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STATIC AND WIND TUNNEL NEAR-FIELD/FAR-FIELD
JET NOISE MEASUREMENTS FROM MODEL SCALE

SINGLE-FLOW BASELINE AND SUPPRESSOR NOZZLES

Volume 1: Noise of Source Locations and Extrapolation
of Static Free-Field Jet Noise Data

by C. L. Jaeck
Boeing Commercial Airplane Company

•

SUMMARY

A test was conducted in the Boeing large anechoic test chamber (LTC) to study the
near-far/field jet noise characteristics of six baseline and suppressor nozzle models. The
objectives of the study were to (1) determine the static noise source locations, and
(2) establish a technique for extrapolating near-field jet noise measurement- into the far
field. Test models included a 15.24-cm round convergent nozzle, an annular nozzle with
and without a lined ejector, a 20-lobe nozzle with and without a lined ejector, and a
57-tube nozzle with a lined ejector.

The noise source locations were derived from acoustic measurements along multiple
sideline locations. The noise source Iocations were determined to be a function of
Strouhal number and a noise source radiation or propagation angle. In the case of the
20-lobe and 57-tube nozzles, the noise source locations were a function of jet Mach
number or pressure ratio. The test covered nozzle pressure ratios from 1.44 to 2.25, and
jet velocities from 412 to 594 m/s at a total temperature of 844 K.

Analysis techniques were developed to interpret near-field noise data and extrapolate
noise measurements from relatively close to the sources to the far field. An empirical
correlation was defined that accounts for the deviation from spherical spreading loss in
the near field caused by distributed noise sources, nonpoint sources, and pseudosound
effects.

INTRODUCTION

" There is presently a worldwide effort to understand and predict the influence of flight
on aircraft noise. Since flight testing is very costly, alternate methods to simulate flight
effects are being developed by industry and Government. These include wind tunnels,
free jets, rotary rigs, and ground vehicles. Agreement and differences between flight
data and data from ground facilities have been presented by numerous investigations
(refs. 1-4).

Flight effects on engine noise determined from aircraft flyovers are affected by
differences in static and flight measurement technique, engine/airframe effects,
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propagation path variations, integration times, and contamination by the many engine
noise sources. Extrapolation of static data to the flight condition is necessary and
requires knowledge of noise source locations to improve the accuracy of static and flight
data comparisons.

Flight effects determined from closed test section wind tunnels are affected by
reverberation and ambient noise levels, as well as in flow measurement technique.
Flight effects determined by free jet tunnels require knowledge of sound propagation
through the free jet shear layer. The free-jet technique is presently limited to
model-scale jets.

Flight effects on engine noise can be determined by testing an engine in a large wind
tunnel such as the NASA Ames Research Center's 40- by 80-foot wind tunnel (40 by 80).
As described in references 4 and 5, noise measurements are made relatively close to the
engine sources. Knowledge of noise source locations, core stretching, and convection
effects are necessary to analyze these near-field measurements and define the far-field
flight effects.

The noise program conducted by Boeing in the 40 by 80 includes both model nozzle and
full-scale engine tests to establish the feasibility of wind tunnel flight effects testing
and to define specific flight effects for important engine noise sources. The full-scale test
has been completed (ref. 5) and data obtained that define jet and fan noise flight effects
for a dT8D-17 engine configured with baseline, 20-lobe ejector/suppressor, and internal
mixer hardware. Of necessity, the noise measurements were made relatively close to the
sources, similar to model nozzle tests conducted in the Boeing 9- by 9-foot wind tunnel
(ref. 6).

The model nozzle program includes acoustic measurements on three sideline locations to
establish a correlation between flight effects measured relatively near and far from the
jet noise sources. The model nozzles were tested with uniform flow and included a
15.24-cm round convergent, 20-lobe, annular (plug), 20-lobe ejector/suppressor, anr. dar
ejector/suppressor, and a 57-tube ejector/suppressor. The model experimental program
consisted of. a reverberation test in the 40 by 80 to define optimum nozzle and
measurement locations (ref. 7); a noise test in the Boeing a ynechoic chamber to define
static near-field and far-field jet noise relationships under free-field conditions; and a
flight effects test in the 40 by 80.

a
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ABBREVIATIONS AND SYMBOLS

r

r

a speed of sound, m/s

A area, in

ARC Ames Research Center

D diameter, m

f one-third-octave-band center frequency

FAA-DOT Federal Aviation Administration, Department of Transportation

L length, in

LTC Boeing Iarge anechoic test chamber

M Mach number

NASA National Aeronautics and Space Administration

NPR nozzle pressure ratio

OASPL -verall sound pressure level, dB

113 OBSPL one-third-octave-band sound pressure level, dB

P pressure, N/m2

R radial distance from sound source to observer, in

RC round convergent

RH relative humidity

S Strouhal number, fD/V

SL sideline distance, in

SPL sound pressure level, dB

T temperature, 'C, K

Vi fully expanded jet velocity, m/s

X axial distance from nozzle or ejector exit plane, in

3



Y	 radial distance from nozzle centerline, m	
f

y	 specific heat ratio

61	 angle relative to nozzle or ejector exit plane center and inlet axis

Bg	 angle relative to source location and inlet axis

wavelength, m	 ¢

P	 density. kg m3

PI	 fully expanded jet density, kg,m3

Subscripts

A .	 ambient
i

E	 extrapolated

eq	 flow equivalent

I	 inlet

T	 jet	 a.
i

M	 measured, microphone

S	 source

T	 total

.	 .	
4
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TEST DESCRIPTION

Boeing Large Anechoic Test Chamber Facility

The Boeing large anechoie test chamber consists of an acoustically treated room, 22.9 m
wide, 19.8 m long, and 9.1 m high (75 by 66 by 30 ft). The acoustic treatment on the
interior surfaces consists of 30.5-cm-square 32-kg/m3 polyether/polyurethane foam
wedges with a depth of 40.6 cm. The foam wedges have been treated with a chemical
fire retardant. The chamber provides acoustic data within ±1 dB of free field down to
200 Hz.

Room ambient conditions are maintained by inducing 14 200 m 3/min ventilation airflow
with a maximum wind velocity in the microphone arena of 8 km/hr. Intake and exhaust
ducts have silencers installed to minimize internal and external extraneous noise
sources.

The nozzle exit plane was located 1.8 m out from the nearest wall and 4.6 m above the
floor. The nearest sidewall was a distance of 3 m from the nozzle centerline. The air
heater for the jetflow is an inline gaseous propane burner capable of operating; at
pressure ratios up to 4.0, mass flows up to 13.6 kg/sec, and temperatures up to 1100 K.
Airflow rates are measured using a critical flow venturi located well upstream of the
burner. Mufflers are located between the venturi and bur ger to reduce this noise source.

TEST HARDWARE

Six nozzle configurations were tested in the Boeing large anechoic test chamber and
included:

• A 15.24-cm round convergent (RC) reference nozzle

• An annular (plug) nozzle

• A 20-lobe nozzle

• An annular nozzle with lined ejector

•	 A 20-lobe nozzle with lined ejector

•	 A 57-tube nozzle with lined ejector

The test nozzles have nearly equal flow areas, which are equivalent to a diameter of
15.24 cm. The nozzles are representative of 1/5-scale JTBD and 1/8-scale GE4 (SST)
engine nozzle sizes.

5



15.24-cm 'f`^; NOZZLE

The baseline nozzle employed in this test was a 15.24-cm round convergent nozzle as
shown in figure 1. The nozzle is 31.4 cm long and has a measured exit flow area of
180.5 cm2 . The nozzle contains an internal plug that has a diameter of 5.1 em and is
16.5 cm long with the trailing edge located 14.9 cm upstream of the nozzle exit. The
plug is the downstream centerbody fairing for the model charging station. The nozzle is
composed of a series of straight and conical sections as shown in figure 1.

ANNULAR (PLUG) NOZZLE AND EJECTOR

The annular nozzle has a flow area of 185.2 cm 2 and a total-to-flow-area ratio of 2.0.
The contoured plug, which extends 30.5 cm beyond the nozzle exit plane, forms an
annular or throat height of 3.18 cm. A photograph of the annular nozzle and important
dimensions are presented in figure 2 and table 1, respe-tively.

The annular (plug) nozzle was tested bare and with an area ratio 1.8 (ejector exit/flow
area) acoustically lined ejector shroud (fig. 3). The lining is 2.0-cm-thick fiberglass
contained between the solid outer wall and the perforated face sheet. The stainless
shroud is contoured to maintain a constant area (ratio) through the ejector. The shroud
has an overall length of 37.8 cm, a throat-to-exit length of 30.5 cm, and an exit diameter
of 21.1 cm.

20-LOBE NOZZLE AND EJECTOR,

This nozzle consists of a plug nozzle with an annular array of 20 lobes, 2.0 cm wide and
4.6 cm high. The 20 lobes encompass a flow area of 179.9 cm2 and a total-to-flow-area
ratio of 2.7. The contoured plug extends 30.5 cm beyond the nozzle exit plane. The same
ejector was used with the 20-lobe and annular nozzle.

Photographs of the 20-lobe nozzle and lined ejector are shown in figures 2 and 3.
Important dimensions and geometric descriptions are provided in table 2.

57-TUBE EJECTOR/SUPPRESSOR

The 57-tube suppressor nozzle (56 tubes and a center hole) has a geometric-flow exit
area of 163.9 cm 2 . The nozzle area ratio, which is defined as the base area enclosed by
the upstream periphery of the outer-tube row divided by the geometric flow area, is
equal to 2.9. As shown in figure 4, the outer row consists of small, elliptical, constant
cross-section tubes. The remaining tubes are round with round convergent exits,
providing efficient internal performance. The baseplate design incorporates a 24.81-cm
spherical radius, terminating in the circular central hole. The tube exits are
noncoplanar to conform to stowage requirements of an SST suppressor nozzle
installation.

The 24-sided, acoustically lined ejector used with the 57-tube nozzle (see fig. 5), has a
flat-to-flat dimension across the lined ejector of 24.85 cm and a length of 27.7 cm
(LIDeo = 1.9).
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The ejector has an area ratio of 3.0 (where the ejector area ratio is defined as the
cross-sectional area at the ejector throat divided by the primary nozzle exit area). The
ejector was mounted 2.0 em aft of the nozzle exit plane by means of four struts placed at
900 increments around the nozzle body, and located 45° from the nozzle vertical
centerline.

The ejector lip consists of a . 3.0511.52-cm inner ellipse extending from the throat to the
highlight, and a 1.5211.26-cm outer ellipse from the highlight outward. The mounting
struts atta..n to this outer portion of the ejector lip.

The lining ha:. = 95% open-area face sheet with a 0.889-cm honeycomb backing, followed
by an 8% open-area sheet with a 0.38-cm honeycomb backing, and closing out with a
solid backing plate. The lining was tuned to have a flat frequency response between 6.3
and 12.5 kHz.

A summary of important 57-tube nozzle and ejector dimensions is presented in table 3.

INSTRUMENTATION

ACOUSTIC INSTRUMENTATION

All acoustic data were monitored by bare (without wind screens) 0.635-cm Bruel and
Kjaer condenser microphones having a flat frequency response (after correction) from 50
to 80 000 Hz. A summary of the microphone locations is presented in table 4.
Microphones located on the 0.6-m sideline were oriented for grazing incidence and were
positioned below the horizontal plane of the nozzle axis. This was done so that
microphone mounting hardware would not obstruct the source-receiver propagation
paths for the 1.5-, 3.0- and 5.33-m sidelines. The microphones on the 1.5- and 3.0-m
sideline locations were positioned for normal' incidence and were oriented toward the
nozzle exit plane. Photographs of the microphone installations and the anechoic
chamber are shown in figures 6, 7, and 8.

For the RC (round convergent) nozzle, microphones were positioned initially on 0.6-,
1.5-, and 5.33-m sideline locations. The 5.33-m sideline array was then repositioned on
the 3.0-m sideline for a second series of runs on the RC nozzle and the remainder of the
test.

The RC nozzle and three nozzles with lined ejectors were designed with a common
nozzle or ejector exit plane location, and all microphones were then positioned relative

' to an origin at thi,3 common nozzle or ejector plane location. In the case of the bare
annular and 20-lobe nozzles, the 0.6-m sideline microphone array was shifted 7.62 cm
downstream during the test to account for a change in nozzle exit plane location.
However, the 1.5- and 3.0-m sideline microphone arrays were not moved, since the
maximum error in angular location is 2.8° or less.

The analog data from each microphone was recorded for 20 sec on a 14-channel Ampex
Type 1800L tape recorder, 12 microphones at a time. The. taped data were reduced later

7
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using a General Radio Model 1921 analyzer. The reduced data were presented in
one-third-octave bands from 200 Hz to 80 kHz and stored on digital magnetic tape for
subsequent analysis.

Prior to each run series on a nozzle, an ".air ball" calibration noise source was used for
functional checks of the noise data acquisition instrumentation. The airball (fig. 7) was
removed from the chamber prior to jet noise testing. 	 r

The frequency response characteristics of the Bruel and Kjaer Model 4135 and 4136
microphones and of the Ampex FR-1800 tape recorder were determined prior to the test.

FLOW INSTRUMENTATION

All models were tested using the single-flow rig, which contains facility charging
station instrumentation rakes for the measurement of total pressure (10) and
temperature (10). This facility charging station was located 1.5 m downstream of the
burner and 1.5 m upstream of the nozzle. In addition to the facility charging station, all
model installations except the 57-tube suppressor nozzle included a model charging
station section that contained 10 total pressure and temperature probes.

The annular and 20-lobe nozzles contained two static pressure taps, and each ejector
contained three total pressure probes used to determine the ejector inlet or entrainment
velocity. The 57-tube suppressor nozzle contained four nozzle baseplate static pressures
and four ejector lip static pressures (ejector throat) to define eject, ^r inlet velocity.

ACOUSTIC DATA REDUCTION

Acoustic data recorded on 14-track analog tape are reproduced and analyzed in
one-third-octave bands. The basic analysis system consists of an analog tape reproducer,
General Radio Model 1921 one-third-octave analyzer, time code reader, PDP8-1
computer, digital magnetic tape recorder, and associated monitor, control, interface, and
peripheral service equipment.

The operator controls the analysis through a teletype keyboard used for entering
calibration, frequency response, compensation, and measurement identification.
information into the computer. The General Radio analyzer includes a bank of 27
one-third-octave-band filters covering the frequency range of 200 Hz to 80 kHz. The
filters are calibrated with both sinewave and random noise inputs. The true RMS
detector section of the analyzer has a dynamic range of 60 dB and a resolution

l	 of +0.25 dB.
A

Frequency response compensation and sensitivity calibration information are added to
the one-third-octave-band data in the computer and the output is a digital mae~netic
tape in a format compatible with existing CDC-6600 computer software.

All components of the recording and re-daction systen. are periodically cer
manufacturer's specifications by the Boeing Flight Test Calibration Laboratory.

L'	 O
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TEST CONDITIONS

Five pressure ratios of 1.44, 1.58, 1.75, 1.965, and 2.25 were run for each nozzle
configuration at a total temperature of 844 K. A few additional runs were conducted for
the 15.24-cm RC and 57-tube nozzles. All test runs and corresponding test conditions
are summarized in table 5. The jet velocity shown in table 5 and that used in this

ok	

document is the ideally fully expanded value, which is calculated as follows:

	

y-1	 112

	

Vj = 23.95- TT 1 — NPR 7	
MIS

where y is computed for products of combustion and hot flow, but at nozzle static
conditions (ref. 8).

During the test, it became apparent that the two hygrometers in the anechoic chamber
were functioning erratically. In order to provide accarate humidity and ambient
temperature data, a psychrometer was utilized in addition to the two hygrometers.
Ambient temperature and relative humidity values are presented in table 5.



DATA ANALYSIS

NEAR-F1101 LD JET NOISE PROBLEM

The jet noise generation and propagation problem can be broken into three regions: the
flow field, the near field, and the far field. Siddon (ref. 9) defines the near field as the
region from the line of maximum shear to the location where spherical divergence or
B dB per doubling of distance begins. The near-field pressure fluctuations are composed
of two parts: (1) the pseudosound or nonpropagating part, and (2) the acoustic or
propagating fraction.

The near-field jet noise cannot be represented by a single-point source or by a series of
point sources whose location is only a function of frequency. Assuming the jet can be
represented by a cylindrical source, the noise at a given frequency is generated
throughout the finite length cylindrical noise source and radiates sound in a highly
directional manner. In a jet there are the additional effects of sound source convection
and refraction, which influence sound directivity.

PROPOSED MODEL AND METHOD OF ANALYSIS

A proposed model and method of analysis has been suggested by Strout (refs. 5 and 10).
The jet noise generated at a given frequency is represented by a series of directional
point sources. The sound radiates at a fixed angle relative to the jet axis and propagates
from the source location in the jet through the near field and into the far field. The
level is reduced by spherical divergence (with near-field corrections) and atmospheric
absorption. The sound level distance relationship is assumed to be the same for all
radiation or emission angles, excluding atmospheric absorption effects. ' phis assumption
of a constant SPL increment is based on the following considerations:

1. 20 log SL,21SL,1 = CONST

2. OSPL due to near-field effects at a given frequency and sideline distance are
constant

3. The differences in atmospheric attenuation over any two propagation paths is
small (between the same two sidelines)

The latter requirement is not true for high frequencies, where atmospheric attenuation
corrections are required.

The noise source locations and radiation angles are defined by acoustic measurements
on multiple . sidelines. The analysis is accomplished by plotting the
ane-third-octave-band SPL directivities for the multiple sidelines at a given jet
condition as shown in figure 9. The four points indicated by the angles for the peak or
maximum one-third-octave-band SPL specify a noise propagation path. Assuming the
delta SPL between the peak for the far fieid and a near-field sideline remains constant
for all locations or propagation paths, the nonpeak emission angles are defined in figure

i
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9 by the dashed lines. To illustrate the procedure, assume an angle of 90° on the 5.33-m
sideline and then add the OSPL between the peak 5.33-m and 3-m sidelines to the SPL
at 90° on the 5.33-m sideline. One then determines where this corrected SPL intersects
the 3-m sideline, which is 93 0 for this case. This procedure is repeated for the remaining
two sidelines to complete the tracing of the noise propagation path. This procedure is
then repeated for other propagation paths to determine the variation of source location
as a function of noise radiation angle for a given frequency or Strouhal number.

The procedure illutrated in figure 9 is repeated for each frequency to define a series of
emission angles and apparent axial source locations for each jetflow condition. The noise
sources were assumed to be located radially along a line of maximum shear, or at a
radial position (Y) equal to the- nozzle radius as shown in figure 10. The source locations
and emission angles for a given frequency or Strouhal number are shown in figure 11.

Application of the apparent jet noise source locations to the extrapolation of near-field
data requires the assumption of a noise/distance scaling relationship, namely spherical
divergence. Near a jet this assumption breaks down due to:

1. Pseudosound (nonpropagating), which increases the noise above spherical
divergence close to the jet source region.

2. Noise generation and sources are distributed over a volume in the jet. This is
related to the differences between a point and line source as discussed by Rathe
(ref. 11). The sound emitted by a line source falls off by a 10-log relation and then
by a 20-log relation. The sound attenuation with distance is a function of the
sideline distance and the position of the observer (i.e., the viewing angle, which
spans the length of the source). The results of Rathe, though not directly
applicable, are informative.

To account for the two effects, peak near-field noise levels at varying frequencies or
wavelengths were correlated as presented in figure 12. The correlation indicates the
deviation of the peak near-field one-third-octave-band SPL from the peak far-field SPL
extrapolated to the near-field location using spherical divergence. This near-field noise
increment was found to be a function of the following correlation parameters:

x. SLID, sideline distance to jet diameter

2. (R/X)(V jlaA), ratio of path length from noise source location to observer (R) to the
wavelength 00 multiplied by the acoustic Mach number (Vj1aA)

The dimensionless ratio group (item 2) can be transformed as follows:

z
R	 v7	 ^]

][aA
][R Vj

A - Vj i)j aA

The section of the curves to the right of the peak: is attributed to the distributed source
effects, while the left part of the curve is due to near-field effects. The near-field and
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distributed source effects on the acoustic spreading loss diminish for sideline distances
(SLIDj) greater than 20 diameters.

15.24-cm RC NUZZLE RESULTS

The simplest of the nozzle configurations tested was the round convergent (RC) nozzle.
Jet noise was measured at up to 12 angles on each of four sidelines to accurately define
the one-third-octave directivities as shown in figure 13. The jet noise at the low
frequencies peaks at angles close to the jet axis, while the high frequencies peak at
angles away from the jet axis. The peak low-frequency noise appears to be generated
and .located well downstream from the nozzle emit. Peak axial noise source locations
have been previously determined by numerous techniques, one of which is the wall
isolation technique of reference 12.

The peak sound power source location data of McGregor and Simcox (ref. 12) have been
normalized and are displayed in figure 14. The peak axial noise source locations that
were determined for an RC nozzle at supersonic conditions are indicated by the solid
lines. The dashed lines at the subsonic conditions are extrapolations of the supersonic
data. The source locations are observed to be a strong function of nozzle pressure ratio
or Mach number.

The wall isolation results from Rc ,ference 12 are compared with peak noise source
locations from the multiple sidelint., technique in figure 15. Although the two sets of
results are nearly equal in magnitude, the detail trends are quite different. The noise
source locations from the multiple sideline technique do not stratify with Mach number
and exhibit a flat. region that indicates most of the peak noise is generated at the tip of
the potential core at XID = 5.0.

In order to verify the multiple --ideline results, peak power source locations for the RC
nozzle were determined analytically using the Lu-Berman flow/noise analysis (refs. 13
and 14). The analytical results are presented in figure 16 for nozzle pressure ratios of
1.44 and 2.25. The analytical results collapse into a single line, and also show the
concentration of peak noise sources at or slightly downstream from the tip of the
potential core. The analytical results indicate the high frequencies are located closer to
the nozzle exit than shown by the measurements. This is due to the analytical method,
Which at present does not include the sound propagation internal to the jet. The
analytical results confirm the multiple sideline technique. Further, the multiple
sideline technique appears to provide greater resolution of source locations than the
wall isolation technique.

Peak noise source locations are only one piece of information required in the
near-field/far-field analysis of jet noise data. Knowledge of the noise source radiation
angles is also required to perform a near-to-far-field extrapolation of jet noise results.
The peak noise radiation angles, like the noise source locations, were found to correlate
with Strouhal number as presented in figure 17. The peak OASPL has a sound radiation
angle of 1410 as shown in figure 17, which is representative of a Strouhal number of 0.3
and an apparent noise source location of XID = 5.0.

12



__l	 I	 I	 J	 l	 !	 !.

The peak noise source locations and radiation angles only partially define the noise
generation in the jet. The noise at one frequency or Strouhal number is generated
throughout the jet, and different parts of the jet radiate at differen": angles, as was
shown earlier in figure 11. The previous correlations for peak noise source locations and
radiation angles as functions of Strouhal numbe: . suggest a means of correlating the
distributed noise source effects. The nondimensional noise source locations (XS/D) can
be correlated as a function of radiation angle (B S), but at constant Strouhal number
(fDIV), as shown in figure 18, using the procedures and results of figures 9 and 11.

t The distributed source location correlations indicate that for a given nozzle diameter, if
the jet velocity and frequency are both doubled, the source locations (XS/D) and
radiation angles for the two cases are equal. This occurs because as frequency is
increased, the noise sources tend to shift toward the nozzle exit, but as velocity is
increased the jet core length is increased and the noise sources tend to move
downstream.

These distributed noise source correlations indicate the t the noise generation- region at
a given Strouhal number is limited in size, and extends from a point just downstream of
the nozzle exit to a point near the end of the jet phime. These results are consistent
with jet noise and flow phenomena.

The results of figures 12 and 18 plus the atmospheric attenuation from ARP 866
(ref. 15) can be used to extrapolate jet noise data measured in the near field into the far
field as follows:

1/3 OBSPL (far field) = 1/3 OBSPL (near field)

RS E _ AdB[RS ,E — RS.M_20 tog 10 R
S

U
M 305	 305	 , OSPL1 — ASPL2

where

RS,M	 = acoustic path length from source location to near-field microphone, in

RS,E	 = acoustic path length from source (through near-field location) to
far-field . sideline, in

AdB/305 = atmospheric attenuation (ARP 866), dB1305 in

ASPL 1 = from figure 12, where R = RS,M and SL SL,M

ASPL2 = from figure 12, where R = RS,E and SL = SL,E

Jet noise measurements on 0.6-, 1.5-, and 3.0-m sidelines have been extrapolated to
5.33 in and compared with measurements on a 5.33-m sideline in figures 19, 20, and 21
for pressure ratios of 1.44, 1.75, and 2.25. The measured and extrapolated OASPL and
one-third=octave . SPL directivities are in good agreement. To further test the
extrap-lation procedure, the data from the four sideline locations have been
extrapolated to a 15-m far-field location (RE/D3 ? 100) and compared on a spectral basis
as shown in figure 22. Again, the data sets are in good agreement.

13
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Data from the 5.33-m sideline extrapolated to 15 in are compared with an empirical,
far-field, "clean," shock-free jet noise prediction procedure (ref, 16) in figure 23. The
good agreement in the low frequencies indicates an absence of burner can and
combustion related noise. The difference between the data and .predictions in the high
frequency is assumed to be due to the presence of increased turbulence due to the
internal upstream struts, possible flow separation on the plug, and velocity profile
distortion by the plug. The effect of an outer high-velocity region in the jet produces
low-frequency suppression, and high-frequency noise increases (see refs. 17 and 18).
These effects are evident in the data/prediction comparison at a pressure ratio of 2.25.
At an NPR W 2.25 some of the high frequency differences are due to shock-cell-related
phenomena.

The analysis of the RC nozzle jet noise data confirms:

•	 The multiple sideline technique for noise source locations

•	 Correlations of noise source locations and radiation angles

•	 The near-fieldlfar-field extrapolation procedure for jet noise

However, further confirmation of the data analysis techniques and near-field/far-field
extrapolation procedures is required for more complex nozzles and jet flow fields, which
will now be provided with the analysis of data from:

• The annular (plug) nozzle with and without lined ejector

o The 20-Iobe (plug) nozzle with and without lined ejector

• The 57-tube composite nozzle with lined ejector

ANNULAR NOZZLE RESULTS

The one-third-octave directivities and source locations for the annular nozzle at an
NPR = 1.44 are presented in figures 24 to 27. The peak axial noise source locations and
radiation angles that are displayed in figures 25 and 26 exhibit a gradual falloff with
Strouhal number. This differs from the peak source location distribution observed for
the RC nozzle. The data, however, do correlate with distance (XIDeq) and Strouhal
number, where Deg in each case is the equivalent flow diameter.

The measured noise data for the annular nozzle on the 0.6- and 1.5-m sidelines were
extrapolated to the 3.0-m sideline using the results of figure 12 and the distributed
source locationo shown in figure 27. The extrapolated OASPL and one-third-octave-band
SPL's are observed to be in good agreement with the measured results, as shown in
figures 28, 29, and 30 for NPR = . 1.44, 1.75, and 2.25.

The measured annular nozzle results were also extrapolated to the far-field 15-m
location. and compared with the empirical, "clean," far-field RC nozzle jet noise
predictions as presented in figure 31. The annular nozzle compared to the . RC nozzle

14
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predictions show low-frequency noise suppression and high-frequency noise generation.
The low frequencies are suppressed as a result of tb ,: larger nozzle diameter, which
results in increased air entrainment and a velocity profile distortion. The
high-frequency noise increases as a result of a frequency shift due to noise scaling with
annulus height rather than equivalent flow diameter.

d

20-LOBE NOZZLE RESULTS	
i

A 20-lobe nozzle with a centerbody was tested in this study as one example of a
r suppressor nozzle. The multilobe nozzle is used to break up a large jet into smaller

elements with smaller potential cores and noise sources located much closer to the
nozzle exit. The jet from a multilobe or multitube nozzle consists of three regions:

The premerged region where the elemental jets exist but are entraining ambient
air

r The transition region where the high velocity hot jets interact and mix with the
cool, low-velocity, ambient air

• The postmerged region that acts like a new jet having the properties of a fully
mixed jet but with a lower velocity and temperature than the original jet

_I
Low-frequency jet noise suppression is achieved through the lower postmerged velocity.
The multielements or premerged. jets produce a frequency shift and a noise increase in
the high frequencies.

One-third-octave-band directivities, noise source locations, and radiation angles for the
20-lobe nozzle are presented in figures 32 to 34. The peak noise source locations stratify
with jet velocity as shown in figure 33. The jet exit or premerged normalizing
parameters selected produce a collapse of the data in the high-frequency region. No
single set of normalizing conditions will collapse the premerged, transition, and
postmerged source locations, The peak noise source radiation angles do correlate with
the use of a single parameter; namely, jet exit Strouhal number.

The distributed source results shown in figure 34 were used to extrapolate data from
the near field into the far field as presented in figures 35, 36, and 37. The agreement
between the extrapolated and measured data on both an overall and spectral basis is
excellent.

Figure 38 shows the measured data for the bare 20-lobe nozzle at a pressure ratio of
1.75 extrapolated to a 15-m sideline, and compared with pre- and postmerged empirical
jet noise predictions. The data collapse is excellent and the postmerged prediction is in
good agreement with the data. The postmerged jet conditions for the predictions were
based on one-dimensional ejector calculations with the following assumptions:

0	 The air entrained by a multilobe/tube nozzle is not affected by a lossless,
frictionless ejector with a diameter equal to that of the nozzle exterior

e The flow is one-dimensional, with constant and equal gas properties

0

	 I5



The one-dimensional ejector calculations solve the equations of continuity, momentum,
and energy to obtain the ejector entrained airflow and velocity, as well as the fully
mixed conditions at the ejector exit.

The premerged predictions are based on the assumption of 20 equivalent, isolated,
noninteracting jets. The difference between the data and predictions at angles of 1401
and 1600 is an indication of the effect of the jet interaction and ambient air entrainment
on jet noise. The agreement between the predictions and data at the very high
frequencies indicates presence of the elemental jets, since this noise is generated at or
near the nozzle exit before any interaction or mixing occurs.

This completes the analyses of the three "bare" nozzles. The analyses of the annular
and 20-lobe nozzles with a lined ejector follows.

ANNULAR AND 20-LOSE NOZZLES WITH LINED EJECTOR

A simple method of reducing the exhaust noise of a jet is to place a shield or ejector
immediately downstream of the nozzle, but surrounding the jet. The ejector allows
entrainment of ambient air and shields or absorbs the high-frequency noise. The ejector
may produce thrust augmentation at takeoff, but added weight and drag penalize
aircraft cruise performance.

The annular and 20-lobe nozzles were tested with the same lined ejector as described in
an earlier section. The results of the analyses are presented in figures 39 through 53. To
determine ejector performance, total and static pressure in the entrained airstream
were measured. These measurements are presented in figure 39 and compared with
ideal one-dimensional ejector calculations. The measured ejector inlet Mach number for
the 20-lobe nozzle approaches the predictions, while the annular nozzle inlet Mach
number is significantly lower. These differences are due to deviations in the actual
ejector exit velocity profile from the flat, fully mixed profile used in the predictions.

The calculated, fully mixed, ejector exit pressure ratio and total temperature, and the
ejector entrained airflow are displayed in figure 39. The entrained airflow for this area
ratio 1.8 ejector is equal to 5001b of the jetflow rate and results in a fully mixed or
postmerged velocity (Vmixed/VS) of 0.68.

The measured and extrapolated one-third-octave-band directivities and noise source
distributions for the annular nozzle with lined ejector are presented in figures 40 to 46.
The noise source characteristics for the 20-lobe nozzle with ejector are shown in
figures 48 to 50. The noise source locations indicated are measured relative to the
ejector exit. The normalizing parameters have been based on nozzle exit conditions. In
general, the ejector tends to shift the high-frequency noise sources closer to the nozzle
exit, but the changes are small.

The extrapolated one-third-octave-band directivities are in good agreement for all
frequencies and pressure ratios for both nozzles, as shown in figures 44 to 46 and
51 to 53.

t
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57-TUBE NOZZLE WITH LINED EJrCTOR

The 57-tube suppressor was developed during the FAA-DOT Phase II program as a jet
noise suppression system for an SST turbojet engine. This system was considered the
best design to provide low noise levels with high performance. The unequal tube sizes
were selected to obtain a desired high-frequency content from the outer tubes to
maximize ejector lining effectiveness. Tube shape and spacing were selected to provide
ventilation airpaths across the nozzle base to minimize base pressure losses. Also, the
tube size and locations were selected to shape the velocity distribution across the array.

r
The 57-tube suppressor has been statically tested model scale, and full Fcale on the J-58
engine (refs. 19 and 20). The 57-tube nozzle with ejector was selected for this study as a
representative example of a complex flow/noise suppressor system.

The measured and predicted ejector performance is presented in figure 54. The
predictions are in good agreement with the measurements. The area ratio 3.0 ejector
produces an entrained airflow equal to 110% to 1207o of the jetflow and results in a low
postmerged velocity (Vmixed/Vi) of 0.515.

The acoustic characteristics of the 57-tube composite nozzle with lined ejector are
presented in figures 55 to 63. The apparent peak and distributed noise source locations
are presented in figures 56, 57, and 58 for pressure ratios of 1.44, 1.75, 2.25, and 2.60.
The distributed source locations presented in figure 58, plus the correlation presented in
figure 12, were used to extrapolate near-field jet noise measurements into the far field
(3-m) as shown in figures 59 to 62. The extrapolated data are in agreement with the
measured OASPL's and the one-third-octave-band SPL's.

The measured data extrapolated to a 15-m sideline are compared to predictions in
figure 63. The low-frequency postmerged prediction is based on the ejector calculations
shown in figure 54. The predictions in the postmerged region underpredict the data at
angles of 1000 and 1200 due to possible burner noise or a non-square-velocity profile.
The results from the 20-lobe nozzle and RC nozzle indicated that there was 1-ftle or no
burner/combustion noise present.

The premerged prediction is based on 61 equivalent (outer tube area) Gabes and jet exit
conditions. The differences between the measured and predicted results indicates the
effect of the following suppression mechanisms:

•	 Fluid shielding

♦ 	 Interaction of the elemental jets

•	 Shielding by the ejector

•' Absorption of sound by the ejector lining

These effects are maximum at angles near the jet axis, and minimum at 100 0 . The
agreement between sets of extrapolated data and predictions for this complex suppressor
provides further verification of the source locations and extrapolation procedure.

17 l



CONCLUDING REMARKS

A study of the near-field/far-field noise characteristics of baseline and suppressor
nozzles under static conditions has been completed. This study has:

0

s Verified the multiple sideline technique for determination of apparent jet noise
source locations, on both a peak and distributed basis

s Determined and correlated noise source locations for six baseline and suppressor
nozzles operating at subsonic and supersonic Mach numbers

Y Established a technique for extrapolating static near-field jet noise measurements
into the far field

The techniques established will now be verified for wind tunnel conditions with ambient
air velocity. The presence of ambient velocity adds an effect of convection on noise
source radiation angles and results in a shifting of the noise sources downstream due to
a stretching of the potential core. These effects of forward speed on jet noise were
studied by tests in the NASA-Ames 40- by 80-foot wind tunnel. A description of the test
and subsequent analysiF are presented in volume 2 of this report.

Boeing Commercial Airplane Company
P.O. Box 3707

Seattle, Washington 98124
September 1976
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Nozzle flow area 1861.1 cm2

Ejector inlet area
Nozzle flow area

1.8

Ejector length (nozzle exit
to elector-exit)

30.5 cm

Overall ejector length 37.8 cm

Plug diameter 15.3 cm.

Annular nozzle diameter 21.7 cm

Ejector exit. diameter 21.1 em

Nozzle flow area 179.9 cm2

Ejector inlet area 1.8
Nozzle flow area

Ejector exit area 1.8
Nozzle flow area
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Table 3. —Dimensions for 5J-Tube Nozzle

(Nozzle flow area 163.9 cm2

Nozzle base area (outer
edge of tubes)

475.2 cm2

Ejector area 489.0 cm2

Ejector length (nozzle
exit to ejector exit)

29.7 cm

Ejector set back (tube exit
to ejector lip)

2.0 cm

Overall ejector length 27.7 cm

Nozzle base area/nozzle
flow area

2.9

Ejector area/nozzle flow area 3.0

Number

	

Row 5	 24 (elliptical)

	

4	 12

	

3	 12
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Table 4.--Summary of Microphone Locations
i

Nozzle description
Sideline
distance, Microphone angles, dega

15.24
annular

-cm RC, annular,
/ejector

0.6 90,100,110,120,130,135,140,145,150,155,160,165

l

1.5

315.33

90,100,110,120,130,135,140,145,150,155,160,165

90,100,110,120,130,135,140,145,150,155,160 "—

i

20-lobe,
57-tube

20dobe/ejector,
/ejector

0.6 90,100,110,115,120,125,130,140,150,155,160,165

.

the nozzle

NW

1.5

3.0

90,100,110,115,120,125,130,140,150,155,160,165

90,100,110,115,120,125,130,140,150,155,160
i

3
3

i

aThe microphone angles are relative to the inlet axis
or ejector exit.

and with the origin at
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Q Table 5.-Model Conditions for Static Near-/Far-Field Test

Jet Ideal Measured

Flow Ambient Relative total jet Nozzle nozzle

Nozzle description Area. Run Temp, humdity, temperature velocity, pressure
ratio

flaw rate,
kgiseccm2 no. o C % K m/s

Round convergent 187.1 3 14.4 32 820 404 1.44 3.38

830 450 1.57 3.84

829 500 1.74 4.36

826 538 1.94 4.95

834 58B 2.23 5.69

6 15.5 40 839 408 1.44 3.36
848 454 1.57 3.83

850 500 1.74 4.33

861 547 1.936 4.88
859 600 2.25 5.66

4 14.4 32 589 447 1.91 5.79

528 395 1.74 5.49

480 319 1.48 4.63

Annular/plug 186.1 16 21.1 36 846 402 1.44 3.42
828 450 1.57 3.94

823 494 1,74 4.45

828 536 1.93 4.96
820 585 2.24 5.84

20-lobe 179.9 13 18.3 37 822 401 1.43 3.37
833 451 1.57 3.76
838 501 1.75 4.32
844 545 1.95 4.93
848 593 2.23 5.63

Annular/plug 186.1 9 13.3 54 841 408 1.435 3.44
nozzle with - 849 450 1.57 3.89
lined ejector 850 503 1.743 4.44

833 541 1.95 5.11
844 596 2.26 5.80
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Nozzle description
Flow
Area,
cm2

Run
no.

Ambient
Temp,
o C

Realtive
humdity,

%

Jet
total

temperature.
K

Ideal
jet

velocity
to /s

Nozzle
pressure

ratio

Measured
nozzle

flow rate;
kg/sec

20•1obe nozzle with 179.9 10 22.8 24 827 403 1.434 3.44
lined ejector 835 450 1.567 3.86

836 495 1.731 4.34
844 546 1.959 4.88
843 591 2.231 5.59

57-tube nozzle 163.9 11 22.2 24 826 404 1.434 310
with lined ejector 831 449 1.553 3.52

839 501 1.754 3.94
833 541 1.95 4.53
836 588 2.23 5.12

12 22.2 24 825 632 2.58 5.83

O^

!^ rb
'	

P

v

i--

Table 5.—(Concluded)
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• 15.24-cm RC nozzle
• NPR = 1.75
d TT - 844 K

• Frequency = 250 Hz

0 S = 0.075

f .	 .



Extrapolated
sidel ine; SL,E

Measured sideline;
SL,M
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Figure 72.--Deviation of Jet Noise Measurements From the Spherical
Divergence/Point Source Assumption
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