MCDONNELL DOUGLAS TECHNICAL SERVICES CO.

 HOUSTON ASTRONAUTICS DIVISIONNASA CR-
SPACE SHUTTLE ENGINEERING AND OPERATIONS SUPPORT

DESIGN NUTE NO. 1.4-7-43

LEVEL. C REQUIREMENTS FOR THE SHUTTLE MISSION CONTROL CENTER ORBITAL GUIDANCE SOFTWARE

MISSION PLANNING, MISSION ANALYSIS AND SOFTWARE FORMULATION

6 September 1976
This Design Note is Submitted to NASA Under Task Order No. D0509, Task Assignment C, Contract NAS 9-14960

PREPARED BY:

Engineer
Dept. E904, Ext. 238

APPROVED BY:

A. E. Kuhn

Ascent Performance Task Manager Dept. E904, Ext. 238

Dept. ES14, Ext. 266

TABLE OF CONTENTS

SECTION
PAGE
1.0 SUMMARY. 1
2.0 INTRODUCTION 3
3.0 GUIDANCE SUPERVISOR. 4
3.1 Detailed Description. 4
3.2 Logic Flow 5
4.0 EXTERNAL DELTA VELOCITY ROUTINE. 6
4.1 Detailed Description. 6
4.2 Logic Flow. 6
LINEAR TERMINAL VELOCITY CONSTRAINT GUIDANCE ROUTINE 7
5.1 Detailed Description. 7
5.1.1 Utility Routine INIT 9
5.1.2 Utility Routine UPVGO 9
5.1.3 Utility Routine TGO 9
5.1.4 Utility Routine INTEG 10
5.1.5 Utility Routine TURNR 11
5.1.6 Utility Routine PREDICTOR 12
5.1.7 Utility Routine CORRECTOR 14
6.0 STATE PREDICTION ROUTINE 16
6.7. Detailed Description 16
6.1.1 Utility Routine ACCEL 17
6.1.2 Utility Routine ACCEL GRAV 18
7.0. LINEAR TERMINAL VELOCITY CONSTRAINT ROUTINE. 20
7.1 Detailed Description 20
7.1.1 Utility Routine INITIAL 21
7.1.2 Utility Routine REQVEL 21
7.1.3 Utility Routine TRANSTIME 22

TABLE OF CONTENTS

(Continued)
SECTION PAGE
8.0 CONCLUSIONS. 24
9.0 REFERENCES . 25

LIST OF T.ABLES

TABLE PAGE
I DEFINITIONS OF INPUTS TO SMCC GUIDANCE SOFTWARE. 26
II DEFINITIONS OF SYMBOLS USED IN PEGSUP 30
III DEFINITIONS OF SYMBOLS USED IN •PEG-7 34
IV DEFINITIONS OF SYMBOLS USED IN PEG-4 35
V DEFINITIONS OF SYMBOLS USED IN PRECISE PREDICT 45
VI DEFINITIONS OF SYMBOLS USED IN LTVCON 49

LIST OF FIGURES

FIGURE

TITLE

PAGE1
PEGSUP LOGIC FLOW. 53
PEG-7 LOGIC FLOW 57
PEG-4 LOGIC FLOW 58
INIT LOGIC FLOW. 61
UPVGO LOGIC FLOW 62
TGO LOGIC FLOW 63
INTEG LOGIC FLOW 65
TURNR LOGIC FLOW 68
PREDICTOR LOGIC FLOW 70
CORRECTOR LOGİC FLOW 72
PRECISE PREDICT LOGIC FLOW 75
ACCEL LOGIC FLOW. 76
ACCEL GRAV LOGIC FLOW 78
LTVCON LOGIC FLOW 82
INITIAL LOGIC FLON. 83
REQVEL LOGIC FLOW 84
TRANSTIME LOGIC FLOW. 85
QM LOGIC FLOW: 86
ORBITAL GUIDANCE ROUTINES. 87

1.0 SUMMARY

This document identifies the Level C requirements for the Shuttle Mission Control Center (SMCC) orbital guidance software. The requirements are formulated to provide a functional simulation of the onboard Powered Explicit Guidance (PEG) software as required by various processors in the SMCC [e.g., Mission Plan Table (MPT), Powered Flight Numerical Integrator (PFNI), and Deorbit Planning Processor (DPP)]. These Level C guidance software requirements are consistent with the Level B requirements of those SMCC processors which require a guidance simulation (see References 1, 2, and 3) and at a minimum reflect the current status (July 1976) of the onboard PEG software as detailed in the preliminary Leve1 C Functional Subsystem Software Requirements (FSSR). (See Reference 4.)

This document presents the formulation of Level C requirements for the SMCC guidance software. Section 3.0 presents detailed requirements for a PEG supervisor which controls all input/output interfaces with other SMCC processors and determines which PEG mode is to be utilized. Sections 4.0 and 5.0 present the detailed description (i.e., logic flow diagrams, mathematical equations, etc.) of the two guidance modes (7 and 4, respectively) for which these Level C requirements have been formulated. Sections 6.0 and 7.0 define functions required for proper execution of the guidance software. Section 6.0 defines the requirements for a navigation function that is used in the prediction logic of PEG mode 4. This function is extracted from the current navigation FSSR (Reference 5). The
function PRECISE PREDICT as defined in Section 6.0 may be used in the SMCC guidance software for prediction of the burnout state until such time that a more concise replacement function is defined. Section 7.0 contains routine LTVCON which is used in determining a burn/coast-to-target guidance solution. The LTVCON routine is defined separately since it will perform a function required within the SMCC by users other than PEG. (See Reference 3.)

2.0 INTRODUCTION

The generation of accurate mission profiles (both nominal and abort) in the SMCC necessitates a functional simulation of the onboard guidance software. As specified in the Level B documents for the MPT, PFNI and DPP (References 1, 2, and 3), the requirement exists for the simulation of PEG modes 4 and 7 within the SMCC. PEG-4 (linear terminal velocity constraint guidance) is the primary guidance algorithm used during nominal and abort ascent maneuvers involving the Orbital Maneuvering System (OMS) engines and for all deorbit burns. PEG-7 (guidance for external delta velocity maneuvers) is the guidance algorithm for all on-orbit maneuvers and serves as the back-up guidance algorithm for all PEG-4 maneuvers.

The orbital guidance requirements of this memo have been defined by McDonnell Douglas Technical Services Company under the Space Shuttle Engineering and Operations Support (SSEOS) contract. The requirement definitions were developed for the Guidance and Dynamics Branch (GDB) of the Mission Planning and Analysis Division (MPAD) in support of the GDB response to Reference 6 .

3.0 GUIDANCE SUPERVISOR

This section defines the requirements for a routine (PEGSUP) which performs the supervisory function in the orbital guidance software. This routine is called by the various SMCC processors and provides all necessary input/output and data interfaces needed to provide afunctional simulation of the onboard guidance software.

3.1 Detailed Description

PEGSUP is called using the inputs as detailed in Reference 2. Input requirements for PEGSUP are contained in Table I. The table contains a list of required inputs for the orbital guidance simulations (e.g. target vectors, gravitational constants, propulsion and mass characteristics). Using the indicated inputs, the function of PEGSUP may be summarized by the following sequence:
a. Test first pass flag ($\mathrm{K}_{\mathrm{FPASS}}$) and initialize guidance request flags and initialization flag ($\mathrm{K}_{\text {INIT }}$) as required.
b. Test the guidance specification flag $\left(K D_{G U I D}\right)$ to determine if PEG-4 or PEG-7 is to be used. If PEG-4 guidance is desired, determine if the maneuver is a nominal, abort, or deorbit and set appropriate flag.
c. Compute the change in sensed velocity $\left(\Delta \bar{V}_{S}\right)$ and update the guidance position and velocity vectors $\left(\bar{R}_{G D}, \bar{V}_{G D}\right)$

- and time ($T_{G D}$).
d:- Determine if active steering computations are desired (computation of thrust direction $\overline{\mathrm{T}}_{\mathrm{T}}$).
e. Decrement time-to-go $\left(T_{G O}\right)$ and velocity-to-go $\left(V_{G O}\right)$ if active guidance has been terminated.
f. Update the estimated vehicle mass and acceleration (ATR).
g. Cycle the guidance computations until a converged solution is achieved.
h. Determine if active guidance computations are to be terminated.

3.2 Logic Flow

The logic flow of PEGSUP is illustrated in Figure 1. Definitions of symbols used in the logic flow diagram are included in Table II. Included in Table II is an indicator (TYPE) of the function of each variable:

TYPE

I
Parameter is an input variable to this routine

C Parameter is computed in this routine

0 Parameter is an output from this routine to the functional guidance. routines

G0 . Parameter is a guidance output

4.0 EXTERNAL DELTA-VELOCITY ROUTINE

This section defines the routine PEG-7 which performs the computations necessary to functionally simulate the onboard external deltavelocity guidance algorithms. This guidance mode is primarily used to perform powered flight guidance during normal on-orbit maneuvers and is designated as the backup guidance algorithm to the linear terminal velocity constraint mode (PEG-4) during ascent and deorbit maneuvers.

4.1 Detailed Description

This guidance routine is called by the guidance supervisor PEGSUP to simulate the external delta-velocity algorithm. Using the input velocity-to-be-gained vector $\left(\bar{V}_{G 0}\right)$, estimated vehicle acceleration (ATR) and total effective exhaust velocity ($V_{E X}$) of the propulsion system, PEG-7 determines the time-to-go until thrust termination ($T_{G O}$) and the resulting thrust direction (unit vector \bar{U}_{T}). On the first call to PEG-7, the thrust vector turning rate $(\overline{\dot{\lambda}})$ is set equal to zero and is not updated in subsequent passes through PEG-7. This insures that the resulting thrust direction $\left(\bar{U}_{\mathrm{T}}\right)$ is equivalent to the desired thrust direction ($\bar{\lambda}$) for PEG-7 operation.

4.2 Logic Flow

The routine PEG-7 is called from the guidance supervisor PEGSUP whenever the guidance mode flag ($\mathrm{K}_{\text {MODE }}$) is equal to 7 . The detailed logic flow of this routine is shown in Figure 2. The symbols used in the PEG-7 flow diagram are defined in Table III.

5.0 LINEAR TERMINAL VELOCITY CONSTRAINT GUIDANCE ROUTINE

This section defines PEG-4 the routine which provides a functional simulation of the linear terminal velocity constraint guidance algorithm as currently defined in References 4 and 7. This mode performs guidance computations necessary to ensure achievement of the desired relationship between horizontal and vertical velocity components at a given target position vector. As currently planned all OMS ascent maneuvers and the deorbit maneuver will be simulated utilizing this mode as the primary guidance algorithm.

5.1 Detailed Description

This routine (in conjunction with its utility routines) determines the velocity-to-be-gained $\left(\bar{V}_{G O}\right)$, time-to-go until thrust termination ($T_{G O}$) and the resultant thrust direction vector (\bar{U}_{T}) required to solve the linear terminal velocity constraint guidance problem. Having been called by the guidance supervisor (PEGSUP) with the proper input parameters (Table I.), this routine then sequences the following utility routines to perform the guidance computations:

Utility Routine	Function Performed INIT
UPVGO	Parameter initialization (Section 5.1.1) Update velocity-to-go vector $\left(\bar{V}_{G O}\right)$ (Section 5.1.2)
TGO	Calculate time-to-go ($\left.T_{G O}\right)$ until thrust termination (Section 5.1.3)
INTEG	Calculate thrust integrals (Section 5.1.4)

Utility Routine	Function Performed
TURNR	
PREDICTOR	Calculate turning rate vector $(\bar{\lambda})$ (Section 5.1.5)
CORRECTOR	Predict position and velocity vectors at cutoff (Section 5.1.6)
PRECISE PREDICT	Compute $\nabla_{\text {GO }}$ and test for convergence of. of guidance solution (Section 5.1.7)
	Perform a state vector prediction function (Section 6.0$)$
	Compute the velocity required at an initial point in order to intercept a target position with a specified linear. relationship between the terminal radial and horizontal velocity components (Section 7.0)

Upon first entry into PEG-4, INIT is called for parameter initialization. On all subsequent passes, UPVGO is called to update $\bar{V}_{G O}$ and the current guidance phase number. If $\bar{V}_{G O}$ is zero, PEG-4 is exited (no guidance computations are required). After determining $T_{G O}$, the desired thrust vector $(\bar{\lambda})$, and the turning rate vector $(\overline{\dot{\lambda}})$, a test is made to check for unit thrust direction $\left(\bar{U}_{\mathrm{T}}\right)$ calculation. If active steering is enabled ($\mathrm{K}_{\text {STEER }}=1$) and PEG-4 has computed a converged solution with no significant differences between the current and previous predicted burnout times, \bar{U}_{T} is computed. Otherwise this calculation is bypassed. Following thrust direction calculations, burnout position and velocity-to-go are determined.

The linear terminal velocity constraint logic (PEG-4) is called from PEGSUP to perform mode 4 guidance computations. The detailed logic
flow of PEG-4 is shown in Figure 3. Definitions of symbols used in PEG-4 and its utility routines are found in Table IV.

5.1.1 Utility Routine INIT

This routine is called only on the first pass through the mode 4 guidance computations. INIT sets the predicted burnout state $\left(\bar{R}_{p}, \bar{V}_{p}\right)$ equal to the current state and calls utility routine CORRECTOR to determine an initial $\bar{V}_{\text {GO }}$. INIT also initializes the current guidance phase indicator ($\mathrm{K}_{\text {PHASE }}$) to one.

A detailed logic flow of INIT is shown in Figure 4. Definitions of symbols used in this routine are found in Table IV.

5.1.2 Utility Routine UPVGO

On all passes through PEG-4 subsequent to the first pass, utility routine UPVGO is calied to update the velocity-to-be-gained before thrust termination $\left(\bar{V}_{G O}\right), \bar{V}_{G O}$ is decremented by the computed change in accumulated sensed velocity ($\Delta \bar{V}_{S}$) as determined in PEGSUP. UPVGO also tests to determine when the current guidance phase is terminated and increments the phase indicator ($\mathrm{K}_{\text {PHASE }}$), initializes the burn time of the new phase ($\left.T_{B}\left(K_{\text {PHASE }}\right)\right)$ and initializes guidance phase. time-to-go ($\left.T_{G O N}\left(K_{\text {PHASE }}\right)\right)$. A detailed logic flow of utility routine UPVGO is shown in Figure 5. Definitions of symbols used in the flow diagram are found in Table IV.

5.1.3 Utility Routine TGO

Utility routine TGO is called by PEG-4 to compute time-to-go until
thrust termination ($T_{G 0}$) and to update predicted burnout time (T_{p}). A test is made to determine if multi-phase logic ($N>1$) is to be uitilized to compute $T_{G O}$. If single phase logic is specified, $T_{G O}$ is computed as a function of the vehicle estimated acceleration (ATR), total exhaust velocity ($V_{E X}$) and magnitude of the velocity-to-go ($V_{G O M A G}$). If multi-phase logic is utilized, estimated burn times of all phases are computed and summed to determine the total $T_{G O}$ for the maneuver. Following the $T_{G O}$ computation, predicted burnout time (T_{p}) is computed by summing current time and $T_{G O}$. It should be noted that the multi-phase software requirements specified in Figure 6 are limited by: a) multi-phase implies two phases only
b) multi-phase is designed for an OMS/RCS parallel burn followed by an OMS burn.

Detailed logic flow of routine TGO is shown in Figure 6. Definitions of symbols used in the logic flow diagrams are found in Table IV.

5.1.4 Utility Routine INTEG

INTEG is a utility routine called by PEG-4 to compute a set of inputs for determining the first and second order thrust integrals. The. integral calculations assume a constant force magnitude and are time integrals of force over mass. The integrals are used in the thrust vector turning rate calculations and the prediction equations of guidance. The integrals are computed for each phase and summed over the total number of guidance phases.

As currently defined in Reference 7, the deorbit and AOA OMS-2 guidance algorithms consist of single phase logic, utilizing only first order thrust integrals.

The orbital guidance requirements specified in this report are consistent with the reference. The computation of second order integrals and multi-phase logic are delete: depending on a test which is incorporated into INTEG to determine if deorbit/AOA OMS-2 guidance is desired.

After determining the thrust integrals, INTEG computes a reference time (T_{λ}) used in the calculation of the resultant thrust direction $\left(\bar{U}_{T}\right)$.

Detailed logic flow of INTEG is illustrated in Figure 7. Definitions of symbols used in the logic flow diagram are given in Table IV.

5.1.5 Utility Routine TURNR

Routine TURNR is called by PEG-4 to determine thrust vectors $\bar{\lambda}$ and $\overline{\dot{\lambda}}$.. The desired thrust vector $(\bar{\lambda})$ is computed as a unit vector in the direction of $\bar{V}_{G O}$. If the simulated maneuver is a deorbit or AOA OMS-2, the turning rate vector $(\overline{\dot{\lambda}})$ is computed as a function of the primer rate $\left(\dot{\bar{\lambda}}_{X Z}\right)$, thrust vector $(\bar{\lambda})$ and a unit vector $\left(\bar{U}_{Y}\right)$ which is normal to the desired orbital plane. If the maneuver is not a deorbit or AOA OMS-2, $\overline{\dot{\lambda}}$ is computed as a function of the range-to-go vector $\left(\overline{\mathrm{R}}_{\mathrm{GO}}\right), \bar{\lambda}$ and the thrust integrals. A test is made to insure that λ does not result in a violation of small angle approximations used in development of the guidance equations.

Detailed logic flow of TURNR is illustrated in Figure 8. Definitions of symbols used in the logic flow diagram are found in Table IV.

5.1.6 Utility Routine PREDICTOR

Routine PREDICTOR is called by PEG-4 to predict the burnout state vector. To ferform this function, the first and second integrals of thrust acceleration and gravity must be determined. The function of PREDICTOR and its interface with a navigation-defined state propagation routine are described in this section.

5.1.6.1 Determination of Thrust Integrals

The thrust time integrals ($\overline{\mathrm{V}}_{\text {THRUST }}, \overline{\mathrm{R}}_{\text {THRUST }}$) are computed as functions of the reference thrust vectors $(\bar{\lambda}, \bar{\lambda})$ and the force over mass integrals of INTEG for all simulated maneuvers except deorbit and AOA OMS-2. As specified in Section 5.1.4, Reference 7 indicates that the second order integrals of force over mass are negated for these maneuvers. Hence, the thrust time integrals are determined by setting $\bar{V}_{\text {THRUST }}$ equal to $\bar{V}_{G O}$ and $\bar{R}_{\text {THRUST }}$ equal to $\bar{R}_{G O}$ for deorbit and AOA OMS-2.

5.1.6.2 Determination of Gravity Acceleration Integrals

Integrals of gravity acceleration are approximated by propagation of the state vector over a coasting arc which remains close to the powered trajectory. The initial state vector ($\bar{R}_{C l}, \bar{V}_{C T}$) input to the state propagation routine are computed as a function of the current guidance state vector $\left(\bar{R}_{G D}, \bar{V}_{G D}\right)$, the thrust integrals ($\bar{V}_{\text {THRUST }}, \bar{R}_{\text {THRUST }}$), and $T_{G O}$. Current onboard guidance software ${ }^{-}$ specifications (Reference 4) indicate that the state propagation is to be performed by a navigation function. The logic for this
navigation function has been extracted from the navigation FSSR (Reference 5) and is defined in this memo as routine PRECISE PREDICT. A description of PRECISE PREDICT is given in Section 6.0.

As part of the inputs to PRECISE PREDICT, PREDICTOR determines a maximum value for integration step size ($\Delta T_{A V G}$). Step size $\Delta T_{A V G}$ is set equal to the middle value of $\Delta T_{M A X}, T_{G O} / N_{S E G}$ and $\Delta T_{M I N}$. in PREDICTOR.

5.1.6.3 PREDICTOR/PRECISE PREDICT Interface

Targets for a PEG-4 maneuver are based on a burn-coast sequence (input target values are for the end coast phase). The burn arc of the PEG-4 solution includes oblateness effects ($J_{2} \neq 0$) in the gravity potential model. The coast arc within PEG-4 is calculated using a spherical earth model. Thus it is necessary to bias guidance input targets in order to achieve the desired terminal state vector. The desired terminal conditions ($\bar{R}_{T}, C_{1}, C_{2}$) are biased $\left(\bar{R}_{T}+\Delta \bar{R}_{T}, C_{T}+\Delta C_{T}\right)$ to account for oblateness effects $\left(J_{2}\right)$ which will be experienced during the actual coast. The target biases $\left(\Delta \bar{R}_{T}\right.$ and $\left.\Delta C_{1}\right)$ are inputs to the guidance software as defined in this paper.

The target biases are computed based on a given burn arc with no engine failure; nominal burn arc is assumed to be accurately pre-dicted.- However, to account for off-nominal situations (predicted burn arc does not equal given burn arc), the position at cutoff
$\left(\bar{R}_{p}, \bar{V}_{p}\right)$ must be adjusted for the oblateness effects. This necessitates two calls to PRECISE PREDICT. The first call propagates $\bar{R}_{C 1}$ and $\bar{V}_{C 1}$ (with J_{2} effect included) over a time interval equivalent to $T_{G O}$ minus the difference between the targeted coas.t time. ($\triangle T_{\text {COAST (REF) }}$) and the actual coast time ($\Delta T_{\text {COAST }}$). The second PRECISE PREDICT call propagates the state resulting from the first call ($\bar{R}_{\text {INT }}, \bar{V}_{\text {INT }}$) over an interval equivaient to ${ }^{*}$ ${ }^{\Delta T}$ COAST (REF) minus ${ }^{\Delta T}$ COAST (without J_{2} effect). The final state vector is defined as $, \bar{R}_{C 2}, V_{C 2}$.

Having accomplished the state extrapolation, the gravity biases ($\bar{R}_{\text {GRAV }}, \bar{V}_{\text {GRAV }}$) are computed and are used to adjust the predicted burnout state $\left(\bar{R}_{p}, \bar{V}_{p}\right)$.

5.1.6.4 PREDICTOR Logic Flow

Detailed logic flow of routine PREDICTOR is illustrated in Figure 9. Definitions of symbols used in the logic flow diagram are found in Table IV.

5.1.7 Utility Routine CORRECTOR

CORRECTOR is called by PEG-4 to set the desired position vector $\left(\bar{R}_{D}\right)$, to determine the desired velocity $\left(\bar{V}_{D}\right)$ at burnout, to correct $\bar{V}_{G O}$ for any desired fuel depletion burns and to perform the check on guidance convergence. Desired velocity $\left(\bar{V}_{D}\right)$ is determined by routine LTVCON. LTVCON computes \bar{V}_{D} such that the target position (at end coast) is intercepted with a desired relationship between
horizontal and vertical velocity. Before the LTVCON call is executed, corrections are made to the target position $\left(\bar{R}_{T}\right)$. If the simulated maneuver is an abort or deorbit, \bar{R}_{T} is constrained to be in the predicted cutoff plane. If the maneuver is an AOA OMS-2 or deorbit maneuver, the magnitude of \bar{R}_{T} is adjusted to be consistent with the desired geodetic altitude ($H_{T G T}$) above the Fischer ellipsoid.

After determining \bar{V}_{D}, a correction is applied to $\bar{V}_{G O}$ using a scalar damping factor ($\mathrm{RHO}_{\mathrm{MAG}}$) and miss velocity (difference between \bar{V}_{p} and \bar{V}_{D}). If fuel depletion burns are to be performed, $\bar{V}_{G O}$ is. corrected to include the out-of-plane velocity accumulated by the depletion
\therefore burn. After correcting $\bar{V}_{G 0}$; a convergence check is made to determine if miss velocity ($\bar{V}_{\text {MISS }}$) is within acceptable limits.

Detailed logic flow of routine CORRECTOR is illustrated by Figure 10. Definitions of symbols used in the logic flow diagram are given in Table IV.

6.0 STATE PREDICTION ROUTINE

This section defines routine PRECISE PREDICT. The routine is called by PREDICTOR to perform the state extrapolation function. The extrapolation is required to determine gravitational effects to be used in the prediction of burnout position and velocity vectors (\bar{R}_{p}, \bar{V}_{p}). PRECISE PREDICT is developed from a modification of the current "Super G" algorithm. (See Reference 5.)

6.1 Detailed Description

The function of PRECISE PREDICT is to calculate an extrapolation of a state vector. To accomplish this the following inputs are required:
a) initial state vector - $\left(\bar{R}_{I}, \bar{V}_{I}, T_{I}\right)$.
b) - time for computation of final state $\left(T_{F}\right)$
c) upper bound on integration step size ($\triangle \mathrm{T}_{\text {MAX }}$)
d) indicators for gravity, drag and.vent models (GMD, GMO, DM, VM)

Using the above inputs, PRECISE PREDICT determines an integration interval for use in the calculations and the initial acceleration. The routine then:
a) advances current time (T)
b) integrates current radius (\bar{R}_{F}) and velocity (\bar{V}_{F})
c) updates acceleration
d) corrects radius by the "Super G" algorithm.

This process is repeated iteratively until time T_{F}. The last pass values of \bar{R}_{F} and \bar{V}_{F} are the state vector at the final time.

Sections 6.1.1 and 6.1.2 contain descriptions of two utility routines (ACCEL and ACCEL GRAV) which are used by PRECISE PREDICT.

Detailed logic flow of routine PRECISE PREDICT is illustrated by Figure 11. Definitions of symbols used in PRECISE PREDICT-and its utility routines are contained in Table V.

6.1.1 Utility Routine ACCEL

ACCEL is a function routine. It is called from PRECISE PREDICT to compute gravitational and non-gravitational (drag, venting) accelerations. The SMCC requirements for drag and venting models (within the guidance link) are unclear at this time. (See Reference 7.) These models are controlled by input flags DM and VM and are not called if $D M=0, V M=0$. Because the requirement for these models is not clearly defined at this time, only the logic for accessing drag and venting models is included in this report.

ACCEL is the supervisor for the acceleration calculations. It computes acceleration due to a central body force, controls the calling of a higher order gravitational model (ACCEL GRAV), controls calling of drag and vent models (ACCEL DRAG and VENT), and computes the total acceleration. In addition, it issues calls for vehicle attitude (ATT) and atmospheric density (DENSITY). VehicTe attitude is required by VENT and ACCEL DRAG. An attitude control flag (ATM). is set in the prediction routine. The flag is consistent with the Reference 5 logic
in that the referenced attitude determination logic requires an indicator for propagation (ATM $=0$) or prediction (ATM $=1$).

Logic flow for routines ACCEL and ACCEL GRAV is provided in this report. The vehicle attitude (ATT), vent (VENT), density (DENSITY) and drag (ACCEL DRAG) models are not included. The outputs required from these routines are specified in Figure 12 and Table V. Detailed logic flow of the function ACCEL is illustrated by Figure 12. Definitions of symbols used in the logic flow diagram are listed in Table V.

6.1.2 Utility Routine ACCEL GRAV

This section contains a brief description of utility routine ACCEL GRAV. The logic flow of ACCEL GRAV is illustrated in Figure 13. The logic for the model is taken from Reference 5 and is based on Reference 8. This model determines gravitational effects resulting from the oblateness of the Earth. The model is controlled by input flag GMD (GMD $\neq 0$; compute oblateness effects). Input flag GM0 indicates the order of calculation for the model. The inputs are restricted in that GMO \leq GMD with a maximum value of 8 for GMD. The limits which are imposed on the arrays of ACCEL GRAV are specified in Table V.

The logic contained in Figure 13 for determining gravitational acceleration includes both sectorial and zonal effects. The acceleration
calculations are performed in earth-fixed coordinates and rotated into the mean of 1950 (M50) system for use by ACCEL. A detailed description of the logic of ACCEL GRAV is contained in Reference 8. Table V contains definitions of the symbols used in the Figure 13 logic flow.

7.0 LINEAR TERMINAL VELOCITY CONSTRAINT ROUTINE

This section describes routine LTVCON which is used to determine the velocity required at an initial point ($\left(\bar{R}_{0}\right)$ io intercept a target position ($\left(\bar{R}_{7}\right)$ such that a specified linear relationship between the terminal radial and horizontal velocity components is satisfied. This linear relationship is specified by:

$$
V_{\text {RADIAL }}=c_{1}+c_{2} * V_{\text {HORIZONTAL }}
$$

The solution involves a set of two-body differential equations of motion for a spacecraft center of mass in an inverse square central force field.

7.1 Detailed Descrintion

Within the logic flow as specified for calculating required velocity, LTVCON is an executive routine. LTVCON controls the calculation of velocity-required through the calling of three utility routines. The routines and their function are as specified:

UTILITY ROUTINE
INITIAL Compute unit vector specifying transfer plane. Determine transfer triangle and constants for normalizing velocity and transfer time.

Compute velocity vectors at \bar{R}_{0} and \bar{R}_{1} such that terminal velocity satisfies the desired linear constraint.

TRANSTIME Compute time required to traverse the transfer angle given a specified initial velocity $\left(\mathrm{V}_{0}\right)$.

The logic flow of LTVCON is illustrated by Figure 14. Table VI contains definitions of the variables used in the entire LTVCON link including the specified utility routines.

7.1.1 Utility Routine INITIAL

Utility routine INITIAL performs an initiaiization operation. It computes the magnitudes and unit vectors for input position vectors $\overline{\mathrm{R}}_{0}$ and $\overline{\mathrm{R}}_{\mathrm{T}}$. The routine also computes sines ($\mathrm{S} \mathrm{\theta}$) and cosines ($\mathrm{C} \theta$) of the transfer angle and sets the constants ($R_{\text {CIRC }}$ and $V_{\text {CIRC }}$) required to normalize transfer velocity and time.

Figure 15 contains an illustration of the logic flow of INITIAL. Definitions of the symbols used in the figure are contained in Table VI.

7.1.2 Utility Routine REQVEL

REQVEL computes the velocity vector $\left(\bar{V}_{0}\right)$ required at an initial position (\bar{R}_{0}) in order to achieve the required velocity vector (\bar{V}_{1}) at a final position $\left(\bar{R}_{1}\right)$. Since the terminal radial velocity component - $\quad\left(V_{R 1}\right)$ is specified as a linear function of the terminal horizontal velocity component $\left(V_{H T}\right)$, a quadratic equation in $V_{H T}$ exists as follows:

$$
A * V_{H 7}^{2}+B * V_{H I}+C=0
$$

where the coefficients A, B, and C are functions of the position magnitudes. $\left(R_{0_{M A G}},{ }^{R}{l_{M A G}}\right)$, the transfer angle, and the constraint
coefficients $\left(C_{1}, C_{2}\right)$. The radical of the equation (D) is computed as:

$$
D=B^{2}-4(A * C)
$$

If D is less than zero, no solution to the problem exists and an error flag is set and a message displayed. At this point LTVCON and the calling routine should be exited. If D is greater than or equal to zero, the velocities \bar{V}_{0} and \bar{V}_{7} are computed such that the desired velocity constraint condition is fulfilled.

The logic flow of REQVEL is illustrated in Figure 16. Definitions of the symbols used in the figure are contained in Table VI.

7.1.3 Utility Routine TRANSTIME

Routine TRANSTIME computes the time required to traverse from \bar{R}_{0} to \bar{R}_{1}. To determine the free-fall time required to traverse the transfer angle, an indicator (U) is computed to determine if a solution exists. If U is less than or equal to a -1 , the REQVEL solution results in a hyperbolic trajectory. In this case an error flag is set, an error message displayed and LTVCON and its calling routine should be exited. If U is greater than -1 , transfer time (ΔT) is computed. The computation of ΔT requires the use of a. function $Q M$. This function routine computes

$$
Q M=W+(1-W W)\langle 5-(F)(W W)) / 15
$$

Where F is a hypergeometric function which is the transcendental portion of the normalized transfer time.

Figure 17 contains an illustration of the logic flow of TRANSTIME. Figure 18 contains the logic flow of function $Q M$. The symbols used in the figures are defined in Table VI.

8.0 CONCLUSIONS

The logic and logic flow given in this report are developed to satisfy the Level C orbital guidance software requirements for the SMCC. The resulting functions are to provide guidance simulation capability within the SMCC. The logic and flow presented. in this report are modeled after the current guidance FSSR but are not restricted to being identical. The routines used to perform guidance functions are as depicted in Figure 19.

Some of the functions defined in this report may be performed by other disciplines within the SMCC. Orbital guidance is only a "user" of these functions (e.g. the gravity model). Some of these functions are defined in this report for completeness. In some instances the capability (or requirement) for the functions (e.g. vent model and drag model) and its interface with the models of this report are defined.

As of this date it is understood that here is no requirement for simulating the drag and vent models within the orbital guidance function of the SMCC. The logic for these two routines should be removed from these requirements.

9.0 REFERENCES

1. JSC•Internal Note No. 76-FM-40, "Real Time Computer Complex Requirements for Shuttle Orbital Flight Test Missions - The Mission Plan Table (MPT) and Detailed Maneuver Table (DMT)," dated 27 May 1976.
2. JSC Internal Note No. 76-FM-43, "Preliminary Shuttle Mission Control Center (SMCC) Level B Requirements for Orbital Flight Test Missions Finite Burn Simulation Support (The Confirmation/ Direct Input Processor (CDI), The Power-Flight Iterator (PFI), and the Capabilities Required in the Powered Flight Numerical Integrator (PFNI))," dated 29 June 1976.
3. JSC Internal Note No. 76-FM-47, "OFT SMCC Level B Requirements for the Deorbit Planning Processor," dated 28 June 1976.
4. JSC Internal Note No. 76-FM-Preliminary, "Preliminary Ascent Guidance FSSR Input," dated 23 July 1976.
5. JSC Internai Note No. 75-FM-80, "Navigation Input to Level C OFT Navigation Function Subsystem Software Requirements Revision 1," dated 11 March 1976.
6. JSC Internal Note No. 76-FM-13, "MPAD SMCC Software Development Plan," dated 9 April 1976.
7. JSC Internal Note No. 76-FM-67, "On Orbit 1 Guidance and Targeting FSSR Inputs," dated 1 September 1976.
8. MDTSCO Report Number W0013, (NASA CR 147478), "Pines' Nonsingular Gravitational Potential: Derivation, Description, and Implementation," dated 9 February 1976.

TABLE I - DEFINITIONS' OF INPUTS TO SMCC GUIDANCE SOFTWARE

	SYMBOL	UNITS	DIMENSION	$\begin{aligned} & \text { USER } \\ & \text { ROUTINES* } \end{aligned}$	DEFINITION
	C_{1}	FT/SEC	1	C	Target velocity constraint coefficient in the equation $V_{\text {RADIAL }}=C_{1}+C_{2} * V_{\text {HORIZ }}$
	C_{2}	NA	1	c	Target velocity constraint coefficient in the equation $V_{\text {RADIAL }}=C_{1}+C_{2} * V_{\text {HORIZ }}$
	C_{L}	NA	$L=1,35$	c	Constants which account for tesseral harmonics in gravity potential model
	[EF TO M50(T)]	NA	3,3	c	Transformation matrix from earth-fixed to mean of 1950 (M50) coordinates
N	ELLIPT	NA	1	C	Earth ellipticity constant
	${ }^{\text {HGT }}$	FT	1	C	Geodetic altitude of target above Fischer, ellipsoid
	$F_{\text {OMS }}$	LB	1	A/C	Nominal OMS vacuum thrust level
	$\mathrm{F}_{\text {RCS }}$	LB	1	A/C	Nominal RCS vacuum thrust level
	$\mathrm{KD}_{\text {GUID }}$	NA	7	A	Guidance control option $=1$; nominal PEG-4 maneuver = 2; PEG-7 maneuver $=3,4,5$; manual steering modes = 6; deorbit maneuver = 7; abort maneuver (AOA or ATO) = 8; AOA OMS-2 maneuver
	$K_{\text {FPASS }}$	NA	1	A	First pass flag = 0; subsequent passes $=1$; first pass through guidance

TABLE I - DEFINITIONS OF INPUTS TO SMCC GUIDANCE SOFTWARI
(CONTINUED)
SYMBOL

TABLE I - DEFINITIONS OF INPUTS TO SMCC GUIDANCE SOFTWARE
(CONTINUED)

TABLE I - DEFINITIONS OF INPUTS TO SMCC GUIDANCE SOFTWARE (CONTINUED)

SYMBOL	UNITS	DIMENSION	$\begin{aligned} & \text { USER } \\ & \text { ROUTINES* } \end{aligned}$	DEFInition
ΔC_{7}	FT/SEC	1	C	Offset applied to true target velocity constraint C_{1} to obtain a conic constraint
$\Delta \overline{\mathrm{R}}_{T}$	FT	3	c	Offset applied to true target position vector \bar{R}_{T} to achieve a conic target
${ }^{\Delta T}$ COAST (REF)	SEC	1	c	Reference coast time used in prediction logic
${ }^{\Delta} T_{\text {Cutoff }}$	SEC	1	A/C	Effective thrust tail-off time
$\Delta T_{\text {MAX }}$	SEC	1	C	Maximum integration time step for gravity prediction
${ }^{\sim}{ }^{\circ} T_{\text {MIN }}$	SEC	1.	c	Minimum integration time step for gravity, prediction
$\varepsilon_{\text {STEER }}$	SEC	1	c	Convergence criterion applied to predicted burnout time used to inhibit computation of \bar{U}_{T}
$\Phi_{\text {MAX }}$	RAD	1	c	Small angle approximation constraint
$\mu_{\text {EARTH }}$	$\mathrm{FT}^{3} / \mathrm{SEC}^{2}$	1	c	Earth gravitational constant.

TABLE II - DEFINITIONS OF SYMBOLS USED IN PEGSUP

TABLE II - DEFINITIONS OF SYMBOLS USED IN PEGSUP (CONTINUED)

FLOW CHART SYMBOL	UNITS	DIMENSION	TYPE*	DEFINITION
$K_{\text {FPASS }}$	NA	1	I	First pass flag = 0; subsequent passes $=1$; first pass through guidance
$\mathrm{K}_{\text {INIT }}$	NA	1	c/0	Initial pass flag (set to 1 on initial pass)
$K_{\text {MODE }}$	NA	1	C	$\begin{aligned} & \text { Guidance mode option } \\ & =4 ; \text { use PEG-4 } \\ & =7 \text {; use PEG-7 } \end{aligned}$
$\omega \mathrm{K}_{\text {STEER }}$	NA	1	c/0	Active steering flag $=0$; do not compute \bar{U}_{T} $=1$; compute \bar{U}_{T}
${ }^{K D}$ GUID	NA	1	I	$\begin{aligned} & \text { Guidance control option } \\ & =1 ; \text { nominal OMS burn guidance (PEG-4) } \\ & =2 ; \text { external } \triangle V \text { guidance (PEG-7) } \\ & =3 ; 4,5 \text {; manual steering modes } \\ & =6 ; \text { deorbit maneuver (PEG-4) } \\ & =7 ; \text { abort maneuever (AOA or ATO) (PEG-4) } \\ & =8 ; \text { AOA OMS-2 maneuver' (PEG-4) } \end{aligned}$
MASS	SLUGS	1	I/C	Estimated mass of orbiter
M_{BO}	SLUGS	1	C	Desired mass of orbiter at termination of fuel depletion maneuver
$M_{C G_{O M S}}$	SLUGS	1	I	Mass of OMS propellant burned during a fuel depletion maneuver to achieve the desired orbiter mass

TABLE II - DEFJNITIONS OF SYMBOLS USED IN PEGSUP (CONTINUED)

TABLE II - DEFINITIONS OF SYMBOLS USED IN PEGSUP (CONTINUED)

*C = COMPUTED; $I=$ INPUT; $0=$ OUTPUT TO PEG-4 OR PEG-7; GO $=$ GUIDANCE OUTPUTS

TABLE III - DEFINITIONS OF SYMBOLS USED IN PEG-7.

FLOW CHART SYMBOL	UNITS	DIMENSION	TYPE*	DEFINITION
ATR	$\mathrm{FT} / \mathrm{SEC}^{2}$	1	I	Current estimated acceleration
${ }^{\text {CONV }}$	NA	1	C	Convergence flag $=0$; PEG solution has not converged $=1$; PEG solution has convergnd $K_{\text {CONV }}=1$ for $P E G-7$ guidance
$K_{\text {INIT }}$	NA	1	I	Initialization request flag $=0$; no initialization required $=1$; perform initialization
$\underset{\sim}{\omega}{ }^{\text {K STEER }}$	NA	1	I	Active steering flag $=0$; do not compute \bar{U}_{T} $=1$; compute \bar{U}
T_{GO}	SEC	1	c/0	Time-to-go to thrust cutoff
${ }^{T} \lambda$	SEC	1	C	Reference time for thrust vectors $\bar{\lambda}$ and $\bar{\lambda}$
$\bar{U}_{T} \cdot$	NA'	3	C/0	Unit vector in the resultant thrust direction
$V_{E X}$	FT/SEC	1	I	Total effective exhaust velocity
$\bar{V}_{\text {GO }}$	FT/SEC	3	I/C/0	Velocity-to-be-gained vector
$V_{\text {GOMAG }}$	FT/SEC	1	C	Magnitude of $\bar{V}_{G 0}$
$\Delta \bar{V}_{S}$	FT/SEC	3	I	Change in accumulated sensed velocity
$\bar{\lambda}$	NA	3	C	Unit vector in direction of desired thrust
$\overline{\dot{\lambda}}$	NA	3.	C	Thrust vector turning rate
τ	SEC	1	C	Ratio of mass to mass flow rate


```
TABLE IV - DEFINITIONS OF SYMBOLS USED IN PEG-4
```

(CONTINUED)

FLOW CHART SYMBOL	UNITS	DIMENSION	TYPE*	DEFINITION
$\mathrm{K}_{\text {ABORT }}$	NA	1	I	Abort guidance request flag = 0; no abort simulation $=1$; abort simulation (AOA or ATO)
$\mathrm{K}_{\text {AOMS2 }}$	NA	1	I	OMS-2 burn guidance request flag (used only when $K_{\text {ABORT }}=1$) $=0 ; A O A$ OMS-2 guidance not desired = 1; perform AOA OMS-2 guidance
$\mathrm{K}_{\text {Cony }}$	NA	1	C	Convergence flag = 0; PEG solution has not converged $=1$; PEG solution has converged
$K_{\text {DEORB }}$	NA	1	I	Deorbit guidance request flag $=0$; not deorbit maneuver = 1; deorbit maneuver
K_{DM}	NA	1	I	Drag model flag for precise predictor $=0$; do not compute acceleration due to drag $=1$; compute acceleration due to drag
K FUELD	NA	1.	I	Fuel depletion flag $=0$; no fue 1 wasting $=+1$; waste left $=-7$; waste right

[^0]TABLE IV - DEFINITIONS OF SYMBOLS USED IN PEG-4
(CONTINUED)

TABLE IV - DEFINITIONS OF SYMBOLS USED IN PEG-4 (CONTINUED)

TABLE IV - DEFINITION OF SYMBOLS USED IN PEG-4 (CONTINUED)

TABLE IV - DEFINITIONS OF SYMBOLS USED IN PEG-4
(CONTINUED)

TABLE IV - DEFINITIONS OF SYMBOLS USED IN PEG-4
(CONTINUED)

$\begin{aligned} & \text { FLOM CHART } \\ & \text { SYMBOL } \end{aligned}$	UNITS	DIMENSION	TYPE*	deFinition
UUNIT	NA	3	C	Unit vector normal to the desired transfer plane in the direction of the angular momentum of the transfer
${ }^{\text {c }}$	FT/SEC	3	c	Initial velocity input to precise predictor?
$V_{\text {EX }}$	FT/SEC	1	1	Total effective exhaust velocity
$V_{E X A}()$	NA	$N_{\text {PHASE }}$	c	Effective exhaust velocity for each thrust phase
$\stackrel{\text { d }}{\sim} V_{G O D}$	FT/SEC	1	c	Desired $\bar{V}_{G 0}$ magnitude based upon desired cutoff mass for fuel depletion
$V_{\text {GOMAG }}$	FT/SEC	1	c	Magnitude of $\bar{V}_{G 0}$
$V_{\text {GOYS }}$	$\mathrm{FT}^{2} / \mathrm{SEC}^{2}$	1	C	Square of out-of-plane $\bar{V}_{G O}$ réquired to deplete OMS fuel
$\bar{V}_{\text {MISS }}$	FT/SEC	3	c	Difference between predicted and desired thrust cutoff velocity
\bar{v}_{p}	FT/SEC	3	c	Predicted thrust cutoff velocity
$\bar{v}_{C 2}$	FT/SEC	3	C	Final velocity output by precise predictor
$\bar{V}_{G D}$	FT/SEC	3	I	Vehicle velocity vector used by guidance

table iv - definitions of symbols used in peg-4
(CONTINUED)

FLOW CHART SYMBOL	UNITS	DIMENSION	. TYPE*	DEFINITION
$\Delta T_{\text {COAST (REF) }}$	SEC	1	I	Assumed time of coast segment
$\Delta T_{\text {MAX }}$	SEC	1	I	Maximum integration time step for gravity prediction
$\Delta T_{\text {MIN }}$	SEC	1	I	Minimum integration time step for gravity prediction
$\Delta \bar{V}_{S}$	FT/SEC	3	I	Change in accumulated sensed velocity
$\varepsilon_{\text {STEER }}$	SEC	1	I	Convergence criterion for inhibiting steering output
$\bar{\lambda}$	NA	3	C	Unit vector in the direction of $\bar{V}_{G 0}$
\bar{i}	RAD/SEC	3	C	Derivative of unit vector instantaneously aligned along $\bar{\lambda}$ but rotating with the desired thrust vector turning rate
$\dot{\lambda}_{\text {MAG }}$	RAD/SEC	1	C	Magnitude of λ
$\dot{\lambda}_{X Z}$	RAD/SEC	1	C	Component of $\dot{\lambda}$ in the $X-Z$ plane (primer rate)
$\dot{\lambda}_{Y}$	RAD/SEC	1	C	Component of $\dot{\lambda}$ along \bar{U}_{Y}
$\mu_{\text {EARTH }}$	$\mathrm{FT}^{3} / \mathrm{SEC}{ }^{2}$	' 7	I	Earth gravitation constant
$\Phi_{\text {MAX }}$	RAD	1	I	Small angle approximation constraint
$\tau()$	SEC	$\mathrm{N}_{\text {PHASE }}$	c	Ratio of mass to mass flow rate for each phase

TABLE V - DEFINITIONS OF SYMBOLS USED IN PRECISE PREDICT (CONTINUED)

${ }^{*} \mathrm{C}=$ COMPUTED; $\mathrm{I}=$ INPUT; $0=$ OUTPUT

FLOW CHART
SYMBOL

A

```
TABLE VI - DEFINITIONS OF SYMBOLS USED IN LTVCON
(CONTINUED)
```


FLOW CHART
SYMBOL

$\bar{U}_{R O}$

TABLE VI - DEFINITIONS OF SYMBOLS USED IN LTVCON (CONTINUED)

FLOW CHART SYMBOL	UNITS	DIMENSION	TYPE*	DEFINITION
X	NA	1	C	Scratch variable used in the continued fraction evaluation of the hypergeometric function F
ΔT	SEC	1.	C/0	Resulting transfer time interval
λ	NA	1	C	Constant parameter of the problem
$\mu_{\text {EARTH }}$	$\mathrm{FT}^{3} / \mathrm{SEC}^{2}$	1	I	Earth gravitational constant
μ	$\mathrm{FT}^{3} / \mathrm{SEC}^{2}$	1	C	Interval variable used to represent $\mu_{\text {EARTH }}$

*C $=$ COMPUTED; $\mathrm{I}=$ INPUT; $0=$ OUTPUT

fIgure 1 - pegsup logic flois

ORIGINAL PAGE IS OF POOR QUALITY

figure 2^{-}- peg-7 logic flod

FIGURE 3 - PEG-4 LOGIC FLON

ORIGINAL PÄGE IS OF POOR QUALITY

figure 3 - pegi-4 logic floh (page 2)

FICURE 3 - PEG-S LOGIC•flon (PAGE 3)

FIGURE 4 -. INIT LOGIC FLOR

- flgure 6 - tgo logic floid (page 2)
$\because \because M \dot{H}$ PAGE IS

figure $\overline{\text { - }}$ - integ logic flou (pige a)
- RIGINALI PAGE IS

P POOR QUALITY

figure 7 - INTEG.LOGIC flon (PAGE 3)

FIGURE 8 - turng LoGic floh

FIGURE 8 - TURIR LOGIC FLOK (PRGE 2)

```
Mrcinal Page IS
```


FIGURE 9 - PREDICICR lOGIC FLOH

$$
\therefore \text { ROOR PAGEIS }
$$

fIGURE 9 - PREDICTOR LOGIC FLOW (PAGE 2)

flgure 10-CORRECTOR LOGIC flon \{pAGE 2)

FIGURE 10 - CORRECTOR LOGIC flou (Page 3)

originad page is OF ROOR QUALTIY

- figure 13 - accel gray logic flon.
: originar page is TH POOR QUALITY

figure 13 - accel gray logic flon (page 3)

\therefore - figure 13-accel grav logic flon (page 4)
 -

- Figure 14 - ZTyCON logic flon

FIGURE 15 - Initial locic floh

FIGURE 16 - REQVEL LOGIC FLOW

- Figure 17 - transtime logic floh
- POOR QUAJITY
- .

On September 23, 1975, by memorandum LC-5-260 from this office, you were requested to process document release authorizations for documents generated by the Space Shuttle Engineering and Operations Support Contract NAS 9-13970 according to the following criteria:
a. "May be announced in STAR (or CSTAR if classified)."
b. "May be made publicly available, except (1) classified material which should be released to security qualified requestors only, and (2) documents which may be released overseas that come under the jurisdiction of the Federal Early Domestic Dissemination Program."

The above referenced contract has been superseded by NAS 9-14960, but the processing of document release authorizations should continue to be guided by the same criteria. If any additional clarification of this criteria is needed, such requests should be addressed to LC/R. B. Merrifield, extension 2091.

[^0]: *C - COMPUTED; I - INPUT; O - OUTPUT

