on fly-by-wire cont ro l  systems with a r e l i a b i l i t y  consis tent  
with the function c r i t i c a l i t y .  Two programs, the A i r  Force F-4 680J 
Survivable Fl ight  Control System and the NASA F-8C d i g i t a l  fly-by-wire 
program, a re  directed toward developing and f l i g h t  demonstrating F B W  systems 
on f igh te r  a i r c r a f t .  
completion of the 6805 f l i g h t  tes t  program, analog fly-by-wire control  
techniques, equipment mechanization and fundamental c r i t e r i a  a r e  now f u l l y  
validated I t .  

A s  a r e s u l t ,  Reference 4 s t a t e s  t ha t  "with successful 

Most advanced FBW f l i g h t  cont ro l  systems have used analog implementation 
techniques. Research is now underway t o  exploi t  the advantages of d i g i t a l  
control, demonstrated, i n  pa r t ,  by the Apollo space program. The recent 
extremely rapid progress i n  microcircuitry has made d i g i t a l  control  hardware 
competitive with analog hardware i n  terms of cost ,  r e l i a b i l i t y ,  s ize  and 
weight. Further, d i g i t a l  techniques of fe r  s ign i f icant  advantages fo r  
advanced cont ro l  laws, redundancy logic  and b u i l t - i n  t e s t ing  functions. One 
of the first programs t o  study d i g i t a l  f l i g h t  control  implementation problems 
on a i r c r a f t  is  the NASA F-8 program which successfully demonstrated a s ingle  
channel d i g i t a l  F B W  primary f l i g h t  control  system with a t r i p l y  redundant 
analog backup system. 
Dig i ta l  Avionics Integrated Systems (DAIS), the SST Follow-On Technology, a rd 
the  planned Tact ical  Ai rcraf t  Dig i ta l  System (TADS), are contributing t o  t h i s  
technology base. Other A i r  Force programs a re  invest igat ing the appl icat ion 
of multiplexing techniques t o  f l i g h t  control  systems. Further, research 
e f f o r t s  within the U. S. and European f l i g h t  control  system component 
manufacturers a re  studying f ibe r  op t ics  fo r  providink s igna l  transmissions 
immune t o  electromagnetic interference.  

Other d i g i t a l  cont ro l  research programs, such a s  the 

An ove ra l l  assessment of advanced f l i g h t  control  technology over the 
past  decade indicates  t h a t  considerable progress has been achieved: 

o Performance of CCV functions has been f l i g h t  demonstrated on a 
large f l ex ib l e  a i r c r a f t  

o Dig i t a l  and analog FBW systems have been f l i g h t  demonstrated on 
f igh te r  aircraft 

o A prototype lightweight f igh te r  has been designed around CCV 
analog FBW techniques. 
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CONSTRAINTS ON THE USE OF CCV/ACT TECHNOLOGY 

Despite the large amount of ana ly t ica l  and f l i g h t  t e s t  d a t a  available,  
no CCV/ACT concepts a re  current ly  i n  general use i n  commercial transport  
a i r c r a f t .  Only the simplest form of augmented s tabi l i ty-- the yaw damper-- 
is  i n  widespread use i n  commercial a i r c r a f t  today. Primary applications a re  
t o  improve handling qua l i t i es  and t o  increase the comfort l eve l  of the crew 
and passengers. I n  a few instances, a yaw damper was necessary fo r  
ce r t i f i ca t ion .  Although these a re  examples of beneficial  applications, the 
systems were generally added a f t e r  the airplane was designed, sometimes 
a f t e r  the f irst  model flew. I n  most instances, a much greater benefi t  
would have been possible if a full-t ime d i rec t iona l  s t a b i l i t y  augmentation 
system had been assumed from the beginning of the design. 

There are  a number of constraints  t h a t  have e f fec t ive ly  delayed the wide- 
spread implementation of these systems. A most fundamental constraint  is  
r i sk ,  pr incipal ly  on the par t  of the airframe manufacturer. A s  has been 
pointed out, the maximum potent ia l  benefi t  of these advanced concepts i s  
achieved i f  they are  incorporated in to  the design a t  the outset .  However, 
the f i n a l  assessment of the benefi t  r e su l t s  from an exhaustive design process 
t h a t  i s  expensive and time consuming, and f o r  which the correlat ion with 
hardware r e s u l t s  is  not a t  a l l  cer ta in .  The r e a l  r i s k  i s  tha t  a major problem 
may a r i s e  a f t e r  program commitment of an airplane design predicated on 
successful system performance. 

Figure 1, reproduced from Reference 46, i l l u s t r a t e s  t h i s  concern. A t  
program go-ahead, with only 3% of the eventual t o t a l  program cost ac tua l ly  
spent, management act ion can influence t o t a l  program cost by 20% a t  most. 
Consequently, a program tha t  r e l i e s  on advanced systems w i l l  e i t he r  require 
a s ignif icant  increase i n  analysis confidence, or a program structure  l i ke  
the U. S. SST where an engineering prototype precedes production commitment. 
I n  other words, one way of eliminating the r i s k  is t o  have a "proof before 
use" program plan, which adds t o  program time and cost .  

Another constraint  i s  the cost  of these systems, including development, 
certif : ication, and maintenance cost .  Bright spots i n  the cost picture  a re  
the  rapidly developing f i e ld  of d i g i t a l  systems for  a i r c r a f t  applications and 
the reductions i n  analog/digital  system cost  dispar i ty .  

A th i rd  constraint  is  the lack of confidence i n  the analysis too ls  and 
the  correlat ion between ana ly t ica l  models and the r e a l  world. For example, 
i f  a new airplane were t o  depend on f l u t t e r  mode control fo r  f l u t t e r  safety, 
there would be l i t t l e  margin f o r  error  between the ana ly t ica l  model and the 
hardware. Yet the s t a t e  of the a r t  of f l u t t e r  analysis can accomplish t h i s  
today ,only by "fine tuning"' the analysis with hardware data.  
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A f i n a l  constraint  is the reluctance on the pa r t  of the user, the a i r l i nes ,  
t o  increase maintenance costs .  Consequently, there i s  great reluctance t o  buy 
a system, almost independent of i t s  performance benefi ts ,  unless there is a 
proven method of keeping the maintenance burden i n  hand. 

It i s  generally t r u e  t h a t  maintenance cons t i tu tes  about one-quarter of 
t he  t o t a l  d i r ec t  operating cos ts  f o r  current a i rplanes.  Therefore, complexity 
such as d iscussed  here should be accompanied by systems designed t o  hold the  
l i ne  on, or lower, maintenance costs .  Digi ta l  systems, with improved self- 
check capabi l i ty ,  may provide a solut ion t o  t h i s  problem. 

REMOVING THE CONSTRAINTS : DEVELOPING CONFIDENCE 

Commercial r ea l i za t ion  of the benefi ts  associated with advanced control  
concepts w i l l  occur only when these constraints  are removed through compre- 
hensive development and demonstration of necessary methods and components. 

Fl ight  Demonstration 

Most of the progress t o  date i n  t h i s  f i e l d  has been accomplished primarily 
on four a i r c r a f t :  the B-52, F-4, F-8 and XB-70. Programs involving the 
mi l i ta ry  a i r c r a f t  are  making s igni f icant  necessary contributions,  but the 
programs a re  experimental i n  nature, conducted t o  demonstrate concept 
f e a s i b i l i t y  under carefu l ly  r e s t r i c t ed  f l i g h t  conditions i n  evacuable a i r c r a f t  
with e jec t ion  seats .  

The next l og ica l  program should expand t h i s  technology base by developing 
and f l i g h t  demonstrating an operationally p rac t i ca l  advanced d i g i t a l  fly-by- 
wire control  system on a commercial a i r c r a f t .  The system should be designed 
t o  function throughout the f l i g h t  envelope, from takeoff t o  landing, under 
normal and extreme operating conditions. It should include appropriate 
redundancy management, automated system t e s t ,  system control, and system status 
and advisory displays. Extensive f l i g h t  tes t ing  must be conducted t o  define 
system performance (compared t o  ana ly t ica l  predict ions) ,  r e l i a b i l i t y ,  f a i l u r e  
effects ,  and maintainabili ty requirements under conditions representative 
of commercial a i r l i n e  operation. Realistic design c r i t e r i a  and design guide- 
l i n e s  should be developed, based on r e s u l t s  of the program, f o r  c r i t i ca l  and 
noncr i t ica l  control  functions. 
technology recommendations expressed i n  the NASA Research and Technology 
Advisory Council report  (Reference 47). 

This program should a l s o  be responsive t o  

A f l i g h t  demonstration program formulated t o  s a t i s f y  these objectives 
and requirements could bes t  achieve credible t e s t  r e s u l t s  by u t i l i z i n g  a 
current state-of-the-art ,  operational, commercial a i r c r a f t  as the t e s t  vehicle. 
The NASA RSFS airplane i s  well  qualified a s  a t e s t  vehicle for demonstrating 
ce r t a in  elements of an advanced control  system. This a i r c r a f t  i s  current ly  
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being converted in to  a canmercial-type research vehicle under Department of 
Transportation SST Technology Follow-On Program and NASA Research Support 
Fl ight  System contracts (References 55 and 56). 
experimental f l i g h t  control, navigation, and display equipment being instal led 
for the RSFS is shown i n  the cutaway view of Figure 2. The a i r c r a f t  features  
an a f t  f l i g h t  deck (AFD)  from which a two-man crew may f l y  the airplane from 
takeoff t o  landing with controls e l e c t r i c a l l y  coupled t o  the standard 737 
f l i g h t  control system. Advanced electronic  systems include t r i p l y  redundant 
d i g i t a l  automatic f l i g h t  control computers and an advanced d i g i t a l  navigation, 
guidance, and display system. A d a t a  acquis i t ion system provides experimental 
data  fo r  pos t f l igh t  analyses. 
output), which has an electronic  fa i l -operat ive capabili ty,  is  limited t o  a 
single thread actuation capabi l i ty .  

Arrangement of the new 

The complete system (sensor t o  control  surface 

The current and planned use of the a i r c r a f t  is f o r  extensive NASA research 
programs regarding f l i g h t  i n  the terminal area.  The experience obtained during 
these programs i n  the o F r a t i o n  and performance of the fai l -operat ional  sensor 
and computer system w i l l  be d i r ec t ly  applicable t o  advanced control system 
development . 

The a i r c r a f t ,  a s  currently configured, has the capabi l i ty  t o  provide 
meaningful performance, r e l i a b i l i t y ,  and maintainabili ty t e s t  d a t a  i n  a 
limited-cost f l i g h t  program. 
suf f ic ien t  system redundancy and capabi l i ty  t o  more completely model, and 
thereby provide b e t t e r  d a t a  on, the performance benefits ,  r e l i a b i l i t y ,  and 
maintainabili ty of these systems. This poss ib i l i t y  is being explored by 
Boeing-Wichita under contract t o  NASA-Langley. 

The a i r c r a f t  could a l so  be modified t o  provide 

Re d und a ne y Management 

The redundancy required for  a f l i g h t - c r i t i c a l  control system depends t o  
a great extent on the mechanization scheme adopted, as well as the f a i lu re  
character is t ics  of the system under consideration. Similar considerations 
apply whether the element i s  a mechanical actuator or  an electronic  element. 
DOT-sponsored research (References 53 and 54) examined the elements of the 
U. S. SST prototype control  system and ident i f ied problem areas associated 
w i t h  the redundancy of those systems, e.g., channel interactions,  f a i lu re  
detection, and f a i lu re  e f f ec t s  on system performance. A NASA-sponsored 
study (Reference 27) reviewed ten current actuator redundancy mechanization 
schemes and ident i f ied two concepts t h a t  would meet advanced airplane f l i g h t  
cont ro l  system requirements. 

These r e su l t s  a r e  c i ted  as evidence t h a t  work is  proceeding in  t h i s  
area.  ’ But it must be pointed out that since computation and actuation a re  
key elements of any control system, the promise of advanced controls w i l l  not 
be realized u n t i l  the technology f o r  providing adequate r e l i a b i l i t y  with 
reasonable system cost i s  i n  hand. Appropriate research must be carried out 
i n  t h i s  area of redundancy management t o  ensure that the design capabi l i ty  is 
available when needed. 
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Improved Analysis Techniques 

p i s t i n g  methods cannot provide the technological base for the design 
of airplane Configurations that rely on a control system for structural 
design l o a d  reduction, f lu t te r  envelope expansion, or s tab i l i ty  when balanced 

i m u m  performance. 
ic, nonlinear, and unsteady aerodynamics; interaction of structural 

Reference 47 points out that these 

Some of the more fundamental problem areas are: 

deformation and control surface deflections w i t h  aerodynamic loading; and the 
dynamics of large flexible structures. 
problems "have been painfully evident to  aeroelasticians for a t  least  three 
decades ." 

Current analytical capability must be expanded t o  provide adequate 
treatment of these problem areas. Analytical methods for the rapid incor- 
poration of experimental data into the analyses should be pursued w i t h  the 
objective of successfully treating separated flow regions and nonlinearities 
due t o  discontinuities. 
verified through correlation with wind tunnel and f l i g h t  tes t  data. 
tentative steps are being taken in  t h i s  direction, but much additional work 
remains. 

The methods resulting frun th i s  work should be 
A f e w  

In the past, wind-tunnel testing of dynamically scaled airplane models 
has proven economically desirable t o  predict airplane dynamic characteristics 
prior t o  f l i g h t  testing. As aircraf't become more dependent on s tabi l i ty  
augmentation systems, wind-tunnel testing of aeroelastic models t o  prove 
control concepts w i l l  become increasingly more attractive t o  increase 
confidence i n  analyses, as discussed in  Reference 48. 
--. 

I n  1967, AFFDL and NASA-Langley jo in t ly  in i t i a t ed  a program to demonstrate 
an act ive modal suppression system on a one- th i r t ie th  scale B-52E aeroe las t ic  
model i n  the  Langley transonic dynamics tunnel. This model includes a i le ron  
and elevator actuat ion systems and provisions f o r  a cable mount system 
(Reference 49). Model gust responses have been obtained using the airstr-am 
osc i l l a to r  system ins ta l led  in the tunnel (Reference 50). Boeing-Wichita i s 
a s s i s t i n g  NASA i n  developing a r ide  smoothing system f o r  the model using 50 Hz 
bandwidth a i l e ron  and elevator  actuation systems. Subsequently, canards and 
flaperons were added f o r  RC and FMC tes t ing ,  which is now nearing completion. 
I n  1974 a MLC system w i l l  be tes ted .  

I n  addition, wind tunnel t e s t s  have been conducted a t  NASA-Langley on a 
SST wing model which u t i l i z e s  a $PIC system (References 51 and 52). 
use of such models will be of great  benef i t  i n  CCV system synthesis and test. 

Wider  

Results of the recent ly  completed B-52 CCV program indicate tha t  precise  
mathematical models may not be quite a s  v i t a l  a s  s ta ted  above. Inaccuracies 
i n  the math model may be made to le rab le  by in t e l l i gen t  locat ion of force 
producers, and use of motion sensors located a t  several  d i f f e ren t  points  
in  the s t ruc ture  t o  be controlled (Reference 57). 
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CONCLUDING REMARKS 

Within the past  decade a great  amount of work has been performed t o  
demonstrate benef i t s  of ac t ive  controls technology, yet today applications 
of t h i s  technology are  few. The best  way t o  develop confidence i n  these 
concepts i s  t o  f l i g h t  demonstrate the concepts on a commercial transport  
under normal and extreme operating conditions. 
demonstrate and e s t ab l i sh  confidence in  CCV/ACT technology. 

Such a program w i l l  c l ea r ly  
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