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APPLICATION OF THE ADAPTIVE-WALL CONCEPT
 

TO THREE-DIMENSIONAL LOW-SPEED WIND TUNNELS
 

By J. C. Erickson, Jr.
 
Calspan Corporation
 

SUMMARY
 

Interference-free flows about a model in a wind tunnel exist when certain
 

functional relationships are satisfied among disturbance velocity components at
 
a measurement control surface located within the tunnel near, or at, the walls.
 

These functional relationships are derived for three-dimensional subcritical
 
flow fields in which no propulsion-system efflux intersects the control surface
 
until far downstream. Three methods for evaluating the functional relation­

ships have been developed. The first of these, the original multipole expan­
sion (MPE) procedure, is based on a series of point singularities which satisfy
 
the governing Prandtl-Glauert equation. The second, the modified MPE, provides
 

an improved representation of finite-span wings and thereby extends the range
 
of validity of the original MPE to larger ratios of span-to-control-surface­

width. 
The third method is'more general and is based on source distributions
 

over the control surface. Several numerical examples are presented to help
 
establish the range of validity of these evaluation methods.
 

An accuracy-assessment procedure, which combines the original MPH pro­

cedure with classical wall-correction theory, has been developed to estimate
 

the degree of interference at the model if the functional relationships are
 
not satisfied exactly. Several numerical examples of this procedure are pre­

*ented for representative wings and bodies.
 



INTRODUCTION
 

The flow fields about helicopters and other V/STOL aircraft are highly
 

complex and are difficult both to simulate in a wind tunnel and to predict
 

analytically. Many V/STOL designs incorporate integrated lift and propulsion
 

systems that are characterized by a high-energy efflux which is deflected
 

downward at a large angle to the direction of flight in order to generate lift
 

at low flight speeds. Flight speeds of these vehicles range from hover, or
 

near hover, through transition to cruise flight, so that the disturbance
 

velocities introduced by the yehicles, including their propulsion systems, are
 

comparable to, or even greater than, the flight velocity over an important
 

operating range. Thus, in wind-tunnel testing of V/STOL aircraft, the
 

presence of the tunnel boundaries causes larger interference effects than
 

exist for comparably-sized conventional aircraft with their relatively smaller
 

flow disturbance velocities. The necessity for large wind-tunnel models is
 

indicated to minimize scaling effects, which are not well understood, and to
 

facilitate modeling the propulsion systems, especially those with high disk
 

loadings such as fans and jets. These considerations, in part, have led to
 

the requirements for even larger testing facilities (ref. 1).
 

The concept of wind-tunnel-boundary corrections in solid-wall and open­

jet tunnels for conventional aircraft configurations in subsonic, subcritical
 

flight generally has proved adequate. This results principally because the
 

aircraft generates only small disturbances in the flow, including a trailing
 

vortex system due to lift which does-not deflect significantly from the direction
 

of flight. These vehicles and the wall boundary conditions then can be repre­

sented analytically by linearized aerodynamic theory with all its powerful
 

techniques and connotations, e.g., superposition. Therefore, boundary-induced
 

corrections to the incident flow can be interpreted in terms of corrections to
 

the measured aerodynamic characteristics of the vehicle, making use of the
 

extensive knowledge of the general aerodynamic behavior of this class of con-


The idea of corrections becomes less viable for conventional
figurations. 


aircraft configurations in ventilated tunnels, especially as the flight speed
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becomes transonic with larger flow disturbances, loss of superposition, un­

certainty in the form of the wall boundary conditions, and flow fields that
 

cannot be predicted accurately.
 

The concept of tunnel-boundary corrections for helicopters and V/STOL
 

aircraft also rests on a less than satisfactory basis. The propulsion-system
 

efflux often interacts strongly with the rest of the aircraft and generates a
 

highly-deflected trailing-vortex system which may also interact with the tunnel
 

boundaries. Also, as mentioned above, the flow disturbance velocities intro­

duced by the vehicle may be comparable to, or greater than, the flight velocity
 

at low speeds near hover and during transition. Therefore, these vehicles
 

cannot be represented adequately by linearized aerodynamic models and so
 

superposition is no longer valid. As a result, the unconfined-flow aerodynamic
 

characteristics are not well understood and cannot be predicted as well as for
 

conventional aircraft. Therefore, even if tunnel-boundary-induced velocity
 

disturbances to the incident flow can be estimated accurately, their inter­

pretation in terms of the measured aerodynamic characteristics may not be
 

possible. Finally, the basic nature of the flow in the tunnel may bear no
 

relationship whatsoever to the flow field in free flight, as shown first by
 

Rae (ref. 2). That is, there may be a flow breakdown consisting of a recir­

culation of the propulsion-system efflux upstream and around the tunnel walls.
 

Flow breakdown occurs in a given tunnel, for a given vehicle configuration,
 

below some minimum tunnel speed (refs. 2-8). In view of these considerations,
 

tunnel-boundary effects and corrections for them are not in a fully satis­

factory state for helicopter and V/STOL testing.
 

The difficulties in wind-tunnel testing of V/STOL configurations have
 

motivated considerable research in recent years. These efforts have followed
 

three rather broad lines. First has been the development of theoretical
 

methods for calculating boundary-induced interference-velocity distributions
 

within the test section. These methods are in the spirit of classical tunnel­

boundary-correction theory and are based on simplified analytical representa­

tions of various tunnel-wall and vehicle configurations including the propulsion­

system efflux. Some of the principal contributions to this line of development
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have been by Heyson (refs. 9-12), Lo, Binion and Kraft (refs. 13-17), and
 

Joppa (ref. 18). Second are the experimental investigations which have examined
 

the nature of the interference on representative models and on the nature of
 

the flow within the test section. These investigations (refs. 2-8) discovered
 

the existence of flow breakdown and have examined the conditions for its
 

occurrence. Finally, the third area of research on tunnel-boundary effects is
 

an outgrowth of the theoretical calculation of interference-velocity distri­

butions. This research is aimed at the development of test-section geometrical
 

configurations which minimize the interference velocities and/or make them
 

more nearly uniform over the complete extent of typical models, so that cor­

rections can be made for any residual wall effects .(refs. 13-15, 19-20). The
 

validity of these test-section configurations relies on the ability to repre­

sent analytically the vehicle, its propulsion system, and the characteristics
 

of flow through ventilated walls. Consequently, the results of these studies
 

serve principally as guides to the objective of low-interference tunnels.
 

Thus, they have been augmented by experimental investigations with similar
 

objectives (refs. 21-28). Notable among these latter investigations are those
 

of Kroeger and Martin (refs. 21-22) and of Bernstein and Joppa (refs. 27-28)
 

because they introduce active control of the flow in the tunnel by applying
 

blowing and suction through ventilated tunnel walls. Their wall-control
 

requirements are determined from computations of the flow field near the walls
 

by means of a theoretical representation of the geometrical configuration to
 

be tested. Therefore, their method can be only as good as their ability to
 

predict this model flow field accurately. Hence, for complicated V/STOL
 

models over a large portion of their flight envelope, this can be an important
 

limitation.
 

The approaches just described hold promise for developing V/STOL test­

section configuratiQns with low levels of boundary interference. Nevertheless,
 

each tunnel design is tied closely to a specific vehicle configuration and
 

size, so that generalization is difficult. Even more important, there is no
 

way, other than to test the same model in a larger (and therefore, supposedly
 

interference-free) tunnel, to verify that the boundary interference actually
 

has been eliminated. A further, -and significant, conceptual step which removes
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some of these restrictions is the self-correcting, or adaptive-wall, wind
 

tunnel proposed by Sears Cref. 29). The self-correcting tunnel concept, which
 

is described more fully in the Appendix, also uses active control of the flow
 

at the tunnel walls. In addition, however, measurements of flow disturbance
 

quantities at a suitable control surface within the tunnel are combined, in
 

iterative fashion, with the evaluation of appropriate functional relation­

ships. Satisfaction of the functional relationships by the measured flow
 

disturbance quantities assures that the flow about the model is interference
 

free.
 

Application of the adaptive-wall concept to transonic wind tunnels is
 

being pursued actively by several groups at this time, see references 29 to 36.
 

In particular, an experimental demonstration of the fully implemented concept,
 

as applied to a two-dimensional transonic tunnel, is being carried out in the
 

Calspan One-Foot Wind Tunnel. In this tunnel, active wall control is achieved
 

by segmenting the plenum surrounding the porous walls, and controlling the flow
 

through the walls by applying suction or pressure to the plenum segments.
 

Important progress to date on this work is reported in references 29 to 31.
 

For low speeds as well, the ultimate embodiment of the adaptive-wall
 

concept would have the capability to guarantee an interference-free flow in
 

the test section for any V/STOL configuration and attitude with respect to the
 

free stream. Thus, the concept incorporates the following considerations.
 

Unconfined flow about an arbitrary V/STOL configuration certainly cannot be
 

calculated with sufficient accuracy that wind-tunnel testing can be eliminated.
 

On the other hand, the boundaries of a wind tunnel can cause so much inter­

ference with the flow about a model that the test results may be in question,
 

especially at very low free-stream speeds. Although the flow field in the
 

vicinity of the model cannot be predicted analytically, the flow field ex­

ternal to the control surface is represented by a well-posed boundary-value
 

problem that is within the capability of existing analytical and computational
 

techniques. Therefore, by combining theory and experiment in a way that uses
 

each to its best advantage, the self-correcting wind tunnel offers the prospect
 

of simulation of free-flight conditions in the flow about the model.
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The adaptive-wall wind tunnel concept can also be applied to testing in
 

existing conventional tunnels without provisions for flow control by the
 

walls. In this application, measurements still would be made at a suitable
 

control surface in the tunnel, and the unconfined-flow functional relation­

ships would be evaluated for each test, just as described. If the functional
 

relationships were found to be satisfied to within some specified accuracy,
 

the test could be considered effectively unconfined by the walls so that the
 

data could be considered interference free. If, on the other hand, the
 

functional relationships were not satisfied to the specified accuracy, the
 

data would contain interference effects. Carrying this idea a step further,
 

the self-correcting concept could even provide a basis for improved techniques
 

for computing wall-interference corrections, when such corrections are meaningful.
 

We thus see that by means of measurements and evaluations of functional
 

relationships, the basic self-correcting tunnel concept can be used to establish
 

criteria for the accuracy of tests without wall control. Irrespective of
 

which mode of operation is selected, i.e., elimination of interference or
 

evaluation of the degree of interference present, many of the theoretical and
 

measurement techniques which must be investigated are identical. Therefore,
 

the initial research reported here is applicable either to the development of
 

a complete self-correcting V/STOL tunnel or to the use of measurements and
 

functional relationships as an indication of interference-free conditions in
 

existing tunnels.
 

In the next section, the functional relationships that must be satisfied
 

in wall-interference-free flow are established for conventional three-dimensional
 

models, for which no propulsion-system efflux intersects the measurement control
 

surface until far downstream. Evaluation of the functional relationships for
 

conventional models by means of two techniques, namely multipole expansion
 

(MPE) procedures and a source distribution method, are described along with
 

typical results for models both in and out of ground effect. The question of
 

assessing the accuracy required in satisfying the unconfined-flow functional
 

relationships, as far as the interference on the wind-tunnel model is concerned,
 

is discussed in the following section. A procedure for such an accuracy
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assessment is developed using conventional tunnel-interference theory together
 
with flow measurements and use of the MPE technique for evaluating the
 

functional relationships. Several examples are given which show permissible
 
amounts of departure from the exact evaluation of the functional relationships.
 
Finally, conclusions are given for this first step in the investigation of the
 

self-correcting wind tunnel concept for V/STOL testing.
 

SYMBOLS
 

/R aspect ratio, 4b. /451 

a half-width of control surface (see figure 1)
 

b half-height of control surface (see figure 1) 

bb half-length of body 

bh semispan of horseshoe vortex in modified multipole expansion
 

b, semispan of wing 

Co drag coefficient, Fo/! 

CL lift coefficient, F/,4 

C0 pressure coefficient, -p/& 

C1 source strength in accuracy-assessment method (see equation (47)) 

C2 infinitesimal-span horseshoe vortex strength in accuracy-assessment 

method (see equation (48)) 

C3 doublet strength in accuracy-assessment method (see equation (49)) 

wing chord in two-dimensional- flow (see figure 16) 

D function defined in Table I 

F drag force 

FL lift force 

c 
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3 functions defined in Table I 

- control-surface location in two-dimensional flow (see figure 16) 

1,4",hI

height of model above ground (see figures 12 and 13) 

J number of terms in multipole expansion 

H,. freestream Mach number 

Ni coefficient of I term in multipole expansion of v,. (see equation (31)) 

n coordinate normal to control surface (see figure 1) 

p static pressure disturbance 

9 freestream dynamic pressure, /Ow ,0 /2 

distance from origin to point on control-surface cross section 

(see figure 1) 

R function defined in Table I 

r distance from control surface to field point (see equation (23)) 

g control surface at which flow disturbance measurements are made 

(see figures 1, 15 and 16) 

5 -reference area of model 

T function of diameter-to-length ratio of Rankine solid, given 

T = T (+T- T) ' 
implicitly by 

t coordinate tangential to control surface (see figure 1) 

UI freestream velocity 

normal, tangential components of velocity induced by $h multipole 

singularity of unit strength (see equations (39) and (40)) 

J X, V, j components of velocity induced by j multipole singularity 

of unit strength (see Table I) 

V model volume 

t;,,7v4 normal, tangential components of disturbance velocity 

zr,,v~ z, , components of disturbance velocity 
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X 	 coefficient of ith term in multipole expansion of 
 zrz
 
-" 	 (see equation (28))
 

xq, basic coordinate system (see figure 1)
 

X, offset of center of model from origin
 

Y, coordinate of control-surface cross section
 

q~ functions defined in Table I
 

a_ model angle of attack
 

a 	 effective model angle of attack due to parabolic-arc camber
 

fT, of horseshoe vortex in modified multipole expansion
-strength 


(see equation (41)) 

A( ),Aiwall-interference correction to quantity ( ) based on V.. 
boundary conditions 

i9 polar angle of point on control-surface cross section (see figure l) 

9 	 eccentric angle of point on elliptical control-surface cross
 

section (see equation (7))
 

&c 	 polar angle of corner of rectangular control-surface cross section
 

(see equation (9))
 

4 freestream density
 

0 strength of source distribution on control surface
 

V 	 diameter-to-length ratio of Rankine solid
 

acceleration potential 

S disturbance velocity potential 

idealized disturbance velocity potential of model in unconfined flow 

4' 	 interference disturbance velocity potential induced by tunnel boundaries 

angle between n and axes for control surface (see figure 1)
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Subscripts:
 

calculated by evaluation of functional relationships
 

II index of term in multipole expansion
 

Mt measured at control surface
 

w0 free stream
 

EXTERNAL-FLOW FUNCTIONAL RELATIONSHIPS
 

Control-Surface Geometry
 

The functional relationships which must be satisfied among the measured
 

flow disturbance quantities in order for unconfined-flow conditions to exist
 

-in a flow will be discussed with respect to figure 1. This figure describes
 

a flow with free stream speed U. in the --direction about a body located
 

near the origin of a rectangular Z , , coordinate system. We are con­

cerned principally with the flow field external to the control surface S which
 

encldses the body. Only part of the control surface is shown in figure 1
 

because it is assumed to extend infinitely far upstream and downstream with a
 

uniform cross section. The question of the effect of truncating the control
 

surface to a finite length is an important one, which must be considered
 

ultimately. Answering this question requires a more detailed consideration of
 

the flow field within the tunnel than has'been considered here.
 

We assume that the cross section of the control surface can be expressed
 

= 

parametrically in terms of the angle & by v YCO) and 3 = z () '. The 

angle C is measured conveniently from the, -axis, as shown in figure 1,
 

because the Z- plane is the plane of symmetry for most'aircraft configura­

tions in longitudinal flight. We assume further that the control surface is
 

symmetrical about the Z-; and Z-V planes with width 2a and height 2b as 

shown. The coordinate t tangent to the control surface is a curvilinear
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coordinate in planes perpendicular to the Z-axis and is positive in the sense
 

of increasing B . The coordinate n is the outward normal to the control
 

surface and completes a right-handed Z , n , t coordinate system. Both a
 

and t are functions of 0 along with the angle V between the n- and . -axes, 

which is given in terms of the geometry of figure 1 as 

3lrW) = o-' (~Ldcy) = o.-'cd/d)CcLy/da] (1) 

The length 02 is the distance from the origin to the surface and is also a 

function of 0 . The disturbance velocity components in the X, a and t 

directions along the control surface are defined as 24, v and 4t , respectively. 

The shape of the control-surface cross section does not have to be the 

same as that of the wind tunnel itself, so there is considerable flexibility 

in the choice. The most convenient shape from a computational point of view 

is a circle, for which the control surface and the entire flow field can be 

expressed easily in terms of the cylindrical coordinates Z , r , 0 . In this 

system, a =b , where a becomes the radius, and so the control surface is 

defined by 

Y = -(2) 

Z 0- 0coo (3) 

and so,
 

?'V 98(4) 

Unfortunately, there are two important limitations for general testing
 

with a circular cross section. First, it could limit unnecessarily the
 

allowable model size in a rectangular or oval tunnel because the largest
 

dimension of the model normal to the x-axis can be no larger than the diameter
 

of the control surface. For example, in a rectangular tunnel with a height-to­

width ratio b/. less than one, the span of a wing would have to be limited to
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the tunnel height, as shown in the sketch.
 

--TUNNELWALLS
For this geometry, the maximum model size 


would be unduly limited, especially for a r -CONTROL
 

/ \atgrcE
fully-implemented self-correcting configu-

__WINGration in which the model could be larger 


than is acceptable in a conventional tunnel. . / 

-The second limitation concerns the self-


correcting tunnel simulation of ground
 

effect. The ground plane must lie out­

side the Control surface and so for a wing with a circular control-surface
 

cross section, the maximum height above ground would be unrealistically limited
 

to a wing semispan. We conclude, therefore, that a better choice would be a
 

control-surface cross section that is elongated in the direction of the maxi­

%-axis, for example, a rectangle, ellipse
mum model dimension normal to the 


or another oval shape such as the cross sections of existing tunnels.
 

An elliptical control-surface cross section is defined by
 

(5)
Y 


(6)=b C" 0 

where 6 is the eccentric angle which is related to the polar angle 0 of
 

figure I by
 

(7)
& =&0-) 

From equation (1) then, we find that
 

'= t.. 0/ab)'ra (8) 

case of the ellipse, of course, with
The circular cross section is a special 


a=b
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A rectangular control-surface cross section is defined as follows, where
 

-n < 0 7 and 

&'n' b) 	 (9) 

For Tm-6 0 <c0 i5 	 , and also for -7T<&<-774L9. 

S= -b 	 (ii) 

(12) 

For -jT+G, <0'-&c 

(13)
 

-ECLCtL 	 (14) 

7Z 

For-&, 3 , 

(16)

Y= - b t~4 

(17)
 

0o 
 (18) 

For 	 8a < L9 <wr-&0 , 

y -a. (9) 

= ac "t 0 	 (20) 

TC7' 
(21)
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Separate subroutines implementing cross sections of both elliptical and
 

In all the applications
rectangular shape have been developed and checked. 


described below, however, only elliptical cross sections have been considered.
 

General Formulation of Functional Relationships
 

The two-dimensional functional relationships can be formulated, in the
 

absence of propulsion-system efflux exiting through the control surface, in
 

terms of either source or vortex distributions along the control surface.
 

Both formulations are equivalent and for unconfined flow lead to the direct
 

integral relationships between the disturbance velocity components normal and
 

In two­tangential to the control surface that are given in the Appendix. 


dimensional flow about a body in ground effect, the alternative formulations
 

are equivalent as well, but lead in each case to different pairs of equations,
 

one of which is an integral equation and the other an integral evaluation
 

once the integral equation has been solved.
 

Similarly, the three-dimensional unconfined-flow functional relationships,
 

in the absence of the efflux intersecting the control surface, can be formu­

lated in several ways. If we assume that incompressible, inviscid flow is a
 

suitable approximation for the region external to the control surface, the
 

most familiar formulation is found by considering a source distribution 6r(ZC) 

over the entire control surface Y5 , whereupon the disturbance velocity 

potential 0 can be written at a general field point ( X, , ), following 

Hess and Smith (refs. 37-39) as
 

C(X: 6') 1(8'., C6'- cl')0' (22) 
~r 

where the primes denote the variables of integration and
 

r 144 Y(69)][+ (0)J (23) 
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The velocity components can be found by differentiating equation (22) with 

respect to the appropriate coordinate directions. If this is done in the X, 

n , t system and the appropriate limits are taken, we have on the control 

surface, 
2Wr 

74~~~x(ZI) JJ [V) (LL) 020d~x6 69'_o' 0' d.aect 

L,6 I:i(24)
 

a~~.= -2nro-zXo)ff (xOD)_k-U-- L(O)MC,(OtV'dO'6 

2(25)
 

rY((0V7t ('- aoNzZ' 
.CO 

0) C&O(19)] (&'-%r)d8'dz' 

_t ot 
 V=Y(&) (26)
 

The integrals in equations (24) and (26) must be evaluated in the Cauchy
 

principal value sense.
 

If the normal velocity component .r is assumed to be known on the control
 

surface from measurements, equation (25) is an integral equation of the second
 

kind and represents the classical Neumann problem of potential theory. General 

numerical techniques have been developed, principally by Hess and Smith 

(refs. 37-39), to solve equation (25) for arbitrary three-dimensional configu­

rations. Once this equation has been solved for r , equations (24) and (26) 

can be evaluated to get the other components for comparison with their 

measured values. As an alternative to evaluating equation (26) for 14 , how­

ever, we note that once 2rz has been evaluated from equation (24), the 

potential ' can be found on the control surface by integration, namely 

Jcr, 0) 0 ) d. 4 (27) 

In establishing equation (27), we have made use of the fact that 4 must vanish 

at infinity upstream for the flow about a three-dimensional configuration of 
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finite upstream extent. The'circumferential component -Y* on the control
 

surface follows immediately from equation (27) by differentiation with respect
 

to t Thus, 'tt can be calculated directly from 2r,.
 

If the axial disturbance velocity component VZ is assumed to be known
 

on the control surface from measurements, then the potential j can be evalu­

ated on -S'from equation (27) and -Vt can be found as well. In this situation, 

equation (22) for 4 (as evaluated at V = Y(&) and . = Z (e)) and equation (24) 

for -r, are alternative integral equations of the first kind representing the
 

Dirichlet vroblem of potential theory. These equations also could be solved
 

numerically, in principle, although they have not been given much attention
 

for general three-dimensional configurations (ref. 38) because of their
 

relative unimportance in conventional aerodynamic applications. Once a has
 

been found from solution of either equation (22) or equation (24), then -V.
 

can be evaluated from equation (25) and compared with its measured values.
 

We have seen, then, that if the measured values of either v., or 7, are
 

used as the boundary conditions for the exterior flow, 6- can be found and the
 

other two components can be evaluated. If the measured values of Trt alone
 

are used as the boundary conditions, however, the problem is not properly
 

posed. For example, if V4 is integrated over t , it determines 0 only up 

to an unknown function of % and so additional information is required to. 

formulate a Dirichlet problem. This point can be seen more clearly if we 

consider an axisymmetric flow field with a circular cross-section shape for 

the control surface. In this case, the circumferential component V. would be 

identically zero, and so its specification certainly does not provide sufficient 

information for determining the other two components. Therefore, it is clear 

that measured values of either 1r, or -U can be used as boundary conditions 

for evaluating the unconfined-flow functional relationships, but that measured
 

values of Vtr cannot be used as boundary conditions. That is, measurements of
 

y. and wr would provide the redundant data that are necessary for determining
 

whether a flow field is unconfined. Apparently, then, measurement of -Yt is
 

not required because its measured values must agree with the calculated values
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if the measured and calculated values of V, and Vz agree. Nevertheless, its
 

retention provides an additional indication of the degree of satisfaction of
 

the unconfined-flow conditions.
 

Multipole Expansion Procedures
 

Theoretical Background.- As an alternative to a full solution of
 

equations (24) to (26), a multipole expansion (MPE) procedure has been de­

veloped along the lines that we have found so useful in two dimensions (refs.
 

30 and 31). The MPE is based upon fundamental solutions of Laplace's equation
 

and so there is no need to consider equations (22) to (26) directly. The
 

prod9dure, to be 4escribed fully below, basically consists of fitting one com­

ponent of the measured velocity data in a series expansion of the fundamental
 

solutions. The coefficients of the series are then used to evaluate series
 

expansions for the corresponding unconfined-flow distributions of the other two
 

velocity components. We have found in our two-dimensional investigation that
 

the MPE technique has several advantages.
 

The principal advantage of the MPE procedure is that the calculations are
 

straightforward and the associated computer program is very efficient. In our
 

two-dimensional numerical simulations (ref. 30) of a self-correcting wind
 

tunnel, for example, the least-squares fit technique led to errors between the
 

fit and the individual data points that were far smaller than any errors
 

expected from experimental measurement inaccuracies. These simulations were
 

carried out for two different airfoil-section shapes and for several values of
 

the ratio of chord-to-control-surface-height. Furthermore, the MPE approach
 

can be adapted readily, by means of alternative subroutines in the computer
 

program, to any control-surface cross-sectional shape. Another advantage that
 

we have found useful in our two-dimensional experiments (ref. 31) is that the
 

MPE provides a straightforward analytic continuation from one control surface
 

location to another. We have found it convenient in the two-dimensional ex­

periments to measure each of the two velocity components at a different
 

distance from the airfoil. The MPH handles this geometrical situation directly,
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whereas an integral equation formulation, as in equations (24) or (25), would
 

have'to be generalized and solution would become more complicated. Finally,
 

the MPE tan be used, in conjunction with conventional wall-correction theory,
 

to assess the accuracy of the flow about the model if the functional relation­

ships are not satisfied exactly.
 

The MPE development has been carried out for linearized compressible
 

flows. The Prandtl-Glauert equation has been assumed to be a valid approxi­

mation-in the flow region external to the control surface. This formulation
 
' 


reduces-to-the incompressible flow case when /3 = (I- /w) goes to one, 

where M. is the free-stream Mach number. The origin of-the MPE will be 

assumed to coincide with the origin of the Z , , . coordinate system in 

figure 1. 

In a typical application of the self-correcting tunnel concept, either in 

a wind tunnel or in a numerical simulation of a tunnel, measurements of the 

disturbance velocity components, say v% , vz,. and tr would be made at a 

number of locations on the control surface. For this discussion, we will con­

sider all three components, although Ir.. is really unnecessary as discussed
 

above. The first step in the MPE technique is to fit either vY, or Vn. by
 

a series expansion in the appropriate component of fundamental singularity
 

solutions of the Prandtl-Glauert equation. If vx. is taken as the boundary
 

condition on the external flow, a least-squares fit is carried out of the form
 

o;J i o 13x (28) 

where is the velocity component induced in the z-direction by the .h 

singularity. Once the coefficients X are found from the least-squares fit, 

the values of the other two components, 1r, r--,] and vt= [7], say, that 

correspond to z, if the flow is unconfined, can be evaluated by
 

3
 

(29)
(XO) = 0 ; 3) 
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J 

where % and % are the velocity components induced in then-and 
th

t-directions, respectively, by the 4 singularity. These calculated values
 
are then compared with the measured values V,, and Jt.v. If they agree the
 
flow is unconfined, but if they do not agree, the differences are a measure
 

of the interference present.
 

Alternatively, % can be fit in a series of the form
 

3 
0;13)(31)
 

whereupon Vx, [2r,,] and zv [t] are given by 

S 

;t(x, 60) /V (z a1.(,6 (33)
C ~ p t1 3 

and r and zr, must be compared with v,. and Vt. respectively. 

The choice of functions in the MPH series is somewhat arbitrary. Any
 
combination of point singularities or spatial distributions of singularities
 

may be used, so long as they satisfy the Prandtl-Glauert equation, are linearly
 
independent, and are fully contained within the control surface. 
We have
 
developed two separate MPE methods, which will be discussed in turn. The first
 

is based on point singularities and is called the original MPE, while the second,
 

the modified MPE, is tailored specifically for wings.
 

Original MPH Method and Results.- In this MPH method, we followed our
 

two-dimensional procedure to use a systematically defined set of point singu­
larities that are generated from three of the basic singularities used in con­
ventional wind-tunnel-wall correction analyses (ref. 40). These latter
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singularities are the source, the velocity potential of which (called P,
 
here for later convenience) is given by
 

4%=(- 4 (34) 

the so-called infinitesimal-span horseshoe vortex representing the component
 

of the lift force in the j-direction, the potential of which (#,o, say) is
 

given by
 

10 [ 2 - C35) 

and the infinitesimal-span horseshoe vortex representing the -component of
 

the lift, the potential of which ( 0., say) is given by
 

S-) + (36) 

These three singularities can,be derived by considering a source singularity
 

(to, say) which satisfies the Prandtl-Glauert equation for the acceleration
 

potential q , namely
 

__ (37) 

If k is differentiated with respect to _Z to find , which is then inte­

grated according to the relationship which holds in steady flow between the 

acceleration potential and the velocity potential, namely 

WI (38) 

we obtain Similarly, differentiation of 4t-with respect to and inte­

gration according to equation (38) yield 1,,
while differentiation with respect
 

to and the subsequent integration yield 95z
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The basic set .of singularities that we have chosen, Ithen, consists of the
 

three singularities in equations (34) to (36) plus all of their linearly in­

dependent first and second derivatives. The resulting fifteen MPE singu­

larities for general, nonsymmetrical flow cases are assumed to be located at
 

the origin. They are presented in Table I as the velocity components
 

and in, the X-, V-and -­ directions, respectively. The -and 

components can be resolved into the'y- and t-components 't and by 

reference to figure 1, namely 

r(Z,O; 13) - ' 0(6; t.)- )- (Z, 56) C04 P(O) (39) 

The terms in the series are arranged so that the first nine terms are those 

for flow configurations which are symmetrical about the Z- - plane; i..e., those 

'for which % are and an6., and even functions of is odd 

finction of The remaining six terms extend the analysis to general three­

dimensional configurations and are those for which , and are odd 

functions of I while TY. is an even function of . Therefore, symmetrical 

and general configurations are, considered using "J = 9 and 15, respectively 

A computer program implementing .the original MPE procedure has been.
 

written incorporating the subroutine for elliptical control-surface cross­

sections. Preliminary checks of the program were carried out based on indi­

vidual singularities-and hand calculations. A more thorough checkout has been
 

carried out using evaluations of the unconfined flow fields of typical wing
 

and body representations. -For wings; short computer programs have been
 

- written to evaluate the unconfined flow field at control surfaces enclosing 

wings with elliptical and constant spanwise loadings. A lifting-line repre­

sentation consisting of finite-span horseshoe vortices has been constructed for 

this purpose following the guidelines of Hough (ref. 41). Another short pro­

gram was written to evaluate the unconfined flow field at control surfaces 

enclosing Rankine solids (ref. 42), which are used to represent typical body 

shapes. -The results for the unconfined-flow distributions of the axial and 

normal velocity components calculated with these programs are referred to as 

"exact" values in.the discussion which follows, and are denoted by Vr . and 

4., respectively.
 

21 



Both circular control-surface cross sections with h/a, = 1.0 and elliptical
 

cross sections with b/- = 0.5 have been examined in these check cases and the
 

results generall-y are comparable. We will discuss here some typical results
 

for symmetrical configurations in incompressible flow. The nine-tem symmet­

rical MPE has been used to obtain these results, but a spot check with the
 

general 15-term MPE shows that they are equivalent.
 

With the original program, wings with the ratios 6./a of span-to-control-


The results are similar for both
surface-width of 0.25 and 0.5 were examined. 

= 


constant and elliptical spanwise loadings. For the larger (b/i 0.5),
 

b/. = 0.5, the axial and normal disturbance
elliptically-loaded wing with 


velocity components at the control surface, nondimensionalized in terms of 1M
 

the aspect ratio )R and the lift coefficient CL , are presented in figures 2
 

Since .lZr, andand 3, respectively,*as functions of & for two values of x/& .
 

v., are symmetrical about 5 = 0, results in'the cross-section plane of the 

lifting line ( %/a = 0.0) are given on the right-hand sides of the figures, 

while results one half-width downstream (Z/ = 1.0) are given on the left­

hand sides. As can be seen from'the figures, the MPE fits to 7 zm and to V,. 

are in considerable error and so lead to errors in the corresponding calculated 

distributions rz, [v] and 2r, Lx.]. In the case of the smaller wing 

(b /. = 0.25), on the other hand, the results are not presented because the 

MPE fits as well as the calculated distributions ?rA= [zm]and ?, [vx jare 

indistinguishable from the exact distributions to the scale of figures 2 and 3. 

With the original program, Rankine solids with a diameter-to-length ratio
 

T of 0.2 also were'considered at zero angle of attack for a circular control-


Three different values of the ratio of body-length-to­surface cross section. 


For the
control-surface-width kb/a were treated, namely 0.2, 0.5 and 1.0. 

smallest body (bta = 0.2), the errors between 7z, , zm and their MPE fits, 

and between r,, 7,/, and the calculated values jr., m] and ['zjj,v'n are 

very small, roughly comparable to the agreement for wings with bw/a- = 0.25.
 

For the body with b/ = 0.5, the errors are significantly larger, roughly of 

the same magnitude as for the wings with b./a, = 0.5 in figures 2 and 3. The
 

results for the axial and normal disturbance velocities, nondimensionalized by
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=U., of the largest body C bb/la 1.0) are presented in figures 4 and 5, re­

spectively, as a function of Z/, for 6 = 0. Although the exact values of 
2Y,. and 2 ,m are axisymmetric, the least-squares fits in the MPE deviate
 
somewhat from axisymmetry because of the influence of the higher-order terms
 

in the MPE series. However, the 0 = 0 values presented are indicative of the
 

errors which exist for this case at all B
 

The original form of the MPE procedure based on point singularities
 

verifies that the exact unconfined-flow velocities induced by typical wing
 

configurations satisfy the functional relationships for wings with 46
4 /cz = 0.25. 
However, the original form of .the MPE does not verify unconfined flow for wings 
with bhlo/ = 0.5. Moreover, although it verifies unconfined flow for a Rankine 

solid with V = 0.2 and 6/a = 0.2, it does not for longer bodies with 

Lb la= 0.5 and especially with b./a. = 1.0. These inaccuracies were unexpected 

because of the success of the two-dimensional MPE, which is based on point 

singularities, for different airfoil sections and various ratios of chord-to­

control-surface-height.
 

An understanding of the full significance of this failure to verify un­
confined flow in figures 2 to S by the original MPE requires an estimate of
 

the implications of these errors on the flow about the model itself. 
This is
 
the question addressed in the later section on accuracy assessment. Results
 

which are developed there show that the magnitudes of the errors in figures 2
 
to 5, which are inherent in the original MPE, are not indicative of the errors
 

incurred at the model. For example, the errors implied in the pressure dis­

tribution on the Rankine solid by the inaccurate fits of figures 4 and 5 are
 
only about three percent as will be shown. The accuracy-assessment method to
 

be described below is directly applicable only to control surfaces with a cir­
cular cross section. Nevertheless, for the elliptical control-surface cross
 

section used for the wing case in figures 2 and 3, we estimate that the error
 

in lift coefficient is less than one percent for a wing with an aspect ratio
 

of one and considerably less than one-half percent for wings with aspect
 

ratios of five or more.
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Modified MPH Method and Results.- Although the accuracy-assessment results
 

indicate that the errors in the flow about the model are not as large as the
 

errors in the original MPH fits themselves, it is still important to eliminate
 

these inherent errors as far as possible. Consequently, a modified form of
 

the MPE analysis has been developed in order to extend the size of the wings
 

(b,/a.) which can be treated with high accuracy. No attention has been given
 

to extending the range of body lengths (Lb/a) which can be treated accurately
 

although the same principles should be applicable in that case as well.
 

The modified MPB has been carried out for symmetrical configurations only;
 

i.e., J = 9 is considered as the limit in the MPH. As mentioned earlier, the
 

choice of singularities in the MPE is somewhat arbitrary. Therefore, in order
 

to extend the MPE technique to larger h./1a values, we have replaced the in­

finitesimal-span horseshoe vortex with lift in the i-direction (i.e., term 2 

in Table I) by a finite-span horseshoe vortex similarly oriented. The semi­

span bV of the horseshoe vortex is arbitrary, but for all examples to date, 

we have chosen b. = f3' ,/2. This value matches exactly (ref. 43) the first 

two terms in a multipole expansion of the velocity potential for an elliptically­

loaded lifting-line representation of a wing. The strength r.of the horseshoe
 
vortex is given by
 

The check cases for the modified MPE computer program have all considered
 

the unconfined flow about elliptically-loaded wings located within an elliptical
 

= 
control surface with b/. 0.$. The first example is for b,/o = 0.5; i.e.,
 

the case treated by the original MPE and presented in figures 2 and 3. The
 

fit and calculated values using the modified form of the MPH are indistinguishable
 

from the exact distributions in figures 2 and 3 so are not presented there ex­

plicitly. The modified MPE thus verifies very accurately that this flow field
 

is unconfined and so represents a significant improvement over the original
 

form.
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Additional cases were run for 4,/a= 0.75 and 0.875 using the modified 

MPE. The agreement in the former case is satisfactory, but for the latter 

the agreement is not, particularly for -v,, as shown in figures 6 and 7. An 

additional measure 'of the errors involved is presented in Table II, which 

gives the rms errors between the exact, unconfined-flow values lr. and in
 

(as normalized) and the fits to them, as well as the rms errors between the
 

exact values and the calculated values V. [wa,] and % [zrz.]. Also, the 

comparison is given in Table II between the exact values of the tangential
 
velocity -v-f,and the values 7= [Zr] and v B',m]as calculated from the
 

fits to s, and ir,m , respectively. There are no fits to Vt, as discussed 

above. Also included in Table II are the errors for b4/ = 0.5 with the 

original MPE method. Although we can make only rough estimates on the basis 

of our accuracy-assessment method, the errors indicated at the model, even 

for b,/o = 0.875, are still small, probably less than one percent for aspect 

ratios of one or greater. 

We conclude from the cases presented here that the modified MPE is a
 
=
distinct improvement over the original form and for b/a 0.5 should be 

applicable up to 1,/o. = 0.75 with reasonable accuracy. Beyond this value, 

the details of the wing loading distribution become more important to the 

induced velocity distributions at the control surface so that the MPE terms 

that we have included do not verify accurately that the flow is unconfined. 

*Asingle example has been carried out for compressible, subcritical flow
 

to examine the capability of the modified MPE program in this flow regime.
 

The case considered was b/a. = 0.5, b,/a = 0.5 and 14 = 0.6. The results
 

are comparable to the incompressible-flow results for the same geometry.
 

Additional exploration of the utility of the modified MPE program was
 

carried out by offsetting the wing from the origin of the control-surface
 

coordinate system. The MPE singularities remained at the control-surface
 

origin. In this way, we could examine the applicability of the MPE in its
 

present form to configurations with multiple lifting surfaces, e.g., wing-tail
 

combinations. For a wing with b/a = 0.5 and an elliptical control surface
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with biw = 0.5, we ran several examples including one with the wing offset 

in the X-direction by Zfo. = 0.25 (figures 8 and 9) and one with the wing 

= 
offset in the 3 -direction by o/a- 0.25 (figures 10 and 11). It is obvious
 

from these figures that neither the least-squares fits nor the subsequent
 

calculations of V., [rj and v- [Vt] are satisfactory. Therefore, the 

modified MPE program does not verify that these flows are unconfined.
 

These same examples have been rerun with the origin of the MPE moved to
 

coincide with the origin of the wing. For the 9.o, = 0.25 offset, excellent
 

agreement was obtained since the translation of the origin reduced this example
 

to exactly that of figures 2 and 3. For the lo/ = 0.25 offset, however, the
 

agreement still is not satisfactory, being roughly comparable to that shown in
 

= 
figures 6 and 7 for bhla 0.875. This follows because the translation of
 

the wing has brought the wing tips nearer to the control surface (as shown in
 

the sketches on figures 10 and 11). Therefore, the details of the wing loading
 

distribution again have become so important that we have not included enough
 

MPE terms to verify with confidence that the flow is unconfined.
 

Modified MPE with Ground Effect.- The effect of the ground on a model in
 

,awind tunnel can be included readily in the MPH analysis of the external-flow
 

functional relationships. The boundary condition that there can be no normal
 

flow through the ground plane must be satisfied as well as the condition that
 

the disturbances must vanish away from the model and its wake in the other
 

directions. The method of images can be applied to insure that the normal
 

velocity component vanishes at the ground plane. Within the framework of the
 

MPE technique, this requires that we must add to each basic MPE term its image
 

term.
 

The modified MPE computer program for symmetrical flows has been extended
 

so that evaluation of the external-flow functional relationships in ground
 

effect may be carried out. The extension is straightforward in terms of the
 

use of image singularities to the basic singularities in Table I. In particu­

lar,'for zero normal flow velocity at a ground plane located a distance -A
 

below the model, images must be located at a distance 2A below the model.
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The images of those singularities in Table I which have expressions for
 

that are odd in i (terms 1, 3, 5, 6, 8, 10, 11, 13 and 15) have the same
 

strength and sign as the basic singularities. The images of those singu­

larities with expressions for 7 that are even in j Cterms 2, 4, 7, 9, 12 

and 14) have the same strength, but are of opposite sign. The finite-span
 

horseshoe vortex which replaces term 2 also is even in 5 . The symmetrical 

program has been rewritten so that a single program handles flows both in and
 

out of ground effect depending upon the form of the input.
 

We have carried out a few numerical examples to check the program for
 

wings in ground effect. Input data for the control-surface velocities in
 

these cases have been found by adding the appropriate images to the lifting­

line representation of the wing. Results for a wing located 0.8 semispans
 

(or 0.4 spans) above the ground with b/. = 0.5, bh/a = 0.75 and so -A a,= 

0.6 are given in the usual format in figures 12 and 13. The errors in the
 

fits and calculated values in this case are comparable in magnitude to those
 

found for a wing of the same span in fully unconfined flow, see Table II. We
 

conclude that the ground-effect option in the modified MPH program is working
 

satisfactorily.
 

Discussion of MPH Results.- The MPH procedures and the computer programs
 

which implement them provide a means for rapid evaluation of the unconfined­

flow functional relationships both in and out of ground effect. In its 

original form with point singularities, the MPB is limited in its exact satis­

faction of the functional relationships to wings with ratios of span-to-control­

surface-width bh/o of less than 0.5 for control-surface cross sections that 

are both circular ( b/a. = 1.0) and elliptical with b/. = 0.5. It is also 

limited to bodies with ratios of length-to-control-surface-width kb/ of less 

than 0.5 for circular control-surface cross sections. It has been shown that
 

an extended range of validity can be achieved in the modified form of the MPH
 

by a more accurate representation of the wing with a finite-span horseshoe
 

vortex replacing the corresponding point singularity. However, the accuracy­

assessment method described in a later section reveals that even the apparently
 

large errors in satisfaction of the functional relationships by these MPE
 

methods lead to relatively small errors in the flow about the body.
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Thus, we conclude that the form of the MPH should be tailored to the
 

specific model being tested for most accurate evaluation of the unconfined­

flow functional relationships in an experimental situation. This is contrary
 

to our two-dimensional experience where a single MPE based on point singu­

larities had broad applicability in theoretical studies. However, recent exz
 

perience in our two-dimensional experiments has revealed another weakness of
 

In particular, it appears that the errors between the least-squares
the MPE. 


fit and the measured data points are no longer negligible in experimental
 

If this is the case, these errors will
iterations toward unconfined flow. 


reduce the accuracy of the entire self-correcting wind tunnel system. A more
 

thorough assessment of the implications of these errors is underway in two
 

dimensions.
 

Consequently, we believe that a more general, less configuration-tailored
 

method for evaluating the functional relationships is desirable. This is
 

necessary especially when large deformations of the trailing vortex system
 

occur and definitely will be required in extension of the analysis to include
 

the propulsion-system efflux when it exits through the control surface into
 

the external flow in the vicinity of the model. The development of a singu­

larity distribution method, such as a source distribution or vortex lattice
 

procedure would provide such a general method for evaluating the functional
 

To this end, development of a source distribution method was
relationships. 


begun and is described next.
 

Source Distribution Method
 

Development of a source distribution method along the lines of Hess and
 

Smith (refs. 37-39) has begun as an alternative tothe MPH procedures. This
 

method will complement the MPE and will provide a more general method for
 

The source distri­evaluating the unconfined-flow functional relationships. 


bution method has been carried out for symmetrical flow fields within an
 

elliptical control-surface cross sectioh in incompressible flow. Initially,
 

the method evaluates Iz, [zm ]and v, R.,,] with r, prescribed as the 
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boundary condition on the control surface for nonlifting bodies. Generaliza­

tions to Vx. as the boundary condition, to lifting bodies, and to compressible
 

flow would be the next steps in the development.
 

The computer program implementing the source distribution method is a 

straightforward application of references 37-39 to a control surface with 

elliptical cross section. The principal difference concerns the normal flow 

boundary condition which is no longer dependent on the control surface shape, 

but rather is a set of normal velocity measurements. In the program, the 

normal velocity component ?r,, is read in over a range of & values for each 

of several different z values. A cubic spline interpolation procedure is 

used, first in 9 at a constant % , and then in % at constant & , to obtain 

1r,. at the centroid of each elemental source panel. These interpolated values 

are then the boundary conditions for determining the elemental source strengths. 

Similar interpolations are made in 1r, and lftm to facilitate their comparison 

with z [2r,.] and 't,[VZm]. A direct solution of the resulting set of 

linear algebraic equations is used to determine the source strengths, whereupon 

the desired output quantities, e.g., v [zr] and r 0,], are evaluated. 

The initial form of the program has been completed, checked and a trial
 

case has been run. This case is the flow about the same Rankine solid with
 

V = 0.2 and bb/a = 0.2 that was described earlier. The control surface is
 
=
assumed to have a circular cross section with b/- 1.0. For this first 

trial case, a coarse breakdown has been used with 96 source panels representing 

one half of the symmetrical control surface. These 96 panels consist of six 

equally-spaced e increments at each of sixteen non-equally-spaced X increments. 

In figure 14, the resulting axial velocity component distribution lr Ezr[,h,] 

nondimensionalized by U , is plotted as a function of %/, for 9 = 00. 

This distribution is compared with the exact distribution Vrxm as well as 

with 7vx, [V,']as evaluated by the original form of the MPE. The flow is 

fully.axisymmetric, giving the same values as in figure 14 at all values of 

9 . In addition, rt [v,.] is zero as it should be. We conclude from this
 

example that even with a coarse breakdown, the source method shows considerable
 

promise.
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The source distribution program can be made very efficient for routine
 

usage after all the required generalizations are made. Once the source panel
 

geometry is decided upon for a given control-surface cross section (b/l), the
 

matrix of the normal velocity induction can be set up and inverted once and
 

for all (assuming that the inversion can be carried out accurately) and stored
 

on tape. Then each time the functional relationships for unconfined flow must 

be evaluated, it would be a matter only of reading in and interpolating in the 

7Xm' qrn- and Irt. data, of evaluating the source strengths from the measured 

v., by use of the inverse matrix, and then evaluating 74.[r;, ]and v [v,1. 

Therefore, the source distribution method is also potentially an efficient method 

for verifying that a given wind tunnel flow is unconfined. 

APPLICATION OF FUNCTIONAL RELATIONSHIPS TO
 
ASSESSMENT OF WIND-TUNNEL INTERFERENCE
 

General
 

The question naturally arises-as to how accurately the unconfined-flow
 

functional relationships must be satisfied for the flow about the model to be
 

This becomes of paramount importance
interference free in a practical sense. 


in application of the concept to testing in existing conventional Wind tunnels.
 

For answers to this question, the flow within the tunnel must be considered as
 

well as the flow exterior to the control surface.
 

This requires that the flow within the tunnel be modeled theoretically.
 

Obviously, the more accurate the representation of this internal flow, the
 

better the accuracy question can be answered. Thus, for the type of wind
 

tunnel models considered in the previous section, a singularity distribution
 

However, a first estimate of the inaccuracy
representation would be desirable. 


involved in failure to satisfy exactly the unconfined-flow functional relation­

ships can be found by the simplified method described below. Before pre­

senting this method, it should be remarked that the accuracy question must be
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addressed ultimately experimentally. We have found this to be the case in our
 

two-dimensional transonic self-correcting wind tunnel (ref. 31).
 

MPE-Based Accuracy-Assessment Model
 

Development of Method.- The most direct way of treating this question 

theoretically is to consider a generalization of conventional wall-correction 

theory, as presented in reference 40, for example, using the original form of 

the MPE technique. The linearized disturbance velocity potential 4 for the 

interior flow within the tunnel is assumed to satisfy the Prandtl-Glauert 

equation as written in the appropriate coordinate system. In contrast to 

conventional wall-correction theory, however, the theoretical wall character­

istics, e.g., those for a solid wall, open jet, perforated wall or slotted 

wall, are replaced by the disturbance velocity components, vzr and 2,, , 

that are measured along the control surface <V . Then the boundary condition 

at-6" , so far as the interior flow is concerned, is either 

a /8z]s" = V'Z , (42) 

or 
4/On] I=nm (43) 

We note that either equation (42) or.equation (43) can be specified as a
 

boundary condition on the interior flow, but not both. Prescribing both 

would overspecify the problem and so make it improperly posed. In the sub­

sequent discussion, we will consider equations (42) and (43) as alternative 

boundary conditions on the interior flow. It is assumed further, just as in 

conventional theory, that 4 can be written as 

4 0*- (44) 

where ' is the idealized potential of the model in unconfined flow and O is 

the interference potential introduced by the tunnel boundaries. Since the 
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is assumed to satisfy the Prandtl-Glauert equation,
idealized potential 


also must satisfy it.
 

The analysis will be carried through first for the 14,! boundary condition,
 

equation (42)', which becomes, using equation (44),
 

a~/8]v - a#vxL.(45) 

At this point, we continue to follow conventional 
correction theory by ex-


This is
 
in terms of the basic singularities of reference 

40. 

pressing 


equivalent in our PE terminology, to writing
 

Oi/Z]¢ J; C: (46) 

are determined by geometrical and measured charac­where the coefficients C 


For example, the terms for J = 3
 
teristics of the model being tested. 


are considered for symmetrical configurations 
and are,
 

generally (ref. 40) 


respectively; the source whose strength is proportional 
to the measured drag
 

(wake blockage), namely
 

(47)

a'U.CO15 

-T, is the reference area of the model;
 where CD is the drag coefficient and 


the b-directed infinitesimal-span.horseshoe vortex, 
whose strength is pro­

portional to the measured lift (lift interference), namely
 

C L /3 (48)
 

and the upstream-directed doublet, whose strength 
is proportional to the model 

volume V (solid blockage), namely 

(49)
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In our generalization of classical correction theory, we also expand Irz
 

in the MPE fit by equation (28). Then combining equations (28), (45) and (46),
 

we have as the boundary condition on the interference potential.
 

80*lz''= J1 (i-C. ) (50) 

We note at this point that the conventional open-jet boundary condition, namely
 

34'/6Z] = 0, is the same as equation (42) with vz,= 0, so that 0* for an 

open jet would satisfy equation (50) with X = 0 for all 

The correction procedure thus would proceed as follows. The experiment 

would be run and all appropriate quantities would be measured, both on the 

model (CL , CD ) and at the control surface (v7). From the measured data, 

the )X and C* would be determined. Then results of conventional open-jet 

correction theory would be used directly to determine interference velocities 

at the model, with C replaced by CJ-X' 

Alternatively, if v,, is measured at , instead of vXr , a similar 

analysis can be carried out. In this case, the , , boundary condition, 
equation (43), becomes 

-Oln Ot5rn0 (51) 

We again express P in terms of conventional correction theory, namely 

J 
n c' I (52) 

where the C are still given in equations (47) to (49) for J = 3. The MPE 

expansion fit in equation (31) then can be combined with equations (51) and 

(52) to give
 

*J 

8- (53) 
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= 
dc/,nd3 0, is the
The conventional solid-wall boundary 	condition, namely 


* for a solid wall would satisfy
same as equation (43) with r,. = 0, 	so that 

. Therefore, the results of conventionalequation (53) with N = 0 for all I 


solid-wall correction theory would be used directly to determine interference
 

replaced by C -IV
velocities at the model, with r 
II Y V 

In this procedure, therefore, corrections would be made on the basis of
 

conventional interference theory and the MPE fit to the measured velocities at
 

the control surface. We can see immediately that if the flow is actually un­

confined, X = Ni Cj and the corrections would be zero. The approximate

1 


are based on an idealized repre­equality here reflects the fact that the C 


and v., are measured as the actual dis­sentation of the model whereas ire. 


turbances introduced by the model.
 

For tunnels with circular and rectangular cross sections, the results for 

J = 3 are available in the literature. In particular, using the 7Y, boundary 

condition for circular cross sections, the interference velocity components 

say, evaluated at the origin, and their longitudinalA tz and A% 2r, , 

gradients A(dirz,/8Z) and Z(y, also evaluated at the origin, are 

A 0.41 (C9 -x 
z /9/ 3- L3 (54) 

A~(Ov-/ZX) = - (.C 4J 	 (55) 

(56)
(Ca- XA() 

(57)
488/0z -O.a0 (C9- X2)2


Similarly if the -v,. boundary condition is used to estimate the errors, the
 

results for a circular control-surface cross section are
 

AnAc1 -I) (c,-,v3 ) (58) 

3/3%/ 
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(C,-A/,) 
An(3tr~/ax) = /.53 (C N (59) 

Sa
 

a(c2 2) (60) 

A,(9zrq(- N,) (61) 

Extension of this accuracy-assessment procedure to include the 4 terms
 

could be carried out in a similar way to the analysis of reference 40 and the
 

references given therein. In such an analysis for circular cross sections,
 

the solutions are found in terms of Fourier integrals containing Bessel
 

functions. Similar results are not available for elliptical cross sections 

for any , but could be found in an analogous fashion. Unfortunately, the 

solutions would be in terms of Mathieu functions (ref. 44), which"would be un­

wieldy for practical computation. Results are available (ref. 40) for rec­

tangular cross sections for 5 = 3 and the present procedures could be adapted 

to that case. None of these further extensions and adaptations have been
 

carried out, however, Instead, the existing analysis has been applied to the
 

examples of the earlier sections to show the errors inherent in failure of the
 

original MPE to satisfy the unconfined-flow functional relationships exactly
 

for circular control-surface cross sections.
 

Application to Wings.- The MPE-based accuracy-assessment method has been 

applied to several wings, as represented by elliptically-loaded lifting lines. 

The unconfined-flow perturbation velocity distributions were computed at a 

control surface with a circular cross section ( b/a- = 1.0) as described 

earlier and the original form of the MPE was used. In the application of the 

MPE for these symmetrical flow fields, nine terms were retained in the MPE, 

but as described above, the accuracy estimates are based on the coefficients 

of the first three terms.
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In this lifting-line representation of the wings, C, and C3 are zero
 

N. have beenidentically and from the MPE fit to the data, X, , X 3 , N, and 

calculated to be zero. Therefore, the interference velocity components in­

duced at the origin (midspan of the lifting line) are, from equations (54) to
 

(61), the upwash A v, and its gradient in the %-direction A(9 /X). For 

elliptically-loaded, flat, untwisted wings with an ideal lift-curve slope of
 

2Tr, the lift coefficient is given by (ref. 45)
 

(62)
CL 


Alternatively, from equation (48),.we have
 

2 TZ,R CZ (63) 

'C, b-1S 

where the definition of the aspect ratio has been used. The expressions for
 

the -component of the interference velocity can be related to an angle of
 

attack error 4a, and an effective angle of attack error AM, due to a
 

parabolic-are camber effect, by
 

XAXa (Ca- XZ) (64) 

)bAr X;2b',(Cz-X (65) 

2U R A / 5 U 0 "R 

for the vr. boundary condition, and by 

.~ (66)Ana-, C2 

bar. b6/ (C - N (67) 

1AM 2U0fr An (ardi-v =x 3 (67)a 

for the ?t,, boundary condition. If Acc and Am. are positive, they imply 

that the effective angle of attack of the model in the tunnel is larger than 

C. is required
the geometric angle of attack. Thus a negative increment in 
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to interpret the measured data correctly. This increment is given by
 

equation (62) as
 

2 7r )RAx a )(0
A 4 =- - (68)

2+/3 

Combining equations (63) to (68), we obtain expressions for the errors based
 

on jr.. and v,. , respectively, as 

ACL[] -3 k -) (69) 

C-

The errors that are implied in the lift coefficient by failure of the
 

original MPE to satisfy the functional relationships exactly have been evaluated
 

by equations (69) and (70) for some incompressible flow cases. They are the
 

errors inherent in the original form of the MPE for a given b./. The wings
 

treated have aspect ratios R of 1, 5 and 10 and ratios of span-to-control­

surface-width b/a of 0.2, 0.4, 0.6 and 0.8. The results are presented in
 

Table III. As can be seen, the errors are less than 1% in all cases. Also,
 

there is a difference in sign as well as magnitude between the errors based
 

on -e. and those based on zr,,. This provides an additional indication of
 

the errors inherent in the original form of the MPE. Overall, the errors are
 

so small that the effect at the model is negligible and so the inherent failure
 

to satisfy the functional relationships exactly using the MPE is not important
 

for the geometrical range considered.
 

The advantages offered by the self-correcting wind tunnel can be seen
 

quantitatively as follows. For the most severe geometry in Table III, namely
 

AR = 1 and bh/eI = 0.8, the error in a solid-wall wind tunnel of circular 

cross section would be AC,/C = -0.299; i.e., an error of about thirty per­

cent. If the walls of the tunnel can be adjusted so that the t, , distribution 
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is within ±10% of'the unconfined-flow values, then (1- >) 	 will be approxi­

about three percent.
mately ±0.1 and so AC,/4 will be only about ±0.03; i.e., 


Application to Bodies.- The MPE-based accuracy-assessment method also has
 

been applied to several axisymmetric bodies at zero angle of attack as repre­

sented by Rankine solids of diameter-to-length ratio V of 0.2. The uncon­

fined-flow distributions were computed at a control surface with a circular
 

cross section (b/a = 1.0) as described earlier and the original form of the
 

MPE was used. As for the wings, nine terms in the MPE were 	used and the
 

accuracy estimates were based on the first three.
 

For the Rankine solids, C, and C. are zero identically and from the MPB
 

fit to the data, X, X2 , N, and N, have been calculated 	to be zero. More­

over, since the gradients of the axial velocity in the z-direction are inde­

pendent of C. , X3 and N3 , then the only nonzero interference velocity com­

ponents induced at the origin (center of the body) from equations (54) to (61)
 

are the axial components Air,. If Avx is positive, it implies that the
 

than the freestream velocity.
effective axial velocity at the model is larger 


Consequently, a negative increment in pressure coefficient 	C, is required to
 

interpret the measured data correctly. This increment is related to A Vx by
 

- - -I 	 (71) 

which becomes, neglecting higher-order terms,
 

Ag -2A(t /U) (72)
 

Cr
 

For Rankine solids, the volume is given by
 

(73)
V =zmb5T 


where T is a function of the diameter-to-length ratio V given implicitly by 

T = v (r+ z'- T)"/ . Combining equations (49), (54), (58), (72) and (73) 

gives 
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AXCO o.41 (b,/a) 3 'T t Q- 73 (74) 

CP / 3 

Ac 1.55(b/a) T2 

Cr
 

The errors that are implied in the pressure coefficients on a Rankine
 

solid by the inherent failure of the original MPE to satisfy the unconfined­

flow functional relationships exactly have been evaluated using equations (74)
 

and (75). The Rankine solids considered have u = 0.2 (and so T = 0.191928)
 

and lengths bb/a = 0.2, 0.5 and 1.0. The results for incompressible flow are
 

given in Table IV. The errors here are larger than they are for the wing cases
 

in the previous section, reaching nearly three percent for b./a = 1.0. There
 

is a difference in sign as well as magnitude here, too. Nevertheless, the
 

effect of the inherent failure of the MPE to satisfy the unconfined-flow
 

functional relationships exactly has a relatively small effect except for the
 

largest body size considered here. Clearly, a modified MPE for treating bodies
 

of this size could be developed, as was the modified MPE for treating wings.
 

Improved Methods
 

The simplified method based on the original MPE and classical correction
 

theory has proved useful in assessing the accuracy of the flow about the model
 

for control surfaces with circular cross sections. As seen from the examples,
 

however, the inaccuracies in the MPE fit sometimes give indicated errors of
 

opposite signs depending on whether the axial or normal component of the dis­

turbance velocity is used as the boundary condition. Thus, the method seems
 

best suited only for making rough estimates of the errors introduced by wall
 

interference but is not suitable for actual data correction purposes. Ex­

tension to other cross-section shapes could be made and it also might be
 

possible to extend the analysis to make use of the modified MPE where the point
 

singularity representing the lift is replaced by a horseshoe vortex of finite
 

span.
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The real requirement for assessing the accuracy in the flows about models,
 

however, is for a better representation of the interior flow within the test
 

section. This need could be served best, probably, by combining a lifting­

surface representation of wing-fuselage models with a source distribution method
 

of representing the control surface. The source distribution method developed
 

above for evaluating the functional relationships in the exterior flow could
 

be adapted for use in the interior flow. Such a model would provide more
 

accurate assessments of the errors at models when the functional relationships
 

are not satisfied exactly. Moreover, the assessments could be used further to
 

provide corrections to the data. In this way, the measured values of the dis­

turbance velocity components at the control surface would be used as the boundary
 

conditions on the interior flow instead of assumed wall characteristics. Use
 

of measured data is especially important for ventilated test sections because
 

it has been shown recently by several investigators, for example Vidal and
 

Rae (ref. 46), that the conventional wall boundary conditions for these test
 

sections (as used in reference 40, for example), are not representative of the
 

actual wall behavior. Therefore, use of the measurements with an accurate
 

interior flow representation could eliminate the present uncertainty in calcu­

lating wall-interference corrections, especially in ventilated test-sections.
 

CONCLUDING REMARKS
 

This study on the application of the adaptive-wall, or self-correcting,
 

wind tunnel concept to testing in fully subsonic, three-dimensional flows has
 

led to the following concluding remarks.
 

1. The control surface at which flow disturbances are measured generally
 

should have a height-to-width ratio less than one for greatest applicability
 

both in and out of ground effect. Elliptical and rectangular shapes are
 

suitable choices for the control-surface cross section, which need not have
 

the same shape as that of the tunnel. Formulation of the unconfined-flow
 

40 



functional relationships shows that the axial disturbance velocity component
 

and the component normal to the control surface are sufficient for the re­

dundant measurements. The remaining orthogonal component tangential to the
 

control surface cannot be used because it is not independent of-the axial
 

component.
 

2. The original multipole expansion (MPE) procedure based on point
 

singularities in three dimensions does not evaluate the functional relation­

ships accurately over as wide a range of model-to-control-surface-size as does
 

its two-dimensional counterpart. Modifications to the MPE by replacing
 

selected point singularities with singularity distributions can tailor the
 

MPE procedure to particular model configurations. For wings, the modified
 

MPE developed here is accurate over a significantly larger range of span-to­

control-surface-width. A different approach based on a distribution of source
 

panels representing the control surface offers promise of an accurate,
 

efficient, and less configuration-oriented way of evaluating the functional
 

relationships­

3. A procedure for estimating the interference at the model when the
 

functional relationships are not satisfied exactly has been developed for
 

circular control surfaces. It uses the disturbance velocity measurements, the
 

MPE evaluation and classical wall-correction theory. .Applications of this
 

procedure show that for a given magnitude of error in satisfaction of the
 

functional relationships, the magnitude of the interference at the model is
 

much less. Therefore, achievement of a given accuracy in the approach to
 

interference-free flow at the model imposes a less severe requirement on the
 

accuracy in the satisfaction of the functional relationships.
 

4. Development of a suitable representation of the propulsion-system
 

efflux outside the control surface is the next important step required to
 

apply the concept to V/STOL testing. Development of more accurate simulations
 

of the flow within the control surface is a necessary step for applications to
 

existing tunnels. These simulations would permit development of improved
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correction procedures, especially for ventilated tunnels for which the wall
 

boundary conditions are not well founded. Finally, development of experi­

mental procedures, particularly the meashrement techniques, should be carried
 

out for use in both existing and future tunnels.
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APPENDIX
 

THE CONCEPT OF A SELF-CORRECTING WIND TUNNEL
 

Unconfined Flow
 

An ideal to strive toward would be a V/STOL tunnel that would always
 

adjust itself to eliminate the constraining effects of its boundaries, for any
 

configuration tested at any Angle of attack and/or sideslip, for any deflection
 

angle of the propulsion-system efflux, and at any flight speed from hover
 

through transition to cruise. This ideal tunnel could be approached if it were
 

possible to sense departures from unconfined-flow conditions in the working
 

section and to modify the tunnel geometry accordingly, until the readings of
 

appropriate sensors tonfirm that an unconfined-flow pattern exists in the
 

working section, whereupon test data would be read and recorded. It seems
 

clear that this could be done, in principle, by changing the shape of the
 

tunnel boundary, for unconfined-flow conditions could always be achieved by
 

adjusting the walls to the configuration of the stream surfaces of unconfined
 

flow past the given model. Another possibility would be to change the effec­

tive shape of the tunnel boundary by appropriate distributions of tunnel-wall
 

porosity and plenum pressure behind the walls.- In either case, the possibility
 

of providing active control of the flow by wall adjustments leads us to the
 

concept of a self-correcting, or adaptive-wall, wind tunnel (ref. 29).
 

The essential basis of the scheme envisioned is that unconfined-flow con­

ditions in the working section can be determined by means of the readings of 

suitably placed sensors within the airstream. Let figure 15(a) represent a 

V/STOL configuration in an unbounded stream of given velocity U . Let the 

space surrounding this vehicle consist of an interior region, I, and an 

exterior region, II, where the boundary Z between I and II is an imaginary 

one, located near the proposed wind-tunnel boundary but having no effect on 
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the flow. The presence of the model, including the propulsion-system efflux, 

produces disturbances of the uniform stream; let the-values of the disturbance 

velocity components, pressure, ... at-J5 be Vzr , v- , r., _p ... If the flow 

field outside S , i.e., in II, is considered by itself, see figure 15(b), 

specification of these values of velocity, pressure and density, including 

those characterizing the mass- and momentum-flow rates of the efflux, consti­

tutes, along with the equations of motion, a well-posed boundary-value problem, 

so that the entire flow field in II may be determined. In fact, if either the 

streamwise or normal velocity component is specified all over-S , together 

with the efflux characterization, the conditions at infinity can be used to 

make the problem determinate, so that it may be solved for the unspecified 

quantities. That is to say that in unconfined flow the values ?vz , ? ... at 

J3 bear certain functional relationships to one another, which are due to the 

nature of the fluid stream in II and the very strong condition that it is 

unconfined. The presence of the propulsion-system efflux in II complicates 

the equations of motion in that region and a key task is to develop a suitable 

representation for this imbedded high-energy flow. Neverthless, with such a 

representation, the equations of motion in the remainder of II are those of 

inviscid flow, for which many powerful analytical techniques are available. 

Now, on the other hand, let us consider the flow field in I. Conditions
 

well upstream of the model are fixed, i.e., uniform. The flow in I is'de­

termined by the model configuration together with the condition that the un­

confined-flow functional relationships are satisfied at J . These relation­

ships constitute the statement of the unboundedness of II, so far as I is
 

concerned.
 

In a wind-tunnel experiment, the control surface 5' would be located on
 

or within the tunnel walls but need not have the shape of the tunnel. Quantities
 

measured atc5Y in a typical experimental situation would deviate from these
 

functional relationships, and such deviation is a measure of the departure of
 

the flow from unconfined-flow conditions. If active control of the flow by
 

This boundary 5 will be referred to as a control surface in the mathematical
 
sense of the term.
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the walls is available, the flow can be adjusted until the existence of free­

flight conditions within the tunnel is signalled by the fact that the proper
 

functional relationships exist among the quantities measured at -8'.
 

The principle involved here may be illustrated by a simple example:
 

suppose the flow field is one of linearized, two-dimensional, compressible,
 

irrotational flow about an arbitrary body without propulsion-system efflux
 

(figure 16). Under these conditions the Prandtl-Glauert equation is applicable.
 

If, in two dimensions, we locate the ends of the control surface S infinitely
 

far upstream and downstream, -8 becomes two infinite lines, here located at
 

I is the region j f < A and II is the entireregion 131>- . 

The upper and lower parts of II can be considered independently of one another.
 

If z(Z, ) and vz(X,.) are the disturbance velocity components at any
 

point in the flow field, then the flow will be unconfined in I if the following
 

equations, which are equivalent (see reference 30, for example), are satisfied
 

along the two branches of <5 ; namely
 

= ir (,±4) dzr (Z,+A 1f (76) 

%(,, ±-)= ± ff= t' (77) 

To achieve interference-free flow in I, zr and 5j are measured along
z 


the control surfaces, say by means of the static pressure and flow inclination. 

Then, active wall control of the flow is applied until equations (76) and (77) 

are found to be satisfied to a suitable degree of accuracy on the control 

surfaces at =±A . The flow conditions in I are then unconfined. 

The logic of the self-correcting wind tunnel scheme is contained in the
 

flow chart of figure 17. Basically, the scheme is an iterative one as shown.
 

First, a flow field is set up and the disturbance velocity components, Wz,,
 

and V., say, are measured along the control surfaces. The functional re­

lationships in II are then evaluated to determine those distributions along Sf
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of 5 [ Zr], say, that are consistent with the measured distributions of %cm 

if the flow is unconfined; that is, equations (77) are evaluated. If ,
 

does not agree with 71,, then the flow in I is still constrained by the walls
 

and active wall control must be applied again. The iteration continues until
 

z2r and i, agree to within some specified accuracy. Then the flow about
 

the model, i.e., in I, is unconfined and the desired aerodynamic data can be
 

measured.
 

As an equivalent alternative to the logic of figure 17, the roles of zr, 

and , can be reversed. That is, we could evaluate, using equations (76), 

those distributions along 3fof -v [v] that are consistent with the measured 

distributions of V,. for unconfined flow. If ?rz, does not agree with -&r, 

then the flow is not unconfined and readjustment of the wall conditions must 

be continued until tz, and trz. agree. 

The example of figure 16 is simplified from the V/STOL case, of course,
 

because there is no propulsion-system efflux passing through the lower control
 

surface. Although the two-dimensional functional relationships of equations
 

(76) and (77) would remain unchanged at the upper control surface if this
 

occurred, the functional relationships at the lower control surface would
 

change significantly to account for the efflux.
 

The concept of a self-correcting wind tunnel thus embodies the following
 

Unconfined flow about an arbitrary V/STOL configuration
considerations. 


certainly cannot be calculated with sufficient accuracy that wind-tunnel
 

testing can be eliminated. On the other hand, the boundaries of a wind tunnel
 

can cause so much interference with the flow about a model that the test
 

results may be in question, especially at very low free-stream speeds.
 

Although the flow field in the vicinity of the model cannot be predicted
 

analytically, the flow field external to the control surface is represented
 

by a well-posed boundary-value problem that is within the capability of
 

existing'analytical and computational techniques. 'Therefore, by combining
 

theory and experiment in a way that uses each to its best advantage, the self­

correcting wind tunnel will permit simulation of free-flight conditions in the
 

flow about the model.
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Ground tffect
 

The same basic principles would hold if it were desired to determine the
 

effect of the ground on a wind-tunnel model in a self-correcting wind tunnel.
 

In fully unconfined flow, the flow disturbance quantities must vanish at an
 

infinite distance in all directions from the model and its trailing vortex
 

wake. In the presence of the ground, however, the disturbances must vanish
 

far away from the model and its wake in all directions except below the model
 

where the flow velocity normal to the ground must be zero everywhere along the
 

ground plane. For ground simulation in a self-correcting wind tunnel, the
 

control surface must be entirely above the desired ground-plane location.
 

Then the external~flow functional relationships in ground effect can be derived
 

in a similar fashion to those for fully unconfined flow providing that the
 

normal-flow boundary condition is applied at the ground location.
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TABLE I (Continued)
 

MULTIPOLE VELOCITY COMPONENTS - ORIGINAL FORM OF MPE
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TABLE I (Concluded)
 

MULTIPOLE VELOCITY COMPONENTS - ORIGINAL FORM OF MPE
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TABLE II
 

COMPARISON OF RMS ERRORS IN FITTED AND CALCULATED VELOCITY COMPONENTS
 
FOR ELLIPTICALLY-LOADED WINGS BY ORIGINAL AND MODIFIED MPE,
 

mt = 0, b/o= 0.5 

-RMS Error in 

Fit to 4 TrR -v/t,/ C1 

Fit to 4n/R v,, /UJ C1 

47R 'r., [.]/u4c 

4Trh v. [-v,]/U 0C, 

4 rr ut, [u,] /U. CL 

4 TrR . [zv, ]/u. 

Original MPE 


b w /0-

0.5 

0.05 

0.15 

0.07 


0.21 


0.10 


0.1S 


0.5 

0.00 

0.01 

0.00 


0.01 


0.01 


0.01 


Modified MPE 

b,10, 

0.75 0.875 

0.02 0.08 

0.08 0.25 

0.03 0.08 

0.09 0.27 

0.09 0.26 

0.08 0.25 
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TABLE III
 

EFFECT OF ERRORS IN FUNCTIONAL RELATIONSHIP EVALUATIONS BY
 
ORIGINAL MPE ON LIFT COEFFICIENT OF ELLIPTICALLY-LOADED WINGS,
 

.M, =O, b/a.= 1.0 

R =N/C2
b, lo. X2 /C 2 A=i 5. 10 1 5 10 

0.2 0.9986 0.000 0.000 0.000 0.9986 0.000 0.000 0.000
 

0.4 0.9989 0.000 0.000 0.000 1.0006 0.000 0.000 0.000
 

0.6 1.0009 0.000 0.000 0.000 1.0080 0.001 0.000 0.000
 

0.8 1.0062 -0.002 -0.001 0.000 1.0285 0.009 0.003 0.002
 

TABLE IV
 

EFFECT OF ERRORS IN FUNCTIONAL RELATIONSHIP EVALUATIONS BY
 

ORIGINAL MPE ON PRESSURE COEFFICIENT OF RANKINE SOLIDS
 

M = 0, b/a = 0=.1.o0, z 

bb /a. X 3 /C3 A%(zrx/U&) Azc-P/Co /9,/C 3 A~Qx/ 0 AC/C 

0.2 0.965 0.000 0.000 0.977 0.000 0.000
 

0.S 0.816 0.000 0.000 0.862 0.000 -0.001
 

1.0 0.481 -0.004 0.008 0.547 0.013 -0.026
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Figure 1 CONTROL-SURFACE COORDINATE SYSTEMS FOR SELF-CORRECTING WIND TUNNEL 
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Figure 2 	 COMPARISON OF EXACT AXIAL VELOCITY COMPONENT FOR ELLIPTICALLY-

LOADED LIFTING LINE WITH RESULTS OF MPE COMPUTER PROGRAM, 
Moo = 0, b/a = 0.5, bw/a = 0.5 
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Figure 3 	 COMPARISON OF EXACT NORMAL VELOCITY COMPONENT FOR ELLIPTICALLY-
LOADED LIFTING LINE WITH RESULTS OF MPE COMPUTER PROGRAM, 
M o = 0, b/a = 0.5, bw/a = 0.5 
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Figure 4 	 COMPARISON OF EXACT AXIAL VELOCITY COMPONENT FOR RANKINE 
SOLID WITH RESULTS OF ORIGINIAL MPE COMPUTER PROGRAM, 
Mc,=O, b/a = 1.0, bb/a = 1.0,T= 0.2, e = 0 
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Figure 5 	 COMPARISON OF EXACT NORMAL VELOCITY COMPONENT FOR RANKINE 
SOLID WITH RESULTS OF ORIGINAL MPE COMPUTER PROGRAM, 
Mo = 0, b/a = T0, bb/a = 1.0, T = 0.2, E = 0 
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Figure 6 COMPARISON OF EXACT AXIAL VELOCITY COMPONENT FOR ELLIPTICALLY-
LOADED LIFTING LINE WITH RESULTS OF MODIFIED MPE COMPUTER 
PROGRAM, M. = 0, b/a = 0.5, bw/a = 0.875 
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Figure 7 COMPARISON OF EXACT NORMAL VELOCITY COMPONENT FOR ELLIPTICALLY-
LOADED LIFTING LINE WITH RESULTS OF MODIFIED MPE COMPUTER 
PROGRAM, M m = 0, b/a = 0.5, bw/a = 0.875 
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Figure 8 COMPARISON OF EXACT AXIAL VELOCITY COMPONENT FOR ELLIPTICALLY-
LOADED LIFTING LINE WITH RESULTS OF MODIFIED MPE COMPUTER PROGRAM, 

IFTING LINE OFFSET FROM MPE ORIGIN BY xo/a = 0.25, M.= 0, b/a = 0.5, 

N/a = 0.5 
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Figure 9 	 COMPARISON OF EXACT NORMAL VELOCITY COMPONENT FOR ELLIPTICALLY-
LOADED LIFTING LINE WITH RESULTS OF MODIFIED MPE COMPUTER PROGRAM, 

=LIFTING LINE OFFSET FROM MPE ORIGIN BY xo/a = 0.25, M.& 0, b/a = 0.5, 
bw/a = 0.5 
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Figure 10 	 COMPARISON OF EXACT AXIAL VELOCITY COMPONENT FOR ELLIPTICALLY-

LOADED LIFTING LINE WITH RESULTS OF MODIFIED MPE COMPUTER PROGRAM, 
=LIFTING LINE OFFSET FROM MPE ORIGIN BY zo/a 0.25, M= 0, b/a = 0.5, 

bw/a = 0.5 
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Figure 11 COMPARISON OF EXACT NORMAL VELOCITY COMPONENT FOR ELLIPTICALLY-
LOADED LIFTING LINE WITH RESULTS OF MODIFIED MPE COMPUTER PROGRAM, 
LIFTING LINE OFFSET FROM MPE ORIGIN BY zo/a = 0.25, M.o = 0, b/a = 0.5, 
bw/a = 0.5 
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Figure 12 	 COMPARISON OF EXACT AXIAL VELOCITY COMPONENT FOR ELLIPTICALLY-
LOADED LIFTING LINE IN GROUND EFFECT WITH RESULTS OF MODIFIED 
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(a) VEHICLE IN FLIGHT 

Figure 15 	 DEFINITION OF INTERIOR (I) AND EXTERIOR (I) REGIONS IN UNCONFINED 
FLOW ABOUT A VTOL CONFIGURATION 
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(b) FLOW IN REGIONIT 

Figure 15 (Continued) DEFINITION OF INTERIOR (I) AND EXTERIOR (II) REGIONS IN 

UNCONFINED FLOW ABOUT A VTOL CONFIGURATION 
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Figure 16 UNCONFINED TWO-DIMENSIONAL FLOW ABOUT AN AIRFOIL 
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Figure 17 SELF-CORRECTING WIND TUNNEL SCHEME 


