NASA TECHNICAL MEMORANDUM

 NASA TM X-73,074NASA AMES THREE-DIMENSIONAL POTENTIAL FLOW ANALYSIS SYSTEM (POTFAN)
EQUATION SOLVER CODE (SOLN) VERSION 1
J. E. Davis

Computer Sciences Corporation
Mountain View, California 94043
W. S. Bonnett

Acurex Corporation
Mountain View, California 94042
and
R. T. Medan

Ames Research Center Moffett Field, California 94035

TABLE OF•CONTENTS

ABSTRACT \mathbf{V}
1 INTRODUCTION 1-1
2 . PROBLEM TASK DESCRIPTION 2-1
3 METHOD OF SOLUTTON 3-1
3.1 EQUATION SOLVING OPTIONS
3.1.1 Decomposition Method
3.1.2 Householder's Method
3.1.3 Partitioning Schemes
3.1.4 Block Successive Over-Relaxation
3.2 SYSTEM MODULATIRY
3.3 VERSATILITY AND EASE OF USE AND MODIFICATION
3.4 MAXIMIZING PROGRAM SIZE
3.4.1 Auxilliary Storage
3.4.2 Dynamic Memory Allocation4PROGRAM DESCRIPTION4-1
4. 1 CALIING STRUCTURE
4.2 FLOW CHABT (S)
4.3 COMAON BLOCKS
4.4 LOGICAL UNITS
4.5 MEMORY REQUIREMENTS
4.6 RESTRICTIONS AND LIMITATIONS
OPERATING INSTRUCTIONS 5-1
5.1 GENERAL CONSIDERATIONS
5.2 INPUT DESCRTPTION
5.2.1 (4-Blanks) Command
5.2.2 BCRE Command
5.2.3 CNTL Command
5.2.4 comb command
5.2.5 Data Command
5.2.6 INVE Command
5.2.7 INVE Command
5.2.8 MULT Command
5.2.9 PART Command
5.2.10 SOLV Command
5.2.11 STOP Command
5.2.12 VNRE Command
5.3 SYSTEM CONTROL CARDS
5.3.1 INFONET UNIVAC 1108 System
6 PROGRAM INPUT BINARY FILES 6-1
6. 1 INFLUBNCE Matrix files
6.2 BOUNDARY CONDITION FILES
7 PROGRAM OUTPUT 7-1
7.1 SOLUTION FILES
7.2 IHYERSE MATRIX FILES
7.3 LU DECOMPOSITION MATRIX FILES
7.4 SCRATCH FILES

TEST	CASES	8-1
8.1	TEST CASE/EXAMPLE 1 - Three Components; Two	
	Right Hand Sides; Square Matrix Fits in Core;	
	If Decomposition Technigue	
8.2	TEST CASE/EXAMPLE 2 - Three components; Two	
	Right Hand Sides; Rectangular Matrix Does Not	
	Fit In Core; Householder Technique	
8.3	test Casefexample 3-three Components; Two	
	Right Hand Sides; Square Matrix Fits in Core;	
	Two Step Lu Decomposition technigue	
8.4	TEST CASE/EXAMPLE 4 - Three Components; Two	
	Right Hand Sides; Square Matrix Fits In Core;	
	Block Successive Over-Relaxation Iteration	
	Technique \quad	
8.5	TEST CASE/EXAMPIE 5-Three components; Two	
	Right Hand Sides; Square Matrix Fits in Core;	
	Two Step Block Successive Over-Belaxation	
	Iteration Technique	
8.6	TEST CASE/EXAMPLE 6 - Three Components; Two	
	Right Hand Sides; Rectangular Matrix Does Not	
	Fit In Core; Block Successive Over-Relaxation	
	Iteration Technique aith one Diagonal Submatr	
	Read In	
8.7	TEST CASE/EXAMPLE 7 - Three Components; Two	
	Right Hand Sides; Rectangular Matrix Does Not	
	Fit In Core; Tuo Step Block Successive Over-	
	Relaxation Iteration Technique.	
REFERENCES		9-1
APPENDIX A	NDIX A--Standardized file handiIng procedures	A-1
	FOR POTFAN PROGRAMS	
APPENDIX B--Standardized format of potpan files		B-1
APPENDIX C--ARRAY NOTATION		c-1
TABLES		ES-1
FIGURES FI		ES-1

NASA AMES THREE-DIMENSIONAL POTENTIAL FLOW ANALYSIS SYSTEM (POTFAN)

EQUATION SOLVER CODE (SOLN) VERSION I

J. E. Davis
Computer Sciences Corporation
W. S. Bonnett
Acurex Corporation
and
R. T. Medan
Ames Research Center

SUMMARY

This document describes a computer program known as SOLN which has been developed as an independent segment of the NASA-Ames three-dimensional potential flow analysis system (POTFAN), and which is used to solve small to large systems of linear algebraic equations by any of several methods including LU decomposition, Householder's method, a partitioning scheme, and a block successive relaxation method. Due to the independent modular nature of the program, it may be used by itself and not necessarily in conjunction with other segments of the POTFAN system.

1_INTRODUCTION

This document describes version 1 of an equation solver computer code (SOLN) which is a segment of the NaSa-ames three-dimensional fotential flow analysis system (POTFAN). This segment of the systea sclves the set of linear algebraic equations that are generated by the collocation method of satisfying the koundary condition cf a specified flow at various locations on components in the flow field under consideration.

The sets of constant coefficients and right hand sides associated with these simultaneous equations are calcuiated ky other programs in the porfan system and transuitted to the SOLN prograil as files through auxiliiary storage devices. The SOLN code reads in these files, determines the solutions, and then writes them cut as files to be read in ky the next program in the potran system. See fig. 1-1.

The SOLN code provides a variety of solution techniques including LU decompositicn, Fousehclder's method, a partitioning scheme, and block successive over-relaxation. These various solution techniques are provided so that each .different type of system of eyuations encountered in potential flow aerodynamics may be handled in the most effucient manner availaole. The iU decomposition method is the Eastest technique available for solving a small, closely coupled, square system of equations that can be placed in core all at once; the Householder procedure is the best method for solving an overdetermined system of equations; the parthtioning scheme is best for large closely coupled systems of equations that cannot be placed. in core ali at cne time; and the block successive over-relaxation procedure is the potentially fastest metnod available for large, diagonally dominant systems of equations such as those generated in solving the froblem cí an aircraft component in a wind tunel.

The number of equaticns that can be simultaneously solved by the code is mainly limated only by the amount of tape, disc, or drum storage available to the user.

The Soln code is constructed in a modular fashion so that any modifications or inprovenents to particular fortions of the code do not affect the rest of the code.

2 PROBLEMTTASK DESCBIPTION

This computer program was developed under Task 3 of NASA-Ames Contract NAS2-7571, and Task 26 of NASA-Ames Contract NAS2-6912. The purpose of these tasks was to develop a computer code which will. efficiertly solve the systems of linear algebraic equations arising from attempting to satisfy the boundary conditions of a specinied flow on the various components in the flow fleld by the collocation method. These systems of equationsmay or may not exceed. the size of available computer storage, may be partitioned in an arbitrary manner with each partition representing the influence ot one component on itself or another component, and may be overdetermined in some cases. In addition, a block iteration procedure was to be provided where each block represents the aerodynamic influence of a single aircraft component on itself or on another aircraf.t component. This iteration procedure must allow an add-on solution capability without unnecessarily repeating any calculations (for example, obtaining the solution for a wing alone and then adding in wind tunnel walls to determine the wall correction) and must allow an assemblage of components (for example, wing + body t tail) to be solved iteratively. Therefore, a variety of solution procedures were to be developed to best handle each type of situation likely to be encountered.

Also the program was required to be modular in nature so that it could be used independently and so that any modifications or improvements to the code would not affect the other segments of the fOTFAN system.

Furthermore, the code was to be constructed so that it is versatile, yet easy to use and easi to modify.

Finally the frogram was required to be able to handle large problens consisting of many separate components andor large influence matrices.

? METHOD_OF_SOLUTICN

This section describes how the problems posed in the :revious section were solveत.
1.1 EQUATION SOLVING CPTIONS

The soln program was designed to compute the solutions f linear algebraic systems. It can compute these solutions : y one of several different procedures depending on the articular circumstances of the problems. In general, the ystem of equations to be solved may be overspecified nore quations than unknowns) or properly specified. these ypes of systems produce a rectangular or square matrix, espectively. The SOLN code uses a different solution rocedure for each. In addition, differert procedures are sed depending on the size of the system of equations to be olved. one type of procedure is used fcr systems of quations that are small enough to contain all necessary ata within allowable core storage at one time, while otner rocedures are used when the system of equations is too arge to reside in core all at once. The latter proceaures ake extensive use of temporary storage devices such as ape, disc, or drum files. a special klock iteration rocedure is also available which best handes problems here certain blocks of a matrix are only yeakly coupled ith other blocks. This iteraticn procedure also operates ifferently depending on whether the system to be solved is ectangular or square in nature, and whether each block fits n core at one time or not.

A detailed discussion of each of the solution rocedures available in the SOLN code is contained in the ollowing subsections. In the following discussion, it will e assumed that capital letters stand for matrices of at east two columns and rows, and that lower case letters tand for column vectors. In that case, the problem to be slved can be stated as: given A and B, find X such that

$$
\begin{equation*}
A X=B \text { or } A X=b . \tag{3.1-1}
\end{equation*}
$$

The only assumptions that are made about are that either a cr the transpose of A times A is nonsingular. It is also assumed that A, X and B have real elements. No structure assumptions have been made about A : it is not banded in any systematic manner, it is not s'ymmetric or positive definite except by chance, and it is not even necessarily square, although squareness does cut down on execution time.

There are four main procedures used in this code, the IU Decomposition method (cr the Crout-Doolittle method), the Householder method, a matrix partitioning scheme for large matrices that was developed especially for this program, and a block Gauss-siedel iteration procedure. The references provided in the reference secticn are very helpful in the matrix theory involved. Forsythe (1967) has a Doolittle method written in Algol 60 and Fortran, and provides a glimpse of error considerations. Nering (1963) gives a complete development of matrix theory in a theoretical manner, while Ralston(1963) provided the basis for the presently included decomposition subroutine. Westlake(1968) is perhaps the most valuable for a user interested in selecting and implementing his own frocedure.

3.1.1 The Decomposition Method

This is one of the best all around methods for a general, nonbanded, nonsymmetric real matrix. It is a method of solving a set of equations withcut calculating Gither the inverse of the matrix or any sequence of large matrices. The proceduce is approximately as fast and just as accurate as any equation solving technique. so far found. This procedure also gives a clear-cut singularity indicator betore the entire procedure has been executed. The double precision version of this rcutine is very readily arrived at, if desired, as well.

The method is based on decomposing a given matrix a into the matrix product of a unit lower triangular matrix L and an upper triangular matrix U, so that

$$
\begin{equation*}
\mathrm{A}=\mathrm{LU} \tag{3.1.1-1}
\end{equation*}
$$

Cnce this has been accomplished, the matrix froblem becomes a set of two easily solved equations

$$
\begin{equation*}
L y=b \tag{3.1.1-2}
\end{equation*}
$$

and

$$
\begin{equation*}
U x=y \tag{3.1.1-3}
\end{equation*}
$$

The decomposition is almost as easily done as said. To produce the first row of U , the first rew of A is taken, since the components of the first row of (which is, $l_{\|}=$ 1. $1_{12}=0,1_{13}=0, \ldots 1_{1 n}=0$) times the columns of U eroduce the first row of U identically. And, by the equality statement, the first row of u equals the first row cf A. Now, with the first row of U availatle, the first column of L can be calculated. This proceeds to the nth row of U, diternately calculating rows of 0 and columas of I with data provided by the previous rows and columns. The Equations at the rth step are

$$
\begin{equation*}
u_{r i}=a_{r i}-\sum_{k=1}^{r-1} l_{r k} u_{k i} \tag{3.1.1-4}
\end{equation*}
$$

vhere

$$
1_{m r}=\left(a_{m r r}-\sum_{k=1}^{r-1} I_{m k} u_{k r}\right) / u_{r r} \quad(3.1 .1-5)
$$

This decomposition procedure breaks down at any point it which the diagoral element urr vanishes. To prevent :his, each time the procedure starts a new row of u, it iearches the column under consideration for the largest lement. Having identified the largest element on the liayonal, the row about to $k \in$ reduced and the row contalining he largest element are interchanged. Thus, if a column is ver searched, and nothing but zeros are found, the rocedure stops, since a singular matrix has keen found.

The decomposition of the matrix takes roughly $n^{3} / 3$ ultrplications, contrasted to the usual n^{3} operations of auss-Jordan reduction, and is therefore much faster. Since he inverse has not been explicitly determined, that extra torage has not been needed since the intermediate results f the decomposition are stored where the matrix was:

The auxilliary equations are solved very quickly ecause they are triangular. First the vector y is etermined, then the solution vector x. The first component
of y is b_{1}, the first component of b. The second component of y is determined from

$$
\begin{equation*}
I_{21} y_{1}+y_{2}=b_{2} \tag{3.1.1-6}
\end{equation*}
$$

and so on. Once y has been determined, the sclution vector is "unzipped" from D in the same wanner, only starting from the bottom.

In summary, the equations to be solved are

$$
\begin{array}{ll}
A=L U & (3.1 .1-7) \\
L Y=b & (3.1 .1-8) \\
U X=Y & (3.1 .1-9)
\end{array}
$$

3.1.2 Householder's Method

This method involves triangularization of the matrix and the use of elementary Hermitean unitary transformations. At present, the operations done to the matrix to triangularize it must also be done to the constant vectors simultaneously. In other words, unlike the decomposition method, there are no provisions for storing the operations done to the matrix so that they may be done to constant vectors independently at a later time. Every constant vector must be present at the time of triangularization, or the original matrix must ke reread and retriangularized.

The method involves premultiplying a matrix by a sequence of other matrices, all of which are unitary matrices, so that the condition number of the matrix is unchanged at each step. The condition number is a function of the size of the matrix inverse, and determines how bady roundoff effects confuse the answer. It. can be shown that the condition number does not change as the matrix is世auipulated and therefore gets no worse.

Basically the Householder method seeks to triangularize the matrix A, by multiplying it by a series of the unitary matrices, called p_{i}. For the first step we would like

$$
\begin{equation*}
P A^{(0)}=A^{(1)} \tag{3.1.2-1}
\end{equation*}
$$

here the first column of $A^{(1)} \quad$ (call it a) has a nonzero lenent in the first row, but zeros in all subsequent rows f this column.

$$
\begin{equation*}
\mathrm{Pa} \doteq k e_{1} \quad \text { where } e_{1}=(1,0,0,0 \ldots 0) \tag{3.1.2-2}
\end{equation*}
$$

he size of "a" can be determined in the usual method:

$$
\begin{align*}
\||a| \mid= & {\left[\sum_{k=1}^{n}\left(a_{k \mid}\right)^{2}\right]^{1 / 2}=s } \tag{3.1.2-3}\\
& \Rightarrow||a||^{2}=s^{2}
\end{align*}
$$

can be shown that the size of a unitary transformation of vector is the same as the vector itself:

$$
\begin{equation*}
\|P a\|^{2}=\left[\sum_{k=1}^{n}\left(a_{k 1}\right)^{2}\right]=s^{2} \tag{3.1.2-5}
\end{equation*}
$$

but

$$
\| \text { Pa\| }\left\|^{2}=\right\| k e_{1}\| \|^{2}=k^{2}
$$

and therefore:

$$
\begin{equation*}
k= \pm s \tag{3.1.2-7}
\end{equation*}
$$

It can be shown that for any vector such that \|w\| = and wis real; then a matrix constructed by

$$
\begin{equation*}
U=I-2 H W^{\top} \tag{3.1.2-8}
\end{equation*}
$$

is unitary. The choice of with which to construct a ratrix of this form so that it has the properties of P is the key to the procedure.

$$
\begin{equation*}
\mathrm{Pa}=\left(I-2 w w^{\top}\right) a=a-2 w\left(w^{\top} a\right) \tag{3.1.2-9}
\end{equation*}
$$

Lut the matrix product $w^{\top} a=K$, is a constant. All elements cther than the first of this resultant vector should vannsh, since the first column is being triangularized. That implies the following set of equations:

$$
\begin{equation*}
a_{i}-2 K w_{i}=0 \quad i \neq i \tag{3.1.2-10}
\end{equation*}
$$

$$
\begin{equation*}
a_{1}-2 K w_{1}=k= \pm s \tag{3.1.2-11}
\end{equation*}
$$

or

$$
\begin{equation*}
w_{i}=a / 2 K \quad i \neq 1 \text { and } W_{1}=\left(a_{1} \pm s\right) / 2 K \tag{3.1.2-12}
\end{equation*}
$$

but, $\|w\|=1$, by the requirements for constructing the matrix, and therefore

$$
\begin{equation*}
\sum_{k=1}^{n}\left(w_{i}\right)^{2}=1=-\frac{1}{4} K^{2}\left[(a \pm s)^{2}+\sum_{k=2}^{n}\left(a_{i}\right)^{2}\right] \tag{3.1.2-13}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{1}{4} \frac{1}{K^{2}}\left[a_{i}^{2} \pm 2 a_{1} s+s^{2}+\sum_{k=2}^{n}\left(a_{i}\right)^{2}\right] \tag{3.1.2-14}
\end{equation*}
$$

$$
\begin{align*}
& =\frac{1}{4 k^{2}}\left[| | a| |^{2} \pm 2 a_{1} s+s^{2}\right] \\
& =\frac{1}{4 K^{2}}[3.1 .2-15) \tag{3.1.2-16}\\
& =\frac{1}{4}\left[k^{2} \pm 2 a_{1} s+s^{2}\right] \tag{3.1.2-17}\\
& (3.1 .2-16)
\end{align*}
$$

Therefore:

$$
\begin{equation*}
2 k^{2}=s^{2} \pm a_{1} s \tag{3.1.2-18}
\end{equation*}
$$

f the vector u is defined as:

$$
\begin{equation*}
u=\left(\left(a_{1} \pm s\right), a_{2}, a_{3} \cdots a_{n}\right) \tag{3.1.2-19}
\end{equation*}
$$

ad w as $w=u / 2 K$, then the followang relations can be shown a be true:

$$
\begin{aligned}
& \text { a) } w^{\top} w=1 \\
& \text { b) } P=I-2 w w^{\top} \text { is unitary }
\end{aligned}
$$

and
c) $\quad \mathrm{Pa}= \pm \mathrm{se}_{1}$.

- At this point, the first colung of A has been :iangularized. The other columns of the matrix are then serated on by the unitary matrix (or its vector form). .though none of them are triangularized if the matrix is ngular. The next step in the procedure is to develop the ctor w for producing the same triangularization of the
second column, from its diagonal element on down. The third column will be treated.from the third row down, and so on. In this way, a series of matrices are generated which fremultiply the original matrix. The $(n-1)^{\text {th }}$ matrix produces an upper triangular matrix. If the same transformations have been done to the constant vectors, then all that need be done is a back-substituticn to produce the solution.

Another important feature of this frocedure is the fact that no division by diagonal elements, and therefore no fivoting of rows, need be done. Also, this procedure can be used to produce "least-squared" solutions if the matrix has more rows. than columns, without explicitly multipiying the matrices. In cther words, the system

$$
\begin{equation*}
\left(A^{\top} A\right) x=A^{\top} b \tag{3.1.2-23}
\end{equation*}
$$

can be solved without actually multiplying the matrices A^{\top} and A together.

3.1.3 The Partitioning Schemes

There are several possible methods for partitioning a very large matrix into submatrices in order to create the watrix inverse. Most of these methods could be termed "block" methods, in that they apply well defined methods for dealing with individual elements of a matrix to submatrices. For instance, a very popular method- for solving a predictably sparse, well behaved matrix system is the method of successive over-relaxation. Tbe block analog cf this is the method of block successive cveri-relaxation described in section 3.1.4.

In this section, a partitioning scheme designed to take maximull advantage of available core storage is described. In this manual it is known as the large decomposition solution procedure. The fartitions developed in this algorithm are not related to the natural partitions associated with the separate components of the configuration.

Basically, the method starts in the upfer left corner of the large, dense matrix and iaverts directly as large a block as is possible. From that point on, pieces of the original matrix are processed as the matrix inverse "grows" toward the lover right corner. The number of words in each partition is as large as possible. The sequence of the inversion is shown in Figure 3.1.3-1, and the sequence of
B is replaced by $A B$

$$
\begin{array}{rlr}
\mathrm{E}=\mathrm{D}-\mathrm{CB} & (3.1 .3-1) \\
D & =D^{-1} & (3.1 .3-2) \\
B & =-B D & (3.1 .3-3) \\
C & =C A & (3.1 .3-4) \\
A & =A-E C & (3.1 .3-5) \\
C & =-D C & (3.1 .3-6)
\end{array}
$$

Let the matrix be partitioned as is shown in figure -1.3-2. The inverse of that matrix is assumed to be of the ollowing form

$$
-\left[\begin{array}{c}
L M \\
N \dot{P}
\end{array}\right]
$$

Since the product of the matrix and its inverse is, the dentity matrix, the fcllowing set of equations can be eveloyea

$$
\begin{align*}
P=\left(D-C A^{-1} B\right)^{-1} & (3.1 \cdot 3-8) \tag{3-1.3-8}\\
M=-A^{-1} E P & (3.1 \cdot 3-9) \tag{3.1.3-9}\\
N=-P C A^{-1} & (3.1 \cdot 3-10) \\
L=A^{-1}-A^{-1} B N . & (3.1 \cdot 3-11)
\end{align*}
$$

me program equations are identical except that they are zsigned to take as little extra storage as possible.

The block successive over-relaxation procedure provides an alternate method for the solution cf large systems of equations. It is particularly advantageous for matrices that are block diagonally dominant. This situation occurs, for example, in the case of a wing in a wind tunnel. The method consists of an iteration sequence which operates on an initial guess to the solution of the equation

$$
\begin{equation*}
A x=b \tag{3.1.4-1}
\end{equation*}
$$

where the matrix A consists of several sukmatrices a . A submatrix represents the influence of an aircraft component cn itself or on another aircraft component. The figure Lelow illustrates this matrix structure.

$$
\left[\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 n} \\
A_{21} & A_{22} & \cdots & A_{2 n} \\
& \cdot & & \\
& \cdot & & \\
& \cdot & & \\
A_{n 1} & A_{n 2} & \cdots & A_{n n}
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right\}=\left\{\begin{array}{l}
b_{1} \\
b_{2} \\
\cdot \\
\cdot \\
\cdot \\
b_{n}
\end{array}\right\} \begin{aligned}
& \\
& \cdot \\
& \cdot \\
& \cdot
\end{aligned}
$$

The subscript n refers to the number of subvectors x_{j}, each of which represents the singularity sitrengths of a single component.

In order to begin the iteration procedure, an initial guess for each of the subvectors x_{j} must be either given as input data or computed or both. If the initial guess is to ke entirely computed by the program, the frocedure begins by approximating the soluticn for the first subvector x_{1}° as the solution to the system of equations

$$
\begin{equation*}
A_{11} x_{1}^{0}=L_{1} \tag{3.1.4-3}
\end{equation*}
$$

Where the superscript refers to the iteration number and the superscript "o" refers to the initial guess. The initial guesses to the succeeding subvectors x_{i}° are computed by sequentially solving each of the following systems of equations:

$$
\begin{equation*}
A_{22} x_{2}^{0}=b_{2}-A_{21} x_{1}^{0} \tag{3.1.4.4}
\end{equation*}
$$

$$
A_{n n} x_{n}^{0}=b_{n}-A_{n 1} x_{1}^{0} \cdots \cdots-A_{n n-1} x_{n-1}^{0}
$$

At any step in the above procedure, the initial guess for the sub-vector under consideration may be entered as input data rather than being computed. once an initial guess has been provided for each solution sub-vector, the succeeding iteration proceeds by sequentially solving each cf the following systems of equations:

$$
\begin{aligned}
& A_{l 1} x_{1}^{k}=D_{1}-A_{12} x_{2}^{k-1} \cdots-A_{1 n} x_{n}^{k-1} \\
& A_{22} x_{2}^{k}=b_{2}-A_{21} x_{1}^{k}-A_{23} x_{3}^{k-1} \cdots \cdots A_{2 n} x_{n}^{k-1} \\
& A_{m m} x_{m}^{k}=b_{m}-A_{m 1} x_{1}^{k}-\cdots-A_{m m-i} x_{m-1}^{k}-A_{m m+1} x_{m+1}^{k-1}-\cdots \cdot \\
& \ldots-A_{m n} x_{n}^{k-1}
\end{aligned}
$$

After solving each system of equations, the solution subvectors may be further adjusted by the method of successive over-relaxation or under-relaxation. That is, let \bar{x}_{i}^{k} be an arbitrary solution subvector of the kth iteration step. Then define the improved estimate of that solution subvector as

$$
\begin{equation*}
x_{i}^{k}=x_{i}^{k-1}+w\left(\bar{x}_{i}^{k}-x_{i}^{k-1}\right) \tag{3.1.4-6}
\end{equation*}
$$

That is to say, the improved estimate at step k is extrapolated from the Gauss-Siedel estimate and the previous improved estimate. If $w=1$, the method reduces to that of gauss-Siedel. The quantity w is called a reldxation parameter, the choice of which determines the rapidnty of convergence. For problems where the successive 1 terations indicate an oscillatory convergence behavior in a predominant number of the elements of the solution subvectors, the rate of convergence will prooably be increased by setting w to some value between 0 and 1.0. If the convergence behavior is predominantly cverdamped, the rate of convergence may be increased by setting w to some value between 1.0 and 2.0 . For a given problem there exists an optimum w such that the number of iterations to convergence is monimized. Several procedures have been suggested for determining this. optimum w. Ames (1969) and Eratkovich(1975) provide further information on determining an optimum relaxation parameter. In the SOLN code, the value of w is input by the user as part of the input data.

Convergence of the iteration procedure is defined such that

$$
\begin{equation*}
\frac{1 x_{i}^{m}-x_{i}^{m-1} \mid}{1 x_{j}^{m}!}<\varepsilon \tag{3.1.4-7}
\end{equation*}
$$

for each element in each subvector x_{i}. If the specified maximum number of iterations have been performea and convergence has not been achieved, the last estimates of the solution subvectors may be saved and used as initial guesses for a subsequent series of iterations.

In solving each system of equations in the series of systems described by equations 3.1.4-4 and 3.1.4-5, any one of the direct solution techniques available in the SoLN code may be used. To eliminate redundant calculations in each iteration step, the inverse or decomposition of the diagonal submatrices $A_{i i}$ is computed or read in and stored before the initial guess or iteration procedure begins. Then the matrix multiplications or forward elimination and backward substitution are the only computations made in solving each system of equations involved in the initial guess and subsequent iterations. The decomposition is used with square systems of equations for each diagonal sub-matrix that fits in core at one time. The inverse is used in all cther circumstances. This feature significantly reduces the amount of computer time required.

This iteration procedure may also be used to solve a rectangular system of equations. In this case, the Householder procedure must be used to compute the inverses of the diagonal submatrices.

3.2 SYSTEH MODULARITY

The required degree of modularity, which implues that the program should operate independently from and without interferring with other portions of the POTFAN system, has been guaranteed by the use of auxilliary storage devices (tapes, disks, or drums) as the only method by which the various segments of POTFAN can communicate with one another. This has the disadvantage that communicating through auxilliary devices is relatively slow and on some computer systems will require many job control cards to manage the devices. However the disadvantages of this approach are more than offset by the advantages. The principal advantage is that it strictly guarantees segment independence. Aiso, this approach is necessary to maximize the size of probled that can be solved with a fixed amount of core memory.

3.3 versamtlity and ease of use and modification

These factors are all-mportant to the usetuluess of a program. Although there is no unique formula for guaranteenng them, two important elements of a sutficient formula relevant to the SOLN code have been identrfied. These are command format programming and the lioeral and thoughtful use of comment cards in the source deck.

Command format programing is a phrase coined to
describe a programming method which uses words or acronyms (called commands) to control the actions taken by the program. Although this technique is not new, the particular style employed in pOTFAN programs originated with the computer program reported in Medan(1973). This technique contributes significantly to the above important factors.

The manner in which command format programs work is the tollowing. First of all, there is a program known as the control program, which may be either the main program or the principal subroutine called by the main program. For the SOLN code the control program is the subroutine SOLNIO. The first two actions performed by the control program are the initialization of default values and the establishment of whether or not the program is being run in a batch or conversational mode. In the conversational mode the program prompts the user for commands and data, and in the event of a recoverable error, pauses to allow the user to perform a fixup. In the batch mode the progran echoes each commad read in and generally always stops upon detecting an error. Other than these differences, the two modes of operation are identical. Following these actions the program enters the command phase. In this phase the program reads in various four character commands, takes the action associated with the command, and then (provided the command is not STOP) reads in the next command and so on. The specific commands avallable are given in section 5. 2.

Regarding the use of comment cards, there are no specific rules that can guarantee that the inner workings of a program are adequately documented. However, some guidelines have been developed.

The first of these concerns the quantity of comment cards. Some programs that were thought to be-adequately commented were examined and it was found that approximately 25 per cent of the source lines were significant comment lines. fost programs are not considered to be well documented unless they contain approximately this ratio of comment lines. Therefore, the SCLN code is documented to this extent.

The second guideline concerns subprogram documentation. The comment cards should state as a minimum the basic furpose of the subprogram and all inputs and outputs except printed output. Each subprogramin the SOLN code was made to comply with this guideline.

In summary, the use of command format programming and careful commenting have made the SOLN code versatile, easy to use, and easy to modify.

Two major techniques were used for treating problems involving a large number of components and/or components with large influence matrices. These are the use of auxilliary storage units and dynamic memory, allocation.

3.4.1 Auxilliary Storage

The degree to which auxilliary storage units are used in the SOLN code depends on the size and type of problem for which a solution is desired. For systems of equations that can be placed in core all at once, a minimum of auxilliary storage is required. In fact, the influence matrix and right hand sides are placed in auxlliary storage only when they are first read in. When the code automatically determines that the system can be solved entirely in core, the influence matrix and right hand side are read back into core and solved.

For larger systems of equations that cannot fit within core simultaneously, tine influence inatrix must be partitioned and solved in a piecemeal fashion which requires extensive usage of auxilliary storage units. for problems involving the iteration procedure, auxilliary storage units are used to store each block of the matrix as well as the right hand sides, the current estimate of the solution subvectors, and the previous estimate of the solution subvectors.

This usage of auxilliary storage units allows for the solution of systems of equations whose size is ouly limited mainly by the amount of auxilliary storage available rather than the amount of core storage available.

3.4.2 Dynamic Memory Allocation

Dynamic memory allocation as used herein refers to packing several small arrays into one large single array. In this way all of the available core space can be utilized.

A necessary procedure in the use of dyuamic memory allocation is that dynamically allocated arrays must be fassed as variably-dimensioned arrays through subroutine argument lists. This in turn makes the program easy to modify since the storage array into which the smaller arrays

$$
3-15
$$

are packed needs to be dimensioned only once, e.g., in a small main program.

The storage array in SOLN is denoted as (A). This array is packed differently depending upon the type of calculations being performed. When bulk data is read in, storage is only allocated for that particular set of data. Then the data is placed in temporary storage. The allocation of storage is more complicated at the point where a system of equations is to be solved. Storage in this case is allocated depending upon the method of solution, whether the iteration procedure or the direct procedure is used, and whether the system of equations $c a n$ be solved in core all at once. In general, however, the arrays that are the length of the number of fragments and the number of rows in the matrix are allocated first. Then the remainder of the available storage is allocated for the influence matrix.

4_PROGRAM_DESCRIPTION

To a great extent the description of the inner workings of the frogram has been relegated to comment cards in the FORTRAN source decks. This includes descriptions of the functions of the subroutines and their input and output. The remainder of this section presents relevant descriptive data which could not effectively be placed on comment cards.
4.1 CALLING Structure

Figure 4.1-1 shows the sukroutine calling structure. Table 4.1-1 shows the calling structure in a different format.

4.2 FLOW CHART

Figure 4.2-1 is a flow chart of the control program SOLNIO.
4.3 COMMON BLOCKS

Table 4.3-1 shows the common blocks usea, their sizes, and the subprograms which they appear in.

4.4 LOGICAL ONITS

Table 4.4-1 summarizes the lcgical units (tape, disks, cr drums) which the program uses. Note that not all units would be used for each program run. ;ifor the worst case the number of units used would be ten (10). The specific data input from or output onto each of these units except for the line printer unit is discussed in detail in sections 6 and 7.

Without the working storage array, the SOLN code requires approximately 24000 decimal words of core storage. This requirement includes all system subroutines and internal symbol dictionaries and was determined on the INFONET Univac 1108 operating system without using overlays. The size of the working storage array must be added to this number to determine the total amcunt of storage required by the program. The memory requirements can be reduced by usiny overlays.

4.6 RESTRICTIONS AND LIMITATIONS

The most important restrictions regarding the SOLN code are those associated with the limitaticn in size of the system of equations that can be solved. There are three different types of limitations depending on the manner in which the system is solved. First, there is a limitation to the aumber of equations that can ke solved in core at one time. For a given computer system, this limitation can be determined by the following formula

$$
N R=\sqrt{4+(M \times S-3 * N I R)}-2 \quad \text { (square matrix) }
$$

(ncn-square matrix)
where $N R=$ Number of equations that can te solyed in core at one time.
MXS = Size of the working storage array (A).
NC = Number of unknouns to be determined.
NIR = Number of records of input containing the influence matrix. This is also referred to as the number of influence matrix fragments.

Second, there is a limitation to the number of equations that can be solved even using auxilliary storage devices. This liaitation defends upon whether the ateration frocedure is used or whether a direct frocedure is used.

For a direct procedure the limitation is conputed as follows:

```
NR=MXS-3**NTR+1
(square matrix)
```

$N R=\frac{H X S}{4}-3 * N I B$
(non-square matrix)

For the iteration procedure the limitaticn is computed as follows:

```
\(N R B=M X S=3 * N I B+1\),
```



```
7
                                whichever is smaller (square matrix)
(non-square matrix)
```

$\mathrm{NRB}=\mathrm{HXS}=\frac{3 *}{4} \frac{\mathrm{NIR}-\mathrm{MAXVNR}}{4}$

Where $N R B=$ The order of the largest diagcnal block of the matrix.
MAXVAF $=$ Number of influence coefficierts in the largest influence matrix input record.

The third limitaticn concerns the amount of auxilliary storage available. The temporary storage units INA, INAT, INCED, KST, INB, INBT, and INVR qust each be able to contain the entire influence matrix. Hence, the largest system of equations that can be solved may be limited by the size of the auxilliary storage devices.

5_OPERATING_INSTRUCTIONS

The purpose of this section is to frcvide the user with information necessary to execute the program.

E. 1 general data Input CONSIDERATIONS

The input data for the equation solver program consists cf punched cards and tape, disc, or drum files when the code is utilized in the batch mode, and on-line data with tape, disc, or drum files when it is executed in the. conversational mode. All punched card and conversational terminal input is prescribed in NAMELIST or regular formats, whereas all bulk data infut through tape, disc, or drum files is unformatted. The latter data is aescribed in sections 6 and 7.

The program is designed to use commands as the basic form of input to control the program flow. These commands consist of four letter words placed in the first four characters of an input record (first fcur columns of an input card) and are recognized as keys that cause the program to perform particular operations. After the operations are performed, the prcgram flcw returns to the keginning of the program and reads the next command. This continues until a STOP command is encountered, whereby the frogram terminates. Any command input record (card) whose first four characters or columns are left blank is considered a "comment" command. Any command that is not recognized by the program is printed and frogram flow is either returned to the next command nitbout any operations being performed or terminated depending on the value of the variable CONTIN (see section 5.2.5). The particular comands recognized by the equation sclver code are discussed in more detail in section 5.2.

All of the commands available in the equation solver code are related in one way or another to the solution of a system of equations, although several commands in sequence are required to complete all the steps necessary to obtain this solution. Since there are several different solution techniques available in the code, the best method of solution and the associated commands for a given problem
will depend upon whether the system of equations (matrix) under consideration is over-determined (rectangular) or not, and whether the system of equations under consideration can te subdivided or blocked effectively so that the iteration frocedure can be iaplemented.

For solving larger systems of equations, the Fotentially fastest. soluticn technique is the block successive over-relaxation method. This is true whether the system of equations is overdetermined or not. However, the iteration procedure will only converge tc a solution if the matrix produced by the system of equations has certain froperties. In particular, the matrix must possess submatrix blocks such that the diagonal blocks are more dominant than the off diagonal blocks. The more dominant the diagonal blocks, the faster the iteraticn procedure will converge to a solution.

Matrices that dc not possess this proferty are best solved by the direct technigues. For square matrices, the IU decomposition method is the fastest cr the direct methods, and for rectangular matrices the Householder Frocedure should be used. In the event that the data defining the system of equations under consideration requires more computer core storage than is available, the equation solver code automatically places the data in temporary storage and determines the solution to the system of equations by the procedures for large systems as discussed in Section 3.3.

5.2 INPUT DESCRIPTION

The first line of input to the program consists of a single logical variable. Its value degends on whether the command inputs are to be made utilizing the conversational cr batch modes, . TRUE. for conversational, .FALSE. tor batch mode. The tormat for this input record (card) is L.1.

The remaining input for the equation solver code consists mainly of operation commands, input file names, and option flags. A command statement must begin in the first column or with the first character of an input card or record. Only the first four characters of any comand are recognized by the program. If the first four characters or columns are left blank, the command is assumed to be for comment purposes, and the entire card or line is printed. In the conversational mode, an unrecognizable command returns control to the next command after the unrecognizable characters are printed; ctheryise, the program terminates unless the variable CONTIN has been set to. TRUE. (see DATA command. A detailed description of the commands recogaized
ky the code, as well as the input associated with them, is given below. All logical unit nurbers may range from 1 to 99, except 5 and 6. File identification numbers may range from 1 to 9999. See Appendix A for an explanation of file identification numbers.

Explanation

Any command with blanks in the first four positions is considered a comment card. All informaticn on this card or input record is printed, then contrci procecds to the next command.

5.2.2 BCBE Command

Explanation

This command causes the bcundary condition constant vector files to be read in and placed in temporary storage. This boundary condition constant vector file is ordinarily created by the boundary conditicn program. This command should not be given before the cNil command (when required) or the VNRE command, and wust precede the SOLV, RIVNS, or nULT commands.

Input

(NTBCR,NBCR(I), I=1,NCMP)-The identification number and logical unit number of each boundary condition constant vector file.

Format

215

Comments

Enter one identification number and oue logical unit number per line or card of input. The input sequence must be consistent with the infut sequence of the input influence submatrices (see VNRE command).

5.2.3 CNEL Command

Explanation

This command defines the number of aircraft components and the overall type of solution procedure to be used in solving the system of equations under consideration. It is the first command given if the internal logical units do not require initializing with the LATA command. This command Hust precede all other commands except blank and dATa comands except when there is only a single component whose influence matrix can fit in core. In the latter case, the CNTL command is not required.

Input

NCHP- Number of aircraft components assoclated with the system of equations under consideration. This determines the number of boundary condition and influence matrix files that must be read in.

ITERAT--Flag which designates whether an iteration procedure or a direct solution procedure is to be used to solve this systell of equations.

ITERAT =
0--Direct solution
1--Iteration solution

Format

2 I5

5.2.4 COMB Command

Explanation

This command is used only when the systell of equations under consideration is toc large for available core storage and the direct soluticn frocedures are being used to solve the system. It combines all submatrices read in by the VNR'F command into one matrix which is stored in column length records on a temporary storage device. The command need not be used unless both circumstances mentioned above exist. No. further data input is required kith this command. If .used, it must immediately follow the VNFE command.

5.2.5 DATA Command

Explanation

The DATA command is used to initialize any or all internal logical units used by the program. This includes any temporary storage devices as well as the input and cutput logical units. The DATA command is also used to set the variable conTIN. This command need not be used if the default values of the variables are satistactory. This command, if needed, must precede all of the commands except the blank command.

Input

NTCP--Logical unit number of the output device used for conversational mode operations. The default value is 6.

NTP--Iogical unit number of the output device used for tatch mode operations. The default value is 6.

NTCB--Logical unit number of the input device used for conversational mode operations. The default value is. 5.

NTRR--Logical unit number of the infut device used for katch mode operations. The default value is 5. The value of NTR is set equal to NTRR immediately following the read statement.

INA--Logical unit number for a temporary storage device. The default value is 11. However, during a comb command, it may be changed to 12. See section 7.4 for an explanation of the temporary storage devices.

INAT--Logical unit number for a temporary storage device. The default value is 12. However, during a come command, it may be changed to 11.

INCBD--Logical unit number for a temporary storage device. The default value is 14.

KST--Logical unit number for a temporary storage device. The default value is 13.

INE--Logical unit number for a temporary storage. device. The default value is 15.

INBT--Logical unit number for a temporary storage device. The default value is 17.

INVA--Logical unit numeer for a temporary storage device. The default value is 18.

NTIR--Logical unit number for a temporary storage device. The default value is 16.

CONTIN-Logical variatle governing program action upon encountering an unrecognizable command. Unless CONTIN is -TRUE., execution will terminate with an unrecognizable command. The default value for Contin is .TRUE. under conversational operation and . FALSE. under katch operation.

Format

Namelist MDATA.

5.2.6 INYE Command

Explanation

This command causes the inverse of a matrix to be computed and stored on a tape, disc, or drum file. The user must input the identification numker and logical unit number of the tape, disc, or drum file where this inverse is to be stored. In addition, the user must provide a title for the file. A special option with this command allous the user to compute and store the decomposition of a matrix instead of the inverse (see section 3.1). The only restrictions for
the decomposition oftion are that the matrix to be decomposed must fit in core all at once and that it must be a square matrix. The INVE command must follow the VNRE and (if needed) COMB ccmmands.

Input
METHOD--Option flag which designates which solution technique is to be used to create the inverse or decomposition.

METHOD =
$0--L U$ decomposition method (square matrix only)
1--Householders' technique (rectangular or square matrix)

NTINVW--Identificaticn number of tape, disc, or drum file where the computed inverse is to be stored. The logical unit number associated with this file is INVR which may be input with the DATA command at the beginning of each test case.

IDC--Option flag which designates whether the inverse Cr the decomposition of the matrix is to be computed.

IDC $=$
$0-$ Inverse
1--Lecomposition
NTITL--Number of words in the title describing the inverse or decomposition file. NTITL must be greater than zero but not exceed 100 .
(TITL(I), I=1,NTITL)--A one dimensional alphanumeric array that may be used to. describe the contents of the inverse file.

Format

$315 / 15 /(20 A 4)$

5.2.7 IUNR Command

Explanation

This command causes an inverse or deccmposed matrix file to be read in and placed in temporary storage and is a sequel to the INVE command. The intent of this command is to allow the user to read in an inverse without computing it, then multiply the inverse by any number of constant vectors to obtain the solution vectors. In the case of a decomposed matrix, a fcrward elimination and backward substitution are performed on the decomposed matrix and constant vectors to obtain the soluticns. The IVNr command, hovever, only reads the inverse or decomposed matrix. other commands read the constant vectors (BCRE command) and ferform the multiplication or forward elimination and tackward substitution (MULT command). The IVNR command must
follow a CNTL command and a bCRE ccmmand and precede a MULT command.

Input
NTINVR-Identification number of the file where the inverse or decomposed matrix is stored.

NTINV-Logical unit number of the file where the inverse or decomposed matrix is stored. If entered as zero, the progral uses 18 instead.

Format
215

5.2.8 MULT Comand

Explanation

This command is used in conjunction with the IVNA command. It causes an inverse ratrix tc be multiplied by any number of constant vectors or it causes a formara ellmination and backward substitution tc be performed on a decomposed matrix and any number of constant vectors. The information stored on the file that was read by the IVNB command indicates whether an inverse or a decomposed matrix existed on the file and the code automatically performs the appropriate computations to obtain the sclution vectors. The IVNR and BCRE commands must precede the MULT command.

Input
(OUTA (I), OUTANT (I), $I=1, N C M P$) --One dimensional integer arrays defining the identificaticn numbers and logicai unit numbers of the files where the conputed sclution vectors are to be stored.

Format
215

5.2.9 PAET Command

Explanation
This command causes the program to partition the matrix that was read in by the VNRE command and combined, if necessary, by the comb command. It is a utality command that need not ordinarily be used unless. it is desiraole tc partition a matrix into submatrices in a manner that is different from the way the matrix is already partitioned. The PART command will cause the ratrix to be subdivided into equal sized square blocks, if fossible. If this is not fossible, then the blocks will be made as equal in size as is possible. This command must follow the VNRE and (if used) COMB commands and precede the SOIV and INVE commands.

Input
NPA--The number of partitions that a row or column of the matrix is to be subdivided into. The number of partitions in the matrix will be NPA**2.
(NP(I), $I=1, N P A * * 2$)--A one dimensicnal array defining the logical unit numbers of the files where each submatrix partition is to be stored. A total of NPA**2 entries must be made. Place the values for one row of partitions on each line or card.

Format
I5/(16I5)

5.2.10 SOLV Command

This command causes the program to compute the solution to the system of equations as defined by the VNRE and BCRE command. The user need not define a solution technique for solving the system of equations; the code will automatically determine this for him. Hovever, if he chooses to override the automatically chosen technique, he may do so. If the user chooses an inappropriate technique for a given system, the code will automatically chocse the best technique and cverride his decision. This may occur if the user attempts to solve a rectangular matrix using a technigue for square matrices. The various sclution techniques available in the code were discussed in detail in Section 3. If the iteration procedure option is in effect, this command defines the method for solving the system of equations associated with each diagonal submatrix of the blocked watrix. The SOLV command must follow the VNRE, COMB (iff used), and BCRE commands. If a user input solution technique is used, the calling sequence for this procedure should be placed in the subroutine INVRS at the designated location.

If the iteration procedure is in effect and is ncn-convergent, the last estimate of the solution subvectors will be printed and stored on files. The iteration procedure may be restarted by reading these final approximations into the program as initial guesses at the solution subvectors instead of have them computed. In fact, any predetermined solution subvectors may be read in as an initial guess for the iteration procedure instead of having them computed when the iteration option is in effect. In cther words this is the number components for which an initial guess of the solution will be supplied.

Input
METHOD--Option flag defining which solution technique
will be used in solving the system of equations. METHOD =

0--LU decomposition $m \in t h o d$
1--Householders' method
2--User input method
IPS--The number of predetermined sclutions to be read when the iteration option is in effect. In cther words this is the number components for which an initial guess of the solution will be supplied.
(OUTA (I) ,OUTANT (I), I=1,NCMF) --Two one dimensional arrays defining the identificaticn number and logical unit number where the solution subvectors of the system of equations under consideration are to be stored. One pair of numbers is required for each aircraft component:

IPRINT-A print parameter that prescribes whether the solution vector is printed out.

IEBINT=0--Solution vector is printed. $=1--$ Solution vector is not printed.
(I,INPS(I),INPSNT(I),J=1,IPS)--A simple variable and two one dimensional arrays that indicate the aircraft. component sequence number, the identificaticn number, and logical unit number of any fredetermined solution subvector files to be used as an initial guess to the sclution for the iteration procedure. This input is only required if the iteration procedure option is in effect. If IPS is zero, this infcrmation must not be input. The solution subvectors cn these files will be used as the initial guess for the iteration procedure instead of having the initial guesses computed. One set of these numbers is required for each aircraft component for which an initial guess is to be input:

MAXIT1-The maximum number of iterations allowed for the iteration procedure tc converge. This is only required if the iteration procedure option is in effect. If UAXIT1=0, only the initial guess will be computed, priuted, and stored.

OMEGA--Relaxation factor that alters the convergence characteristics of the iteration solution.

$$
\begin{array}{ll}
0<0 \text { MEGA<1 } & \text { (under-relaxation) } \\
1<0 M E G A<2 & \text { (over-relaxaticn) }
\end{array}
$$

The default value is 1.0 . This input is only required when the iteration solution oftion is in effect.

ITERP-Print parameter that defines the amount of intermediate results tc be printed during the iteration solution procedure.

ITERP =
$0-$ No intermediate results will be printed.
Not-zero--Intermediate results will be printed every ITERP iterations.

The intermediate results consist of the influence of each submatrix block on every cther submatrix block, the constant vectors, and the most recent estimate of the solution. If ITERP $\ddagger 0$, these quantities are also printed for the initial guess at the solution. This input is only required if the iteration procedure option is in effect.

Eormat

(2I5)--For METHOD, IPS, OUPA(I), OUTANT(I), IPRINT.
(3I5)--FOI I, INPS(I), INPSNT(I).
(I5/F5.2/I5)--FOI MAXIT1, OMEGA, ITERP.

Comments

The inverse or decompositicn of the diagonal submatrices associated with the iteration procedure may also te read in instead of being computed. This is discussed in the VNRE command.

5.2.11 STOP Command

Explanation

This command terminates the program. No farther cperations can follow the STOP command.

5.2.12 VNRE Command

Explanation

This command reads the submatrices making up the influence coefficients for the system of equations under consideration and places them in temporary storage. The watriy is usually subdivided into submatrices that are placed on separate tape, disc, or drum files. for potential flow problems, these submatrices usually represent the influence of a single aircraft component cn another single aircraft component. If the iteration procedure 15 in effect, each submatrix also represents a block of the block iteration procedure. A special option is available with this command when the iteration oftion is in effect. It allows the user to avcid calculating the inverse or decomposition of any one of the diagonal submatrix blocks that would ordinarily be computed during the iteration procedure. Instead, the user may read in the inverse or decomposition itself. Fcr those diagonal submatrices that are read in the ordinary manner, the inverse or decomposition is computed during the iteration procedure calculations. The VNRE command must precede the BCRE command and the comb command (if used) and must also follow

Input

NTVNR, NTVN--The identificaticn number and logical unit number of a single submatrix of the influence matrix file. Cne pair of numbers is entered fer line. The submatrices must be entered in rownise order. That is, referring to the figure in Section 3.1.4, the submatrices must be entered in the following order: $A_{11}, \ldots, A_{1 n}, A_{21}, \ldots, A_{2 n}$,
$\ldots A_{n 1} \ldots . . A_{n n}$:
INVF(I)-option flag that designates whether the associated file contains a submatrix or whether it contains the inverse or decomposition of that submatrix. This is cnly input with the diagonal submatrices and is entered on the same iine as the logical unit number or identirication number for that summatrix.

INVF(I) $=$

0--Submatrix.
-1--Inverse or decomposition of the submatrix.
Format
$2 I 5$ (tor off-diagonal submatrices)
$3 I 5$ (for diagonal summatrices)

5.3 SYSTEU CONTROL CARDS

This section describes the control cards that are necessary to run the SCLN code on the various computer systems that have been cr are being used tc run the-SOLN code.
5.3.1 Infonet Univac 1108 System

Since this system allcws automatic file definition commands determined from the file identification numbers (see Appendix A), the only control card required is the Frogram name, SOLN/PGTF. All files created except scratch files will automatically show up in the user"s catalog. whe names of all created files will be identical to the input file identification numbers. Also each created File will have a version identifier that defines the tyge of file that it is. The version identifier for solution files is So; for inverse files it is IN. All files created will reshde in the $I I B \$$ library. Thus, for example, a solution tile created with an identification number of 1023 will be assigned the name 1023. SC/LIB\$.

6_PROGRAM_INPUT_BINARY_FILES

The SOLN code uses two types of files created by other fotran segments. These files contain the coefficient matrix (influence matrix files) and the right hand sides (boundary condition files). These files are accessed according to the frocedures in Appendix A and Section 5.3. Each of these tiles conforms to the standardized POTFAN fcrmat, which is discussed in Appendix B. The notation used in the remainder cf this section will be clear to the reader if he reads Appendix B. All of the data available on these files is not used by SOLN. The following subsections describe the files triefly and which quantities affect the sOLN code. The frogram may also input an inverse file, a decomposition file, or a solution file that was previously computed by the SOLN code. These tiles are discussed in Section 7.

6. 1 INFLUENCE MATRIX FILES

Each influence matrix file contains all the information necessary to describe the boundary condition influence of cne aircraft component on some other aircraft component. The file itself consists of two or more records of information. The first record is referred to as the introductory record, while all subsequent records contain the influence coefficients. In many cases the influence matrix is very large and cannot be input or output all at cne time on one record of information. Therefore, several records are often required to input or output the entire influence matrix file. Each record of influence. coefficients is referred to as a matrix fragment. Each influence matrix file is referred to as a submatrix. Many influence matrix files (submatrices) may be required to completely define the entire influence matrix associated with a given flow field problem consistiry of several aircraft components.

The following information from the influence matrix files is used directly by the soln code. The variables marked with an asterisk are necessary for proper execution of the program. All variables without an asterisk are informative only and are not necessary fcr proper execution of the SOLN program but are transferred tc the solution
files to be used as input for subseguent frograms in the FOTFAN system.

1st Record

*NCTIME--Number of words in the data and time array.
(CTIME (NCTIME))--Array containing the date and trme of creation of the influence matrix file.
*NTITL--Number of words in the title of a self-influencing submatrix file.
(TIIL (NTITL))--Title of a self-influencing sumatrix file.
*Nbecs-one plus the number of submatrix fragments.
ID(1)--Identification number of a self-influencing submatrix geometry file.

ID(3)--Identificaticu number of unconstrained. self-influence submatrix.

ID (5) - Identification number of constrained self-influence submatrix.
*NIOG
LOG (2) $=$ TOP--Flag indicating whether an upper surface koundary condition has been applied.

LOG(3)=BOT--Flag indicating whether a lower suriace bcundary condition has been applied.

LUG(11)=DBLT--Flag indicating whether doublet type singularities have been used to represent an aircraft component.

LOG(12)=SODRCE--Flag indicating whether source type singularities have been used to represent an aircraft component.

LOG(13) = CNSTRN--Flag indicating whether the influence matrix is constrained.
*NINT
*INT (8) =NSING--Number of unknowns associated with the self-influence matrix file.

INT(12) $=$ ICTYPE- Not used anymore.

INT(14) $=N F C-$ Number of constraint functicn coefticients representing the singularity distribution of a self-intluence subwatrix file.

INT(16) =NCFFX--Number of constraint function fragments in the N 1 direction.

INT(17) $=$ NCFPY- Number of constraint function fragments in the $N 2$ direction.

INT(18) =ICV--Flag indicating the type of constraint. variables used to generate the constraint function.

NFIT
*FLT (1) =XMACH--Hach number. The SOLN code checks all influence matrix files tc see that they correspond to the same Mach number. If there is an inconsistency, the program will stcf and print a diagnostic message.

Znd_Record_and_Subsequent_Reccrds
*J $1=N C-$ Number of columns in the submatrix.

* $\mathrm{J} 2=\mathrm{NR}$--Number of rcw © of the submatrix cn this record.
$\mathrm{J} 3=1$
*NA=NC*NR--Number of influence coefficients on this record.
* (A (I) , I=1,NN) --Influence coefficients on this record. These are stored columnise. when multiple records are required to store the sukmatrix, then a certain number of complete rows of influence coefficients are contained on tach record but are still stored columnwise.

6. 2 BOUNCARY CONDITION FILES

Each boundary condition file contains all the information necessary tc describe the influence of the uniform and nonuniform freestream and the retation rates on the boundary conditions of a single aircraft component. The file itself consists of three or more records of information. The first record is referred to as the introductory record. Each group of two reccrds thereafter describes all the flow field parameters associated whth a single set of boundary conditions as well as their influence cn this aircraft component. There may be several sets of koundary conditions on a single boundary condition. file. The second, fourth, sixth, etc., records on the file contain
the right hand side subvector asscciated kith the system of equations describing the specified flow koundary condition. The third, fifth, seventh, ninth, etc., records contain the farameters defining the freestrear conditions; that is, the freestream velocity vector, the angles cf attack and sideslip, the rotation rates, and the center of gravity location for the flow field.

The following information from the boundary condition files is used by the SOLN code. The variables marked with an asterisk are necessary for proper execution of the frogram. All variables without an asterisk are informative cnly and are not necessary frr proper execution of the SOLN frogram but are transferred to the solution files to be used as input for subsequent programs in the fotran system. asterisk.

1st_Record

*NCTIME-Number of words in the date and time array.
(CTIME(NCTIME))--Array containing the date and time of creation of the boundary condition file.
*NTITL--Number of words in the title.
(TITL (NTITL)) --Title of the Loundary condition file.
*Nrecs-one plus two times the number of sets of koundary conditions.

ID(1)--Identification number of the geometry file associated with this aircraft component.

ID(2)--Identification number of the boundary condition file.

LOG(5) =DBLT--Flag indicating whether doublet type singularities have been used to represent an aircraft component.

LOG(6) =SOURCE--Flag indicating whether source type singularities have been used to represent an aircraft component.

LOG(7) $=$ TOP-Flag indicating whether an upper surface toundary condition has been applied.

LOG(8)=BOT--Flag indicating whether a lower surface roundary condition has been applied.
*INT(2) =NROH--Number cf rows.
*INT(3) = NSETS-Number of sets of bcundary conditions on

```
this file.
```


*J1=NROW-Number of elements in the constant subvector.
$\mathrm{J} 2=1$
$\mathrm{J} 3=1$
NH=NBOW--See above.
*(A (NROW))--Elements of the constant subvector.

$\mathrm{J} 1=11$
$\mathrm{J} 2=1$
$\mathrm{J} 3=1$
$\mathrm{NW}=11$
A(NW)--Array containing the freestream velocity vector, the angles of attack and sideslip, the rotaticn rate vector, and the center of rotation location for this set or boundary conditions.

Output from the program consists of line printer cutput, data left on scratch files, and various porpan files. The line printer output is meant to be self explanatory and will not be discussed further. The potran files that are created are created acccrding to the frocedure in appendix A and conform to the format in Appendix B. Control cards for managing the scratch and EOTFAN files are given in Section 5.3. The potpan and scratch files are discussed in more detail in the following subsections.

7.1 SOLUTION FILES

Each solution file contains all the information relevant to that portion cf the soluticn vector associated with a single aircraft component. Each such portion of the soluticn vector is referred to as a solution subvector. The file itself consists of three or more records. The farst record is the introductory record. The second record contains the parameters defining the freestream conditions for all sets of boundary conditices for which a solution was computed; that is, the freestream velocity vector, the angles of attack and sideslip, the rotation rates, and the center of rotation location for the flow field. The third and subsequent records contain the solution subvectors, one record for each boundary condition.

The following informaticn is written on each solution file.

1st_Record

NCTIME--Number of words in the date and time array.
(CTIME (NCTIME))--Array containing the date and time that the solution file was created.

NTITL--Number of words in the title array-
(TITL(NTITL))--Title of the geometry file for this aircraft component.

NRECS-Two flus the number of sets of solutron subvectors.
(IFCRM (NBECS))-0, 1, 1, ...
$N I D=5$

ID(1)--Identification number of the geometry file associated with this aircraft component.

ID(2)--Identification number of the self-influence submatrix file asscciated with this aircraft component.

ID (3)--Identificaticn $n u m b \in r$ of the inverse file used to generate this solution sulvector, if such a file was used. Othernise ID(3) is zerc.

ID(4)--Identificaticn number of the bcundary condition file associated with this aircraft component.

ID(5)--Identification number of this sclution file.
$\mathrm{NLOG}=5$
LOG(1) =DBLT--Flag indicating whether doublet-type singularities have been used to refresent an dircraft component.

LOG(2) =SOURCE--Flag indicating whether source type singularities have been used to refresent an aircraft component.

LOG(3) =TOP--Flag indicating, whether an upper suriace boundary condition has been applied.

EGG(4)=BOT--Flag indicating whether a lower surface loundary condition has been appiied.

LOG(5) =CNSTRN--Flag indicating whether the influence ratrix $i s$ constrained.

NINT $=8$
INT(1) =ICTYPE--Not used at present.
INT(2)--number of elements in the solution subvector (i.e., number of unkncwns).

INT(3) - Number of sets of boundary conditions.
INT(4) = METHOD-MEthod of solution.
INT(5) $=$ NSING--Number cf elements in the solution vector if it were unconstrained.

INT(6) =NCFFX--Number of constraint function fragments in the N 1 direction (if the matrix is constrained).

INT(7) $=$ NCFFY--Number of constraint function fragments in the $N 2$ direction (if the matrix is constrained).

INT(8) =ICV--Flag indicating the type of constraint variables used to generate the constraint function.

NFLT=1
FLT (1) =X XACH--Mach number.

2nd_Record

J1 $=$ NSOL - Number of soluticns.
$\mathrm{J} 2=11$
$\mathrm{J} 3=1$
$\mathrm{N} W=11 * \mathrm{~N}_{\mathrm{S}} \mathrm{SO}$
(OINF (NSOL)), (VINF (NSOL)), (WINF (NSOL))--COmponents of the unit freestream velocity vectcr for each set of boundary conditions.
(ALPHA(NSOL)) - Angle of attack for each set of boundary conditions.
(BETA(NSOL))--Angle of sideslip for each set of toundary conditions.
($\mathrm{F}(\mathrm{NSOL})),(\mathrm{Q}(\mathrm{NSOL})),(\mathrm{RR}(N S C L))-$ Compcnents of the freestream rotation rate vector for each set of boundary conditions.
(RCGX (NSOL)), (RCGY (NSOL)), (RCGZ (NSCL))--Components of the position vector to the center of rctation of the flow field for each set of boundary conditions.

3rd_ang_subsequent_Records
J1=NR--Number of elements in the soluticn subvector.
$\mathrm{J} 2=1$
J $3=1$
$N H=N R--$ See $a b c \nabla e$.
(X(NR))--Elements of the soluticn subvector for a particular set of boundary conditions.

Each inverse matrix file contains all the information fertaining to the inverse of a matrix that was assembled and computed from one or rore influence matrix files. That is, the system of equations from which this inverse matrix was generated may have involved cne or more aircraft components. The file itself consists of three or more records. The first record is the intrcductory record. The second record contains all of the information from the influence matrix files that must be transferred to the solution files when the inverse is multiplied by a constant vector to produce a soluticn vector. The third and subsequent records contain the inverse matrix coefficients. Since the storage required to output the entire inverse matrix on a single record may te more than is available, several reccrds may be necessary to output the complete matrix.

The following information $i s$ written on an inverse ratrix file.

1st Record
A
NCTIME-Number of words in the date and time array.
(CTIME(NCTIME))--Array containing the date and time that the inverse matrix file was created.

NTITL--Number of words in the title array.
(TITL(NTITL))--Title of the inverse matrix file.
NRECS=Two plus the number cf records required to contain the entire inverse matrix.
(IFORM (NRECS) $)=0,0,1,1, \ldots$
$N I D=1$
ID(1) =Identification number of the inverse matrix file.
NLOG=1
LOG(1) FFIT--Flag indicating whether the matrix fits in core all at once.

NINT $=7$
INT(1) $=K M-$ Number of rows in the inverse matrix.

INT(2) $=N C P F-$ Maximum number cf columas in each inverse matrix output record.

INT(3) =NCMPS--Number of aircraft components associated with the system of equaticns frof which the inverse matrix nas created.

INT(4) $=$ INV-MEthod used to create the inverse.
INT (5) $=$ NCFC- - umber \quad fe records required to output the entire inverse matrix. This is alsc referred to as the number of inverse matrix fragments.

INT(6) $=$ IDC--Flag indicating whether this matrix is an inverse or an $L U$ deccmposition matrix. A value of 0 indicates an inverse, wile a value of 1 indicates an $L U$ decomposition.

INT $(7)=N C O L-N u m b e r$ cf columas in the inverse matrix.
NFLT=1

FLT(1) =XMACH--Mach number.
2nd Record
J1=NCMPS--See above.
J $2=7$
$\mathrm{J} 3=1$
$N W=7 * N C H P S$
(ICNST (NCMPS)) --Array indicating whether the singularıty distribution associated with each alrcraft component is constrained cr not.
(ICT(NCMPS))--Not used at present
(NCEFXA(NCMPS))--Array indicating the number of N1 directicn constraint function fragments asscciated with each aircraft component.
(NCFPYA(NCMES)) --Array indicating the number of N2 direction constraint function fragments asscciated witn each aircratt component.
(ICVA(NCMPS)) --Array indicating the type ci constraint variables used with the constraigt function associated with each aircraft component.
(IDA(NCMES)) - Identification number of the self-influence surmatrix associated with each aircraft
component.
(NNC(NCMPS))--Ending column number of the self-influence submatrix associated with each aircraft component as positioned in the entire influence matrix from which the inverse was computed.

3rdang_Subsequent_Records

J1=KM-Number of rows in the inverse matrix.
J2=NCPF--Number of columns in this fragment of the inverse matrix.

J3=1
NW=J1*J2-Nunber of inverse matrix coefficients in this record.
(A (W)) --Inverse matrix coefficients fcr this fragment.

7.3 LU DECOMPOSITION MATRIX FILES

Each LU decompositicn matrix file contains all the information pertaining to the Lu decompcsition of a matrix that was assembled from one or more influence matrix files. An LU decomposition matrix is analogous to an inverse matrix in that it is determined without knowledge cf the constant vector. Hence, any number of constant vectors may be solved using the same LU decomposition matrix. The system of equations from which this $\mathrm{L} U$ decomposition matrix was generated may have involved cne or more aircraft components. The file itself consists of fonr records. The first two records are exactly the same as the first two records of the inverse files (Section 7.2). The third record contans the fermutation vector associated with the $L u$ decomposition fatrix which tells how the row interchanges tcok place in the decomposition. The fourth record contains the LU decorposition matrix coefficients. At fresent, an LU decomposition matrix may be computed by the SOLN code only if the entire matrix fits in core at one time.

The following information is. written on an Lu decomposition file.

1st_Record

Same as 1st record of inverse file except that IFURM(3) is 1. See Section 7.2.

2nd Record

Same as 2nd record of inverse file. See Section 7.2.

3ㄷd Becord

J1=KM--Number of rows in the Lu decomposition matrix.
$\mathrm{J} 2=1$
$J 3=1$
NW=KM--See above.
(IF (NW))--Elements of the permutaticn vector.

4th Becora

J1=KH-Number of rows in the lo decomposition matrix.
$J 2=N C P F-$ Number , of columns in the IU decomposition matrix.
$J 3=1$
$N G=J 1 * J 2-$ Number of coefficients in the Lo decomposition matrix.
(A (NW))--Coefficients of the IU decomposition matrix.

7.4 SCRATCH FILES

A brief description ct each scratch file is given below as well as an indication of the circumstances under which each file is used.

INA--This file is used in a variety of ways. In general, it is needed in those circumstances where the influence matrix, inverse matrix, or decomposition matrix does not fit in core at one time. In addition, it is used tc store the solution sub-vectors in the iteration proceaure and the matrix partitions created during a PaRT command. The default logical unit number is 11.

INAT--This file is used in tandem with the file INA. That is, information on these files are manifulated and stored by transferring the information back and forth from INA to INAT and vice versa. It is needed in the same circumstances that reguire the use of INA. The default logical unit number is 12.

KST--This file is used to store the fragments of the influence matrix as read in from the POTFAN influence matrix files. This file is required fcr any cases using du RVNS comand. The default logical unit number is 13.

INCED-This file is used to store the partitions of the entire influence matrix in those situaticns where the influence matrix does not fit in core at once and a direct solution procedure is desired. In addition, this file is used to temporarily store the right hand side vectors. Hence, the file is required for any cases using an RBCS command or where the direct solution of a larger-than-core square matrix is desired. The default logical unit number is 14.

INR--This file is used during inversion of a matrix that does not fit in core at cne time. Individual blocks of the inverse are temporarily stored on INB. : This file is also used to manipulate the right hand side vectors and place them in the appropriate order. Hence. the INB file is reguired when inversion of large square matrices are ferformed and whenever the RBCS command is used. The default logical unit number is 15.

INBT-This file is used in tandem with the file INB. That is, information on these files are nanipulated and stored by transferring the information back and forth. It is needed in the same circumstances that require the use of INB. The default logical unit number is 17.

INVR-This file is used as a temporary storage device when the iteration procedure option is in effect. under these circumstances, the fragments of the influence matrix, are temporarily placed on this file. otherwise, INVR is used as the logical unit for any potran inverse files that are output from the SOLN code. The default logical unit number is 18.

This section descrikes a comprehensive series of test cases which were developed to thoroughly test the program. These test cases are very useful as an aid in familiarizing the user with the manner in which the SCLN code operates. They may also be used as a debugging aid when transferring the SOLN code to a different computer syster.

A total of seven test cases are included in this section. only two difterent systems of equations were used tc perform these test cases; however, a different method of sclution was used in each case.

The first system of equations produces a square influence matrix of order ten. An illustration of this system of equations is shown in Figure 8.0-1. A total of three alrcraft components are asscciated with this system of equations. Therefore, the matrix is subdivided into mine submatrices and three constant subvectors. The constant subvectors contain 5, 3, and 2 elements, respectively. Each subinatrix and constant survector are placed on a separate file. The matrix coefficients associated with each submatrix file were stored on two cr more records. A total cf twenty-two records were used to store the entire influence matrix. Two sets of boundary conditions-were Flaced on each constant subvector file. The solution to the tirst stt of conditions consists of the integers from one through ten. The soluticn to the second set consists of every other integer from twa through twenty. The formulae used to generate the matrix ccefficients and constant vector elements are the fcllowing:

$$
\begin{align*}
& a_{i j}=(n-|i-j|)^{7} \\
& b_{i}=\sum_{j=1}^{n} a_{i j} j \tag{1stset}
\end{align*}
$$

$$
\left.b_{i}=\sum_{j=1}^{n} 2 a_{i j} j \quad \text { (2nd } s \in t\right) \quad(8.0-3)
$$

The matrix produced by the above formulation is diagonally dominant and amenable to iteraticn techniques. This system of equations was used in test cases 1, 3, 4 and 5.

The second system of equations is overspecified and hence produces a rectangular influence matrix. In this case the matrix had seventeen (17) rows and ten (10) columns. An illustration of this system of equations is shown in Figure 8.0-2. Three aircraft components are also associated with this system of equations. Therefore, the matrix is subdivided into nine submatrices and three constant subvectors. The constant subvectors contain 7, 6, and 4 єlements, respectively while the soluticn subvectors contain 5. 3. and 2 elements, respectively. As with the first system of equations, a total of twenty-two (22) records were used to store the entire influence matrix, and two sets of koundary conditions were placed on each constant subvector file. The solutions to both sets of conditions are the same as those for the first system of equations. The formulae used to generate the matrix ccefficients and constant vector elements are the following:

$$
\begin{align*}
a_{i j} & =(n-\mid i-y)^{7} \\
b_{i} & =\sum_{j=1}^{m} a_{i j} j \quad(1 s t \text { set }) \tag{8.0-5}\\
b_{i} & =\sum_{j=1}^{m} 2 a_{i j} j \\
n & =n u m b e r \text { of rous in the matrix } \\
m & =\text { number of columns in the matrix }
\end{align*}
$$

where

The coefficients c_{0}, c_{1}, c_{2} are determined by satisfying in a least squares sense the rectangular systea of equations that is generated by setting $y=j$ at the location of the first and last element of each diagonal submatrix. This non-simple equation for y is required in order to achieve a system that can be solved by iteration. This system of equations was used for test cases 2,6 and 7.

The computer frograms used to generate the two systems cf equations described above are presented in figs. 8.0-3 and 8.0-4. The input used to run these frograms and place the results on the various files is shown in Figs. 8.0-5 and ع.0-6.
8. 1 TEST CASE NO. 1

The first test case solves the first system of . equations by direct Lu decomposition. It is assumed that the entire influence matrix will fit in core at one time. This situation causes the fastest direct sclution technique to be used to solve the system. The input for this case is shown in Fig. 8.1-1 and the output is shown ir Fig. 8.1-2.

```
E.2 TEST CASE NO. 2
```

The second test case solves the secend system_of equations by the direct Householder procedure since it is a rectangular matrix. The $L U$ deccmpositicn tecnnigue could rot solve this system of equations. It is assumed that the entire influence matrix will not fit in core at one time, kut that the largest influence matrix fragment will fit in core. Hence, the conb command is used to ccmbine all ot the influence matrix fragments into a single matrix and place the matrix in temporary storage. The extended Householder procedure for matrices toc large to fit in core at one tame is autcmatically used to sclve the system. The input for this case is shown in Fig. 8.2-1 and the output is shown in Fig. 8.2-2.

The third test case solves the first system of equations again by direct $L u$ decomposition. However, it illustrates the use of a different series cf command that may be advantageous for situations, where the same influence matrix is used on several different occasions in conjunction mith different constant vectors. That is, the matrix decomposition is created and stored on a tile for later use. This decomposition is the most time consuming portion of the IU decomposition procedure and is independent of the constant vector. Later, when the soluticn tc a particular system of equationsis desired, the deccmposition file and constant vector files are read in and only the forward elimination and backward substitution are performed to determine the soluticn. It is assumed that the entire influence matrix fits in core at one time. In fact, the SCLN code at present only possesses the capabilitif for creating and storing a decomposed matrix if the influence matrix fits in core at one time. The input for this case is shown in Fig. 8.3-1 and the output is shown in Fig. 8.3-2.
8.4 TEST CASE NO. 4

The fourth test case solves the first system of equations utilizing the blcck successive cuer-relaxation iteration procedure. Solf of the additional iteration procedure options are also exercised in crder to illustrate some of the capabilities available with this mrocedure. The diagonal submatrices are solved by $L u$ decomposition. The decomposition of one of the diagonal submatrices is assumed to have been computed and stored at some previous time. Hence, instead of being computed during the course of the iteration procedure, it need only be read in. In addition, it is assumed that an afproximate solution has been previously obtained for cne of the aircraft components. Hence, it need also only be read in as an initial guess at the solution rather than having an initial guess computed for that aircraft component during the course of the iteration procedure. A maximulf of ten iterations are allowed fcr convergence. A mild amount of cver-relaxation is used to accelerate convergence. printouts of some intermediate iterations are also specified. The input for this case is shown in Fig. 8.4-1 and the output is shown in Fig. 8.4-2.

The fifth test case sclves the first system of equations by a two step combination cir techniques. In the first step, the solutions for the first two aircraft components are determined as though there were no third aircraft component. That is, cnly the submatrices and constant subvectors associated with the first two aircraft components were read in and solved. Ther. the simultaneous sclutions for all three aircraft components wre determined ty the block successive over-relaxation iteration procedure with the solutions from the first step infut as inntial guesses to the soluticns for the first two aircratt components. The influence on the third aircraft component cf the first two and vice versa is thus deterained iteratively. This situation is analogous to the problem of determining the effect of wind tunnel walls on the characteristics of an aircraft. That is, initialiy a free-alr solution is ortained fcr the aircratt and then a solution is obtained with the aircratt in the wind tunnel using iteration. The infut for this case is shown in fig. E.5-1 and the output is shown in Fig. 8.5-2.
E.6 TEST CASE NO. 6

The sixth test case solves the secend system of Gquations in a manner similar tc that used tc perform the fourth test case. That is, the system is solyed by the thock successive over-relaxatica iteraticn technique. however, since the second system of equations is rectangular rather than square, the diagmal submatrices are solved by the Househclder procedure, and the inverse of one of the diagonal submatrices is read in instead of the decomposition cf the watrix. The input for this case is shown in fiy. 8.6-1 and the output is shown in Fig. 8.6-2.

E. 7 TEST CASE NO. 7

The seventh test case solves the seccnd system of equations in a manner siailar to that used to perform the fifth test case. That is, the system is solved by d two step combination of techniques. However, since the second system of equations is rectangular rather than
square, the Householder procedure was used to determine the solutions for the first twc aircraft confonents and also to solve the diagonal sukmatrices during the iteration procedure. The input for this case is shown in Fig. 8.7-1 and the output is shown in Fig. 8.7-2.

g_EEFEEENCES

Ames, N1lliam F . (1969) . Numerical Nethode for partial Differential Equaticns. New York: Earnes and Nobles.

Eratkovicn, A., and Marshall, F. J. (1975). "Iteratıve Techniques for the Scluticn of large finear systems an Computational Aerodynamics," J. Aircraft 12, 2 (i'eb.).

Forsythe, G. F., and Noler, C. B. (1967). Computer Solution of Linear Algetraic Systems. Enylewood Cliffs, N.J.: Prentice-Hall.

Ledan, R. T., and Fay, K. S. (1973). Aerodynamic Influence Matrix Ercgram for Aerodynamic Lirting Surface pheory. NASA Refort No. PEX62324.

Nering, E. D. (1963). Linear Algebra and Matrix Tneory. Ney York: John hiley and Sons.

Falston, A. (1903). A First Course in Numerical Analysis. New York: McGraw-Hill.
hestlake, J. R. (1968). A Handbcok of Numerical Matrix Inversion and Soluticn of Linear Equaticns. New york: John wiley and Sons.

Standardized FoRTRAN procedures and subroutines for cpening and closing files have been develoced to facilıtate using and coding potfin programs and the conversion of these codes to different computer systens.

A. 1 FILE CREATION

This section describes actions taken before and atter any potran program attempts to urite a potfan file.

Prior to writing any permanent file onto a unit, all fotpan programs call a system degendent subroutine as fcllows:

CALL OPENH (NT,IFIYP,ID,IR)

If IR is not zero, then $N T$ and ID are considered subroutine inputs. NT is the logical unit number on wich the file will be written and ID is the file creation identifier, which should also be the primary file identification number. If IR is zero, then ID is not considered a subroutine input and $N T$ is.only the default unit number. In this case the frogram reads in ID and NTfrcm a card via 215 format. If the value of $N T$ on the card is zero, the subrcutine replaces NI with the default value.

If the value of $I D$ determined in either case is then still zerc and if it is possible on the computer syster keing used, the program will replace $I D$ with the current number on the identificaticn number file and also update the identification number file.

In addition to $N T$, ID, and IR, IFTYP is also input to the program. IFTYP defines the type of file being created according to the following table:

IFTYP TYPEOE_FILE

1 Geometry
2 Boundary condition

3	Influence matrix
4	Velocity matrix
5	Solutions
6	Velocity at fcrce sensing location of N1 segments
7	Velocity at fcrce sensing lccation of N2 segments
8	Constraint tumcticn transformatior matrix
9	Leta plot file
10	Constrained influence matrix
12	Preset soluticn
15	Inverse cr deccmposition of influence matrix
16	External velccity
17	Surface fressures
18	Surface velocity

Once $I D$ and $N T$ have $b \in \in n$ determined, tne proyram opens (if possinle on the system teing used) the file for writing using a file name determined from ID and IfTYP. On LBM systems, ofening a file consists of issuing a DDEF to the cperating system. On the INFONET UNIVAC 1108 systell, an LCUATE command is involved. This feature eliminates the need for jot control cards to hande files on those systems for which FORTRAN Erograts can ofen files.

The program then rewinds the file and writes a messaye lndicating which unit has teen cpened and the value of 1 L ana TFPYE.

After the file has teen cpened and written upon, it is released by calling ancther system dependent subroutine as fcllows:

CAIL ENDFLL(NT)

This subroutine writes an end-of-file mark on the unit and (if required $k y$ the system being used), releases the unit. The subroutine also writes a message inaicating that unit NT has been closed.

A. 2 FILE ACCESSING

This section describes actions taken before and atter any POTFAN program attemfts tc read any PCTFAN file.
pricr to reading any permanent file from a unt all EOTFAN Erograms call a system dependent subroutine as follows:

If $I R$ is not zero, then $N T$ and ID are considered subroutine inputs. NT is the logical unit number from which the file is read and ID is the file access identifier, which should also be the primary file identification number. If IR is zero, then ID is not considered a subroutine input and NT is cnly the default unit number. In this case, the program reads in ID and NT from a card via 2I5 format. If the value of $N T$ on the card is zero, the subrcutine replaces kT with the default value.

In addition to NT, ID, and IR, IFTYP is'also input to the program. Ifryp defines the type of file being read according to the table in the previous secticn.
once ID and NThave been determined, the program attempts to open the file using a file name determined from ID and IFTYP. The capability to cpen a file from a FORTRAN frogram depends on the system keing used. As explained in the previous section, this may involve a DDEF or EQUATE command and can eliminate the need for job control cards to handle files.

The program rewinds the file and writes a message indicating which unit has been cpened and the value of In and IFTYP.

After control is.returned to the calling program and the first record of the file has been read, all porfan frograms check to see if the access identifier is equal to the actual primary file identification number existing on the first record. If not equal, the program writes an informational diagnostic message and proceeds. This feature is meant to be a helpful filekeeping technique tor those systems that do not permit automated file control.

After the file has been read and there is no further use for it, it is released by calling another syster dependent subroutine as fcllows:

CALI FILEND (NT)

This subroutine rewinds unit $N T$ and (if required by the system being used) releases the unit.

E_STANDARDLZED_FORMAT_OE-ECTEAN FILES

A standard fcrmat has 上een develoged for potran files. Ihis format is applicable to all files except scratch files and plot files. This standard has been developed for the following reasons:

1. to minimize the effects of changes in one Porfan seguent on cther poifan segatnts;
2. to allow a progran to $b \in$ developed which can inst andor edit the contents of any fuTFAN file; and
3. to promote consistency ancng pCTFAN frogralls.

Brietly, the standardized POTFAN rile consist of one or ncre records. The first record is called the introdnctory record and contains miscellaneous data including tae primary ldentification number, a title, dnd real, integer, and logical farameters reflecting how the data on the remaining records was calculated and/cr how it is to be used. The second and subsequent records generally contain the bulk of the data and are called data records. The latter recoras contain one or more arrays whicr are always either integer cr floating point numbers (i.e. integer and ficating point rumbers are not mixed on a single record). A detailed description is given belcu.

First_Recora (Introductory Record)

This record is created by an unfcrmatted write statement such as the following:

WRITE(NT) NCTIAL, (CTIME(N), $\mathrm{N}=1$, NCTIME), NTITL, \# (TITL (N), N=1,NTITL), NRECS, (IFORM(N), N=1, NRECS),
\#NID, ($I D(N), N=1, N I D), N L O G,(L U G(\mathbb{N}), N=1, N L O G)$,
\#NINT, (INT(N),N=1,NINT), NFIT, (FLI (N), $\mathrm{N}=1$, NELT)

The values of NCTIME, NBECS, NID, NLCG, NINT, and NFLT are all at least one and can vary from file tc file even for files of the same type (e.g. NINT may be different on two different geometry files). An explanation of these variables is given below:

NCTIME Number of words in (CTIME)
(CTIME) Creation time in A4 alfhanumeric fcrmat. Whether or not this array can be filled out depends on the availability of a system dependent subroutine to compute it. This array is used only as a filekeeping aid. It is printed cut whenever a file is created or read.?

NTITL The number of words in (TITL). Generally NTITL is a multiple of 20 .
(TITL) Alphanumeric titling information (e.g. "Delta wing with flaps"). This array is to be written under a format such as (1x,20A4/).

NRECS The number of records (including the first) comprising the file. NGECS is alsc the number of words in (IEORM).
(IFORM) An integer array indicating the kind of aumbers on, each record. A value cf zero implies an integer and a value $c f$ one implies a floating point number. IFORM(1) has nc significance.

The number of words in (ID)
Identification number array. IE(NID) is the primary file identification number. In order to keep track of files IL(NID) should be unique for each file. This number is printed out whenever the file is created or read.

KLOG The number of words in (LOG)
(LOG) An array of logical parameters
NINT Number of words in (INT)
(INT) An array of integer parameters
NFLT Number of words in (FLT)
(FLT) An array of floating point parameters. If the remaining data on the file is dependent on Nach number, then FLT(1) is the mach nuaber.

Second_and_Subseguent Records (Data Reccrds)

The remaining records of pCrfan files contain one or more arrays. If the data record contains more than one array, then all arrays on the reccid must te of the same type (i.e. either integers or real numbers, but not voth) and all arrays must have the same number of horas. the Lecords also contain array dimensions (J1, J2, and J3) and the total number of worls in all arrays cn the record (NW). followiny are some examples of code uscd to create data records:

```
NW = J1*J2*J3
WRITE (NT) J1,J2,J3,NW,(((A (I,J,K),I=1,J1),J=1,J2),K=1,J3)
J3 = 2
NG= J1*J2*J3
MRITE(NT) J1,J2,J3,NW,((A(I,J),I=1,J1),J=1,J2),
H(B(I,J),I=1,J1),J=1,J2)
J2 = 1
J3 = 1
Nh= j1
WRITE(NI) J1,J2,J3,NW,(A(I),I=1,NW)
J2 = 3
J3 = 1
NH = 3*J1
w/RIIE(NT) J1,J2,J3,NW,(A(I),I=1,J1), (B(I),I=1,J1),
#(C(1),I=1,J1)
```

Note that in the above examples ail dimensions with rultiple arrays were fritten with the leftmost indices varying most rapidly. This practice is always followed unless it is strictly necessary tc do otherwise.

No matter how a data record was created, it can de read in by either of the fcllcwing: .

```
READ(NI) J1,J2,J3,NW,(A(I),I=1,NW)
READ(NT) J1,J2,J3,NH,(((A(I,J,K),I=1,J1),J=1,J2),K=1,J3)
```

In the former case, the data is packed solidly lato cole. In the latter case, some a priori knouledge of J1, JL, and

33 or their maximum allowable values must have been available in order to properly diansion (A). Such a priori knowledge is generally contained as elements cf (INT).

Different data records may contain data of different types and may have differing values of J1, J2, J3, and NW.

```
AEPENDIX C
```

C_AR즢Y NOTATION

A shorthand notation for. referring tc arrays in the anternal and external documentation of potean programs has teen developed. This notaticn should be made clear by the Iollowing examples:
(A)
(A(N)) This reters to all the words in (A) Erom 1 thrcugh N.

A(N) I'his refers only tc the wth word of (A).
(A(1,J)) This refers to all the words in the doubly dimensioned array A for which the first index varies frci 1 to I and the second from 1 tc J.

A(I,J) This refers to the element in (A) for which the tirst index is I and the second is J.
(A $(I, J), J=3, K)$ This refers tc the words of (A) for which the first index is I and the seccrd index varies from 3 to K.
(A (I,*)) This refers to those elements of (A) ror which the first index varies from 1 to land the second index varies frcm 1 to some value which for scine reason cannot $t \in$ deiined.

EROGRAM	CALlee By	CAILS
ATR	INVRS, ITRE, RIVNS	None
BLKINV	INVES	UINV
FALL	INVRS, ITRM, MATMLI, MINV	None
house	INVES	None
HREC	INVES	None
INVOUT	INVRS	OFEN, FILEND, TIMEST
INVRS	OPRN, ITRM	OFENH, BLKINV, FALL, HOUSE, BREC, INVOUT, MATERC, MINV, SOUT, TRIP, SCLVE, ATE
ITRM	ORRN	ATR, FALL, INVRS, MATCCM, MATPRF, MATPRO, OPENH, PART, FILEND, TIMEST, TRIE, GEENR, RELFIL

TABLE 4.1~1. Subgrogram Calling Structure

Phogkan	CAILED EY	CALLS
HATCCO	SCLNTO, ITEE	NCne.
H2AMMLT	SCINIO	MATERC, SUUT, FALL
MATPEE	ITRM	None
MATEFC	INVES, ITRE, MATMLT	NCne
TINV	BLK゙INV, INVES	FALE, TEIP
OPENF	ITBM, GBCS, RCIVNS, RIVNS, RVNS	nachine aevenaent subrcutines only.
OPENW	INVOUY, ITEA, SOUT	Machint dependent subroutines only.
OPRN	SCLNIO	INVES, ITHA, PART
EART	CPRN, ITRM	None
EBCS	SCLNIO	RELILL, KHSCOM, UPEAR
KCINVS	RVNS	OPENR, RELFIL
KELFIL	ITRM, BBCS, RCIVNS, RIVNS, RVNS	vone

TABLE 4.1-1 SuEfrogram Calling Structure (Cont'd)

PROGRAM	CALEED BY	CALLS
EHSCOM	RBCS	None
RIVNS	SOLNIO	ATE, OFENR, RELFTL
RVNS	SCLNIO	CEENB, RCIVNS, RELFIL, RVNS2
RVNS 2	RVNS	None
SOLN	None	SCINIO, TIMEST
SOLNIC	SOLN	MATCOM, MATMLT, OPRN, RECS, EIVNS, RVNS
SOLVE	INVRS	ETIME, ETIMEF
SOUT	MATMLT, INVES	GPENW, FILEND, HIMEST
TIMEST	INVOUT, ITRM, SOUT, SOLN	System dependent subroutines only.
TRIP	MINV, INVRS. ITRM	None

TABLE 4. 1-1 Sukprograf Calling Structure (Concluded)

COMACN BLUCK NAGE	GİE	USING SUBPROGRAHS
CONSI	10	Nearly all
ESCOn	110	ITAM, ${ }^{\text {OLECS, SCUT }}$
INVCOM	70	```INVCUT, INVES, ITRN, #ATCON, NATMLT, CPRN, PART, ABCS, HCIVNS, KHSCOM, RIVNS, EVNS, RVNS2, SOL&, SCINIC, SOUI```
LNVFig	50	ITRA, KCIVNS, RVAS
NIDCOM	864	$\begin{aligned} & \text { INVCOY, INVES, ITRM, MATALT, RGCS, } \\ & \text { ECIVNS, RIVNS, FVNS, KVNSZ, SULN, } \\ & \text { SCLNIC, SOUT } \end{aligned}$
NOCOM	9	INVCUI, INVRS, ITRE, MARCOM, NATMIT, CEBN, PAEI, RBCS, RCLVNS, RIVNS, RVNS, RVNS2, SOLN, SULNIO
NHCOH	200	ITFM, RECS, RCIVVS, SCLNIC, SOUT

FORTRAN yarlable	LOGICAL UNIT DESCRIETION	$\begin{gathered} \text { CURRENT } \\ \text { VALUE } \end{gathered}$
INI.	Temporary storage device	11
KST	Temporary storage device	13
INCBD	Temporary storage device	14
INLT	Temporary storage device	12
INB	Temporary storage device	15
INBT	Temporary storage device	17
INVR	Temporary storage device cr logical unit number for outfut of inverse or decomposition matrix file	18
NTIR	Temporary storage device	16
ntce	printed output device in conversational mode	6
NTP	Printed output device in batch mode	6
NTCR	Conversational mode input device	5
NTR	Batch mode input device	5
BIN	Batch mode input device	5
ROUT	Printed output device in batch mode	6
OOTA ()	Array of logical units for solution output files	User Input
NBCR ()	Array of logical units for constant vector input files	User Input
INPS ()	Array of logical units for preset singularity input files	User Input

TABLE 4.4-1 Sumpary of Logical Units used ky SOLN Code

FiGure 1.0-1 Fotential Flcw Analysis System Structure

FIGURE 3.1-1 Flou of Fartiticning Scheme Solutions

Figure 4．1－1 Equation Sclver frcgram Subroutine structure

FIGURE 4.2-1 Equation Solver'Erogram Logic Flow Chart FIGORES-4

FIGURE 4.2-1 Equation Sclver Program Lcgic Flow Chart (Cont'd)

FIGURE 4.2-1 Equaticn Sclver Progran Lagic Flow Carar (Cont'd)

FIGURE.4.2-1 Equation Sclver Program Logic Flow Chart (Cont'd)

FIGURE 4.2-1 Equaticn Sclver Program Logic flow Chart (Contid)

FIGURE 4.2-1 Equation Sclver Program Logic Flow Chart (Cont'd)

figure 4. 2-1 Equation Solver Program Logic flow Cnart (Contid)

FIGORE 4.2-1. Equation Solver Program Logic Flow Chart (Cont:d)

FIGURE 4.2-1 Equation Sclver Program Logic Flow Chart (Concluded)

——— SUB-MATRIX OR SUB-VECTOR BOUNDARY

- - - SUB-MATRIX FRAGMENT BOUNDARY

FIGURE 8.0-1 IIlustration of the System of Equations Solved for Test Cases 1, 2, 3, and 5; a 10×10 Square Matrix Composed of Three Aircraft Components and 22 Matrix Fragments.

SUB-MATRIX OR SUB-VECTOR BOUNDARY
 - - - SUB-MATRIX FRAGMENT BOUNDARY

FIGURE 8.0-2. Illustration of the System of efuations Solved lor Test Cases 2, 6, and 7; a 17×10 Rectangular Matrix Composed of Three Aircraft Components and 22 indrix Fragments.

```
            OIMENSION A(150,150),B(150),TITL(5),IFORMV(10),IDVP3),LOGV(12),INT
            IV(12),FLTV(6),IFORMB(9),IDB(?),LOGB(9),INTB(3),FLTB(1),F8C(11)
    -NIMENEION-NRPCT3);NCPC(3);NFPC{3,33,NRPF{3,3,3),NTVNW(3;3);NTBCW(3
        1)
        LOGICAL LOGV.LOGA
    - logical CONV,BATCH
        POMMON /CONST/ CONV,BATCH,DUMY(A),NTCP,NTP,NTCR,NTR
        DATA IITL/AHTEST,4H CAS,4HE FO,4HR SO,4HLN /
        DA"A-IPORM**0,9*17,IFORMB/0,8*1/
        DATA LOGV/F,T,R*F,T,F/,INTV/0,5,2,4*n,10,10,1,10,21/,FLTV/0,.1:,0.
        1,0.,0..0.1
            DATA LOGR/4*F,T,F,F,F,F/,INTR/0,10,1/,FLTB/1.0/
            DATA FSC/1,0,10*0.01
            OATA NCMP/1/,NFPC/1/.MULT/1/:MEXP/3/
        NAMELISTAMDAPA/NCMP,NRPC,NCPC;NFPC,NRPF,NTVNW,NTRCW,MULT,MEXP,NSOL
            NTRE5
            NTCRES
            NTPEM
            NTCP:%
            CONTINUE
            REAO-(5T*TPROMPFB+ENFERN: 1) N
            IF(N:LE.O) STOD }77
            NSQ#N+N
            NSOL:1
            NRPC(f1)=N
                NCPC(P)=N
```



```
            READIS,MDATAÖ
            DO2 IEI.N
            DO 2 J=1,N
            KKm((N=IABS(I~J))*MULT)**MEXP
                A(I;J):KK
\cdots...- e
            DO6 I=1.N
            CT=0.
            DO 4 k:I,N
                        CTMCT&((I,K)*FLOAY(K)
            A(I)|CF
            CONFTNUE
```

[^0]```
 NTfl:=5
 M川V=3
 NIOGV=12
 NTNTVE12
 NFLTVEG
 TDV(1)=1
 IOV (Z)=2
 FA+V(3)=1
 4NVP!?)=21
 4\DE=?
 NLOGR=0
 NINTR=3
 NFLTP=1
 |a(1)=1
 NOLIMP=!
 M|NIz1'
 NVFS=3
 AFSC:11
 43采1
 NEGCSB}=1+3*NSO
 KFE1
 OO 2O TC=1.NCMO
 KC=1
 TNTV(2)=NQD(PIC)
 #NTV(9)=NR巨(PIC)
 1K=KR+NGD(C,TC)-1
 NO 5O JC=1.NCMP
 FF(NFPP(JE,TC),EA,1) NRPF(I,JK,TC)=NRPC(IC)
 LC=KC+MCD(C,IC)=1
 NRECSVG1$NFFP(IC,IC)
 NTVN=1
 CALL OPENW,NTVN, 3,NTVA,m,IC,IC,,19
 IOV(3)=NTVNWGJC,IC,
 #NY(S) =N(PCPJE)
 NFPCIC=NFP(P,IC,IC)
 fNTVPIL\=0
 \capO 30 IF=1,NFPCIC.
3@ IF(NRPF(TF.JP,IC).GT,INTV(11)) INTV(II)=NRPF(IF,NE,IC)
 WRTTE(NTVN: NDHMP,NNIIMI,NTTTL,TITL,NRECSV, (IFOQMV(I),TEI,NRECSV),N
 ITDV,TIFV,NLOGV,LOGV,NINTV,INTV,NFLTV,FLTV
 WOITE(b,GOOOI NTITI,TITL,NQESSV, IFORMV(I),I=I,NRECSV)
GOOO FOPMAT(2X, INTVN 1'/2X,15,5A4/2x,20!5)
```

Figune 8．0－3 program Used tc Generate the Matrix and Constant ．Vectors 土ct Test cases 1，3，4，and 5 （cont＇d）

```
 WRITE(6,6001) NIOV,IDV,NLQGV,LOGV,NINTV,INTV,NFLTV,FLTV
6001 FORMAT,2X,4I5/2X,15,12L5/2X,15,1215/2X,15,2X,6E12,5,
 K:KR
 DO 40 IFEI,NFPCIC
 NI#NRPF(IF,JC,IC)
 N2.NCPCTJCJ
 LEK+NI=1
 NW!N!*N2
 WRITE(NTVN) NZ,NI,NZ,NW,((A(I,J),IEK,b),JEKC,LC)
 WRITE(6,6002) N2,N4,N3,NW,((A(I,J),I#K,L),JFKC,LC)
6002 FORMAT(2X,INTVN 2,/2X,4I5,(/2X,10E42,5))
.... KIt`!
40 CONTINUE
 CALL RELFIL(NTVN)
-KC=LC+1
50 CONTINUE
 NTBC=2
 CALt-OPENW(NTRC,2;NTRC时(IC),Tj-
 TOB(2)mNTBCW(IC)
 (NTB(2)mNRPC(IC)
 INPE{3)ENSOL
 WRITE(NTBC) NDUMT,NOUMI,NTITL,TITL,NRECSE,(IFORMB(I),I=1,NRECSB),N
 IIDR,IDG,NLOGR,LOGR,NINTB,INTB,NFLTG,FLTB
 -. WRITE(6,6003) NTITL,TITL,NRECSB, (IFORMB(I),I#I,NRECSB)
6003 FORMAT(2X,INTBC 11/2X,I5,5A4/2x,20I59
 WRITE (0,6004) NIOB,IDB,NLOGB,LOGB,NINTR,INTB,NFLTR,FLTR
6004 FORMATIZX,315/2x,15,9L5/2X,15,315/2x,15,2X,11E10:4;
 NI=NRPC(IC)
 nO 100 ISOL:I,NSOL
-....00-200 ImKR.LR
200 B(I)=ISOL*B(I)
 WRITE(NTBC) N1,NDUMI,NOUMI,NI,(B(I),IEKR,LR)
 WRITF(6,6005) NI,NDUMI,NDUMI,NI,(B(I),ImKR,LR)
6005 FORMAT(2X,INPBC 2i/2x,4\5,(/2x,10E12.5!)
 NW:N1&NVFS
```



```
 100 CONTINUE
 KRELR+1
 CALL RELFIL(NFRC)
20 CONTINUE
 S10P
```

FIGURE 8.0-3 Program Used to Generate the Matrix and Constant
Vectors for Test Cases 1,3,4, and 5 (Concluded)

```
 OIMENSION A(150,15n), E(150),TITL(5),IFORMV(10),IDV(3),LOFV(IZ).INT
```



```
 #{MENSIOM MRP(EP3),N[D(CT3),NFPC(3,3),NRPF(3,3,3),NTVNM(3,3),NTGCWP3
 1)
 OINENSIOA, N(150),Y(TG),Y((3),I\(b)
 LOGICAL LOGV.LOGG
 IOGICAL CONV.GATGH
 POMMON /CONST/ CONV,BATC&,DUMY(4),NTPP,NTP,NTCR,NTR
 DATA TITL/AMTEST,HH CAS, UHEFO,4HR SO, AHLNN,
```




```
 1,0,00.00,
 DATA |OGB/4*F,T,F,T,F,F/&IN1R/0,10,1/,FITQ/1,0/
 n利A FSC/1:0%10*O.0%
 NAMEILIST/MNATA/MCNP,NPDC,NPFE,NFPC,NRPF,NTVNW,NTECW,MIIT, MFXP,NSOL
 N&MELIST/STZE/ARgMP
 \TR&5
 MCH%照与
 NHOE
 NYCPme
 CONTINUE
 READRS,SIZE)
 450gNK*NC
 Agतl=1
 GEAOT5.MOATA,
 I }\triangle\mathrm{ CUME1.
 {\triangleCUM=1
 4%0
 DO 3 I=1.NCMP
```



```
 I\(M-1)=IACUM
 II(M) ENCPC(I)&IACH*NO
 TACUMEYACUN+NCOCPY)
 vIPM=1]=J\DeltaCUM
```



```
 JACUME,JACUMकNRPCP!)
 POMTT\\IE
 IM\DeltaX=? #NPMP
Mgn
```

FIGURE 8．0－4 Program used t．c Generate the matrix and Coustant Vectors fer Test Cases 2,6 ，and 7


```
M#M+7
D(M)日II(L)**K!
```



```
CONTINUE
NS"!
CALL HOUSERLMAY,3,D,NS,YI,YCS
00 2 JeI,NE
y#y(i!)tyc(2)*,j*yC(3)*J#J
OB-2 -im4,NR-
A{IGJ)E((NR-ABS(I-Y}}*MULT)*由MEXP
 2. CONTINUE
 DO 6 IEI:NR
 CY*O
DO 4 K=1.NC
```



```
 B(1)&CT
 G CONTINUE
 NT TTLES
 NIOVES
 NLOGVE\Z
 |IN#V#!2
 NFL`v*g
 IOV(1)=1
 lov(2)=2
 INTVf3)E!
 TNTV(12):24
 N%OBy2
 NLOGREG
 N{NTARS
 NFLTAE!
 IDB(1):1
 NDUMI=1
```



```
 NVF9E3
 NFSCB11
 N3:
 NRFC8BEI&2*NSOL
 KR権!
```


FIGURE 8.0-4 Prograll Used to Generate the Matrix Constant
Vectors for Test Cases 2,6, and 7 (Cont* d)

```
 KCE1
 {NTV'z)mNRPCIIC.
 TNTV(G)=NRP(CIE)
 LR#KR+IIRPC(IC)-1
 OO 50 JC#1,NCMD
 IF(NFPC(JC,ICI,EG.1) NRPF(I,NC,IC)=NRPE(IT)
 LEKC+NCPC(JE)-1
 NRFCSV=1&NFPC(JC.IC)
 NTVN=!
 CALL OPENWPNTYN,3,NTVNW(JC,ICI,1)
 gNV(3)=NTVNWPJC,T(C)
 TNTV(BIENCDC(IC)
 NFPCTE=NFPFOSC,IC)
 \NTVP11}=0
 n0 30 IF=3,NFPCTP
30 IFPNRPF(TFGJC,IC).MT,INTV(II)) INTV(II)=NFPF(IF,JC,IC)
 WRITE (NTVN) MDUMI,NIMMT,NTITL,TITL,NREOSV, (IFORMV(I),I=I,ARECSVI,N
 IT\capV,IDV,NLOGV,LOGV,NTNTV,INTV,NFLTV,FLTV
 WRITF(G,GOOO) NTITL,TITL,NUECSV,(IFORMV (I),I=1,NRECSV)
HODO FORMAT(2X, 'NTVN ;1/2x,I5,5A4/2x,20T5!
 WhIIE(G,GOOI, MIDV,IDV,NIOGV,LOGV,NINTV,INTV,NELTV,FLTV
H0O1 EORMAT,2x,4I5/2x,15,12L5/2x,15,12I5/2x,35,2x,6F12,5,
 K EKR
 nO 4O TF=1,NFPCTC
 N1ENRPF(IF:JC,IT)
 N2=NCP(\JC)
 I=k+N1=!
 NHFNOM&N2
 WRITE(NTVN) NZ,NI,N3,NW,((A(I,J),I=K,L,,J=KC,LC,
 WRITF(6,6002) M2,N1,N3,NW,P(A(I,J),T=K,!),J=KC,LC,
GOO2 FORMAT(2X,NNTVN 2,/2X,4I5,(/2X,10E12.5!)
 keL+1
AO. CDNTYNIEE
 CALL RELFILPNTVN)
 KC=LC+1
 PONTINUE
 NTBC=2
 CALL DPENWPNTKC,2,NTRCW(ICI,1)
 TDR(P)=NTBCW(IC.)
 #NTB(2)=NRPC(IC)
 INTE(3)=NSOL
 WRTYE(NTMC) NDUMI,NOUMP,NTTTL,TITL,NRECSR, (IFDRMA(I),IEI,NRECSR,ON
```

FIGUBE 8.0-4 Program used tc Generate the watrix and constant
Vectors for Test Cases 2,b, and 7 (Cont'd)

```
 IIDA,IDB,NLOGR,LOGR,NINTB,INTB,NFLTR,FLTB
 WRTTE(6,6003) NTITL,TYTL,NRECSB,(PFORMB(I),IE1,NRECSB)
 6003 FORMAT(2X,INTAC 1;/2X,15,5A4/2X,2015)
 'WRITE(6,6004) NIDE,IDE,NLOGB,LOGB,NINTE,INTB,NFLTR,FLTE
 6004 FORMAT(2x,315/2x,15,9L5/2x,15,3I5/2x,I5,2x,11E10,4)
 NIENRPCTICS
 nO 100 ISOLE1,NSOL
 DO 200 ImKR,LR
 200 B(I)=ISOL*B(T)
 WRITE(NTBC) N1,NDUMI,NOUMI,NI,(B(I),IEKR,LR)
 WRITE(6,6005) NI,NDUMI,NDUMI,N1,(B(I),I』KR,LR)
```



```
 NWWNI#NVFS
 WRTTE(NTAC, NFSC,NDUMI,NDUMI,NFSC,FSC
 100 CONTINUE
 KR#LR+1
 CALL RELFIL(NTRC)
..-20-CONFTNUE
 STIP
 ENO
```

FIGURE 8.0-4 Program Used to Generate the Matrix and Constant Vectors for Test Cases 2,6, and 7 (Concluded)

19
 NRFF= $2,2,1,3,1,1,1,1,3,2,1,0,1,2,1,1,1,1,1,1,1,1,1,0,1,1,1$,



FIGURE 8.0-5 Input Used to Run STES's Erogram

SSIZF VR=17, $C=10$ \&Fm
SMDATA NCMP=3,NRPC=7,6,4, NCPC=5,3,2,NFPC=3,3,3,2,2,3,2,2,2, NRPF $=4,2,1,3,1,3,2,3,2,4,2,0,1,5,0,3,2,1,3,1,0,2,2,0,1,3,1$, NTVNW=7077,7078,7079,7080,7081,7082,7083,7084,7085, NTECW=7086, $708.7 .7088, M U L T=1, M E X P=7, N S O L=2$ SENC

## FIGURE 8.0-6 Input Used to Run STESTR Program

```
TRUF
 SAMPI: 'AGE I FOR THE SOLN CONE:
 SOLUTFO** Ky (IHECT
 IU OERONPOSTTION METHOD.
 HaTCH M|DF
 THREE AJRCRAFT COMPUNENTS.
 TWOC,NSTANY VFCTITRS.
CNTL
 *
 RGAC INHGHENCE SUB=MAYRIX FILES:
VNKF
 7054
 7060
 7061
 7An己
 7003
 706:4
 700&
 706n
 7067
 SINGE FHE ENTIRE MATRIX FITS IN
 CORL, COSMH GOMMAND IS NOT
 NEEDE:"
 KEAD {ONSTANT SUBMVECTOR FTLFS.
 ACHE
 7068
 ..7089
 7070
 SILVE RY III DECOMPOSITION,
 AND DFFINF THE SOLIJTION
 SUROVECTOW GHOPUT FILES.
 solv
 O
 7071
 7072
 7073
0
 ALL DUNT:
SFf+p
```

POTFAN EQUITION SOLVING PROGRAM (SOLN), VERSION 1.1



## DYNAMIC MEMORY $=10000$



FIGURE 8.1-2 output for SCLN Code for Test Case No. 1

```
 UN:I 1 K&WIUND AND RELEASED
 FILF 70t7, \forallH&PNE HAS BEEN OPENEO FOR REAOING ON UNIT
 CREATION IIFEE07/07/76 04:08:54
 UNIT I RFWIIUMD &NO RELEASED
 +: SINTE TME ENTIRE MAIRIX FIT$ IN
 +: CORF, COME COMMANO IS NOT
 +: NHENED.
 *: REAT, CONSIANT BURW#EC\OR FILES.
+: RCRE
FIL.F 7OGR, KC:FNC HAS REEN OPENED FOR READING ON UNIT ?
CPEATIOA FINF=07/07/76 04:08%54
UNIT ? RtWLIJND AND HELEASED
FILE 7OEQ,RTOPNC HAS REEN OPENED FOR READING ON UNIT ?
```



```
UNT1 P H!WHUND AND RELEASEG
FILE 7O70.RGOPNC HAS BEEN OPENED FOK READING ON UNIT,
CREATION II=F=07/07/76 04:0B:54
UNTT P RFMUHNO AND RELEASED
*: Sulve BY LU DECOMPOSITION,
*: ANN MFFFNL TME SOLUTION
*: SMR=VFCTNR OUIPUT FILES.
* Solv
MtiHnty=
JPG2. n
TPKI'Tz .
```



```
 70%1 r
 7072
 7074 -
ENIER SUH, UART #FRAGS= 22 INV= -2
MATKIX LOADFDFROM UNIT 13 USING 2? READS AND 176 SKIPS
NO PARTITIONING KEOUIRFO
EXTT PakT
ENTER SUR, IRYP:N# 10
FXIT TKIP
かひ7年㴽
SOLUTION IImE (SEP:) .OTO
SOLUTION VERTOR NON. I
```


## FILE 7071.SGOPN/LIBS CREATION TINE $=07 / 22176$ <br> HAS BEEN OPENEO FOR WRITING ON UNIT S 11:06123

UNIT NO: 3
COMPONENT NO, 1 SOLUTTONS:
UNIT 3 ENDFILED AND RELEASEO
FILE 7072, SOMPNC/LIES HAS BEEN OPENED FOR WRITING ON UNIT 3

UNIT NO, 3
COMPONENT NH: 2 $.6000000 \mathrm{~F} 401 \quad .7000000 \mathrm{~F}+01 \quad 8000000 \mathrm{E}+01$
UNIT 3 ENDFILED AND RELEASED
 CREATION TYME $=07 / 22 / 76$ 11106:24

COMPONENT NO: 3 SOLUTIONS:

$$
9000001 E+01 \quad .1000000 \varepsilon \neq 02
$$


OUPPUT


```
SOLUPTON VENTOR NO. 2
```




```
 UNYT NO %
-COMPONENT NUT: - SOLUTIUNST
 .2000000E+01 :4000000E+01 :6000000E%01 :8000001E+01 . 9999999E%0
UNIT 3 ENDFI/ED AND RELEASED
```


UNIT NO, 3 .
COMPONENT NO: 2 SOLUTIONSI
$.1200000 E+02 \quad .1400000 \mathrm{~F}$ \& $\quad .1600000 \mathrm{E}+02$
: FIGORE 8. 1-2 Output for SCLN Code for Test Case No. 1 (Cont'd)

```
UNIT 3 ENDFILED AND RELEASED
```



```
:%
|NTT NO: 3
COHPONENT NU' 3 SOLUTTONS:
 .1=0.0000E+02 , 2000000%+02
uNI!. 3 END'ILED AND RELEASED
+: - atl from#.
+& STOH
STfIP }77
Fludre 8.1-2 output for SCLN Code Ėor Test Case No. 1 (Concluded)
```



FIGURB 8.2-1 Input for SOLN Code for Test Case No. 2

```
POTFAN EQHATION SULVINR PROGRAM (SOLN), VERSION 1.1
```



```
DYNAMYC MFMrIRY = 10000
1INF= いげぎ/7% 11:07:ご1
+: SAMFLIF CASE 2 FON THE SOLN PODE.
```



```
*: SULWYGON AY DIRECT
+: HIHIEHOLDER METHON.
*: H:PEH MODE.
* T:RFE AIHCRAFT LOMPGNENTG.
*: (NNTI
NCMP: IYPRAT= O
*: NFale influENCE SUBmmatRIX Fll.ES.
+: VNK!
```



```
CREATION TYKE:07/07/7n 04:09101
UNIT I RFWHUNO AND RELEASED
FILF 707R,VIGONE: HAS REFN OPENEO FUR READING, AN UNII I
ERE\triangleTIUN TIME=07/07/70 04:09101
UNIT I KFWUUND AND RELEASEO
FELE 10%9,\forallHOPNC HAS HEEN GPENEOFFOR REAGING UN UNIT I
CKEATJON TIME =07/07/76 04:09101
UNIT I RFWMUPA AND RELEESED
FILF 7OBO,\forallN-FNC. HAS REEN OPENED FOR READINKOON UNIT I
OREATION TIIF=07/07/76 04:09101
UNIT , REWIUUND AND REIEASED
```



```
CREATION ITNE:07/07/76 04:09101
UNIT 1 RFW,UND AND RELEASEU
FILE 7NBZ,VMOPNC HAS HEEN OPGNEO FGR READING GN UNII I
CREAIION ITMEE07/07/76 04:00101
UNIT I REWHUND AND RELEASED
```



```
CKEATION TIME*07/07/76. 04:09:01
UNIT , REWGUND AND RELEASEO
FILE 7NBA,VN-PNP HAS FEEN OPENEDFOR HEAOING ON UNZTI I
CREATIOA ITMEz07/07/7% 04:091OI
```

```
 UNIT I REWHUND AND RELEASED
```



```
 CREATION 11%NEO7107/70 04:09:01
 UNIT I REWIUNO AND RELEASED
```



```
 NOT FIT IN CORF ALL AT ONCE'.
 +& COM年
```



```
 HCAE
 FILE 7.OBO,BC=PNC HAS HEEN OPENEO FOR READING ON UNIT A
```



```
 UNIT ? RE゙WOUND AND RELEASED
 FILE 7087.RE@BNC HAS BEEN OPENED FOR READING ON UNIT ?
```



```
 UNIT ? REWOUND AND RELEASED
 FILE 708B:BCOPNE HAS BEEN OPENED FOR READING ON UNIT Z
```



```
 UNIT द REWOUNO ANO RELEASED
 * SGLVE BY HOUSEHULDER METMOD,
```



```
 SHRaVFCTOR OUTOUT FILES*
 4 SOLV
MEFHOOz
 1PS: 0
 IPRINY:
```



```
 7074 il
 7075 0
```



```
 ENTER SUB, &ART #FRAGS: 22 INV: -1
 MATRIX LOADFD FROA UNIT {S USING 2E MEADS AND IT6 SKIPS
```



```
 EXIF PARY
```



```
 EXIT HIUS:
 -0y%*UT
 SOLUTION TIME (SEC',) .OSA
*** soLUTION-TIMETSTHAT FON KLT SOLUTIONS
```

FIGURE 8.2-2 Output for SOLN Code for Test Case No. 2 (Cont'd)

```
SOLUTIOM VEYTOR NO. I
FILE 707A,SHPPNG/LIRS HAS EEEN OPENED FOR WFITING ON UNIT 3
CREAIIOM 11+G = 07/22/7n 11:07:44
UNTT NO. }
COMPONENF NH:. 1 SOLTHTYONS:
 .1000000F+01 :2000000E+01 .3000000E;01 .4000001E+01 .4099999F+01
UNIT 3 EFINH IIED AND KELEASED
Fat& 70%5:SNOPNEAIAK HAS BEEN OPENED FOR WRITINT ON UNIT {
CREATION ITME = 07/22/70 11:07847
6+j` % %O. 3
COMPONENT NIS. a SOLIITONS:
 .6000000F+01 .7000000FF+01 :8000000E&+01
UNIT FENGPILED AND HELEASED
FILF 70%% SUOPNCAIBG HAS AEEN UPENED FOR WRITING ON UNIT 3
CREATION IGNE = 01/22176 11:07:4A
UNTT NO, 3
COMPONENT NG. 3 SOLII!IONS:
JNIT ; E'ODOOOFHOI LIED AND KELEOSEN
SOLUTION vF,IOR NO: 2
FILE TO%G,SGOPNC/LIB% HAS BEEN OPENED FUR WRITING ON UNIT S
```




```
UNIT 3 ELDF|EO AND RELEASEO
FILE 70IS,SHOPNC/LIHS HAS BEEN OPFNED FOK WRITING ON UNIT.S
#NFTNA. 3
TOMPONENT NU: ? SOLUTTONS:
 .1C00000E+02 .1400000E+02 .1000000%F+02
UNIT G ENDFIIED AND RELEASED
FILF 7016.SI PNC/LIBS HAS BEEN OPENED FOR WRITING ON UNIT 3
FLGURE 8.2-2 Output for SCLN Code for Test Case No. 2 (Cont'a)
```



FIGURE 8.2-2 Output for SCLN Code for Test Case No. 2 (Concluded)

TKIE
SAMF＇LE IASE 3 FOR SOLN CODE．
 DECUMFOBITIONFILE，READING IT FACK IN，THFN PERFGRMING FOKWARN EtIMINAAIAN ANB BACKかARO SUMSTYTUTION GY MULT COMMAND． GATCH MADF．

CNTI
3

VNRE
7057
70力の
70 HI
7062
$70 \% 3$
7064
7.005

70 OB
70ヶ7
SJNCE ENTIRE MATRIX FITS IN CORE． COME EONMBND IS NOT NEFDEO＇ PERFOKM MATRIX DECOMPOSITION，AND DFFINE THE DEROMPUSITION DUTPUT

INVF
1709 i
10
DECUHFOATTION MATBIX FOR SAMPLE CASE 3 ． USE゙

MaY Gintifute
REAU IOASTANT SUB＊VECTOR FILES．

106H
70n9
7077
READ HFTOMPOSITIUN MATRIX FILE BACK IN：
IVNR
1095
PFRFORM FORWARD ELIMINATION AND HACHWRO SUASTYTUFIGN，ANO GEFINE

FIGURE 8．3－1 Input for SoLN Ccde for Test case no． 3
SOLUTION SUB-VEETOR OUTPUT FILES:
MUL.
7077
7078
7079
- -..- ALL-OUNE......
STOP

FIGURE 8.3-1 Input for SOLN Code for Test Case No. 3 (Concluded)

POTFAN EQUAIION SOLVING PROGRAM (SOLN) * VERSION 1.1


```
DYNAMIC MHMOIRY = 10000
IIMF=07,22/7% 11:nH205
+& SAMEIE CASE SFOR SOLN TODE:
+: StlutTON BY CREATINGMMTRIX
+: O&CUMOOSITION FILE, READING IT
*: BACH JN: THEN PERFORMING FORWARN
```



```
+: SURGTITUTIUN BY MULT COMMAND.
+: H:TCM MODE.
4: THREE AIRCRAFT GOMPONENTS.
* CNTL
NCHP= 1TRQAT= 0
```



```
*: VNRt
FILF 7059.VFmFNR. MAS BEEN OPENFD FOR READINGGUNUNIT I
GHEATION ITME=07/07/76 04:0N:54
UNIT I RFWOUNO ANO RELEASED
FILE 7OCO, VNOPN& HAS BEEN OPENEO FOR REAOING ON UNIT I
```



```
UNIT , H|WIINN AND RELEASED
FIIE 7OOL,VISPHC HAS REEN GPFNED FOR REAOINGION UNII I
CRFATJON THNE07/07/7%. 04:0R854
UNIT I REWOUND AND REIEASED
FIIE 7OQR.VHOPNC HAS HEEN OPENED FOR. READING ON UNIT I
```



```
UNTT I REWIIUND AND RELEASED
FILE 70O3.VNWPNC HAS REEN OPFNED FUR READING, ON UNIT I
CR+ATIOW 1T#E=07/07/70 04:08!54
UNIT I RYWIUUND AND RELEASED
FILE 7OOU,VNOFNC HAS REEN OPENED FOR READING ON UNIT I
```



```
UNTT I RFWIIUND AND RELEASED
FIIF YOOS,VNGPNC HAS BEEN OPENED FOR READING UN UNIT I
CKEAIION FGMF507/07/70 04:08:54
IJNIT I R&WIUND AND RELEASED.
```

    FIGUFE 8.3-2 Output for SCLN Code for Test Case No. 3
    

```
*: RFAD DECOMPOSITTON MATRIX FILE
 HAC* TN.
+; IVNK
FILE 7095.INGFNE. HAS HEEN OPENED FOR READINGON UNIF 4
CREAIIGN IJHE=07/22/76 11:0R!1A
MACH NO.= 1234
UNIT 4 RFWUUND AND REIEASEO
* PrRHORM FGORAKO
 BACSWARD SURSTITUTION, AND DEFINE
 SILUTION SUR=VFCTOR OUTPUT FILFS.
 Mll! I
(OUTA(l),\:|MANT(I),I={,N(MP)=
 7077
 707# r
 7079 r
SOLUTION VE,TOR NO. I
F1LE 7077.SUOPNC/LIBW HAS BEEN OPENEO FOR WRITING ON UNIT S
CREATION IIME=07/22/76
 11:08-23
UNIT NO. Z
COMPONFNT NIS. I SOLIJTIONS:
 IOOAOOOEFO1 , 200000OF+01 :3000000RTOL :4000000E401 , 5000000E+01
UNIT 3 EMDFI/ED AND RELEASED
FILE 7O/8,SITPNC/LIB% HAS BEEN OPENED FOR WRTTINR ON UNII 3
CREATIOA FIKE = 07/22/76 11:0N%24
UNIT NO, 3
COMPONENT Ht: Z SULUTTONS:
 .6000000F+01 .7000000F+01 . 8000000F+01
UNIT 3 EMDFILED AND RELEASED
FILF,7079 SJOPNC/LIHS HAS REEN OPENEO FOR WRITINT, ON UNIT S
CRFATION ifr:E =07/22/76 11:0R:24
HNFFNGO: - %
GOMPONEKY NU. 3 SOLUTIONS:
 .9000001F+01 . 1000000E$02
HNIT 3ENDFILED HNO RELEASED
```

FIGURE 8.3-2 Output for $S C L N$ Code tor Test Case No. 3 (Cont'd)
$\rightarrow ;$

```
 SOLUTION VEPTOR NO'. 2
 FILE 7077.SIMPNC/LIES HAS HEEN OPENED FOR WRITING ON UNIT S
 UNIT NO, 3, SOLUTIONS:
```



```
 FILE 7OTE,SOOPNC/LIB$ HAS AEEN OPENED FOR WRITING ON UNIT I
 UNIT NO,
 COMPONENT NO: ? SOLUTIONS:
```



```
 UNIP 3 ENDFILEO AND RELEASED
 FILE 70.7.GSGAPNC/LIBS HAS BEEN OPENED FOR WRITING ON UNIT 3
 UNITNO, 3, SOLUTTONS&
 UNIT 3'TNOOOOOE6OE-COOOOOOE$OE
 UNIT 3 ENDFILED AND RELEASEO
 +1 STQPALL DONE.
 STOP 717
 FIGURE 8.3-2 Output for SGLN Code for Test Case No. 3 (Concluded)
```

```
 ;rve
 SAMPLE S.ASE A FOR SOLN CODE
 SOLGTtOM EY ITERATYON PROCEOHIKE
 wITH IU OEROMPOSITIUN OF OIAGONAI
 BLOLKG, RFADING IN OF DNE DECOMP.
 GSEU :IAGONAL ALTCK AND A PREE.
 DETERNINED GUESS AT IINE SOLUTION
 SUF=V&CIOR, AND SLIGHT OVER=
```



```
 BATCH MHOL
 THREE AIRCRAFT COMPOTSENTS.
CNTL
 l
 NEAD OIARONAL INFLItENCE SUB-HATRTX
```



```
VNRF
 7063
 PFRFGHM GEPOMPOSIIYON OF THIS SUH-MATRIX
 AND STINE:
INVF
 0769n 1
 1 7
 DEPIMFOVIITINN OF DIAGONA! SUAGMATRTX
 FOH StGINN AIMPRAFT ODMPONENT'
 HSEW POULD STOP HERE AND PERFORM
 SUHOE& IIFNT COMMANDS LATER.
 NGW-ftFFRMINE SGtUYIGN FOF ALt
 TMREE AIRCRAFI COMPIINENTS.
CNTL
 3 1
 FEAD INFLIGNCE gUt.MAYRIX FIIEG.
 AND THE PRE COMPUTEO AND PRE.
 GTOKEG HFPOMPGSIFION OF ONF OF
 THE DIAIONAL SUB=MATRICES.
VNRE
 7059
 7060
 7001
 706?
 7096 - 1
 7064
 706+5
 7066
 7067
```


FIGURE 8.4-1 Input for SCLN Code for Test Case No. 4


FIGURE 8.4-1 Input for SOLN Code for Test Case No. 4 (Concluded)

```
POIFAN EQUAIION 5OLVING PROGRAM (SOLN)', VERSION 1.1
```



```
DYNAMIC M&MORY : }1000
TIMF \(=07,22176 \quad 11: 08838\)
+: SAMmF CASE a FOK SOEN CODE.
+: Sflution by ilekation proceduff
+ WITm IU DEcumPOSTTION OF DIAGONAL
*: Ht ORKS. HEADING IN OF ONE TECOMM-
+: DEFR DIAGONAI, BLOEK AND A PRE.
*: dftermineu guess at one solutgin
*: SUF-VFPTOR. AND SLIGHT OVER.
+: HFLAXATION.
+: R/TCH MODE.
+: T. REF AIMEREF COMPONENTS.
+: CNTL
NCHP= 1TFRAT: O
*: Rtab OIAGONAL INFLUENCE SUB.HATKIK
+: A`SICIATED WITH SECONO AJRCRAFT COMPONENT.
+: VNHE
```



```
CRFATION ilmE=07/07/70 04:08:54
UNIT I REWOUND AND REIEASED
+: PGRFORM OETOMPOSTIION OF THYS SUB.MATKYX
+: A.D STORE.
+: INVr
METHONE a NTTINVW# 7096 IDE= 1
ENTER SUK. FART GFRAGS= 2 INV= - ?
MATRIX LOADRD FROM UNIT I3 USING ? READS AND O SKIPS
NO PaRTlTIOIING REEJURFD
EXIT BAKT
*** mainif intFRSF OKmbNDED
ENItR SUR:, IRTP, N= S
```

|  |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

```
UNIT I R&.Wmtlom ANO RELEASEG
FILE 7ONG.VGOPNC HAS REEN OPENED FOR READING ON UNIT I
CRFATIONTIFE=07/07/7% 04:0R&%4
UNIY I RFWHUND ANO NELEASED
FIlF 70A7,VM-FNG HAS REEN OPENED FGR READING ON UNIT I
CREATIOM TT:MEE07/07/70 04:08:54
UNEY { RFFOTIND AND RELEASED
+: IHE COMG COMMANO IS NOT USED WITH
4: THF ITERATIUN PROCEUURE.
+% RTAM PONSTANT SUB.UVCTOR FILFS.
+ MCOE
FILF 7OOA,RYOFNC HAS BEEN UPENED FOR REAOING ON INNIT Q
```



```
UNIT , REWGIIND AND RELEASED
FILE 7OGG,BGOPNC HAS REEN OPENED FOR READING IN UNIT ?
CNZATION 19*E*07/07/70 04:OR;54
UNIT ? REWIOHNO ANO RELEASED
FIUE 7O7O,RC-FNC HAS REEN OPENEN FOR READINGGON UNIY *
```



```
HNIT ? REMGNND AND KELEASED
+& SULVE DIAGONAL BIOCKS FY LU
+: DFC:MPNSIITIN, DEFINE THE
+: SIIUTION SHKOVECTURFIIES, FHF
4: PKE.METERMTNED APFRIJXIMATE
```



```
*: AMOINNT OF OVFR-RELAXAYION, AND
4 AFOISNT OF TNTERMEDIATE PRINTOUT.
+1 solv
METHO!%
IPS= 1
|PKT*if=
(OUTA,OUTANT,I=1,NCHP)=
 7080 ^
 7081
 708%
PINPS,{NPSNT:I#|,NRMP\=
 0 r
 n
7073 n
```

FIGURE 8.4-2 Output for SOLN Code for Test Case No. 4 (Cont'd)

```
NW䊾15% In
OMEGAE1:050
ITERPE 5
 ENTER SUB* TRIP' N: S
 EXIT TRIP
```



```
 CREATION TIME:O7/22/76 11:08%41
 UNIT & REWOUNO AND RELEASED
 ENTER SUR', TRYP' NE ?
 EXIT TRIP
```

-SOLUTTON-VETVR-NG! -


INITIAL GUESS
FILE 7068, BC-PNC HAS BEEN OPENED FOR READING ON UNIT 4
UNIT 4 REWOUND AND RELEASEO

UNIT 4 REWOUND AND REIEASED
FILE 70TO,RCTPNE HAS BEEN OPENED FOR READING ON UNIT 4
UNIT 4 REWOUND AND RELEASED
INFLUENCE OF UNIFORM ANO NONAUNIFORM FREESTREAM
-ANS ROTATION RATE UECTOR ON ARCRAFT COMPONENI

COMPDNENT NUMPER i
NUMBER OF ELEMENTSE
5
SOLUTIONS

INFLUENCE OF AIRCRAFT COMPONENT I ON AIRERAFT COMPONENT ?

FIGURE 8.4-2 Output for SOLN Code for Test Case No. 4 (Cont'd)
$.010078 \cdot 0 \mathrm{~A} \quad 26072 F+08 \quad .990095+07$

| INFIUENSE OF | HNIFORM AND | NON-UNIFORM | FREESTREAM |
| :---: | :---: | :---: | :---: |
| AND MOTATION | RATE VECTOF | ON AIRCRAFI | COMPONEN: |
| .155868 .09 | .17886F+09 | $.19559 F+09$ |  |

COMPCNEFNT NIINTEF?
NUMAFR GF EIEMENTS\# 3
SOLUTTONS
$.318845+01.673665+01 \quad 14672 F+02$
INFLIENGE OF ATRCRAFY COMPONENY 1 UA AIRGRAFT CONPONENT


TNFLIGACE OF ATRCKAFT COMPONGNT $P$ ON AIRCRAFT COMPGNFNT ? - HO924F. ON: 37210F + OB

INFLIENQE OF IINYFORM AND NON_UNIFORM FREESTRFAM ANG मOTATIGF RATE VECTOK OA AIRCREFT COMPONFNT 3 .1973舐: $0^{7} \quad .16773 \mathrm{~F}+0^{9}$
FIIE YOTS.SUOPNC HAS FEEN OPENED FOR READING GN-UNIT 4
 UNIY A REWIIIND AND RELEASED

COMPANEAT NtIMAER 5
NUMRFR OF EIEMENTSE ?
SOLUTIONS
$.900007 .01 \quad .10000 \mathrm{~F}+02$

| ITERATIUN | 1 | LAREEST | RELATIVE | $E_{R R O R}=$ | , 626337E400 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ITERATTUN | $?$ | LARGEST | relative | ERROR $=$ | . $974581 F-01$ |
| ITFRAIIGN | 3 | LARGEST | RELATIVE | ERROR = | .132704F-01 |
| ITERATIUN | $a$ | LARGEST | pelative | ERROHE | .2473798 .02 |

ITFRATIUN SHLUTION PRUCEDURE INTERMEDIATE PRINTOUT

FLGURE 8.4-2 Output for SCLN Code for Test Case No. 4 (Cont'd)

```
ITERATION .5 NITH- Iत बLLONABLE
 INFLUENCE OF AIRCRAFT COMPONENT }Z\mathrm{ ON AIRCRAFT COMPONENT
```
```

 INFLUENCE OF AIRCRAFT COMPONENT 3 ON AIRCRAFT COMPONENT I
    ```

```

 COMPONENT NUMRER 1
 NUMBER OF ETEMENTSE- 5-
 SOLUTIONS
 .10000Ei01 .20000F%01 . 30000E$01 .40000F%01 .50005F&01
 INFLUENCE OF AIRCRAFT COMPONENT I ON AIRCRAFT COMPONENT '?
 :35414E:04 :14793E+08 :55072E+07
 INFLUENCE OF AIRCRAFT COMPONENT I ON AIRCRAFT COMPONENT ?
 .10212E+08 ,27111E+08 .64020E+OB
 COMPONFNT NUMAER 2
 NUMBER OF EIEMENTS: 3
 SOLUTIONS
.59998F+01. .70000F+01 .79999E401

```

```

 .176605:07;46302F+06
 INFLUENGE OF AIRCRAFT COMPONENT P ON WIRCRAFT COMPONENT S
.57884E+OA .2422IE+OB
COMPGNENT NOMMRER
NUMHER OF EIEMENTSa ?
SOLUTIONS
:9000tE:O1:10000E\$02
ITERATION S LAREEST RELATIVE ERRORE Q4F0922E=OS
ITERATION G LARGEST RELATIVE ERRORE GBRIIBGENOG
FILE 7080.SO.PNC/LIBS HAS BEEN OPENED FOR WRITING ON UNIT 3

```
        FIGURE 8.4-2 Output for SOLN Code for Test Case No. 4 (Cont'd)
```

C\&EATJONT"EE=07/22/76 11:09105
UNIT { EMDFIIED AND RELEASED
UNIT NO, 3
COMPONENT MO* I SOTUTIONS:
.9999999E+00 . \$999999F%01 . 2999998E;01 , 3999996F%01 . 5000081F+01

```

```

CREATION TTNE=07/22/76 11:09in6
UNTT 3 EHFDFILEO AND REIEASED
UNII NO, 3
COMPONENT *OT 2 SO_UTIONS:
4490970FFO1 ? Pn00002F+01 =7499901E401

```

```

CRFATION 1THE 07/22/76 11:09106
HNI| FFDFIIFD AND RELEASED
UNTT NO, 3
TOMPONENT MOF. SOLUTTBNS:
.9000007Fi01 .1000000F+02

```

```

SOLIITINN VFrIGR NO* Z
JTFRATIUN SOLITION PROCEOIRE INTERMFDIATE PRINTOHT

```

```

FILF 7OER,KI PNC MAS REFN GPENEO FOR READINR, ON UNIT I
UNIT G RFWIUND ANO RELEEASED
FILE 70OO,RC-PNC HAS REEN IYPENED FOR READING UN UNIT G
UNYT a REWMHMD AND RELEASED

```

```

UNTT a DEWOIIND AND RELEASED

```
FIGUkE 8.4-2 Output for SchN Code for Test Case io. 4 (Cont'd)
INFLUENEE OF TNTFURM ANO NON 二UNTFORM FREESTREAM
AND ROTATION RATE VECTOR ON AIRCRAFT COMPONENT 1 \(.6230^{7 E}+0 K \quad .10803 E+0^{9} \quad .15795 E+09 \quad .20947 E+0^{9} \quad .26123 E+0^{9}\)
COMPONENT NUMRER • •
NUMBER OF EI EMENTSE 5
sotUfitans
\(.19974 E+01: 39019 E+01 \quad: 56584 E+01 \quad: 71460 F+01 \quad \therefore 21142 F+02\).
 \(.12201 F+07 \quad: 52144 E+08 \quad ; 19922 F+08\)
 AND ROTATION RATE VECTOR ON AIRCRAFT COMPONENT ? \(.31176 F, 09 \quad .35773 E+09 \quad .39118 \mathrm{E}+09\)
COMPONENT NUMAER ? NUMBER OF ELEMENTS: 3 \(.63767 E+01 \quad: 13473 F+02 \quad: 29344 E+02\)
- ITNFLTENEE OF AIRCRAFP COMPONENT - I ON-AIRCRAFT MOUMPONENT -- 3 \(.65781 F+07\). \(17816 E+07\)
 \(.17380 E+00.74420 E+08\)
——INFLUENEE OF UNIFORM-AND-NON二UNIFORM FREESFKEAM- \(\qquad\) AND ROTATION RATE VECTOR ON AIRCRAFT CDMPONENT 3 39496F:09 :3546E409
IL 7073, OOWPNE CREATION FIMEg07/22/76 11806:24
UNIT a REWOUND AND RELEASED
COMPONENT NUMGER
NUMBER OF EI EMENTSE ?
SOLUTIONS
\(: 18000 E ; 02: 20000 E+02\)

FIGURE 8.4-2 Output for SOLN Ćode for Test Case No. 4 (Cont'd)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ITFRATIUA & & LARCEST & Relative erro & ERROR & ． 626337 & FF＋00 & \\
\hline ITERATIUN & ？ & l．ARGEST & REI．ATIVE ERRU & ERRUR \(=\) & \(=.974581\) & E－01 & \\
\hline ItFRATIUN & \％ & Largest & RELATIVE ERRO & ERROR＝ & \(=.132704\) & E－01 & \\
\hline ITEEATYON & 4 & Larcest & relafive errot & ERRORE & \(=\quad, 247375\) & 95．02 & \\
\hline \multicolumn{8}{|l|}{ITFRAIJUN SGLIITION PROCEDURE INTERMEDIATE PRINTOUT} \\
\hline tithation & 4 & WITH & 10 allowable & BLE & & & \\
\hline \[
\begin{aligned}
& \text { INFLUFNEE AN } \\
& .120175 .0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \times 1! \\
& 0 \% \\
& 0, ~
\end{aligned}
\] & RERAPT Ct
\[
471455+07
\] & \[
\begin{aligned}
& \text { OMPONENT } \\
& 7 \quad .1505 O F:+08
\end{aligned}
\] & \[
\begin{array}{cc}
3 & 0 N \\
\therefore 08 & .41
\end{array}
\] & \[
\begin{aligned}
& \text { ON } A I R C R \triangle F T \\
& .41169 E+08
\end{aligned}
\] & \[
\begin{gathered}
\text { COMPONENT } \\
.99921 \mathrm{~F}+08
\end{gathered}
\] & 1 \\
\hline \begin{tabular}{l}
TNFLIFNEE Of \\

\end{tabular} & \[
\begin{array}{ll}
0 \% \\
0.4
\end{array}
\] & RCRAFT CO
\[
419285+05
\] & \[
\begin{aligned}
& \text { OMPONENT } \\
& 5 \quad .33867 F ; 06
\end{aligned}
\] & \[
\begin{array}{rl}
3 & 0 N \\
+06 & .17
\end{array}
\] & \[
\begin{aligned}
& \text { ON AIRCRAFY } \\
& .17340 F+07
\end{aligned}
\] & \[
\begin{gathered}
\text { COMPONENT } \\
.06016 F+07
\end{gathered}
\] & 1 \\
\hline \multicolumn{8}{|l|}{COMPANENT NHIMTFFA 1} \\
\hline \multicolumn{8}{|l|}{NUMEFR OF FIEMFNTS \(=5\)} \\
\hline SOL．UTTONS
\(.20000 \%, 01\) & & \(40000 F+01\) & 1．20000Fiol & ＋01 ： 80 & 80000F＋01 & ．10001F\％ 02 & \\
\hline INFLHFNCF Or \(.708299: 0\) & & RCRAFT CO 2948t540 & \[
\begin{aligned}
& \text { OMPONFNT } \\
& 8 \quad .11014 F+O 8
\end{aligned}
\] & \[
5+080 \mathrm{ON}
\] & ON AIRCRAFY & COMPONENT & ， \\
\hline \[
\begin{aligned}
& \text { JNFLDENC. OF } \\
& .2 n 423 F, 0 \%
\end{aligned}
\] & \[
\begin{array}{ll}
\text { OF } A! \\
\text { OH: } \\
\hline
\end{array}
\] & RCRAFT CD 54221E＋0 & \[
\begin{aligned}
& \text { DMPONENT } \\
& 8 \quad=12804 F+09^{3}
\end{aligned}
\] & \[
\mathrm{F}+\mathrm{OS}^{3} \mathrm{ON}
\] & \[
\text { ON } \triangle I R C R \triangle F T
\] & COMPONENT & ？ \\
\hline \multicolumn{8}{|l|}{COMPONENT NIMMEF ，} \\
\hline \multicolumn{8}{|l|}{NUMEF゙R UF EIEMENTS天} \\
\hline －12000F，0r & & \(14000 \%+02\) & 2． \(10000 \mathrm{~F}+02\) & ＋ 02 & & & \\
\hline INFLHENCE OF
\[
.34319 F=0
\] & \[
\begin{aligned}
& \text { OF } \\
& 07
\end{aligned}
\] & RCRAFT CO \(92603 F+06\) & \[
\begin{aligned}
& \text { OMPONENT } \\
& 6
\end{aligned}
\] & \[
1 \mathrm{ON}
\] & ON AIRCRAFT & CIMPONENT & 3 \\
\hline \multicolumn{8}{|l|}{\[
\begin{aligned}
& \text { INFLIIENCE OF AIRCRAFT COMPONENT } \quad \text { O ON ATRCRAFT COMPONENT } \\
& \text {. } 11577 F+0 \% \text {. } 4 A 443 F+0 甘
\end{aligned}
\]} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline NUMBER OF & ELEMENTS: \\
\hline SOLUTions & \\
\hline 17000 & 02:20000Fioz \\
\hline
\end{tabular}

UNIT NO, 3

    FILE 7081. SOIFPNCAIB: HAS REEN OPENED FOR WRITING ON UNIT 3
UNIT 3 ENDFILED ANO RELENSED
UNTT NO, 3

    \(.1199994 E+02 \quad .1400000 F i 02\). \(1599996 E \% 02\)
    FILE 7082, SO-PNCALBS HAS BEEN OPENED FOR WRITING ON UNIT 3
UNIT 3 ENDFTLED ANO RELEASEO

NO: OF ITTRATTONS TO-CONVEREE -
    +1 AlL DONE.
    +8 STop
    siop-777

FIGURE 8.4-2 Output for SOLN Code for Test. Case No. 4 (Concluded)

\section*{TRUF}

SAMPILE CASE S FOR SOLN CODE．
StuJTION BY A TWO STEP PROTEDURE：
FIRST，iWO AIKCRAFT COMPUNENTS ARE SOLVED
fiY OIKERT LU DECTMPUSITION．THEN，THE
INFLETENE OF A iHIRO AIKCRAFT COMPDNENT
ON IHF FIRST TWO IS Cumputeo ay the
TTEKATIGN PRUCEDURE THE DIRECT SOL．UTIONS
FGR IHF FIPST TWU AJRGRAFT COMPONENTS ARE URED
as initial guesses to the three romponent
ITEHATIUN SGLUTION：
CNTL

\section*{？}

REAU TNFLUENGF suhamatrix files

COMPONENTS．
VNRF
7059
7060
7062
7003
SINCF ERTTRE MATRIX FITS IN CORE，
COMS COMMAND IS NOT NEEDED：
REAO COBSTANT SUH－VECTOR FILES．
BCRE
7068
70゙の日．
SOLVE FT IU DECOMPOSITION． and drfine the solulion
sIGEVFGIAR gUtput fILES．
solv
0 n
7083
7084
0
USED COHLD STOP HERE AND PERFURM
pfmaithias commands later，or me
may continue．

AlRCRAFT COMPUNENT VIA ITERATION
procenume：
CNTL
```

CERE 1
REREAD ALL TNFGENCE SIHAMATRIX Fitfst．

```

FIGURE 8．5－1 Input for SOLN Code for Test Case No．S


FIGURE 8.5-1 Input for SOLN Code for Test Case No. 5 (Concluded)
```

POTFAN GQUAYION SULVING PROGRAM (SOLN), VERSION 1.I

```

```

OYNAMIC MEMORY : 10000

```
FIHE = 07,22176 11509844
SAMFLE CASE S FOR SOLN CMDE'
+ SGUTTON HY A TWO STEP PROCEDURE
+ FIRST TWO AIRCRAFT COMPONENTS ARE SOLVEO
+ MY NJNECT LU DECOMPOSITION. THEN, THE
- 7 - INFT UFNCE DF A YMIRO ATRCRAFY COMPONENT
+ D Dr THF FIRSI TWO IS COMPUTEO RY THE
+ : TVEATION PROCEDURE THE DIRECT SOLUTIONS
*: FIIR THF FIFST IWN ATHCRAFT COMPONENTS ARE UBED
+ AS INITIAL GUESSES TO THE THREE POMPONENT
+ : ITFYATION SOLUTION.
4) 「NPI
NCMP = \(\quad\) IYFRAY= \(\quad 0\)
+: REAN INFLHENCE SUK.MATRIX FILES
    FHR I*F FIRST TWO AIRCRAFT
    CHMPONENTS.
\(+\quad\) +
FIFE. 70 SO VAFFNC HAS BEEN OPENEO FOR READING ON UNIT I
CREATION IISE207/07/76 04:0ヶ:54
UNIT 1 RFWIIUND AND RELEASED
FILE 70 OO, VA PNE HAS GEEN OPENED FOR READING ON UNII I
CREATION YIME:07/07/76 O4:0R1SA
IJNT 1 REWIUNAD \(A N D\) RELEASED

CREATION TIPE=07/07/76 04:08:54
UNIT 1 REWOUND AND RKIE EASED
FILF TAG3. \(\forall N O P N C\) HAS BEEN OPENED FOR REAOING ON UNIT I
CREATION ITMEEO7/07/76 04:08:54
UNIT 1 REWTIUND AND HELEASED
- S STNEE-ENTIRE MSIRIX FITS IN CORE.
+ COMF COMMAND IS NOT NEEDED.
+1 READ CONSTANT SUB.VECTOKFILES.
+t MerE
FILE 70 OR, RFOPNE HAS BEEN OPENEN FOR READINF ON UNIY 2
FIGURE 8.5-2 Output for SCLN Code for Test Case No. 5
```

CREATION TIME:07107/76 04:08:54

```
 (OUTA, OUTANT,IEI,NCMP)=


SOLUTION VEPTOR NO: I

FILE 7083,SOEPNC/LIBS HAS EEEN OPENEDTOR WRITING ON UNIT 3
CREAFION TIME EOTF22J76

\section*{11809755}

UNIT NO, 3
COMPONENT NO: - 8 OLUTTONSI

UNIT 3 ENDFILED AND RELEASED
 CREATION YIME = 07/22/76 1180915b

COMPONENT NO: 2 SOLUTTONS:

FIGURE 8.5-2 Output for SOLN Code for Test Case No. 5 (Cont'd)
```

 .5635605E+01 . .6638698E+0% . 1461401E+02
 \#NIT * ENDFItED*ND RELEASEEO

```
OUTPUT
SOLUTION IIME (SEC.) :003
Sot tifigh vertin No: Z
FILE 7OA3. STOPNEAGEF MAS BEEN OPENED FOR WHITING IN UNIF 3
UNTT NO. 3

    \(.20011075+01 \quad 4006683 F+01 \quad .6007377 E+01 \quad .7980762 k+01 \quad .9886623 F+01\)
UNTT Y ENDFIIED AND RELEASEOD

UNIT NO, 3

    \(.1167121 F 402 \quad .1327740 \mathrm{~F}+02 \quad .29224038+02\)
UNTT 3 EADFILED AND VELEASED
+ : USER COULD STOP HERE AND PERFORM
+ RFMIINTNG POMMANOS LATER, OR HE
+ M M Y CONTINUE.
*
+: AIRCRAFT COMPONENYVIA ITERATION
+1 PuTHFEDURE.
+ PNTL
NCMP= \(\quad\) ITEQAT \(=1\)
+: REREAD ALL INFLUENCE SUBmMATHX
\(7 \%\) ftLES.
+ VNRE
FILF 7099 VNGPN HAS REEN OPENET FOR READING ON UNIT I

UNIT I REWIUND AND RELEASED
FIIE YODO VNGPNC HAS BEEN OPENED FUR READING ON UNIT 1

UNIT REWIIIND AND RELEASEO
FILE 7OAI.VNGPNC HAS BEEN OPENED FOR READING ON UNIT I

UNIT I REWOUND AND RELEASED
FIGURE G.5-2 Output for SCLN Cone for Test Case No. 5 (Cont'd)


FIGURE 8.5-2 Output for SOLN Code for Test Case No. 5 (Cont'd)
```

IPS= ?
IPH*NF:=...
(OUTA,OUTANT,IE1,N(MP)=
7084 ज
7080 ;
7087 :
(INPS,INPSNT,I=1,NCMF):
70日3-\pi
7084 n
n a
MAXITI= 1%
OMFGAE1.100
TTERF2% 0.
ENTER SUQ: YRTP.N: S
FXIT TRIP
ENTERSUR: IRTP, N= 3
FXIT TRIF
FNTER SUK' IRTB. NE Z
FXIT TRIF

```


UNIT 4 R\&WHUND ANT RELEASED
FILE 7 OQG.EKOPNC HAS GEEN OPENED FOR READINT ON UNIT A
UNTT \(A\) REWIIJNO AND RELEASED

UNIT 4 REWHIJND AND RELEASED
FIlF 7083, ST-PNC. HAS EEEN OPENEO FOR READING ON UNIT a

UNTT a REWTUUND AND RELEASED
FILE \(7084, S U P O N C\) HAS REEN OPENEO FOR READING DN UNIT \(~ a ~\)

UNIT a REWTUND AND RELEASED
ITERATION I TARGEST RELATIVE ERROR: .476246E 000
FIGURE 8.5-2 Output for SoLN Code for Test Case No. 5 (Cont'd)


Unit 4 Rewhund and released
 CREATION TIMESO7/22176 11:09:55 UNIT \(A\) REWTIUND AND RELEASED
 CREATJON TIMEETY/22/76 11:00950 UNTT a REWOUND AND RELEASED
\begin{tabular}{|c|c|c|c|c|c|}
\hline itepatiun & 1 & LARGEST & REl-ATIVE & ERRORZ & . 4762465000 \\
\hline TEERATIUN & 2 & targest & relative & ERROR & . \(1152088+00\) \\
\hline ITERATIUN & 3 & LARGEST & relative & ERRDR & . 235574 ¢02 01 \\
\hline ITERATI \({ }^{\text {an }}\) & \({ }^{*}\) & LARGEST & nelative & ERROR: & . 303637502 \\
\hline ITERAFtOA & 9 & LARGES & Relative & ERROR & .122435E03 \\
\hline \begin{tabular}{l}
iteratton \\

\end{tabular} & & \[
\begin{aligned}
& \text { LARGEST } \\
& \text { A: \#GS. }
\end{aligned}
\] & RELATIVE
Has HEE & \begin{tabular}{l}
ERRORE \\

\end{tabular} & \[
\begin{aligned}
& 573020 \mathrm{E} 04 \\
& \text { FOR WRTIINt on }
\end{aligned}
\] \\
\hline
\end{tabular} UNII \} EISDFTLED ANO RELEASED
tJNT*NO,
CIMPONENT NO: 1 SULUTIONSI \(.2000000 \mathrm{E}+01 \quad .4000000 \mathrm{~F}+01 \quad .5999999 \mathrm{E}+01 \quad .7999999 \mathrm{E}+01\) \(.10000056+0\) ?
 UNIT 3 Erafiled and released

UNI \({ }^{*}\) NO. 3
COMPONENT NO' 2 SOIUTIONS:
\[
\therefore 1190999 F+02 \quad 1400000 E+02 \quad 1000002 E+02
\]
 UNIT 3 EHDFILFO AND RELEASED

UNTT NO, 3
COMPONENT AD' 3 SOIUTIONS:
\[
.1199099 f+02 \cdot 2000000 f+02
\]

NO. OF ITERATIONS TO CONVERGEE \(\quad\) LARGEST RELATIVE ERROR: \(\quad .573020 E-04\)
+: AIL DONE.
+8 sifir
STOP 771

FIGURE 8.5-2 output for SCLN Code for Test Case No. (Concludea)

\section*{true}
SAMPLE CASE 6 FOR SOLN CODE.

THAT A RECTANGILAR MATRIX (I7XIO)
Is SOLVED INSTEAD OF a souare
———MATRI*.-SOLUTION BY ITERATION
PROGEDURE WITH INVERSE OF DIAGONAL
alocks, reading in of one inverse of a
OI AGONAL BLOCK
GUESS AT ONE SOLUTION SUBEVECTOR, AND
SLIGHT DVERERELAXATION:
BAFEH MODE
THREE AIRCRAFY COMPONENTS.
CNTL
READ DIAGONAL INFLUENCE SUBEMATRIX
ASSOCTATED WITH SECOND AIRCRAFT COMPONENT.

17097
-17
INVERSE OF DIAGONAL SUB MMATRIX
FOR SECOND AIRCRAFT COMPONENT'.
HSEN TAULO STOP HERE- AND PERFORH
SUBEEGUENT COMMANDS LATER
NOW DETERMINE SOLUTION FOA
ALE THREE OIRCRAF COMPONENTS:-
CNTL


PIGURE 8.6-1 Input for SOLN Code for Test Case No. 6
```

 7085
 PHE CIIMH, COMMAND IS NOT' USED WITH
    ```

```

 REAU CONNSTANT SUB*VECTIRR FILES
 BCRE
 7086
 7 0 8 7
 7088
 COHF⿰扌F
 MOISEHOL DER PROTEDURE, DEFINE THE
 SOLUTION SUR=VECTOR FIIES, THE
 PREDETFRMINEO APPROXIMATE SOLUTTON
 SUG-VECIOR FILES. AMOUNT OF
 OVEK-KE: AXATTON, AND AMOUNT OF
 SOL,V
 1 1
 --7084
 7089
 7090
 7075
 10
 1.05
 5
 ALL DGNE,
    ```
EIGURE B. bil \(^{-1}\) Input for SGLN Code for Test Case No. 6 (Concluded)


FIGURE 8.6-2 output for SOLN Code for Test Case No. 6

INVERSION OR DECOMPOSITION TIME, (SEC.) 145
 CREATION ILMF - 07/22/76 11:13:12 NTITE 17
(TIYLII),IEI, NTYTLIE INVERSE OF DIAGONAL BJPGMATRIX IINIT 18 ENDFILEO AND RELIEASED
+: FIR SECOND AIRCRAFT COMPONENT:

+ 2 SUREEQUENT COMMANOS LATEO.
+ 1 NOW NETERHINE SULUTION FOR
+ ALL FHREE AIRCRAFT COMPONENTS.
- 1 CNTI

NCMPE 3 ITERATI 1
- 8 READ TNFLUENCt SUBoHATRTX FItES
+ AHID PHF PREVIOIJ\&LY COMPUIED AND
+8 STOFED INVERSE OF ONE OF THE DIAGONAL
+1 SUB.MATRIC:F.
+1 VnRt
FILE 9077 .VA.APNC HAS REEN OPENEO FOR READING ON UNIT I

UNIT 1 FEWIUND AND RELEASED
FILE 707 A , VAGPNC HAS BEEN OHENED FOR READING ON UNIT 1

UNIT 1 REWIUND AND REIEASED
FIIF 7 YYG.VN•PNC HAS BEEN OPENED FOR READING UN UNIT I

UNIY I RFWIUND ANN RELEASED
FILF 70 OO.VNGPNC HAS BEFN OPENEDFOR READING ON UNIT I

UNIT I REWOIJND AND RELEASED
FILF 7097 IN.PNC HAS BEEN OPENEO FOH READING ON UNIT U

UNIT 4 REWOUND AND RELEASEO
FILE 7082 , VNGONE HAS BEEN OPENED FOR READING GN UNIT I CREATION IIMEW07/07/76 04:091 !
UNIT 1 REWOUND AND RELEASED
FILE 7 O83, VNGPNC HAS BEEN OPENED FGR READING ON UNIT I

UNIT I REWMUND AND RELEASED
FILE 708 G.VNEPNC HAS REEN OPENED FOR READING INN UNIT I EREATION TIMEEO/07/70 04:09101
UNIT, RFWIUND AND RELEASEO

FIGURE 8.6-2 Output for SCLN Code for Test Case No. o (Cont'd)
```

 FILE 7085,VNEPNC HAS BEEN OPENED FOR READING ON UNIT I
    ```

```

 UNIT I REWOUND ANO RELEASED
 +1 THE COMB COMMAND IS NOT USED WITH
 ->T FHE ITERATION-PROCEOURE.
READ CONSTANT SUBEVECTOR FILES.
ACRE
FILE-FOOGDFWPHE
CREATION FIME=07/07/76 04:09801
UNIF Z REWOUND AND RELEASED

```

```

 CREATION TIMEG07/07/76 04809%01
 UNIT Z REWOUND AND RELEASED
    ```

```

 CREATION ITME=07/07/76 04109:01
 UNTT Z REWOUND AND RELEASED
    ```

```

 *: HOUSEHOLDER PROCEDURE, OEFINE THE
 +& SOLUTION SLAOVECTOR FILES, #HF
    ```

```

 +1 SUBEVECTOR FILES, AMOUNT OF
 +! DVERmRELAXATION ANO AMOUNT OF
 INTERMEDIATE-PRINFOUT:
 + SOLV
 METHOD=
 HPO
IPRINT:
\grave{N}
(OUTA,OUTANT,I=I,NCMP):
7088
7089 n
7090 A
-(NNPSINPSNTITEINCNPI
0 n
0
-7073--------------
Maxiti= in
OMEGAE1,040
|HERP% 5

```
    ** MATRIX INVERSE DEMANDED
    ENTER 8UG: HREC'. 1 ROWS 5 COLUMNS. MAIRIX ON UNIt 12
    FIGURE 8.6-2 Output for SOLN Code for Test Case No. 6 (Cont'd)

EXIT HREC: INVERSE ON UNIT 12
```

SUB. ATR TRANSPOSED A T=BYE G MATRIX
FILE 7097. INONNC HAS BEEN ODENED FUR RENDING ON UNIT a
CREAFION TIMEEOT/22/70 11:131I2
UNIT a REWIUND AND RELEASED

```

```

*** MAIRTX INVERSE DEmaNDED
ENTER SURF MREC.OG A ROWS P COLUMNS. MATRIX ON UNIT II
EXIT HREC'. INVERSE ON UNIT I?
SUB. ATK TRANSPOSED A 4-BY= }2\mathrm{ MATEIX

```

SOLUTION VE, TOR NO: 1

ITERATION SHLUTIUN PROCEDURE INTERMEDIATE PRINTOUT
INITtal GuEss
 UNIT 4 REWOUND AND RELEASED
FILE \(7087,8 C=P N C\) HAS REEN OPENED FOR READING ON UNIT 4 UNTI a REWTUND AND REI.EASED
FILE 7O8g, RC. PNC HAS BEEN OPENED FOR READING ON UNIT 4 UNIT a REWIUND AND RELEASED

INFLLENCE OF UNIFURM AND NONSUNIFORM GREESTREAM AND ROTATION RATE VECTOK ON AIRCRAFT COMPONFNT
 COMPONENT NUMGER
 solutions

INFLIENLE OF AIRCRAFT COMPONENT I ON AIRCRAFT COMPONENT?



FIGUKE 8.6-2 Output for SCLN Code for Test Case No. b (Cont'a)

NO. OF ITERATIONS TO CONVERGE 9 LARGEST RELATIVE ERRORE :326147E.iOU

INFLUENCE OF UNIFORM AND NON UNNIFORM FREESTREAM AND ROTATION RATE VECTOR ON AINERAFT COMPONENT -


FIGÜRE' 8.6-2 Output for SOLN Code for Test Case No. 6 (Cont'd)
```

 COMPONENT NMMMER 1
 NUMABER GF ETEMENT9: 5
 SOLITTIONS
 .20379E+01 . 37044E+01 .64038F+01 .49502E+01 . 22833F+02
 INFLUENCE OF AIRCRAFT COMPONENT I ON AIRCRAFT COMPONENT, ,
 .63991F,10 . 39858E+10 . 24023E410 .13941F+10 .77441F+09 .40860E+00
 INFLUENGE OF IINJFORM AND NON.UNIFORM FREESTREAM
 AND ROTAT:ON RATE VECTOR ON IIRCRAFT COMPONENT ?
.10811F,11 .11360E+11 .12{43Fit1 .12240E+11 .12050E+11 .12798F,11
COMPONENT NIMM:FAR?

```

```

SOLUTIONS
.50123E.01 .11695F+02 . 299R2F+0?
INFIUENCE OF AIRCRAFT COMPONENT I ON AIRCRAFT COMPONENT }
.20277E.0':93423E+08 :39253F+08 , 14065F+08
INFLIENCE OF AIRCRAFT COMPONENT Z ON AIRCRAFT COMPONENT \&
.71697t+10 .44279F+10 . 26415F+10 .15142F+10
INFLLIENCE OF UNIFORM AND NON.UNIFORM FREESTKEAM
AND ROTATIOA RATE VECTOR ON AIRCRAFT COMPONENT 3

```

```

FILE TOTS.SIMPNE WAS EEEN OPENEN FOR READINR ON UNIT A
CREATIDN T1ME=07/22/70 11:06324
UNIT A RFWOUND ANO RELEASED
COMPONENY NIMMER *

```

```

SOL.UTIONS
.14000F+02:20000E+02
ITFRATION I LARGEST RELATIVE ERRORZ .67RGFOE+OO

```

```

ITERATION G LARGEST RELATIVE ERRORE ,G20:4AEm0I
ITERAYION a LARGEST RELATIVE ERRORE .18402GE.01
FIGURE 8.6-2 Output tor SCLN Code for Test Case No. 6 (Cont'd)

```

\section*{iteration solution procedure intermediate priniout}

ITERATION 5 WITH 10 ALLOWABLE
INFLUENEE OF TIRCRIFF COMPONENT 2 ON ALRCRAFF COMPONENT -


COMPONENT NUTHER
NUMBER OF ELEMENTS: S
SOLUTIONS

INFIUENCE OF AIRCRAFT COMPONENT \(i\) ON AIRCRAFT COMPONENT

 COMPONENT NUMRER ? -NUMBER OF-ETEMENT5: Y SOLUTIONS
\[
.11988 E ; 02: 14003 E+02 \quad .15998 E \$ 02
\]

INFLUENCE OF IIRCRAFY COMPONENT I ON AIRCRAFY COMPONENT 3 \(.10430 E 509.46895 \mathrm{~F}+08\). \(19199 \mathrm{~F} \ddagger 08\). 69820 F 607

INFLUENCE OF AIRCRAFT COMPONENT ? ON AIRCRAFT COMPONENT 3 \(.46639 \mathrm{~F}+10 \quad: 28364 \mathrm{~F}+10 \quad: 16645 \mathrm{E}+10 \quad .93757 \mathrm{E}+09\)
```

COMPONENT NUMRER S
NUMBER.OF ELEMENTSZ 2
SOLUTTONS
18001F+02:200000E+02

```

"ITERATION - LARGEST RELATIVE ERROR . \(149742 E-0 Z\)
ITERATION 7 LARGEST RELATIVE ERRORE \(419913 E .03\)

FIGURE 8.6-2 Output for SOLN Code for Test C̣ase No. 6 (Cont'd)
```

 ITFRATIUN A LARGEST RELATIVE ERHOR=. .11720GE-03
 IMERATIUN G LARGEST RELATIVE ERRORE . 320149F-04
 FILF 7068,SIOPNC/LIBS HAS BEEN OPENED FOR WRITING ON UNIT S
 UNFF F EHDFILED ANO RELEASEG
 UNTT NO, 3
 COMPONENA MOS-M I SutuTIONS:
    ```

```

 UNIT ENOHILEOANGWHELEASFD
 INNIT ND, 3
    ```

```

 :1190993t+02 , 1400002F+02 , 1499999E;02
 FIIE 7090.SUMPNCMIEK HAS REEN OPENED FOR WRITING ON UNIT 3
 UNIT * EmDHILED ANO RELEASED
 UNIT NO, 3
 --COMPONTN+NON. -5.SOTHTIONS:
.1.0000NOF+02 .2000000F+02
NB. OF ITFR;TIONS TO CONUERGE= Q LAHGEST RELATIVE ERRUR= :32OIATE-0IS
+: sTMOIL DONE.
+\& sinf
FIGURE 8.6-2 Uutput for SCLN Code for Test Case No. O (Concludeã)

```


FIGURE 8.7-1 Input for SOLN Code for Test Case No. 7
```

 3 4
 KEREAD ALL INFLUENCE SUB.MATRIX
    ```

```

 VNRE
 7077
 7078
 7 0 7 9
 70M0
 -.708!-
 7082
 7083
 7084
 7084
 TME CIMI: COMMAND MAY NOT BE USED
 W:TH FH% ITENATHON PROC&OU&E.
 REREAI ALI COWSTANY SU&OVECTOR FIIES.
 RCRE.
 708*
 7087
 7088
    ```

```

 HOUSEHOLDER PROREUURE, OEFINE THE
 SOLUTTOF: SURWVECTOR FILIES, THE
 PRE-DFTFRNINED APPROXIMATE
 SOL JTION SUR-VECTOR FILES.
 MAXIMIIM NUMRER OF ITFRATIONS.
 ...AMOHCNT.. GFF f##ER=KELAXAIIGTN.
 AND AMOLNT OF INTERMEDIATE
 PR|NTOUT.
 SGt.v
 <
 7093
 .-.-70.94-
7095
0
17091
27092
1 0
\#10............
0
ALL DIINF:
S%O

```
FIGUiAE 8.7-1 Input for SCLN Code for Test Case No. 7 (Concluded)

```

+: REAS CONSTANT SUR-VECYOR FILES.
+゙ ...施林 - . -...
FIL.F 7086, BfITPNC HAS REEN OPENEN FOR READING ON UNIT ?
CREATION TIMEE07/07/76 04:00%0I
UNIF P REWOUNODND RELEASED
FILE 7087,RC-FNC HAS REEN OPENED FOR READING ON UNIT ?
R.RFATION TITAE\#07/07/76 04:09101

```

```

 +% SOLYE RY HOUSEHOLDER WROPEDURE.
 4: AJD DEFINE PHE SOLUTION
 *: SIJROVFCTOR DUTpUT FILES'.
 * SOLV
 METHOD=
 if\#\#% 0
IPR\PsiNT=
(OUTA, DUTANT,I*I,NCMP)=
7091 F
709? ;
ENTER SUG FART \#FRAGSE 10 TNVE m

```

```

NO.PARTITIONING REOUIRED
EXTT PAKT
ENTFR SUR' MOIIRF. 13 RUWS B TOLUANS Z SOLUTIONS
FXIT HOUS:
nUTPIIT
SOLUTION IINF (SEC:? :O25
*** SOLUTION TIME IS THAT FOR ALL SOLUTIONS

```
SOLUTION VERTOR NO', I

FIIE \(70^{91}\) SHOPNC/LTB\% HAS BEEN OPENED FOR WRITING ON UNIT 3
CREATION TIMF \(=07 / 22 / 76\)
    11:16:43

UNIT NO． 3

UNIT BENDFILED AND KELEASED
EIGURE B.7-2 output for SOLN Code tor Test Case Nu. 7 (Cont'd)
FILE 7002 stopNE/LI8s HAS BEEN OPENED POR WRITING ON UNIT
CREATION FIME O"7
UNIT NO. 3
 ..... \(65936106+01 \quad 4802652 \mathrm{ZF}+01 \quad 1518873 \mathrm{E}+02\)
UNIT 3 ENDFILED AND RELEASED
SOLUTION VEFTOR NO" 2
FILE 7091 SOEPNC/LIB末 HAS BEEN OPENED FOR WRITING ON UNIT 3
UNIT NO, 3
COMPONENT NO 1 SOLUTIONS:
UNIT ENDFIIED AND RELEASED
FILE 7092.SfoPNC/LIB: HAS BEEN OPENED FOR WRITING ON UNIT 3
UNIT NO 3
COMPONENT NO. \(2.8 O L U T I O N S:\)
UNIT 3 ENDFITLEO ANO RELEASEO+1 USEH COULD STOP HERE ANO PERFORM
- \(\quad\) DETERMINE INFLUENEE OF THIRD
क: PIRERAFT E
+1 CNTL
+ REREAD ALL INFGUENCE SUBGMAIRYX
\(+1\) ..... FILFS.FILF 7077 VN.PNC
HAS BEEN OPENED FOR READING ON UNFT
CREATION PIME \(207 / 07 / 76\) ..... 04109101

FILE 7078 VNEPNC HAS BEEN OPENED FOR READING ON UNET
CREATION FIMEEO7/07/76 ..... 04109801
tivit I REWOUND AND RELEAREOHAS BEEN OPENED FOR READING ON UNIT1

FIGURE 8.7-2 Output for SOLN Code for Test Case No. 7 (Cont'd)
```

CREATION TIMEEO7/07/76 04:09101

```

```

FIGE 70\&O.VNOPNC HAS BEEN OPENED FOR READING ON UNIT I
CREATION ITMFF07/07/76 04809:01
UNIT REWTIUND ANO RELEESED
FILF 7OSI,VN-PNC HAS REEN OPENED FOR READING ON UNIT I
CREATJON 11ME%07/07/76 04109101

```

```

FILE TOG2.VN-PNG HAS REEN OPENED FOR READING ON UNIT I
CREATION ITMEEO7/07/76 04:09101

```

```

FILE 70\&3,VNFPNG: HAS REEN OPENED FOR READING ON UNIT I
CREATION TIMF=07/07/76 04:09101

```

```

FILE 7OBA.VNGPNC HAS BEEN OPENED FOR READING ON UNIT I.
CREATION TYMEO7/07/76 04809101
UNIF I RFWMIFNG ANO RELEASED
FILE 7065,VAGPNE HAS BEEN OPENED FOR READING ON UNIT I
CREATION T1MF=07/07/76 04:09101
UNEF I NEWTHNOMAND REEETSED
*: THF COMR COMMAND MAY NOT BE USED

+ WITH THE ITERATION PROCEDURE'.
* RFRFAD ALL CONSIANT SURWVETOH FILES'.
* FCDE
FILE 70BO,RCEPNE HAS BEEN OPENED FOR READING ON UNIT ?

```

```

UNIT Z RFWIUND AND RELEASED
FILE 7OA7,RCGPNC HAS REEN OPENED FOR READING ON UNIT Z
CREATION ITITE=07/07/76 04:09%O:
UNIT }->\mathrm{ REWIUND AND REL.EASEO
FILE 7OGR,RC=PNC HAS BEEN OPENED FOR READING ON UNIT ?

```

```

UNIT }P\mathrm{ REWIUNN AND RELEASED
+: SULVE DIAGONAL BLOCKS BY.

* HIMSEKOLDER PROCEDHRE, DEFINE THF
+: SILIITION SUA=VECTUR FILES, THE
* PREDETERMINED APPROXIMATE

```

```

\&: MAXIMIIM NUMBER UF ITERAITONS.
+: AHOUNT OF OVER=RFLAXATION.

* AND AMOUNF GF INTERMEOTAFE
+1 PHPATGUT.

```

FIGURE 8.7-2 output for SoLN Code for Test Case No. 7 (Cont'd)


UNIT \& REWOIJND AND REIEASED
 UNIT 4 RIWIIUND AND RELEASED
FILF 70BR, BC-PNC HAS BEEN OFENED FOR REAOING ON UNIT a UNIT a RFWATINO AND RELEASED
FILE 7091.5 SIOPNE HAS BEEN OPENED FOR READING ON UNIT a CRFATION TIMEm07/22/76 11:16:43
UNIT a RTWOTINO ANO RELEASED
 CREATION ITPEE07/22/76 11:16:44
GNIT A RFWRUNG AND RELEASEO

```

 UNIT NO, 3
 COMPONENTHO_-3-SOLUTIONS:
.9000000E+01:1000000FF+02

```

```

SOLUTION VEPTOR NO', 2

```


```

UNIT A REWHUND AND RELEAZGED
FILE 7087,BCOFNC HAS BEEN OPENED FOR READING ON UNIT a
UNIT प-REWUUNO-dNO-RELEFSEO
FILE 7088,BCOPNC HAS BEEN OPENED FOR READING ON UNIT A
UNIT \& RFWOUND ANO RELEASED

```

```

 CREATYON TIME=07/22/76 11:16:43
 UNIT 4 REWIUND AND RELEASED
    ```

```

 CREATION TIME#07/22/76 11:16144
 UNIT A REWOUND AND RELEASED
 ITERATION I LARGEST RELATIVE ERRORE GU70115E;00
IFFRATION 2. LAROESYRELAIIVEERMORM-147614E500

ITERATION	3	LARGEST	RELATIVE	ERRORA	-258860E-0.1
ITERATION	4	LARGEG	relative	ERRORa	. 750495 E 02

TIFERATIUN 5 LARGEOT RELATIVECRRORE - \$53576E=02
ITERATION * LARGEST RELATIVE ERRORE .25985IE-03
ITERATION % LARGE8T RELATIVE ERRORE .40520UF.04
FILE 7093,SOmPNC/LIBS HAS BEEN OPENED FOR WRITING ON UNIT S

```

```

 UNIT NO& 3
    ```

```

 FIGURE 8.7-2 Output for SCLN Code for Test Case No. 7 (Cont'd)
    ```
```

 FILE 709G,SITPNC/LIBS HAS BEEN OPENEDFOR WRTTING ON UNIT 3
    ```

```

 UNIT NO, 3
 COMOONENI VO! E SOIUTIUNS:
 .1200003F+02 . 1399999F+02 , 1600000E+0?
 FILE 7045,SO-PNCILIBS HAS REEN OPENED FOR WRITING ON UNIT, %
    ```

```

 UNIT NO. 3
 COMPONEN: TOT. -3 SUCUTIONS:
 .1MOOOOOESO2 . 2000000F+02
    ```

```

 +1 sTap
 +S STMP
 -990% 777
 FIGURE 8.7-2 Output for SCLN Code for Test Case No. 7 (Concluded)

```
```


[^0]: FIGURE 8.0-3 Program Used tc Generate the Matrix and Constant Vectors for Test Cases $1,3,4$, and 5.

