@ https://ntrs.nasa.gov/search.jsp?R=19760024846 2020-03-22T13:02:06+00:00Z

General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

X-921-76-160
Preprint

NASA Tl = 77/ 81
RECURSIVE PARTITIONED INVERSION OF
LARGE (1500 x 1500) SYMMETRIC MATRICES

(NASA-TM-X-71181) RECURSIVE PARTITIONED N76-31934
INVERSION OF LARGE (1500 x 1500) SYMMETRIC
MATRICES (NASA) 52 p HC $4.50 CSCL 09B
Unclas
G3/61 03293

BARBARA H. PUTNEY
JOSEPH E. SROWND
RICHARD A. GOMEZ

P ChEr) =
.,/~"~.J'\J-":Jfl
//t, ;f_\ ; \
Kk o O1°
{37' ;@VJ\\\@\\ o
o o)
uy 195 £ i g
’ W =
/“" Q! f ;

GREENBELT, MARYLAND

RECURSEIVE PARTITIONED INVERSION OF

LARGE (1500 X 1500) SYMMETRIC
MATRICES

Barbara H. Putney
Joseph E. Brownd
Richard A, Gomez

July 1976

GODDARD SPACE FLIGHT CENTER
.Greenbelt, Maryland

X-921-76-160
Preprint

RECURSIVE PARTITIONED INVERSION OF LARGE
(1500 x 1500) SYMMETRIC MATRICES

Barbara H. Putney
Goddard Space Flight Center

ABSTBACT

A recursive algorithm was designed to invert large, dense, symmetric, positive-
definite matrices using small amounts of computer core, i.e., a small fraction
of the core nzeded o storse the complete matrix. The algorithm described in

this report is a generalized Gaussian elimination technique. Other algorithms

are also discussed for the Cholesky decomposition and step-inversion techniques.

The purpose of the inversion algorithm is to solve large linear systems of nor-
mal equations generated by woi'ln'zlg geodetic problems, The algorithm was in-
‘cOrporated iato a computer program called SOLVE (Reference 1 and 2). In the
past the SOLVE progra:n has been used in obtaining solutions published as the
Goéda.rd Earth Models (References 3 through 6). The latest of the Goddard
Earth Model (GEM) solutions, GEM 8, contained approximately 1156 modeled

variables.

it

TABLE OF CONTENTS

Sectionl—hltroduction o ® & % & ¢+ 8 8 6 0 2 8 0 0 8 0 0 0 0 BB S

Section 2 - A Generalized Gaussian Elimination Algorithm

Section 3 - Consideration of Other Inversion Methods. . . .

3. Cholesky Decomposition by Partitioninge « « « « s o+
3

SeCtionA.c‘ErI'OI‘AnalySiS @ 6 ¢+ 9 * 8 ¢ 0 0 0 B .0 0 s 0 s 0 0 0

Section5—R€SL11tS s 8 8 s 8 8.5 8 5 8 5 0 0 8 6 s s 2 & 0 0 0 s 0 0

References

Appendix

iii

1
o2 Recursive Step Method « « ¢ o ¢ s 0 e e e 0 v a0 v oo

Figure
2-1

2-2

LIST OF ILLUSTRATIONS

Information Stored on Scratch Units in Steps 1 Through 5

for the Recursive Gaussian Method « » ¢ « ¢« ¢«

Information Stored on Scratch Units in Steps 6 Through 8

for the Recursive Gaussian Method « « ¢ + ¢ ¢ ¢ 0

Information Contained on Scratch Units Used in the

Recursive Siep Method + e« e s v s v e o0 e v o

Running Time Versus Number of Partitioned Segements

for a Matrix of Dimension 1500 X 1500« ¢ ¢ ¢ « «

I/O Running Time Versus Number of Partitioned Segments

for a Matrix of Various DimensionSs s « ¢« o « o »
I/O Time Required for Inverting Matrices Up to

1500)(1500--.-.-..-.---o-..o.--.-..

CPU Running Time in Minutes Using the Generalized

Elimination Algorithm on the IBM S/360-95 . .

iv

2-6

2-7

3-6

5-2

RECURSIVE PARTITIONED INVERSION OF LARGE
(1500 x 1500) SYMMETRIC MATRICES

SECTION 1 - INTRODUCTION

This report is concerned with the solution of linear systems of least-squares

normal equations. The problem, described in matrix notation as
Ax =y

is to solve the vector, x, given the vector y and a normal matrix, A,

(positive~definite and symmetric).

The matrix inversion algorithm described in this report was designed for in-
verting large matrices using a fraction of the computer storage space (core)
needed to store the complete matrix. The algorithm was designed to partition

the matrices into small segments which fit into the available computer core.

Section 2 describes a generalized form of Gaussian elimination. This algorithm
is presently used in the SOLVE 2 (Reference 1) program at Goddard Space Flight
Center (GSFC) and is being programmed into several other geodetic computer
programs as well. The algorithm is programmed in a package which includes

a subroutine, PINV, which is the main driver. The PINV package is presented

in the Appendix.

Section 3 describes two alternative algorithms using the same basic partitioning
technigue described in Section 1. These algorithms are Cholesky decomposition

and a step~inversion method.

Sectibn 4 deals with numerical problems in obtaining a matrix inverse and pre-
sents a simple method of cbtaining a set of "condition numbers' which indicate
numerical loss of precision for each row of the inverse matrix. Also descrihed
is a simple algorithm to iterate a solution vector in order to minimize numerical

truncation error.,

Test results using the PINV inversicsn package are presented in Section 5.

-1

SECTION 2 ~ A GENERATLIZED GAUSSIAN
ELIMINATION ALGORITHM

This section presents an algorithm for inverting symmetric, positive-definite
matrices using a generalized form of Gaussian elimination. Normally in the

eliknination process, one row is eliminated at a time. The generalized algo-
rithm allows for a set of rows, called a segment, to be eliminated each time.
The size of the segment is selected to fit into available computer core, while
the remainder of the matrix is stored on external storage devices. The algo-

rithm presented in this section is coded in FORTRAN and listed in the Appendix.

The equation

Bx=y (2-1)
can readily be partitioned to take the form
Bie Bu\A\ [
= (2-2)
Boi Baa/ o/ W7y
From the syinmefry properiies of B,
I | ;
Bll B bll : @-3)
T : :
Baa = Pag (2-4)
Bp1= B i &5

The size of B11 can be selected so that B11 and B12 contain no more ele-

ments than the computer storage will allow. This usually means that B22 will
not fit into the same storage area and, therefore, will need to be recursively

partitioned in the same manner as B .

If B is nonsingular, a matrix, V , exists such that

*1 Vii Vi \ (N1
= (2-6)
X9 Vo1 Vaa/ \Va
and
By Bia\ (Vi1 Vio\ [©
B.. B “\o 1 ' 2-7)

In order to compute the submatrices of V , intermediate matrix sets are de-

fined by

-1 :
°1 7P @8
€127 C11 By e (2-9)
S \
Cy = Cpy (2-10)
C,,=B,_-C,B._ (2-11)

22 22 21 7712

The solutions for the submatrices of V are then

V= c;; (2-12)
: V2= C1a Voo (2-13)
Vi, = v'fz | (2-14)
V3161 V12 Gy (2-15)
Solutions for the vector x are
*9 = C;; [y 2~ Cap ¥ 1] (2-16)
% =011 %7 C12 % | (2-17)

A more direct method of computing the sdlut_ion vector x would be to use the

entire inverse matrix, i.e.,
x=Vy (2-18)

However, the advantage of using the generalized Gaussian method (Equa-
‘ ; tions (2-16) and (2-17)) is that the solution can be obtained without the complete

inverse matrix.

Given below is a recursive algov:thm for this method in which the matx_'ix B

is stored on an external scratch device and submatrices read into the internal

o
)

I S T, A A At : R

core storage area as needed. Only the upper triangular portion of B elements

(on and above the diagonals) need be stored because of the symmetric property

of B. Three scratch units, denoted as units 1, 2, and 3, are used in the algo-

rithm.,

1.

The steps in the algorithm are as follows:

Read as many rows of B on unit 1 as possible to fill the available

core storage area. The submatrices B1 and B__ are formed

1 12
from these rows. le is also initiated into core by using the sym-
metry property B21 =B 12 (see step 2 below).
Compute
-1
€117 B
C12= 11 Bio
Tyl = -
2= Y5~ Ca1 ¥y
and

=
150N

simultaneously replacing B in core with the

5 ! t
newly computed variables, C11 s 012 RN

Store the C11 and C 12 submatrices on a scratch storage device

(i..e., unit 3),

Read an additional row of the matrix B from scratch unit 1 which

belongs to the submatrix B,, onunit1. Compute one row of the

2-4

6.

022 submatrix (Equation (2-11)) and write the row on unit 2. For

the ith row of C the equation for the jth element is

22°

Coplls) = Byoli,d) - ¥ C,y (1) + B (K,)

Repeat step 4 uatil all rows of the B,_ matrix have been processed.
22

Rewind scratch units 1 and 2. The identification numbers for the
two scratch units are switched so that the C 29 matrix can be re-
cursively partitioned in the same manner (i.e., steps 1 through 4
are repeated) until the matrix written on scratch unit 2 is small

enough to fit into the available core area. (Figure 2-1 illustrates

the information on the external scratch units for steps 1 through 5.)

Read C2 from unit 2 and storé in core. Compute V22 = C;;

2
and write the results back on unit 1. Rewind unit 2. Compute

= 1
Xg= Vop Vo :
Read the last C11 s C12 submatrix sets written on unit 3 and store

in core. Read through unit 1; operating with one row of V2 9 at a

timme, compute V12 = "“12 V22 .

Compute V11 , where

V115 €117 V12 Gy

and add the V1 1 and V12 submatrices with the V 22 matrix on
unit 1. Rewind unit 1. If the complete matrix B has not been in-
verted, return to step 7. (Figure 2-2 illustrates the data stored

on the scratch units during steps 6 through 8.)

UNIT 1

O = o s > e e

\ B

B2
| S p—— -]
\ 1
~\ '
\ 8 !
\ 22 |
N |
N |
\
\ |
\ |
N |
N\
\ |
N
N\
\\ |
J
Figure 2-1.

UNIT 2 UNIT 3
e o £ o o e e o o
\9111 c _i
~ 12 _I
‘. - - N e e are o e e e o0 e e e e
\ |
\ . :
\
\\ €22 !
N |
N, I
\
\ |
N\
\ l
N
\\]
1
N

Information Stored on Scratch Units in
Steps 1 Through 5 for the Recursive
Gaussian Method

2-6

UNIT 1

22

22

Figure 2-2.

UNIT 3
AP coTTTT T -
ANSEH 12 d
R B .
'
\\Cﬂl Cia :
1]
e 4
AY (:11| Cc :
Nl 12 i
\....L__..r __________ -l
]
NCoad
N c 1
| 12 {
e b s o e e s s e e |

Information Stored on Scratch Units in
Steps 6 Through 8 for the Recursive
Gaussian Method

SECTION 3 ~ CONSIDERATION OF OTHER INVERSION METHODS

The basic idea of segmenting the rows of the mairix to be inverted can be ap-
plied to other matrix inversion methods. This section describes two alternate

inversion algorithms.
3.1 CHOILESKY DECOMPOSITION BY PARTITIONING

Equation (3-1) can be reformed by assuming the existence of a matrix, C, such

that

C'C=B ~ (3-1)

and

clex=y | (3-2)

where the matrix C has elements whose values are zero below the diagonal.

Matrix C is the decomposition of B . The vector w is then defined such that
w=Cx (3-3)
and, therefore,

CTw =y } (3-4)

Since the elements of CT are zero above the diagonal, w can be solved using
forward substitution. Once w is obtained, x can be solved using back sub-

stituﬁon.

Since C has values of zero below the diagonal,

11 Clj = bjl {3-5)
B is symmetric; therefore,
bjl = blj (3-6)
11 %157 P13 (3-7)
and
‘ﬁlzbu. (3-8)

Therefore, in order to decompose the first row of B, the elements of C are -

b, .
S § :
e, = (3-9)
1§ /by
The matrices C and B can be partitioned so that
T
C11 o 11 C12 Bll BlZ
= 3~10)
T T A
C12 C2:?. °© sz B21 B22

3-2

From this equation,

T T .
Cy9 C1a* Cag Cgp = By (3-11)

By partitioning so that C and C 12 are the first row of the matrix C, and

11
by rearranging Equation (3-11) so that

T : T
= -0 =
CZZ C22 B22 12 C12 (3-12)

C 99 2N be computed by decomposing the new matrix B', where

T
t = -
B B22 C12 C12

(3-13)

Using the above recursive technique, C can be computed one row at a time.
Each time a row of C is computed, it can simply replace the same row of B
in the computer storage. If not enough storage is available for the complete
matrix, then only those rows which will fit intc the area neéd be operated on.
Once those rows are decomposed, Equation (3-13) is used to obtain a reduced

matrix B', which can then be decomposed.

An inverse matrix can be obtained by setting y in Equation (3-2) to be a col-
umn of the identity matrix and then solving for one row at a time. The Cholesky
method is best used for obtaining solutions which do not require inverse ma-

trices,
3.2 RECUESIVE STEP METHOD

The recursive step method uses the same formulas as the generalized Gaussian
inversion process but differs in the manner in which the formulas are employed. -

This me’chod is designed to work more effectively using the lower triangular

3-3
ORIGINAT; PAGE

Is
| OF POOR QUALITY

matrix, whereas the Gaussian elimination algorithm uses the upper triangle.
The inverse of one submatrix is generated on a scratch unit and the other sub-
matrices stored in core to be used to complete the inverse. The procedure is
recursive in that the complete inverse of a smaller matrix is the inverse of the
submatrix of a larger matrix. The procedure is repeated in order to obtain
the complete inverse of the larger matrix. The steps in the algorithm are as

follows:

1, Read from a scratch unit 1 as many rows of the matrix B that can
be stored into the available machine core. This unit will then con-
tain the lower triangular elements of the matrix B, designated
submatrix B11 B

2. Invert the submatrix B 11 and write the resultant inverse

-1 . R .
(C11 = Bll) on scratch unit 2. Rewind unit 2.
3. Read from scratch unit 1 as many additional rows as possible and

form the submatrices B2 1 and B 99 from these rows.

4, Read one row at a time of C 11 irom unit B and compute

€127 C11 Bio

inserting the C matrix in the computer core. Rewind unit 2.

12
5. Compute

-1
Voo = Cag
Vo1 = "Vaa Co1

These submatrices can be computed completely in the computer
core area by replacing the area used for B22 by CZZ and finally

by V the B_. submatrix is then replaced by V

29 3 21 21 °

Read through unit 2 again one row at a time; compute

Vi1©C17Ca Vo

and write the resulis on scratch unit 3. Rewind unit 2.

Write the submatrices V21 s V22 on unit 3 so that the complete
inverse is on unit 3. Rewind unit 3. If the inverse of the complete
matrix B has not been computed, switch units 2 and 3 so that C 11
is now the matrix V ; return to step 3. (Figure 3-1 illustrates

data on the scratch units as they are used in the above steps.)

Compute the solution vector by reading the inverse matrix V on

unit 3. Solve x=Vy.

9-¢

CUNIT 1 ' UNIT 2 UNIT 3

12

Figure»3k-1. Information Contained on Scratch Units
-Used in the Recursive Step Method

SECTION 4 - ERROR ANALYSIS

The source of error considered in this section is the numerical round-off error
which occurs in floating pbint arithmetic when obtaining the solution to the linear

system
Bx=y (4-1)

If the assumption is made that the inverse matrix V can be obtained with the

same numerical accuracy as the original matrix B , then the round-off error

would occur in the matrix product

x=Vy (4-2)
The numerical round-off error should occur primarily in the process of sub-
traction; i.e., if two six-digit numbers, a and b, are subtracted and yield

a four-digit difference, then the answer woﬁld be good to two less decimal

places. For a series summation, such as
~
Xi = ZJ Vij Yj (4_3)
j ,
a condition number, Ci , is defined as

E (V. y)
573 ax |
Ci=T % (x,) : (4-4)

where E (Vijvyj)ma.x is the expécted value of the largest term in the summa-

| tion, and E (xi) is the expected value of the solution. The logarithm of the

4-1

condition number should then yield the number of decimal places lost in the

matrix product.

There is a round-off error, however, that is accumulated when the V matrix
is computed. Therefore, the condition number noted above indicates the best
possible answer, i.e., when V is accurate to as many decimal places as the

original matrix B .

In order to obtain the condition number, Ci’ the expected value of a random

element of a vector is defined as the square root of the variance, i.e.,
1/2

' (4-5)

The above definition is useful only if it is reasonable to expect any one element

of a vector to be the same magnitude™as another. We can define such a vector

as being '"mormaly distributed’'.

Given a vector X and a normaly distribiito4d vector y the maximum expectation

of the vector product, as used in equation (4-4), would be

E(X.Y)

i Y E (X,)

max {fmax " E () : (4-6)

The above equation cannot be applied directly to equation 4-4 because the vector
is not, in general least squares problems, normaly distributed.
The expected magnitude of the sum of elements of a vector can be defined as

0
o 2 711/2 ' e
E(Y X) = [ij] | {4-7)

i=1

This definition is consistant with statistical error estimates of a sum of obser-

vations.

Equation 4-7 can then be used to define the expected magnitude of a vector prod-

uct given the vector x and a normaly distributed vector y
n n
E(L XY)= E(Y X)) EQ) (4-8)
i=1 ' i=1

In order to evaluate the expected values in Equation (4-4), some insight into
the leasi-squares process is needed. The matrix B. is obtained from a set of

observation equations in the matrix notation
Ax=r (4-9)

In the equation noted above, the vector r contains a set of weighted residuals

whose expected values are

E(ri)=1,

i.e., 0.~ +1 for weighted observations and therefore r is considered normaly

distributed. In the least-squares process,

B=A"A (4-10)

and

y=Ar ' (4-11)

From Equation (4-11), the ith element of the vector y is
y; = Z 2Ty | | (4-12)
o '

4=3

and using definition 4-8 the expected value of ‘A is

E (y)=E (2 ai]_> - E(r)

] i

using definition 4-7 it is evaluated as
1/2
2
E ()= (z : ai.)
;)

From Equation (4-10}, the right hand term is

1/2

2 1/2
(Z aij) - =0y

]

and Equation (4-14) becomes

1/2

E (¥, = ()

From Equatioh (4-16),

E(y) E (yj)

1/2 - 1/2
-y

for all values of i and j. Ifthe matrix D is defined such that

b,.
- 1j
1/2 1/2

ij

(4-13)

(4-14)

(4-15)

(4-16)

(4-17)

- (4-18)

then Equation (4-1) would become

Iy
1/2 1/2
% (g (byy)
D : - : (4-19)
n o & Tn
1/2
(bnn)

From the positive definite properties of the matrix B and using Equation (6-18),

Idij|<1 when i#j

=1 when i=j

The maximum expected value of the ith row of D, E (Z dij)max , is the
]

diagonal term; the minimal expected value of X is then

E ()

/2

1/
y) 1
®;)

(b, 2 E (x]_‘) =

11

or

E(yy)
E (X,) T e,
ii

(4-20)

Using the definition 4-6 we can calculate the second expected value required in

NA
Equation (4-4), since 11/2 is normaly distributed.
bii
y.
E (Vi' y.) =E (vi. . b.l./z) +E 11/2
V Vmax L bii
E(y)
2
B(vyy) =F (vi. 5 -b.l._/z) i 4
1] max) 1 max ii

1/2 2
The maximum terms of the Vij . bii/ bjlj/ are when i=j so that

SR N Rt

(4-21)

The condition number ig then derived using Equations (4-4), (4-20), and (4-21)

as

(4-22)

The equation noted above indica.tes that the loss of significant numbers of digits

in the solution can be computed for each element in the solution vector using

the product of the diagonal elements in the original andinverse matrices. - The

error analysis holds only when the solution vector has been iterated such that

Equé.tion (4-1) is maintained to the precision of the original matrices.

A method of ensuring the accuracy indicated by Ci is to iterate the solution until

the original Equation (4-1) is satisfied. Let
X, =X .+ Ax, ‘ (4-23)
i “oi i

where X is the intermediate solution, and xi is the complete solution which

satisfies Equation (6—1)'. The vector Ay can be computed such that

Ay =y - on (4-24)

and X is then recomputed so that

x‘O =X, + VAy (4-25)

After enough iterations X approaches the solution vector x . Convergence

occurs when the ratio

AX,
i

E (xi)

r =

: (4-26)

is less than 10'"d , where d ‘is the number of digits accuracy in fhe matri-

ces B and y.

4-7

SECTION 5 -~ RESULTS

Extensive tests were made of the generalized Gaussian elimination algorithm.
The primary concerns were to determine optimum ratios of core requirements
and computing time. There are many factors that can affect the computing
time which are funcltions of the machine that is being used. However, there
are some variables that can be extrapolated from one machine to another which

are functions of the algorithm. These variables are discussed in this section.

The primary test was to invert a matrix dimensioned at (1500 x 1500) using
five different partitioning levels. The test was controlled in that the solution
vector was known a priori. The test showed that numerical stability is not
affected by the number of partitioning levels. The results also showed that the
central processing unit (CPU) time was only moderately affected by the number
of levels of partitioning, whereas the input/output operating (I/0) time was lin-
early affected. Figure 5-1 illustrates the results as obtained on the IBM
S/360~95 computer. Figure 5-2 illustrates the change in the I/O slope when

different sized matrices are inverted.

In Figure 5~3, the I/O time is plotted versus the matrix dimension. Core is
given in units of 1024, K bytes. The plots were obtained using the various par-
titioning levels. The plot illustrates the problems of inverting very large mat-
rices, using small amounts of computer core. The I/O time in the plots is

proportional to the dimension to the fourth power.

Figure 5-4 illustrates the CPU time required for inverting matrices of various
dimensions. In this test the CPU time is porportional to the matrix diménsion
to the third power. Since the CPU time is only moderately affected by the num-
ber of partitioned segments (¥igure 5-1), the CPU time can be easily established

for the machine being used.

5-1

- __mmq

-9

“RUNNAING TIME (MINUTES)

70

20

10 S

T T) T i]
5 v 10 15 20 25

NUMBER OF PARTITIONED SEGMENTS

*THE 15-SEGMENT CASE USED A TAPE ON ONE OF THE SCRATCH UNITS WITH A LARGER-BUFFER SIZE THAN
THE DISK UNIT CASES li.e,, 32K VERSUS 7K).

Figure 5-1. Running Time Versus Number of Partitioned Segments for a
Matrix of Dimension 1500 X 1500 (IBM S/360-95)

g-¢

1/0 TIME (’MINUTES)’

50

40

30

20

10 -

1200 x 1200

® 1000 x 1000

1500 x 1500

1300 x 1300

l : 1 1
5 10 15

NUMBER OF FARTITIONED SEGMENTS

20 25

Figure 5-2. I/O Running Time Versus Number of Partitioned Segments
" for a Matrix of Various Dimensions (IBM S/360-95)

-G

TIME (MINUTES)

| ICORE = 200K
So —d
40
30 |
ICORE = 320K*
1 ICORE = 540K
20
ICORE = 1000K
10
[1]
¥ 1 1 1 1 T | I T | T T L
o 200 400 600 800 1000 1200 1400 1500

MATRIX DIMENSION

*THIS CASE USED A LLARGER BUFFER ON ONE OF THE SCRATCH UNITS
{i.e.,, 32K INSTEAD OF 7.4K).

Figure 5-3. 1I/0 Time Required for Inverting Matrices
Up to 1500 X 1500

g-g

CPU TIME (MINUTES)

-

600 700 800 900 1000 1100 1200 1300 1400
' MATRIX DIMENSION

Figure 5-4. CPU Running Time in Minutes Using the Generalized
Elimination Algorithm on the IBM S/360-95

Comparisons of running were made for computing the complete inverse and for
stopping after the forward-elimination procedure and obtaining a solution,

Table 5-1 gives results of a regression analysis of the resultant CPU and 1/0
curves. The parameters in the table are for inverting a matrix using 100K core.

CPU time was fit to the curve

_ A 2 3
tCPU—alN+a2N +a.3N (5-1)
and the 1/0 time
t =a N+a No+a N 5-2
/0" 17 72 4 (5-2)

The CPU comparisons show that the a_ coefficient is reducéd by approximately

3
one-third when the solution is obtained without obtaining the complete inverse.

Likewise, the a, coefficient is reduced by approximately one-fourth.

4

Table 5-1. Coefficients for Computing Running Time
on the IBM S/360-95

=

Coefficient a : a a a

1 2 3 4
. -4 -7 -8
CPU (complete inverse) 2,02 x10 ~ 1.51 x10 1.58 x10 -
CPU (solution vector only) 4. 76 x 10°% 2.27 x 1077 0.52 x10™° =
') -4 -6 -11
1/0 (complete inverse) -1,81 X10 ~ 3.85 x 10 - 1.86 x 10
% 3.36 x107" - 0.47 x 10711

1/0 (solution only) . 0.53 x10

5-6

T T e

REFERENCES

Computer Sciences Corporation, CSC/TM~-76/6095, SOLVE II Program
Description and User's Guide, R. Gomez, J. Brownd, May 1976

~-, 6006-00400-01TM, Methods of Sticcessive Matrix Partitioning for
Computing Inverses of Symmetric, Positive-Definite Matrices,
J. Brownd, March 1975

National Aeronaufics and Space Administration, Goddard Space Flight
Center, TMX 65970, Gravitational Field Models for the Earth (GEM 1
and GEM 2), F. Lerch, C. Wagner, D. Smith, M. Sandson, J. Brownd,
and J. Richardson, May 1972

--, TMX 66207, Gravitational Field Models GEM 3 and 4, F. Lerch
C. Wagner, B. Putney, M. Sandson, J. Brownd, J. Richardson and
W. Taylor, November 1972

-—, X-921-74-145, Goddard Earth Models (5 and 6), F. J. Lerch, C. A.
Wagner, J. A. Richardson, and J. E. Brownd, December 1974

-~, X-921-76-20, Improvement in the Geopotential Derived From Satellite

and Surface Data (GEM 7 and 8), C. A. Wagner, ¥. J. Lerch, J. C.
Brownd and J. A. Richardson, January 1976

APPENDIX

Presented in this appendix is a FORTRAN listing of the PINV package. PINV

is the driver routine for the generalized Gaussian elimination algorithm.

SUBROUTINE PINV(AsY +XsB oL oMy IDsNNyN)
REALHFB Y(NT» X(N) i
' DIMENSION A(NN),B(1),1D(1)4L(1),M(1) B ' :‘ , o

g i .
c THIS IS THE MAIN DRIVE SUBROUTINE USING 'RECURSIVE PARTITIONING ~
“CAS 'ATGENERALIZED GAUSSIAN ELEMINATION YO INVERT A LEAST SQUARES™
c MATRIX. » : i
"C™"" "THE SOLUTION FOR X IS OBTAINEO IN THE LINEAR SYSTEM = AXs=Y . """
“C°7"7 ALSO THE INVERSE MATRIX IS OBTAINED AS A COMPLETE SQUARE MATRIX.
€ s : ‘ , . | e
C " THE PROGRAM EXPECTS THE MATRIX A TO BE AVALABLE ON UNIT 40. EACH™
"C”~ " RECORD CONTAINS 1 ROW OF A,STARTING WITH THE DIAGIONAL ELEMENT.
c -
‘C " THE INVERSE MATRIX IS WRITTEN ON UNIT 41 IN A SQUARE FORMAT WHERE™
'C” EACH ROW IS CONTAINED ON 1 RECORD. S
S . | o
C = SCRATCH UNITS ARE 40,41,42+43044 (I1 = 14) | o
o e . e e
C A ARRAY IS USED TO STORE PARTITIONED SEGMENTS OF THE MATRIX A e
c NN IS THE AMOUNT OF STORAGE AVALABLE e
C ° B ARRAY IS USED AS A TEMPORARY STORAGE , ID ARRAY ALSO o
C™™ "X - SOLUTION VECTOR , Y = RIGHT HAND SIDE ~ s
C ° N - NUMBER OF ROWS IN MATRIX A o
c - , .-
c , . e
c INITALIZE AND CLEAR ARRAYS i
c .

DO 1 I=L,N

B(1)=0. , o

1 X(y=v(n - , -

11240 _ _ S

12=41 ' ‘ S

13=43 | | | s

lT4=44 : ' | : . T
c- | y e . S
c COMPUTE NUMBER OF PARTITIUNED SEGMENTS NEEDED (IP), ~~ =~ = =
c NUMBER OF COLUMS IN FIRST ROW (M) , AND NUMBER OF ROWS (L) = """~
c IN EACH SEGMENT |
C

ML) =N

CO=NN#2

D0 2 I=14N

Ml=ML)&(N{TI)+1)/2
IF(M[LF.NN)\JQ TO 21

ORIGINAL pag |
OF POOR QUAL?T?

GO0 OO0

(¢

< (g} (g N eKe) (]

"PRINT 22,1p
FORMAT{ 1HO» 3SHTHE MATRIX WILL BE PARTITIONED INTO,13,1X;
. 6HLEVELS)

CIF(IP.EQ.1) GO TO &4~ °

BO=M([)#2+]
BO=80/2
TL(I})=B0 -SQRT(B0*B0=CO)~
MUI+13=M([)-L(T)

IP=1

e 4 e m s avesm L stemie e Sdmimer b = 4w

LUIPI=MLIPY

CHECK NUMBER OF PARTITIONED SEGMENTS » 1= SKIP PARTITIONING

B T L S R

- e

" GAUSSIAN ELIMINATION USING PARTITIONED SUBSETS

3

DO 3 I=1,IM1

IMl=1P~1

READ AND STORE AllyAl2 PARTITIONED MATRICES
LL=Ltn) " R
MMz=M(1)
CALL RDAIA;!A:HMyLL}Nerl)

INVERT All
CALL SPGE[(LLtMMoAvEQNN)

COMPUTE An22=A22- A21%A11%A12 AND Al2=Al1%AlZ
CALL FWDELM(A,ByByLLyMM,NNyIUyI11,12)

COMPUTE X1=All*Yl , ANU X2=X2-A21%Xl
NMM=N-MM+1

CALL FWOSLVUIAByX(NMM),LL ¢MM,NN)
WRITE DECUMPOSED MATRICES ON UNIT 43 (Al1l,A12)
CALL WTALA2(A MMy LLyNNyI3)

CONTINULE

T “% QUALITY

C READ LAST PARTITIONED SEGMENT

4 MB=M(]P)
TTTTeALY RDAlAZ(AyMH.MM,NNolI)’“

"7 INVERT LAST PARTITICNED SEGMENT _""‘»""_ Tt
'CALL SPGEL (MMyMM,A4ByNN) o
'COMPUTE X2=A22%Y2 = ':j, dff T
TUUNMM = N - MM 4 1 | RS

R ¥ Y& FHOSLV(lvﬂvX(N"Mh"H'”HoNN)

C ° WRITE A22 ON UNIT 11 : : ~ e

C e p1el12 . e e e e Ce e
C e Lo 1241 ; : e en s o my e e oy ven e w1 Fees an eene
T T TR (12406T.42) 12541 C T ‘ T
T CALL HRTBZZ(A’B,VP NNoI11) '

IR THERE.OIS ONLY) PARTITIONED SEGMENT NO 'MORE PROCESSING
18 REWUIREUV.

IFUIP.EG.1IRETURN e
OBTAIN SOLUTION THRUUGH BACK SUBSTITUTION
=1

P
D0 5 J=1,1IM1
I=1-1

READ All,A12

oO0N

MM=M(T)
LL=L(l)
CALL RDAIA2(AMMoLL WNNoI3)

SOLVE X1=X1-A12%X2

(2N g N el

NMM=N=-MM+]
caLt UCKSLV(A'X(NMH)'X(NMM)'LLoMM'NN)

c COMPUTE B1l1l=A11+A12¥B22%A21

B12=-A12%822

HaKal

"7 TCALL BCKSUB(AsB B, LLyMMyNNTUZIL,12,14)

e SCONTINVE T e -
o : '

...... RETURN .

e END e e e e e et e e

ORIGINAYL PaGh g

3R eruras
0% FOUR QuaLiry

__ SUBROUTINE BCKSLV(AsX1yX29LsMyNyNN)
DIMENSION A(NN)

__REAL#B XL(L).x2(M)
c

€ SOLVES XL = X1 = A12#X2 "

———— v p - = e e e e .

.Vc el e e
w. Wt e IJ:O LR e a——n 4 4 L . ————— —— —— -3

S 2 L1 5.2 S

< _
TUTTTTRO 1 I=1.L
RTINS S PR AN T S)
DO 1 JsLPIyM T
R & Lt L S
1 XD =X -ACTI) *X2(J)
C
I RETURN T e
END

. SUBAROUT!NE BCKSUB(A DBVOOL'MINNOIDOI 1e12,164)

c

C 77 TTHIS” SUBROUTINE "ENLARGENS THE PARTITIONED SEGHENT OF THE
C 7 TINVERSE MATRIX THROUGH THE FORMULAS™
C T Bll= All + Al2%B22%A2l
¢

c

PN - " m——

“Bl2= -Al12#B22

C e e v e R w Fe e s

___"DIMENSION A(NN),BIL),D(M) — = "7 ’ o
___INTEGER*27ID(1) ————

c e
€777 AT ARRAY CONTAINS ALl ANG AL2T 77777

G 7B ARRAY IS A TEMPORARY ARRAY FOR 'BZ1 MATRIX

€ D ARRAY IS A TEMPORARY ARRAY FOR B22 MATRIX
_C_TTTFOR EFFICIENT CORE USAGE B AND D SHOULD BE EQUIVALENT —
c Ad

c

[———

CLEAR B el mem e ma e el iees e eens e s v s e o s oot

. c - e e - e — - -~ .
" 0 Do l l l’L - - - e - - —n — ma——— o
LA BlD=0. B
—————— MM M L .. A e e spmsmes o e . s e e—— ———- a— . b e . —————— - N
0
“C T INITALIZE INDEX ARRAY ~ ’ INDEX(IoJ)'£ DUV #J Ty JLGELTT T
G WL 1
e ptired B R e
D0 2 [=24MM B
T2 IDCI)=ID(I-1)4M-T+1 T v
. . , ,
‘C " READ B22 FROM UNIT 11 ' IR -
€~ 'COMPUTE Bll= BIl + A12#B22%AZ1 PP
c B12= -A12%822
c
<D0 5 K=LPL,M
‘CALL READ6{D(LP1),MF,I1)
c
D0 3 I=1,L
DO 3 J=LP 1y
14=10(1)+J
3 BUL=BII)-ALINI*U(J)
c B

DO 4 l=1,L
IK=1D(1)+K
vo 4 J=1,L
1J=1D(1)+J

4 AT =ATIJI-ALIK)*B(J)
CALL WRITEG (ByL,1I4)

5 CONTINUE ° o
< '
T CEWIND 14 T e
REWIND I17
o e e e e

TC TTREAD B21 ANOSTORE IN"CORE™
i

‘DO &6 K=LP1 M
“CALL READSUBL,I4)
TR0 6 1=, T

T TIK=ID(I) #K o
TTUTRALIK)en) o T
L e

CTTWRITE B11,81270N GUTPUT UNTT T2
""""""" 00 10 I=l,L — 777 0 TTTTTT
009 el T e e

TTTTIR(I-T) T, 8,8 7T T
TTTTTY L4=1IDtgyeT 0 T e e

R e R £ I et
TTTTETId=I0(I Ay T s T
TTUeTDtr=AtLy T o
-c . e em
o CALL WRITESG (D,MyT12} —~ ~ 77777

10 CONTINUE T
T o e e
c WRITE B21,B22 ON U'\JKT IZ o
c - R

DO 12 K=LP1,M
CALL READG(D(LPLY MMyT1)"7 ~

DO 11 I=1,L R
IK=ID(I}+K e
ULV D) =ALIKR) Cm e
TTTUUCALL WRITES (DyM,12) T
"12 CONTINUE o
- o _ S,
C 7 ' SWITCH UNITS AND REWIND -
. et
REWIND T1 - T
REWIND 12 R
11=12
J2=12+1

IF(12.GT.42)12=41

RETURN
END

ORIGINAL PAGE IS

OF POOR QUALITY

SUBROUT KNE..F.HOEL.”!.A_'.E.'O sLsMeNN,TO,I1,12)

e

TCTTTTTTHIS SUBRUUTINE COMPUTES "A2Z2 = A2Z = R21%ATI#AT2
oo _Al2="All*A12 o
c

TTTTTTTTHIMENSTON AINNDY,BIL),D(MyTT T e e

o INTEGER®*2 TOUL) e s e
T TATARRAY CONTAINS ALl AN ALZ —

B ARRAY 15 A BUFFER FOR TEMPORARY STORAGE OF AIZZAII#AI2
77) ARRAY IS A BUFFERFOR TEMPORARY STORAGE OF 'A22” "™
¢ TTFOR EFFICENT USE OF COREBU1) AND DC1) SHOULD BE EQUIVALENT'

ndn’nn

TCTTTTTID IS AN INDEX ARRAY T TINDEX(I,Jd)EIO(TY# 07 WHERE JJ.GELID'

c 1= L L. el
c INITALIZE B ARRAY

c

DO 1 I=1,L
0 LTEYL CURRS I AT

c— ,v. N - . ‘1- o - o i i -
c INITALIZE 1D ARRAY il i

- 2D ARRAY e e I
T T =0 T T T ‘_ T
T "MM:M-L v o T ’) .
T DO 2 1=24MM _ e

B DISSES IR BRI TS €3 R - T T -

c - R —
) LPl=L+1) T T T
S TLMI=L-L o T "_ T T
c . I
¢ READ A22 FROM UN!T 11 -
c WRITE A22=A22 - A21%A11%A12 ON UNIT 12 -
C STORE Al2= Al1l%*A12 IN CORE ’ _ T

c . . RN R

DO 7 K=LP1l,M
CALL READ6 (D{K)yMM,ILl) =~ 7777
Lo 3 1I=1,LM1 T
13=TUu(l)+]
IK=1D(1)+K
B(I)=BLI)+A(T1J)*A(IK) B
IPl=1+1 ' !
L0 3 J=IPLsL
IJ=ID{I)+d
CJIK=100S) 4K
BCI)=B(I)+A(1J)*A{JIK)

A-10

3 B(J)=B{JI+A(TJ)*A(]IK)
TJ=IDILT+L
CIK=1D(LY+K

BIL)=B(LI+A(TI)V*¥ALTK) T
C

U L
T T D0 5 J=1,L ’
=it o T
TTTTETTOULI=0UEY - ALTIYEBTS) T

DO 6 gm AL ¢ e e
T T JK=ED () ek T T
TALJKYI=B(Y) T T e
67 BLI) S0, | = e
CALL WRITE6(D(K)sHMI2)
T MM=MM-1 T
o e i
R EWIND 1L " o e o e
o REWING 13 e e
‘T1=12 o
“[2=12¢0 . Tt
TIF(12.5T.42)T2241 77 7T
TRETURN ' TR
o e

A-11

SUBROUT INE FHDSLV{a,39X9LoMyNN)
- _DTME’NSTUN"ATNN
T REAL*8 X(M),B(L) oo
—prr S S
c - SULVE X1=A11#%X1 oo T
T T TX2=X2=A21 X1 T
¢ . e e e
LP1= l:+l R

IJ 0 T
N e em -
TTTTTTTDO 4 Y=1,U0
Tt T _IJ [J+#1777
B(I)=B(IT+A{ rJT*X(I Yy
IPl=1+1 ceTT T
IF(XPl GT.L)GO TO R T T
- O
_"DO 1 J=IPLyL =~ & T TTTTTTTTT
e e LT e i
TBUTI=B(D AT IRXU YY) T T
BlJl= B(J)fA(IJ)*X(” ST
CONTINUE oo

_C__ . —_ S
TomeTT IF(LPI GT M)GO T0 4 T T
. c--.... C e i
TTTTTTTDO 3 J=LP1g4M T o n e
e T TR T,
" o XtJ)= X(J)-A(IJ)*X(” Tttt
"3 CONTINUE D
et . L e
T T X{1)-B(I) Cos T
BUI1)=0. . e e s
4 CONTINUE o
RETURN . . . e e
- END) cme e i i e

A-12

SUBROQUT INE RDALA2(AMsLsNN,I1)

C

c READ All AND Al2 INTO ARRAY A ,READ UNIT 1~ -~ ™
£ — PR A AT em e e v a4 e e
CT

Cc

c

ADIMENSION AINN)

——.e crmn et et A v Semmema to ot bbs wme bmsebnerd O o

IF A IS READ ON UNIT 43- THEN BACKSPACE THROUGH L ROWS

CTTTTUUIF(TILANEL431GO TO 2 o
© el deLL R e e
U1 BACKSPACE ’!.;H”_fffiif” deeen e e

c
C ™ READ ALL,AL2 "« oo ormm s o
o L e ot e e e s et o oph i et
T2 MIs@ L T T e s
ST MMEM T e -
D0 3 I=1l,L 77 T 7 T e
T TTUUCALL READG(AIML) MMLTTY T - '
e MIAMLAMM o e et e e e+ o s s
o3 MM=MM-l T © imer et e e it et g e e 1 ea L e
o . i e e S nm e e s e e«
ST LE([LLNEG43IRETURN . 7 T T e e
= B0 4 IsLeL OO U
| g BACKSPACE [77T ST e e
© - RETURN i e i P = it
e END e - B

A-13

SUBROUT INE SPGEI(NyMyAyBsNN)

C

"C_ T TMATRIX INVERSION USING GAUSSTAN ELIMATION ™" ~~~— - -
. PATRIX INVERSION USING CAUS -

C A ARRAY IS UPPER TRIANGLE OF A POSITIVE OEFINITE,SYMETRIC MATRIX’
T8 ARRAY' I'SFOR TEMPORARY STORAGE OF BI2 PARTITIONED ROW
T _FOR TEMPORARY STORAGE DF "BI27PARTITIONED ROW """~
T TDIMENSION ANND LBINY T
—2 ALNN) ,BINY .
CTTINDEX FUNCTION. ™7 INDEX(I7J¥ ETINDUT N 4" J7 m 7w wmorme e m e =
e INOE TroN, _INO J -
INDUL)= (M#2-T1%(T=11/2
AN), e
“CTTUM £ NUMBER OF ELEMENTS INTTHE FIRST ROW OF “A"MATRIX

€T 77 N'=- NUMBER OF ROWS IN A MATRIX' TO BE “INVERTED =~ =" =7~ -
L TNN- NUMBER OF ELEMENTS IN A" MATRIX'y™™ NNa“NENT-N¥INSTIZ2

P A LA A R

o PSP — P P T T -,

e ML= [T e e e il —_
g e e ewie 2 e e L e s e e s e D e o e e e e
"G T FORWARD ELTMINATIONy AlLl=sT1/ATY 777 77777777 o ommmmm e e

c ’ T OA22=A22 - TA21%ALL¥AL2T T T T T T
T T T s e s AR IATZ T T e e et e

P e e i me s e el e

7 2 = L NI T T e e e e
e CIpLl=le] —rr e e — S ST
e e e INDI=IND(I] - = e e e e
S 1= INOT+T : e & e n e e e
ACII)=1./A011) et e B

- ‘D0 2 J=IPL,N e i e
INUJ=IND(d) - C e
[J=INDI+J S e

-c ' . i
R et R S e e i e mvvitatmiet 2l e
e e e S IND KT T e e s . .
T IK=IND K T T -

T T ALK =A (UK AT FATT TY XA CTKY - T

2 ALTII=ACILI*ACTY) i
i |

o IT=INDIN)+N

ACITY=1./AC11)

c BACK SUBSTITUTION, B22=A22

E
OF POOR QUL 7y

A-14

8l2= -Al2#B22
BL1STA1L = B12%A21

c e - -—y ey
C . .__CLEAR B ARRAY
¢

T TTTbO 4 I=1,N T)
TT4'B(IN=0.
e —
o008 11=2,N
T =1 7T "‘
T T T T T = el .
T T INDISIND(T

C ”“‘“’coMPurE 812 ="=A12#B22 FOR K.GE.J
- — -

TTTTTTTDOCS J= Jl'v"

T INDJ=INDY) T T T
T DOTS K=dyN T ”“l
o . IK=INDI+K 'f“f'_'i'ﬂ et o e

JK= INUJ+K'
5 BlJ)= B(J)-A(IK)‘A(JK)'
S
T COMPUTE B12 FOR ""K LT g T
- S

e TE(1LEQUNNGO TQ T T T
P meisas 9223141 o o m mee s el
PR . e e e ommne =
T D0 6 J=J2,4N e T
Kl=Jd-1 Gl e
JK=INUI+Y
K2=11
DO 6 K=JlyKl
K2=K2-1

T IK=INDI+K T T
JK=JK+K2
6 B(J)I=BIJ) - ACIK)*A(JIK) i

ST LISINDD + 1
COMPUTE B1l = Bll - A12+821

OO0 o

IJ=INDI+J
AMTII=A(TL) = BUJISA(IY) 77

A-15

AlIJ)=B(J)
8 BUJI=0.

C
TTTTRETURN T
END .

gglggg%m% 5
FO0R Qg

A-16

SUBROUTINE WTALA2(A,M,L NNyI1)

c

S

UIMENSTUN ATNN]
“"WRITE All,Al2 ON SCRATCH UNIT 'T1 L ROWS 3 M COLLUMNS

 MM=M o . R ;’ _j

DO 1 I=14L
CALL WRITES(AIML),MM,IT) "7 = = =

T Ml=ML1+MM 7 -)

L MMsMM-l T —

RETURN ‘ - —

TTTTTTUEND) 7

- A-17

