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Abstract
 

Estuarine fronts represent regions of extremely high gradient or
 

discontinuity in various parameters of physical interest, the most im­

portant being the water velocity and density fields. Such fronts strongly
 

influence pollutant dispersion, by capturing oil slicks and other pollu­

tants concentrated in surface films and drawing them down into the water
 

column. Aircraft and boats were combined to study the behavior of diffe­

rent types of fronts in Delaware Bay and their effect on pollutants in
 

order to provide a basis for improving an oil drift and spreading model.
 

Imagery from the LANDSAT satellites provided the most effective means of
 

determining the location and extent of frontal systems over all portions of
 

the tidal cycle. This information is being used to modify the oil drift and
 

spreading model.
 



Introduction
 

Estuaries are the zones of transition between rivers and the sea*.
 

As such they are subject to a number of sources of environmental stress:
 

industrial thermal and waste discharges, sewerage inputs from the great
 

and small coastal cities, and spills of oil and other materials associated
 

with the world's maritime transport. At the same time estuaries serve as
 

spawning and nursery grounds for many important species of fish and shell­

fish, as well as being the conduits through which nutrients pass into pro­

ductive coastal waters. It is, therefore, important that we understand and
 

be able to model the estuarine processes controlling the-dispersal of pollutants
 

floating on the surface as well as those suspended or disolved in the
 

water column.
 

Current estuarine chemistry and pollution studies are based on classical
 

notions of estuarine circulation. The classical picture of circulation in a
 

partially mixed estuary which has been brought to a state of quantitative
 

understanding by the work of Prichard, Bowden, Hansen, Rattry and others,
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has recently been reviewed. It is one in which dilute sea water moving
 

up the bottom of the estuary is mixed and advected upward into an upper
 

layer of relatively fresh water moving downstream. It is two-dimensional
 

(axial and vertical) in its essential features, and salinity variations
 

and flows in the transverse direction are viewed as effects of minor
 

significance which can be dealt with as perturbations on the basic two­

dimensional scheme. Moreover, the classical picture is one in which the
 

dynamical quantities vary smoothly in the horizontal plane.
 

* "An estuary is a semi-enclosed coastal body of water which has a free 
connection with the open sea and within which sea water is measurably diluted
 
with fresh water from land drainageV2
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Remote sensors mounted on aircraft or satellites are now capable of
 

providing a synoptic view of surface and near-surface water conditions in
 

real time over large coastal areas. Useful results have been obtained in
 

estuarine circulation studies, particularly when aircraft or satellites
 

have been combined with boats gathering water samples and making other
 

measurements as the remote sensors view the scene from above. In some cases
 

rtmotely tracked dyes and drogues have been used to trace currents. In
 

coastal waters remote sensors benefit significantly from naturally occurring
 

tracers, such as suspended sediment, or color differences between water
 

4 
masses.
 

In Delaware Bay one can observe a variety of tide lines, color fronts,
 

foam lines, shear boundaries, etc., some of which seem random while others
 

appear repeatedly in the same general location. These observations, to­

gether with boat-based field work lead one to severely question the simp­

licity of the classical view of estuarine circulation discribed above,
 

particularly its assumption of smooth horizontal variations. It is clear
 

from our work that regions with extremely strong transverse gradients of
 

velocity and density exist in estuaries and that these regions play an im­

portant role in the dynamical and chemical processes of the system. These
 

regions are called "fronts".
 

Fronts are a major hydrographic feature in Delaware Bay and other
 

estuaries. Horizontal salinity gradients of 40/oo in one meter have been
 

observed and convergence velocities of the order of 0.1 m/sec. are typical.
 

Often, fronts extend for tens of miles; generally parallel to the -axisof
 

the Bay's channels. They are observed on both sides of the Bay and along
 

every channel where we have looked for them. Fronts have also been observed
 

near the mouth of the Bay where they appear to be associated with the tidal
 

interaction of shelf and estuarine water.
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Aquatic fronts are similar to atmospheric fronts in that the denser
 

fluid tends to under-ride the lighter fluid giving rise to an inclined­

interface. This dynamical behavior produces a marked surface convergence.
 

Tn our investigations in Delaware Bay, we have observed that these conver­

gences results in the concentration of foam, surface films and oil slicks
 

.at fronts.
 

Surface films and their resulting coalescence as foam lines are a
 

complex.mixture of organic and metallic compounds which are orders of mag­

nitude more concentrated in pollutants than their underlying waters. The
 

organic portion of these materials is made up of both natural and anthropo­

genie compounds, including a host of hydrocarbons, fatty acid, alcohols, and
 

6
even pthalates5, Of the nine metals which federal agencies list as
 

toxic'to marine and estuarine organisms7 at least seven are found concen­

8 
trated in surface films. Barker et al., determined that zinc and copper
 

could concentrate by factors of ten to a hundred in surface microlayers com­
6 

pared to underlying Hawaiian water. Szeklelda et al., found that when siich
 

microlayers were collapsed into foam lines along estuarine-fronts, metal
 

enrichment of thousands could result for chromium, copper, lead, mercury,
 

silver, and zinc. These workers showed that phytoplankton chlorophyll also
 

collects along such boundaries, and is carried down into the water column by
 

the down-welling convergence.
 

Therefore no serious effort to model the circulation dynamics and
 

pollutant tiansport in Delaware Bay and similar estuaries can neglect the
 

effect of frontal-systems. The purpose of this article is to demonstrate
 

how remote sensing techniques have been used to establish the location,
 

frequency of occurrence, extent, movement, shear and convergence properties
 

of coastal fronts and their effect on certain pollutants, such as oil slicks.
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Description of the Delaware Estuarine System
 

The physical oceanography and morphology -of the Delaware
 

Estuary hpve been reviewed by olis.and Kupferman .'~hreig
 

some terminological confusion about what constitutes the-Delaware
 

Estuary with various authors using discordant definitions. Polis
 

and Kupferman established a nomenclature for the Delaware system which
 

should be used by all workers. The followingtrms provide a fixed
 

geographical basis for discussion:
 

Delaware Estuary: The entire water area"from Capes May and
 

Henlopen to Trenton (the head of tide, see Figure 1).
 

Delaware Bay: The water area from Capes May and Henlopen to a
 

line between the stone markers at Liston Point, Delaware and Hope
 

Creek, New Jersey.
 

Tidal River: The portion of the Delaware Estuary above the
 

Delaware Bay.
 

The following terms are based on dynamical considerations and are
 

more useful for physical oceanographic discussions:
 

Lower Estuary- That portion of the Delaware Estuary to the furthest
 

upstream influence of oceanic salinity. This upstream limit is defined
 

as the point where the chloride content of the water drops below 250
 

parts per million. Chloride is the ion found in greatest concentration
 

in seawater. 250 ppm chloride is the commonly accepted maximum for
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potable water. The location at which this chloride level is found
 

varies with river flow and tidal stage. It is normally found in the
 

region between Wilmington and Philadelphia.
 

Upper Estuary: That portion of the Delaware Estuary upstream of
 

the Lower Estuary.
 

The estuary has an overall length of 213 km. Delaware Bay proper
 

has a length of approximatlely 76 km., a maximum width of 49 km and a
 

maximum depth of 46 m below mean low water. Its mean depth is approxi­

mately 10.4 m. The bottom topography is characterized by alternate
 

shoals and fingers of deep water, expecially on the Delaware side of
 

the bay, as can be seen in Figure 2. This topography'-is intimately re­
11
 

lated to the generation of fronts.
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Oceanography of Estuarine Fronts
 

From the oceanographic point of view, estuarine-fronts represent the
 

.surface expression--of -regions--of -extremely high gradient -(erging on dis­

continuity) in various parameters of physical interest, the most important
 

of these being the velocity and density fields. Indeed, this characteri­

zation may well be taken as the oceanographic definition of a front.
 

In Delaware Bay, surface and water column observations tend to show
 

a pattern in'the relationship between the time of occurence in terms of tidal
 

current phase and the geographical location of the front, with flood asso­

ciated fronts being more prominent on the New Jersey side of the Bay while
 

the fronts in the deeper channels of the Delaware side are most frequent
 

during the ebb portion of the tidal cycle. The occurence of flo6d asso­

ciated fronts on the New Jersey side coupled with their absence on the
 

Delaware side may be explained in some measure by the action of Coriolis
 

'force. This causes the New Jersey side to have a larger tidal range and its
 

channels to have unusally strong flood currents.
 

The focus of detailed kinematical and dynamical studies has, however,
 

been on the Delaware side where interest (and funding) has been drawn by
 

extensive oil lightering operations. What follows is based upon the pre­

liminary analysis of a number of experiments conducted by one of the authors
 

(D.F.P) in deep channels of Delaware Bay and to a lesser extent on previous 

work of both authors with Drs. Szekielda and Kupferman and reported upon by 
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Szekielda - et al. and Kupferman et al. A more detailed account of these 

experiments will be reported elsewhere. 

An examination of low altitude aerial photographs reveals that some fronts
 

are associated with a foam line (Figure 3) while others have their visual mapi­

festion in a sharp color boundary unassociated with a foam line (Figure 4).
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Often, foam and color boundaries are found parallel to each other, but
 

separated by few meters as shown in Figure 5. The foam found in some fronts
 

is generally associated with lines of detritAl material, predominantly marsh
 

grass fragments, but these detrital lines are often displaced,from the foam
 

toward the paralleling color boundary. All of this was taken as presump­

tive evidence of a convergence; however, the displacement of foam (surface)
 

detrital (near surface- upper 2-3 mm.) and color (bulk) boundaries argue for
 

the distortion or stretching of the convergence zone in the surface boundary
 

layer as shown in Figure 6. From our first encounters with fronts, we had
 

known that they were associated with extremely strong 'salinity,and hence
 

6 
density, differences. Figure 6 therefore shows the convergence being
 

associated with a density interface. For reasons of continuity it is necessary
 

that, except at the exact surface (marked by the foam line), the density inter­

face be below the line of convergence.
 

Given this picture of the foam marked boundaries, we had assumed that
 

the foamless color boundaries were essentially incipient zones of conver-.
 

gence which had not yet had time to collect noticable foam and detritus.
 

As will be seen below we now have reason to abandon, or at least to severely
 

modify, this interpretation.
 

Our assumption of convergence associated with the fronts was confirmed
 

by experiments using anchored and drifting dye packets which showed that one
 

front on the Delaware side had a convergence velocity with respect to the
 

frontal interface of 12 cm/sec while the interface moved laterally at the rate
 

of 54 cm/sec so that the lateral current component was 66 cm/sec on the back 12
 

side of the advancing front. These results were reported by Kupferman et al.
 

In October 1974, an experiment was undertaken to attempt to understand
 

the intratidal cycle dynamics of the deep channel in Delaware Bay. During
 

the course of that experiment, a front passed a station occupied by one the
 

boats in that experiment (Station S in Figure 7). Figure 8 shows the
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isohalines as a function of time and depth. From this it is clear that the
 

frontal structure does not extend to the bottom of the channel in general,
 

but more important, that it is associated with the normal estuarine pycnocline
 

(region of high vertical density gradient) generally ascribed the two-layered
 

estuarine circulation.
 

In an experiment conducted in January 1975, the three dimensional struc­

ture of a complex frontal system in this same region was mapped out. For the
 

purposes of this paper it will suffice to show a pair of cross channel sections
 

of the frontal system as manifested in.its'lateral velocity structure. The
 

cross-channel velocity.component,.vy, is talkdh as positive toward the Delaware shore
 

Figure 9 and 10 show isotachs of vy, in a cross-channel section looking up
 

stream through stations Wo-l, Wo-2, and Wo-3 (see Figure 7 for station loca­

'
tions) at 1115 and 1340 hours respectively. As these stations were occdpied
 

successively by the R. V. Wolverine, the verfical structure for stations Wo-l,
 

and Wo-2 are based on temporal interpolations of earlier and later observa­

tions; however, the sections seem to be consistent with all available data.
 

It will be noticed (1) that there are both zones of convergence and of diver­

gence, and (2) that the entire structure appears to be migrating toward the
 

New Jersey.shore. This is borne out by the aerial photographs taken as a
 

part of this experiement. Upon close examination the photographs also show
 

a color boundary associated with the divergence on the right. The divergence
 

on the left apparentlyfad no clear visual manifestation. Thus it now appears
 

that the color boundaries lacking foam may be associated with divergences.
 

The photographs also show another foam line outside (to the left) of station
 

Wo-l. Thus we have in this channel at least two divergences and two conver­

gences. All of these observations were taken on the ebb portion of the tidal
 

cycle.
 

On the flood portion of the cycle, the fronts on the Delaware side of
 

the Bay break up. Thus while there still exist weak color boundaries on the
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scale seen by LANDSAT, surface observations indicate a very patchy and dis­

organized picture in the upper few meters of the water column. Thus it appears
 

from boat observations that the long, linear frontal structures generated on
 

ebb tide in this region degenerate into meanders, eddies or lenses of lighter
 

water which become largely mixed into a vertically homogeneous water column
 

by the end of flood, as shown in Figure 8.
 



Effect of Fronts on Oil Slick Movement
 

Approximately 70 percent of all the oil that is delivered to the east
 

coast of the United States moves by water up the Delaware Bay an& Riven.
 

Much of this oil,is transferred-from large deep-draft tankers to barges
 

(lighters) or to small tankers to reduce the draft of the large tankers and
 

allow navigation up the Bay and River for unloading at docks. This transfer
 

operation takes place within Delaware Bay in the anchorage area off Big Stone
 

Beach (see Figure 1). In a typical year, more than 50 million short tons of
 

crude petroleum are transported through the Bay using the Big Stone anchorage
 

area within the bay.
 

Due to the growing demand for imported oil, the oil transport through
 

Delaware Bay and transfer activities in the Bay are expec.ted to increase
 

markedly in the future. National and regional concern over such develop­

ment focuses in large measure on environmental vulnerability due to oil
 

spills. Central to environmental repercussions, facility development, and
 

clean-up operations, is information regarding the-Lphysical movement and dis­

tribution of an oil spill.
 

A computer simulation model has been developed for tracing oil spills
 

in the Delaware Bay.1 3 The model takes-into account two aspects of transport:
 

drifting and spreading. The modelling of drift is based on the fact that oil
 

on water drifts under the combined influence of water current, wind effects,
 

and the earth's rotation. The physical processes governing the spreading of the
 

slick are divided into three stages. In the initial stage, the spreading
 

is predominantly governed by the balance of the forces of gravity and inertia.
 

In the second stage, the spreading involves the balance of viscous and inertial
 

forces. In the third and final stage of the spreading, a turbulent diffusion
 

model is employed. Based on these processes and the approximation of radial
 

symmetry, the rate of spreading is computed.
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The input requirements include the boundary conditions (the geometry
 

and bottom topography), the tidal current, the wind conditions, and the nature
 

of the oil spill - viz., the size of the spill, location of the initial spill
 

and the nature of the oil. Historical tidal current information and present
 

wind conditions in the Delaware Bay region are now being used as input.
 

The wind conditions can be entered in either of two ways: either eter­

ministically, or stochastically to make Monte Carlo calculations based on
 

historical wind data. The first way is used in an oil tracking routine,.while
 

the second yields information on the probability of various oil spill distributions.
 

The interactive nature of the model allows for information transfer between
 

the computer and the users who may or may not be faiftiliar with computer pro­

gramming. The details of oil spill tracking are displayed on a Tektronix tele­

vision-type screen. A number of output'options are available.
 

In order to verify and improve the model, aircraft and boats were combined
 

to track actual oil slicks under various conditions of wind, current, waves,
 

etc. During these field verification exercises it became obvious that by cap­

turing and holding oil slicks, frontal systems significantly influence the
 

dynamic behavior of oil slicks in Delaware Bay. The tendency of oil slicks
 

to line up along fronts during certain parts of tidal cycle was illustrated
 

by an oil spill which occurred as a result of a lightering operation in the
 

anchorage area on 10 January 1975, at the same time as the data shown~in
 

figure 9 and 10 was obtained. As shown in Figure 11, at 0930 hours the spill
 

consisted of four large slicks and numerous smaller ones almost randomlt
 

dispersed throughout the area. The wind was about 10 knots from the east­

southeast. The flood tide cycle was coming to an end with a near slack
 

current, as measured with current meters and air-tracked small drogues. At
 

this time no boundaries were observed. As shown in Figure 12 by 1100 hours
 

the current had turned to the ebb direction with a velocity of 0.6 knots.
 

Two convergent boundaries were clearly visible on either side of the oil
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slicks and were starting to attract some of the slicks. Results of an
 

oceanographic study of these boundaries were discussed in the previous
 

section and the right boundary corresponds to the convergence BB in
 

figures 9 and 10. Changing to a smaller scale (higher altitude photo­

graphy), one can see from Figure 13 that by 1500 hours most of the oil
 

was aligned along the boundaries and stretched into two five-mile slicks.
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Mapping Fronts with Satellites
 

In order to modify the predictive model to include the effect of
 

boundaries on oil slick movement one must determine where in the Bay boun­

daries form repeatedly and prevail over major portions of the tidal cycle.
 

Aircraft have been most useful in finding fronts, photographing them, and
 

guiding boats to collect data in frontal zones. However, to map-the extent
 

and repeatability of fronts over the entire bay under different tidal condi­

tions, satellite imagery is more effective. Imagery and digital tapes from
 

thirty-six passes over Delaware Bay of the LANDSAT-l and LANDSAT-2 atellites
 

were used in our work. The LANDSAT imagery was produced by the four-channel
 

multispectral'scanner (MSS) having the following bands:
 

Band 4 0.5 - 0.6 Microns
 

Band 5 0.6 - 0.7 Microns
 

Band 6 0.7 - 0.8 Microns
 

Band 7 0.8 - 1.1 Microns
 

From an altitude of 920 km, each frame covered an area of 185 km by 185 km
 

and had a resolution of about 80 meters. In addition to the 9-track 800 bpi
 

magnetic tapes, reconstructed negative and positive transparencies in 70 milli­

meter format and prints in nine-inch format were obtained from PASA. Before
 

visual-interpretation, some of the imagery was enhanced optically, using density
 

slicing and color additive techniques. Annotated thematic maps were prepared
 

by computer analysis of digital tapes and by direct photointerpretation of 'the
 

14
 
transparencies reconstructed by NASA. LANDSAT image radiance of Band 5 was
 

also correlated with suspended sediment concentration and Secchi depth data
 
3
 

obtained from boats and helicopters during the satellite overpasses . A sus­

pended sediment concentration map based on LANDSAT image radiance correlation
 

with water sample analyses is shown in Figure 14.
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Figures 15 and 16 contain tANDSAT pictures and NOAA-NOS tidal current
 

charts for Delaware Bay. Only MSS Band 5 images are show, since this "red"
 

band was found to give the best contrast in delineatingl suspended sediment
 

concentrationin the upper ane metertof the-water -column. Each LANDSAT
 

picture is matched to the nearest predicted tidal current chart within +
 

30 minutes. -The current charts indicate the hourly directions by arrow,
 

and the velocities of the tidal currents in knots. The Coast and Geodetic
 

Survey made observations of the current from the surface to a maximum depth
 
15,16
 

of 20 feet in compiling these charts The current magnitudes shown on'
 

the charts are somewhat higher than mean and need to be scaled down as explained
 

16
 
in the introduction to the charts.
 

The satellite picture in Figure 15, was taken on October 10, 1973, two
 

hours after maximum flood at the entrance of Delaware Bay. Masses of highly:
 

turbid water are visible around the shoals near the mouth of the bay and in
 

the shallow areas on both sides of the bay. Since at that time strong currents
 

and considerable waves were prevailing in most of the bay, some of the sediment
 

in suspension seems to be locally generated over shoals and shallow areas of'the
 

bay resulting in a higher degree of backscatter from shallower waters. During
 

flood tide at the mouth of the bay, considerable correlation was found between
 

the depth profile and image radiance, even though the water depth exceeded the
 

Secchi depth by at least a factor of three in all areas. Maximum velocity of
 

flood currents is occurring in the upper portion of the bay, where sharp boun­

daries parallel to edges of the deep channel can be seen. The boundaries are
 

visible in the satellite imagery primarily because water masses near the shore
 

appear more turbid than the water in the middle of the river. The distinctness
 

of the boundaries implies a strong gradient in suspended sediment concentration
 

across the boundary. The direction and shape suggest that shear is present.
 

Unfortunately'the spatial resolution of LANDSAT cameras is too poor to deter­

mine whether these boundaries are capped by foam, which would indicate
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lateral convergence. An aireraft photograph of a similar frontal system is
 

shown in Figure 17.
 

The satellite overpass on February 13, 1973 occurred 'bout one hour
 

after maximum ebb at the mouth of Delaware Bay. The corresponding LANDSAT
 

image and predicted tidal currents are shown in Figure 16. Strong sediment
 

-transport out of the bay in the upper portion of the water column is
 

clearly visible, with some of the plumes extending up to 20 miles out of the
 

bay. Small sediment plumes along New Jersey's coast clearly indicate that
 

the direction of the nearshore current at that time was towards the north.
 

The image in Figure 16 contains good examples of tiLdal frotrs.and flow-lines
 

In particular, note the sharp 'demarcation of the tidal plumes at the mouth
 

of Delaware Bay. Strong gradients in suspended sediment concentration can
 

be seen across these fronts with gradients in density, salinity and occa­

sionally temperature likely.
 

In order to determine where in the bay fronts tend to form during diff­

erent portions of the tidal cycle, thirty-six LANDSAT images-such as the ones
 

shown in figures 15 and 16, were analyzed. The tidal conditions in each satel­

lite image were matched to one of the twelve U.S.'Coast and Geodetic Survey
 

tidal current charts, where each chart represents current conditions
 

in Delaware Bay during an one-hour segment of the tidal cycle. Thus an average
 

of three satellite images were associated with each of the twelve current charts.
 

As shown in Figures 18 through 29, the fronts discerned in each image were
 

superimposed on the appropriate tidal current chart.
 

The identification of fronts was based primarily on strong turbidity gra­

dients or discontinuities. As discussed in a previous section, some of the fronts
 

* are likely to have foam lines, temperature gradients and salinity gradients
 

associated with them. -Foam lines, which can be mapped from aircraft, are too
 

thin to be resolved by LANDSAT. Temperature and salinity gradient monitoring
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would require different sensors that those presently on LANDSAT.
 

Two types of boundaries were distinguised - 'strong" and "weak,"
 

depending on the magnitude of the turbidity gradient or discontinuity.
 

The strong boundaries not only contain strong gradients but also are
 

likely to exhibit considerable shear. The "weak" boundaries are either
 

strong boundaries whose contrast has been degraded by atmospheric effects;
 

or convergent boundaries observed during their. formative or decaying
 

states; or divergent boundaries and, in a few cases, edges of river plumes.
 

The twelve charts containing currentyvelocities and boundaries shown in
 

Figures 18 through 29 are presently being used to establish locations where
 

boundaries tend to prevail. A subroutine is being developed for the oil
 

slick movement model to handle oil slicks that enter these front-infested
 

areas. The subroutine will include dynamic effects, such as shear currents,
 

at a finer scale. At the present time LANDSAT appears to offer the most
 

effective means of identifying front-infesteA areas, i.e. where fronts tend
 

to form, how extensive they are, how long they prevail, how much they move
 

about, and how strong and abrupt their gradients are.
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Conclusions 

Imagery from LANDSAT-l and LANDSAT-2 proved valuable in determining the 

location, type and extent of estuarine fronts Vnder different tidal condi- ­

tions. 'Neither ships nor aircraft alone could provide as complete, synoptic 

and repetitive an overview as did the satellites. Since estuarine fronts 

influence the movement of oil slicks and dispersion of other pollutants, 

clean-up operations depending on real-time use of oil slick movement pre­

diction models will benefit not only from aircraft tracking the actual slicks
 

but also from real-time satellite observations of surface currents and the
 

location of frontal systems.
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Figures 

Figure 1. The Delaware Estuary 

Figure 2. Submerged contours of Delaware Bay. Tongues of deer 
water radiate from the bay entrance into-the bay - -

Figure 3. Estuarine front with foam line photographed from an air­
craft at a scale of about 1:20,000. This front was ob­
served just north of the lightering area inside Delaware 
Bay, with the more turbid water, indicated by a lighter 
shade of gray, being on the Delaware side of the front, 
as is also the case in figure 4. 

Figure 4. Estuarine front without foam line photographed from an 
aircraft at an approximate scale of 1:10,000 in the 
middle of the lower portion of the bay. Note the shear 
displacement of ship wakes as they cross the boundary. 

Figure 5. Front with a displaced foam line photographed from an 
aircraft at a scale of about 1:20,000, eight kilometers 
outside the mouth of the bay. 

Figure 6. Schematic diagram of a vertical section perpendicular 

to a frontal convergence zone. Note displacement of 
surface, near surface and main zones of convergence as 
marked by foam, detritus, and color lines respectively. 

Figure 7. Station locations for boat observations of fronts October 

1974 and January 1975. ... .. --. 

Figure 8. Salinity in parts per thousand versus time and depth for 
station 5, 1 October 1974. Dots indicate water samples 
taken, Note change from vertical homogeneity to strati­
fication with frontal-passage, also overturning during 
flood between 0715 and 0930 hours. 

Figure 9. Isotachsof cross-channel velocity component, Vy, for 
a section looking up-bay at 1115 hours, 10 January 1975. 
lines of V. = 0 are labeled AA, BB and CC. Of these., AA 
and CC represent regions of horizontal divergence while 
BB is the frontal convergence marked by a foam line. 

Three 

Figure 10. Isotachs of.cross-channel velocity component, v, for a 
section looking up-bay at 1340 hours, IQ January 1975. Lines 
AA, BB and CC are those similarly labeled in Figure 9; 
however, they are now deeper and further to the right 
as a result of the advance of the frontal system. 

Figure 11. On 10 January 1975, the shown oil slick pattern was en­
countered at the oil lightering area in lower Delaware 
Bay. At 0950 hours flood tide currents were near slack 
and no boundaries were observed. 
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Figure-12. 	By 1100 hours the tidal currents assumed an ebb direction,
 
and the oil slicks were attracted byoconvergeht boundaries
 
which had appeared around 1030 hours. Results of oceanographic
 

investigations of these particular boundaries are shown in
 
Figures 9 and 10.
 

Figure 13. 	A higher altitude view of the area shows most of the oil lined
 

up in 5-mile long narrow slicks along the two boundaries.
 

Figure 14. 	 Suspended sediment concentration map for Delaware Bay obtained
 
by-correlating LANDSAT imagery radiance values with water samples.
 

Figure 15. 	 Predicted tidal currents and LANDSAT-1 MSS band 5 image of Delaware
 
Bay obtained on 10 October 72 (I.D. No. 1079-15133).
 

Figure 16. 	 Predicted tidal currents and LANDSAT-1 IISS band 5 image of
 

Delaware Bay taken on 13 February 1973 (I.D. No. 1205-15141).
 

Estuarine front similar to that shown in Figure 15, photographed
Figure 17. 

from an aircraft at a scale of 1:80,000 near Woodland Beach,
 

Delaware. This frontal system is at least 6 km long, has an
 

average distance of 2 km from the shoreline, and separates
 

more turbid water near shore from the bay's clearer water.
 

Figures 18-29. Location and extent of'frontal systems in Delaware Bay,
 

derived from LANDSAT images such as figure 15 and mapped
 
on U.S.C. & G.S. tidal current chart.
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Fiqure 19 

Boundaries visible in Landsat images of Delawqre Bay 
taken one hour before maximum flood--at -the­

- -entranve of the bay­
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0.5 Figure 20 

Boundaries visible in Landsat Images of Delaware Bay
taken at maximum flood at the entrance of the bay. 
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Figuira 21 

Boundaries visible in Landsat images of Delaware Bay 
p taken one hour after maximum flood. at the­

S-entrarnn offhe -bay. 
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£5.9 Figure 22 

Boundaries visible in Landsat images of Delaware Bay
taken two hours after maximum flood- at the 

925 entrance of the bay. 
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Figure 23
 

Boundaries visible in Landsat images of Delaware Bay 
taken three hours after -maximum. flood -at--the 

fntrance of the bay.-
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Figure 24
 

Boundaries visible in Landsat images of Delaware Bay 
taken two hours before maximum ebb at the 
entrance of the bay. 
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Figure 25
 

- BayBoundaries visible in Landsat images of Delawate 

taken one hour before maximum ebb at the 
entrance of theba.y.. 
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4 gure-26
iBoundaries visible in Landsat images of Delaware Bay 

p taken at maximum ebb at the entrance of the bay. 
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Figure 27 

P.taken 
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Boundaries visible in Landsat images of Delaware Bay 
one hour after maximum ebb at the entrance. 
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Figure 28
 

Boundaries visible in Landsat images of Delaware Bay 
taken two hours after maximum ebb at the 

/ entrance of the bay. 
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2.4 Flgure 29 

3.0 
Boundaries visible in Landsat images of Delaware 
taken three -hours after mcaimum ebb at the 
entrance of the bay, 
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C@abs'The author has identified the following signiFicant results. 

imagery from Landsat I and 2 proved valuable in .determining the location, 

type, and extent of estuarine fronts under different tidal conditions. Neither 

ships nor aircraft alone could provide as complete, synoptic, and repetitive 

an overview as did the satellites. Since estuarine fronts influence the 

movement of oil slicks and dispersion of other pollutants, cleanup operations 

depending on real time use of oil slick movement prediction models will benefit 

not only from : aircraft tracking the actual ' .slicks but also from real 

time satellite observations of surface currents and the location of frontal 

systems. 


