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ABSTRAC!

The two-electron bond-orbital model of tetrahedrally-coordinated solids
is generalized and its application extended. All intrabond matrix elements
‘entering the formaiism are now explicitly retained, including the direct over-
lap S between the ariion and cation<§gahybrid wavefunctions. Complete analytic
results are obtained for ﬁhe six two-electron eigenvalues and eigenstates of
the anion-éation bond ih terms of S, one-electron parameters 'V, andfyg, and
two-electron correlation parameters V, , V, and V. Refined formulas for the
dielectric constant and the nuclear exchange énd pseudodipolar coefficients,
as well as new expressions for the valence electron density, polarity of the
bbnd and ﬁhe cchesive energy, are then derived. A scheme for evaluating the
basic parameters of the model is estaeblished, in which VQ is fit to the
optical-absorption peak o% group-IV elements ;n the manner of Harrison and
Ciraci and the remaining quantities are calculated using Hartree-Fock free-
atom,w&vefunctions,ang,term valués. For thé twenty group-IV and III-V semi-
conductors, we figd Ve ~V, ~0 but \@/“V;fv }i ;vleading to significant
correlation effects in most properties. The theory'gives'é good account bf
the experimentally 6bsérved trends in all properties considered and approximate
-quantitative agreeﬁent is achieved for the pseudodipolar coeffiéient. Good
ggreement ié also obtained for'the lfz optical-absorption peak, the die-
~ lectric con;tant, the nuclear éxchange coefficient and the cqhesivefenergy of
‘the binary compounds by scaiing to experimént fof the group-1V éléments. Our

calculations on the'cdhésive energy suggest that the intrabond overlap energy,
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discarded by Harrison and Ciraci, is an essential source of positive cohesion

and probably rules out any major role by the interbond van der Weels inter-

action suggested by them. The valence electron density is found to be dominated
by the polarity and the shape of the  §[” hybrids. The preliminary indication
is that the long-range tails of the free-atom § and P wavefunctions must be

contracted to account for the observed bond density in S;.



I. [INZRODUCTION

The description of the valence bands of tetrahedrally-cooniinéted solids
in terms of gyf hybrid wavefunctions has been considered at various times by
a number of different workers. In recent papers, Harrisonl'and Harrison and
Ciraci2 (hereafter referred to as HC).haNe presented a unified and greatly ex-
tended version of such a theory, which they call the bond-orbital model. One
of the major contributions of their work was the direct treatment of a wide
range of physical properties in addition to the band structure. In this model

the band structure becomes a separate question3

and a large number of properties
can be calculated with only a'knowledge of the local properties of the anion-
cation bond. Formally, this bond is equivalent to,a two-electron diastomic
molecule, Harrison1 aqd.HC, as well as previous solid-state workers, have
treated this molecule iﬁ the usual one-electron, molecular-orbital approximation.
As a step toward providing a more complete treatment of the bond, we introduced
in the first paperu of this series (hereaftér referred to as Paper I) a direct
two~electron formalism. Our two-electron bond-orbital model was developed as

5

an extension of‘the‘method of Falicov and Harris” for treating the hydrogen

- molecule. Iﬁ Paper I‘wevconsidered the simplest special cases of the theory
and:appliedbthe results to the calculation of the dielectric constant and the
nuclear exchange and pseudodipglar coefficients. Iﬁ this paper we generalize
our two-electron bond-orbital model into a full quanfitative theory and extend

its application to.several additional.physical properties, attempting to assess

the importance of two-electron correlation in each case.
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The simplicity of any bond-orbital spproach rests with three approxima-
tions. First, the appropriate anion and cation ng hybrids are assumed to form
a complete set for the description of the bond. If the 5 and p wavefunctions
meking up these hybrids are atomic-like staﬁes, this set is.technically under-
complete, although the choice of states can be optimized. In a one-electron
description, one then has a simple two-state eigenvalue problem and the ground-
state or bond orbital is a symmetric linear combination of two §53 hybrids. In
a two-electron description, a six-state eingenvalue problem must be solved, but
an exact analjtic sﬁlution is still possible for the two-electron bénd;orbital,
as well as &all of the excited states. In either case, the bond orbitals obtained
are then assumed to be orthogonal to one another in the solid. This is approxi-
mately true because the four éEs hybrids sharing a common atomic site are ortho-
gonal by constru.ction.1 Finally, all matrix elements linking the ground state
of one bond to the excited states of its neighbors are discarded. The only
interbond matrixkelemeﬁts_permitted, and the ones which give rise to the band

structure,2’3

are those connecting neighboring bond orbitals through the Hamil-
tonian. -Then, because the valence band is full, one can mgke a unitary trans-
formétion’from extended Bloék states to the localized bond-orbitals in calculating
both the total energy‘and the total valence-electron‘density of the solid.
Iheée latter quantifiesbare thus given, respectivexy,’as'justba sum of the’total
energies and a’sum of the total eleétron densities of the individual bondS‘and‘
are exacﬁiy indepehdent of the rémaining intefbond terms. - Thus physicailpro-
perties‘which depend only on the total energy or electrbn density can be cal-
cﬁlated entirely in‘terms of ihfrabond~matrix elements.

| ‘The work begun in Paper I is extended here in several major ways.“We‘first

obtain a ébmplete solution of the two-electron problem. The'direct ovérlap :
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matrix element between anion and cation hybrids and the two—center Coulomb ex—
change and transfer integrals, all of which were dropped in Paper I, are now
included without approximation. In Sec. II exact analytic results for the
singlet and triplet eigenstates and eigenvalues are cbtained. We then proceed
to develop a full formal theory of several important physical properties. In
addition to a refined treatment of the dielectric constant and indirect nuclear
interactions, we consider the valence electron density, the polarity of the bond
and the cohesive energy. In Sec. III a procedure for quantitatively evaluating
the basic parameters of the theory is established and application of the formal

results of Sec. II is made to twenty tetrahedrally-bonded solids.



IT. FULL THEORY INCLUDING OVIRLAP

A. [Figenvalues and [igenstates

When the overlap beﬁween anion and cation hydrids is retained, the second-
quantization formalism employed in Paper I loses its simplicity and elegance.
Thus in this paper we introduce a spacial representation. As in Paper I, it
is possible here to proceed with a basis set of the six two-electron states
|atav>, |cted>, |atet>, |atey>, |ated>, and |ctad>. However, both of the physics
and- the mathematics aie simplified if a basis sét of three singlet and three
triplet states is chosen from the outset. . Then the six—by—six Hamiltonian
matrix block diagonélizes into two three-by-three blocks. One of these two
blocks, that associatéd with the triplets, is also diagonal with all three
diagonal elements equal.

~ We begin by defining three orthonormal triplet states in the coordinate

representation:
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where @A(\:: . % is the anti-symmetric spatial function
- -, - i 5 Ed ] - ’-$
.‘Q}\(‘le v ] qlzLiF’\l'?:,(r;‘B_({)C’[‘\d‘)&\"‘)j . : (2)

In Egs. (1) and (2) CPa (r) and q’Jc () are respectively the anion and cation

hybrid wavefunctions, S is the overlap integral between them:

S= {afmg idr (3)

and U and ¢ are the usual one-electron spin functions. We next define

three normalized singlet states:

[‘1'5 T l JF Vi :“ (b(,\_ ( ,jl) C#’C\(r;-.) ZA

S AN
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6o = {2(r e} (larcin+ lehai>) = it [ o) + e (P o 152 A

where _:.' is the anti-symmetric spin function

ZA R 'r_*‘jfy T \)\L I )’Ir 2) O‘{ o) J {32

‘The singlets are automatically orthogonal to the triplets because of the ortho-

normality of o and ) , but the singlets are not mutually orthogonal to one

- another:
Ogl -
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The two-electron Hamiltonian operator has the form

LR
Y

HO iy = et totheaad e v (7)

where H, is the sum of a kinetic energy operator T and an external potential

-Veﬂ't:
Ho(F)y= T(r>+ Vier (7, | (8)

The quantity V., includes bare-ion potentials from the anion and the cation
plus the pbtential as‘sociated with all other bonds in the érystal. Because
the full Hamiltonian H has no spin-operator dependence, all matrix elements
coupling singlet and triplet states vanish, and the secular determinant has

the simple block structure

’
e
\l
<

where ET = ‘\'l{ Hi1y = \/ET«’A [ H | §,4 7. Ve may write out the matrix
elements entering Eq. (9) explicitly in terms of familiar one- and two-center

integrals. Following HC and Paper I, we defineb the one-electron expectation

values

Eﬂc = S'(P?L EREIFAS R ‘f)n‘\":") dr o= L P (10)



and the (positive) transfer or hopping integral

Voo o Py He e any A (11)
All of the two-center Coulomb integré,ls have the form
R N AN - e
Lo foe,m's _g “T}r \r‘)cht’ S I ‘*w"‘*)d"' o, (12)
= v d ’ ll-x - rz.l
n, Wy om, mloa, e .
The Coulomb replusive energy of two electrons on the same ion site is
1, = 1 (){,H"HJ’-)) iAo (13)
while the corresponding energy with one electron on each site is
Koo Llase faye), (14)
'The exchange energy is
A . (15)
3= Ll ebe, )
and_ﬁnally the transfer energy (analogous to \/;D) is

Hy = Lt fas e o o .(l )



In Paper I we neglected, in addition to the overigp matrix element ¢, the
quantities J and H,. It is easily seen from Eq. (12) that J and H,, unlike

Ly

Lh\and K, will vaniéh as 30, so that the theory of Paper I becomes rigorous
in that 1limit. In the real semiconductors of interest, of course, ihe over-

lap is large, S ~ 0.6, gnd'j and Hn'will have magnitudes comparsble to Ul and
K. Our calculations, which are discussed in Sec. III, show that for homopolar

solids like the group~IV elements

Un # K 7 Ho > T (17)

with J'«;%-EL, Similar trends exist for the binary compounds, where in addition

1 8
1\;{ A7 l({_ ,CU\C{ HC\ > HC , (l )

because the anion hybrid is usually less spatially extended than the cation hy-
brid. In our calculations Eq. (18) holds for all III-V compounds except B+ and

BA:where the inequalities are reversed, as discussed in Seé. IIT,

In order to simplify the analysis and to meke contact with HC and Paper I,

it is also useful to define the following combinations of the above quantities:

.7 bt K, . m=ac

Vi's Vee -k (Hat He) % S(Eu+ €0

Ve r L [ (e £y - 4 (Uem U] S |
Ve lduews-k] W)
Vs AL E s - (R
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Ve =

I ) Ve - ~‘>l\'
C{rat Held d -

Because of the overall charge neutrality of the sqlid, its energy levels will
only depend on absolute ditierences of the one- and lwo-center Cowlomb inleprals
defined in Bgs. (10) - (16). "Mhe energies defined In #g. (19) corrcelly refleel
this fact. For example, the eddition of }( to EM has the effect of screening
the bare-ion potential arising from the cation and gives ¢, a magnitude close

to a Hartree-Fock expectation value, as shown by Eq. (28) of Paper I. Then

{; (E.+¢c.) is thé éénfer of gravity of the one-electron band structure and the
term é‘ S {ta +\_.(_) removes exactly the dependence of ‘vz 5 on the zero of energy.
The energies ’-[; and \/'3' are conceptually similar to thne oné-eclectron HC parameters
o He He e Doy e |

which we denote as \/, and \,’3 . The quantities — (H, + H, ) end - (- U

are appropriate average values of the electron-electron intéraction, which

physically screens Vext and reduces the magnitudes of V; and V;. More specif-

icaily, \, and \’; are deriveble from the one-electron Hamiltonian

BRI -, B S RN I T
) b (LR ety S e (O

H ()= He(F) + 5 S L2 . - o)
S [ F-r’]

- ﬁ ( Eat Ee )
by the tight-binding formulas
'Vlo == < Cbo\ I H_one] :,’)c >

| (21)

V= [0 Howl b = <bal Huel 0> ]
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We emphasize, however, that \/;ﬂand VS(‘ enter the present theory only as defini-
tions. All two-electron correlation corrections to the screening are included
exaclly Lhrough the remaining parometers \,],,P, Ve and l"{f'. 'The quanldty \',,‘ PO
simple generalizalion of the correlation term (if.‘j.;invd in lq. (2la) of Paper I,
while \,’; and \/; appear as a result of the finite values of ¢, J end H". Inter-
estingly, even for large values of S our calculated values of \/’; and V(: alvays
turn out to be negligible and the dominant correlation parameter is Vj s 85 we
assumed in Paper I. Finally, we should point out the symmetry properties of
our new gquantities. The energies ":f;‘, sz and V‘: involve symmetric combinations

of f.“, Uh, and HY_, as well as the symmetric quantities \*20, S, K anda J Conse-
quently, \,’;, qu and V(: are covalent energies which depend primerily on bond
length and not on the polarity of the bond. The energies \/: and V;, on the other
hand, are antisymmetric in 5,', Un and Hh and thus venish identically for homo-
polar solids. We may already anticipate that for negligible Vf and V; the effect
of two-electron correlation will be to increase the covalency and decrease the
polarity of the bond in binary compounds, because V; > 0.

The eigenvalue };;'T of Eg. (9) associated with the degenerate triplet states

can be evaluated immediately:

EN = E— oo ,‘;.:'&.+, '(,;._C ’_}\_ »}-(2‘“\@0 - \v.ﬁr .J/(I‘Sl}) H = I,]f)}j_[ . (22)

7

The eigenvalues associated with the three singlet states may be written as
- - . ) WOR ¢
EZM ~ Ea tEL- K+ IZH

-0 :
where EM is a solution of the determinantal equation
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Equatiaon (éh) is, of course, just a cubic equation in E; and reduces to Eg. (20)
of Paper I in the limit S = \g’: \f =0, As in Paper I, the physical content
of the solutions of Eq. (2L) is most transparent in the two special cases where
this equétion factoriies. These cases are: (1) v§‘<‘y§?: 0, which is the
appropriaté solution fdr the group-IV elements, and (2) EQO: Vﬁ = Vz = @, which
is the limit of no two-electron correlation. Following Paper I, we denote the
~former case as lhe Falicov-Harrié limit (hereafter referred to as the FH limit)
and the latter as the Haﬁrison limit.

In the FH limit the energy eigenvalues and the splittings between them

may be expressed as

hE K425Vt Vi - 25 (Va- V) /(-8

Erw,w ®

Fu s 2g -K+28V, +2V +V, - 250 V- Vi) /0=5") (25)
’ - ‘ : 2 ;___2' £

Eyx oy = 26 -K+28G+V, -V 2 (#V5+ Vi )2

and

“w B o= 2V Gmgy & Ve m38N /G oy e (VT V)

P -k =2V S | | | | (26)
2 Vi /ety = Vi (s ATty (V) |

(el
(oY
t .
BN
=
i



where we have dropped the subscripts  and ¢ on £ and have introduced the re-

normalized wvariables

V, o DSy VYT s
Y ~‘.
\Irﬂ EN “/“.\ -‘j R e
+ - 1 ' oA
\'«'f =V fO-300

(27)
Vo: Ve ime
Voo V0

which facilitate comparisons with HC and Paper I and which will be used in the
remainder of this paper. The renormalization factors of (| — 52)'/’1 and {{ - S~)
are precisely the same as fhose used by HC in defining VHCa.nd V.,HL, respectively.
The term added to V mey be viewed as the subtractlon of the constant V}+ \,'-
from h 1n Eg. (20). The quelitative ordermg of the energy levels in Eq. (25)
is the same as given in Fig. 1 of Paper I, with Em the ground state energy and
the triplet levels a;xd the first excited singlet 'E’IY sepa.rated by 2V,. DNote that
overlap has shifted all six levels upward in energy by an amount 25\6_ This term,
however, will contribute only to properties Which depend on the absolute position
of thé levels, such as vthe cohesive energy; For V, = 0O the triplet energies and
kElz are also shifted doﬁward from the center of gravity by QSZW/('I~52\ :

: ‘I’his means that if one fits Eﬂ. - }:m to the principal optical absorption gap
for a fixed \/L, as we did in Paper I and as we do vin Sec. IiI below, one réiquires

a larger value of V7 than with § = 0.

In the Harrison limit the energy levels and splittings are found to be

‘(28)
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and

(29)

Again all levels are shifted by the amount ZfS\; which is consistent with the
shift of S\é_in the one-electron energy levels of HC. Otherwise, overlap has
nof altered the formal structure of the eigenvalues and Eqs. (28) and (29) are
'completely equivalent to the HC results, as discussed in Paper I.

We next consider the calculation of the eigenfunction of the Hamiltonian
H. It is evident frqm Eq. (9) that the three triplet'ﬁasis states are already

eigenstates of H:

\z7 = 117 (509
ey = l27
foy = 137

 The singlet eigenstates can be written as & linear combination of the three

singlet basis:states:

My = 2 ay, it oM=L,V o (31)
=45k | - | |

The ground state |¥[) is the two-electron bond orbital. Setting

o | g (32)
iy = AiM/,D )



1h

where {) is the normalization constant

L - \ ,,\/;’” 4 A t Ay 25 A T 2N s (/\,m A,m)/\g,.,_}*)‘ (33)

the coefficients A!’M are obtained in  the usuzal way and may be expressed as

At [ (=2¢V, - Vi) ) 4 =< i V=V )~ STES TV, (rs®)
ACP«, . \I“ X Z - . o
4SOV - T8 h Y (S - SE - L2 Ve () 22 V(e 1
s - /e . L D )
- E” J] v (l 5 3 *’S\\l’; Vb )'f' ( S»V:Z+VS'\(,"SZ)Z —SEy! 5 (3)4)
Mo Loy B0 = 40 97y = L6 28 Va -V (s™)

-+ 251 ( \lv.';;"'VL \ - 52 EN? J

In the general case, once the roots of the cubic equation (9) are found, they

can be inserted into Eq. (34) to find the AEM’

In the FH limit, ’A‘M = D=0 for M= I¥ and the general solution Eq. (34)

cennot be used. In this case, the proper coe:ﬁ‘f‘i'cients can be showri to be

{ A g =t I/JZ(FS:‘) : - : . (35)
Qe ' | ‘ | '
Y =0

For M =‘§/ , VL, on the other hand, Eq. (25) may be used directly in Eq. ('3145 to
obtain ’ '

F POOR QUALITY
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3 L')_(l"'}‘ ! T SR J /" 4o

Wy = Lm ©
e _ . (36)
L 4 \;k":? X (-s7) 7 QU+t - K“«‘ J /D(,‘
with
T + e L . - 7 oo
D, = Loyixraaitled c{&+XY] (-8 (37)
where we have defined
X =« Vai\, {38)
and
(39)

- : SE
7 . 2
Q = (X Hied
Note that all explicit dependence on Y, has cancelled out in this limit.
Tn the Harrison limit the coefficients are most conveniently expressed in

terms of Harrison's polarity and covalency para.metersl’2 ('\:?‘ and o(c, respectively

4 !y I o -t ) .
U p :“v \I'_: i \«'; Foyve )7 : (LLO)

and
()ic . \;L‘ / ’ \ \‘-- ,,‘ ‘\\/fv.i'.' f g . ‘ : : ()41)
One finds
f (\ 41y j | ) ..1 o _:' e ‘ -
L [ 2o (ms")F 4 8% 1/ (1=87) | (42)
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and
¢ Ao ; i c ! 1oy : o o
) e s (s [ e

[

. . (43)
R oy | - <2

Clé,,\ - \]2' :-O\\ .* : “ d /('l S ))

where £= +] for M= YV and 9 - -{ for M = L. It is strightforward to show that

g1l of the above results for the FH and Harrison limits are equivalent to those

of Paper I in the limit 5 Vg = O.
B. Physical Properties

The full effects of two-electron correlation and overlap on a wide range
of physical properties can be sassgsesed using the eigenvalues and eigenstates
obtained above. We shall concentrate here, however, on only a small select
number of such proPerties. For the purposes of‘comparison with HC and Paper I,
we derive generalized,‘formulasbfor the dielectric constant € and the nuclear
excﬁange and pseudodipolar coefficients }L and r}d’ fespectively. As an
extension of the method, we also cansider the valencé-electron density, polarity
of the bond and the cohesive energy.

| 1. Dielectric Constant

As in Paper I, the quantities ¢, r; and '}d are most conveniently calculated
in perturbation theory; Tollowing HC and Peaper I, we apply an electrié field
ESin the +x directioh and consider the energy shift AfF induced in an isolated
bond‘lying in the [1ll]vdirection. The origin of coordipates is chosen at the
center of the bond and, in analogy with Egs. (3&) -~ (41) of Paper I, the shift

in the total energy (per unit volume) of the crystal to second-order in E is jﬁst
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{
I Y £ LT I O (4
perds berds ’
where the polarization is
= TR P
PD O (\J 34 ul ) ~ i siE g < } ()45)
and the electric susceptibility is -
N LGl We (M H I (46)
IX - /\Vv ¢ - ‘ { " R} <
DI S Fa
Here ‘J{ ! \"‘ ,l:\‘) X Xo lg7=]M71is the ground state, N is the average

. . - ' v
valence-electron density, and ¢ is the vector distance from the anion to the

cation. Note that the sum in Eq; (46) runs only over the two excited singlet

. , o
states, because u& cannot couple {§ ) to the triplet states. Using Egs. (k)

and (31), one can derive a general formula for (611{;[6 ,in terms of the

‘expanmon coeff101ents Tipt

<4“(‘ [t1> = {G{/\)g \):— (4 (1-$7)% 2 (g Arey — Qag Ay r':\)

+ ‘J;_S \(' —1 j \'b.(;_\-_‘l" ""‘f“l \‘“((J‘l + (ag‘[‘; 1!’”; aéQ jj

é Arg as-;»'{ + Ay Chm) BRI Y2Y /(|+::.’)v _

. f..;'-i" - P LA o o
- \l..-lv*.; - (qé’ s _)“X{M T Ayt Qyuy ) J{.(% ]

.(~ . . . ‘ . : ‘ . B !
2 bea 'L (Qgg dop 4, -r°‘uw.‘-7+ -aéC: '"['»‘"‘,/(Hr )1

Tz 3\!“1:“ [(a'\:; Al bag ) b(m + (o —MMLG i3
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where we have defined

. LS 3 )
Y A (19)
and

LI L B, . 2 iy 50
oo o) S PTGy AT 172)
NS U v

In Eq. (48) X,  is the Y coordinate measured from the center n. The quantity
[1- (S 5.)] is the p' defined in Eq. (16) of HC and Eq. (36) of Paper I.

The renormalization factor of (>\ - gF )é is again such that our ¥ is precisely
ﬁhe same as that defined by HC. Note that ,b}\d is ‘,just the center of gravity

of the khybrid electran density (b,f(?)}{)n'( r“ A new overlap term Sca’ not consid-
ered in either HC or Paper I, has also appearéd. For homopolar solids Sea= 0
| and 84 = 5& by symmetry; for binary compounds one usually has SC > 50\ and *{fo\\’"
becaﬁse of the greater séatial extent of the cation hybrid.

In the FH and Harrison limits; P)D.and Y. are given by particularly simpie

expressi"on‘s‘.“ In the fé”rmer casé : Xa\ = SC = 3, = © and one finds, as in Paper

I, that only the ﬁatrix eiement (G[?{;[IK} is nonQZéfo._.Thus F% =0, as expected

by symmetry. ’Using‘ Eqs. (35) and (36), it is also straight-forward to show that.
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oy = b yedyT Oy = ) , (51)
with

3 RO X e d e X (ma e 0-sTY /- ), (52)
where we have defined

A= 2V v, (53)

BEquation (51) has the same analytic structure as obtained»in HC and Paper I, and
the factor 2 reduces to Eq. (46) of Paper I in the limit S= Z =0. 1In addition;
B =1 for ¥X=7 =0 and F > ] for Z> 0 and ¥ 2C. A further simplification is

. -r\ Yoe s . . e
also possible. TIn HC the quantity \‘2{ is determined by fitting E'L]l - I:JZI to the

- principal optical-absorption pea.k.' If one uses the same standard to fix V2, then

one has, comparing Eq. (26) and Eq. (29) with V,J, =

" | o

- W V20 RUE R B (L S BTN Y] /w STY, (54)

and thé effect of the two-electron correlation on the HC result cen be expressed

in terms of the simpler factor

(S SRR - = (55)
which depends only on ¥ and not on either § or Z explicitly. Our éaléula‘éions I.
suggest X ~ | for the group-IV elements, in which case F ~ 1.3, In addition, '
1f the quantlty ’J’ls determined by flttlng € to experlmen’c. then the fitted y’
will be la.rger than the HC value by a factor of ((5 )2

In the Harrlson limit \Qf}( f'ﬂ[}' and <GW “T/ are flnlte and <fo2( 1Y

vanishes. Using Egs. (29), (42), and (43) one finds in this case
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\‘»

\JL\.‘: ; o \r .l ) ) . .. v /',_',
Coe E S mN O T e vy (57)
where we have defined
’ - . 3 p pe ot
Ytt" = T + {"J‘f‘-"if*i Voo oty ey T e /('~ - ) - _ (58)

Equations (56)—(58) reduce to the HC results in the limit b, = i& and 5;;;"'5,
as was implicitly assumed in their work. Setting S= SLA = 0, one recovers Egs.
(48) and (51) of Papér I for)ﬁ; and €, respectively.

We should mention at this point that the veanishing of the matrix element
<Gl§gfv)only appears to be an exact result in th¢ FH and Harrison limits.
However, our calculations suggest that the additive term L(Qf“ngf>L%F‘~LV) in
Eq. (46) mekes a negligibly small contribution to ). in real materials. Thus
even in the general case, the correlation correction to’)ﬁHLis gssentially a
multiplicative fdctor as in Eq. (55).

2. Eléctron Density and Polarity

The total valence-electron density in the sblid is just a sum of all the
individual bond denéities.‘ The bond electron deﬁsity may be obtained from the
twd—electron ground state f GYin the following Wé.y_. If the spéﬁial part of the

: singlét basis state I1> is written asﬂ¢i(fa Y, fhén the electron density asso-

ciated with the,ground state is from Eq. (31) just

() )" 2, LCT J g“‘{, (r/ M) V/ hl ’ "I" A ’k (59)

Ej e o
The factor of 2 arises- because there are two electrons per bond, - i. e.,

§PFYAY¥ =2 | Miso note that Yo (R 2y

e f‘“J:I A PAGE IS
G¥ POCR QUALITY]
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is symmetric in F‘ and ', so that it does not matter over which coordinate

one integrates in Eq. (59). Using Eq. (4), it is simple to show that

[y = Mivqﬁ*(it\ + e d%”()‘\ 2 e dh(i:\‘ﬁ((\”s (60)
with
0 = 24yt Qg Jarsty T2 Qg g (61)
N o 3 S SN I , (62)
Z(C = 2 Vl&q + abq /(I-‘ s ) s l’\(’ It S~ ag(’l \“GL’]
and
(63)

-

o

uu" L2 S Aoy S Qg [ (i Sy \“b (Qqq + HLeg YArq

where we have noted that '#a'(?w and 7¢ {51) are real. In the FH limit oﬁe
finds using Eq. (36)

5 . . . L L - ‘.».IA‘x ;o - A\ ‘__(_:'1 )i.“ ::I) ,); ‘
W) = :n{&(&*?ﬂ(HS V325 - (ASIATX) XQ) (=001

[

(e
- u;¢:»e?a(x—@s><wsf>~sza-tqwa—x>+st30ﬁ3§”§>ﬂ%.

ity
N

In the Harrison limit,von'the other hand, one is 1ea from Eq. (43) to the results

EIEE [(msdd T Ao =gy
- ((—' ,’ . ) ‘ N ' ‘
s i y i ‘ 0 24y
L o Teg ey,
) - , , S QUAL 5

b3
I

(€

.‘ch.“"31a e = Gic‘yj)/a“igﬂ*‘(f i   : Eﬁ? (66)
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For X' 0  in Eq. (64) or D)‘P = v and A = | in Egs. (65) and (66),
. 2 - .
H(\" B l(r.‘ = NHao - (i) , 85 one might expect.
We tenatively define a polarity associated wilh Lhe clectron density

as

. K g b
“? =+ (ul-uwl Y-t Hm (67)

From Eq. (65) one clearly has o(;\{ = clr in the Harrison limit, so that Eq. (67)
is consistent with the HC concept of polarity. In the limit of no overlap,
both =0 and %(F)%(F}annd this definition is relatively unambiguous.

In the case of large overlap, on the othe:;; hand, the definition of D(}; seems
less compelling. Ultimately. an arbitrariness arises from the innumerable

ways one can divide up the electron density in a periodic solid. Nevertheless,
there néed be no additional uncertainty in any calculation, so long as 0(;?
enters solely as a definition.

The concept of polarity is also intimately connected with the polarization

of the bond P'o . Using Eq. (47) withM=¢ in Eq. (45), one has in the general
case ‘ ‘
Fo-zpod, | (68)
where
. - 2 2 2
.?Z,, = Ylol[: + é ( bc” (#a\(’l’(a FU) T 2 g(q ?/lc(a . (69) ’

The quantity ZPQ is the effective charge associated with the dipole P, . It
would follow, therefore, that EF is also a reasonable measure of polarity.
However, this definition has the disadvantage of depending on the additional

parameters Y fa, §, and ::((\; ‘In HC the quentities &.- gckandgmare set to

e
o
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zero and Y is fitted to experiment through the dielectric constant Eq. (57).
The fitted Y thus adsorbs local-electric-field corrections to € as well as
corrections to the bond-orbital model itself. Consequently, it is not appro-
priate to use their Y in any definition of polarity. On the other hand, one
may calculateify directly and compare it to gl} ,and.we do this in Sec. III.

We finally point out that one may, as we did in Paper I, define a polarity
for each of the states M) by an obvious generalization of Egs. (59)-(67). It
readily follows from Egs. (35) and (L42) thatoi;1= D for all three singlet states
in the FH limit and thet ol, = 0 and olp= - rx’;‘ in the Harrison limit. These
results are in agreement with those obtained in Paper I.

- 3. Indirect Nuclear Interactions

To'obtain~generalized expressions for ré and [;d » We again consider the
magnetic interaction between an electron with spin }-haz and a nucleus with
spin f . In‘analogy with Paper I, this interaction couples only singlet and

triplet states and to second—ordér gives rise to an energy shift out of the ground

state of
pE == 3T LGyl g > (10)
k- By woanm |
where
— = —a
| < e _ - 1)
Up (1 13) = 2 2 Lo Award s olry | i
A RN (Y. WY ‘

and

=7
+

Ea
L™
w0

- >

{

B

s

| ST ¢

(712)
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In Eq. (72) Mg is the Bohr magneton, Y, 1s the gyromagnetic ratio and [ is

the electron coordinate measured relative to the nucleus i . The triplet states,
. " RSN . -

as given by Eg. (1), have the form iA(r.,'z\ ,end the sum over M| in Eg. (70)

can be immediabely accomplished by using the sum rule

' f
- - (Filoe
' , < . N e LS = 3)
Z:— \ZA‘G\(L))E'P1/</—’V‘lU({)I/-*A/' (l} _H (7
t1= 1,0, 08
- 23 -
Then using Bas. (2) and (31) and noting that $,(7\72) is antisymmetric in I

-
and |, , one may express &4 in terms of the expansion coefficients a;.;' :

- L s -y
o ...!_ 5 ~ N ’\ [N '\. -
AR = E R 9, €, I Qe iy - Ly (Th)
0 1. .
IR S PR
where )y - V' and o, - -I and we have set

, v"h . , L , . - ” . | (75)
N A L R A N 2 E VAR
P, = ‘ (\'\,J,Q, -Ng )
(76)
b, R TR P T S O ANt TR )
and
E,' - e (17)
’ F'} : l'.—c,l "

Equstion (TL4) is a generalization of Eq. (62) of Paper I. In addition to 3,

. &
four new overlap matrix elements have appeared in AE , namely, ( (j)‘\] A[\lcj)Qj;
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[ it y :‘9‘;
Chihc| Y s d Al Y, ana S@ AL d,> . It is not hard to show that all

matrix elements of ;’\ », have the form

| VoA r L “l .-z L N \' { ‘ 3 " a . (78)
<i ,Ah by o M i, an,gh P &“n” 1 ) b)).,, T ; yi,n, nos A, C
with
’ A A -
& :
T =3 r?‘c \'a< - ﬂ.) (79)

and where we have defined

» . “p (80
45 = |6 < ‘bnl‘ & (1) | P> )

na'

t)

and

I

b? n
n n//

i
Wiy
s
;‘5—
o~
Jw
He
ol
{

. (81) .

In Eq. (79) fac 1s & unit vector directed from the anion to the cation and in
-5 .
Eqs. (80) and (81) the electron coordinates 1} are to be measured from the

center n’ . Also, the right-hand side of Eq. (81) is written, for the Z axis in

!
n

send P, in terms of

~
the direction of I, . More explicit expressions for ,g -

o
the 5 and p components of the 953 hybrids are given in Sec. III and the
Appendix. As expected, the non-overlsp .ferms é " and 6’“ imme‘diately reducé
to Egs. (64) and (65) o‘f‘ Papér 1.6 Furthermore, the tensor Q,\ clearly has the
samve‘ form as Eq. (78) with ,8,. replaced by 4&

by gn by (! (82)
zi,\ = n {:( f‘f‘ Sl}b—i'\.,ga:\ N (]~ < —L{ \) 1:3 3

(e J

Bm,/(f— ¢y
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’

and ¥ . replaced by

L]

(83)

[

N : . by ‘ : bl
0)\ ")n ! (1 }b, ) V“ ("\ ! ) 0) S ng J /("

N N
a Lard PN

. - i € &
Writing out Nj*Ry in terms of 4, and J°, and noting that T M =;[+T ,

we arrive at the final results

oo -

) ‘ = - '
b om -y “'____ @,\ 9’,' IY\ ‘L ﬂe

!
v, h =i

r,hn’a" —f”’ o (84)

where

”\, | 1‘ Kh )n I Jb gy\é 'A'T 5” D) j /E : (85)

and

» 2, . i g + L F >/E (86)
r1f"\/( /uﬁ ’t‘ 3:\ ‘a\h' [ |9 (gn ?)l' ’N" &9” ) e " j :

Equations (84)-(86) have the same analytic structure as the corresponding results
obtained in Paper I, with all effects of two-electron correlation and overlap
‘being absorbed into the quantities ‘3“ . }?“ and [, . Again we identify }'1 = f”'“

e
it e - : . . .

and ”'a\ = {N as the nuclear exchange and pseudodipolar coefficients, respectlvely.

We normally expect S“and ¥, and consequently [, ena I—Ed to be positive

quantities, as is observed experimentally, provided

(87)

M
v

b’/b; ’

L
N

- OR G lN
OF Poo};u' Py,
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and

’
¥

&0 A 2 A

0)\1\ v b;n 7/ me
for n'/n . The lower limit in Eq. (87) is exact for homopolar solids,
where Qgy =g We find Eqs. (87) and (88) obeyed for all group-IV and III-V
,bim‘a,ry compounds.

In the FH limit, Egs. (82) and (83) simplify to

4, = o, [éi“ R

(89)
3 o -
G)'n':’ l- aa ]/(IS) .
The coupling constant E can be shown to be in this case
E ! ﬁk 1. < (90')
° 4‘\72 ? ) ’ ) : ‘ o ;
where

T - w(m X-as) (-5 Y QU [A-s@-0] [22- XOtE) o)
9 . : ) 5
+Q(|—5‘H§ )

which reduces to Eq. (72) of Paper I in the limit $=Z=D Also, ?7' for 7 »o

and/or X 70 » and“f:\; for X:Z::o . If V andV are related by

Eq. (54), then the HC value of E;' is enhanced by the factor

I - ,\A”“f/ v, = [rzex(rasde U]y f0-2y 02

‘whlch unlike ,B is a ﬁmctlon of § and _7:’ as well as X . In Fig. 1 we have

/

plotted ? Vs X for 7= o and several values ofS - Clearly, ;5 is a sensitive
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function in the region of physical interest: S ~ 0. b s X'\ff(\ . This
sensitivity results primarily from the energy denominator in Eq (77,
which can vanish for sufficiently large X .

In the Harrison limit

: -~ o Ve e gD
W noy (L s s (el )] 40 - LOmsR e s L)

(44

e

) 2 (93)
- Z(D(Ff’}o(c\)r&c\¢ % /('-g ) )

with a similar expression for 62‘ , and

(94)

=+ V;'/(Vj TTAEC

<

Equation (94) agrees with Eq. (73) of Paper I, but note that for gf( = Agu ",&3\\ 4‘“ -0
o : “ R Bea

. t )
and 4 #C . We do not recover our previous formulas for [,"" and "‘Pd"" .
Contrary to our original expectations, all terms involving § cannot simply be

absorbed into V. and '\/"3 . Both r’eh "., and PI’;M’ are multiplied instead
by a factor of [,)_Sa(cz"/&‘)l/( “51)]/(”S:)in this limit.
| 4. Cohesive Energy‘
To obtgin the cohesive energy, one needs both the binding energy of the
»(two) bond electroﬁ§ in an arbxi’on-cation pair and ﬁhe binding energy of the (eight)

valence elecﬁroné in ‘separatéd atoms. The latter can be written as

St ) ' N HE _HE i
4 " 2 . - )
S’\ :)_ ( Esi‘ ,.-’j E(;‘:f ) + ( 2 + A -f) ) EP“ + (2— -'}\ Z ) t}vg‘ 1:\2... {1‘ }“u 95)
aleme I8 { N | : : |
; HF HE HF¥ o
2 &Sq ot Egc -+ 5 EF“ o e Ad L )

.

&

vwhere A 2= D‘ for group IV, =] for IIIQV, = 2  for II-VI and = 3 for
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':I e ‘l' . 3 . I3
I-VIT elements. Also in Eq. (95) royand s oare defined s the binding enerpies
of Lhe v oand ¢ ootecleons of alom B . We use Lhe nuperteripl B hore bheeanne

1 11}
in practice 1L i convenicont Lo take & and :'t,,,\ Lo boe Hartree-lock 1'ree~

h
atom eigenvalues, although in principle this need not be assumed. The corres-—
ponding binding energy of two bond electrons is just our ground-state energy 1':.;:,

plus the electrostatic energy of the compensating nuclei:

T R R A A 6
E = Lé‘z T C,/d - ga R -t G ) (96)
bone
where we have defined the hybrid energies
, oY i : (97)
. HY } - N N
RIS R T TS ) |
and the electrostatic overlap energy
By = —K+e Tas+ nEe (98)
with
¢ . i N, c (99)
NnE, = Oy T &y ) N L S

Both Ha:rrison:L and HC discarded E&C in their treatments of the cohesive energy.
However, for the case of large overlap this is not Justified, since we expect A€,
to be small and negatlve a.nd K to be s:.gnlflcantly larger than /A

Using Eqs. (95) and (96), the cohesive energy (per atom pair) is just
- - (100)
Eai = Eaton = #E0w

o —~ 4 EZ s 2 , Elo/u, -

Llunu ' )7 ) P
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where E, .« is the promotion energy defincd by Hm‘risonl
I

CRECIRANACERE AT Che
| ) (1ot)
‘J!() '
( AV AR A )
with
, o ’ i nE N ;
h\f] " = '/Lf: \ EP)\ - é.e: " ) 3 3} : a, (_ N (102)
and ['lrmw is the transfer energy
X i . HF e (103)
N7 < r. o ) . T ,

* lena

Both Harrison® and HC took the transfer energy to be 2424 V, . From Egs. (19),

(27) and (99), hovever, bﬁé can see that this is only formall& velid here if

Up = U, s 2Ea= ~2£ and §$= ¢ . In the FH limit with E, = =0 and
P“,g\f ,onehas'

e P 20V, SVt V-4 be-g gt ‘
E(of\ = 4| (4’\/ + \f-" ) , ) ! éj , & » \/; ) (104

 In the Harrison limit, on the other hand, one obtains

Eop = 4[3(\;;‘ + Vs )/“ - 27 ‘v‘e T=dbg(- EF’"‘* Etens (105)

I’[L
For Eu(-‘ cend Fy .= 24 Z V?) R th1s result agrees with BEq. (34) of HC.
L RACE O 1

G‘mfﬂ*
‘%Y e UAL"
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Physically, we may interpret the various contributions to [, as
follows.  The promobion energy is the encrgy required to promote ench valence
electran form s atombe S or foorbibad Looan 1:5 hybrld orbltuetl, "The
erunsiEr enérgy is Lhe encrgy required to Lransfer a2 electlrons from Lhe
anion to the cation at infinite separation, so that the fourrhybrid orbitals
on each atom c’ontain one electron. The atoms are then brought together and
bond orbitals are formed from the overlapping hybrids. Occupation of the bond
orbitals returns an energy-—(E; +Eg) per bond. Equation (100) thus correctly
includes all intrabond éontributions;to the cohesive energy. To be sure, there
are neglected ig&gzpohd'contributions, as there are to all properties one cal-
culates with the bon&-orbital model, but we certainly expect these to be of
lesser importance. TIn HC ithe possible importance of u van der Waasls inter-
action between the bonds was argued, but this was introduced in an ad hoc
fashion to explaihﬁtheir calculated negative values of Ecpk . In contrast,
our calculations suggest that there is no’fundamental difficulty in under-
stgnding the cohesive energy ofvtetrahedrallbionded solids in terms of Eg.

(100) alone, although the precise results one obtains are sbmewhat sensitive

to the details of the calculation.

Yoz QU&L

ORy

op 45@’45 Pagy,
| s
LTy



ITI. QUANTITATIVE APPLICATIONS

A. Parameters of the Two-electron Model

We now consider a detailed application of the formalism described above

to real semiconductors. Owur analysis ’will be considerably more complete than
that given in Paper I, as we seek to understand quantitatively both the rélative
importance of the various parameters which enter the two-electron theory and
the effect of overlap and correlation on tﬁe predictions of the one-electi'on
theory. We must first‘ establish a procedure f’cyr-evaluating-the basic para-
meters of the two-electron model. We are guided here both by the ex'peﬁe‘nce
of HC and the fundamental limitations of a bond-orbital approacb. One must re-
cognize the approximate nature of any bond-brbital theory, so that the difficult
task of a complete first-prinéiples analysis is not really warranted. On the
other hand, one can reasonably expect the theory to produce correct orders of
magnitude and significant trends for a wide range of physical properties. Thus
it seems desirable to fit.only eriough para.meters to provide a proper scaling
to éxperimenb. |

. Of the varioué parameters which enter our two-electrbn model, one may
sepa.raté out those which depend self-consistently on the full Hamiltoniém of
the crystal, and consequently are difficﬁit to calculate accurately, and those
which depend only on the specification of the hybrid wave functions. In fhé
former category are the quantities Yz, A-E'o\ and A&, . Botﬁ Vipand 4a&, + & {:4,

enter the covalent energy \/, , while the polar energy V; depends upon the

-32-
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difference af&, - & Eq . Following HC, we fit V, to the principal optical-
absorption pesk L. for each of the group IV elements. From Eq. (5L4) with Vo e

w4
7')/2

L , 1< W T .. "“‘-, ‘o S_, K 2 ~ g 7 .
V. =% TL® v, -V (e Y/ ) J Va ¥ 3 (106)

which is easily evaluated once { and \"4 are specified. It is then assumed that
\/, is constant for an isoelectronic segquence (e.g., Ge, GahAs, etc.) and that
values for skew compounds are given by the appropriaste geometric means ’of the
grbup-IV values. The quantity V3 was fitted by HC to the experihental di-
electric constant of each binary compound through Eq. (57). This is less
convenient in the present case because V3 enters ‘our theory through the rather

complicated cubic equation (24). We have chosen ins*tead to meke the assumption
Af, ~afa =0 | N (107)

and then to calculate V3 as

Vo= (e e - (Uas U ] (-sm)E (208)

Since |48, /€, | is small, one may reasonable expect Eq. (108) té be a good
 approximation. Fern Eq (18) it is clear that the term ‘Ji (Ua~ Ue) will reduce
the mégr11tude of VZ , So that normally V:,.’< :'5 ( EC“—- E:F) , as wés found
empiricé.lly by HC. Interestingly, the two exceptions to Eq. (18), namely BP

and PAs , are the cbrﬁpounds for which HC inferred,r’legatbive values of WAHCi‘rom

their fitting procedure. From Teble I it can be seen that tﬁe qué.ntity 2o c;”~ EQHF)

does become much smaller for BP and BAs than for the rest of the III-V compounds.
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However, this effect is offset by the change in sign of the term ; (W W),
so Lhal normel posiLlve values of Vi resull trom kg, (108),

The remaining parameters \, , VYV, and \/6 are {unctions of the one-~
center integrals ||, and the two—center integrals $ , A, H, and T
A1l of these integrals depend only on the hybrid wavefunctions ‘P,L(F) s 80
that we also choose to calculate these quantities directly. 1In the spirit of
the bond-~orbital model, we construct our hybrids from the appropriate Hartree-
Fock free-atom ¢ and . wavefunctions. We shall not entertain the very diffi-
cult question of exactiy which atomic orbitals constitute an optimum basis set,
bﬁt rathgr wve treat our choice as an additional assumption to be tested. Choosing

A Ry .
Tae - X, one can write

i

> Zn
W (P g [ Ra () + 360 Rpw (5 2 ] (120)

where —V:n is the electron coordinate measured relative to the center 7 and
Ren (1) and Krm(n, )» are assumed to be positive as I, = ® , Free-atom
Hartree-Fock $ | and ? rgdial anEfuncti’ons, T Ren () and I RP'””;‘) s
as well as the corre.s'pvonding term values EgF and E;,'F , have been calculé.ted
and tabulated by Ma.nhT for the entire Periodic Table. The use of such atomic |
'vtables is conyenient, but it'd’oes‘ restrict one to consideration of compowids
formed oﬁt of -group IIi, IV and V elements, since the p  states of elementsr in
groups I and II are unoccupied and are hot usua.lly calculated. The details of
evaluating U,, S » K , H,, and J 1in terms of the hybrids defined by

Eq. (110) are discussed in the Appendix. Briefly, [l, can be written as a sum
of thé F and G integrals defined and calculated by MannT, as shown 1n Bg. (T7)

of Paper I. As a test of our numerical procedures; we have also evaluated these

OES T eIy

S

-vm-ﬂ"__ﬂ [‘YL ?A—“E })



FF' and G integrals directly from Mann's wavefunctions. Our calculated values
of W, are listed in Ta:ble I and are to be compared with those given in Table

I of Paper I, which were inferred from Mann's tebles. The agreement is better
than 0.1%. The two-center integrals S and H, , on the other hand, are most
easily calculated by expanding the §Ef = hybrid from one site in terms of
spherical harmonics centered on the second site.  Similarly K can be evaluated
by expanding the Cc;)ulomb potential arising from one hybrid electron density
about the second site. In both cases, this procedure leads to a finite series
~of one-dimensional integrals. This same type of expansion method applied to the
exchange integralk J , however, leads to an infinite series of terms, which must
be truncated. Tests of our procedures in the case of hydrogenlg orbitals, where
exact results are known8, suggest that we calculate § , H, and K +to an
accuracy of better than 1%, but that we may underestimate T by a few percent.
| Values of § , K and Vy that we have computed for the twenty gfoup—IV
elemehts and group-IV and ITI-V binary compounds are listed in Table II, to-
gether with values of V/, obtained from Eq. (106) 'énd V, obtained from Eq. (108).
The -two-center Coulomb‘ integral K dedfeases with increasing bohd length, as
expecfed. The overlap integral S , on the other hand, tends to be constant,
although A1N, GaN é.nd InN have somewhaﬁ smaller values than the rest. For the
solids listed in TableblI, one hg.s approximately K ~ (1+§) el/d ~ b Bz/at .
- The constahcy of - § and the simple dependence of K ony;bond length give V‘+ its
e)@ected.‘ cdvalent behavior. ,'I‘he large magnitude of 'S , however, alters the
relationship of V, and Vzvf’cb anticipated in‘ Paper Iv. For S =0 Eq. (106)
2

demands"tha"c‘ ‘ '\7;4 '\/2Hc , but in our case (S é‘ and we: calculate

He o ' , . : '
Ve >V, . TFor the group-IV elements X = 2 Vu/Ve = 077  for C .

= 1.8 for §i, = LI0  for Ge, and = /.13  for Sn.
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As mentioned in Sec. II,. our calculated values of \/’;_ and V, always turn
out. to be small in comparison with V., and \]4 y respeciively. Specifically,
we Tind

o1l > Vg 2z -0.02¢V (111)

| Vs / V3] < 0075

and

[Vi/ V| < 0l

for all twenty solids considered here. In view of the large overlap of the §p3

hybrids, the uniform smallness of V. and V; is indeed remarkable, and we have

found no simple explanation for these results. The magnitudes of Vs and Ve

are actually comparable to the numerical uncertainty in these quentities. Far

the sake of conceptual simplicity we shall set Vy = \, =0 1in our subsequent

analysis. Note that with \, fit to experiment and V¢ and V; set to zero,

values for the integrals H,L and J are no longer required. e
Having established values for the basic parameters of our two-electron model,

we may quantitatively solve the cubic equation (24) for kthe singlet-state eigen-

values. We have done this and the values of E:‘ , defined by Eq. (23), are given o

in Table IIT, together with the triplet-state eigenvalues

ES =25V, - 28%V,/ (-52) - o (113)

for the'twenty solids under consideration. The corresponding eigenstate expan-
sion coefficients A,y , gy and Ayy , as calculated from Egs. (32)-(34), are

listed in Table IV. Also, in Teble III we compare our theoretical values for



the principal optical-sbsorption peak [, = Eth - ECr with both the HC pre-

25

: + 1 \2
dictions, E;C = ZE(VZHC) + (V3} ) ] , and the experimental E}Aand F

A

sub-peaks as given by Phillips.9 Because Ez for the group-IV elements rep-'
resents a fitting parameter, only the results for the binary compounds offer
~a test of the theory. Both our Ez and EZHC for these latter materials sagree
with the available experimental data to within 12%. Our Ez tend to agree
best with EZB and ESL with ERA » but the differences do not appear to be
| significant. It is lmportant to stress, however, that our EZ , in contrast

H . . . .
to E ZC' » ilnclude no direct experimental data for the binary compounds.
B. Computed Properties

With the information given in Tables I-IV, we may systematically study the
physical properties discussed in Sec. II. We begin with the dielectric constant,
for which we need the additional quantities Y, EA, S_c, end Sm . All of these
. parameters are readily calculable from the hybrid wavefunctions (110) and the
values we have obtained are given in Table V. For the group-IV elements, the
dielectric constnat is .given directly in terms of Y , VzHC and P/ bf Egs.

(51) and (55). From Table II we calculate F’: .23 for ¢ ,= 1,35 for S}

= 1.3 for Ge , and = /.37 for Sp . For the binary compounds, the coupling
(o)

metrix elements £ G| Ug | M) must be computed from Eq. (47). As remarked in

Sec. II, the term v[{_GluglMNz/( E'c.f" Eg ) doininates the sum in Eq. (L6)

fbr' ;the‘_susceptibi‘iity Y . We find
| CEg- Eg )/ (Eq- E) LGN T Y /<aIULI TS| < 0.0 (114)

in all cases. Finally, we scale our calculated values of X/ for the group-IV

elements in the manne'r of HC. Specifically, we replace T in Eq. (51) by A X
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and determine a A, for each row of the Periodic Table by fitting ¢ to experi-
ment. We cbtain A, = 2.02 for C ,=2.22 for &, , = .Q_SL for (;e , and . 4 ¢
for Sw . For the binary compounds, we multiply our calculated X, by A, Ao
where )‘a and )\c are the appropriate values of X,‘, for the anion and catiou
rows. Again as in the optical-absorption calculation and in contrast to HC, we
do not use any direct experimental data for the binary compounds in determining
the dielectric constaht for these materials. In Fig. 2 we have plotted ow the:r:-
retical dielectric constants versus the best available experimental Values10 for
the twenty materials under consideration here. The agreement with experiment
is within 12% for the binary compounds and, together with our results for El s
lends strong support to our method of determining parameters.

We next consider the valence-electron density and the polarity of the bond.
We have made a full evaluation of the single-bond electron density, as given by
Eq. (60), in the cases of &¢ and GaAs . These results are plotted in Figs.
and 4, respectively. There is a broad peak in the electron density at the center
of the bond in (e and a somewhat sharper pesk near the Ac  site in Ga Ac
In both cases the bond is elongated perpendicular to the bomd axis. The remaining
peaks and valleys in the core regions result from the oscillations in the
and p atomic wavefunctions due to their orthogonality to the inner core states.
We have also repeated these calculations in the Harrison limit using Egs. (65)
and (66) with Q‘c? o(:i‘; and O(F = o(?;c‘ , the HC values of the covalency and
fhe polarity. Interestingly, the resultsk obtained are very close to those of
the full calculations; in the bonding region the differences in both cases are

¢ Ae

on the order of 1%. This is consistent with the fact that i«re calculate c/.; i -,»fi R

for GaAs as well as Ge (see Table V) and suggests that the electron-

N D

)



density coefficients W, , WU, and Wac are determined primarily by the po-
larity. As can be seen from Eqs. (65) and (66), the latter is exactly true in
the Harrison limit.

To obtain the total electron density in the crystal, one must superimpose
the individual single-bond densities. We have done this along a bond axis in
both &e and GaAs and the results are plotted in Figs. 5 and 6. The density
near the center of therbond is increased only slightly by the overlap, but there
is a significant increase in electron density in the back-bonding regions. For

~comparison we have eieo plotted in Figs. 5 and 6 the corresponding results of
Walter and Cohenll obtained via the local-empirical-pseudopotential method.lg
Their calculated densities are qualitatively similar to ours in the bonding and
back~bonding regions, although clearly they find a higher electron density in
the center of the bond than we do. |

An accurate eXperimental determination of the valence-electron density has
been made in the case of Si , although not in either Ge and GaAs . It has
been pointed outlh that the Walter and Cohen calculation for Si yields the
magnitude of the central peak to within 7% of experiment. In view of Fig. 5,
it is of interest to consider what modifications in our §t3 hybrids are required

to in increase j’(F5 in the center of the bond. From Egs. (60), (65), (66)
and (110), the electron density at the midpoint of the bond in a group-IV element

is to a good approximation

PU2) = g [ Re(d2)+ 3R (d2) 17/ (1s) . (115)

Free-atom wavefunctions lead to a value of 0.063 a.u. for f’(d/z ) in <y, as
compared with the value.of 0.102 a.u. found experim.ental];y.l3 However, by

smoothly contracting the tails of R (T) and RP(r) beyond . = 4%2; one can

P



%0

easily increase f (d/z) to the required height:L5

s 85 we have verified in a
computer experiment. It seems clear, therefore, that valuable information
about ihe shape of the hybrids can be extracted from an accuratle knowledp
of the electron density in the bonding region. This matter will be pursued
elsewhere.

Our defined polarity «)(g has been evaluated for each of the sixteen
binary compounds considerec‘i here and these results, together with the carre-
sponding values Qf o[?c , are given in Table V. TFor the non-nitrate At , Ga
and In compounds, we find 0(?; approximately constant (0.51 to 0.56), which
is roughly in accord withb o[;ic (0.44 to 0.54). For the corresponding nitride

. G HC —
compounds, however, we consistently calculate o(F ~ Ji O<l’ . In addition,
¢ He n ¢ He '
we find 04? < °(r for S/C and BN eand O(PT > o(Pb for BP and BAs .

These trends can be qualitatively understood in terms of our computed valueé

of V; and Vj . Generally speaking, o(? increases with increesing V, and
decreases with increasing \,T‘+ . We calcuia.te_ Vi < VBHC | and Va < Vy , and
consequently relatively small values of o(;’; , for S;C and all of the nitride
compounds .. For the remaining compounds, on the other hand, we obtain 'VS > \/’3 e
with V, ¥ V3 for E," and BAs and V3 < V4 for the others.

For comparison with 04? and o(;,m , We have also listed in Table V owr
calculated values of ZF , as defined by Eq. (69). Generally, tﬁere does not
seem to be a simplé correlation between Zp and either O([Gf‘ ar o(;lc . We find
’ZP = D(IST for $¢ and the nitrides, but 2,, < O(;T for the "rést. Interestingly,
however, there is a qualitative correlstion between (SCQ 5a) and O(PHC. In

particular, the trend of decreasing o(: with increasing mean atomic¢ number in

the B, A¢ , Ga, ~and In series (except for AvSh ) are all reflected in

' ORIGINAL PAGE IS
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(b~ da) . In this regard, note that <8c.' §a) measures the relative spatial
extent of the cation and anion hybrids, while O(f? measures the relative weighting
of these hybrids in the electron density. |

Let us now move on to consider the nuclear exchange and pseudodipolar

coefficients. To evaluate Eqs. (85) and (86) for [ and f}:d , one needs values

n'

- Equation (80) for ,X:“,, is easily

for the matrix element 8,,,,1" and

evaluated in terms of the hybrids defined by Eq. (110):

[. RS""O)JZ Nl n!
n' N : . . » » . . . 116
Jnn" - Rsn(®) [ Renrid) + 3 Rpn “'“J nan' Ao . ( _ )
[Rsn(hf?’r{f’n(‘“]z n=n'kn'

For free-atom wave:t‘unctions Rsple) >> [ Rey (d) +3 an(*)J and consequently

A" >> )" > A’ . Specifically, we find
nn’ nn

ny

wt Ly 1< 000
] ‘gnn / /tgnn < O‘OI

(117)

in all cases. The 81tuatlon for b) -, 1s slightly more complicated. Only @»:
has a simple formula in terms of the hybrids:

hn

N s oo‘ Ei__l: : | , (118)
&) = SD Rr“ (T) ~ 7

To evaluate the overlap terms one must use the wavefunction-expansion techniques
M i <
discussed in the Appendix. Specific formulas for IPM; and lﬁ":‘ are given -there.

Quantitatively, we find



ho

| fune [ B | <027
(119)

| ) RN < oay »

although the upper limits are only approached in the case of BN . Typically
the ratios are much smaller. For completeness we have included all four over-

nt n

¥ J
lap terms, ,3””, s gw R Eﬁn, and bom: , in calculating [, and f;,d .
Values of ["c and f;,d have been determined both in the Harrison limit,
using Vzmand V;‘c to evaluate Eqs. (93) and (94), and with the full theory,
using the data listed in Tables IIT and IV to evaluate b, , b, and E, . These
results are presented in Table VI tbgether with the best availé.ble experimental
data. Note that the values of Ve and ﬂ»d in the Harrison 1imit are larger
(except for I,N ) than the corresponding ones given in Table II of Paper I.
Thié is due primarily to the appearance of the overlap matrix element S in
Eq. (93), as was discussed in Sec. II. Also, as expected from Fig. 1, the effect
of two-electron correlation is to enhance [ and Frd in all cases. The magnitude
of the enh.ancement, however, shows rather complicated trends depending both .on
bond length and polarity. In the group-IV elements, ’g'* 204for C 5 = 330 for <)
and Ge¢o, and = 353 for Sn .

We have not iﬁcluded any edditional scaling factors in the theoretical numbers
listed in Table VI. g This does not appear to be important in the case of {';)d,
but clearly we overestimate the magnitudes of [, , although the trends are correct.
We have made an ap’pro_ximate least-squares fit to the six non-;zerO‘ experimental

values of [, using a functional form

AMHA:: PQ (120)
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where A 1 and f\c are constants which depend only on row number in the

Periddic Table and the /e are the full-theory values given in Table VI. We

have thereby determined scaling factors /\.‘ appropriate to each row: /%, - i
far the §; row, » %57 for the ¢ vrow and -~ N+Y for the Sn row. As with

the scaling factor A, in the dielectric constant, A w increases with increasing
atomic number. Note, however, that Aw2 b while A, - .

In Paper I we noted the following relationship between the dielectrice
constant and the nuclear exchange coefficient in the Harrison limit (without
overlap):

£-1 = el /d), (121)

where ¢ is independeﬁt of V, and V, and depends only on intra-atomic para-
meters. [See the discussion pertaining to Eq. F(Th) of Paper I.] This motivated
us to plot experimental values of (G -1} against the known experimental values
of Ie /1y 14 - f’e/(ﬁl vohid) , and we found & rather striking linear
relationship in the ’series InpP I;\Aﬁ and 1 ,1S}> . Since that time, experi-
mental determinations Qf Fe and (’Pd forGaP s as well as new measurements on
Ga As: , have been made by Cueman and Soestl6, allowing them to make a similar
plot for the Ga series. They have found a good linear relationship fbr that
’seriesfoo; both sets’ of experimental data are shown in Fig. 7. We are now in
a position to make a meaningful theoret’ical plot of (6-1) vs. ’ . /f;u od47

Using our calculated v:;lues of € from Fig. 3 and our full-theory values of T‘Q
from Table VI, we have done this in Fig. 8§ for all the III-V compounds. Ap-
proximate linear trends can be seen in the T, and&a series, as well as the

AQ series', for the heaviest three compounds. To examine the origin of this
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behavior, we repeated the procedure in the Harrison limit. In this case, the
linear behavior was improved slightly in the [ series, worsened sliphtly in the
G« series, and was destroyed in tlhe Ay peries. Keeping only the mosl dominant

terms in  {" , and b",. , one has in the llarrison limit

(122)

) e ronfE(rey =87y
# X Xe C f - }r J )

25T L S TEETEY

Yo . : '
where by construction (Matc /(3') 2 Y' is the HC fitted value of {§ . Now for
v ) He Hc¢
the heavier Ga and lm compounds (5' D S °<f’ and 0((. are rather

constant, This implies that for a given cation series
;\ aa - onstanl

Evaluation of Eq. (123) gives 0.0155 for Sh , 0.0163 for As , and 0.0311 for F .
The higher value for‘ P is cénsistent with Fig. 8, where the points for As P
Ga P anaJdnPall e 'above the straight line defined by the corresponding Asand
<b Qounds . |

A comparison of Table II of Paper I and Table VI shows that our f‘ull treat-
ment of overlap and two-electron correla.tion has had only a modest impact on the
importent ratio r’,;d /Fe . Moreover, in no case has that ratio been increased
significa.ntly, which, as pointéd out in Paper I, is necessary to simultaneously
reconcile Pyd and |), with experiment. It now seems clear that ”‘d /IL is dominated
by the ratio ﬁ /Jm » which in turn is a direct property of the S and p
wavefunctions which make up the hybrid. Interestingly, we have found in the case
of Si that the latter ratio can be incressed if the tails of ‘the freé—atom wave=

functions are contracted in the manner necessary to account for the electron
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density in the center of the bond. This matter bears further investigation in
the case of binary compounds.
As our final application, we turn to the cohesive energy. IFor the group

IV elements, it is instructive to rewrite Eq. (104) as

Ee, = 809D V' - 4 Fe 4 Eg - Epro (124)

where ~4 Ecnris the explicit contribution of two-electron correlation to the
cohesive energy. Using Eq. (106) and comparing Egs. (104) and (124), one has
(with Vi =0 )

E 2 (=283 ) Vi /(rs®) - 28 (V" - Ve) L (125)

I

Corv
As des’ired, Ecoy ,-‘ =0 for V4 =0 . Unfortunately, a complete evaluation
of Eq. ‘ (124) requires the uncertain quantity A&, + A E(_ . Because an accurate
evaluation of 4 E“-is‘ quite difficult, we calculate only ’the remaining terms.

Specifically, we replace E&C in Eq. (124) with
CEgq = -K+ €4 (126)

‘and use our calculated values of v,", V., , V,} ,» S and K to eva‘luatek Ecip
ban‘c'i, its comgbnen*bs(.v ‘I‘he’results are listed in Table VII together with the
experimental values of the cohesive energy . Note that our calculated’ Ecl is

less than expe’rix;xen;t but positive in each case. This ris consistent fri’ch small
negative valués.’ of af,_ , as we expect theoretically. Also note that ~—4#4 E:C ‘
. makes a large positive contribution a.ndf‘*'! E{",(;ix :f’:u‘ka,lkler, but non‘--négligible, N

- negative contributi_c»n to Egb - Wer‘kmay 'con‘brasﬁ ‘tnis--wifﬁ ‘the calculation of Ecal\; ;
inﬁde by HC. They, of course, neglected both E ¢ and Ecprr :Quarntit‘atively, N
these omissions were partly compensated for by théir use of ’sxynaller valuéé of &
‘(a constant value of 0.5) and & scaling factor of 0.8 multiplying Efrn' Their
prescription gives a rathei’ fortui tous value‘ of EO-L‘ u.IeVi‘or ¢, but negahivc: b

values of - 2,72 for &} ,v-?#."‘f' fer Ge , and- 20} for Sn .
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We have determined empirical values of 4 En for each group-1IV element by

fitting to the experimental cohesive energy:

. . axpl -
Ae s (Eeb = Eer ) /8. | (121)

As can be seen from Table VII, the magnitudes of the A&f,:tare re;si‘gnable. The
irregular variation from element to element is questionable and’ri:«v: V(ioubt partly
reflects the fact that our theoretical model is best for a large-band-gap
material like C . In any case, we have used Eq. (107) to extend the calculation
of E¢ph to the binary compounds. We have assumed that a £.+ A&, is a covalent
quantity and have used the appropriate arithemetic mean of the group-IV values
for each compound together with a direct calculation of the remaining terms in
Eq. (100). The results are plotted against the known experimental cohesive |
energies in Fig. 9. _'T‘he comparison is not as favorable as with E, andg € ,

but positive values are found in all cases except I,N .



IV. CONCLUSIONS

We have presented here the full formal theory of the two-electron bond-
orbital model, extended its application, and extensively compared and contrasted
it kwith Harrison's one-electron bond-orbital model. Both the analytic formulas
given in Sec. II and‘ the par smeters listed in Tables I-V can be used to treat
mariy additional physical properties., including those considered by Harrisbn
and co-workers with_ the one~electron model. Our work here has shown that two- .
electron correlation effects are significant in the dielectric constant, the

nuclear exchange and psewdodipolar coefficients, and the cohesive energy, but

perhaps not in the valence electron density, where the polarity and the shape

of 51_e hybrid wavefunctions are the dominant quantities. In €-] , P@

and FPA s, however, thé effect of correlation is essentially multiplicative
and is.b hidden to some extent if scaling factors, a  la HC, are used to achieve
quantitative agreement witﬁ éxperiment. Nevertheless, it is enéouraging that

we 'hav’e been successful here by actually fitting less parame.ters to experiment

that did HC. . An intefe‘sting and potentially important area for additional work

is in the optimization of the 3§ 25 hybrid wavefunctions and in the impact this

1A

has on calculated parameters such as V3> s Vu s gn‘ and (P‘ .
. s nhn AR

~h7-
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APPENDIX

We present here useful formulas for quantitatively evaluating the two-

~
dci s

electron integrals Il,, and K and the other two-center integrals s ,

'
n

n
P’m: and K“ discussed in Secs. II and ITI. Central to the evaluation of

U, and K is the standard expansion

‘ R LU VA B - (A1)
For AT } I SR ANCS I
M

where \f',;g,,‘(i?) is th¢ usual spherical harmonic and (¢ (.) is the lesser
(greater) of  and r'"'. . We choose the # axis to be in the bond direction
such that the cation is located a distance -+ ol% from the anion. Then only
the 71 =0 componeht_ of Eq. (A1) (as well as any other similar e#pansion)

will contribute to the integrals of interest, and one may work in terms of the

Legendre polynomials Py :

Yo (F) = 2L p (ese) (42)
4 -
In terms of the ‘FJL » the § E3 hybrid wavefunctions take the form
(A3)

¢, ’(F) = ;\}4:?7; [Rsr{(‘”) Pp(ose) + 30w Rpn (N A (C“g‘)] ,

~ho-



vhere P x)=| , Pix)y=X , and ©Oa . 1 and 9, = ~-| , as above.

Using Eqs. (Al) and (A3), the Coulamb potential arising from an s p°

electron density can be written

Scp,\( ------ — b (vdr

=3 [Zss(r)+ 9 ?,,P(ru +26, ZSP(M A <w59)+—— Zpp (1) Fzm«,s)J

where
2 i ‘ IR , .
2o (r) = § R () Lo R (P ey
21 0 r

k]

e , Y L2 ,
t S Rﬁln (r') "ri'ﬁ'ﬁ K’Q',‘(r )y cl[‘
r -

From Eqs. (A3) and (Al), one then has

u, J(%(F) v,\u—‘\cp,\(ﬁd?

i

i

+ [ F“J’”m) + 6 Fp t Mm +‘,_r o |

)

v . ,
where Fx‘i , and @ 1y 8re the integrals defined by Menn' :
© Z ()
R e __4.9._._____ / 2
]:-U' S Rﬁ“(r\ r . Rﬂ‘n\r) r Cl r

SEIG

Ry (O P dT

ok o ’ .
Ga = J, Rt

-~ hybrid

> (al)

(45)

(46)

(A7)

(A8)
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To evaluate K , one can expand \/C (F)in spherical harmonics centered on the
17

anion. This type of expansion technique is discussed in detail by Lowdin.

Again only the m=20 component of the expansion is required and one can write

(20
—n ~ k
L Ver-dy = 20 Boddin P (cos8) (49)
: K=o

where F is measured from the anion and

k k R 4 o R (110)
B (4,1 = o (d,ry+9 FFI’D (4, 7Y ~2 By, d,ry+ ¢ Frf,zid,r\

with

Then one finds

=
it

(B Ve (P-4 (P dF

I

” ' 2 I
][L S { [ RSA(r)] Bco (Ui' )') + 'R_go\(") R"Ja \'l") Bc K\ilr\

(a12)
0

+[ Rpa ] [187d )+ £ B, M]% fdr

¢



To compute the remaining integrals, one must use an expansion analagous to Eq.

(A9) for the sp* hybrid wavefunction:

w

o Y - Y 'r;’_/:_ N - )
cj)“ o, 3y = )t g” / ;FT.‘%‘. A, ey I Ceosay (AL3)
where
| oL K Ay + 30 T IES
A)v (d’ ry = Sn ) ! {3 n py ) (A1k)
with
- (d+r) ( )
ZRAY 2441 k LT s r'*i A15
o( i) = r'h /WJ Rxn”’&(%f;r*) R v
-y

n IN
Formules for § , 5{‘1 and Qf’nn, in terms of the A,, (4,1) follow immediately:

-0 ~N . . / - iy
=% ) [ Reat Ac () 4 5 Rpa (o) Ac ¢dird]ride | (me)

| =, 0 |
SCO: ;E*S - ;;] j {%qu(r)Ac(d,r\)-% Kfa(rXZACul.rH *Jr/\c(d r}J (A17)

gr‘dr

(A18)
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" Finally, a formula for 67

wn may be derived by meking two expansions of the farm

Al3:

! ! * } }2’ N dr
' L Z (>;z+i)’/5(zk+|)/: j A:M,r) A)\, (d. e

h ‘-
L . (419)
'
X [ P, (x) Pk(” th o d x
-

In this case an infinite, but rapidly convergent, series is obtained. For each
value of h/ there are one to three values of R which give finite contributions
to the series. In ouwr calculations we have accumulated terms up to k=3 and k ':3.

We omit results for the remaining Coulomb integrals H and ] , as these

h
quantities subsequently drop out of analysis given in Sec. III. A formuls for Hh
can be developed by using Eq. (A4) and a single expansion of the form Al3. In

the case of 7 a double expansion as in Eq. (Al9) is required and an infinite

series is obtainead.
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TABLE I. Intra-atomic parameters for the group-III, -IV and -V elements
obtained from the free-atom Hartree-Fock term values and wave-
functions of Mann (Ref. 7). Energies are given in eV, while
S, end ¥ are given in a.u.

HF " "

Element —El’l Vg Un ‘&y\ n \6))\ n

B 9.68 1.26 13.95 17.7 0.776
Al 6.96 1.25 9.27 29.6 1.09
Ga 7.1h‘ 1.47 9.37 87.2 2.89
In 6.56 1.19 8.43 123 b 46
c 13.1k 2.08 17.62 35.0 1.66
si 9.38' 1.80 11.3% 48.1 2.03
Ge 9.28 1.96 10.96 120 b.T3
Sn - 8.33 1.57 9.63 160 6.75
N 16.92 3.09 21.22 60.5 2.02
P 11.95 2.h2 13.27 7.13 . 3.27
As 11.46 2.48 12.36 157 6.85
Sb 10.11 1.97 10.66 200 9.23
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TABLE IT.

Intrabond parameters for the
and IIT-V binary compounds.
titting Lo experiment, while

o7

group-IV elements and the group-1V
The quantity Vo was obtained by
8, K, V3 and V) were calculated

using llartree-Fock free-atom term values and wavefunctions, uas
All energles are given In eV; the bond

described in the text,
length d is given in A,

Material a s K Vo v3 V),
C 1.5k4 0.648 1% .70 6.54 0.0 2.52
si 2.35 0.668 9.83 2.53 0.0 1.36
Ge 2.44 0.659 9.46 2.k2 0.0 1.33
Sn 2.80 0.661 8.37 1.99 0.0 1.12
8ic 1.88 0.627 11.95 4.07 0.40 2.08
BN 1.57  0.608 14.18 6.54 2.27 2.70
'BP 1.97 0.663 11.65 4.07 1.7L 1.75
BAs 2.07 0.656 11.1k4 3.98 1.71 1.77
ALN 1.89. 0.517 11.27 k.07 1 2.33 2.71
AP 2.36 0.633 9.58 2.53 1.93 1.h1
AlAs 2,43 0.645 9.3k 2,47 1.93 1.26
A1Sb 2.66 0.659 8.68 o 2.24 1.63 1.1k
Gal 1.94 0.513 11.13 3.98 2.25 2.83
GaP 2.36 0.629 9.58 2,47 1.84 1.4Y
GaAs 2.45 0.637 9.28 2.h2 1.83 1.25
GasSb 2.65 0.65k4 8.70 2.19 1.54 1.15



TABLE II (cont'd.)
InN 2,15

' InP - onLsh
InAs 4 .61
InSb 2.81

“0.470

0.600
0.617

0.644

10.16
8.90
8.75
8.24

2.2k

1.99

58

2.99
L1.h8
1.33

1.12
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Table III. Rclative singlet and triplet eigenvaluces Eg = EM—(CD+CC~K)

0 _ .0 0 _
G - }JIV ﬂnd h'l‘ -

for the twenty solids considered in the text, where E

"0 e N @y 1 SPTPR N ~ 3 » N
LI,II,III' AJqulistcd are the theoreticnl predictions of thc )

o9

2
optical-absorption peak both from the present work, E2 = Egv - Eg, and
from the work of Harrison and Ciraci (Ref. 2), Egc. All energies are
in eV,
. Theory ) Experimenta
. 0 0 0 0 0.0 .0 HC '
Material EG ET EIv EV EQ—EIV-EG E2 E2A E2b
c 2.2 h.82 9.87 2k 12.2° 12.2° 12.2 12.2
si -0.50 1.19 3.91 9.98  L.P 4.5  L4.h0  k4.ho
Ge -0.50 1.15 3.81 9.5  k,3P 4.30°. 4.3 4.3
Sn 0.3 0.89 3.13 T7.88  3.52° 3.52
sic -1.25 2.33 6.56 15.63 T.80 - T7.98 8.3
BN -3.33 k.18 9.95 2L.87 13.3 13.L
BP -1.81 2.65 6.04 16.22 7.85 7.32 6.9
BAs -1.78  2.55 5.96 15.89  T.T3 T.24
AN —2.46 2.23 6.69 17.08 9,32 9.07
ALP 21,72 1.32 3.80 11.28  5.52 - 4.99
AlAs -1.80 1.39 3.64 10.96 5.k 4.85
ALSb  -1.46  1.20 3.30  9.83  L.76 L.68 k.25 4.6
GeN .2.26 2.06 6.92 16.90 9,18 .  9.26
GaP ©-1.59  1.22 3.76 11.02  5.35 5,11  5.27 5.7h
GaAs <1.71  1.38  3.60 10.65  5.30 4,93  4.85 5.33

GaSb  -1.36 1.1h 3.26  9.57  L.6) b.31 ka1 LS
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cFit to experiment EZA

Table III. (cont'd.)
InN -2.13  1.70 6.61 15.96 8.4 8.5
InP -1,56 1,02 3,48 10.,h1 5.0h L, 8} .8 5.1
InAs ~1,64 1,07 3.31 10.12 .95 4,58 L.s 5.0
" InSb -1.39 0.98 2.97 9.01 4,36 4,095 4.08
8Reference 9
bFit to Egc, as described.in the text,



Table IV. Expansion coefricients entering Fg. (31)
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for the singlet

eigenstutcs M = VI (the ground state), M = 1V and M = V of the iwenty

semiconductors considered in the text.

M=VI 1v J
Mate-
rial ey By 8y Sy By By Py Psy %6m
C 0,167 0.167 0.736 0.928 -0.928. 0  -1.k& -1.bk 2.33
$i 0.100 0,100 0.841 0,950 -0.950 0  -1.53 ~1.53-2.47°
Ge 0.103 0.103 0.838 0.9%0 -0.9% 0  -1.h9 -1.49 2.39
Sn  0.097 0.097 0.847 0.942 -0.9k2 0 ;1.50 -1.50 2.k
sic  0.198 0.08% 0.781 0.990 -0.81T -0.200 -1.30 - -1.43 2.15
BN 0.k02 0.020 0.653 1.11 -0.5Th -0.6k2 -1.06 -1.48 1.97
BP 0,465 -0.061 0.635 1.23 -0.512 -0.865 121 -LTL 2,33
BAs 0,459 -0.058 0.641 1,22 0,508 -0.855 -1.17 -1.68 2.27
AN  0.L48 -0.015 0.658 1.10 -0.357 -0.81k -0.680 -1.32 1.38
AZP  0.643 -0.120 0.h9k 1.26 -0.218 -1.2k -0.889 -1.65 1.92
‘A%As  0.680 -0.121 0.k51 1.27 -0.202 -1.30 -0.920 -1.70 2.00
ALSb  0.659 -0.131 0,480 1.30 -0.238 -1.28 -1.00 -1.75 2.1k
GeN  0.428 -0.017 0.678 1,10 -0.358 -0.800 -0.675 -1.31 1.36
GeP  0.619 -0.121 0.520 1.25 -0.231 -1.21 -0.886 -1.63 1.89
GeAs 0,655 -0.113 0.476 1.26 -0.224 -1.,25 -0.904 ~1.66 1.95
GaSb 0.632 -0.128 0.508 1.29 -0.259 -1.24 -0.,998 -1.72 2.11



Table 1v, (cont'd,)

InN 0,420
CInP 0.626
InAs 0,667
InSb 0.67h

~0.,010
0,118
"0 . ].22

0.h72
0.466

1.07
1,22
1.2h

1.28

-0.310
~0.179
-0.163
-0.108

~0.789
-1,22
-1.28

-1.31

~0.563
~0.161
-0.,796

62

1,26 1.16
-1.55 1.67
-1.60 1,76

-;.69 1.98




Table V,

the polarization of the bond, as discussed in the text.
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| Calculated parameters reluted to the dielectric constant and

The quantity

?g? is the value of polarity assigned by Harrison and Ciraci (Rer.2 ).

0.237

. G HC
Mnterlnl. Gc Gh 6c-6a 26ca ZP | ‘.ap N ap Y
c 0.279 0.279 0.0 0.0 0.0 0.0 0.0 0.581

si 0.265 0.265 0.0 0.0 0.0 0.0 0.0 0.633
Ge 0.257 0.257 0.0 0.0 0.0 0.0 0.0 0.646
Sn 0.259 - 0,259 0.0 0.0 0.0 0.0 0.0 0.6L43
8icC 0.331 0.229 0.102 0.098 0.1k 0.08 0.39 0.565
BN 0.334 0.228 0.116 0.053 0.24 o.2f 0.41 0.539
BP 0.274%  0.275 -0.001 -0.040  0.20 0.35 0.0 0.602
BAs 0.261  0.275 -0.01h -0.057  0.19 0.35 0.0 0.615
ALN 0.390 0.189 0.201 0.110 0.3k 0.34 0.59 0.kg2
AZP 0.312 = 0.229  0.083  0.05% 0.39  0.53 0.h7 0.593
ALAs 0.303 0.234 0.069 0.037 0.ko. 0.55 0.4k 0.606
ALSb 0.277 0.251 0.026 0.00% 0.36 0.5h4 0.54 0.628
 GaN 0.363  0.18)4 0.179 0.114 0.33 0.32  0.62 0.528
GaP 0.299 0.229 0.070 0.050 0.38 0.51 0.52 0.607
Gals 0.288 0.233 0.055 0.034 0.38 0.5k 0.50 0.621
GaSb 0.266  0.252 0.01k -0.001 0.3k 0.52 o.44 0.638
InN 0.372  0.166  0.206  0.156 0.36 0.3 0.6k 0.523

- InP 0.315  0.213 0.102  0.096 0.l 0.52 0.58 0.591
InAs 0.307 0.218 0.089 0.080 0.k42 0.56 0.53 0.60k4
"InSb 0.285 0.048 0.0L} 0.39 0.56 0.51 0.625




5
et
'@,\"\:{ TABLE VI. Nuclear exchange and pseudodipolar coefficients, I'e and I'pyg, for the twenty
@, %
‘@ o solids considered in the text in units of the direct dipole-dipole interaction
\?ﬂ‘%, coefficient rdd" The theoretical results refer to our calculations done in botk
\g\/&@ the Harrison limit and with the full two-electron formalism described in the text.
\*& b
I'e/Taa de/rdd de/l’e
Theory Expt. The'ory - Expt. Theory Expt
Material Harrison Full Harrison Full Harrison Full
C 0.0h3 0.08"(‘ 0.0068 0.0139 0.160 0.162
Si 0.856 2.79 0.130 O.h27 0.153 0.153
Ge 6.00 19.8 0.860 2.84 0.143 0.143
Sn 19.7 69.5 3.0k 10.7 0.154 0.154
sic 0.120  0.435 0.0187 0.0681 0.155 0.157
BN 0.022 0.055 0.0034 0.0076 0.154 0.137
BP 0.161 0.203 0.0254 0.0386 0.158 0.190
BAs 0.hokL 0.568 0.0628 0.103 0.155 0.180C
AIN 0.077 ‘O 273 0.0087 0.0322 0.113 0.131¢
AlP 0.h412 0.684 0.0619 0.102 0.150 0.15C
AlAs 1.20 1.5k 0.170 0.21k 0.1k42 .139
A1Sb 1.56 3.15  ~0.0% 0.233 0.469 0.149 0.19

9



TABLE VI (cont'd.)

,Gaﬁ - V'o;185
GaP | 0.913
Gahs 2.69
Gasb . 5.07
IﬁNb S o.é77
InP 1.50
InAs | h.71
InSk 9.18

0.917
1.97 0.11;'b

4.26 o,73b

8.80  1.89%

2.01
4.00  ~0.55°
8.72 2.06%

15.6 5,082

0.0218
0.1ho0
0.388
0.768

0.0325

0.228

0.673

1.38

0.107
0.303 0.20°
0.623 0.65
1.36.

1 0.246

0.608 ~1.0°
1.2k

2.33

.118
.15k
Jdbb

.151

.117
.152
.143

.150

117
.15k 1,43
.14 0.89
.154

.122
.152 1.8
.1h3
.1L49

& R. K. Sundfors, Phys.

b Reference 16

Rev. 185, 458 (1969).

¢ M. Engelsberg and R ¥ Norberg, Phve_ Rev. B 5, 3395 (1972).

&9



66

Tuble XII, Cohesive encrgy per atom pair and its components for the
group - IV elements in eV, The quantities Egoh and Ecoh arc our calcu..
lated values of the cohesive encrgy without and with the correlation

energy Eco » respectively, as discussed in the text. The quantity

rr

Aeﬁt is the value of Ae_ necessary to fit E to I‘chPt.

n n coh coh
Mate- )

. He 0 ; 0 expt it
rial 8(1-s)v2 -1 Ecorr -4 EOL -Lpro .Ecoh Ecoh Ecoh Aen

c 17.18 -7.88 21.4k 26,64 22,0 14.1  14.7 ° -0.07S
si 5.84 -3.84 ak.84 14 ko 6.28 2.L4 9,28 -0,855%
Ge 5.87 -3.87 1b.2h 15,68 L4.43 0.56 T.7% -0.898
Sn 4,77 ;3.23 12.92 -12.56 5.13 1,90 6.24 _0.s5L2

ORIGINAL PAGE IS
OF POOR QUALITY



Pig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

FIGURE CAPTIONS

Correlation enhancement factor 'g' defined by Eq. (92) for

the nuclear exchange and pseudodipolar coefficients of
homopolar solids as a function of X= ZVAL/VJ_ with V, = ¢
Two-electron bond-orbital-model values of the dielectric
constant € for sixteen binary compounds plotted against the
best available experimental values (Ref. 10). No experimental
data exists for BP , {SASV or IIwN and the estimates of Van
Vechten. (Ref. 10) have been used instead.

Single-bond electron density for (e as calculated from Eq.
(60) using free-stom Hartree-Fock wavefunctions and the (T
given in Table IV.

Single-bond electron density for Ga As as calculated from Eq.
(60) using free-atom Hartree-Fock wavefunctions and the ;g
given in Table IV. The As nucleus is on the right.

Profile of the total valence electron density in Ge along a
bond axis, obtaiﬁed by superimposing single-bond densities
(Fig. 3) in the solid. The corresponding local-empirical-
pseudopdtential calculation of Walter and Cohen (Ref. 11) is
shéwn for comparison (dashed line). The small arrows indicate:
the’ i)ositions of the nuclei.

Profile of the total valence electron density in Gm‘As along

a bond axis, obtained by superimposing single-bomi'densities

~67~
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(Fig. 4) in the solid. The corresponding local-empirical-
pseudopotential calculation of Walter and Cohen (Ref. 11) is
shown for comparison (dashed line). The small arrows indicale
the positions of the nuclei with }\5 on the right.

Fig. T | Experimental values of € -] vs. experimental values of e ,"'I’_\d 4t
for the seven TII-V compounds on which data is available. The
linear trends in the ln and Ga  series are to be compared
against the theoretical predictions shown in Fig. 8.

Fig. 8 Theoretical values of €-| vs. theoretical values of ré/?hx'*¢

" for fifteen III-V compounds, as calculated from the two-electron
bond-orbital model. The corresponding experimental results, as
known, are plotted in Fig. T.
Fig. 9 'I‘w0-eiectron bond~orbital-model values of the cohesive energy
E:ol\ for sixteen binary compounds plotted against the known
experimental values. References to the experimental data are

given in the caption of Fig. 11 of Ref. 2.



o |

$=0.75 0.65

5.0+ |
$=0.75 $=0.65 $=0.00
40}
30}
T
" 2.0r'
$=075 065
l TQ-o0 l (NEGATIVE BEYOND)
Qo — 10 20 30

PR : X
ICEDING PAGE BLANK Not prpgp



€ (THEORY)

15

-GaSb
. Si
AlSb- - InAs
-GaAs
10t InP.
AlAs. / GaP '
| B BAs © FITTED VALUES
AIP a BP B NO EXPERIMENTAL DATA
SiC s AVAILABLE
Cvm InN
5 BN / GaN
*AIN
o3 5 i0 i5 20

Ge ,
- InSb

€ (EXPERIMENT)



vy

ELECTRON DENSITY (ELECTRON/ ou.3)
o
o
@

0.2}

O.10}

0.02¢

000

N
. '

>

&

7L L L S
KN as s
WL

!
NS AT
“} T T 7T T
s

771 177L 577070070

////////7/774///////7///////z/

LS

TITLL 7L L LS

Z 7L L
///Z///AALAOOOGO??//ZZ///AAL/

-600 -400. -2.00 000 200 4.00 600

Z AXIS (au)



BN

B £ TS S B R TR o TLmTmTEOm st B i A s -

ELECTRON DENSITY (ELECTRON /au3)

o
N

OIO}
il
,‘
00sf N
| il
0.04. | co\op\ .
W
4 - LA
002} ‘ /
=
777777 L L

00 ////////////////////////////.///

.00
-800 -600 -400 -200

000 2,00 4.00 6.00

Z AXIS (a.u.)



800

(@)
10

o

O

Q

4

O

10

o

(@

1Q

(@)

O

Q

o

]

(@]

18

4

|

(@]

lo

(s}

]

(@]

19

(v0)

i

o

. . S
-. A A 2 om
© © o© o o S o

(¢nD/ z,om:.ou.._mv ALISN3Q NOY10314

Z AXIS (a.u)



F*\F

200 600 800

200

@)
o

o

@)

10

N

]

®)

o

4

1]

o

10

0

1

o

pe)

(e8]

]

o

4. A A ) A e A o-
N (@] (00] (o] < N [e]@)
~ ~ o o] o O oy
o O O - O O o o

(¢nD/ SNOYHLD3T3) ALISN3Q NOYLO313

Z AXIS (a.u)




””
"’ InAs
EXPERIMENT
0.05 | 010

M /Tygd? (A9



g T

€-1

ISt
Ga SERIES L
o, o
Al SERIES 7 ,,»\_ |
» 7 e In SERIES THEORY
y / I,( 'o
IO" s, ,l'
’ o -,
L7 A BN,BP,BAs
/o ot ‘B AIN, AIP,AlAs,AlISD
A/B o GaN,GaP, GaAs,GaSh
7: * InN,InP, InAs, InSb
A/
5..
o [ ]
Apg
O N 1 2
0 Q.10 0.20 030

AT d* (A%



-

E coh (THEORY) (eV)

© FITTED VALUES

B NO EXPERIMENTAL DATA
AVAILABLE

15F c
BP
BAsE .
.AISb S‘:BpN
1ot InP, AlAs i
GaAs, ]AIP. Si
GaSb, 7
InAs—~, GgP FGe
InSb™
Sn
5-
« AIN
| InN  -GaN
(-07!)
0 s { i
0 5 10





