General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

MCDONNELL DOUGLAS TECHNICAL SERVICES CO. HOUSTON ASTRONAUTICS DIVISION

SPACE SHUTTLE ENGINEERING AND OPERATIONS SUPPORT

MISSION PLANNING, MISSION ANALYSIS AND SOFTWARE FORMULATION

AUGUST 1976

This Design Note is Submitted to NASA under Task Order No. D0506, Subtask B1, Task Assignment C in Fulfillment of Contract NAS 9-14960.

PREPARED BY

APPROVED BY: Lis \&f
Lester Drapela
Task Manager
(713) 488-5660 (243)

APPROVED BY:

$\frac{\text { Whodierfle, }}{\text { W. E. Hayes }}$
Project Manager Mission Planning, Mission Analysis and Software Formulation (713) 488-5660 (266)
1.0 Summary

Prior to the decision restricting deorbit iargeting to the ground for Orbital Flight Tests (OFT), a single, constant entry interface (EI) range, target line generator was being developed to provide the onboard EI target constants. This target line generator, which eventually was reduced to one linear equation, was developed to the point that it provided autonomous landing site relocation capability, negligible core storage, and acceptable performance for the cases tested. The purpose of this design note is to cocument the design consept and results for future reference.

2.0 Introduction

The onboard deorbit target line generator was envisioned as being a corkise and time expedient software design. The objective was to design a target line generator that required only a small amount of core storage and provided landing site relocation capability. A fast, simple, reliable, and autonomous deorbit target line generator was designed and tested.
C_{1} and C_{2} are guidance target constants which define the entry interface V_{V} versus V_{H} target line. The C_{1} value is the ordinate intercept of the V_{V} vs V_{H} target line. The C_{2} value is the slope of the V_{V} vs V_{H} target line. For a given landing site, vehicle configuration, and orbit inclination, the target line varies primarily as a function of EI latitude as shown in references 1,2 , and $3 .$. Thịs study was initiated to determine if a simple onbcard algorithm could be designed to produce the target line as a function of EI latitude for any landing.site within a given latitude band of the primary site.

3.0 Discussion

A single, constant EI range, linear C_{1} vs ϕ equation was developed from several landing sites and various cross ranges. The landing sites used in this study were Cape Kennedy, Edwards, and Guam. A mission 2 orbit defined by a 230 n.m. circular orbit of 55° inclination was chosen with a south approach trajectory toward each landing site.

The nominal fourth order polynomial targeting equations for Cape Kennedy, Guam, and Edwards from earlier studies (reference 1,2 , and 3) were used to develop the linear C_{1} vs ϕ equation. Referring to Figure 1, the fourth order C_{1} vs ϕ targeting polynomials for Guam and Edwards are translated using the Cape Kennedy C_{2} value. The Cape Kennedy C_{2} value is used as a reference constant because it is the primary design landing site for mission 2 and its landing site latitude lies between Guam and Edwards. By interpolating a line through the fourth order curves, the linear C_{1} vs ϕ equation will assume the Cape Kennedy C_{2} value. The linear line can be interpolated differently than as shown in Figure 1 such as to minimize the C_{1} margin. Minimizing the C_{1} margin between the linear line and the translated curves will reduce the flight path angle error and heating penalty.

Identical $\phi_{E I} \xrightarrow{\text { Different }} C_{i}$.

Referring to Figure 1, the Cape Kennedy, Edwards, and Guam fourth order C_{1} vs' ϕ polynomials have regions of identical latitude but different values of C_{1}. This aissimilarity occurs
PRFCEDING PAGE Bi,ANK NOT FITM (sdf) qdววงววu! $\cdot l_{\rho}$
from cross range differences and not from any contribution of earth oblateness. The earth oblateness effects acting on the entry approach paths having the same $\phi_{\text {EI }}$ will be the same. However, the cross range influence on range will affect the C_{1} value.

A larger cross range trajectory will produce a larger actual distance flown compared to a smaller cross range. Since the EI range is held constant, the larger range effect due to cross range must be compensated by a shift in the $V_{V}-V_{H}$ target line. As a result of the $V_{V}-V_{H}$ target line shift, the value of C_{1} will change. For different landing sites with the same $\phi_{E I}$ (as in Figure 1), the cross ranges for those $\phi_{\text {EI }}$ entry trajectories are different and different C_{1} ' values result.

4.0 Results

The entry heating performance results are compared between the linear C_{1} vs equation and the nominal fourth order equations in Figure 1. The entry heating data was performed for cross ranges in the region of $800 \pm 100 \mathrm{n} . \mathrm{m}$. The difference in the maximum backface over-temperatures for the Cape Kennedy trajectory was $1.63,^{\circ} 1.20^{\circ}$ for the Edwards trajectory, and 0.38° for Guam. In all cases, the maximum surface temperatures decreased slightiy with the linear line. In the same respect, the largest flight path angle error at entry interface for the performance data collected was 0.0266 degrees which did not advarsely affect the heating results. However, the worsi possible performance case which occurs at $\phi_{E I}=-42.5^{\circ}$ (see Figure 1) ard would result in a flight path angle erroi of about 0.094 degrees was not evaluated since onboard deorbit had been abandoned at the time and no further consideration was given to thorough performance evaluations.

5.0 Conclusion

The results of this study indicate that a single, constant EI range, linear C_{1} vs ϕ equation shows promise of determining the C_{1} and C_{2} target line :onstants for multiple landing sites with reliable performance results. sven though an extensive performance evaluation was not conducted, this initial design concept warrants consideration if at a later date onboard deorbit targeting is reinstated.

6.0 REFERENCES

1. TM 1.4-4-C-28: "Onboard Deorbit Targeting Module Entry Interface Target Line Storage and Retrieval." 18 February 1976.
2. TM 1.4-4-C-30: "Simplified Entry Targeting Generator (SETG) Applied to a Guam Landing Site," 18 February 1976.
3. TM 1.4-4-C-34: "Onboard Deorbit Targeting Module (SETG) Entry Interface Target Line Storage and Retrieval," 18 March 1976.
