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ABSTRACT

The two-electron bond-orbital model of tetrahedrally-coordinated solids

is generalized and its application extended. All intrabond matrix elements

entering the formalism are now explicitly retained, including the direct over -

lap S between the anion and cation 5p 3 hybrid wavefunctions. Complete analytic

results are obtained for the six two-electron eigenvalues and eigenstates of

the anion-cation bond in terms of S, one-electron parameters VZ and v , and

two-electron correlation parameters Vµ , VS and V^ . Refined formulas for the

dielectric constant and the nuclear exchange and pseudodipolar coefficients,

as well as new expressions for the valence electron density, polarity of the

bond and the c.ohesive energy, are then derived. A scheme for evaluating the

basic parameters of the model is established, in which V. is fit to the

optical-absorption peak of group-IV elements in the manner of Harrison and

Ciraci and the remaining quantities are calculated using Hartree-Fock`free-

atom wavefunctions and.term values. For the twenty group-IV and III-V semi-

conductors, we find VS- V6 a but 'y 1 V2	 ^Z , leading to significant

correlation effects in most properties. The theory gives a good account of

the experimentally observed trends in all properties considered and approximate

i
quantitative agreement is achieved for the pseudodipolar coefficient. Good

agreement is also obtained fcr the E Z optical-absorption peak, the die-

lectric coy al tant, the nuclear exchange coefficient and the cohesive energy of

the binary compounds by scaling to experiment for the group-IV elements. Our

calculation„ on the cohesive energy suggest that the intrabond overlap energy,

^F'
GINAL PAGE

PgpR QUALITY,





I. _INTRODUCTION

The description of the valence bands of tetrahedrally-coordinated solids

in terms of sl ,' hybrid wavefunctions has been considered at various times by

a number of different workers. In recent papers, Harrison 1 and Harrison and

Ciraci 2 (hereafter referred to as HC) have presented a unified and greatly ex-

tended version of such a theory, which they call the bond-orbital model. One

of the major contributions of their work was the direct treatment of a wide

range of physical properties in addition to the band structure. In this model

the band structure becomes a separate question 3 and a large number of properties

can be calculated with only a knowledge of the local properties of the anion

cation bond. Formally,_ this bond is equivalent to a two-electron diatomic

molecule., Harrison1 and HC, as well as previous solid-state workers, have
treated this molecule in the usual one-electron, molecular-orbital approximation.

-1

As a step toward providing a more complete treatment of the bond, we introduced

in the _first paper of this series (hereafter referred to as ,Paper I) a direct

two-electron formalism. Our two-electron bond-orbital model was developed as

an extension of the method of Falicov and Harris 5 for treating the hydrogen

molecule. In Paper I we considered the simplest special cases of the theory

and applied the results to the calculation of the dielectric constant and the

nuclear exchange and pseudodipolar ` coefficients. In this paper we generalize

our two-electron bond-orbital model into a full quantitative theory and extend

its application to several additional physical properties, attempting to assess

the importance of two-electron correlation in each case.
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The simplicity of any 'bond-orbital approach rests with three approxima-

tions. First, the appropriate anion and cation t,1 2 5 hybrids are assumed, to form

a complete set for the description of the bond. If the s and f' wavefunctions

making up these hybrids are atomic-like states, this set is.technically under-

complete, although the choice of states can be optimized. In a one-electron

description, one then has a simple two-state eigenvalue problem and the ground

state or bond orbital is a symmetric linear combination of two sp a hybrids. In

a two-electron description, a six-state eingenvalue problem must be solved, but

an exact analytic solution is still possible for the two-electron bond-orbital,

as well as all of the excited states. In either case, the bond orbitals obtained

are then assumed to be orthogonal to one another in the solid. This is approxi-

mately true because the four sp' hybrids sharing a common atomic site are ortho-

gonal by construction. 1 Finally, all matrix elements linking the ground state

of one bond to the excited states of its neighbors are discarded. The only

interbond matrix elements, permitted, and the ones which give rise to the band

structure, 2 ' 3 are those connecting neighboring bond orbitals through the Hamil-

tonian. Then, because the valence band is full, one can make a unitary trans-

formation from extended Block states to the localized bond orbitals in calculating

both the total energy and the total valence-electron density of the solid.

q	 g	 respectively, asThese latter quantities are thus given, res ectivejust a sum of the total^

energies and a sum of the total electron densities of the individual bonds and

are exactly independent of the remaining interbond terms. Thus physical pro-

perties which depend only on the total energy or electron density can be cal-

i
culated entirely in terms of intrabond matrix elements.

i

The work begun in Paper I is extended here in several major ways. We first

obtain a complete solution of the two-electron problem. The direct overlap

ORIGINAL PAGE IS
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matrix element between anion and cation hybrids and the two-center Coulomb ex-

change and transfer integrals, all of which were dropped in Paper I, are now

included without approximation. In Sec. II exact analytic results for the

singlet and triplet eigenstates and eigenvalues are obtained. We then proceed

to develop a full formal theory of several important physical properties. In_

addition to a refined treatment of the dielectric constant and indirect nuclear

interactions, we consider the valence electron density, the polarity of the bond

and the cohesive energy. In Sec. III a procedure for quantitatively evaluating

the basic parameters of the theory is established and application of the formal

results of Sec. II is made to twenty tetrahedrally-bonded solids.

i

a

A
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If.  P'UL'L THEORY INCLUDING OURLAI.'

A. Eigenvalues and Eigenstates

When the overlap between anion and cation hydrids is retained, the second-

quantization formalism employed in Paper I loses its simplicity and elegance.

Thus in this paper we introduce a spacial representation. As in Paper I, it

is possible here to proceed with a basis set of the six two-electron states

atay>, I c+c+>, l atc+>, , a+c+>, , a+c+>, and f cta+>. However, both of the physics

and the mathematics are simplified if a basis set of three singlet and three

triplet states is chosen from the outset. Then the six-by-six Hamiltonian

matrix block diagonalizes into two three-by-three blocks. One of these two

blocks, that associated with the triplets, is also diagonal with all three

diagonal elements equal.

We begin by defining three orthonormal triplet states in the coordinate
a

representation:	 3

I_ ^2
	

fq Cr, , r2^uy c^1 a;yr,^
4
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where IA( f, . r'? , is the anti-symmetric spatial function

A	 VZil- )

In Eqs. (1) and (2) ^^ (r) and s (r } are respectively the anion and cation

hybrid wavefunctions, S is the overlap integral between them:

and t' and ,o d are the usual one-electron spin functions. We next define

three normalized singlet states:

-	 ^ it-^	 - I cL' ♦1 U. • ^ `-- Yom. ` ^y ^ ^( (^ ^. ^2 ^ '^

where	 is the anti-symmetric spin function

I

i

The singlets are automatically orthogonal to the triplets because of the ortho

normality of Cr-P and	 , but the singlets are not mutually orthogonal to one	 j

another:

G	 ,^0^



i

i	 Ir

6

The two-electron Hamiltonian operator has the form

where	 is the sum of a kinetic energy operator and an external potential

Vex.

The quantity	 includesincludes bare-ion potentials from the anion and the cation

plus the potential associated with all other bonds in the crystal. Because

the full Hamiltonian H has no spin-operator dependence, all matrix elements

coupling singlet and triplet states vanish, and the secular determinant has

the simple block structure

j ' I
	I_	 C	

V	
!

U

where E T = t i H ^^' A ( H 1	 We may write out the matrix

elements entering Eq. (9) explicitly in terms of familiar one- and two-center

integrals. Following HC and Paper I, we' define 6 the one-electron expectation
values

^- Ylr	 ,L	 rj^ : ►` ^' `t'r; 	 7t, :^ c^	 ,`	 (10)

^ R̂IGWAI' pA LS
1 Poqp,

4_	
A



r,

and the (positive) transfer or hopping integral

^',,•	 -	 ^ ^+^t ^l , } f^f•	 ^	 `('^ ii i } %(l'.

	

(11)

All of the two-center Coulomb integrals have the form	 j
{

	

.) r^l I nt J>)l'7:^	 r'I ) r ^ tj l	 2	
_	

r ^^t i 1 i} ' y,^ l y)	 r :1 1-Y

rZl
s

)1 , Yt.^, 'fit, ur e::`	 l	 C

The Coulomb replusive energy of two electrons on the same ion site is
i

while the corresponding energy with one electron on each site is

9	
-	 `	 >	 c'	 ( to ; ^. 1	

(14,)	

1

t

The exchange energy is

`^	 ^	 (15)
J	 i	 c; a ) ?

and finally the transfer energy ( analogous to 
z L3) 

is

j
1^	 cl6 j

as
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In Paper I we neglected, in addition to the over Fp matrix element S, the

quantities 7 and Hh, It is easily seen from Eq. (12) that I and H,,, unlike

„ and K, will vanish as ;	 so that the theory of Paper I becomes rigorous

in that limit. In the real semiconductors of interest, of course, she over-

lap is large,	 0.6, and f and H 	 have magnitudes comparable to U,, and

Our calculations, which are discussed in Sec. III, show that for homopolar

solids like the group-IV elements

u n	
I^	 1 ,^	 Jr_ (17)

with J.. -1 ^IK. Similar trends exist for the binary compounds, where in addition

(18)

because the anion hybrid is usually _less spatially extended than the cation hy-

brid. In our calculations Eq. (18) holds for all III-V compounds except	 and

BAs ^^rhere the inequalities are reversed, as discussed in Sec. III.

In order to simplify the analysis and to make contact with HC and Paper I,

it is also useful to define the following combinations of the above quantities:

r	 r	 ,

^ T	 tt

V4 :: z Cz	 (19)

v
°	

s C UGl ` VlC^	 i +i0.$ — Z L

9
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Because of the overall charge neutrality of the solid, its energy levels will 	 - l

only depend on abso:l ut,O di t't,er • etioos of the or ►e- ar)d tmo-vol l.or 00111 arn1.> i ti I,^ ^;rrLltt

defined .ht Ecls. (10) - (16). 111he energjes do.N.ried Lr ► ,:q. (19) corroc t,l,y roP.WeL

this fact,. For example, the addition of K to `ono has the effect of screening
i

the bare-ion potential arising from the cation and gives Lc L a magnitude close j

to a Hariree-Fock expectation value, as shown by Eq. (28) of Paper I. Then

I 
	 I

s (^ t f ^1 is the center of gravity of the one-electron band structure and the

term	 l t.n: L G ) removes exactly the dependence ofVIl a on the zero of energy.

The energies	 and 13 are conceptually similar to the one-`_lectron HC parameters
N..	 ^i C	 I	 (

which we denote as V and V	 The quantities	 1{ ̂11 c_ j and	 (I; ^^ - l,^` J

are appropriate average values of the electron-electron interaction, which

physically screens Vey and reduces the magnitudes of V. and W3. More specif-

ically, ^, and ` are derivable from the one-electron Hamiltonian.	 y

1

Hr
1	 _

(20)
 

j

_j

by the tight-binding formulas
i

{

Hc 

(21)

V3 r,	
` f G I ^t^la t^` l `y I I7t 11Cc1

OX AL PAGE IS
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We emphasize, however, that V, " and V3 (I enter the present theory only as de fini-

tions. All two-electron correlation corrections to the screening are included

exact-1,y Llrrougtr the rumuindjig parameters ^,^•^, ^': raticl l %r
C .	 'Nic qut^rri;ity 1','I 1, it

sim,p It , gz noraLizaLlon or tllo coot-relation term dt-f'i nvd hi Mq. (;'la) of l l aj)cr 1,

while ^`i and ti's appear as a result of the finite values of ^;, ,) and } I, t• Inter-

estingly, even for large values of $ our calculated values of V," and V" always

turn out to be negligible and the dominant correlation parameter is V,,, as we

assumed in Paper I. Finally, we should point out the symmetry properties of

our new quantities. The energies 'T c , V and ^f involve symmetric combinations

of L,115 U, , , and H, , , as well as the symmetric quantities %z(,, $ , K and T. Conse-

quently, ^'^", V,+ and V6` are covalent energies which depend primarily on bond

length and not on the polarity of the bond. The energies V'., and Vr, on the other

hand, are antisymmetric in E-,, un and }-( and thus vanish identically for homo-

polar solids. We may already anticipate that for negligible Vt and Vb' the effect

l

	

	 of two-electron correlation will be to increase the covalency and decrease the

polarity of the bond in binary compounds, because V° ;> L>

kThe eigenvalue} T of Eq. (9) associated with the degenerate triplet states

can be evaluated immediately:	
j

,

The eigenvalues associated with the three singlet states may be written as

where EM is a solution of the determinantal equation

I AF p^ PAGE IQ'JAZZYs
r.
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♦ ^f, fVi. i. : ^ ^,	
.^ ^'q" •t r' `?3 ' 	f^ k1	

^ 1 l^ I i^ ^r^^. a .`' „
	

^[.t^l

V1"	

,,	 i•	 ^	

V S

ĵJv^ ^n t T C ,	 ^^	 I'? •1 ^^^jf --1,^L^ '^^^-,^)r^^ i

	

`^` 	 hl	 3 	 r. I	
Y
v	 J

0	 (24)

I

Equation (24) is,, of course, just a cubic equation in EN, and reduces to Eq. (20)

of Paper I in the limit S V^ = V6 0 As in Paper I, the physical content

of the solutions of Eq._(24) is most transparent in the two special cases where

this equation factorizes. These cases are: (1) ti3 - tis -= ^, which is the

	

c	 p

appropriate solution for the group-IV elements, and (2) Vr 
^r5 VE = 0, which

is the limit of no two-electron correlation. Following Paper I, we denote the

former case as the Falicov-l{arris limit (hereafter referred to as the FH limit)-	
o

and the latter as the Harrison limit.

In the FH limit the energy eigenvalues and the splittings between them

may be expressed as

F T ^^	 - K + 2S V2 t V,^ - 2 C Mt•-1.'6 ^^(^- s2 )

Î ` ts'.	 K t 2'S V, t2V4. +
-,V,	

? C V,;. V( )/0-<`')	 (25)
y1

E- -^	 ti.2 + 
V 

_. V6	 4 VZz + V-2 Z
i

and

Fly	 :2

^' T	 y(	
7 V^: ( I — l ,	 !4. (I ^ S	 r! t	 ) 	V','	 Vh z J

a



x	 y

j

i
i

where we have dropped the subscripts Lt and c on £ and have introduced the re-

normalized variables

,J

(^7)

z	 1'

which facilitate comparisons with HC and Paper I and which will be used in the

$`remainder of this paper. The renormalization factors of (1	 ) ,/z and i	 -

are precisely the same as those used by HC in definingV3 N` and V̂ H , respectively.
s	 ;

The term added toVZ may be viewed as the subtraction of the constant V4-

from ho ►,C in Eq. (20) The qualitative ordering of the energy levels in Eq. (25)

is the same as given in Fig. 1 of Paper I, with 	 the ground state energy and

the triplet levels and the first excited singlet .E separated by 2V4 . Note that
a

overlap has shifted all six levels upward in energy by an amount 2S V. This term,

however, will contribute only to properties which depend on the absolute position

of the levels, such as the cohesive energy. For V6 0 the triplet energies and

L 	 also shifted downward from the center of gravity by 2 S 
V4 / ( 

S 2 } .`	 I	 ?

This means that if one fits E., - ^^ to the principal optical absorption gap

for a fixedV, as we did in Paper I and as we do in Sec. III below, one requires

a larger value of V, than with S = 0.

In the Harrison limit the energy levels and splittings are found to be

^.	
(28)



^	 I
R	

4}

J.

13

and

_	 1..	 ^^	 YL	 =	 l Vz ^ ^'	 V.^
(29)

f_ 
C	 IY	 C^

Again all levels are shifted by the amount ?	 which is consistent with the

shift of	 in the one-electron energy levels of HC. 	 Otherwise, overlap has

not altered the formal structure of the eigenvalues and Eqs. (28) and (29) are

completely equivalent to the HC results, as discussed in Paper I.

We next consider the calculation of the eigenfunction of the Hamiltonian

H.	 It is evident from Eq. (9) that the three triplet basis states are already

eigenstates of H:

(30)

'Ill 7	 -	 I :a

The singlet eigenstates can be written as a linear combination of the three

singlet basis states:

^FI^ =	 ^^^ rvi f` 7	 M= L1Z, T, ^ (31)

The ground state `	 is the two-electron bond orbital.	 Setting

tM	 >

s
t



^^ s
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where [)is the normalization constant

.	 1	 ^^'	 F	 A1^i	 t	 At,	 !	 2 ""AlsriAcFl	
L

L%

r
_,,.; ^ ► 	 ^ ^^t L ^	 +'	 flinr `)^6ri	 ^ ` (33)

the coefficients	 ,.i M are obtained in the usual way and may be expressed as x	 i
f

\1r.^	 _	 ' : ' J	 I	 f 2 Cr^^	 ^Tc 1^ I" S,
\

l V4	 y6 	 SZ C p !	 ^^ V2 (^ SZ I
v

J{)	 \``%:	
)`^•.c^ t'S^V

r	 ^7	 ) \	 (
4

r	 i	 TTJC_}.^.1-L2V4,(1-SZ)±2V1(-`3\

_	 7
+ VS

v6 ^ 	 52Nt

In the general case, once the roots of the cubic equation (9) are found, they

can be inserted into Eq. (34) to find the A C' M *M•

1

In the FH limit,	 1 M - D = b for h1 = a and the general solution Eq. (34)

cannot be used.	 In this case, the proper coefficients can be shown to be

a

(35)
Qs1^

For N^ ^^ j > W, on the other hand, Eq. (25) may be used directly in Eq.: 04) to

obtain

ORIG.IIITAL PAGE
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with

Do
(37)`

where we have defined

(38)

and
J.

(39)

Note that all explicit dependence on V6 has cancelled out in this limit.

In the Harrison limit the coefficients are most conveniently expressed in

terms of Harrison's polarity and covalency parameters l ' ? oi, I and c	 , respectively:

r	 i	 j	 ?
(40)

i

and

r
One finds

_

f

J Il.

^
O RIG^^L

QE ISITy



an i

:z	
.

(43)

2

where	 = t 1 for M =	 and 9 -1 for 1^)_ - Al. It is strightforward to show that
i
i	 all of the above results for the PH and Harrison limits are e4uivalent to those
r

-	 of Paper I in the limit S :. V(, 0

B. Physical Properties

The full effects of two-electron correlation and overlap on a wide range

of physical properties can be as sesed using the eigenvalues and eigenstates

'	 obtained above. We shall concentrate here, however, on only a small select
q

number of such properties. For the purposes of comparison with HC and Paper I,

we derive generalized formulas for the dielectric constant E and the nuclear

exchange and pseudodipolar coefficients P . and F'
I'c , 

respectively. As an
^ 

extension of the method, we also consider the valence-electron density, polarity

of the 'bond and the cohesive energy.

1, Dielectric Constant

As in Paper I, the quantities E , J"e and 1 ,d are most conveniently calculated

in perturbation theory. Following HC and Paper I, we apply an electric field

in the +X direction and consider the energy shift A E- induced in an isolated

bond lying in the [111] direction. The origin of coordinates is chosen at the

center of the bond and, in analogy with Eqs'. (34) ` - (41) of Paper, I, the shift

in the total energy (per unit volume) of the crystal to second-order in E is just



t
i

Y

^7

I•r•r.is	 (rr^S	

^

where the polarization is

(45)

and the electric susceptibility is

c I(	 ;	 ^^ ,	 ^. 1 	x (46

Here	 j.( ,` l 1	 , f ;	 t	 t	 lij .i , ) 11J is the	 ground state, N is the average

valence-electron density, and	 is the vector distance from the anion to the

cation.	 Note that the sum in Eq. (46) runs only over the two excited singlet

n
states, because J.t^ cannot couple^ C7 j to the triplet states.	 Using Eqs. (4)

and (31), one can derive a general formula for 	 in terms of the
(

expansion coefficients `TjM'

t	 lr^^'	 1f;	 i 6	 jJ
II'

(l
(y	

it 	 ,	 2	 jCC) ^)	 "i	 (^1,- c	 ^ S- ht	 "^	 ` Il[I ,^i	 ^1^+ r. (^	 (	 f 	 a	 ^ + 	 f ^f -^' ...
r

+t-1.;	 jl^^,t ,	 I	 ^trr t yr.y'S	 fi^^^	 J
(47)

r	 ^	

;

01	 d4i

t

ORx^^^ /p^GE
-pooR. MÎ ^ _	 J

oT
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where we have defined

`'^	 (
^

{	 a
► 	 X 11	 `I^^,	 } J:	 ..	 ti	

ORI)
1

x

i

and

(50)

In Eq.	 (il3) }^' 	 is the	 coordinate measured from the center n.	 The quantity

I - t ^.t	 ',	 ^^	 is the	 a 1 ' defined in Eq.	 (16)	 of HC and Eq.	 (36) of Paper I.

The renormalization factor of (I - Sa )=	 is again such that our r is precisely

the same as that defined by HC.	 Note that b,,d is ,just the center of gravity

of the hybrid electrcui density c^?Y1 (r) cy^ r,.	 Anew overlap term b^^, not consid-

ered in either HC or Paper I, has also appeared.	 For homopolar solids	 I ca : C-1 -

and Ec - p a by symmetry; for binary compounds one usually has ^^ 7 ba and
w^

because of the greater spatial extent of the cation hybrid.
i

In the FH and Harrison limits, Fo,and 'X,are given by particularly simple

expressions.	 In the former casescc^	 ^c _^ = c and one finds, as in Paper

I, that only the matrix element ^G	 is non-zero.	 Thus	 o = o , as expected
t

by symmetry.	 Using Eqs. (35) and (36), it is also straight-forward to show that.
j

Y

s:
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(51)

where we have defined

(53)

Equation (51) has the same analytic structure as obtained in HC and Paper I, and

the factor 13 reduces to Eq. (46) of Paper I in the limit 	 0. In addition,

1 for =	 - v and r> > I for >! ? 0 and ,̂ -2 C. A further simplification is

also possible. In HC the quantity 1,1 it is determined by fitting F.L - J-_VI to the

principal optical-absorption peak. If one uses the same standard to fix V2, then

one has, comparing Eq. (26) and Eq. (29) with V, 0.

and the effect of the two-electron correlation on the HC result can be expressed

in 'terms of the simpler `factor

i a	
b r' ^'	 z	 16 `a i	 )O	 (55)

r
3

which depends only on and not on either .S or explicitly. Our calculations a

suggest X I for the group-IV elements, in which case ^' ^. 1.	 In addition,

if the quantity 'r is determined by fitting E to experiment, then the fitted ^f

will be larger than the HC value by a factor of

In the Harrison limit < f D (T^j) and <( I ut' (i are finite and <C jY{` ; Y>

vanishes. Using Eqs. (29), (42), and (43) one finds in this case



c

and

wTT	 (52)	
'.

where we have defined

Equations (56)-(58) reduce to the HC results in the limit b = J,,x and s '' n ,	 j

as was implicitly assumed in their work. Setting S c^`^ o., one recovers Eqs.

(48) and (51) of Paper I for .'P and E, respectively.

We should mention at this point that the vanishing of the matrix element

fV)only appears to be an exact result in the FH and Harrison limits.

However, our calculations suggest that the additive term ^I'l'{ f V> ^^ -y} in

Eq. (46) makes a negligibly small contribution to '/', in real materials. Thus

even in the general case, the correlation correction to `X is essentially a

multiplicative factor as in -Eq. (55)
i

2.- Electron Density and Polarity

The total valence-electron density in the solid is just a sum of all the

individual bond densities. The bond electron density may be obtained from the

two-electron ground state [C ) in the following way. If the spatial part of the

singlet basis state 16 is written as 	 r, r'), then the electron density asso-

ciated with the ground state is from Eq. (31) just

.y

(C) - 1 >^	 ^EiC? ^j.^	 Y	
r^ i ,^ ^I,	 f', I^ r 1 ;^ I'^	 (59)

	

z	
J

The factor of 2 arises because there are two electrons per bond, i.e.,

P (r) r = '2	 Also note that	 (r r')
*,r N x..9.5 PAGJ

OT POOR QU
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is _symmetric in 7 and r' , so that it does not matter over which coordinate

one integrates in Eq. (59)• Using Eq.	 it is simple to show that
>1

(t t)	 1^«',	 (60)

with

1C^z A46,	
r 

CI EG _	 c it S')	
-t	

S 
t	 9, `tG y	 (61)

(62)z
i^ `"	 r 	 Vl

and

(63)

where we have noted that	 and	 ) are real. In the FH limit one

finds using Eq. (36)

i
z	 i	 d

R L ^
	

^.	 3

a

{

In the Harrison limit, on the other hand, one is led from Eq. (43) to the results

X

and

zt

.	 x
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For	 o	 in Eq. (64) or	 P = r	 and	 c	 I	 in Eqs (65) and (66),

,l`^,	 l^r. _ 
lfn2 	 (i +	 >	 as one might expect.

We tenatively define a polar-ity associated with Lhce clectron density

as

 (67)

From Eq. (65) one clearly has o,r = o; P in the Harrison limit, so that Eq. (67)

is consistent with the HC concept of polarity. In the limit of no overlap,

both , =	 anda(T ) c(r) =O and this definition is relatively unambiguous.

In the case of large overlap, on the other hand, the definition of p seems

less compelling. Ultimately, an arbitrariness arises from the innumerable

ways one can divide up the electron density in a'periodic solid. Nevertheless,

there need be no additional uncertainty in any calculation, so long as oC f,

enters solely as a definition:

The concept of polarity is also intimately connected with the polarization

of the bond Po	 Using Eq. (47) with	 in Eq. (45) , one has in the general
L

case

f^	 P c <d >	 (68)

where

2	 7 2

	

z f, = x'01z^C,	 A	 t ' ^ca ^^cic	 (69)

The quantityZ P e is the effective charge associated with the dipole Pa 	 It

would follow, therefore, that Zp is also a reasonable measure of polarity.

However, this definition has the disadvantage of depending on the additional

parameters^G and s . In HC the quantities bc- o,^and^, a are set to
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zero and T is fitted to experiment through the dielectric constant Eq. (57) .

The fitted 
f 

thus adsorbs local-electric-field corrections to E as "well as

corrections to the bond-orbital model itself. Consequently, it is not appro-

priate to use their I" in any definition of polarity. On the other hand, one

may calculate - 1, directly and compare it to ^;(^ and we do this in Sec. III.

We finally point out that one may, as we did in Paper 	 define a polarity

for each of the states M > by an obvious generalization of Eqs. (59)—(67). It

readily follows from Eqs . (35) and (42) that ck P 6 for all three singlet states

in the FH limit and that of 
	 rt tr-° 0 and ^ , ••^ - k^, in the Harrison limit. These

results are in agreement with those obtained in Paper I.

3. Indirect Nuclear Interactions

To obtain generalized expressions for 	 and ( 	 , we again consider the

magnetic interaction between an electron with spin ; - 	 and a nucleus with

spin l	 In analogy with Paper I, this interaction couples only singlet and

triplet states and to second-order gives rise to an energy shift out of the ground
j

state of

o E	
, :	 ^--	 (A 	 ti(A('r >	 (70)

1

where	
I

a

u (I	 I") -	 I>^',t rte	 ^-(r^ }
A

4-	 ^t-n,`

and

An c r)	 ^t	 rL	 I ( r)	 + ': 7, ( 3 r' r - 11 ]	 72)

i
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E

In Eq. (72) JIF, is the Bohr magneton, ^^„ is the gyromagnetic ratio and r' is

the electron coordinate measured relative to the nucleus •JL . The triplet states,

as given by Eq. (1), have the form i A (r,, h, and the sum over NI in Eq. (70)

e,= be immediaLely accomplished by using the sum rule

Then using Eqs. (2) and (31) and noting thatA(r,	 is antisymmetric in C"" ►

and (z , one may express A E in terms of the expansion coefficients

p r _ _ _ -	 >	 Q?t ^, r	 Iii ' (A n	 'c 1	 (74)

where ) l - ► ! acid	 1	 and we have set	 a

2-	 A
}}	 f	 I	 (75)

(76)

and

i

Equation (74) is a generalization of Eq. (62) of Paper I. In addition to

f-/^^

four new overlap matrix elements have appeared in AE , namely, 1 
C c^ 11c, ^'P'

ORIGMAL
nn PAGEOF P	 IS00R QUALITY _
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Y	

,

ti.

(c	 j Ac	 , ti a	 ;.	 , i	 and	 s ; Aa	 1, %	 It is not hard to show that allt

matrix elements of	 A,, have the form
x

., 8

with

r.

rr (79)

and where we have defined

/

IT
(80)

and

n `	 ^y	 II	 ;^ :^	 ^	 i	 ĵ	 \
t'n I	

-.	 _	
^3,	 ?^' /y ^ n,.	 =	 3	 #h (81)

rh o	 rn

A

In Eq. (79)	 rac	 is a unit vector directed from the anion to the cation and in

Eqs. (80) and (81) the electron coordinates	 r,11	 are to be measured from the

center n` .	 Also, the right-hand side of Eq. (81) is written for the Z axis in

the direction of r^.	 More explicit expressions for ,, and	 in terms of

the .S	 and	 components of the gy p'	 hybrids are given in Sec. III and the

Appendix.	 As expected, the non-overlap terms 	 and ^^'	 immediately reduce
Y1„

6to Eqs. (64) and (65) of Paper I.	 Furthermore, the tensor C^„ clearly has the

same form as Eq. (78) with A . replaced by
nn .

+S b'i 't ,^a'a	 -(I- S {^. ),,^^ 4 ^^4	
/ ^^'5^^ 2̂	(82)
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and	 replaced by

Writing out	 in terms of ,^ „ and ^, 	 and noting that Tr , `ilk = i+ 1T ,

we arrive at the final results

I_.._' 1. n `	 ^aV11L ^ 	 111I^IT	 /	 (84)

pd	 ^,	 A ,

where

to t5'	 +	 ^^ '	 n	 ^r' r	 I	 9 n N h'	 ^> ^i5 Ur,' J /	 (85)

I

a

and

jig-
^	 d

i

Equations (84)-(86) have the same analytic structure as the corresponding results

obtained in Paper I, with all effects of two-electron correlation and overlap

being absorbed into the quantities h , ^Q and E a 	Again we identify

and ^ j	 ;,^ as the nuclear exchange and pseudodipola,r coefficients, respectively.

G	 We normally expect ri and ► 	 and consequently re and ! -, to be positive

quantities, as is observed experimentally, provided

o G hflb 
1	

S	 (87)f	 — 

POO.R
/f

js.
I	 t
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y

^'

and

for	 )i' /	 The lower limit in Eq. (87) is exact for homopolar solids,

where Cly. 	 -J 	 We find Eqs . (87) and (88) obeyed for all group-IV and III-V
F

binary compounds. a
u

In the FH limit, Eqs., (82) and (83) simplify to

n (89)

^-	 kj c^	 4 c ^^^ -ii	 ^^ ► ^	 z (

The coupling -constant E D 1 can be shown to be in this case

^ p	 I+V,

where

`5	 L)	 Q	 x	 4J^	 I^; S 	 ^ `Q l fi	 ?^ ^^^I _ S^^\ _x ^ 7 C'	 _ X( it^ (91)

7.B

which reduces to Eq. (72) of paper I in the limit	 Also,	 >	 for

and/or	 X 7 c, , and i - for X	 0	 If V2 and Vz are related by
r

Eq. (54), then the HC value of ^, ^ is enhanced by the factor

V2 x
: ,

which unlike	 is a function of S and L	 as well as X	 In Fig. 1 we have

plotted	 Vs ` x for	 = p	 and several values of S	 Clearly,	 is a sensitive

a
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function in the region of physical interest: 	 0,	 This

sensitivity results primarily from the energy denominator in Eq. (77),

which can veaiish for sufficiently large
a.

hi	 t1io li.Lrri yoti limit

/	 J	

7	 `L)

	
(93)

i
K

with a similar expression for 	 , and

 (94)

0.	 _	 CEquation (94) agrees ,	 _ &with Eq.	 (73) of Paper I, but note that for A . ^	 ^. e^	 ^y	 7,- 0
,^<	 3lrq

and	 ^0. We do not recover our previous formulas for 	 l^""^' and
PA

Contrary to our original expectations, all terms involving 
5	

cannot simply be

absorbed into V:. and	 ^, 3	 Both'	 r 	 and	
rA	

are multiplied, instead

by a factor of [ - S`(rl f, %o(. )2 `f ^- ^^)^ ^' S	 in this limit.

4.	 Cohesive Energy

To obtain the cohesive energy, one needs both the binding energy of the

(two) bond electrons in an anion-cation pair and the binding energy of the (eight)
1
j

valence electrons in separated atoms.	 The latter can be written as

^t>c.  
	 t	 1 a

ate III_. (	 CIF	 NF	
t	

N^	
>

i

where	 = ID	 for group IV,	 =	 for III-V,	 =	 for II-VI and = 3	 for
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I-V'IT elements.	 Also Ln Fq.	 (95)	 atid •:	 ,are doritio(I	 as	 Llw bindkig ener-1-do.-,

t111d	 I'	 "iook . owl	 ol'	 R1,0111 )1	 WO	 1111<'	 1,110	 MAIWI-M-Y'111L	 111'	 1101 . O'	 IR-L-11.11:10
1r r	 11.1

E	 irl	 prat-Lice	 I't.	 I11	 (`orl veti Loid, 	 Lo	 take	 ^	 1i	 ;611(1.	 r	 I1	 LO	 bo	 11iLrtree-Vock	 froo-1,
,

atom eigenvalues, although in principle this need not be assumed. 	 The corres-

ponding binding energy of two bond electrons is just our ground-state energy r

plus the electrostatic energy of the compensating nuclei: l

(96)

where we have defined the hybrid energies

i

and the electrostatic overlapenergy -`

6t ,
with

Both . Harrison 	 and HC discarded ^bC in their treatments of the cohesive energy..

However, for the case of large overlap this is not justified, since we expect Sri

to be small and negative and ^ to be significantly larger than 	 e

Using Eqs. (95) and (96), the cohesive energy (per atom pair) is just

F &1,	 nil ,1+ ,	
Q	 }.	 f • , ,,	 i

(oo)

4-	 {-	

Y	

fir_ L_ 
^^tf llJ1

RIG]NAL 
PAGE

p
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where i u •tiio promotion
1

energy d( > ri riod by ttar • risonl

(lot)
1.^t.^	 -

with

1`

V 1

01	 -	 tiFr

 l c	 „	 } 7	 )1	 -	 0^,	 C (102)'
^,

and	 f  is the transfer energy

ifs' fi (103)

Roth Harrison and HC took the transfer energy to be 2 A ^ ^..	 From Ecis . (19)

(27) and (99), however, one can see that this is only formally valid here if 

and S _^. ^	 In the FH limit with	 ^	 :^ C and

Vi	 one has

1	 ^{ 4;	 Graz)
 LTA -t V ,^

(10 1+ )
t

In the Harrison limit, on the other hand, one obtains

r 7_?<

'!
	 V	 -

i j	 ^+	 T '	 C _ 14,	

(^i^t l
(105)

z

L	 CrF4

For E^( 'r and ^^r_n',:^	 ? A,' , this result agrees with Eq. (34) of HC.

A^^gZG	
A3
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Physically, we may interpret the various contributions to L: 	 as

rollow:.. The hrolllot.lou etivt-gy i.; Lite otwt-gy r-oquired to prowot,e each vuloiWo

r 14-c	 ' t'Lul	 Cor p s	 it-ti ;ti.oltti o	 .^	 or•	ot.bt t 'a l	 L() n. ► t	 hybr-W	 orbit'10 .	 The

Lruttsfer energy is 1,110 onergy required W t, r ,uttsfer AY_	 electron;; from the

anion to the cation at infinite separation, so that thefour hybrid orbitals

j	 on each atom contain one electron. 	 The atoms are then brought together and

bond orbitals are formed from the overlapping hybrids. 	 Occupation of the bond t

orbitals returns an energy - (E	 r Eoa^ per bond.	 Equation (100) thus correctly

includes all intrabond contributions to the cohesive energy. 	 To be sure, there

are neglected interbond-contributions, as there are to all properties one cal-

culates with the bond-orbital model, but we certainly expect these to be of
j

lesser importance . 	 Zri HC the possible importance of a van der Waals inter

aeLion between the bonus was argued, but this was introduced in an ad hoc
4

fashion to explain, their calculated negative values of 	 Ec4,k	 •	 In contrast,

our calculations suggest that there is no fundamental difficulty in under-

standing the cohesive energy of tetrahedrally-bonded solids in terms of Eq. r

(100) alone, although the precise results one obtains are somewhat sensitive

to the details of the calculation,_

1

QVQ	 z ]]T 1
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III. QUANTITATIVE APPLICATIONS

A. Parameters of the Two-electron Model
4

z
We now consider a detailed application of the formalism described above

to real semiconductors. Our analysis will be considerably more complete than

that given in Paper I, as we seek to understand quantitatively both the relative

importance of the various parameters which enter the two-electron theory and

the effect of overlap and correlation on the predictions of the one-electron

theory. We must first establish a procedure for evaluating the basic para-

meters of the two-electron model. We are F3uided here both by the experience

of HC and the fundamental limitations of a bond-orbital approach. One must re-

cognize the approximate nature of any bond-orbital theory, so that the difficult

task of a complete first-principles analysis is not really warranted. On the

other hand, one can reasonably expect the theory to produce correct orders of

magnitude and significant trends for a wide range of physical properties. Thus

it seems desirable to fit only enough parameters to provide a proper scaling

to experiment.

Of the various parameters which enter our two-electron model, one may

separate out those which depend self-consistently on the full Hamiltonian of

the crystal, and consequently are difficult to calculate accurately, and those 	 s

which depend only on the specification of the hybrid wavefunctions. In the

former category are the quantities V. o , A E, , and A E-c	 Both 1120 and ct r̂  + 4 c^

enter the covalent energy Vi , while the polar energy 'V depends upon the

-32-
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y	 ^

difference" a^ -'ti n .	 Following HC, we fit V2 to the principal optical-

rt

fr

absorption peak 	 for each of the group IV elements.	 From Eq. (54) with Z :̂ 	 r

L,	 2
i
1

which is easily evaluated once S and'^. are specified.	 It is then assumed that

lvz is constant for an isoelectronic seq^ience (e.g., Ge, GaAs, etc. ) and that

values for skew compounds are given by the appropriate geometric means of the

group-IV values. 	 The quantity V3 was fitted by HC to the experimental di-

electric constant of each binary compound through Eq. (57).	 This is less

convenient in the present case because Via enters our theory through the rather

complicated cubic equation (24)	 We have -chosen instead to make the assumption

(107)

{

and then to calculate V3 as
j

V3	 _, Z L^E^C.	 - 2 ^ua` Vlc^ 1 	( ►-S
Z ^ '̂ ^	 (108)ac^

Since J A E,, I E„	 is small, one - may reasonable expect Eq. (108) to be a ,good
-	

_ 14C^ will reduce-1approximation.	 From Eq. (18) it is clear that the term	 z	 L(a
F
;

the magnitude of V3 , so that normally	 V3 < 2	 EC k 	

F

^ 	 as was found

empirically by HC. 	 Interestingly, the two exceptions to Eq. (18), namely 	 B N

and UAs , are the compounds for which HC inferred negative values of V1 from
b

their fitting procedure. 	 From Table I it can be seen that the quantity	
( ^^^^^ L Air)

does become much smaller for f3P and Cj AS than for the rest of the III-V compounds.



34

However, this effect is o 'fset by the change in sign of the term ^ ((^ ll

oo LIItI.t. IIoI, • uvtl J)k)o i L.i.ve valiles of V, 	 reLtii H, f*T-om f q. (I Oil) .

'Nio	 msmahiiirti; wu • tuiot,ers V',,	 , V,, 	acid	 V6 	tire	 runctioris or the on(.--

center integrals	 11„ and the two-enter Integrals	 S and T

All of these integrals depend only on the hybrid wavefunctions ^, (r)	 ,'so

that we also choose to calculate these quantities directly. In the spirit of

the bond-orbital model, we construct our hybrids from the appropriate Hartree

Fock free-atom S and. wavefunctions. We shall not entertain the very diffi-

cult question of exactly which atomic orbitals constitute an optimum basis set,

but rather we treat our choice as an additional assumption to be tested. Choosing

n c 	 Z one con write

(110)>L^^n ) 	Rsr,(rrti +3 Or, R	 (r,L	 >z µ	 P	 1h

where rr, is the electron coordinate measured relative to the center n and

(p s i, (G)	 and	 K (G ) are assumed, to be positive as r -, - -p oo	 Free-atom

Hartree-Fock S and	 radial wavefunctions, r, Rs, (r,) and r'n, Rp,,

as well as the corresponding term values E 	 and EL F , have been calculated

and tabulated by Mann7 for the entire Periodic Table. The use of such atomic
1

tables is convenient, but it does restrict one to consideration of compounds

formed out of group III, IV and V elements, since the 	 states of elements in

groups I and II are unoccupied and are not usually calculated. The details of

evaluating ^,^, S , ^( , N,,, and	 in terms of the hybrids defined by

Eq. (110) are ,discussed in the Appendix. Briefly, LL, can be written as a"sum

of the F and CT integrals defined and calculated by Mann7 , as shown in Eq. (77)

of Paper I. As a test of our numerical procedures, we have also evaluated these

z a

J-.Y
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}" and G integrals directly from Mann's wavefunctions. Our calculated values

of 11,, are listed in Table I and are to be compared with those given in Table

I of Paper I, which were inferred from Mann's tables. The agreement is better

than 0.1%. The two-center integrals S and H,, , , on the other hand, are most

easily calculated by expanding the S^ 	 hybrid from one site in terms of

spherical harmonics centered on the second site. Similarly K can be evaluated

by expanding the Coulomb potential arising from one hybrid electron density

about the second site. In both cases, this procedure leads to a finite 'series

of one-dimensional integrals. This same type of expansion method applied to the

exchange integral 7 , however, leads to an infinite series of terms, which must

be truncated. Tests of our procedures in the case of hydrogen l S orbitals, where
•	 -	 g

exact results are known , suggest that we calculate $ , {fin and K to an

accuracy of better than 1%, but that we may underestimate T by a few percent.

Values of S , K and Vy that we have computed for the twenty group-IV

elements and group-IV and III-V binary compounds are listed in Table II, to-

gether with values of vl obtained from Eq. (106) and V3 obtained from Eq. (108).

The two-center Coulomb integral K decreases with increasing bond length, as

expected. The overlap integral S , on the other hand, tends to be constant,

although AlN, GaN and InN have somewhat smaller values than the rest. For the

solids listed in Table II, one has approximately K	 (l+ S) 2fd 	 e ct;.

The constancy of $ and the simple dependence of K on bond length give Vy its

a
expected covalent behavior. The large magnitude of S ,'however, alters the

i

relationship of V2 and V2. c anticipated in Paper I. For S 0	 Eq. (106)

demands that V2 	 VZ HC' 	 but in our case 	 > 3	 and we calculate
He

Vi- Vi	 For the group-IV elements 	 X = 2 Vy V2	 7 ] for G

1. 0 8	 for Si, = J, i o	 for Ge, and	 1. 13	 for Sn.	 F

i

3
x

^_.vaew_^`^!!n+'<. ^.., T .__, t^. ,^^^	 _. 1	 ^s^.`^:•	 _, • _flit	 E 4Ngz.^.^.`.:..v..^eu_... _. ^ 1	 ._	
T.ii	 ^	 %

i
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As mentioned in Sec. II, our calculated values of V k- and V6	 always turn

out Lo be small icy comparison with V:	 and vq	 , respeeLive:ly. 	 Specifically,

we	 .ri cut

t I	 >	 Us	 - o. 0 z c V	 (lll

V^	 V3	 < o. p 7,r"

and

a ^ 7 >	 Vb	 - o.02 e V (112)

V4)	 < o. I I

for all twenty solids considered here.	 In view of the large overlap of the 	 Spa

hybrids, the uniform smallness of	 Vs	 and Ub	 is indeed remarkable, and we have

found no simple explanation for these results. 	 The magnitudes of	 Vs	 and V,6

are actually comparable to the numerical uncertainty in these quantities. 	 Fcr

the sake of conceptual simplicity we shall set 	 VS = Vb = p	 in our subsequent

analysis.	 Note that with V2	 fit to experiment and Vr	 and V4	 set to zero,

values for the integrals	 N,4 and 7	 are no longer required.

Having	 stablished values for the basicg	 parameters of our two-electron model,'

we may quantitatively solve the cubic equation (24) for the singlet-state eigen-

values.
	

We have done this and the values of EM	 , defined by Eq. (23), are given w 3

in Table III, together with the triplet-state eigenvalues

E70	 = 2SVZ - 2SZV,H/C^-sz^	 ('113)
-	 a

for the twenty solids under consideration. 	 The corresponding eigenstate expan-

sion coefficients, a .,	 ,a.	 and 61 61,1 , as calculated from Eqs.	 (32)-(3)4), are

listed in Table IV. 	 Also, in Table III we compare our theoretical values for
j



the principal optical-absorption peak ^z = Elz - 
ECIr 

with both the HC pre
z

dictions, Etc = 2.^(`,ZNC 
}-	 ( ZT3t^` ) 	 , and the experimental [ 1 p and E^y

sub-peaks as given by Phillips. 9 Because E2 for the group-IV elements rep-

resents a fitting parameter, only the results for the binary compounds .offer

a test of the theory. Both our E.- 	 E2 c for these latter materials agree

with the available experimental data to within 12%. Our E2 tend to agree

best with Ezg and E 
Hc 

with	 , but the differences do not appear to be

significant. It is important to stress, however, that our E. , in contrast

toEZc. , include no direct experimental data for the binary compounds.

B. Computed Properties

With the information given in Tables Z-IV, we may systematically study the

physical properties discussed in See. II. We begin with the dielectric constant,

for which we need the additional quantities, 	 and ^^0. . All of these

parameters are readily calculable from the hybrid wavefunctions (110) and the

values we have obtained are given in Table V. For the group-IV elements, the

dielectric constnat is given directly in terms of	 , VH and 	 by Eqs.
1

(51) and (55) • From Table II we calculate 	 = 1.2 3 for C , = 1, 35` for

I 36 for-Gg , and= 1.?, -7 for Sm	 For the binary compounds, the coupling
o

matrix elements	 > must be computed from Eq. (47) . As remarked in

Sec. II, the term (<GI ue I M y 1 2. l C E G - 'E	 dominates the sum in Eq.> ( 1+6 )

fore the susceptibility	 We find

( EG- Ems)/CEO - E^ )' ^ <GI U 1 4_ / ^' l vo I ly A Z_ 0 . 0 1	 (114)

in all cases. Finally, we scale our calculated values of 'Xi for the group-IV

elements in the manner of HC. Specifically, we replace 	 in Eq. (51) by ^„
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and determine a ^ ri for each row of the Periodic Table by fitting C- to experi-

ment. We obtain nit = 2,UZ for C, = 2.:L2 for 	 2, 6	 forC^ E' , and- 1 j

for S,L . For the binary compounds, we multiply our calculated'x, by ,\n

where /\,,. and X G are the appropriate values of X, L for the anion and cation

rows. Again as in the optical-absorption calculation and in contrast to HC, we

do not use any direct experimental data for the binary compounds in determinin[

the dielectric constant for these materials. In Fig. 2 we have plotted our therr--

retical dielectric constants versus the best available experimental values 10 tcc­

the twenty materials_ under consideration here. The agreement with experiment

is within 12% for the binary compounds and, together with our results for E,

lends strong support to our method of determining parameters.

We next consider the valence-electron density and the polarity of the bono..

We have made a full evaluation of the single-bond electron density, as given by

Eq. (60), in the cases. of ae 	 and C7aAS . These results are plotted in Figs. 3

and 4, respectively. There is a broad peak in the electron density at the center

of the bond in Ere and a somewhat sharper peak near the k site in {tic As
a

In both cases the bond is elongated perpendicular to the bond axis The remainin;;

peaks and valleys in the core regions result from the oscillations inthe

and V_ atomic wavefunctions due to their orthogonality to the inner core states

We have also repeated these calculations in the Harrison limit using Eqs. (65)

and (66) with o4 _ 
c 
G, ando( P	oC r^ , the HC values of the covalency and

the polarity. Interestingly, the results obtained are very, close to those of

the full calculations; in the bonding region the differences in both cases are

on the order of 1%.. This is consistent with the fact that we calculate

for ^a As as well as Ge (see Table V) and suggests that the electron-



density coefficients U-,,,_ , Ite and Mac are determined primarily by the po-

larity. As can be seen from Eqs . (65) and (66), the latter is exactly true in

the Harrison limit.

To obtain the total electron density in the crystal, one must superimpose

the individual single-bond densities. We have done this along a bond axis in

both (^e and 6-,x As and the results are plotted in Figs. 5 and 6. The density

39

near the center of the bond is increased only slightly by the overlap, but there

is a significant increase in electron density in the back-bonding regions. For

comparison we have also plotted in Figs. 5 and 6 the corresponding results of

Walter and Cohen 11 obtained via the local-empirical-pseudopotential method. 12

-Lensities are qualitatively similar to ours in the bonding andTheir calculated c

back-bonding regions, although clearly they find a higher electron density in	 7

the center of the bond -than we do.	 i

An accurate experimental determination of the valence-electron density has

been made in the case of St	 although not in either ^c and ^o_As . It has

14	 j
been pointed out that the Walter and Cohen calculation for 	 yields the

magnitude of the central peak to within 7% of experiment. In view of Fig. 5,

it is of interest to consider what modifications in our SE hybrids are required

to in increase	 in the center of the bond. From Eqs. (60), (65), (66)

and (110), the electron density at the midpoint of the bond in a group-IV element

is to a good approximation

Al2-	 (115)

Free-atom wavefunctions lead. to a value of 0.063 a.u. for 	d/z	 in S- ; , as

13compared with the value of 0.102 a.u. found experimentally. 	 However, by

smoothly contracting the tails of P S ((- ) and Rf (r) beyond r	 one can



easily increase f ( 412) to the required height i5 , as we have verified in a

computer experiment. It seems clear, therefore, that valuable information

about the shape of the hybrids ctw 'be ext -acted from wi accurate knowludgo

of the electron density in the bonding region. This matter will be pursued

elsewhere.

Our defined polarity (^ Ph as been evaluated for each of the sixteen

binary compounds considered here and these results, together with the ccrre-
NC

sponding values of olp 	 are given in Table V. For the non-nitrate At ,G0.

and n, compounds, we find O1,P1 	 approximately constant (0.51 to 0.56), which

is roughly in accord with	 d, P C	 (0.44 to 0.54) .	 For the corresponding nitride

compounds, however, we consistently calculate	 o(P ^- z	 In addition,
NC

G< 
^HC 	 >	

Plc	
for	 F3E.	 we find	 ^P	

P	 for	 S, C	 and ^N	 and	 oCP	
P	 P	 and VAs

These trends can be qualitatively understood in terms of our computed values

ofV, and Vy	 Generally speaking,	 o(^	 increases with increasing V3 and

decreases with increasing V1+ .	 We calculate	 V3	 v3N6	 and	 V3 < V,4 , and
i

consequently relatively small values ofp(
P
	, for S; C and all of the nitride

3

3

compounds.	 For the remaining compounds, on the other hand, we obtain 	 V3
f

f

with	 Vj4 ?' V3 	for 131 and b A s	 and V3 < V4 for the others.

For comparison with oCF and o( PC	 , we have also listed in Table V our

calculated values of 	 as defined by Eq. (69) .	 Generally, there does not

seem to be a simple correlation between Y Y and either «p	 cr Y <	 We find

q( P	for $;C and the nitrides, but Fp < o[P	 for the rest.	 Interestingly,
F	

H4however, there is a qualitative correlation between 	 ( S, _ Ea )	 and r 	 .'	 In
1

E	 particular, the trend of decreasing oCY
C
 with increasing mean atomic number ir,

the 6 ,	 4	 , Ga>	 and 1k,	 series (except for fie 56) are all reflected in

y	
ORIGINAL PAGE IS '.

OF POOR QUALITY

a

i

A

Y#

4o

}

a

t



y

41

r

(^- boy ) . In this regard, note that	 &0. ) measures the relative spatial
4-extent of the cation and anion hybrids, while °( r measures the relative weighting

of these hybrids in the electron density.

Let us now move on to consider the nuclear exchange and pseudodipolar

coefficients. To evaluate Eqs. (85) and (86) for	 and	 , one needs values

for the matrix element	 ,,# and n'h	 Equation (80) for	 „ is easily

evaluated in terms of the hybrids defined by Eq. `(110)

Ksn (o) ^ y	 tl -- 1,'	 Vii'!

yin" ^
	 SwR S	 3 	 116

5

^sn (d) t 3 ' P n (d	 ^i	 Y1	 tI'

For free--atom wavefunctions R511 (0)	 FA(O and consequently

»	 Specifically, we find
>rn	 nl,	 n„

c4 n'^r' /.ol lr n	 C	 f (^^7)

pp

	 r

in all cases. The situation for 6hh'is slightly more complicated. Only n"
a

has a simple formula in terms of the hybrids:

00
^
 

	118

Sr r+	 ^p

To evaluate the overlap terms one must use the wavefunction-expansion techniques

discussed in the Appendix. Specific formulas for ^ n^ and ,ra are given there.

Quantitatively, we find
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+,	
i^ 2 7

(119)

/„1 Eo+ ► x

although the upper limits are only approached in the case of FAN 	 Typically

the ratios are much smaller. For completeness we have included all four over-

lap terms, }̂7(( , ,	 ,	 and 	 in calculating P2 and r^
ill+	 nn	 r 	 ron	 Pd

Values of	 and r'p^ have been determined both in the Harrison limit,

using K, HC 	 V3Hc to evaluate Eqs (93) and (94), and with the full theory,

using the data listed in Tables III and IV to evaluate s b, and F p	 These

results are presented in Table VI together with the best available experimental

data. Note that the values of re and r,ot in the Harrison limit are larger
i

(except for I n N) than the corresponding ones given in Table II of Paper I.

This is due primarily to the appearance of the overlap matrix element 5 in

Eq. (93), as was discussed in Seca II. Also, as expected from Fig. 1, the effect

of two-electron correlation is to enhance re and rPd in all cases. The magnitude

of the enhancement, however, shows rather complicated trends depending both on

bond length and polarity. In the group-IV elements,	 1.tlq for C , 3, o for

and qt _ , and= 3_s3 for Sn

We have not included any additional scaling factors in the theoretical numbers 	 M
1

listed in Table VI. This does not appear to be important in the case of f",d,

but clearly we overestimate the magnitudes of Fe , although the trends- are correct.

We have made an approximate least-squares fit to the six non-zero experimental

values of re using a functional form

(120)
A,- re

3
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where A, and A, are constants which depend only on row number in the

Periodic Table and the le	 are the full-theory values given in Table VI.	 We

have thereby determined scaling factors A,, appropriate to each row: 11,, -

for the S; row, -. t`. l for the i7 E row and . ", ^ `1 for the ',­ it row. As with

the scaling factor X,, in the dielectric constant, A,,. increases with increasing

atomic number. Note, however, that 	 ^ ,- > 1	 while A „

In Paper I, we noted the following relationship between the dielectric

constant and the nuclear exchange coefficient in the Harrison limit (without

overlap):

E - 1	 C ^^	 (121)
-	 j

j

whereis rode endent of V and	 and depends onC	 p	 2	 V3	 pe	 only on intra-atomic para-^

meters. [see the discussion pertaining to Eq. (74) of Paper I.] This motivated

us to plot experimental values of 	 against the known experimental values

of ^e 1(j .1 	 (e rn ^c z d^	 , and we found a rather striking linear

relationship in the series T„ p , Xt, A y and .7„ s6	 Since that time, experi:

mental determinations of	 and (~'o for Cra N , as well as new measurements on

^Ck A s , have been made by Cueman and Soest 6 , allowing them to make a similar

plot for the Ca series. They have found a good linear relationship for that

series too; both sets' of experimental data are shown in Fig. 7. We are now in

a position; to make a meaningful theoretical plot of (E I vs.

Using our calculated values of E from Fig. 3 and our full-theory values of

from Table VI, we have done this in Fig`. 8 for all the III-V compounds. Ap-

proximate linear trends can be seen in the In and 4R series, as well as the

A series, for the heaviest three compounds. To examine the origin of this

S

F	

0-4G

e
k



A

44
I

behavior, we repeated the procedure in the Harrison limit. In this case, the

linear behavior was improved slightly in the J,t series, worsened slightly in the

<< series , and wa.i destroyed in the y AR .+ey ries . Keepittg ua]y the trios 3 L Li otal trnrlt

terms in ,,	 „ , oiie has i: 11twrison limi L"	 WI(I	 "	 n Ltu

^q^^. _	 ^' 1X,^^f ^'^) <<
_Sz)z Y
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A ^C	
_day	 p{ `

	 Z ..	 c ?
	 H

i
I^2

where by construction ( as	 is the HC fitted value of {r	 Now for

the heavier CT,t and	 compounds	 , )(' , S , p(^Nc and`
t; 
r are rather

constant. This implies that for a given cation series

`	
(123)	 'iG Q )1 ' l 1 )1 1.

Q0.

Evaluation of Eq. (123 .) gives 0.0155 for `; 	 0.0163 for As, and 0.0311 for

The higher value for P is consistent with Fig. 8, where the points for Aq }' ,

Gn V and In P all lie above the straight line defined by the corresponding As and

ounds ,	 a

A comparison of Table II of Paper I and Table VI shown that our full treat-

ment of overlap and two-electron correlation has had only a modest impact on the

important ratio I^ ^^	 Moreover, in no case has that ratio been increased -

significantly, which, as pointed out in Paper I, is necessary to simultaneously

reconcile P A and 'with experiment. It now seems clear that 	 is dominated

by the ratio, 	 , which in turn is a direct property of the S and

wavefunctions which make up the hybrid. Interestingly, we have found in the case

I	 of S that the latter ratio can be increased if the tails of the free-atom wave

functions are contracted in the manner necessary to account for the electron
r

	

LOP+„'	
_
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density in the center of the bond. This matter bears further investigation in

the case of binary compounds

As our final application, we turn to the cohesive ever€ y . For the group

IV elements, it is instructive to rewrite Eq. (104) as

c^ =	 (I^ S) V.2 4 E Gor^^ - ^{	 t	 E^ro	 (124)
h

where - ^f	 is the explicit contribution of two-electron "correlation` to the

cohesive energy. Using Eq. (106) and comparing Eqs . (104) and (124), one has

(with Vb - o' )

c
1— 'S` V,4 	2 s ( V2 	 Vz)	 U25)

As desired, Ec,,, 	 0 for Vq = o	 Unfortunately, a complete evaluation

of Eq. (124) requires the uncertain quantity A F, 4 n E C 	 Because an accurate

evaluation of A n is quite difficult, we calculate only the remaining terms.

Specifically, we replace Elf in Eq. (124) with  

(126)+

and use our, calculated values of V" V	 V^ ^	 ,	 ^t ,, ^ and k to evaluate

and i. is components. The results are listed in Table VII together with the

experimental values of the cohesive energy. Note that our calculated E(-; k is

less than experiment but positive in each case. This is consistent with small

a

negative values of -1 ^^ , as we expect theoretically. Also note that i{

makes a large positive contribution and 	 kz 1Qr, but non-negligible,

negative contribution to EciL	 We may contrast tnis vi;th the calculation of Er.

made by HC. They, of course, _neglected both E g and corr	 Quantitatively,

these omissions were partly compensated for by their use of smaller values of

(a constant value of 0.5) and a scaling factor of 0.8 multiplying Epr (,. Their

prescription gives a rather fortuitous value of Fc ,4.k„ I1,) eV for C , but negat,Lvo

values of 2, 2 for	 , - _,`^ `^ fcr C7,, , and - v	 for t,	 -
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We have determined empirical values of 	 for each group-IV element by

fitting to the experimental cohesive energr:

I
i

As can be seen from Table VII, the magnitudes of the n E 	 reasornable. The
i

irregular variation from element to element is questionable and no 3oubt partly

reflects the fact that our theoretical model is best for a large-band-gap

material like C . In any case, we have used Eq. (107) to extend the calculation

of Ec D k to the binary compounds. We have assumed that e F^ + AE A is a covalent

quantity and have used the appropriate arithemetic mean of the group-IV values

for each compound together with a direct calculation of the remaining terms in

Eq. (100). The results are plotted against the known experimental cohesive

	

energies in Fig. 9. The comparison is not as favorable as with ^^ and f , 	 j
but positive values are found in all cases except

I

I



IV. CONCLUSIONS

We have presented here the full formal theory of the two-electron bond

orbital model, extended its application, and extensively compared and contrasted

it with Harrison's one-electron bond-orbital model. Both the analytic formulas

given in Sec. II and the parameters listed in Tables I-V can be used to treat

many additional physical properties, including those considered by Harrison

and co-workers with the one-electron model. Our work here has shown that two

electron correlation effects are significant in the dielectric constant, the

nuclear exchange and pseudodipolar coefficients, and the cohesive energy, but

perhaps not in the valence electron density, where the polarity and the shape

of ^('_ hybrid wavefunctions are the dominant quantities. In E- 1 , ^e

and ^fr^ , however, the effect of correlation is essentially multiplicative

and is hidden to some extent if scaling factors, _a- la HC, are used to achieve

quantitative agreement with experiment. Nevertheless, it is encouraging that

we have been successful here by actually fitting less parameters to experiment	 .'

that did HC. An interesting and potentially important area for additional work'

is in the optimization of the ' s ^ 3 hybrid wavefunctions and in the impact this

has on calculated parameters such as V. , '\jg , ^r ` and ^ f,

f
4

}

-47-
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APPENDIX

We present here useful formulas for quantitatively evaluating the two-

electron integrals M,, and K and the other two-center integrals S

and ^„ ^ discussed in Secs. II and III. Central to the evaluation of

and K is the standard expansion

1	 i _ (,^	 1/y	 (Al)

^r r'(	 - 4^
	 rA +^	 I(r j^r)
t ' 	>

where Yq„, (r) is the usual spherical harmonic and r< { r,) is the lesser

(greater) of r and r'	 We choose the f axis to be in the bond direction

such that the cation is located a distance +	 from the anion. Then only

the ? y i = o component. of Eq. (Al) (as well as any other similar expansion)

will contribute to the integrals of interest, and one may work in terms of the
9

^f	
Legendre polynomials PR

I

.	
qa

In terms of the	 , the S p' hybrid wavefunctions take the form.

}	
L

3 ^	
a

	

`f''^, { r') ^ ^^	 ^svt (r') PO cos(E?) +	 ,L (^^„ Crl P	 ((cas a) ^ `	 A3) s

-49-
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where P,, (x) = 4 , P, (X ) = X , and 0,\	 i- i and 9,, _ - I , as above.

Using Eqs. (Al) and (A3), the Coulomb potential arising from an L'j - hybrid

electron density can be written

4 Ess(r)tPP(r)+ 28„ ^'S^P(r) Pi (W5^)t^i(r) ^'^(^ns^)^	
(A^+)

where

^^^, (r} - S ( RRh (r-') r^ Rug„ (r') r^2^1 ►-.'
^	 r°	 (A5)

rpr

From Eqs. (A3) and (,A), one then has

u n	 n (Y) V>^ ( Y, ^ mil' ^i (r) d r-

o	 Q	 c	 I	 (z
(A6)

F S
+ I FPY t b FS P t	 (4- `  + 

^ F
PS

1

where, and G, are the integrals defined by Mann7:
1

k

F ^ ^	

go

	 (r^ e_ 
^ Q ..̂ , 

('^^) R t r) 1-2 d r A7 ^R^	 ^p Rjtn	 r 	 ()

2	 {^ C

^T2^'	 J	 Ran; (irl	 e	 ^R__ Q (r) t 1 d r	 (Ag)
o	 r

y

3

r
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{

r

To evaluate K , one can expand Vr 0	 in spherical harmonics centered on the

anion.	 This type of expansion technique is discussed in detail by Lowdin.l(

Again only the	 o component of the expansion is required and one can write
1

i

where	 r	 is measured from the anion and

+ 9	 (cQ, r1	 z	 5 ^, Cd,r) t	 (̂ Pfl1 (,r^
r)	 _	

h	
Ld, r Fro 	 F'

(Alo)

with

ldr^
 

2
f	 LGt+}	 e`	 r( r 	 r')	 r%^^	

f1 t"+c( 2 	,
— ^ ĵ	 r dr (Allr

2
k	 2	 r	 d r

Id—r)

Then one finds

r	 _

^ ^Sa^r)'l g
cC

(r^^ ^") `^	 h sc^ ( ►'^_R ('a i^^^	 ^^ t^^r}
16 (Al2)

b

+ C R 	 (r> 	 9 ^n C . r) + —^^	 fs	 Cd	 r^^ ^2dr

r
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To compute the remaining integrals, one must use an expansion analagous to Eq.

(A9) for the 5j l ' hybrid wavefunction:

o

where

It

A >> C t^ , t-)	 r^s 1,	 , r") + f3 ^„ 	 ,., (a , 1^	
(A14)

wi th

2rt =h a 4 2̂ s+^	 r^ Z_ 2	 rZ- r?^^` r ,^ (A15)
r	 S z d I''	 2	 f

!d-r l

Formulas for S ,	 and 	 in terms of the A, ( .4 , 1 ) follow immediately:

.No

S	 ,I^'^a(^-^ di r)	 , f\ u0- ACS Cd, r ljr idr^ (A16)

D

c^Q=	 d	 '3 (^S0.(r)A^(d,r)+ Kr" (r) A, (d, r)	 ^A C (4, r )J (A-17)
0

r3 d

i
I

and

Al

I	 _

o

ORIGINAL PAGE IP
pF POOR QUALITY



i

53

r	 ^ ,
Finally, a formula for U„ may be derived by making two expansions of the form

A13

co	 r

(Zh' +1)^^	 A ^z (^^ ►`) A,;? (d ►') `fir

(A19)

In this case an infinite, but rapidly convergent. series is obtained. For each

value of r there are one to three values of k which give finite contributions

to the series. In our calculations we have accumulated terms up to k ^= 3 and j2 = 3-.

We omit results for the remaining Coulomb integrals Hh and 1 , as these

quantities subsequently drop out of analysis given in Sec. III. A formula for F^^

can be developed by using Eq. (A4) and a single expansion of the form A13. In
i

the case of 'j a double expansion as in Eq. (A19) is required and an infinite

series is obtained.

i

-	 j

,a
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TABLE I. Intra-atomic parameters for the group-III, -IV and -V elements
obtained from the free-atom Hartree-Fork term values and wave-
functions of Mann (Ref. 7). Energies are given in eV, while

" and ^'	 are given in a.u.

Element
Uiir„

HF
-E: Vi Un ^Yin

B 9.68 1.26 13.95 17.7 0.776

Al 6.96 1.25 9.27 29.6 1.09

Ga 7.14 1.47 9.37 87.2 2.89
j

GIn 6.56 1.19 8.43 123 4.46

C 13.14 2.08 17.62 35.0 1.66

Si 9.38 1.8o 11.34 48.1 2.03	
Y

Ge 9.28 1.96 1o.96 120 4.73	 °.

Sn 8.33 1.57 9.63 16o 6.75

N 16.92 3.09 21.22 60.5-
'a

2.02

P 11,95 2.42 13.27 7 .13 3.27

As 11.46 2.48 12.36 157 6.85

Sb 10.11 1.97 lo.66 200 9.23

t
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TABLE II. In trabond parameters for the group-IV elements and the group-1V
and III-V binary compounds. The quantity V2 wtr.s obtained by
titling to experiment, while S,	 K,	 V•3 and VII were calcuJuLed
using	 11tirtree-Fork free-atom tet-m values and waverunctiorif,, w,
described in the text. All energies are given in eV; the bon(I
length d is given in A.

Material V4
1

d S K V2 V3

c 1.54 0.648 14.70 6.54 0.0 2.52

Si 2.35 0.668 9.83 2.53 0.0 1.36

Ge 2.44 0.659 9.46 2.42- 0.0 1.33

Sn 2.8o 0.661 8.37 1.99 0.0 1.12

sic- 1.88 o.627 11.95 4.07 o.4o 2.o8

BN 1.57 o.608 14.18 6.54 2.27 2.70

BP _ 1.97 o.663 11.65 4.07 1.74 1.75

BAs 2.07 o .656 11.14 3.98 1.71 1.77

AIN 1.89: 0.517 11.27 4.07 2.33	 - 2.71

ALP 2.36 o.633
9.58 2.53 _1.93 1.41	 a

a

AlAs 2.43 0.645 9.34 2. 47 1.93 1.26

A1sb 2.66 o.659 8.68 2.24 1.63 1.14

GaN 1.94 0.513 11.13 3.98 2.25
a

2.83
a

GaP 2.36 o.629 9.58 2.47 1.84 1.44

GaAs 2.45 0.637 9.28 2.42 1.83 1.25

GaSb 2.65 o.654 8.70 2.19 1.54 1.15

d



TABLE II (cont'd.)

InN 2.15 0.470 10.16 3.61 2.25 .99

InP ^ -54 0.6o.> 8. y)O 2.211 1.86 1. )18

InAs —' .61 0.617 8.75 2.19 1.86 1.33

InSb 2.81 0.644 8.24 1.99 1.59 1.12 

1
i

R

_i

3

,;

y

3

t
i

ar

y



-0.50 1.19

0.50	 1.15

	-0.38 0.89	 3.13 7.88	 3.52b

Si

Ge

Sn

3.91 9.98 4.41b

3.81 9.54 4.31b

4.4oc 	4.40	 4 .40	 11

4.30e 	 4.3
3.52

4.3	 a
7
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'Fable III. Relative singlet and triplet ei fenvalues E0 = Fri- (Ca+C -^K)

for the twenty solids consider6d in the text, where E0 LO and X0
h0	 Also listed Le the theoretical. predictions of the h'I,11,TTT	 2

optical.-absorption peak Moth from the present work, E2 = EOV - E0 $ and

from the work of Harrison and Ciraci (lief. 2 ), E2 C , All energies are

k in eV

Theory	 Experiment 

Material	 E0	 E0	 E00	 E O=E 0 -E0	 EHC	 E	 E

	

G	 T	 IV ^	 2 IV G	 2	 2A	 2b

C	 -2.32	 h.82 9.87	 2h.32	 12.2 b	 12.2 e 12.2	 12.2

i

r

sic --1.25 2.33 6.56 15.63 7.80 7.98 8.3

BN -3.33 4.78 9.95 24.87 13.3 13.4 3

BP -1.81 2.65 6.o4 16.22 7.85 7.32 6.9

BAs -1.78 2.55 5.96 15.89 7.73 7.24 -

AU -2.46 2.23 6.69 17.08 9.32 9.07`

AZP -1.72 1. 32 3.80 11.28 5.52 4.99

AZAs -1.80 1.39 3.64 10.96 5.44 4.85 I

ARSb -1.h6 1.20 3.30 9.83 4.76 4.68 4.25 4.6_

GaN -2.26 2.066 6.92 16.90 9.18 9.26

GaP --1.59 1.22 3.76 11.02 5.35 5.11 5.27 5.74

Galls -1.71= 1.38 3.60 10.65 5.30 4.93 4.85 5.33

G aSb -1.36 1.11, 3.26 9.57 4.61 4 .31 4.1 4.5 -



i

e,'e'„y'a"R°aw"wRll

i
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Table III.	 (cont'd. )

InN	 -2.13 1.70 6.61 15.96 8.711 8.511

InP	 -'1.56 1.02 3. 1 18 10. 111 5.018 11.8	 5.1

luAs	 -1.611 1.07 3.31 10.12 11.95 4.58	 4.5	 5.0

InSb	 -1.39 0.93 2.97 9.01 11.36 4.o9c	 4.o8

BReference	 9

bFit to E-2C , as described in the text,

eFit to experiment
^1A

1

I

r a

J
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Table IV. Expnnsion coefficientn entering, Eq. (31) for the singlet

eigenstutes M = VI (the grotmd state), M = 1V and M = V of the twenty
i

semiconductors considered in the text.

M=VI 1V V
Mate-
rial a4M a 5 a6M 1111M a 5 a6M a11M a 5 a6M

j

t

c o.167 o.167 0.736 0.928 -0.928, 0 -1.44 -1.44 2.33

Si 0.100 0.100 0.841 0.950 -0.950 0 -1.53 -1.53 2.47

Ge 0.103 0.103 0.838 0.940 -0.940 0 -1.49 -1.49 2.39

Sn 0.097 0.097 0.847 0.942 -0.942 0 -1.50 -1.50 2.41

Sic 0.198 0.084 0.781 0.990 -0.817 -0.200 -1.30 -1.43 2.15
h

BN 0.402 -0.020 0.653 1.11 -0.574 -0.642 -1.06 -1.48 1.97
T

BP 0.465 -0.061 0.635 1.23 -0.512 -0.865 -1.21 --1.71 2.33

BAs o.459 -0.058 0.641 1.22 -0.508 -0.855 -1.17 -1.68 2.27

ARM 0.448 -0.015 0.658 1.10- -0.357 -0.814 -0.680 -1.32 1.38

Atp 0.643 -0.120 o.494 1.26 -0.218 -1.24 -0.889 -1.65 1.92

AtAs 0.680 -0.121 0.451 1.27 -0.202 -1.30 -0.920 -1.70 2.00

AkSb 0.659 -0.131 0.480 1.30 -0.238 -1.28 -1.00 -1.75 2.14

GaN 0.428 '-0.017 0.678 1.10 -0.358 -Moo -0.675 -1.31 1.36

GaP 0.619 -0.121 0.520 1.25 -0.231 -1.21 -0.886 -1.63 1.89

GaAs 0.655 -0.113- 0.476 1.26 -0.224 -1.25 -0.90 1t -1.66 1.95

GaSb 0.632 -0.128 0.508 1.29 -0.259 -1.24 -0.998 -1.72 2.11

JA
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Table IV. (cotta.

1nN 0.420	 -o.olo 0.695 1.07 -0.310 -0.789 -0.563 -1.26 1.3.6	 j

1nY 0.626	 -0.118 0516 1.22 -0.179 -1.22 -0.761 -1.55 1.67

xnAs" o.667	 -0.122 0. 1171 1.2 1 1 -•0.163 -1.28 -o .796 -1.6o 1-76

XnSb 0.674	 -0.13 1 1 0. 1 66 1.28 -O A88 -1.31 -0.911 -. 1.69 1.98

3

.

3

Y

r

x

a
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Table V.	 Calculated parameters related to the dielectric constant and

the polarization of the bond, as discussed in the text. The quantity

axC is the value of polarity assigned by Harrison and Ciraci (Rei.2 )

Material 6e 6a 6c-6a 26 ca ZP ap ap0 Y

C 0.279 0.279 0.0 0.0 0.0 0.0 0.0 0.581

Si 0.265 0.265 0.0 0.0 0.0 0.0 ox o.633

Ge 0.257 0.257 0.0 0.0 0.0 0.0 ox 0.646

Sn 0.259 0.259 0.0 0.0 0.0 0.0 0.0 0,643

k
sic 0.331 0.229 0.102 0.098 o.14 0.08 0.39 0.565

BN 0.334 0.228 o.116 0.053 0.24 0.27 o.41 0.539

BP 0.274 0.275 -0.001 -0.040 0.20 0.35 0.0 0.602

BAs 0.261 0.275 -0.014 -0.057 0.19 0.35 0.0 o.615

AM 0.390 0.189 0.201 0.110 0.34 0.34 0.59 0.492	 }

ALP 0.312 0.229 0.083 0.054 0.39 0.53 0.47 0.593	 l

AtAs 0.303` 0.234 0.069 0.037 o.4o 0.55 o.44 MM

AM 0.277 0.251 0.026 0.004 0.36 0.54 0.54 o.628

GaN 0.363 0.184 0.179 0.114 0.33 0.32 0.62 0.528

GaP 0.299 0.229 0.070 0.050 0.38 0.51 0.52 0.607

GaAs 0.288 0.233 0.055 0.034 0.38 0.54 0.50 0.621, 3

GaSb 0.266 0.252 0.014 -0.001 0.34 0.52 0.44 0.638
a

Inx 0.372 0.166 0.206 0.156 0.36 0.31 0.64 0.523

InP 0.315 0.213 0.102 0.096 0.41 0.52 0.58 0.591

InAs 0.307 0.218 0.089 0.080 0.42 0.56 0.53 0.604

_-InSb 0.285 0.237 0.048 0.044 0.39 0.56 0.51 0.625

rIA
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xy^^ TABLE VI..	 Nuclear exchange and	 seudodi olar coefficientsg	 P	 P	 ^ r	 and r	 for the twenve	 pd ^	 y
solids considered in the text in units of the direct dipole-dipole interaction
coefficient Pdd . The theoretical results refer to our calculations dome i n bo h
the Harrison limit and with the full two-electron formalism described in the text.

re /rdd rpd/rdd rpd/re
` Theory	 Expt. Theory	 Expt. Theory	 ExJ4.

Material Harrison	 Full Harrison	 Full Harrison	 Full

c o.o43	 o.o87 0.0068	 0.0139 o.16o	 o.16o

c Si 0.846	 2.79 0.130	 o.427 0.153	 0.153

Ge 6.00	 19.8 o .860	 2.84 o .143	 0.143

F Sn 19.7	 69.5 3.o4	 10.7 0.154	 0.154

Sic 0.120	 0.435 0.0187	 o.o681 0.155	 0.157

` BN 0.022	 0. 055 0.0034	 0.0076 0.154	 0.137

BP 0.161	 0.203 0.0254	 0.0386 0.158	 0.190

BAs 0-.404	 0.568 0.0628	 0.103 0.155	 0.180

' AIN 0.077	 0.273 0.0087	 0.0322 0.113	 0.11E

E

AlP o.412	 0.68+ 0.0619	 0.102 0.150	 0.1;0

AIAs 1.20	 1.54 0.170	 0.214 o.142	 0 .i3J	 -"'"- y

A1Sb 1.56	 3.15	 -0.0 0.233	 0.469 0.149	 O.-'-'g



TABLE VI (contd.)

GaN 0.185 0.917 0.0218 0.107 0.118 0.117

GaP 0.913 1.97 0.1^b o.14o 0.303	 0.20b 0.154 0.154	 1.43,,

GaAs 2.69 4.26 0-73^ 0.388 bo.623	 o.65 o.144 o.146	 o.89

GaSb 5X7 8.80 1.89 a 0.768 1.36. 0.151 0.154

InN 0.277 2.01 0.0325 0.246 0.117 0.122

TnP 1.50 4.00 c-0-55 0.228 0.608 -1.0' 0.152 0.152 -1.8

InAs 4-71 8.72 2.06 a o.673 1.24 o.143 o.143

insb- 9.18 15.6 a5.28 1.38 2 .33 0.150 0.149

a R. K. Sundfors, Phys. Rev. L85, 458 (1969).
b Reference 16
c M. Engelsberg and R Norberg, Ph-^7- Rev. B 5, 3395 (1972).
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Table XII.	 Cohesive energy per atom pair and it,. components for the

group - IV elements in eV. The quantities EcOoh and Eco'ti are our calcu•-

lated values of the cohesive encrpy without and with the correlation

energy H'	 , respectively, as discus.ned in the text. The quantityCorr

AC 
fit is the value of Qcn necessary to fit F%coh to 1'cot t^ '

1

Mate-
rial 8(1-S)v2C 

-4 Ecorr -4 E0 
-E	 EO	 E	 Ee'q't AE

fit
of	 pro	 Coll coh	 coh	 n

C	 17.18	 -7.88	 21.44	 -16.64 22.0 14.1	 14.7	 -0.075

Si	 5.84	 -3.84	 14.84	 -14.4 x} 	 6.28 2.44	 9.28'	 -0.855

Ge	 5.87	 -3.87	 14.24	 -15.68	 4.43 0.56	 7.74' -0.898

Sn	 4.77	 -3.23	 12.92	 -12.56	 5.13 1.90	 6.24	 -0,542
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FIGURE CAPTIONS

Fig. l Correlation enhancement factor defined by Eq. (92) for

the nuclear exchange and pseudodipolar coefficients of

homopolar solids as a function of X = 2 V* IV with ti	 = r

Fig. 2 Two-electron bond-orbital-model values of the dielectric

constant E	 :for sixteen binary compounds plotted against the

best available experimental values (Ref. 10). 	 No experimental

data exists for (3p	 ,	 5 As	 or 4N	 and the estimates of Van

Vechten (Ref. 10) have been used instead.

Fig. 3 Single--bond electron density for Ge	 as calculated from Eq.

(60) using free-atom Hartree-Fock wavefunctions and the 	 a, Li

given in Table IV.

Fig. 4 Single bond electron density for Ga A $ as calculated from Eq.

(60) using free-atom Hartree-Fork wavefunctions and the	 a,,-

given in Table IV.	 The AS nucleus is on the right.

Fig. 5 Profile of the total valence electron density in ye along a

bond axis, obtained by superimposing single-bond densities 	 -'a

(Fig. 3) in the 'solid.	 The corresponding local-empirical-

pseudopotential calculation of Walter and Cohen (Ref. 11) is

shown for comparison (dashed line). 	 The small arrows indicate'

the positions of the nuclei.

Fig. 6 Profile of the total valence electron density in CTS+ As along

a bond axis, obtained by superimposing single bond densities
t

—67—
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(Fig. 4) in the solid.	 The corresponding local-empirical-

pseudopotential calculation of Walter and Cohen (Ref. 11) is

shown for comparison (cashed line).	 The small arrows indicuLc

the positions of the nuclei with A son the right.

Fig. 7 Experimental values of E - 	 vs. experimental values of 	 Fe,, 	 q

for the seven III-V compounds on which data is available.	 The

linear trends in the In	 and (To,	 series are to be compared

against the theoretical predictions shown in Fig. 8.

Fig. 8 Theoretical values of E -1	 vs. theoretical values of 	 FN / 1 1,4,4 , l

for fifteen III-V compounds, as calculated from the two-electron

bond-orbital model. 	 The corresponding experimental results, as

known, are plotted in Fig. 7.

Fig. 9 Two-electron bond-orbital-model values of the cohesive energy

for sixteen binary compounds plotted against the known

experimental values. 	 References to the experimental data are

given in the caption of Fig. 11 of Ref. 2.
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