General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

MCDONNELL DOUGLAS TECHNICAL SERVICES CO. HOUSTON ASTRONAUTICS dIVISION

SPACE SHUTTLE ENGINEERING AND OPeRATIONS SUPPORT

DESIGN NOTE NO. 1.4-4-17
ABORT-ONCE-AROUMR ENTRY CORRIDOR ANALYSIS PROGRAM DOCUMENT

MISSION PLANNING, MISSION ANALYSIS AND SOFTWARE FORMULATION

23 DECEMBER 1975

This Design iiute is Submitted to NASA Under Task Order No. D0406, Task Assignment 1.4-4-A in Fulfillment of Contract NAS 9-13970.

PREPARED BY:

APPROVED BY:

Engineer
488-5660, Ext. 243
Task Manager
488-5660, Ext. 243

FPB Work Package F'anager 488-5660, Ext. 10

APPROVED BY:
\& W. E. Hayes
Project Manager
Mission Planning, Mission Analysis and Software Formulation 488-5660, Ext. 266

1.0 SUMPMARY

This design note documents the Abort-Once-Around Entry Target Corridor Analysis Program (ABECAP). This program determines the allowable range of flight path angles at entry interface for acceptable entry trajectories from a Shuttle abort-once-around (AOA) situation. The solutions thus determined may be shown as corridor plots of entry interface flight path angle versus range from entry interface (EI) to the target.

2.0 INTRODUCTION

The Shuttle abort-once-around concept is based on a maneuver sequence after the abort decision which provides conditions at entry interface (400,000 feet altitude) as near as possible to those for nominal entry. For abort situations which occur early in the flight, use of maximum delta-V available for the $A O A$ results in entry ranges of up to 6,000 miles from entry interface ($E I$) to the landing site. l'ese extended ranges produce conditions during the entry phase which approach the vehicle structural and trajectory design limits. Finong the vehicle constraints which must be considered are thermal protection system (TPS) surface and backface temperatures. Trajectory considerations include maximum bank angle required to insure convergence to the reference dragvelocity profile, and minimum bank angle during the equilibrium glide phase to assure adequate crossrange capability. Eased on these limiting parameters, an entry dispersion corridor can be defined depicting the allowable range-velocity-flight path angle ($R-V-\gamma$) conditions at entry interface. The manual determination of this type of corridor is described in Reference 1. A digital computer program to automate this corridor definition is described in this report.

3.0 CISCUSSION

The general method used in finding the shallowest allowable flight path angle is as follows: Position coordinates corresponding to entry ranges of interest are input. For a given entry interface position, a first guess flight path angle is used and the trajectory is integrated to TAEM interface. From this trajectory the maximum bank angle and surface conirol point temperatures are obtained and saved. The flight path anyle is then incremented by a constant value and the trajectory again integrated from the same entry interface position. This second set of bank angle and temperature maximums is compared to the first to predict a subsequent flight path angle. A linear Reguli-Falsi scheme is used in the predictor using the previous two trajectory results. The predicted delta-gammas for each constraint are compared, and the constraint which is the most restrictive, i.e., that predicts the most negative flight path angle to produce the individual constraint limit, is used for the subsequent iteration. For example, if the gamma predicted for the limiting bank angle is $-1,3^{\circ}$, and that predicted for the limiting temperature is -1.5°, then -1.5° is used as the next guess. This prediction method is continued until either the maximum bank angle or one surface temperature point is at the limit set and all others are less than their respective limits. This defines the shallowest flight path angle allowable for that range. This also provides an initial guess for the steepest allowable flight path angle at the same range.

In determining the steepest allowable gamma, the above method is repeated using limiting values for minimum equilibrium glide bank angle, and backface overtemperature for any two vehicle TPS panels. After both shallow and steep flight path angle solutions are found, the range is incremented by reading in the next position coordinate set.

The program is set up to determine either the shallow or steep gamma solution or both. Also, the corridor as determined by oniy one pair of constraints, such as minimum and maximum bank angles, may be found by setting the remaining constraint limits to specific values outside the normal range of consideration. The final outputs for each position include shallowest and steepest flight path angles, corresponding initial entry velocity, and resulting trajectory values for each parameter of interest.

The entry interface velocity corresponding to the given flight path angle under consideration is used by ABECAP. This data is input in tabular form giving EI velocity as a function of EI range and flight path angle. To date, this table was derived from data obtained by using the MLTBRN computer program discussed in Reference 2.

Several of the subroutines in this program are standard Space Vehicle Dynamic Simulation (SVDS) subroutines. Also, several are modified from the Entry Targeting Analysis Program (ETAP), which is described in Reference 3. Several subroutines, including SHALST and STEEP,
were written for this program. These are the two routines which are used to predict the shallowest and steepest allowable flight path angles respectively. The program subroutines are described in detail in Section 6.

4.0 INPUT DESCRIPT ION

The input data consists of data from the SVDS base data tape (described in Reference 4) for an entry run. Table 4.0-1 identifies the required additional input variables, their symbols and units. These are also input using the standard SVDS input format.

Since the SVDS guidance routine (CONGID) is used to compute roll commands in the program, the associated eraseable memory load must be input for the trajectory under consideration. This is described in Reference 5.

TABLE 4.0-1

PROGRAM INPUTS

Variable	Definition	Units
HD	Initial altitude	feet
LATD	EI geodetic latitude	degrees
LONG	EI longitude	degrees
VI	EI inertial velocity	$\mathrm{ft} / \mathrm{sec}$
GAMI	EI inertial flight path angle	degrees
AZI	EI inertial azimuth	degrees
TLATD	Target geodetic latitude	degrees
TLONG	Target longitude	degrees
ALPHA	Angle of attack at EI	degrees
IETG	Flag $=1$ for SVDS to call ETGX	non-dim.
BNKPAX	Desired maximum bank angle for trajectory	degrees
BNKLIN	Desired minimum bank angle for equilibrium glide	degrees
TCP1	Nose surface temperature limit	${ }^{\circ} \mathrm{F}$
TCP2	Body flap surface temperature limit	${ }^{\circ} \mathrm{F}$
TCP3	Wing leading edge surface temperature limit	${ }^{\circ} \mathrm{F}$
TCP4	Elevon surface temperature limit	${ }^{\circ} \mathrm{F}$
BFOTA	Backface overtemperature limit (panel IPANA)	${ }^{\circ} \mathrm{F}$
BFOTB	Backface overtemperature limit (panel IPANB)	${ }^{\circ} \mathrm{F}$
IPANA	Panel number to be checked for backface overtemperature (first panel)	non-dim.
IPANB	Panel number to be checked for backface overtemperature (second panel)	non-dim.
MAXCNT	Number of range points input	non-dim

5.0 OUTPUT DESCRIPTION

Output at the completion of each trajectory simulation is given in Table 5.0-1.

TABLE 5.0-I

PROGRAM JUTPUT

Maximum bank angle during trajectory degrees
Minimum bank angle during trajec" ory degrees
Temperatures for Control Points 1-4 ${ }^{\circ} \mathrm{F}$
Total heat loadBTU/ft ${ }^{2}$
Maximum heat rateBTU $/ \mathrm{ft}^{2} / \mathrm{sec}$
Backface overtemperatures (all panels) ${ }^{\circ} \mathrm{F}$
. (After each flight path angle solution)
Range from EI to target n.m.
Steep or shallow solution
Solution inertial flight path angle degrees
Solution inertial velocity $\mathrm{ft} / \mathrm{sec}$

6.0 SUBROUTINE DOCUMENTATION

The following sections describe program subroutines. Several subroutines are currently in SVDS and are not documented in this note. These were modified only as required to match common variables, and include the following subroutines:

ATMOS
ARI40C
CONGID
GIDIIAV
GIDOUT
GIDRTE
HTRATE
TPS

In addition, several subroutines are unchanged in form and serve the same function as in the ETAP program. These are documented in Reference 3, and are not duplicated in this note. These include the following:

ALTADJ
CONST
DELV
GEOD
NAVETG
SPHECI
TRAJ
TRANGE
TRIAT
UNITX
VISC

Those subroutines which are unique to ABECAP are described below.

6.1 Subroutine TERMIN

6.1.1 Purpose

Subroutine TERMIN is the SVDS routine which calls ETGX.
6.1.2 Input

IETG flag determining if ETGX is to be called
= 0 does not call ETGX
$=1$ calls ETGX
6.1.3 Output

None applicable to ABECAP
6.1.4 Calling Sequence

Call TERMIN
6.1.5 Constants Required

None
6.1.6 Subroutine Required

ETGX, other routines not applicable to ABECAP

6.1.7 Flowchart

(Only that portion of TERMIN applicable to ABECAP is documented in this design note.)

Subroutine TERMIN flowchart

6.2 ETGX

6.2.1 Purpose

ETGX is the routine used to initialize required parameters and adjust initial conditions for each range solution.
6.2.2 Input

STATE (I, 1)	EI geodetic latitude for Ith range input	(deg)
STATE (I,2)	EI longitude	(deg)
STATE (i,3)	EI inertial azimuth	(deg)
STATE (I,4)	EI inertial velocity	(ft/sec)
STATE (I,5)	EI inertial flight path angle	(deg)
I	Range data set number	(non-dim)
MAXCNT	Number of ranges input	

6.2.3 Output

XR Initial state vector
RK2ROL Roll direction indicator (non-dim)
Gr. I Initial EI flight path angle (deg)
ICONFL Flag to indicate whether shallow (non-dim) or steep flight path angle to be determined
6.2.4 Calling Sequence

Call ETGX

6.2.5 Constants Required

None

6.2.6 Subroutines Required

GEOD
SPHECI
CROSS
UNITX
ALTADJ
ETGA

6.2.7 Flowchart

A functional flowchart for subroutine ETGX is shown below. This is essentially the same routine as is in the ETAP program. Detailed discussion of this subroutine is presented in Reference 3.

6.2.7 Flowchart: ETGX

Subroutine ETGX flowchart

6.3 ETGA

6.3.1 Purpose

Subroutine ETGA is the flight path angle iteration driver. It.
is modelled after the ETG subroutine in the ETAP (Reference 3).
6.3.2 Input

ROLANG	Initial bank angle	(rad)
T	Time from EI	(sec)
XR	Initial state vector	(ft)
RKZRÔL	Roll direction indicator (± 1)	(non-dim)
PHIDT	Target latitude	(rad)
LAMBT	Target longitude	(rad)
WT	Vehicle weight	(pounds)
ALP	Initial angle of attack	(deg)
GAMEI	Initial flight path angle	(deg)
ICONFL	Flag to indicate whether shallow (=1) or steep $(=2)$	
gamma being determined	(non-dim)	
RT	Range to target	(n.mi.)

6.3.3 Output

GAMEI Flight path angle shallow (deg) or steep solution

6.3.4 Cailing Sequence

CALL ETGA (XR, RK2R0L, PHIDT, LAMBT, WT, ALP, GAMEI)
6.3.5 Constants Required
Obtained from subroutine CUrST
6.3.6 Subroutines Required
CONST
FINDV
TRMAT
RTS:HSQ
CONGID
SHALST
STEEP
TRANGE
TRAJ
VISC
TPSDR
DELV
NAVETG
TRGGEN

6.3.7 Flowchart

CALL FIVDV (RT, GRIMEI,V.I)
A)

Subroutine ETGA flowchart

Subroutine ETGA flowchart

Subroutine ETGA flowchart

$$
\because
$$

DN Ho.: 1.4-4-17
Page: ${ }^{23}$

Subroutine ETGA flowchart concluded.

6.4 FINDV

6.4.1 Purpose

Subroutine FINDV is used to determine the velocity at entry interface corresponding to the EI range and flight path angle being used for a given trajectory.

6.4.2 Input

$V(I, J) I=1, N G J=1, N R$

$$
I=1,3,5 \ldots \text {. . EI inertial velocity } \quad \begin{aligned}
& \text { corresponding to range and filight } \\
& \\
& \text { path angle }
\end{aligned}(\mathrm{ft} / \mathrm{sec})
$$

$I=2,4,6 \ldots$. $E I$ inertial flight path angle (degrees)
INITRG Initial range in table input. (n.mi.)
NG Number of gamma-velecity points input times 2

NR Number of range poinis input in range, gamma \rightarrow velocity table

Current EI range to target

Range increment in table

6.4.3 Output

VI Entry interface inertial velocity (ft/sec)

6.4.4 Calling Sequence

Call FINDV (RT, GAMEI, VI)

6.4.5 Constants Required

None

6.4.6 Subroutines Required

TABLE

6.4.7 Flowchart

Subroutine FINDV flouchart
6.5 TABLE
6.5.1 Purpose
The function TABLE is a table lookup routine designed for use in
FINDV to determine entry interface velocity. TABLE uses a linear
interpolation scheme.
6.5.2 Input
GAMiCI Entry interface flight path angle (deg)
$N \quad$ Number of gamma-velocities in (non-dim)input table for each range.
6.5.3 Output VI
Entry interface velocity (ft/sec)
6.5.4 Calling Sequence
CALL TABLE (V, GAMEI, N)
6.5.5 Constants Required
None
6.5.6 Subroutines RequiredNone
6.5.7 Flowchart
This is a simple table lookup function with linear interpolationand is not flowcharted in this report.
6.6 TPSDR

6.6.1 Purpose

Subroutine TPSDR is the driver routine to determine the vehicle surface temperatures, heat rate, and backface overtemperatures.
6.6.2 Input
QC Total heat load (BTU/ft ${ }^{2}$)
TARY(26-29) Surface temperatures, control points 1-4
6.6.3 Output
$\operatorname{TMAX}(1) \quad$ Maximum $\quad 1$ (nose) $\begin{aligned} & \text { temperature, control point }\end{aligned}$
TMAX(2) Maximum temperature, control point 2 (body flap)
$\operatorname{TMAX}(3) \quad$ Maximum temperature, control point
3 (wing leading edge)
TMAX(4) Maximum temperature, control point 4 (elevon)
QCMAX Maximum heat load
QDTMAX Maximum heat rate
TMABF Individual panel backface over- teniperatures

6.6.4 Calling Sequence

CALL TPSJR

6.6.5 Constants Required

Reference heat rates and :ime in TPS (in SVDS).

6.6.6 Subroutine Required

TPS
HTRATE

TI

Subroutine TPSDR flowchart

6.7 SHALST

6.7.1 Purpose

Subroutine SHALST is used to predict the shallowest gamma allowable at a given range, based on maximum bank angle and surface temperature constraints.
6.7.2 Input

SGAMI	Entry interface fiight path angle	(deg)
VE	Relative velocity	(ft/sec)
K	Flag set $(=1)$ to show that a workable flight path angle has been found for a given range. ($=0$ initial value set in ETG)	(non-dim)

T Time from entry interface (sec)
BNKLIM Maximum bank angle desired during entry pullup

TLIM(I), Naximum surface temperatures desired
$I=1,4 \quad$ on control points 1-4
LF Current vehicle load factor
EPS Flight path angle solution tolerance (deg)
NEWGAM Flag set ($=1$) to indicate that new
flight path angle predicted
BANK Current bank angle (deg)
TM(I), Maximum surface temperature in current (${ }^{\circ} \mathrm{F}$)
$I=1,4 \quad$ trajectory CP (1-4)
6.7.3 Output
SGAMI Predicted flight path angle for subsequenttrajectory iteration.NEWGAM Flag set $=1$ to show that new flight pathangle has been determined and resettrajectory time to zero.$=0$ otherwise.
ICONV Flag set $=1$ if shallow ganma solution hasbeen determined, otherwise $=0$.
6.7.4 Calling Sequence
CALL SHALST (SGAMI, VE, K, NEWGAM, ICONV)
6.7.5 Constants Required
None
6.7.6 Subroutines Required
PROUT - print format subroutine

Subrout ine SHALST flowchart

Subroutine SHALST flowchart

Subroutine SHALST flowchart concluded.

6.8 STEEP

6.8.1 Purpose

Subroutine STEEP is used to predict the steepest gamma allowable at a given range based on constraints of maximum TPS panel backface overtemerature, and minimum bank angle during the equilibrium glide phase.
6.8.2 Input

SGAMI	Entry interface flight path angle	(deg)
VE	Relative velocity	(ft/sec)
K	Flag set $=1$ if a usable flight path angle has been found for subsequent iteration, = 0 initial value set in ETG	(non-dim)

T Time from entry interface (sec)
EPS Flight path angle solution convergence tolerance

LF L ad factor (g's)
BANK Current bank angle (deg)
BNKLIN Minimum bank angle desired during (deg) equilibrium glide

IPANA First panel number for which backface (non-dim) overtemperature is limited

IPANB Second panel number for which backface (non-dim) overtemperature is limited

TMABF (I) Backface overtemperature for each
TPS panel
BFLIMA Backface overtemperature limit for panel (IPANA)

BFLIMB Backface overtemperature limit for panel (IPANB)
6.8.3 Output
SGAMI Predicted flight path angle for (deg) subsequent trajectory iteration(non-dim)NEWGAM Flag set $=1$ to show that new flightpath angle has been determined, andreset trajectory time to zero.= 0 if new FPA not determined
ICONV Flag set $=1$ if steep gamma solution (non-dim) is determined; else $=0$
6.8.4 Calling Sequence
CALL STEEP (SGAMI, VE, K, NEWGAM, ICONV)
6.8.5 Constants Required
None
6.8.6 Subroutines Required
PROUT - print format subroutine

6.8.7 Flowchart

Subroutine STEEP flowchart

DGAME $=\frac{\text { EUKK-N-EUSMIII }}{\text { EHKTG }}$
BFAMRG $=(E F O T A-O=S T A P)$
GAM - GAMP
BFENRS: $\frac{(B E J E-\theta-E A)}{G \operatorname{GAD}-\operatorname{GimP}}$
$D G E G=\frac{E: \operatorname{BFA}-P E S T A}{\text { BAKG }}$
DGEFE = EGITA-FEOTE
: \% wes
DELGRAA $=$ DGAME

Subroutine STEEP flowchart concluded.

7.0 REFERENCES

1. Kyle, H. C. Jr.: "Abort-Once-Around Entry Dispersion Corridior Analysis." McDonnell Douglas Terhnin-1 Services Company, Inc. Space Shuttle Engineering and Opera;ions Support Design Note No. 1.4-4-12, 31 July 1975.
2. Hoch, H. R. and Hull, D. J.: "Documentation of MLTBRN (Multiple Burn) Program for AOA Targeting." McDonnell Douglas Technical Services Company, Inc. Space Shuttle Engineering and Operations Support Design Note No. 1.4-4-2, 30 August 1974.
3. Crull, T. J., Kyle, H. C. and Hiott, J. M.: "Entry Targeting Analysis Program Description." McDonnell Douglas Technical Services Company, Inc. Space Snuttle Engineering and Operations Support Design Note No. 1.4-4-4, 7 February 1975.
4. Software Development Branch, "Space Vehicle Dynamics Simulation (SVDS) Program Description Revision 2." Johnson Space Center Internal Note No. 73-FM-85, 22 December 1975.
5. Harpold, Jon C.: "Analytic Drag Control Entry Guidance System" Revision 1, Johnson Space Center Internal Note Mo. 74-FM-25, 21 January 1975.
